WO2019167309A1 - Light source device and projector - Google Patents

Light source device and projector Download PDF

Info

Publication number
WO2019167309A1
WO2019167309A1 PCT/JP2018/031118 JP2018031118W WO2019167309A1 WO 2019167309 A1 WO2019167309 A1 WO 2019167309A1 JP 2018031118 W JP2018031118 W JP 2018031118W WO 2019167309 A1 WO2019167309 A1 WO 2019167309A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
refractive optical
semiconductor laser
light source
Prior art date
Application number
PCT/JP2018/031118
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 信田
三浦 雄一
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2019167309A1 publication Critical patent/WO2019167309A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a light source device, and more particularly to a light source device that uses light emitted from a semiconductor laser chip.
  • the present invention also relates to a projector provided with such a light source device.
  • the semiconductor laser chip has a certain width, and there is a limit to arranging these closely. That is, simply arranging a plurality of semiconductor laser chips increases the size of the light source device.
  • a semiconductor laser chip group is arranged in the first region, and another semiconductor laser chip group is arranged in a second region different from the first region.
  • a method for increasing the light intensity on the light source side a method using a semiconductor laser chip provided with a plurality of regions for emitting laser light (light emitting regions: hereinafter sometimes referred to as “emitters”) is conceivable.
  • Such a semiconductor laser chip is sometimes referred to as a “multi-emitter type”.
  • the present inventors have studied to increase the light intensity by using a multi-emitter semiconductor laser chip as a light source, and have found that the following problems exist.
  • FIG. 1A is a perspective view schematically showing the structure of a semiconductor laser chip provided with one emitter. Such a semiconductor laser chip is sometimes referred to as a “single emitter type”. Note that FIG. 1A also schematically shows a light bundle of light (laser light) emitted from the emitter. In the present specification, a light beam group formed in a bundle shape emitted from a single emitter is referred to as a “light beam bundle”.
  • the light bundle 101L emitted from the emitter 101 has an elliptical cone shape.
  • a direction (Y direction shown in FIG. 1A) in which the divergence angle of the light beam 101L is large is selected from two directions (X direction and Y direction) orthogonal to the optical axis (Z direction shown in FIG. 1A).
  • the direction in which the light beam 101L has a small divergence angle is referred to as the “slow axis direction”.
  • FIG. 1B schematically shows the light beam 101L separately for the case viewed from the X direction and the case viewed from the Y direction.
  • the divergence angle ⁇ y of the light beam 101L is large in the fast axis direction
  • the divergence angle ⁇ x of the light beam 101L is small in the slow axis direction.
  • each light beam 101L is converted into parallel light from the viewpoint of suppressing the size of the optical member.
  • the light is condensed by a lens.
  • a collimating lens also referred to as a “collimation lens” is disposed downstream of the semiconductor laser chip 100 to reduce the divergence angle of each light beam 101L.
  • FIG. 2A is a drawing schematically showing a light flux traveling in the YZ plane direction when the collimating lens 102 is arranged at the rear stage of the semiconductor laser chip 100.
  • FIG. 2A only the upper and lower light rays are drawn on the geometrical optics.
  • upper ray refers to a ray that passes through the upper edge of an aperture (incidence pupil) of an optical member (for example, a lens) in the bundle of rays
  • lower ray refers to a portion of the ray bundle.
  • the principal ray is a ray that passes through the center between the upper ray and the lower ray of the light bundle.
  • substantially parallel light beam As referred to as “substantially parallel light beam”) with respect to the fast axis direction (Y direction).
  • substantially parallel light beam or “substantially parallel light beam” refers to a light beam whose angle formed by the upper light beam and the lower light beam is less than 2 °.
  • FIG. 2B is a diagram schematically showing a light beam traveling in the XZ plane direction when the collimating lens 102 is arranged at the rear stage of the semiconductor laser chip 100. According to FIG. 2B, after passing through the collimating lens 102, the light beam 101L becomes a substantially parallel light beam in the slow axis direction (X direction).
  • FIG. 3A is a perspective view schematically showing the structure of a semiconductor laser chip having a plurality of emitters, unlike FIG. 1A.
  • FIG. 3A shows a case where the semiconductor laser chip 110 includes two emitters (111, 112).
  • FIG. 3B is a schematic diagram of the light bundles (111L, 112L) emitted from the respective emitters (111, 112) divided into a case of viewing from the X direction and a case of viewing from the Y direction, in accordance with FIG. 1B.
  • each emitter (111, 112) is formed at the same coordinate position in the Y direction, the beam bundles (111L, 112L) are completely overlapped when viewed from the X direction.
  • the emitters (111, 112) are formed at different coordinate positions in the X direction, the beam bundles (111L, 112L) are displayed with their positions shifted when viewed from the Y direction.
  • each light bundle (111L, 112L) becomes a substantially parallel light bundle after passing through the collimating lens 102, as in FIG. 2A.
  • FIG. 4 is a diagram schematically showing a light beam traveling in the XZ plane direction when the collimating lens 102 is arranged at the subsequent stage of the semiconductor laser chip 110. Since the semiconductor laser chip 110 includes a plurality of emitters (111, 112) separated in the X direction, the X coordinate at the center position of the collimator lens 102 and the X coordinate at the center position of each emitter (111, 112). Inevitably shifts.
  • each of the light beam 111L emitted from the emitter 111 and the light beam 112L emitted from the emitter 112 becomes a substantially parallel light beam after passing through the collimator lens 102, but the principal ray 111Lm of the light beam 111L, The principal ray 112Lm of the ray bundle 112L is not parallel. That is, the light flux 111L and the light flux 112L have different traveling directions in the X direction.
  • the angle of the traveling direction in the X direction of the light beam 111L and the light beam 112L is determined by the relative value of the distance between the emitters (111, 112) with respect to the focal length of the collimating lens 102.
  • FIG. 5 uses the same collimating lens 102 and proceeds in the XZ plane direction according to FIG. 4 when the distance between the emitters (111, 112) (distance in the X direction) is larger than the configuration of FIG. It is drawing which showed the beam bundle to do typically.
  • FIG. 5 corresponds to the case where the relative value of the distance between the emitters (111, 112) with respect to the focal length of the collimating lens 102 is made larger than in the configuration of FIG.
  • the angle ⁇ xm formed by the principal ray 111Lm and the principal ray 112Lm (this angle corresponds to twice the angle between the optical axis of the collimating lens 102 and each principal ray) is shown in FIG. It turns out that it is larger than the case.
  • the light bundle 111L and the light bundle 112L are completely separated at a position closer to the collimating lens 102 in the Z direction than in the embodiment of FIG.
  • the light beam 111L and the light beam 112L are completely separated at the position z1 with respect to the optical axis direction (Z direction).
  • the light beam 111L and the light beam 112L are completely separated at the position z2 before z1 in the optical axis direction (Z direction).
  • the collimating lens 102 needs to be a lens having a sufficiently long focal length, which increases the size of the optical system.
  • the collimating lens 102 needs to be arranged corresponding to each semiconductor laser chip 110, so that the apparatus scale becomes extremely large.
  • the above problem can occur even in the single-emitter semiconductor laser chip 100. That is, the above-described problem is caused when the width of the emitter 101 is increased in order to increase the output of the semiconductor laser chip 100, or a plurality of single-emitter semiconductor laser chips 100 are arranged and emitted from the plurality of semiconductor laser chips 100. This can occur in the same way when the light beam thus made incident on one collimator lens 102.
  • an object of the present invention is to provide a light source device that uses a plurality of semiconductor laser chips and increases the light output while suppressing the expansion of the device scale. Moreover, this invention makes it a subject to provide the projector provided with this light source device.
  • the light source device includes: A plurality of light exit areas provided on the same or different semiconductor laser chips and a plurality of first light bundles emitted from a plurality of adjacent light exit areas are incident, and each of the plurality of first light bundles A plurality of semiconductor laser units, including a first refractive optical system that converts and emits a plurality of second light beams that are substantially parallel light beams, and A plurality of the second light beams including a plurality of flat surfaces having different inclination angles, wherein at least a part of each of the plurality of second light bundles emitted from the same semiconductor laser unit is incident on the different flat surfaces.
  • a second refractive optical system that converts the traveling direction of each principal ray of the bundle to be substantially parallel to the optical axis and emits the second refractive optical system, The second refractive optical system is arranged corresponding to the number of the semiconductor laser units.
  • each is converted into a plurality of second light beams that are substantially parallel light beams.
  • the second light bundles more specifically, the chief rays of the second light bundles, travel at an angle corresponding to the interval between the chief rays of the first light bundle.
  • the interval between the principal rays of the first ray bundle depends on the interval between the center positions of the light emission regions that emit the first ray bundles.
  • the light source device includes a second refractive optical system including a plurality of flat surfaces having different inclination angles at the subsequent stage of the first refractive optical system.
  • the plurality of second light beams emitted from the same semiconductor laser unit, more specifically from the same first refractive optical system, are at least partially different from each other in the second refractive optical system. Incident on a flat surface.
  • the plurality of second light fluxes are refracted, and their traveling directions change.
  • the inclination angle of each flat surface is set so that the traveling directions of the principal rays of the plurality of second light bundles are substantially parallel to the optical axis.
  • the traveling directions of the second light bundles after passing through the second refractive optical system are substantially the same.
  • the principal rays of the second light bundles are substantially parallel light (substantially parallel light)
  • the second light bundles do not intersect each other, or extremely fine light rays intersect each other.
  • the light source device includes a plurality of semiconductor laser units including a semiconductor laser chip and a first refractive optical system, and includes a plurality of second refractive optical systems corresponding to the number of the semiconductor laser units.
  • the principal rays of the plurality of light bundles emitted from each second refractive optical system are substantially parallelized.
  • light having high irradiance can be obtained by condensing these beam bundles in the subsequent stage.
  • the light source device may include a plurality of multi-emitter semiconductor laser chips each having a plurality of light emission regions (so-called “emitters”) on the same semiconductor laser chip.
  • a plurality of single-emitter semiconductor laser chips each having a single light emission region (emitter) may be provided.
  • the first refractive optical system has a convex curved surface on the light exit surface side
  • the second refractive optical system may be arranged at a position away from the first refractive optical system with respect to the focal length of the first refractive optical system.
  • the principal rays intersect at the focal point of the first refractive optical system. Since the widths of the upper ray and the lower ray of each second light bundle are substantially the same, the second light bundles completely overlap each other at the focal point of the first refractive optical system. If the second refracting optical system is not disposed, the second light bundles progress with mutual expansion as they move away from the focal point of the first refracting optical system.
  • the second light bundle emitted from the first refractive optical system has a light distribution such as a Gaussian distribution in which the light intensity is highest at the position of the principal ray, and the light intensity sharply decreases as the distance from the principal ray increases.
  • the distribution is as follows.
  • At least the principal rays of the plurality of second light beams emitted from the first refractive optical system are incident on different flat surfaces of the second refractive optical system. That is, among the second light bundles, light rays with extremely high irradiance are made substantially parallel to each other after being incident on different flat surfaces.
  • light having high irradiance can be obtained by condensing a plurality of light bundles emitted from the second refractive optical system by the subsequent condensing optical system.
  • the second refractive optical system has a specific position at which the upper light beam of one of the second light beams intersects the lower light beam of the other second light beam with respect to a pair of adjacent second light beams.
  • it may be arranged at a position farther from the specific position than the first refractive optical system.
  • the pair of adjacent second light beams are completely separated from each other.
  • the second refractive optical system is not disposed, the second light bundles progress while being dispersed while increasing the separation distance as they move away from the specific position.
  • each of the plurality of second light bundles emitted from the first refractive optical system is completely the second refractive optical system. Incident on different flat surfaces of the system. As a result, all the light rays included in each second light bundle can be guided to the subsequent stage as substantially parallel light.
  • the second refractive optical system is disposed at a position farther from the focal length of the first refractive optical system than the first refractive optical system, and at a position preceding the specific position. It does not matter as a thing.
  • the adjacent second light beams are incident on the flat surface of the second refractive optical system in a state where they partially overlap each other.
  • the width of the entire plurality of second light bundles (the outer shape on the plane orthogonal to the optical axis) is compared with a specific position or a position at the subsequent stage. Therefore, the position in the previous stage is smaller than the specific position. That is, according to the above configuration, the plurality of second light bundles are guided to the second refractive optical system with a small beam width. As a result, the plurality of second light bundles emitted from the second refractive optical system can be guided to the subsequent stage as a light bundle having a small beam width.
  • each second light bundle exhibits a distribution such as a Gaussian distribution, and the light in the vicinity of the principal ray included in each second light bundle is the same as the principal ray by the second refractive optical system. Since the light travels in the direction, these light beams are condensed at a target position by a condensing optical system in the subsequent stage. That is, even in this aspect, the intensity of light that cannot be used is extremely low, and does not significantly affect the light use efficiency when the entire apparatus is considered.
  • the second refractive optical system may be disposed at a position where the second light flux emitted from the adjacent semiconductor laser unit is not incident. This corresponds to defining a preferable upper limit value of the separation position of the second refractive optical system from the first optical system.
  • the second refractive optical system is arranged at a position extremely far from the first refractive optical system, the second light beam emitted from the adjacent semiconductor laser unit is incident on the second refractive optical system. At this time, the following problems may occur.
  • the second refractive optical system Since the second refractive optical system is disposed at a position extremely far from the first refractive optical system, the plurality of second light bundles emitted from the same first refractive optical system are completely separated from each other, and the separation distance is further separated. Is incident on each flat surface of the second refractive optical system. As a result, in the second refractive optical system, it is necessary to increase the size of each flat surface or increase the interval between the flat surfaces, and the scale of the second refractive optical system increases.
  • the second light beam emitted from the corresponding first refractive optical system is incident on the flat surface located at the end of the second refractive optical system.
  • the flat surface located outside the end portion of the second refracting optical system from the adjacent first refracting optical system.
  • the second light flux is incident. In this case, many light rays travel non-parallel to the optical axis, and the light use efficiency may be reduced.
  • the second refractive optical system may include a plurality of the flat surfaces on the light incident surface side, and one of the plurality of flat surfaces may be a surface orthogonal to the optical axis. I do not care.
  • the optical system can be aligned by aligning the center position of one light emitting region and the center position of the flat surface, which is composed of a plane orthogonal to the optical axis, on the optical axis. It becomes possible.
  • the second refractive optical system may have a surface orthogonal to the optical axis on the light exit surface side.
  • the light source device may include a first optical member in which a plurality of the second refractive optical systems are integrated on a surface opposite to the flat surface.
  • each second refractive optical system corresponds to a part of the first optical member.
  • the light source device At the rear stage position of the second refractive optical system, it has an integrator optical system consisting of a front fly eye lens and a rear fly eye lens,
  • the pre-stage fly-eye lens is arranged to be connected to the light exit surface side of the first optical member, and a period of the flat surfaces having the same inclination angle provided in a plurality of the second refractive optical systems. It is also possible to include a plurality of lenses arranged with a shorter period.
  • the illuminance on the irradiation surface can be made substantially uniform at the subsequent stage.
  • the pre-stage fly-eye lens included in the integrator optical system is connected to the first optical member formed by integrating a plurality of second refractive optical systems, thereby reducing the scale of the apparatus in the optical axis direction.
  • the light source device is disposed at a position where a lower light beam of a light beam emitted from one second refractive optical system and an upper light beam of another light beam emitted from the adjacent second refractive optical system intersect.
  • an integrator optical system including a front-stage fly-eye lens and a rear-stage fly-eye lens that are disposed with their curved surfaces facing each other may be provided.
  • the illuminance on the irradiation surface can be made substantially uniform at the subsequent stage.
  • emitted from the adjacent 2nd refractive optical system are the same lens ( Single lens).
  • the light beam emitted from the adjacent second refractive optical system is a light beam emitted from the adjacent semiconductor laser chip.
  • the same semiconductor laser chip not only the light beam emitted from the same semiconductor laser chip but also the light beam emitted from a partially adjacent semiconductor laser chip is the same single lens that is a component of the front fly-eye lens. Is incident on.
  • the effect of reducing the speckle noise on an irradiation surface is anticipated.
  • the projector according to the present invention is characterized in that an image is projected using the light emitted from the light source device.
  • the present invention it is possible to realize a light source device that uses a plurality of semiconductor laser chips to increase the light output while suppressing the expansion of the device scale.
  • FIG. 1A schematically illustrates a light bundle emitted from the semiconductor laser chip of FIG. 1A divided into a case of viewing from the X direction and a case of viewing from the Y direction. It is drawing which showed typically the light beam which advances to a YZ plane direction, when a collimating lens is arrange
  • 1 is a perspective view schematically showing the structure of a multi-emitter semiconductor laser chip.
  • 3A schematically shows a light beam emitted from the semiconductor laser chip of FIG. 3A divided into a case of viewing from the X direction and a case of viewing from the Y direction.
  • 3B is a drawing schematically showing a light beam traveling in the XZ plane direction when a collimating lens is arranged at the rear stage of the semiconductor laser chip of FIG. 3A.
  • FIG. 5 is a diagram schematically showing a light flux traveling in the XZ plane direction when the distance between the emitters is increased compared to the configuration of FIG. 4. It is drawing which shows typically the structure of one Embodiment of a light source device.
  • FIG. 7 is a drawing illustrating one semiconductor laser unit and a second refractive optical system disposed in a subsequent stage extracted from FIG. 6.
  • FIG. 7B is a partially enlarged view of FIG. 7A.
  • FIG. 7B is a partially enlarged view of FIG. 7A.
  • FIG. 1 It is drawing which shows typically the structure of another embodiment of a light source device. It is drawing which extracted and extracted typically a part of FIG. It is drawing which shows typically another aspect of a 2nd refractive optical system and an integrator optical system. It is drawing which shows typically the structure of another embodiment of a light source device. It is drawing which shows typically the structural example of the projector containing a light source device. It is drawing which shows typically the structure of another embodiment of a light source device.
  • FIG. 6 is a drawing schematically showing a configuration of an embodiment of a light source device.
  • the light source device 1 includes a plurality of semiconductor laser units (2, 2,%) And second refractive optical systems (3, 3,%) Arranged according to the number of each semiconductor laser unit.
  • FIG. 6 shows a rear stage optical system 40 through which light emitted from the second refractive optical system (3, 3,%) Is guided.
  • the semiconductor laser unit 2 includes a semiconductor laser chip 5 and a first refractive optical system 6.
  • FIG. 7A is a drawing showing one semiconductor laser unit 2 and the second refractive optical system 3 arranged corresponding to the semiconductor laser unit 2 in an extracted manner.
  • the semiconductor laser chip 5 has a multi-emitter structure having a plurality of light emission regions (10, 20), and has the same shape as the semiconductor laser chip 110 described above with reference to FIG. 3A. Show.
  • the direction in which the light emission regions (10, 20) are adjacent to each other will be described as the X direction, the optical axis direction as the Z direction, and the direction orthogonal to the X and Z directions as the Y direction.
  • 7B is an enlarged view of a portion from the light emission region (10, 20) to the first refractive optical system 6 in FIG. 7A.
  • the width in the first axis direction (Y direction) of each light emission region (10, 20) provided in the semiconductor laser chip 5 is 2 ⁇ m or less, and is 1 ⁇ m as an example.
  • region (10, 20) is 5 micrometers or more and 500 micrometers or less, and is 80 micrometers as an example.
  • region (10,20) is 50 micrometers or more and 1000 micrometers or less, and is 150 micrometers as an example.
  • the semiconductor laser chip 5 emits a first light bundle (11, 21) having a substantially conical shape from each light emission region (10, 20).
  • each light emission region (10, 20) is formed at the same coordinate position in the Y direction.
  • One beam bundle (11, 21) is completely overlapped.
  • each position of the first light bundle (11, 21) is shifted when viewed from the Y direction. Is displayed.
  • FIG. 7A schematically shows a ray diagram when the first light bundles (11, 21) are viewed from the Y direction.
  • the first light bundle 11 is defined by a light ray group sandwiched between an upper light ray 11a and a lower light ray 11b.
  • a light ray traveling in the middle between the upper light ray 11a and the lower light ray 11b is defined as a principal ray 11m.
  • the first light beam 21 is defined by a light beam group sandwiched between the upper light beam 21a and the lower light beam 21b, and the main light beam 21m exists at an intermediate position.
  • the principal ray (11m, 21m) is indicated by a one-dot chain line for convenience.
  • the optical axis of the first refractive optical system 6 is shown as the optical axis 61.
  • the semiconductor laser chip 5 is arranged so that the center position 5 a thereof is located on the optical axis 61 of the first refractive optical system 6.
  • each light emission area (10, 20) is arranged at a position away from the optical axis 61 in the X direction.
  • each of the light emission regions (10, 20) has a size in the X direction, and therefore, between the end near the optical axis 61 and the end far from the optical axis 61. Then, there is a difference in the distance from the optical axis.
  • the semiconductor laser chip 5 and the first refractive optical system 6 are arranged apart from each other by the focal length f6 of the first refractive optical system 6 in the Z direction.
  • the first light bundles (11, 21) emitted from the light emission regions (10, 20) of the semiconductor laser chip 5 are refracted by the first refractive optical system 6, and each is a substantially parallel light bundle. It is converted into a certain second light flux (12, 22).
  • the first refractive optical system 6 may be any optical member as long as it is an optical system that converts the first light bundles (11, 21) into the second light bundles (12, 22) that are substantially parallel light bundles. It may be configured.
  • each light emission region (10, 20) is disposed at a position away from the optical axis 61 in the X direction.
  • the principal rays (12m, 22m) of the second light bundles (12, 22) which are substantially parallel light bundles, are directed toward the focal position (on the light exit surface side) at the rear stage of the first refractive optical system 6. proceed.
  • the second light fluxes (12, 22) travel as substantially parallel light fluxes, but their traveling directions are different.
  • FIG. 7A shows a case where the second light bundles (12, 22) intersect.
  • FIG. 7C is an enlarged view of the vicinity of the second refractive optical system 3 in FIG. 7A.
  • the optical axis of the second refractive optical system 3 is shown as “optical axis 62”.
  • the position of each refractive optical system (6, 3) is adjusted so that the optical axis 61 of the first refractive optical system 6 and the optical axis 62 of the second refractive optical system 3 coincide. It will be explained as a thing.
  • the second refractive optical system 3 includes a plurality of flat surfaces (3a, 3b) having different inclination angles ( ⁇ a , ⁇ b ) provided on the light incident surface side, and light emission. It has a flat surface 3c provided on the surface side.
  • the flat surface 3c is a surface orthogonal to the optical axis 62 (61).
  • the inclination angles ( ⁇ a , ⁇ b ) of the flat surfaces (3a, 3b) refer to angles with respect to the optical axis 62, and these angles are given positive or negative values according to the rotation direction.
  • the case where the rotational direction is counterclockwise is positive, and the case where it is clockwise is negative. That is, according to the example of FIG. 7C, the flat surface 3a of the second refractive optical system 3 is inclined in the counterclockwise direction with respect to the optical axis 62, the inclination angle theta a is a positive value.
  • the flat surface 3b of the second refractive optical system 3 is inclined in the clockwise direction with respect to the optical axis 62, the inclination angle theta b is a negative value. That is, the inclination angle theta a flat surface 3a, and the inclination angle theta b of the flat surface 3b, a different value.
  • the second refracting optical system 3 is configured so that the second light bundles (12, 22) incident on the flat surfaces (3a, 3b) are inclined with respect to each other so as to be substantially parallel to the optical axis 62 ( ⁇ a , ⁇ b ) are set. More specifically, the inclination angle ⁇ a is set on the flat surface 3 a so that when the principal ray 22 m of the second light bundle 22 is incident, the principal ray 22 m is substantially parallel to the optical axis 62. Yes. Similarly, the flat surface 3 b is set to have an inclination angle ⁇ b so that when the principal ray 12 m of the second light bundle 12 is incident, the principal ray 12 m is substantially parallel to the optical axis 62.
  • each second light beam (12, 22) that has passed through the second refractive optical system 3 travels in substantially the same direction (direction parallel to the optical axis 62).
  • the light source device 1 includes the second refractive optical system 3 according to the number of the semiconductor laser units 2.
  • the second light bundles (12, 22) emitted from each second refractive optical system 3 are substantially parallel light bundles that travel in substantially the same direction.
  • the rear optical system 40 includes a condensing optical system, it is possible to reduce the beam width of the light bundle group collected in the rear optical system 40.
  • the second refractive optical system 3 is composed of any optical member as long as it has a function of converting each incident second light beam (12, 22) to be substantially parallel to the optical axis 62. It doesn't matter.
  • the second refractive optical system 3 is configured by a prism.
  • FIG. 7A illustrates the case where the second refractive optical system 3 has a shape that is convex toward the first refractive optical system 6 side.
  • the second refractive optical system 3 is disposed at a position farther away than the focal length f6 of the first refractive optical system 6 in the Z direction.
  • a position z1 (“” where the upper light ray 12a of one second light bundle 12 and the lower light ray 22b of the other second light bundle 22 intersect.
  • the second refracting optical system 3 is arranged at a later position with respect to the Z direction (the direction of the optical axes 61 and 62) than the “specific position”.
  • each of the second light bundles (12, 22) is incident on the second refractive optical system 3 in a state where they are completely separated from each other. .
  • FIG. 8 is a diagram schematically showing the progress of each light beam when the arrangement position of the second refractive optical system 3 is moved to the previous stage (first refractive optical system 6 side) from the state of FIG. 7A.
  • the total width (beam width d) of the light beam that has passed through the second refractive optical system 3 is smaller than that in the case of FIG. 7A.
  • the beam bundle group can be incident on the rear optical system 40 in a state where the beam width is reduced, which contributes to the reduction in the scale of the apparatus.
  • each 2nd light beam (12, 22) is the 2nd refractive optical system 3.
  • FIG. Is incident on That is, a part of the light beams of the adjacent second light bundle (12, 22) is incident on each flat surface (3a, 3b) of the second refractive optical system 3. More specifically, light in the vicinity of the upper light beam 12a of the second light beam 12 is incident on the flat surface 3a in addition to the second light beam 22 including the principal light beam 22m. Similarly, in addition to the second light beam 12 including the main light beam 12m, a light beam near the lower light beam 22b of the second light beam 22 is incident on the flat surface 3b.
  • the flat surfaces (3a, 3b) included in the second refractive optical system 3 are the second light beams (12, 12) incident on the flat surfaces (3a, 3b).
  • the inclination angles ( ⁇ a , ⁇ b ) are set so that 22) is substantially parallel to the optical axis 62. More particularly, the flat surface 3a is such that substantially parallel with respect to the optical axis 62 of the second light bundle 22 including a main ray 22m, and the inclination angle theta a is set, the flat surface 3b is the principal ray
  • the inclination angle ⁇ b is set so that the second light bundle 12 including 12 m is substantially parallel to the optical axis 62.
  • the light rays belonging to the second light bundle 12 are converted into light rays substantially parallel to the optical axis 62.
  • a light beam near the lower light beam 22b of the second light beam 22 is also incident on the flat surface 3b. Since this light ray is incident on the flat surface 3 b at an incident angle different from that of the second light beam 12, the light beam is non-parallel to the optical axis 62 unlike the second light beam 12.
  • the light beam near the upper light beam 12a of the second light beam 12 that is incident on the flat surface 3a and the light beam near the lower light beam 22b of the second light beam 22 that is incident on the flat surface 3b are In the latter stage optical system 40, stray light may be generated without being condensed at a target position.
  • the second light bundle (12, 22) has a maximum light intensity of each principal ray (12m, 22m), and a light distribution such as a Gaussian distribution in which the light intensity rapidly decreases as the distance from the principal ray increases. Distribution. That is, the intensity of the light beam near the upper light beam 12a of the second light beam 12 incident on the flat surface 3a and the light beam near the lower light beam 22b of the second light beam 22 incident on the flat surface 3b. The strength is extremely low.
  • the second refractive optical system 3 by arranging the second refractive optical system 3 at the position illustrated in FIG. 8, even if stray light as described above is generated, the amount of light is very small. It does not have a significant effect on usage efficiency.
  • the width of the beam diameter d guided to the subsequent stage can be reduced. Many light bundles can be guided in a limited area, and an effect is obtained that the high-output light source device 1 can be realized.
  • the second refractive optical system 3 shown in FIG. 7A has flat surfaces (3a, 3b) having an inclination angle on the light incident surface side, and a flat surface orthogonal to the optical axis 62 on the light exit surface side. 3c.
  • the second refractive optical system 3 has a flat surface 3c orthogonal to the optical axis 62 on the light incident surface side and an inclination angle on the light exit surface side.
  • a configuration having flat surfaces (3a, 3b) may be used.
  • each second light beam (12, 22) when each second light beam (12, 22) is incident on the flat surface 3c of the second refractive optical system 3, the second light bundle (12, 22) is refracted to change the traveling direction to change the traveling direction of the second refractive optical system 3.
  • the direction of travel After traveling through the interior and then reaching the flat surfaces (3a, 3b), the direction of travel is changed again and the traveling direction is changed to be substantially parallel to the optical axis 62.
  • each second light beam (12, 22) in order to make the traveling direction of each second light beam (12, 22) substantially parallel to the optical axis 62, each second light beam (12, 22) is changed. It can be refracted twice.
  • the incident angle of each second light beam (12, 22) on the light incident surface side of the second refractive optical system 3 can be reduced, and the surface of the second refractive optical system 3 can be reduced.
  • the amount of reflected light at can be reduced. That is, according to the configuration of FIG. 9A, the light use efficiency can be improved compared to the case of FIG. 7A.
  • the second refractive optical system 3 has flat surfaces (3a, 3b) having an inclination angle on the light incident surface side, and also has an inclination angle on the light exit surface side. It does not matter even if it has a flat surface (3d, 3e). Also in this case, as in the configuration of FIG. 9A, in order to make the traveling direction of each second light beam (12, 22) substantially parallel to the optical axis 62, each second light beam (12, 22). Can be refracted twice, the amount of reflected light on the surface of the second refractive optical system 3 is suppressed, and the light utilization efficiency can be improved.
  • the optical axis 62 of the second refractive optical system 3 may not necessarily coincide with the optical axis 61 of the first refractive optical system 6.
  • the second light bundles (12, 22) emitted from the second refractive optical system 3 are inclined by inclining the flat surface 3c on the light emitting surface side of the second refractive optical system 3. May be substantially parallel to the optical axis 62 of the second refractive optical system 3 and non-parallel to the optical axis 61 of the first refractive optical system 6.
  • the configuration as shown in FIG. 10 is adopted.
  • the traveling direction can be adjusted in advance on the second refractive optical system 3 side, the effect of reducing the number of optical members can be obtained.
  • each of the flat surfaces (3a, 3b) of the second refractive optical system 3 is relative to the optical axis 61 of the first refractive optical system 6. It was inclined with respect to an orthogonal plane (XY plane).
  • the flat surface 3 b may be arranged so as to be orthogonal to the optical axis 61 of the first refractive optical system 6.
  • the semiconductor laser unit 2 illustrated in FIG. 11 is arranged so that the center position of the light emitting region 10 coincides with the optical axis 61 of the first refractive optical system 6.
  • the principal ray 11 m included in the first light bundle 11 emitted from the light emission region 10 travels so as to be positioned on the optical axis 61 of the first refractive optical system 6. Therefore, the first light beam 11 is incident on the first refractive optical system 6 and then converted into a substantially parallel light beam that travels in a direction parallel to the optical axis 61 of the first refractive optical system 6 (second light beam).
  • Bundle 12 ).
  • the second refractive optical system 3 After passing through the second refractive optical system 3 by making the second light beam 12 incident on the flat surface 3b arranged so as to be orthogonal to the optical axis 61 of the first refractive optical system 6, However, it is possible to proceed in a direction parallel to the optical axis 61 of the first refractive optical system 6 (the optical axis 62 of the second refractive optical system 3).
  • the first light bundle 21 emitted from the light emission region 20 proceeds non-parallel to the optical axis 61 of the first refractive optical system 6 as described above with reference to FIG.
  • the inclined flat surface 3 a provided in the birefringent optical system 3 it can be converted to be substantially parallel to the optical axis (61, 62).
  • the plurality of second refractive optical systems (3, 3,...) Included in the light source device 1 includes a first optical member 30 that is integrated with each other. Can be formed.
  • each second refractive optical system 3 has the shape described above with reference to FIG. 7C.
  • the surface on the light exit surface side is a flat surface 3 c constituting an orthogonal surface, and these are shared in each second refractive optical system 3.
  • a plurality of inclined flat surfaces (3 a, 3 b) are continuously formed on the light incident surface side in a number corresponding to the number of semiconductor laser units 2. .
  • the light source device 1 shown in FIG. 12 thus formed has the same optical function as the light source device 1 described above with reference to FIG.
  • each second refractive optical system 3 receives a light beam emitted from the corresponding semiconductor laser unit 2 and is emitted from the adjacent semiconductor laser unit 2.
  • the incident light bundle is preferably not incident.
  • the arrangement position of the second refractive optical system 3 is the semiconductor laser unit 2 (more specifically, This corresponds to the case where the first refractive optical system 6) is very far from the optical axis 61 in the direction of the optical axis 61.
  • the separation distance between the second light bundles (12, 22) emitted from the same first refractive optical system 6 and incident on the second refractive optical system 3 is increased.
  • the flat surfaces (3a, 3b) of the second refractive optical system 3 must be shaped to have large dimensions in the X direction. As a result, the shape of the second refractive optical system 3 is increased.
  • the light source device 1 may include an integrator optical system 50 in the subsequent stage of each second refractive optical system 3.
  • FIG. 14 is an enlarged view schematically showing a part of FIG.
  • the integrator optical system 50 includes a front-stage fly-eye lens 51 and a rear-stage fly-eye lens 52, which are arranged to face each other.
  • the front-stage fly-eye lens 51 and the rear-stage fly-eye lens 52 are formed by arranging a plurality of lenses (single lenses) having the same focal length and the same shape in the vertical and horizontal directions.
  • the second light bundles (12, 22) that have passed through the second refractive optical systems 3 are formed with multiple images by the integrator optical system 50, so that the illuminance distribution on the irradiation surface is uniform.
  • a pseudo light source is formed. That is, the light flux that has passed through the integrator optical system 50 is incident on the post-stage optical system 40, thereby suppressing the illuminance variation on the target irradiation surface that is irradiated with the light emitted from the post-stage optical system 40.
  • the second refractive optical system 3 and the pre-stage fly-eye lens 51 of the integrator optical system 50 may be integrated.
  • the period of the plurality of lenses included in the pre-stage fly-eye lens 51 is greater than the period of the second refractive optical system 3, more specifically, the period of flat surfaces having the same inclination angle (for example, the flat surfaces 3a). Is composed of a short period.
  • the plurality of second refractive optical systems (3, 3,...) Provided in the light source device 1 form a first optical member 30 that is integrated with each other.
  • the first fly-eye lens 51 of the integrator optical system 50 may be integrated on the light exit surface side of the first optical member 30 (see FIG. 16).
  • the second refractive optical system 3 when the second refractive optical system 3 is disposed a little closer to the first refractive optical system 6, the light having a low light intensity emitted from the second refractive optical system 3.
  • the light rays of the part travel non-parallel to the optical axis 62.
  • an integrator optical system 50 arranged corresponding to the adjacent second refractive optical system 3, the speckle on the target irradiation surface to which the light emitted from the rear optical system 40 is irradiated. The effect of reducing contrast can be obtained.
  • FIG. 17 is a drawing schematically showing a configuration example of a projector including the light source device 1 described above.
  • the projector 9 includes an illumination optical system 70 including the light source device 1 and a spectroscopic / projection optical system 80 that projects the light guided from the illumination optical system 70 onto the screen 90 after the light is dispersed.
  • the light source device 1 is assumed to be a red light source. That is, the illumination optical system 70 includes a light source device 1 as a red light source, a blue light source 71, a fluorescent light source 72 that receives blue light emitted from the blue light source 71 and generates fluorescence, and a diffuse reflection optical system 73. A dichroic mirror (74, 75), an integrator optical system 50, and a synthesis optical system 76.
  • the high-density red light R emitted from the light source device 1 is reflected by the dichroic mirror 74 and then guided to the integrator optical system 50. Also, the blue light B emitted from the blue light source 71 is separated into light reflected by the dichroic mirror 75 and transmitted light according to the polarization.
  • the dichroic mirror 75 may include a polarization separation element that can control the traveling direction of light according to the polarization direction.
  • Blue light of a certain polarization direction reflected by the dichroic mirror 75 is guided to the fluorescent light source 72 and used as excitation light of the phosphor contained in the fluorescent light source 72, and the obtained fluorescence is used as the dichroic mirror (75, 74). Is transmitted to the integrator optical system 50. Blue light in another polarization direction that has passed through the dichroic mirror 75 is incident on the diffuse reflection optical system 73, and the diffused light is reflected from the diffuse reflection optical system 73 and guided to the dichroic mirror 75. This light is reflected by the dichroic mirror 75, then passes through the dichroic mirror 74 and is guided to the integrator optical system 50.
  • the light of each color is synthesized into white light by the synthesis optical system 76 after the illuminance distribution is made uniform.
  • the combining optical system 76 may include a polarization conversion element that makes the polarization direction uniform.
  • White light that has passed through the synthesis optical system 76 is guided to the spectroscopic / projection optical system 80.
  • the light of each color separated by the dichroic mirrors (81a, 81b, 81c) included in the spectroscopic / projection optical system 80 is appropriately adjusted in the traveling direction through the mirrors (81d, 81e),
  • the light enters the modulator (82R, 82G, 82B).
  • the modulation devices (82 R, 82 G, 82 B) modulate each color light according to the image information and output it to the color synthesis optical system 83.
  • the color synthesis optical system 83 synthesizes image light corresponding to the image information and enters the projection optical system 84.
  • the projection optical system 84 projects image light onto the screen 90.
  • the combining optical system 76 and the spectroscopic / projection optical system 80 correspond to the rear stage optical system 40 in FIG.
  • the projector 9 shown in FIG. 17 assumes the case where the light source device 1 of the present embodiment is used as a light source that generates red light, it may be a light source that generates blue light.
  • the light source device 1 that generates blue light and the fluorescent light source that generates the fluorescence when the blue light emitted from the light source device 1 is incident as the excitation light are provided. It is good also as what is synthesize
  • each second refractive optical system 3 included in the light source device 1 may be integrated with the integrator optical system 50.
  • the arrangement of the integrator optical system 50 arranged between the dichroic mirror 74 and the combining optical system 76 shown in FIG. 17 may be omitted.
  • the projector 9 may be configured to generate light of each color of R, G, and B by the light source device 1 of the present embodiment and combine them by the combining optical system 76. That is, the light source device 1 may include a semiconductor laser chip 5 that generates blue light, a semiconductor laser chip 5 that generates red light, and a semiconductor laser chip 5 that generates green light. In this case, the light of each color emitted from each light source device 1 may be propagated through a light guide member such as an optical fiber and incident on the modulation devices (82R, 82G, 82B) of each color.
  • a light guide member such as an optical fiber
  • the projector 9 shown in FIG. 17 is illustrated assuming that the modulation devices (82R, 82G, and 82B) are configured by transmissive liquid crystal elements. However, the projector 9 shown in FIG. : Digital micromirror device (registered trademark) may be used.
  • the spectroscopic / projection optical system 80 is appropriately set according to the configuration of the modulation device.
  • the semiconductor laser chip 5 described above with reference to FIG. 6 and the like has a multi-emitter configuration having two light emission regions (10, 20).
  • the number of light emission regions provided in the semiconductor laser chip 5 is not limited to two, and may be three or more.
  • the number of flat surfaces (3a, 3b,...) With different inclination angles provided in the second refractive optical system 3 is set according to the number of light emission regions included in the same semiconductor laser unit 2.
  • each semiconductor laser chip 5 has a single emitter type configuration having a single light emission region, as described above with reference to FIG. 1A, for example. It may be configured to be incident on the monorefringent optical system 6 (see FIG. 18). Further, as shown in FIG. 18, in a mode in which light emitted from a plurality of semiconductor laser chips 5 is incident on the first refractive optical system 6, each semiconductor laser chip 5 may have a multi-emitter type structure. .
  • the first refractive optical system 6 may be provided corresponding to each semiconductor laser chip 5, and even if the first refractive optical system 6 itself is provided individually, it is integrally formed in an array. It doesn't matter.
  • each semiconductor laser chip 5 is assumed to have a so-called “end-emitting type” structure in which the light emission regions (10, 20) are formed on the end face of the semiconductor laser chip 5. did. However, the present invention is similarly applicable even if each semiconductor laser chip 5 has a so-called “surface emitting type” structure in which light is extracted in the stacking direction of the semiconductor layers.
  • the light source device 1 is applicable to applications other than a projector as long as it is an application that collects a plurality of light beams and irradiates a predetermined irradiation object.
  • the light source device 1 can be used as a light source for an exposure apparatus.
  • optical arrangement mode provided in the light source device 1 described above is merely an example, and the present invention is not limited to each illustrated configuration.
  • a reflection optical system for changing the traveling direction of light may be appropriately interposed between a certain optical system and another optical system.

Abstract

The present invention provides a light source device (1) capable of increasing the light output with a plurality of semiconductor laser chips (5) while preventing the use of the plurality of semiconductor laser chips (5) from increasing the device footprint. The light source device (1) comprises: a plurality of semiconductor laser units (2) that includes a plurality of light emission regions provided on the same or different semiconductor laser chips (5), and a first refractive optical system (6) whereon a plurality of first pencils of rays emitted from the plurality of adjacent light emission regions is incident and which converts each of the plurality of first pencils of rays to a plurality of second substantially-parallel pencils of rays and emits the converted second pencils of rays; and a second refractive optical system (3) which includes a plurality of flat surfaces having different tilt angles, whereon at least a portion of each of the second pencils of rays in the plurality of second pencils of rays emitted from the same semiconductor laser unit (2) enters different flat surfaces, and which converts the traveling direction of the principal ray of each of the plurality of second pencils of rays to substantially parallel to the optical axis and emits the converted second pencils of rays. The number of the second refractive optical systems (3) corresponds to the number of the semiconductor laser units (2).

Description

光源装置、プロジェクタLight source device, projector
 本発明は、光源装置に関し、特に半導体レーザチップから射出された光を利用する光源装置に関する。また、本発明は、このような光源装置を備えたプロジェクタに関する。 The present invention relates to a light source device, and more particularly to a light source device that uses light emitted from a semiconductor laser chip. The present invention also relates to a projector provided with such a light source device.
 プロジェクタ用の光源として、半導体レーザチップを利用することが進められている。近年、このように半導体レーザチップを光源として用いながらも、更に光出力を高めた光源装置が市場から期待されている。 The use of semiconductor laser chips as a light source for projectors is being promoted. In recent years, a light source device that further increases the light output while using a semiconductor laser chip as a light source is expected from the market.
 光源側の光出力を高めるためには、複数の半導体レーザチップから射出された光を集光する方法が考えられる。しかし、半導体レーザチップには一定の幅が存在し、これらを密接して配置することには限界がある。つまり、単に複数の半導体レーザチップを配置するだけでは、光源装置が大型化してしまう。 In order to increase the light output on the light source side, a method of condensing light emitted from a plurality of semiconductor laser chips is conceivable. However, the semiconductor laser chip has a certain width, and there is a limit to arranging these closely. That is, simply arranging a plurality of semiconductor laser chips increases the size of the light source device.
 かかる観点から、例えば下記特許文献1のように、第一の領域に半導体レーザチップ群を配置し、第一の領域とは別の第二の領域に別の半導体レーザチップ群を配置し、両半導体レーザチップ群から射出される光を、スリットミラーからなる光合成手段を用いて合成する技術が存在する。かかる方法により、単に同一箇所に複数の半導体レーザチップを並べた場合と比較して、配置面積を縮小しながらも光強度を高めることが可能となる。 From this point of view, for example, as in Patent Document 1 below, a semiconductor laser chip group is arranged in the first region, and another semiconductor laser chip group is arranged in a second region different from the first region. There is a technique for synthesizing light emitted from a group of semiconductor laser chips using light synthesizing means including a slit mirror. By this method, it is possible to increase the light intensity while reducing the arrangement area as compared with the case where a plurality of semiconductor laser chips are simply arranged at the same location.
特開2017-215570号公報JP 2017-215570 A
 ところで、光源側の光強度を高める方法として、レーザ光を射出する領域(光射出領域:以下では「エミッタ」と称することがある。)を複数設けた半導体レーザチップを用いる方法が考えられる。このような半導体レーザチップは、「マルチエミッタ型」と称されることがある。本発明者らは、マルチエミッタ型の半導体レーザチップを光源に利用することで、光強度を高めることを検討したところ、以下のような課題が存在することを突き止めた。 By the way, as a method for increasing the light intensity on the light source side, a method using a semiconductor laser chip provided with a plurality of regions for emitting laser light (light emitting regions: hereinafter sometimes referred to as “emitters”) is conceivable. Such a semiconductor laser chip is sometimes referred to as a “multi-emitter type”. The present inventors have studied to increase the light intensity by using a multi-emitter semiconductor laser chip as a light source, and have found that the following problems exist.
 図1Aは、一つのエミッタを備えた半導体レーザチップの構造を模式的に示す斜視図である。このような半導体レーザチップは、「シングルエミッタ型」と称されることがある。なお、図1Aには、エミッタから射出される光(レーザ光)の光線束についても、模式的に図示している。なお、本明細書では、単一のエミッタから射出される束状に形成された光線群を「光線束」と称する。 FIG. 1A is a perspective view schematically showing the structure of a semiconductor laser chip provided with one emitter. Such a semiconductor laser chip is sometimes referred to as a “single emitter type”. Note that FIG. 1A also schematically shows a light bundle of light (laser light) emitted from the emitter. In the present specification, a light beam group formed in a bundle shape emitted from a single emitter is referred to as a “light beam bundle”.
 図1Aに示されるような、いわゆる「端面発光型」の半導体レーザチップ100の場合、エミッタ101から射出される光線束101Lは、楕円錐型を示すことが知られている。本明細書では、光軸(図1Aに示すZ方向)に直交する2方向(X方向及びY方向)のうち、光線束101Lの発散角が大きい方向(図1Aに示すY方向)を、「ファースト軸方向」と呼び、光線束101Lの発散角が小さい方向(図1Aに示すX方向)を、「スロー軸方向」と呼ぶ。 In the case of a so-called “edge-emitting” semiconductor laser chip 100 as shown in FIG. 1A, it is known that the light bundle 101L emitted from the emitter 101 has an elliptical cone shape. In this specification, a direction (Y direction shown in FIG. 1A) in which the divergence angle of the light beam 101L is large is selected from two directions (X direction and Y direction) orthogonal to the optical axis (Z direction shown in FIG. 1A). The direction in which the light beam 101L has a small divergence angle (the X direction shown in FIG. 1A) is referred to as the “slow axis direction”.
 図1Bは、光線束101Lを、X方向から見た場合と、Y方向から見た場合とに分けて模式的に図示したものである。図1Bに示すように、ファースト軸方向については光線束101Lの発散角θyが大きく、スロー軸方向については光線束101Lの発散角θxが小さい。 FIG. 1B schematically shows the light beam 101L separately for the case viewed from the X direction and the case viewed from the Y direction. As shown in FIG. 1B, the divergence angle θ y of the light beam 101L is large in the fast axis direction, and the divergence angle θ x of the light beam 101L is small in the slow axis direction.
 なお、以下の各図では、説明の都合上、光線束の発散角が実際よりも誇張して図示されている場合がある。 In the following drawings, for convenience of explanation, the divergence angle of the light flux may be exaggerated from the actual case.
 半導体レーザチップ100を複数配置し、各半導体レーザチップ100から射出される光(光線束101L)を集光して利用する場合、光学部材のサイズを抑制する観点から、各光線束101Lを平行光化した後、レンズによって集光するのが一般的である。具体的には、半導体レーザチップ100の後段にコリメートレンズ(「コリメーションレンズ」とも称される。)を配置して、各光線束101Lの発散角を縮小することが行われる。 When a plurality of semiconductor laser chips 100 are arranged and the light (light beam 101L) emitted from each semiconductor laser chip 100 is collected and used, each light beam 101L is converted into parallel light from the viewpoint of suppressing the size of the optical member. In general, the light is condensed by a lens. Specifically, a collimating lens (also referred to as a “collimation lens”) is disposed downstream of the semiconductor laser chip 100 to reduce the divergence angle of each light beam 101L.
 図2Aは、半導体レーザチップ100の後段にコリメートレンズ102を配置した場合において、YZ平面方向に進行する光線束を、模式的に示した図面である。なお、図2Aでは、幾何光学上における上光線及び下光線のみを描画している。 FIG. 2A is a drawing schematically showing a light flux traveling in the YZ plane direction when the collimating lens 102 is arranged at the rear stage of the semiconductor laser chip 100. In FIG. 2A, only the upper and lower light rays are drawn on the geometrical optics.
 本明細書において、「上光線」とは、光線束のうち、光学部材(例えばレンズ)の絞り(入射瞳)の上縁を通過する光線を指し、「下光線」とは、光線束のうち、前記絞り(入射瞳)の下縁を通過する光線を指す。また、以下では、光線束のうち、前記絞り(入射瞳)の中心を通る光線を「主光線」と称する。主光線は、光線束の上光線と下光線との間の中心を通過する光線である。 In this specification, “upper ray” refers to a ray that passes through the upper edge of an aperture (incidence pupil) of an optical member (for example, a lens) in the bundle of rays, and “lower ray” refers to a portion of the ray bundle. , Refers to the light beam that passes through the lower edge of the stop (entrance pupil). In the following, light rays passing through the center of the stop (incidence pupil) in the light bundle are referred to as “principal rays”. The principal ray is a ray that passes through the center between the upper ray and the lower ray of the light bundle.
 図2Aによれば、光線束101Lは、コリメートレンズ102を通過した後、ファースト軸方向(Y方向)に関して実質的な平行光線束(以下、「略平行光線束」と称する。)となる。なお、本明細書において、「実質的な平行光線束」又は「略平行光線束」とは、上光線と下光線のなす角度が2°未満である光線束を指す。 2A, after passing through the collimating lens 102, the light beam 101L becomes a substantially parallel light beam (hereinafter referred to as “substantially parallel light beam”) with respect to the fast axis direction (Y direction). In the present specification, “substantially parallel light beam” or “substantially parallel light beam” refers to a light beam whose angle formed by the upper light beam and the lower light beam is less than 2 °.
 図2Bは、半導体レーザチップ100の後段にコリメートレンズ102を配置した場合において、XZ平面方向に進行する光線束を、模式的に示した図面である。図2Bによれば、光線束101Lは、コリメートレンズ102を通過した後、スロー軸方向(X方向)に関しても略平行光線束となる。 FIG. 2B is a diagram schematically showing a light beam traveling in the XZ plane direction when the collimating lens 102 is arranged at the rear stage of the semiconductor laser chip 100. According to FIG. 2B, after passing through the collimating lens 102, the light beam 101L becomes a substantially parallel light beam in the slow axis direction (X direction).
 図3Aは、図1Aとは異なり、複数のエミッタを備えた半導体レーザチップの構造を模式的に示す斜視図である。図3Aでは、半導体レーザチップ110が2つのエミッタ(111,112)を備えている場合が示されている。 FIG. 3A is a perspective view schematically showing the structure of a semiconductor laser chip having a plurality of emitters, unlike FIG. 1A. FIG. 3A shows a case where the semiconductor laser chip 110 includes two emitters (111, 112).
 図3Bは、図1Bにならって、各エミッタ(111,112)から射出される光線束(111L,112L)を、X方向から見た場合と、Y方向から見た場合とに分けて模式的に図示したものである。各エミッタ(111,112)は、Y方向については同一の座標位置に形成されるため、X方向から見たときに光線束(111L,112L)は完全に重なっている。一方、各エミッタ(111,112)は、X方向については異なる座標位置に形成されるため、Y方向から見たときに光線束(111L,112L)はそれぞれの位置がずれて表示される。 FIG. 3B is a schematic diagram of the light bundles (111L, 112L) emitted from the respective emitters (111, 112) divided into a case of viewing from the X direction and a case of viewing from the Y direction, in accordance with FIG. 1B. Is shown in FIG. Since each emitter (111, 112) is formed at the same coordinate position in the Y direction, the beam bundles (111L, 112L) are completely overlapped when viewed from the X direction. On the other hand, since the emitters (111, 112) are formed at different coordinate positions in the X direction, the beam bundles (111L, 112L) are displayed with their positions shifted when viewed from the Y direction.
 図3Aに図示された半導体レーザチップ110の後段に、図2A及び図2Bと同様にコリメートレンズ102を配置した場合における光線束の態様について検討する。図3Bを参照して上述したように、X方向から見たときに光線束(111L,112L)は完全に重なっている。このため、ファースト軸方向(Y方向)に関しては、各光線束(111L,112L)は、コリメートレンズ102を通過した後、図2Aと同様に略平行光線束となる。 The mode of the light bundle in the case where the collimating lens 102 is arranged in the subsequent stage of the semiconductor laser chip 110 shown in FIG. 3A as in FIGS. 2A and 2B will be examined. As described above with reference to FIG. 3B, the light beams (111L, 112L) are completely overlapped when viewed from the X direction. For this reason, in the fast axis direction (Y direction), each light bundle (111L, 112L) becomes a substantially parallel light bundle after passing through the collimating lens 102, as in FIG. 2A.
 図4は、半導体レーザチップ110の後段にコリメートレンズ102を配置した場合において、XZ平面方向に進行する光線束を、模式的に示した図面である。半導体レーザチップ110は、X方向に離間して複数のエミッタ(111,112)を備えているため、コリメートレンズ102の中心位置におけるX座標と、各エミッタ(111,112)の中心位置におけるX座標には不可避的にずれが生じる。 FIG. 4 is a diagram schematically showing a light beam traveling in the XZ plane direction when the collimating lens 102 is arranged at the subsequent stage of the semiconductor laser chip 110. Since the semiconductor laser chip 110 includes a plurality of emitters (111, 112) separated in the X direction, the X coordinate at the center position of the collimator lens 102 and the X coordinate at the center position of each emitter (111, 112). Inevitably shifts.
 この結果、エミッタ111から射出された光線束111L、及びエミッタ112から射出された光線束112Lのそれぞれは、コリメートレンズ102を通過後に略平行光線束となるものの、光線束111Lの主光線111Lmと、光線束112Lの主光線112Lmとは、非平行となる。つまり、光線束111Lと光線束112Lとは、それぞれX方向に係る進行方向を異ならせてしまう。 As a result, each of the light beam 111L emitted from the emitter 111 and the light beam 112L emitted from the emitter 112 becomes a substantially parallel light beam after passing through the collimator lens 102, but the principal ray 111Lm of the light beam 111L, The principal ray 112Lm of the ray bundle 112L is not parallel. That is, the light flux 111L and the light flux 112L have different traveling directions in the X direction.
 かかる構成の場合、後に集光光学系を用いて各光線束(111L,112L)を集光したとしても、集光後の光線束群に拡がりが生じ、目的とする方向に導くことのできない光線が生じてしまう。この結果、光の利用効率が低下する。特に、マルチエミッタ型の半導体レーザチップ110を複数配置して、各半導体レーザチップ110から射出される光を利用するような場合には、利用できない光が無視できない量となる。 In the case of such a configuration, even if each light bundle (111L, 112L) is condensed later using the condensing optical system, the light bundle group after the condensing spreads and cannot be guided in the target direction. Will occur. As a result, the light use efficiency decreases. In particular, when a plurality of multi-emitter semiconductor laser chips 110 are arranged and the light emitted from each semiconductor laser chip 110 is used, the amount of light that cannot be used is not negligible.
 コリメートレンズ102を通過した後において、光線束111Lと光線束112LのX方向に係る進行方向の角度は、コリメートレンズ102の焦点距離に対する、エミッタ(111,112)間の距離の相対値によって決定される。より詳細には、コリメートレンズ102の光軸から、コリメートレンズ102の光軸から最も遠い各エミッタ(111,112)の位置までの距離をd、コリメートレンズ102の焦点距離fとしたときに、光線束(111L,112L)の発散角θは、θ= tan-1(d/f)で規定される。 After passing through the collimating lens 102, the angle of the traveling direction in the X direction of the light beam 111L and the light beam 112L is determined by the relative value of the distance between the emitters (111, 112) with respect to the focal length of the collimating lens 102. The More specifically, when the distance from the optical axis of the collimating lens 102 to the position of each emitter (111, 112) farthest from the optical axis of the collimating lens 102 is d and the focal length f of the collimating lens 102, the light beam The divergence angle θ of the bundle (111L, 112L) is defined by θ = tan −1 (d / f).
 図5は、同一のコリメートレンズ102を用い、図4の構成よりも、エミッタ(111,112)間の距離(X方向の距離)を拡げた場合において、図4にならってXZ平面方向に進行する光線束を模式的に示した図面である。言い換えれば、図5は、図4の構成よりも、コリメートレンズ102の焦点距離に対する、エミッタ(111,112)間の距離の相対値を大きくした場合に対応する。 5 uses the same collimating lens 102 and proceeds in the XZ plane direction according to FIG. 4 when the distance between the emitters (111, 112) (distance in the X direction) is larger than the configuration of FIG. It is drawing which showed the beam bundle to do typically. In other words, FIG. 5 corresponds to the case where the relative value of the distance between the emitters (111, 112) with respect to the focal length of the collimating lens 102 is made larger than in the configuration of FIG.
 図5によれば、主光線111Lmと主光線112Lmとのなす角度θxm(この角度は、コリメートレンズ102の光軸と各主光線のなす角度の2倍に対応する。)は、図4の場合よりも大きくなっていることが分かる。この場合、光線束111Lと光線束112Lとが、図4の態様よりも、Z方向に関してコリメートレンズ102に対して近い位置で完全に分離してしまう。図4の態様では、光軸方向(Z方向)に関して、z1の位置で光線束111Lと光線束112Lとが完全に分離する。これに対し、図5の態様では、光軸方向(Z方向)に関して、z1よりも前段のz2の位置で光線束111Lと光線束112Lとが完全に分離する。 According to FIG. 5, the angle θ xm formed by the principal ray 111Lm and the principal ray 112Lm (this angle corresponds to twice the angle between the optical axis of the collimating lens 102 and each principal ray) is shown in FIG. It turns out that it is larger than the case. In this case, the light bundle 111L and the light bundle 112L are completely separated at a position closer to the collimating lens 102 in the Z direction than in the embodiment of FIG. In the aspect of FIG. 4, the light beam 111L and the light beam 112L are completely separated at the position z1 with respect to the optical axis direction (Z direction). On the other hand, in the aspect of FIG. 5, the light beam 111L and the light beam 112L are completely separated at the position z2 before z1 in the optical axis direction (Z direction).
 逆にいえば、コリメートレンズ102の焦点距離に対して、エミッタ(111,112)間の距離が十分無視できる程度の大きさである場合には、X方向に関しても、光線束111Lの主光線111Lmと、光線束112Lの主光線112Lmとのなす角度は実質的に0°に近づき、各光線束(111L,112L)が分離するようなことは生じない。しかし、このためには、コリメートレンズ102を、十分長い焦点距離を有するレンズとする必要があり、光学系のサイズが拡大してしまう。 In other words, when the distance between the emitters (111, 112) is sufficiently negligible with respect to the focal length of the collimating lens 102, the principal ray 111Lm of the light bundle 111L also in the X direction. And the angle formed by the principal ray 112Lm of the light bundle 112L is substantially close to 0 °, and the light bundles (111L, 112L) are not separated. However, for this purpose, the collimating lens 102 needs to be a lens having a sufficiently long focal length, which increases the size of the optical system.
 特に、マルチエミッタ型の半導体レーザチップ110を複数配置する場合、各半導体レーザチップ110に対応してコリメートレンズ102を配置する必要があるため、装置規模が極めて大きくなってしまう。 In particular, when a plurality of multi-emitter semiconductor laser chips 110 are arranged, the collimating lens 102 needs to be arranged corresponding to each semiconductor laser chip 110, so that the apparatus scale becomes extremely large.
 上記の課題は、シングルエミッタ型の半導体レーザチップ100でも起こり得る。すなわち、上記の課題は、半導体レーザチップ100の出力を上昇させるべく、エミッタ101の幅を広くした場合や、シングルエミッタ型の半導体レーザチップ100を複数配置して、複数の半導体レーザチップ100から射出された光線束を一つのコリメートレンズ102に対して入射させる場合においても同様に起こり得る。 The above problem can occur even in the single-emitter semiconductor laser chip 100. That is, the above-described problem is caused when the width of the emitter 101 is increased in order to increase the output of the semiconductor laser chip 100, or a plurality of single-emitter semiconductor laser chips 100 are arranged and emitted from the plurality of semiconductor laser chips 100. This can occur in the same way when the light beam thus made incident on one collimator lens 102.
 本発明は、上記の課題に鑑み、複数の半導体レーザチップを用いて、装置規模の拡大を抑制しながら光出力を高めた光源装置を提供することを課題とする。また、本発明は、かかる光源装置を備えたプロジェクタを提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a light source device that uses a plurality of semiconductor laser chips and increases the light output while suppressing the expansion of the device scale. Moreover, this invention makes it a subject to provide the projector provided with this light source device.
 本発明に係る光源装置は、
 同一の又は異なる半導体レーザチップ上に設けられた複数の光射出領域と、隣接する複数の前記光射出領域から射出された複数の第一光線束が入射されて、前記複数の第一光線束それぞれを、略平行光線束である複数の第二光線束に変換して射出する第一屈折光学系とを含む、複数の半導体レーザユニットと、
 異なる傾斜角を有する複数の平坦面を含み、同一の前記半導体レーザユニットから射出された複数の前記第二光線束それぞれの少なくとも一部が異なる前記平坦面に入射されて、複数の前記第二光線束のそれぞれの主光線の進行方向を光軸に対して略平行に変換して射出する第二屈折光学系と、を備え、
 前記第二屈折光学系は、前記半導体レーザユニットの数に対応して配置されていることを特徴とする。
The light source device according to the present invention includes:
A plurality of light exit areas provided on the same or different semiconductor laser chips and a plurality of first light bundles emitted from a plurality of adjacent light exit areas are incident, and each of the plurality of first light bundles A plurality of semiconductor laser units, including a first refractive optical system that converts and emits a plurality of second light beams that are substantially parallel light beams, and
A plurality of the second light beams including a plurality of flat surfaces having different inclination angles, wherein at least a part of each of the plurality of second light bundles emitted from the same semiconductor laser unit is incident on the different flat surfaces. A second refractive optical system that converts the traveling direction of each principal ray of the bundle to be substantially parallel to the optical axis and emits the second refractive optical system,
The second refractive optical system is arranged corresponding to the number of the semiconductor laser units.
 第一屈折光学系に対して複数の第一光線束が入射されると、それぞれは略平行光線束である複数の第二光線束に変換される。しかし、各第二光線束同士、より詳細には各第二光線束の主光線同士は、第一光線束の主光線同士の間隔に応じた角度を有して進行する。第一光線束の主光線同士の間隔は、各第一光線束を射出する光射出領域の中心位置同士の間隔に依存する。 When a plurality of first light beams are incident on the first refractive optical system, each is converted into a plurality of second light beams that are substantially parallel light beams. However, the second light bundles, more specifically, the chief rays of the second light bundles, travel at an angle corresponding to the interval between the chief rays of the first light bundle. The interval between the principal rays of the first ray bundle depends on the interval between the center positions of the light emission regions that emit the first ray bundles.
 上記光源装置は、第一屈折光学系の後段に、異なる傾斜角を有する複数の平坦面を含む第二屈折光学系を備える。そして、同一の半導体レーザユニットから射出された、より詳細には同一の第一屈折光学系から射出された、複数の第二光線束は、それぞれの少なくとも一部が、第二屈折光学系の異なる平坦面に入射される。平坦面に形成された傾斜角に応じて、複数の第二光線束は屈折し、その進行方向が変化する。ここで、各平坦面は、複数の第二光線束のそれぞれの主光線の進行方向を光軸に対して略平行となるように、傾斜角が設定されている。この結果、第二屈折光学系を通過した後の各第二光線束は、相互に進行方向が実質的に同一方向となる。 The light source device includes a second refractive optical system including a plurality of flat surfaces having different inclination angles at the subsequent stage of the first refractive optical system. The plurality of second light beams emitted from the same semiconductor laser unit, more specifically from the same first refractive optical system, are at least partially different from each other in the second refractive optical system. Incident on a flat surface. Depending on the inclination angle formed on the flat surface, the plurality of second light fluxes are refracted, and their traveling directions change. Here, the inclination angle of each flat surface is set so that the traveling directions of the principal rays of the plurality of second light bundles are substantially parallel to the optical axis. As a result, the traveling directions of the second light bundles after passing through the second refractive optical system are substantially the same.
 従って、第二光線束の主光線同士が、実質的に平行光(略平行光)となるため、各第二光線束同士が交差することがなく、若しくは、極めて微細な光線同士が交差するにとどまる。 Therefore, since the principal rays of the second light bundles are substantially parallel light (substantially parallel light), the second light bundles do not intersect each other, or extremely fine light rays intersect each other. Stay.
 上記光源装置は、半導体レーザチップ及び第一屈折光学系を含む半導体レーザユニットを複数備え、この半導体レーザユニットの数に対応した複数の第二屈折光学系を備えている。これにより、各第二屈折光学系から射出された複数の光線束は、それぞれ主光線同士が実質的に平行化される。この結果、これらの光線束を後段で集光することで、高い放射照度を有する光が得られる。 The light source device includes a plurality of semiconductor laser units including a semiconductor laser chip and a first refractive optical system, and includes a plurality of second refractive optical systems corresponding to the number of the semiconductor laser units. As a result, the principal rays of the plurality of light bundles emitted from each second refractive optical system are substantially parallelized. As a result, light having high irradiance can be obtained by condensing these beam bundles in the subsequent stage.
 そして、上記光源装置によれば、各第一屈折光学系の後段に、第二屈折光学系を配置することで、光線の拡がりが抑制されるため、焦点距離の長い大型のコリメートレンズを配置する必要がなく、装置規模の拡大が抑制される。 And according to the said light source device, since the expansion of a light ray is suppressed by arrange | positioning a 2nd refractive optical system in the back | latter stage of each 1st refractive optical system, a large collimating lens with a long focal distance is arrange | positioned. There is no need to suppress the expansion of the device scale.
 上記光源装置は、同一の半導体レーザチップ上に複数の光射出領域(いわゆる「エミッタ」)を有してなるマルチエミッタ型の半導体レーザチップを複数備えるものとしても構わないし、同一の半導体レーザチップ上に単一の光射出領域(エミッタ)を有してなるシングルエミッタ型の半導体レーザチップを複数備えるものとしても構わない。 The light source device may include a plurality of multi-emitter semiconductor laser chips each having a plurality of light emission regions (so-called “emitters”) on the same semiconductor laser chip. A plurality of single-emitter semiconductor laser chips each having a single light emission region (emitter) may be provided.
 上記光源装置において、
 前記第一屈折光学系は、光射出面側に凸曲面を有し、
 前記第二屈折光学系は、前記第一屈折光学系に対して、前記第一屈折光学系の焦点距離よりも離れた位置に配置されているものとしても構わない。
In the light source device,
The first refractive optical system has a convex curved surface on the light exit surface side,
The second refractive optical system may be arranged at a position away from the first refractive optical system with respect to the focal length of the first refractive optical system.
 第一屈折光学系から射出された複数の第二光線束は、その主光線同士が、第一屈折光学系の焦点の位置で交差する。各第二光線束の上光線と下光線の幅は、実質的に共通であるため、第一屈折光学系の焦点の位置において、各第二光線束同士が完全に重なり合う。仮に、第二屈折光学系が配置されていないとすれば、各第二光線束同士は、第一屈折光学系の焦点の位置から離れるに連れて相互に拡がりを有して進行していく。 In the plurality of second light bundles emitted from the first refractive optical system, the principal rays intersect at the focal point of the first refractive optical system. Since the widths of the upper ray and the lower ray of each second light bundle are substantially the same, the second light bundles completely overlap each other at the focal point of the first refractive optical system. If the second refracting optical system is not disposed, the second light bundles progress with mutual expansion as they move away from the focal point of the first refracting optical system.
 ところで、第一屈折光学系から射出された第二光線束は、主光線の位置において最も光強度が高く、主光線から離れるほど光強度が急激に低下するような配光分布、例えば、ガウス分布のような分布を示す。 By the way, the second light bundle emitted from the first refractive optical system has a light distribution such as a Gaussian distribution in which the light intensity is highest at the position of the principal ray, and the light intensity sharply decreases as the distance from the principal ray increases. The distribution is as follows.
 上記構成によれば、少なくとも第一屈折光学系から射出された複数の第二光線束の主光線は、それぞれ第二屈折光学系の異なる平坦面上に入射される。つまり、各第二光線束のうち、放射照度が極めて高い光線については、異なる平坦面に入射された後、相互に略平行化される。この結果、上述したように、第二屈折光学系から射出された複数の光線束を後段の集光光学系によって集光することで、高い放射照度を有する光を得ることができる。 According to the above configuration, at least the principal rays of the plurality of second light beams emitted from the first refractive optical system are incident on different flat surfaces of the second refractive optical system. That is, among the second light bundles, light rays with extremely high irradiance are made substantially parallel to each other after being incident on different flat surfaces. As a result, as described above, light having high irradiance can be obtained by condensing a plurality of light bundles emitted from the second refractive optical system by the subsequent condensing optical system.
 上記構成において、前記第二屈折光学系は、隣接する一対の前記第二光線束に関して、一方の前記第二光線束の上光線と他方の前記第二光線束の下光線とが交差する特定位置、又は前記特定位置よりも前記第一屈折光学系に対して離れた位置に配置されているものとしても構わない。 In the above-described configuration, the second refractive optical system has a specific position at which the upper light beam of one of the second light beams intersects the lower light beam of the other second light beam with respect to a pair of adjacent second light beams. Alternatively, it may be arranged at a position farther from the specific position than the first refractive optical system.
 前記特定位置において、隣接する一対の前記第二光線束同士は完全に分離される。仮に、第二屈折光学系が配置されていないとすれば、各第二光線束同士は、前記特定位置から離れるに連れて、離間距離を拡げながら分散進行する。 At the specific position, the pair of adjacent second light beams are completely separated from each other. Assuming that the second refractive optical system is not disposed, the second light bundles progress while being dispersed while increasing the separation distance as they move away from the specific position.
 つまり、上記特定位置、又はその特定位置よりも後段に第二屈折光学系が配置されることで、第一屈折光学系から射出された複数の第二光線束は、それぞれ完全に第二屈折光学系の異なる平坦面上に入射される。この結果、各第二光線束に含まれる全ての光線を、略平行光として、後段に導くことができる。 That is, by arranging the second refractive optical system at the specific position or after the specific position, each of the plurality of second light bundles emitted from the first refractive optical system is completely the second refractive optical system. Incident on different flat surfaces of the system. As a result, all the light rays included in each second light bundle can be guided to the subsequent stage as substantially parallel light.
 逆に、前記第二屈折光学系は、前記第一屈折光学系に対して、前記第一屈折光学系の焦点距離よりも離れた位置であって、前記特定位置よりも前段の位置に配置されるものとしても構わない。この場合、隣接する第二光線束同士が一部重なり合いを有した状態で、第二屈折光学系の平坦面に入射される。 Conversely, the second refractive optical system is disposed at a position farther from the focal length of the first refractive optical system than the first refractive optical system, and at a position preceding the specific position. It does not matter as a thing. In this case, the adjacent second light beams are incident on the flat surface of the second refractive optical system in a state where they partially overlap each other.
 仮に、第二屈折光学系が配置されていないとすると、複数の第二光線束全体の幅(光軸に対して直交する平面上における外形)は、特定位置、又はその後段の位置と比較して、特定位置よりも前段の位置の方が小さい。つまり、上記の構成によれば、複数の第二光線束は、ビーム幅が小さい状態で第二屈折光学系に導かれる。この結果、第二屈折光学系から射出された複数の第二光線束を、ビーム幅の小さい光線束として後段に導くことができる。 If the second refractive optical system is not arranged, the width of the entire plurality of second light bundles (the outer shape on the plane orthogonal to the optical axis) is compared with a specific position or a position at the subsequent stage. Therefore, the position in the previous stage is smaller than the specific position. That is, according to the above configuration, the plurality of second light bundles are guided to the second refractive optical system with a small beam width. As a result, the plurality of second light bundles emitted from the second refractive optical system can be guided to the subsequent stage as a light bundle having a small beam width.
 なお、この構成の場合、第二屈折光学系の平坦面に入射された第二光線束に含まれる一部の光線は、同光線束の主光線とは異なる方向に進行することとなる。この光線は、後段の集光光学系によって目的の位置に集光されずに、迷光となる可能性がある。しかし、上述したように、各第二光線束は例えばガウス分布のような分布を示し、且つ、各第二光線束に含まれる主光線近傍の光線は、第二屈折光学系によって主光線と同方向に進行するため、これらの光線は後段の集光光学系によって目的の位置に集光される。つまり、この態様においても、利用できない光線の強度は極めて低いものであって、装置全体として鑑みた場合、光の利用効率に大きく影響するものではない。 In this configuration, some of the light beams included in the second light beam incident on the flat surface of the second refractive optical system travel in a direction different from the principal light beam of the same light beam. This light beam may be stray light without being condensed at a target position by a subsequent condensing optical system. However, as described above, each second light bundle exhibits a distribution such as a Gaussian distribution, and the light in the vicinity of the principal ray included in each second light bundle is the same as the principal ray by the second refractive optical system. Since the light travels in the direction, these light beams are condensed at a target position by a condensing optical system in the subsequent stage. That is, even in this aspect, the intensity of light that cannot be used is extremely low, and does not significantly affect the light use efficiency when the entire apparatus is considered.
 前記第二屈折光学系は、隣接する前記半導体レーザユニットから射出された前記第二光線束が入射されない位置に配置されているものとすることができる。このことは、第二屈折光学系の、第一光学系からの離間位置の好ましい上限値を規定することに対応する。 The second refractive optical system may be disposed at a position where the second light flux emitted from the adjacent semiconductor laser unit is not incident. This corresponds to defining a preferable upper limit value of the separation position of the second refractive optical system from the first optical system.
 仮に、第二屈折光学系を第一屈折光学系から極めて遠い位置に配置すると、この第二屈折光学系に対して、隣接する半導体レーザユニットから射出された第二光線束が入射される。このとき、以下の問題が生じる可能性がある。 If the second refractive optical system is arranged at a position extremely far from the first refractive optical system, the second light beam emitted from the adjacent semiconductor laser unit is incident on the second refractive optical system. At this time, the following problems may occur.
 第二屈折光学系が第一屈折光学系から極めて遠い位置に配置されるため、同一の第一屈折光学系から射出された複数の第二光線束同士は、完全に分離し、更にその離間距離が大きい状態で、第二屈折光学系の各平坦面に入射されることになる。この結果、第二屈折光学系は、各平坦面の大きさを大きくするか、又は、各平坦面間の間隔を大きくする必要が生じ、第二屈折光学系の規模が大きくなってしまう。 Since the second refractive optical system is disposed at a position extremely far from the first refractive optical system, the plurality of second light bundles emitted from the same first refractive optical system are completely separated from each other, and the separation distance is further separated. Is incident on each flat surface of the second refractive optical system. As a result, in the second refractive optical system, it is necessary to increase the size of each flat surface or increase the interval between the flat surfaces, and the scale of the second refractive optical system increases.
 更に、第二屈折光学系のうち、端部に位置する平坦面に対しては、対応する第一屈折光学系から射出された第二光線束が入射される。これに対し、第二屈折光学系のうち、端部以外に位置する平坦面に対しては、対応する第一屈折光学系からの第二光線束に加えて、隣接する第一屈折光学系からの第二光線束が入射される。この場合、多くの光線が光軸に対して非平行となって進行し、光の利用効率が低下する可能性がある。 Furthermore, the second light beam emitted from the corresponding first refractive optical system is incident on the flat surface located at the end of the second refractive optical system. On the other hand, in addition to the second light flux from the corresponding first refracting optical system, the flat surface located outside the end portion of the second refracting optical system, from the adjacent first refracting optical system. The second light flux is incident. In this case, many light rays travel non-parallel to the optical axis, and the light use efficiency may be reduced.
 上記の構成とすることで、第二屈折光学系の大きさを必要以上に拡大化することなく、光の利用効率を向上させることができる。 By using the above configuration, it is possible to improve the light use efficiency without unnecessarily enlarging the size of the second refractive optical system.
 前記第二屈折光学系は、光入射面側に複数の前記平坦面を有し、複数の前記平坦面のうち、一の前記平坦面が、光軸に対して直交する面であるものとしても構わない。この場合、一の光射出領域の中心位置と、光軸に対して直交する面で構成された、前記平坦面の中心位置を、それぞれ光軸上に位置合わせすることで光学系の位置合わせが可能となる。 The second refractive optical system may include a plurality of the flat surfaces on the light incident surface side, and one of the plurality of flat surfaces may be a surface orthogonal to the optical axis. I do not care. In this case, the optical system can be aligned by aligning the center position of one light emitting region and the center position of the flat surface, which is composed of a plane orthogonal to the optical axis, on the optical axis. It becomes possible.
 前記第二屈折光学系は、光射出面側に、光軸に対する直交面を有するものとしても構わない。 The second refractive optical system may have a surface orthogonal to the optical axis on the light exit surface side.
 前記光源装置は、前記平坦面とは反対側の面において、複数の前記第二屈折光学系が一体化されてなる第一光学部材を有するものとすることができる。この場合、各第二屈折光学系は、第一光学部材の一部分に対応する。 The light source device may include a first optical member in which a plurality of the second refractive optical systems are integrated on a surface opposite to the flat surface. In this case, each second refractive optical system corresponds to a part of the first optical member.
 前記光源装置は、
 前記第二屈折光学系の後段の位置において、前段フライアイレンズ及び後段フライアイレンズからなるインテグレータ光学系を有し、
 前記前段フライアイレンズは、前記第一光学部材の光射出面側に連結して配置されており、複数の前記第二屈折光学系が備える、同一の前記傾斜角を有する前記平坦面同士の周期よりも短周期で配置された複数のレンズを含んでなるものとしても構わない。
The light source device
At the rear stage position of the second refractive optical system, it has an integrator optical system consisting of a front fly eye lens and a rear fly eye lens,
The pre-stage fly-eye lens is arranged to be connected to the light exit surface side of the first optical member, and a period of the flat surfaces having the same inclination angle provided in a plurality of the second refractive optical systems. It is also possible to include a plurality of lenses arranged with a shorter period.
 光源装置がインテグレータ光学系を有することで、その後段において照射面上における照度を略均一化することができる。このとき、インテグレータ光学系に含まれる前段フライアイレンズを、複数の第二屈折光学系が一体化されてなる第一光学部材と連結して配置することで、光軸方向に係る装置規模を縮小化できる。 Since the light source device has the integrator optical system, the illuminance on the irradiation surface can be made substantially uniform at the subsequent stage. At this time, the pre-stage fly-eye lens included in the integrator optical system is connected to the first optical member formed by integrating a plurality of second refractive optical systems, thereby reducing the scale of the apparatus in the optical axis direction. Can be
 前記光源装置は、一の前記第二屈折光学系から射出された光線束の下光線と、隣接する前記第二屈折光学系から射出された別の光線束の上光線とが交差する位置に配置され、曲面を相互に対向させて配置された前段フライアイレンズ及び後段フライアイレンズからなるインテグレータ光学系を備えるものとしても構わない。 The light source device is disposed at a position where a lower light beam of a light beam emitted from one second refractive optical system and an upper light beam of another light beam emitted from the adjacent second refractive optical system intersect. In addition, an integrator optical system including a front-stage fly-eye lens and a rear-stage fly-eye lens that are disposed with their curved surfaces facing each other may be provided.
 光源装置がインテグレータ光学系を有することで、その後段において照射面上における照度を略均一化することができる。しかも、上記の構成によれば、ある第二屈折光学系から射出された光線と、隣接する第二屈折光学系から射出された光線とが、前段フライアイレンズの構成要素である同一のレンズ(単レンズ)に入射される。この結果、前段フライアイレンズに含まれる各単レンズに入射された時点における、光の放射照度のバラツキがある程度抑制されるため、その後段の照射面上における照度バラツキを抑制する効果が更に高められる。 Since the light source device has the integrator optical system, the illuminance on the irradiation surface can be made substantially uniform at the subsequent stage. And according to said structure, the light ray inject | emitted from a certain 2nd refractive optical system and the light ray inject | emitted from the adjacent 2nd refractive optical system are the same lens ( Single lens). As a result, since the variation in the irradiance of light at the time of incidence on each single lens included in the front fly-eye lens is suppressed to some extent, the effect of suppressing the illuminance variation on the irradiation surface in the subsequent stage is further enhanced. .
 ところで、隣接する第二屈折光学系から射出された光線は、隣接する半導体レーザチップから射出された光線である。つまり、上記の構成によれば、同一の半導体レーザチップから射出された光線のみならず、一部隣接する半導体レーザチップから射出された光線が、前段フライアイレンズの構成要素である同一の単レンズに入射される。これにより、光源装置から射出された光を集光して対象物に照射する際、照射面上におけるスペックルノイズを低減する効果が期待される。 Incidentally, the light beam emitted from the adjacent second refractive optical system is a light beam emitted from the adjacent semiconductor laser chip. In other words, according to the above configuration, not only the light beam emitted from the same semiconductor laser chip but also the light beam emitted from a partially adjacent semiconductor laser chip is the same single lens that is a component of the front fly-eye lens. Is incident on. Thereby, when condensing the light inject | emitted from the light source device and irradiating a target object, the effect of reducing the speckle noise on an irradiation surface is anticipated.
 本発明に係るプロジェクタは、上記光源装置から射出された光を利用して画像を投影することを特徴とする。 The projector according to the present invention is characterized in that an image is projected using the light emitted from the light source device.
 本発明によれば、複数の半導体レーザチップを用いて、装置規模の拡大を抑制しながらも、光出力を高めた光源装置が実現される。 According to the present invention, it is possible to realize a light source device that uses a plurality of semiconductor laser chips to increase the light output while suppressing the expansion of the device scale.
シングルエミッタ型の半導体レーザチップの構造を模式的に示す斜視図である。It is a perspective view which shows typically the structure of a single emitter type semiconductor laser chip. 図1Aの半導体レーザチップから射出される光線束を、X方向から見た場合と、Y方向から見た場合とに分けて模式的に図示したものである。1A schematically illustrates a light bundle emitted from the semiconductor laser chip of FIG. 1A divided into a case of viewing from the X direction and a case of viewing from the Y direction. 半導体レーザチップの後段にコリメートレンズを配置した場合において、YZ平面方向に進行する光線束を、模式的に示した図面である。It is drawing which showed typically the light beam which advances to a YZ plane direction, when a collimating lens is arrange | positioned in the back | latter stage of a semiconductor laser chip. 半導体レーザチップの後段にコリメートレンズを配置した場合において、XZ平面方向に進行する光線束を、模式的に示した図面である。It is drawing which showed typically the light beam which advances to a XZ plane direction, when a collimating lens is arrange | positioned in the back | latter stage of a semiconductor laser chip. マルチエミッタ型の半導体レーザチップの構造を模式的に示す斜視図である。1 is a perspective view schematically showing the structure of a multi-emitter semiconductor laser chip. 図3Aの半導体レーザチップから射出される光線束を、X方向から見た場合と、Y方向から見た場合とに分けて模式的に図示したものである。FIG. 3A schematically shows a light beam emitted from the semiconductor laser chip of FIG. 3A divided into a case of viewing from the X direction and a case of viewing from the Y direction. 図3Aの半導体レーザチップの後段にコリメートレンズを配置した場合において、XZ平面方向に進行する光線束を、模式的に示した図面である。3B is a drawing schematically showing a light beam traveling in the XZ plane direction when a collimating lens is arranged at the rear stage of the semiconductor laser chip of FIG. 3A. 図4の構成よりも、エミッタ間の距離を拡げた場合において、XZ平面方向に進行する光線束を模式的に示した図面である。FIG. 5 is a diagram schematically showing a light flux traveling in the XZ plane direction when the distance between the emitters is increased compared to the configuration of FIG. 4. 光源装置の一実施形態の構成を模式的に示す図面である。It is drawing which shows typically the structure of one Embodiment of a light source device. 図6から一つの半導体レーザユニットと、その後段に配置された第二屈折光学系とを抽出して図示した図面である。FIG. 7 is a drawing illustrating one semiconductor laser unit and a second refractive optical system disposed in a subsequent stage extracted from FIG. 6. 図7Aの一部拡大図である。FIG. 7B is a partially enlarged view of FIG. 7A. 図7Aの一部拡大図である。FIG. 7B is a partially enlarged view of FIG. 7A. 図7Aの状態から、第二屈折光学系の配置位置を前段に移動させた場合の光線の進行を模式的に示す図面である。It is drawing which shows typically advancing of the light ray when the arrangement position of a 2nd refractive optical system is moved to the front | former stage from the state of FIG. 7A. 第二屈折光学系の別の構成例を模式的に示す図面である。It is drawing which shows typically the example of another structure of a 2nd refractive optical system. 第二屈折光学系の別の構成例を模式的に示す図面である。It is drawing which shows typically the example of another structure of a 2nd refractive optical system. 第二屈折光学系の別の構成例を模式的に示す図面である。It is drawing which shows typically the example of another structure of a 2nd refractive optical system. 第二屈折光学系の別の構成例を模式的に示す図面である。It is drawing which shows typically the example of another structure of a 2nd refractive optical system. 光源装置の別の実施形態の構成を模式的に示す図面である。It is drawing which shows typically the structure of another embodiment of a light source device. 光源装置の別の実施形態の構成を模式的に示す図面である。It is drawing which shows typically the structure of another embodiment of a light source device. 図13の一部分を抽出して模式的に拡大した図面である。It is drawing which extracted and extracted typically a part of FIG. 第二屈折光学系とインテグレータ光学系の別の態様を模式的に示す図面である。It is drawing which shows typically another aspect of a 2nd refractive optical system and an integrator optical system. 光源装置の別の実施形態の構成を模式的に示す図面である。It is drawing which shows typically the structure of another embodiment of a light source device. 光源装置を含むプロジェクタの構成例を模式的に示す図面である。It is drawing which shows typically the structural example of the projector containing a light source device. 光源装置の別の実施形態の構成を模式的に示す図面である。It is drawing which shows typically the structure of another embodiment of a light source device.
 以下、本発明に係る光源装置、及びプロジェクタの各実施形態について、適宜図面を参照して説明する。なお、以下の各図面は、いずれも模式的に図示されたものであり、実際の寸法比と図面上の寸法比とは必ずしも一致していない。 Hereinafter, embodiments of a light source device and a projector according to the present invention will be described with reference to the drawings as appropriate. Each of the following drawings is schematically illustrated, and the actual dimensional ratio does not necessarily match the dimensional ratio on the drawing.
 図6は、光源装置の一実施形態の構成を模式的に示す図面である。光源装置1は、複数の半導体レーザユニット(2,2,‥‥)と、各半導体レーザユニットの数に応じて配置された第二屈折光学系(3,3,‥‥)とを備える。なお、図6では、第二屈折光学系(3,3,‥‥)から射出された光が導かれる後段光学系40が図示されている。 FIG. 6 is a drawing schematically showing a configuration of an embodiment of a light source device. The light source device 1 includes a plurality of semiconductor laser units (2, 2,...) And second refractive optical systems (3, 3,...) Arranged according to the number of each semiconductor laser unit. FIG. 6 shows a rear stage optical system 40 through which light emitted from the second refractive optical system (3, 3,...) Is guided.
 半導体レーザユニット2は、半導体レーザチップ5と、第一屈折光学系6とを備える。図7Aは、一つの半導体レーザユニット2と、この半導体レーザユニット2に対応して配置された第二屈折光学系3とを抽出して図示した図面である。本実施形態において、半導体レーザチップ5は、複数の光射出領域(10,20)を備えた、マルチエミッタ型の構造であり、図3Aを参照して上述した半導体レーザチップ110と同様の形状を示す。以下では、図3Aと同様に、光射出領域(10,20)が隣接する方向をX方向、光軸方向をZ方向、X及びZ方向に直交する方向をY方向として説明する。なお、図7Bは、図7Aにおいて、光射出領域(10,20)から第一屈折光学系6までの部分を拡大した図面である。 The semiconductor laser unit 2 includes a semiconductor laser chip 5 and a first refractive optical system 6. FIG. 7A is a drawing showing one semiconductor laser unit 2 and the second refractive optical system 3 arranged corresponding to the semiconductor laser unit 2 in an extracted manner. In the present embodiment, the semiconductor laser chip 5 has a multi-emitter structure having a plurality of light emission regions (10, 20), and has the same shape as the semiconductor laser chip 110 described above with reference to FIG. 3A. Show. Hereinafter, as in FIG. 3A, the direction in which the light emission regions (10, 20) are adjacent to each other will be described as the X direction, the optical axis direction as the Z direction, and the direction orthogonal to the X and Z directions as the Y direction. 7B is an enlarged view of a portion from the light emission region (10, 20) to the first refractive optical system 6 in FIG. 7A.
 半導体レーザチップ5が備える各光射出領域(10,20)の、ファースト軸方向(Y方向)に係る幅は、2μm以下であり、一例として1μmである。各光射出領域(10,20)の、スロー軸方向(X方向)に係る幅は5μm以上500μm以下であり、一例として80μmである。各光射出領域(10,20)の間隔(X方向)は、50μm以上、1000μm以下であり、一例として、150μmである。 The width in the first axis direction (Y direction) of each light emission region (10, 20) provided in the semiconductor laser chip 5 is 2 μm or less, and is 1 μm as an example. The width | variety which concerns on the slow axis direction (X direction) of each light emission area | region (10, 20) is 5 micrometers or more and 500 micrometers or less, and is 80 micrometers as an example. The space | interval (X direction) of each light emission area | region (10,20) is 50 micrometers or more and 1000 micrometers or less, and is 150 micrometers as an example.
 半導体レーザチップ5は、各光射出領域(10,20)から、ほぼ円錐形状の第一光線束(11,21)を射出する。このとき、図3Bを参照して上述したのと同様に、各光射出領域(10,20)は、Y方向については同一の座標位置に形成されるため、X方向から見たときに各第一光線束(11,21)は完全に重なっている。一方、各光射出領域(10,20)は、X方向については異なる座標位置に形成されるため、Y方向から見たときに各第一光線束(11,21)はそれぞれの位置がずれて表示される。図7Aは、各第一光線束(11,21)を、Y方向から見たときの光線図を模式的に示している。 The semiconductor laser chip 5 emits a first light bundle (11, 21) having a substantially conical shape from each light emission region (10, 20). At this time, as described above with reference to FIG. 3B, each light emission region (10, 20) is formed at the same coordinate position in the Y direction. One beam bundle (11, 21) is completely overlapped. On the other hand, since each light emission region (10, 20) is formed at a different coordinate position in the X direction, each position of the first light bundle (11, 21) is shifted when viewed from the Y direction. Is displayed. FIG. 7A schematically shows a ray diagram when the first light bundles (11, 21) are viewed from the Y direction.
 より詳細には、図7Bに図示されるように、第一光線束11は、上光線11aと、下光線11bとに挟まれた光線群で規定される。上光線11aと下光線11bとの中間を進行する光線を、主光線11mと定義する。同様に、第一光線束21は、上光線21aと、下光線21bとに挟まれた光線群で規定され、その中間の位置に主光線21mが存在する。主光線(11m,21m)は、便宜上一点鎖線で示されている。なお、図7A及び図7Bでは、第一屈折光学系6の光軸が光軸61として図示されている。 More specifically, as illustrated in FIG. 7B, the first light bundle 11 is defined by a light ray group sandwiched between an upper light ray 11a and a lower light ray 11b. A light ray traveling in the middle between the upper light ray 11a and the lower light ray 11b is defined as a principal ray 11m. Similarly, the first light beam 21 is defined by a light beam group sandwiched between the upper light beam 21a and the lower light beam 21b, and the main light beam 21m exists at an intermediate position. The principal ray (11m, 21m) is indicated by a one-dot chain line for convenience. 7A and 7B, the optical axis of the first refractive optical system 6 is shown as the optical axis 61.
 半導体レーザチップ5は、その中心位置5aが、第一屈折光学系6の光軸61上に位置するように配置される。この結果、各光射出領域(10,20)は、それぞれX方向に関して光軸61から離れた位置に配置される。更に、個々の光射出領域(10,20)においても、X方向に大きさを有しているため、光軸61に近い側の端部と、光軸61から遠い側の端部との間では、それぞれ光軸からの距離に差が生じる。 The semiconductor laser chip 5 is arranged so that the center position 5 a thereof is located on the optical axis 61 of the first refractive optical system 6. As a result, each light emission area (10, 20) is arranged at a position away from the optical axis 61 in the X direction. Further, each of the light emission regions (10, 20) has a size in the X direction, and therefore, between the end near the optical axis 61 and the end far from the optical axis 61. Then, there is a difference in the distance from the optical axis.
 半導体レーザチップ5と第一屈折光学系6とは、Z方向に関して、第一屈折光学系6の焦点距離f6だけ離れて配置される。これにより、半導体レーザチップ5の各光射出領域(10,20)から射出された各第一光線束(11,21)は、第一屈折光学系6によって屈折され、それぞれが略平行光線束である第二光線束(12,22)に変換される。第一屈折光学系6は、各第一光線束(11,21)を、略平行光線束である第二光線束(12,22)に変換する光学系であれば、どのような光学部材で構成されていても構わない。 The semiconductor laser chip 5 and the first refractive optical system 6 are arranged apart from each other by the focal length f6 of the first refractive optical system 6 in the Z direction. As a result, the first light bundles (11, 21) emitted from the light emission regions (10, 20) of the semiconductor laser chip 5 are refracted by the first refractive optical system 6, and each is a substantially parallel light bundle. It is converted into a certain second light flux (12, 22). The first refractive optical system 6 may be any optical member as long as it is an optical system that converts the first light bundles (11, 21) into the second light bundles (12, 22) that are substantially parallel light bundles. It may be configured.
 上述したように、各光射出領域(10,20)は、それぞれX方向に関して光軸61から離れた位置に配置されている。このため、略平行光線束である第二光線束(12,22)それぞれの主光線(12m,22m)は、第一屈折光学系6の後段の(光射出面側の)焦点位置に向かって進行する。この結果、第二光線束(12,22)は、それぞれ略平行光線束として進行しながらも、それぞれの進行方向は異なる。図7Aには、各第二光線束(12,22)が交差する場合が図示されている。 As described above, each light emission region (10, 20) is disposed at a position away from the optical axis 61 in the X direction. For this reason, the principal rays (12m, 22m) of the second light bundles (12, 22), which are substantially parallel light bundles, are directed toward the focal position (on the light exit surface side) at the rear stage of the first refractive optical system 6. proceed. As a result, the second light fluxes (12, 22) travel as substantially parallel light fluxes, but their traveling directions are different. FIG. 7A shows a case where the second light bundles (12, 22) intersect.
 第二光線束(12,22)は、第一屈折光学系6の後段に配置された第二屈折光学系3に導かれる。図7Cは、図7Aにおいて、第二屈折光学系3の近傍の部分を拡大した図面である。図7Cにおいて、第二屈折光学系3の光軸を「光軸62」として示している。本実施形態では、第一屈折光学系6の光軸61と、第二屈折光学系3の光軸62とが一致するように、各屈折光学系(6,3)の位置が調整されているものとして説明する。 The second light beam (12, 22) is guided to the second refractive optical system 3 arranged at the subsequent stage of the first refractive optical system 6. FIG. 7C is an enlarged view of the vicinity of the second refractive optical system 3 in FIG. 7A. In FIG. 7C, the optical axis of the second refractive optical system 3 is shown as “optical axis 62”. In the present embodiment, the position of each refractive optical system (6, 3) is adjusted so that the optical axis 61 of the first refractive optical system 6 and the optical axis 62 of the second refractive optical system 3 coincide. It will be explained as a thing.
 図7Cに示されるように、第二屈折光学系3は、光入射面側に設けられた、異なる傾斜角(θa、θb)を示す複数の平坦面(3a,3b)と、光射出面側に設けられた平坦面3cを有する。平坦面3cは、光軸62(61)に対して直交する面で構成されている。 As shown in FIG. 7C, the second refractive optical system 3 includes a plurality of flat surfaces (3a, 3b) having different inclination angles (θ a , θ b ) provided on the light incident surface side, and light emission. It has a flat surface 3c provided on the surface side. The flat surface 3c is a surface orthogonal to the optical axis 62 (61).
 ここで、平坦面(3a,3b)の傾斜角(θa,θb)とは、光軸62を基準としたときの角度を指し、この角度には回転方向に応じて正負の値を付して区別するものとする。ここでは、回転方向が反時計方向である場合を正とし、時計方向である場合を負とする。すなわち、図7Cの例によれば、第二屈折光学系3の平坦面3aは、光軸62に対して反時計方向に傾いており、傾斜角θaは正の値である。一方、第二屈折光学系3の平坦面3bは、光軸62に対して時計方向に傾いており、傾斜角θbは負の値である。つまり、平坦面3aの傾斜角θaと、平坦面3bの傾斜角θbとは、それぞれ異なる値である。 Here, the inclination angles (θ a , θ b ) of the flat surfaces (3a, 3b) refer to angles with respect to the optical axis 62, and these angles are given positive or negative values according to the rotation direction. To distinguish. Here, the case where the rotational direction is counterclockwise is positive, and the case where it is clockwise is negative. That is, according to the example of FIG. 7C, the flat surface 3a of the second refractive optical system 3 is inclined in the counterclockwise direction with respect to the optical axis 62, the inclination angle theta a is a positive value. On the other hand, the flat surface 3b of the second refractive optical system 3 is inclined in the clockwise direction with respect to the optical axis 62, the inclination angle theta b is a negative value. That is, the inclination angle theta a flat surface 3a, and the inclination angle theta b of the flat surface 3b, a different value.
 第二屈折光学系3は、各平坦面(3a,3b)に入射された第二光線束(12,22)を、光軸62に対して略平行にするよう、それぞれの傾斜角(θa,θb)が設定されている。より詳細には、平坦面3aは、第二光線束22の主光線22mが入射されると、その主光線22mが光軸62に対して略平行となるよう、傾斜角θaが設定されている。同様に、平坦面3bは、第二光線束12の主光線12mが入射されると、その主光線12mが光軸62に対して略平行となるよう、傾斜角θbが設定されている。 The second refracting optical system 3 is configured so that the second light bundles (12, 22) incident on the flat surfaces (3a, 3b) are inclined with respect to each other so as to be substantially parallel to the optical axis 62 (θ a , Θ b ) are set. More specifically, the inclination angle θ a is set on the flat surface 3 a so that when the principal ray 22 m of the second light bundle 22 is incident, the principal ray 22 m is substantially parallel to the optical axis 62. Yes. Similarly, the flat surface 3 b is set to have an inclination angle θ b so that when the principal ray 12 m of the second light bundle 12 is incident, the principal ray 12 m is substantially parallel to the optical axis 62.
 かかる構成によれば、第二屈折光学系3を通過した各第二光線束(12,22)は、それぞれ実質的に同一方向(光軸62に対して平行な方向)に進行する。図6を参照して上述したように、光源装置1は、半導体レーザユニット2の数に応じて、第二屈折光学系3を備えている。この結果、各第二屈折光学系3から射出された第二光線束(12,22)は、いずれもが、実質的に同一方向に向かって進行する略平行光線束となる。この結果、後段光学系40が集光光学系を含む場合、この後段光学系40内において集光された光線束群のビーム幅を縮小化することができる。 According to such a configuration, each second light beam (12, 22) that has passed through the second refractive optical system 3 travels in substantially the same direction (direction parallel to the optical axis 62). As described above with reference to FIG. 6, the light source device 1 includes the second refractive optical system 3 according to the number of the semiconductor laser units 2. As a result, the second light bundles (12, 22) emitted from each second refractive optical system 3 are substantially parallel light bundles that travel in substantially the same direction. As a result, when the rear optical system 40 includes a condensing optical system, it is possible to reduce the beam width of the light bundle group collected in the rear optical system 40.
 第二屈折光学系3は、入射された各第二光線束(12,22)を、光軸62に対して略平行に変換する機能を有していれば、どのような光学部材で構成しても構わない。一例として、第二屈折光学系3は、プリズムで構成される。 The second refractive optical system 3 is composed of any optical member as long as it has a function of converting each incident second light beam (12, 22) to be substantially parallel to the optical axis 62. It doesn't matter. As an example, the second refractive optical system 3 is configured by a prism.
 図7Aでは、第二屈折光学系3が、第一屈折光学系6側に凸となるような形状を示す場合について図示されている。かかる場合には、第二屈折光学系3は、Z方向に関して、第一屈折光学系6の焦点距離f6よりも遠方に離れた位置に配置される。図7Aでは、隣接する一対の第二光線束(12,22)に関して、一方の第二光線束12の上光線12aと他方の第二光線束22の下光線22bとが交差する位置z1(「特定位置」に対応する。)よりもZ方向(光軸61,62の方向)に関して、後段の位置に第二屈折光学系3が配置されている。第二屈折光学系3がこのような位置に配置された場合、各第二光線束(12,22)は、それぞれが完全に分離された状態で第二屈折光学系3に対して入射される。 7A illustrates the case where the second refractive optical system 3 has a shape that is convex toward the first refractive optical system 6 side. In such a case, the second refractive optical system 3 is disposed at a position farther away than the focal length f6 of the first refractive optical system 6 in the Z direction. In FIG. 7A, with respect to a pair of adjacent second light bundles (12, 22), a position z1 (“” where the upper light ray 12a of one second light bundle 12 and the lower light ray 22b of the other second light bundle 22 intersect. The second refracting optical system 3 is arranged at a later position with respect to the Z direction (the direction of the optical axes 61 and 62) than the “specific position”. When the second refractive optical system 3 is arranged at such a position, each of the second light bundles (12, 22) is incident on the second refractive optical system 3 in a state where they are completely separated from each other. .
 図8は、図7Aの状態から、第二屈折光学系3の配置位置を前段(第一屈折光学系6側)に移動させた場合の各光線の進行を模式的に示す図面である。第二屈折光学系3を通過した光線束全体の幅(ビーム幅d)は、図7Aの場合と比べて小さくなる。この結果、後段光学系40内に対して、ビーム幅を縮小化した状態で光線束群を入射させることができるため、装置規模の縮小化に寄与する。 FIG. 8 is a diagram schematically showing the progress of each light beam when the arrangement position of the second refractive optical system 3 is moved to the previous stage (first refractive optical system 6 side) from the state of FIG. 7A. The total width (beam width d) of the light beam that has passed through the second refractive optical system 3 is smaller than that in the case of FIG. 7A. As a result, the beam bundle group can be incident on the rear optical system 40 in a state where the beam width is reduced, which contributes to the reduction in the scale of the apparatus.
 ところで、図8の態様では、上述したように、各第二光線束(12,22)の一部が重なっている状態で、各第二光線束(12,22)が第二屈折光学系3に対して入射される。つまり、第二屈折光学系3の各平坦面(3a,3b)に対して、隣接する第二光線束(12,22)の一部の光線が入射される。より詳細には、平坦面3aに対して、主光線22mを含む第二光線束22に加えて、第二光線束12の上光線12a近傍の光線が入射される。同様に、平坦面3bに対して、主光線12mを含む第二光線束12に加えて、第二光線束22の下光線22b近傍の光線が入射される。 By the way, in the aspect of FIG. 8, as above-mentioned, in the state in which a part of each 2nd light beam (12, 22) has overlapped, each 2nd light beam (12, 22) is the 2nd refractive optical system 3. FIG. Is incident on. That is, a part of the light beams of the adjacent second light bundle (12, 22) is incident on each flat surface (3a, 3b) of the second refractive optical system 3. More specifically, light in the vicinity of the upper light beam 12a of the second light beam 12 is incident on the flat surface 3a in addition to the second light beam 22 including the principal light beam 22m. Similarly, in addition to the second light beam 12 including the main light beam 12m, a light beam near the lower light beam 22b of the second light beam 22 is incident on the flat surface 3b.
 図7A~図7Cを参照して上述したように、第二屈折光学系3が備える平坦面(3a,3b)は、各平坦面(3a,3b)に入射された第二光線束(12,22)を、光軸62に対して略平行にするように、それぞれの傾斜角(θa,θb)が設定されている。より詳細には、平坦面3aは、主光線22mを含む第二光線束22を光軸62に対して略平行化するよう、傾斜角θaが設定されており、平坦面3bは、主光線12mを含む第二光線束12を光軸62に対して略平行化するよう、傾斜角θbが設定されている。 As described above with reference to FIGS. 7A to 7C, the flat surfaces (3a, 3b) included in the second refractive optical system 3 are the second light beams (12, 12) incident on the flat surfaces (3a, 3b). The inclination angles (θ a , θ b ) are set so that 22) is substantially parallel to the optical axis 62. More particularly, the flat surface 3a is such that substantially parallel with respect to the optical axis 62 of the second light bundle 22 including a main ray 22m, and the inclination angle theta a is set, the flat surface 3b is the principal ray The inclination angle θ b is set so that the second light bundle 12 including 12 m is substantially parallel to the optical axis 62.
 つまり、平坦面3aに対して入射される光線のうち、第二光線束22に属する光線については、光軸62に対して略平行な光線に変換される。しかし、上述したように、平坦面3aに対しては、第二光線束12の上光線12a近傍の光線も入射される。この光線は、第二光線束22とは異なる入射角で平坦面3aに対して入射されるため、第二光線束22とは異なり、光軸62に対して非平行な光線となる。 That is, among the light rays incident on the flat surface 3a, light rays belonging to the second light bundle 22 are converted into light rays that are substantially parallel to the optical axis 62. However, as described above, a light beam in the vicinity of the upper light beam 12a of the second light bundle 12 is also incident on the flat surface 3a. Since this light beam is incident on the flat surface 3 a at an incident angle different from that of the second light beam 22, the light beam is non-parallel to the optical axis 62, unlike the second light beam 22.
 同様に、平坦面3bに対して入射される光線のうち、第二光線束12に属する光線については、光軸62に対して略平行な光線に変換される。しかし、上述したように、平坦面3bに対しては、第二光線束22の下光線22b近傍の光線も入射される。この光線は、第二光線束12とは異なる入射角で平坦面3bに対して入射されるため、第二光線束12とは異なり、光軸62に対して非平行な光線となる。 Similarly, among the light rays incident on the flat surface 3b, the light rays belonging to the second light bundle 12 are converted into light rays substantially parallel to the optical axis 62. However, as described above, a light beam near the lower light beam 22b of the second light beam 22 is also incident on the flat surface 3b. Since this light ray is incident on the flat surface 3 b at an incident angle different from that of the second light beam 12, the light beam is non-parallel to the optical axis 62 unlike the second light beam 12.
 つまり、平坦面3aに入射された、第二光線束12の上光線12a近傍の光線、及び、平坦面3bに対して入射された、第二光線束22の下光線22b近傍の光線は、いずれも後段光学系40において目的の位置に集光されずに、迷光となる可能性がある。 That is, the light beam near the upper light beam 12a of the second light beam 12 that is incident on the flat surface 3a and the light beam near the lower light beam 22b of the second light beam 22 that is incident on the flat surface 3b are In the latter stage optical system 40, stray light may be generated without being condensed at a target position.
 しかし、第二光線束(12,22)は、それぞれの主光線(12m,22m)を最大強度とし、主光線から離れるほど光強度が急激に低下するような配光分布、例えばガウス分布のような分布を示す。すなわち、平坦面3aに入射された、第二光線束12の上光線12a近傍の光線の強度、及び、平坦面3bに対して入射された、第二光線束22の下光線22b近傍の光線の強度は、極めて低い。 However, the second light bundle (12, 22) has a maximum light intensity of each principal ray (12m, 22m), and a light distribution such as a Gaussian distribution in which the light intensity rapidly decreases as the distance from the principal ray increases. Distribution. That is, the intensity of the light beam near the upper light beam 12a of the second light beam 12 incident on the flat surface 3a and the light beam near the lower light beam 22b of the second light beam 22 incident on the flat surface 3b. The strength is extremely low.
 つまり、第二屈折光学系3を図8に図示された位置に配置したことで、上述したような迷光が発生したとしても、その光量は微小であるため、光源装置1全体としての、光の利用効率には大きな影響を及ぼすものではない。第二屈折光学系3を図8に図示された位置に配置したことで、むしろ、図7Aに図示された装置構成と比較して、後段に導かれるビーム径dの幅を縮小化できるため、限られた領域内に多くの光線束を導くことができ、高出力の光源装置1が実現できるという効果を奏する。 That is, by arranging the second refractive optical system 3 at the position illustrated in FIG. 8, even if stray light as described above is generated, the amount of light is very small. It does not have a significant effect on usage efficiency. By arranging the second refractive optical system 3 at the position illustrated in FIG. 8, rather than the apparatus configuration illustrated in FIG. 7A, the width of the beam diameter d guided to the subsequent stage can be reduced. Many light bundles can be guided in a limited area, and an effect is obtained that the high-output light source device 1 can be realized.
 図7Aに示される第二屈折光学系3は、光入射面側に、傾斜角を有する平坦面(3a,3b)を有し、光射出面側に、光軸62に対して直交する平坦面3cを有する。これに対し、図9Aに示すように、第二屈折光学系3が、光入射面側に、光軸62に対して直交する平坦面3cを有し、光射出面側に、傾斜角を有する平坦面(3a,3b)を有する構成としても構わない。 The second refractive optical system 3 shown in FIG. 7A has flat surfaces (3a, 3b) having an inclination angle on the light incident surface side, and a flat surface orthogonal to the optical axis 62 on the light exit surface side. 3c. On the other hand, as shown in FIG. 9A, the second refractive optical system 3 has a flat surface 3c orthogonal to the optical axis 62 on the light incident surface side and an inclination angle on the light exit surface side. A configuration having flat surfaces (3a, 3b) may be used.
 この構成によれば、各第二光線束(12,22)は、第二屈折光学系3の平坦面3cに入射されると、屈折して進行方向を変化させて第二屈折光学系3の内部を進行し、その後、平坦面(3a,3b)に到達すると、再度屈折して進行方向が変化し、光軸62に対して略平行となる。言い換えれば、この図9Aの構成によれば、各第二光線束(12,22)の進行方向を光軸62に対して略平行とするために、各第二光線束(12,22)を2回にわたって屈折させることができる。 According to this configuration, when each second light beam (12, 22) is incident on the flat surface 3c of the second refractive optical system 3, the second light bundle (12, 22) is refracted to change the traveling direction to change the traveling direction of the second refractive optical system 3. After traveling through the interior and then reaching the flat surfaces (3a, 3b), the direction of travel is changed again and the traveling direction is changed to be substantially parallel to the optical axis 62. In other words, according to the configuration of FIG. 9A, in order to make the traveling direction of each second light beam (12, 22) substantially parallel to the optical axis 62, each second light beam (12, 22) is changed. It can be refracted twice.
 この結果、図7Aの場合と比較して、第二屈折光学系3の光入射面側における、各第二光線束(12,22)の入射角度を小さくでき、第二屈折光学系3の表面における反射光の光量を削減できる。つまり、図9Aの構成によれば、図7Aの場合と比較して、光の利用効率を向上できる。 As a result, compared with the case of FIG. 7A, the incident angle of each second light beam (12, 22) on the light incident surface side of the second refractive optical system 3 can be reduced, and the surface of the second refractive optical system 3 can be reduced. The amount of reflected light at can be reduced. That is, according to the configuration of FIG. 9A, the light use efficiency can be improved compared to the case of FIG. 7A.
 また、図9Bに示されるように、第二屈折光学系3が、光入射面側に、傾斜角を有する平坦面(3a,3b)を有し、光射出面側にも、傾斜角を有する平坦面(3d,3e)を有するものとしても構わない。この場合においても、図9Aの構成と同様に、各第二光線束(12,22)の進行方向を光軸62に対して略平行とするために、各第二光線束(12,22)を2回にわたって屈折させることができるため、第二屈折光学系3の表面での反射光量が抑制され、光の利用効率を向上できる。 Further, as shown in FIG. 9B, the second refractive optical system 3 has flat surfaces (3a, 3b) having an inclination angle on the light incident surface side, and also has an inclination angle on the light exit surface side. It does not matter even if it has a flat surface (3d, 3e). Also in this case, as in the configuration of FIG. 9A, in order to make the traveling direction of each second light beam (12, 22) substantially parallel to the optical axis 62, each second light beam (12, 22). Can be refracted twice, the amount of reflected light on the surface of the second refractive optical system 3 is suppressed, and the light utilization efficiency can be improved.
 なお、第二屈折光学系3の光軸62は、必ずしも第一屈折光学系6の光軸61と一致していなくても構わない。例えば、図10に示すように、第二屈折光学系3の光射出面側の平坦面3cを傾斜させることで、第二屈折光学系3から射出される各第二光線束(12,22)を、第二屈折光学系3の光軸62に対しては略平行であって、第一屈折光学系6の光軸61とは非平行としても構わない。例えば、後段光学系40において、光学系に導くために、光線束の進行方向を反射光学系(ミラー等)を用いて変更させる必要がある場合などでは、図10のような構成を採用することで、予め第二屈折光学系3側で進行方向を調整することができるため、光学部材の点数を削減する効果が得られる。 Note that the optical axis 62 of the second refractive optical system 3 may not necessarily coincide with the optical axis 61 of the first refractive optical system 6. For example, as shown in FIG. 10, the second light bundles (12, 22) emitted from the second refractive optical system 3 are inclined by inclining the flat surface 3c on the light emitting surface side of the second refractive optical system 3. May be substantially parallel to the optical axis 62 of the second refractive optical system 3 and non-parallel to the optical axis 61 of the first refractive optical system 6. For example, in the latter stage optical system 40, when it is necessary to change the traveling direction of the light beam using a reflection optical system (mirror, etc.) in order to guide to the optical system, the configuration as shown in FIG. 10 is adopted. Thus, since the traveling direction can be adjusted in advance on the second refractive optical system 3 side, the effect of reducing the number of optical members can be obtained.
 また、図7Aに図示された第二屈折光学系3は、第二屈折光学系3が有する各平坦面(3a,3b)のいずれもが、第一屈折光学系6の光軸61に対して直交する平面(XY平面)に対して、傾斜していた。これに対し、図11に図示されるように、例えば、平坦面3bは、第一屈折光学系6の光軸61に対して直交するように配置されていても構わない。 Further, in the second refractive optical system 3 shown in FIG. 7A, each of the flat surfaces (3a, 3b) of the second refractive optical system 3 is relative to the optical axis 61 of the first refractive optical system 6. It was inclined with respect to an orthogonal plane (XY plane). On the other hand, as illustrated in FIG. 11, for example, the flat surface 3 b may be arranged so as to be orthogonal to the optical axis 61 of the first refractive optical system 6.
 図11に図示される半導体レーザユニット2は、光射出領域10の中心位置が第一屈折光学系6の光軸61に一致するように配置されている。この場合、光射出領域10から射出される第一光線束11に含まれる主光線11mは、第一屈折光学系6の光軸61に位置するように進行する。よって、第一光線束11は、第一屈折光学系6に入射された後、第一屈折光学系6の光軸61に平行な方向に進行する略平行光線束に変換される(第二光線束12)。 The semiconductor laser unit 2 illustrated in FIG. 11 is arranged so that the center position of the light emitting region 10 coincides with the optical axis 61 of the first refractive optical system 6. In this case, the principal ray 11 m included in the first light bundle 11 emitted from the light emission region 10 travels so as to be positioned on the optical axis 61 of the first refractive optical system 6. Therefore, the first light beam 11 is incident on the first refractive optical system 6 and then converted into a substantially parallel light beam that travels in a direction parallel to the optical axis 61 of the first refractive optical system 6 (second light beam). Bundle 12).
 よって、この第二光線束12を、第一屈折光学系6の光軸61に対して直交するように配置された平坦面3bに入射させることで、第二屈折光学系3を通過した後においても、引き続き、第一屈折光学系6の光軸61(第二屈折光学系3の光軸62)に平行な方向に進行させることができる。一方、光射出領域20から射出される第一光線束21については、図7Aを参照して上述したように、第一屈折光学系6の光軸61に対して非平行に進行するため、第二屈折光学系3に設けられた、傾斜した平坦面3aに入射されることで、光軸(61,62)に略平行に変換することができる。 Therefore, after passing through the second refractive optical system 3 by making the second light beam 12 incident on the flat surface 3b arranged so as to be orthogonal to the optical axis 61 of the first refractive optical system 6, However, it is possible to proceed in a direction parallel to the optical axis 61 of the first refractive optical system 6 (the optical axis 62 of the second refractive optical system 3). On the other hand, the first light bundle 21 emitted from the light emission region 20 proceeds non-parallel to the optical axis 61 of the first refractive optical system 6 as described above with reference to FIG. By being incident on the inclined flat surface 3 a provided in the birefringent optical system 3, it can be converted to be substantially parallel to the optical axis (61, 62).
 かかる構成によれば、半導体レーザユニット2と第二屈折光学系3との光学的な位置合わせが容易化される。 According to such a configuration, optical alignment between the semiconductor laser unit 2 and the second refractive optical system 3 is facilitated.
 別の構成例として、図12に図示されるように、光源装置1が備える複数の第二屈折光学系(3,3,‥‥)は、それぞれが一体化されてなる第一光学部材30を形成することができる。図12に図示された例では、それぞれの第二屈折光学系3は、図7Cを参照して上述した形状を呈している。この場合、第一光学部材30の面のうち、光射出面側の面については、直交面を構成する平坦面3cとし、これらを各第二屈折光学系3において共通化する。また、第一光学部材30の面のうち、光入射面側の面については、複数の傾斜した平坦面(3a,3b)を、半導体レーザユニット2の数に対応した数だけ連続的に形成する。このように形成された図12に示される光源装置1は、図6を参照して上述した光源装置1と光学的に同機能を示す。 As another configuration example, as illustrated in FIG. 12, the plurality of second refractive optical systems (3, 3,...) Included in the light source device 1 includes a first optical member 30 that is integrated with each other. Can be formed. In the example illustrated in FIG. 12, each second refractive optical system 3 has the shape described above with reference to FIG. 7C. In this case, among the surfaces of the first optical member 30, the surface on the light exit surface side is a flat surface 3 c constituting an orthogonal surface, and these are shared in each second refractive optical system 3. Further, among the surfaces of the first optical member 30, a plurality of inclined flat surfaces (3 a, 3 b) are continuously formed on the light incident surface side in a number corresponding to the number of semiconductor laser units 2. . The light source device 1 shown in FIG. 12 thus formed has the same optical function as the light source device 1 described above with reference to FIG.
 なお、図6に図示された光源装置1において、各第二屈折光学系3は、それぞれに対応した半導体レーザユニット2から射出された光線束が入射され、その隣接する半導体レーザユニット2から射出された光線束については入射されないのが好ましい。第二屈折光学系3に対して、隣接する半導体レーザユニット2から射出された光線束が入射される場合とは、第二屈折光学系3の配置位置が、半導体レーザユニット2(より詳細には、第一屈折光学系6)から光軸61の方向に極めて遠い場合に対応する。 In the light source device 1 illustrated in FIG. 6, each second refractive optical system 3 receives a light beam emitted from the corresponding semiconductor laser unit 2 and is emitted from the adjacent semiconductor laser unit 2. The incident light bundle is preferably not incident. When the light beam emitted from the adjacent semiconductor laser unit 2 is incident on the second refractive optical system 3, the arrangement position of the second refractive optical system 3 is the semiconductor laser unit 2 (more specifically, This corresponds to the case where the first refractive optical system 6) is very far from the optical axis 61 in the direction of the optical axis 61.
 このような構成の場合、同一の第一屈折光学系6から射出され、第二屈折光学系3に対して入射される第二光線束(12,22)同士の離間距離が空いてしまう。このような第二光線束(12,22)を入射させるためには、第二屈折光学系3の平坦面(3a,3b)を、X方向に関して大きな寸法を有する形状にしなければならない。この結果、第二屈折光学系3の形状が大型化してしまう。 In the case of such a configuration, the separation distance between the second light bundles (12, 22) emitted from the same first refractive optical system 6 and incident on the second refractive optical system 3 is increased. In order to make such a second light beam (12, 22) enter, the flat surfaces (3a, 3b) of the second refractive optical system 3 must be shaped to have large dimensions in the X direction. As a result, the shape of the second refractive optical system 3 is increased.
 図13に示すように、光源装置1は、各第二屈折光学系3の後段に、インテグレータ光学系50を備えるものとしても構わない。図14は、図13の一部分を抽出して模式的に拡大した図面である。インテグレータ光学系50は、前段フライアイレンズ51と後段フライアイレンズ52とを含み、これらが互いに対向して配置されている。前段フライアイレンズ51及び後段フライアイレンズ52は、同一焦点距離、同一形状の複数のレンズ(単レンズ)を、縦横それぞれに多数並べたものとして形成されている。 As shown in FIG. 13, the light source device 1 may include an integrator optical system 50 in the subsequent stage of each second refractive optical system 3. FIG. 14 is an enlarged view schematically showing a part of FIG. The integrator optical system 50 includes a front-stage fly-eye lens 51 and a rear-stage fly-eye lens 52, which are arranged to face each other. The front-stage fly-eye lens 51 and the rear-stage fly-eye lens 52 are formed by arranging a plurality of lenses (single lenses) having the same focal length and the same shape in the vertical and horizontal directions.
 かかる構成によれば、各第二屈折光学系3を通過した第二光線束(12,22)は、インテグレータ光学系50によって、多重像が形成されることで、照射面上における照度分布を均一化した疑似光源が形成される。つまり、インテグレータ光学系50を通過した光線束が後段光学系40に入射されることで、後段光学系40から射出された光が照射される、対象照射面上における照度バラツキが抑制される。 According to this configuration, the second light bundles (12, 22) that have passed through the second refractive optical systems 3 are formed with multiple images by the integrator optical system 50, so that the illuminance distribution on the irradiation surface is uniform. A pseudo light source is formed. That is, the light flux that has passed through the integrator optical system 50 is incident on the post-stage optical system 40, thereby suppressing the illuminance variation on the target irradiation surface that is irradiated with the light emitted from the post-stage optical system 40.
 なお、図15に図示されるように、第二屈折光学系3と、インテグレータ光学系50の前段フライアイレンズ51とが、一体化されているものとしても構わない。この場合、第二屈折光学系3の周期、より詳細には、同一の傾斜角を有する平坦面同士(例えば平坦面3a同士)の周期よりも、前段フライアイレンズ51が備える複数のレンズの周期の方が短周期で構成される。 As shown in FIG. 15, the second refractive optical system 3 and the pre-stage fly-eye lens 51 of the integrator optical system 50 may be integrated. In this case, the period of the plurality of lenses included in the pre-stage fly-eye lens 51 is greater than the period of the second refractive optical system 3, more specifically, the period of flat surfaces having the same inclination angle (for example, the flat surfaces 3a). Is composed of a short period.
 更に、図12に図示したように、光源装置1が備える複数の第二屈折光学系(3,3,‥‥)は、それぞれが一体化されてなる第一光学部材30を形成している場合において、この第一光学部材30の光射出面側において、インテグレータ光学系50の前段フライアイレンズ51が一体化されているものとしても構わない(図16参照)。 Furthermore, as shown in FIG. 12, the plurality of second refractive optical systems (3, 3,...) Provided in the light source device 1 form a first optical member 30 that is integrated with each other. The first fly-eye lens 51 of the integrator optical system 50 may be integrated on the light exit surface side of the first optical member 30 (see FIG. 16).
 ところで、図8を参照して説明したように、第二屈折光学系3を第一屈折光学系6に少し近づけて配置した場合、第二屈折光学系3から射出される、光強度の弱い一部の光線は、光軸62に対して非平行に進行する。この光線を、隣接する第二屈折光学系3に対応して配置されたインテグレータ光学系50に入射させることで、後段光学系40から射出された光が照射される対象照射面上における、スペックルコントラストを低減する効果が得られる。 By the way, as described with reference to FIG. 8, when the second refractive optical system 3 is disposed a little closer to the first refractive optical system 6, the light having a low light intensity emitted from the second refractive optical system 3. The light rays of the part travel non-parallel to the optical axis 62. By making this light beam enter an integrator optical system 50 arranged corresponding to the adjacent second refractive optical system 3, the speckle on the target irradiation surface to which the light emitted from the rear optical system 40 is irradiated. The effect of reducing contrast can be obtained.
 図17は、上述した光源装置1を含むプロジェクタの構成例を模式的に示す図面である。プロジェクタ9は、光源装置1を含む照明光学系70と、照明光学系70から導かれた光を分光した後にスクリーン90に投影する分光・投影光学系80とを備える。 FIG. 17 is a drawing schematically showing a configuration example of a projector including the light source device 1 described above. The projector 9 includes an illumination optical system 70 including the light source device 1 and a spectroscopic / projection optical system 80 that projects the light guided from the illumination optical system 70 onto the screen 90 after the light is dispersed.
 図17に示す例では、光源装置1を赤色用光源とした場合が想定されている。すなわち、照明光学系70は、赤色用光源としての光源装置1と、青色光源71と、青色光源71から射出された青色光を受光して蛍光を生成する蛍光光源72と、拡散反射光学系73と、ダイクロイックミラー(74,75)と、インテグレータ光学系50と、合成光学系76とを備える。 In the example shown in FIG. 17, the light source device 1 is assumed to be a red light source. That is, the illumination optical system 70 includes a light source device 1 as a red light source, a blue light source 71, a fluorescent light source 72 that receives blue light emitted from the blue light source 71 and generates fluorescence, and a diffuse reflection optical system 73. A dichroic mirror (74, 75), an integrator optical system 50, and a synthesis optical system 76.
 光源装置1から射出された、光密度の高い赤色光Rは、ダイクロイックミラー74で反射された後、インテグレータ光学系50へと導かれる。また、青色光源71から射出された青色光Bは、偏光に応じてダイクロイックミラー75で反射される光と透過する光とに分離される。例えば、ダイクロイックミラー75には、偏光方向によって光の進行方向を制御することのできる偏光分離素子を含むものとしてもよい。 The high-density red light R emitted from the light source device 1 is reflected by the dichroic mirror 74 and then guided to the integrator optical system 50. Also, the blue light B emitted from the blue light source 71 is separated into light reflected by the dichroic mirror 75 and transmitted light according to the polarization. For example, the dichroic mirror 75 may include a polarization separation element that can control the traveling direction of light according to the polarization direction.
 ダイクロイックミラー75で反射されたある偏光方向の青色光は、蛍光光源72に導かれて、蛍光光源72に含まれる蛍光体の励起光として用いられ、得られた蛍光がダイクロイックミラー(75,74)を透過してインテグレータ光学系50へと導かれる。ダイクロイックミラー75を透過した別の偏光方向の青色光は、拡散反射光学系73に入射され、その拡散光が拡散反射光学系73から反射されて、ダイクロイックミラー75に導かれる。この光は、ダイクロイックミラー75で反射された後、ダイクロイックミラー74を透過してインテグレータ光学系50へと導かれる。 Blue light of a certain polarization direction reflected by the dichroic mirror 75 is guided to the fluorescent light source 72 and used as excitation light of the phosphor contained in the fluorescent light source 72, and the obtained fluorescence is used as the dichroic mirror (75, 74). Is transmitted to the integrator optical system 50. Blue light in another polarization direction that has passed through the dichroic mirror 75 is incident on the diffuse reflection optical system 73, and the diffused light is reflected from the diffuse reflection optical system 73 and guided to the dichroic mirror 75. This light is reflected by the dichroic mirror 75, then passes through the dichroic mirror 74 and is guided to the integrator optical system 50.
 インテグレータ光学系50において、各色の光は照度分布が均一化された後、合成光学系76によって白色光に合成される。合成光学系76は、偏光方向を均一化させる偏光変換素子を含むものとしても構わない。 In the integrator optical system 50, the light of each color is synthesized into white light by the synthesis optical system 76 after the illuminance distribution is made uniform. The combining optical system 76 may include a polarization conversion element that makes the polarization direction uniform.
 合成光学系76を通過した白色光は、分光・投影光学系80に導かれる。分光・投影光学系80に含まれる各ダイクロイックミラー(81a,81b,81c)によって、色分離された各色の光は、適宜ミラー(81d,81e)を介して進行方向が調整された後、各色の変調装置(82R,82G,82B)に入射される。変調装置(82R,82G,82B)は、画像情報に応じて各色光を変調し、色合成光学系83に出力する。色合成光学系83は、前記画像情報に応じた画像光を合成して投射光学系84に入射する。投射光学系84は、画像光をスクリーン90に投射する。 White light that has passed through the synthesis optical system 76 is guided to the spectroscopic / projection optical system 80. The light of each color separated by the dichroic mirrors (81a, 81b, 81c) included in the spectroscopic / projection optical system 80 is appropriately adjusted in the traveling direction through the mirrors (81d, 81e), The light enters the modulator (82R, 82G, 82B). The modulation devices (82 R, 82 G, 82 B) modulate each color light according to the image information and output it to the color synthesis optical system 83. The color synthesis optical system 83 synthesizes image light corresponding to the image information and enters the projection optical system 84. The projection optical system 84 projects image light onto the screen 90.
 図17に示すプロジェクタ9の構成の場合、合成光学系76、及び分光・投影光学系80が、図6における後段光学系40に対応する。 In the case of the configuration of the projector 9 shown in FIG. 17, the combining optical system 76 and the spectroscopic / projection optical system 80 correspond to the rear stage optical system 40 in FIG.
 なお、図17に示すプロジェクタ9は、本実施形態の光源装置1を赤色光を生成する光源に利用した場合を想定しているが、青色光を生成する光源とすることも可能である。この場合、青色光を生成する光源装置1と、この光源装置1から射出された青色光が励起光として入射されて蛍光を生成する蛍光光源とを備え、青色光と蛍光とが合成光学系76を介して合成されて白色光が生成されるものとしてもよい。 In addition, although the projector 9 shown in FIG. 17 assumes the case where the light source device 1 of the present embodiment is used as a light source that generates red light, it may be a light source that generates blue light. In this case, the light source device 1 that generates blue light and the fluorescent light source that generates the fluorescence when the blue light emitted from the light source device 1 is incident as the excitation light are provided. It is good also as what is synthesize | combined through and white light is produced | generated.
 なお、図15及び図16を参照して上述したように、光源装置1が備える各第二屈折光学系3が、インテグレータ光学系50と一体化されているものとしても構わない。この場合、図17に図示されている、ダイクロイックミラー74と合成光学系76との間に配置されたインテグレータ光学系50は、その配置を省略するものとしても構わない。 As described above with reference to FIGS. 15 and 16, each second refractive optical system 3 included in the light source device 1 may be integrated with the integrator optical system 50. In this case, the arrangement of the integrator optical system 50 arranged between the dichroic mirror 74 and the combining optical system 76 shown in FIG. 17 may be omitted.
 更に、プロジェクタ9は、本実施形態の光源装置1によって、R,G,B各色の光を生成し、これらを合成光学系76によって合成する態様とすることも可能である。すなわち、光源装置1が、青色光を生成する半導体レーザチップ5、赤色光を生成する半導体レーザチップ5、緑色光を生成する半導体レーザチップ5をそれぞれ備えるものとしても構わない。この場合、各光源装置1から射出された各色の光は、光ファイバなどの導光部材を通じて伝搬されて、各色の変調装置(82R,82G,82B)に入射されるものとしても構わない。 Further, the projector 9 may be configured to generate light of each color of R, G, and B by the light source device 1 of the present embodiment and combine them by the combining optical system 76. That is, the light source device 1 may include a semiconductor laser chip 5 that generates blue light, a semiconductor laser chip 5 that generates red light, and a semiconductor laser chip 5 that generates green light. In this case, the light of each color emitted from each light source device 1 may be propagated through a light guide member such as an optical fiber and incident on the modulation devices (82R, 82G, 82B) of each color.
 なお、図17に示すプロジェクタ9は、変調装置(82R,82G,82B)が透過型の液晶素子で構成されている場合を想定して図示されたものであるが、反射型の変調装置(DMD:デジタル・マイクロミラー・デバイス、登録商標)が用いられていても構わない。分光・投影光学系80は、変調装置の構成に応じて適宜設定される。 The projector 9 shown in FIG. 17 is illustrated assuming that the modulation devices (82R, 82G, and 82B) are configured by transmissive liquid crystal elements. However, the projector 9 shown in FIG. : Digital micromirror device (registered trademark) may be used. The spectroscopic / projection optical system 80 is appropriately set according to the configuration of the modulation device.
 [別実施形態]
 以下、別実施形態につき説明する。
[Another embodiment]
Hereinafter, another embodiment will be described.
 〈1〉 図6等を参照して上述した半導体レーザチップ5は、2つの光射出領域(10,20)を有するマルチエミッタ型の構成であった。この半導体レーザチップ5が備える光射出領域の数は、2個に限定されず、3個以上であっても構わない。第二屈折光学系3が備える、傾斜角の異なる平坦面(3a,3b,‥‥)の数は、同一半導体レーザユニット2に含まれる光射出領域の数に応じて設定される。 <1> The semiconductor laser chip 5 described above with reference to FIG. 6 and the like has a multi-emitter configuration having two light emission regions (10, 20). The number of light emission regions provided in the semiconductor laser chip 5 is not limited to two, and may be three or more. The number of flat surfaces (3a, 3b,...) With different inclination angles provided in the second refractive optical system 3 is set according to the number of light emission regions included in the same semiconductor laser unit 2.
 逆に、各半導体レーザチップ5は、例えば図1Aを参照して上述したように、単独の光射出領域を有するシングルエミッタ型の構成であり、複数の半導体レーザチップ5からの射出光が、第一屈折光学系6に入射される構成であっても構わない(図18参照)。更に、図18のように、複数の半導体レーザチップ5からの射出光が、第一屈折光学系6に入射される態様において、各半導体レーザチップ5がマルチエミッタ型の構造であっても構わない。また、第一屈折光学系6は各半導体レーザチップ5に対応して設けられていれば良く、該第一屈折光学系6自身が個別に設けられていても、アレー状に一体形成されていても構わない。 On the contrary, each semiconductor laser chip 5 has a single emitter type configuration having a single light emission region, as described above with reference to FIG. 1A, for example. It may be configured to be incident on the monorefringent optical system 6 (see FIG. 18). Further, as shown in FIG. 18, in a mode in which light emitted from a plurality of semiconductor laser chips 5 is incident on the first refractive optical system 6, each semiconductor laser chip 5 may have a multi-emitter type structure. . The first refractive optical system 6 may be provided corresponding to each semiconductor laser chip 5, and even if the first refractive optical system 6 itself is provided individually, it is integrally formed in an array. It doesn't matter.
 〈2〉 上記実施形態では、各半導体レーザチップ5が光射出領域(10,20)が半導体レーザチップ5の端面に形成された、いわゆる「端面発光型」の構造である場合を想定して説明した。しかし、本発明は、各半導体レーザチップ5が、半導体層の積層方向に光が取り出される、いわゆる「面発光型」の構造であっても、同様に適用可能である。 <2> In the above embodiment, each semiconductor laser chip 5 is assumed to have a so-called “end-emitting type” structure in which the light emission regions (10, 20) are formed on the end face of the semiconductor laser chip 5. did. However, the present invention is similarly applicable even if each semiconductor laser chip 5 has a so-called “surface emitting type” structure in which light is extracted in the stacking direction of the semiconductor layers.
 〈3〉 本発明に係る光源装置1は、複数の光線束を集光して、所定の照射対象物に照射するアプリケーションであれば、プロジェクタ以外にも適用可能である。一例として、光源装置1を露光装置用の光源として利用することが可能である。 <3> The light source device 1 according to the present invention is applicable to applications other than a projector as long as it is an application that collects a plurality of light beams and irradiates a predetermined irradiation object. As an example, the light source device 1 can be used as a light source for an exposure apparatus.
 〈4〉 上述した光源装置1が備える光学配置態様は、あくまで一例であり、本発明は、図示された各構成に限定されない。例えば、ある光学系と別の光学系との間において、光の進行方向を変化させるための反射光学系が適宜介在されていても構わない。 <4> The optical arrangement mode provided in the light source device 1 described above is merely an example, and the present invention is not limited to each illustrated configuration. For example, a reflection optical system for changing the traveling direction of light may be appropriately interposed between a certain optical system and another optical system.
    1    :  光源装置
    2    :  半導体レーザユニット
    3    :  第二屈折光学系
    3a,3b:  第二屈折光学系が備える平坦面
    5    :  半導体レーザチップ
    5a   :  半導体レーザチップの中心位置
    6    :  第一屈折光学系
    9    :  プロジェクタ
   10,20 :  光射出領域
   11,21 :  第一光線束
   12,22 :  第二光線束
   30    :  第一光学部材
   40    :  後段光学系
   50    :  インテグレータ光学系
   61    :  第一屈折光学系の光軸
   62    :  第二屈折光学系の光軸
   70    :  照明光学系
   71    :  青色光源
   72    :  蛍光光源
   73    :  拡散反射光学系
   74,75 :  ダイクロイックミラー
   76    :  合成光学系
   80    :  分光・投影光学系
   81a,81,81c  :  ダイクロイックミラー
   81d,81e  :  ミラー
   82B,82G,82R  :  変調装置
   84    :  投射光学系
   85    :  色合成光学系
   90    :  スクリーン
  100,110   :  半導体レーザチップ
  101,111,112   :  エミッタ
  101L,111L,112L  :  エミッタから射出される光線束
  102   :   コリメートレンズ
1: Light source device 2: Semiconductor laser unit 3: Second refractive optical system 3a, 3b: Flat surface of second refractive optical system 5: Semiconductor laser chip 5a: Center position of semiconductor laser chip 6: First refractive optical system 9 : Projector 10, 20: Light emission area 11, 21: First light bundle 12, 22: Second light bundle 30: First optical member 40: Rear stage optical system 50: Integrator optical system 61: Light of first refractive optical system Axis 62: Optical axis of second refractive optical system 70: Illumination optical system 71: Blue light source 72: Fluorescent light source 73: Diffuse reflection optical system 74, 75: Dichroic mirror 76: Synthetic optical system 80: Spectroscopic / projection optical system 81a, 81, 81c: Dichroic L: 81d, 81e: Mirror 82B, 82G, 82R: Modulator 84: Projection optical system 85: Color synthesis optical system 90: Screen 100, 110: Semiconductor laser chip 101, 111, 112: Emitter 101L, 111L, 112L: From emitter Emitted light beam 102: collimating lens

Claims (9)

  1.  同一の又は異なる半導体レーザチップ上に設けられた複数の光射出領域と、隣接する複数の前記光射出領域から射出された複数の第一光線束が入射されて、前記複数の第一光線束それぞれを、略平行光線束である複数の第二光線束に変換して射出する第一屈折光学系とを含む、複数の半導体レーザユニットと、
     異なる傾斜角を有する複数の平坦面を含み、同一の前記半導体レーザユニットから射出された複数の前記第二光線束それぞれの少なくとも一部が異なる前記平坦面に入射されて、複数の前記第二光線束のそれぞれの主光線の進行方向を光軸に対して略平行に変換して射出する第二屈折光学系と、を備え、
     前記第二屈折光学系は、前記半導体レーザユニットの数に対応して配置されていることを特徴とする、光源装置。
    A plurality of light exit areas provided on the same or different semiconductor laser chips and a plurality of first light bundles emitted from a plurality of adjacent light exit areas are incident, and each of the plurality of first light bundles A plurality of semiconductor laser units, including a first refractive optical system that converts and emits a plurality of second light beams that are substantially parallel light beams, and
    A plurality of the second light beams including a plurality of flat surfaces having different inclination angles, wherein at least a part of each of the plurality of second light bundles emitted from the same semiconductor laser unit is incident on the different flat surfaces. A second refractive optical system that converts the traveling direction of each principal ray of the bundle to be substantially parallel to the optical axis and emits the second refractive optical system,
    The second light source optical system is disposed corresponding to the number of the semiconductor laser units.
  2.  前記第一屈折光学系は、光射出面側に凸曲面を有し、
     前記第二屈折光学系は、前記第一屈折光学系に対して、前記第一屈折光学系の焦点距離よりも離れた位置に配置されていることを特徴とする、請求項1に記載の光源装置。
    The first refractive optical system has a convex curved surface on the light exit surface side,
    2. The light source according to claim 1, wherein the second refractive optical system is disposed at a position away from a focal length of the first refractive optical system with respect to the first refractive optical system. apparatus.
  3.  前記第二屈折光学系は、隣接する一対の前記第二光線束に関して、一方の前記第二光線束の上光線と他方の前記第二光線束の下光線とが交差する特定位置、又は前記特定位置よりも前記第一屈折光学系に対して離れた位置に配置されていることを特徴とする、請求項2に記載の光源装置。 The second refracting optical system has a specific position where the upper light beam of one of the second light beam beams and the lower light beam of the other second light beam beam intersect with each other, or the specific light beam The light source device according to claim 2, wherein the light source device is disposed at a position farther from the first refractive optical system than a position.
  4.  前記第二屈折光学系は、隣接する前記半導体レーザユニットから射出された前記第二光線束が入射されない位置に配置されていることを特徴とする、請求項1~3のいずれか1項に記載の光源装置。 4. The second refractive optical system according to claim 1, wherein the second refractive optical system is disposed at a position where the second light beam emitted from the adjacent semiconductor laser unit is not incident. Light source device.
  5.  前記第二屈折光学系は、光入射面側に複数の前記平坦面を有し、複数の前記平坦面のうち、一の前記平坦面が、光軸に対して直交する面であることを特徴とする、請求項1~4のいずれか1項に記載の光源装置。 The second refractive optical system has a plurality of flat surfaces on a light incident surface side, and one of the plurality of flat surfaces is a surface orthogonal to the optical axis. The light source device according to any one of claims 1 to 4.
  6.  前記第二屈折光学系は、光射出面側に、光軸に対する直交面を有することを特徴とする請求項5に記載の光源装置。 The light source device according to claim 5, wherein the second refractive optical system has a surface orthogonal to the optical axis on the light exit surface side.
  7.  前記平坦面とは反対側の面において、複数の前記第二屈折光学系が一体化されてなる第一光学部材を有することを特徴とする、請求項5又は6に記載の光源装置。 The light source device according to claim 5 or 6, further comprising a first optical member formed by integrating a plurality of the second refractive optical systems on a surface opposite to the flat surface.
  8.  前記第二屈折光学系の後段の位置において、前段フライアイレンズ及び後段フライアイレンズからなるインテグレータ光学系を有し、
     前記前段フライアイレンズは、前記第一光学部材の光射出面側に連結して配置されており、複数の前記第二屈折光学系が備える、同一の前記傾斜角を有する前記平坦面同士の周期よりも短周期で配置された複数のレンズを含んでなることを特徴とする、請求項7に記載の光源装置。
    At the rear stage position of the second refractive optical system, it has an integrator optical system consisting of a front fly eye lens and a rear fly eye lens,
    The pre-stage fly-eye lens is arranged to be connected to the light exit surface side of the first optical member, and a period of the flat surfaces having the same inclination angle provided in a plurality of the second refractive optical systems. The light source device according to claim 7, further comprising a plurality of lenses arranged with a shorter period.
  9.  請求項1~8のいずれか1項の光源装置から射出された光を利用して画像を投影することを特徴とするプロジェクタ。 A projector for projecting an image using light emitted from the light source device according to any one of claims 1 to 8.
PCT/JP2018/031118 2018-02-27 2018-08-23 Light source device and projector WO2019167309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-033106 2018-02-27
JP2018033106A JP6611019B2 (en) 2018-02-27 2018-02-27 Light source device, projector

Publications (1)

Publication Number Publication Date
WO2019167309A1 true WO2019167309A1 (en) 2019-09-06

Family

ID=66318261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031118 WO2019167309A1 (en) 2018-02-27 2018-08-23 Light source device and projector

Country Status (4)

Country Link
JP (1) JP6611019B2 (en)
CN (1) CN208834085U (en)
TW (1) TWI752258B (en)
WO (1) WO2019167309A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036307A (en) * 2019-08-26 2021-03-04 カシオ計算機株式会社 Light source device and projection device
JPWO2021117286A1 (en) * 2019-12-09 2021-06-17
WO2022018819A1 (en) * 2020-07-21 2022-01-27 三菱電機株式会社 Light source device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234205A (en) * 1994-12-28 1996-09-13 Seiko Epson Corp Polarization illumination device and projection type display device
JP2003207643A (en) * 1996-03-12 2003-07-25 Seiko Epson Corp Polarized light separation device and its manufacturing method, and projection display
JP2004139087A (en) * 2003-10-20 2004-05-13 Seiko Epson Corp Illuminator and projection type display device
JP2004151177A (en) * 2002-10-29 2004-05-27 Kyocera Corp Display unit
JP2005024664A (en) * 2003-06-30 2005-01-27 Fujinon Corp Polarizing illumination optical system and projection display device using the same
JP2006133655A (en) * 2004-11-09 2006-05-25 Canon Inc Projection type display device
WO2010064559A1 (en) * 2008-12-05 2010-06-10 三洋電機株式会社 Lighting device and projection type video display device
WO2012039895A1 (en) * 2010-09-22 2012-03-29 3M Innovative Properties Company Tilted dichroic color combiner iii
WO2013062932A1 (en) * 2011-10-24 2013-05-02 3M Innovative Properties Company Tilted dichroic polarizing beamsplitter
JP2013251222A (en) * 2012-06-04 2013-12-12 Sony Corp Lighting device, projection type display device, and direct view type display device
WO2014115194A1 (en) * 2013-01-24 2014-07-31 パナソニック株式会社 Light source, light source unit, and light source module using same
JP2015184617A (en) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 projector
JP2017138471A (en) * 2016-02-03 2017-08-10 セイコーエプソン株式会社 Light source device and projector
JP2018004742A (en) * 2016-06-28 2018-01-11 株式会社ブイ・テクノロジー Manufacturing method of illumination intensity adjusting filter, illumination intensity adjusting filter, illumination optical system and exposure device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19800590B4 (en) * 1998-01-09 2005-12-01 Jenoptik Ag Optical arrangement for balancing the radiation of one or more superimposed high-power diode lasers
JP6082560B2 (en) * 2012-10-09 2017-02-15 株式会社日立メディアエレクトロニクス Light source device and projection display device using the same
CN105629486B (en) * 2014-10-28 2019-03-29 深圳光峰科技股份有限公司 3D projection display system
JP2016126025A (en) * 2014-12-26 2016-07-11 コニカミノルタ株式会社 Lens and projection image display device
CN105974560B (en) * 2015-03-13 2020-04-24 扬明光学股份有限公司 Wide-angle projection system and lens
WO2016208644A1 (en) * 2015-06-24 2016-12-29 コニカミノルタ株式会社 Optical device, light source device and projection device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234205A (en) * 1994-12-28 1996-09-13 Seiko Epson Corp Polarization illumination device and projection type display device
JP2003207643A (en) * 1996-03-12 2003-07-25 Seiko Epson Corp Polarized light separation device and its manufacturing method, and projection display
JP2004151177A (en) * 2002-10-29 2004-05-27 Kyocera Corp Display unit
JP2005024664A (en) * 2003-06-30 2005-01-27 Fujinon Corp Polarizing illumination optical system and projection display device using the same
JP2004139087A (en) * 2003-10-20 2004-05-13 Seiko Epson Corp Illuminator and projection type display device
JP2006133655A (en) * 2004-11-09 2006-05-25 Canon Inc Projection type display device
WO2010064559A1 (en) * 2008-12-05 2010-06-10 三洋電機株式会社 Lighting device and projection type video display device
WO2012039895A1 (en) * 2010-09-22 2012-03-29 3M Innovative Properties Company Tilted dichroic color combiner iii
WO2013062932A1 (en) * 2011-10-24 2013-05-02 3M Innovative Properties Company Tilted dichroic polarizing beamsplitter
JP2013251222A (en) * 2012-06-04 2013-12-12 Sony Corp Lighting device, projection type display device, and direct view type display device
WO2014115194A1 (en) * 2013-01-24 2014-07-31 パナソニック株式会社 Light source, light source unit, and light source module using same
JP2015184617A (en) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 projector
JP2017138471A (en) * 2016-02-03 2017-08-10 セイコーエプソン株式会社 Light source device and projector
JP2018004742A (en) * 2016-06-28 2018-01-11 株式会社ブイ・テクノロジー Manufacturing method of illumination intensity adjusting filter, illumination intensity adjusting filter, illumination optical system and exposure device

Also Published As

Publication number Publication date
JP2019148692A (en) 2019-09-05
JP6611019B2 (en) 2019-11-27
TW201937264A (en) 2019-09-16
CN208834085U (en) 2019-05-07
TWI752258B (en) 2022-01-11

Similar Documents

Publication Publication Date Title
US20170343891A1 (en) Light source apparatus and projector
TWI494595B (en) Projection display device
US10372027B2 (en) Illuminator and projector
JP6141512B2 (en) Light source device
WO2014196020A1 (en) Illumination optical system and projector
KR101321631B1 (en) Light collecting optical system and projection-type image display device
CN110476010B (en) Illumination device and projector
JP6536724B1 (en) Light source device, projector
JP2002072128A (en) Optical device and projective display device using the same
WO2019167309A1 (en) Light source device and projector
WO2019230008A1 (en) Light source device and projector
JP2019078947A (en) Light source device and projector
JP2017146552A (en) Illumination device and projector
JP7400417B2 (en) Light source optical system, light source device and image display device
JP2017053876A (en) Projection type image display device
CN114585968A (en) Light source device, image projection device, and light source optical system
JP6696297B2 (en) Projection device
US10838292B2 (en) Light source apparatus, illuminator, and projector
JP2019078906A (en) Lighting device and projector
JP2017147195A (en) Light source device and projector
JP6711705B2 (en) Illumination device and projection display device using the same
US20210314537A1 (en) Light source device and projection type display device
JP2023059524A (en) Light source device, image projection device and display device
JP2023051736A (en) Light source device, image projection device, and display device
JP2023122275A (en) Light source device and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907514

Country of ref document: EP

Kind code of ref document: A1