WO2019166723A1 - Dispositif volant à propulsion électrique - Google Patents

Dispositif volant à propulsion électrique Download PDF

Info

Publication number
WO2019166723A1
WO2019166723A1 PCT/FR2019/050420 FR2019050420W WO2019166723A1 WO 2019166723 A1 WO2019166723 A1 WO 2019166723A1 FR 2019050420 W FR2019050420 W FR 2019050420W WO 2019166723 A1 WO2019166723 A1 WO 2019166723A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
winding
charging
cable
Prior art date
Application number
PCT/FR2019/050420
Other languages
English (en)
Inventor
Bruno Beranger
Daniel Chatroux
Mathias Gerard
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2019166723A1 publication Critical patent/WO2019166723A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/42Current collectors for power supply lines of electrically-propelled vehicles for collecting current from individual contact pieces connected to the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/32Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/34Plug-like or socket-like devices specially adapted for contactless inductive charging of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • B64U50/38Charging when not in flight by wireless transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order
    • H02H3/023Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order by short-circuiting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a flying device with electric propulsion.
  • the present invention relates to an electrically powered flying device provided with a charging system of its onboard battery.
  • the recharging system is, in this regard, arranged to take the energy necessary to recharge the battery at a power distribution line to recharge the battery.
  • the present invention particularly relates to flying objects of the drone type, intended for monitoring electrical distribution lines such as high voltage lines. It allows to consider including a management of the autonomy of these flying objects as well as a security when they do not fly.
  • Recharging a rechargeable battery of a device uses a charging system intended to inject a reverse electric charge current to the direction of use.
  • the charging system may involve a current generator which, when electrically connected to the rechargeable battery, delivers a charging current to said battery.
  • a magnetic induction charging system comprises a first winding magnetically coupled to a second winding so that the circulation of an alternating current in one or the other first and second coils generate the circulation of another alternating current in the other coil, and which is intended to be injected into the rechargeable battery.
  • the first winding can be included in a base, and powered by an alternating current source, while the second winding, connected to the rechargeable battery, can be included in the equipment.
  • the equipment and the base may in particular comprise cooperation means intended to allow the magnetic coupling between the first and second coils during a charging phase of the battery.
  • the magnetic coupling means may be arranged to put the first winding near the second winding.
  • the alternating current is preferably of a high frequency higher than 20 kHz so that the vibrations of the windings are not audible.
  • an electronics makes it possible to manage the supply of the first winding if the second winding is present.
  • this arrangement insofar as it does not require the establishment of electrical connections between the base and the equipment, can advantageously be implemented for recharging batteries of portable electrical equipment, mobile phones, brushes, electric teeth or electric vehicles.
  • the flying device may have to travel a significant distance.
  • the carrying of a charging base by the flying device can be considered so as to recharge the battery regularly.
  • the mass of the charging base penalizes the autonomy of the flying device, and therefore limits the flight time between two recharging phases of the rechargeable battery.
  • Such a base generally requires a charge point specifically adapted to be electrically connected to a power source.
  • a charging point infrastructure must be put in place along the line to ensure regular charging throughout the reconnaissance flight.
  • US 7,318,564 discloses an electrically powered flywheel device provided with a charging module for charging a rechargeable battery at an electric transmission line.
  • the module proposed in this document operating by induction, does not regulate the charging current of the battery during the charging phase.
  • an object of the present invention is to provide a power-driven flying device whose autonomy is not limited by the carriage of a charging base and which does not require the establishment of a particular infrastructure charging points.
  • Another object of the present invention is to provide an electrically powered flying device capable of recharging its rechargeable battery at an electrical distribution line.
  • an electrically powered flying device comprising:
  • At least one rechargeable battery having two said main terminals, respectively, first and second terminals;
  • - Rechargeable battery charging means comprising a mechanical coupling means arranged to cooperate with a cable of an electrical distribution line, said cable being traversed by a line current, the cooperation between the mechanical coupling means and the cable being designed to operate magnetically so as to charge the at least one rechargeable battery.
  • the charging means comprise at least one winding having two said main ends, respectively, first end and second end, the at least one winding being intended to be coupled magnetically with the cable as soon as a cooperation between the mechanical coupling means and the cable is operated so as to inductively generate the flow of a current, said induced current, in the at least one winding and for recharging the at least one rechargeable battery.
  • the charging means comprise a rectifier arranged for rectifying the induced DC current, said charging current, before being injected into the at least one rechargeable battery.
  • the current rectifier comprises a Graetz bridge.
  • the current rectifier comprises a diode, referred to as a direct diode DI, arranged in a polarity that allows the charging of the at least one battery by the charging current.
  • DI direct diode
  • the current rectifier further comprises another diode, referred to as an indirect diode D2, also arranged in a polarity that allows the charging of the at least one battery by the charging current.
  • D2 another diode
  • the at least one winding is connected to the at least one battery via two branches, respectively, first branch and second branch to the at least one battery, the direct diode is mounted on the one or the other of the first and second branches, while the indirect diode is mounted on the other of the first and second hips.
  • the at least one battery comprises two so-called batteries, respectively, first battery and second battery, having a common node B.
  • the at least one winding comprises a first winding and a second winding.
  • the first winding and the second winding are arranged in series at a common node N, connected in a main form to the at least one rechargeable battery, the first end and the second end are connected, respectively, according to the first branch and according to the second branch to the at least one rechargeable battery.
  • the main branch connects the common node N to a main terminal of the at least one battery, while the first branch and the second branch both connect the first end and the second end respectively. at the other main terminal of the at least one battery.
  • the main branch connects the node N to the node B
  • the first branch connects the first end to one of the main terminals
  • the second branch connects the second end to the other of the main terminals, the first and the second battery being either arranged in series or in opposite polarities.
  • the first and the second windings do not have a common node, the first winding being connected along the first branch to the first terminal, and according to another branch, called the first secondary branch to the common node B, the second coil being connected according to the second branch to the common node B, and according to another branch, said second secondary branch, to the second terminal, the first and second batteries being advantageously arranged in series.
  • the first battery and the second battery are connected in series, the first branch and the second branch connecting the first end, respectively, to the first terminal and the second terminal, and a third branch connecting the second end to the common node B.
  • the charging means comprise short-circuit means adapted to short-circuit the charging means (300), advantageously the short-circuit means are adapted to put the charging means into position. short circuit when the at least one rechargeable battery, during of a charging phase, has reached a load at least equal to a predetermined load, even more preferably the predetermined load corresponds to a full charge of the at least one rechargeable battery.
  • the short-circuit means are arranged to short-circuit the at least one winding.
  • the short-circuit means are arranged to short-circuit the current rectifier, advantageously the charging means comprise a diode intended to prevent the circulation of a discharging current of the rechargeable battery. in the short-circuit means as soon as the current rectifier is short-circuited.
  • the charging means comprise control means for limiting the charging current, advantageously the control means are adapted to perform a hash of one or the other of the induced currents and of charge.
  • the at least one winding is formed around a ferromagnetic element, the ferromagnetic element being dimensioned so as to be brought to saturation at each half-period of the cable current of the cable. line to limit the duration of the energy transfer of the cable to the charging means.
  • the at least one winding advantageously each winding of the at least one winding, is electrically connected in parallel with clipping means adapted to demagnetize the ferromagnetic element, advantageously, the d Clipping includes a variable resistor depending on a voltage imposed on these terminals.
  • the mechanical coupling means comprises a hook for hanging, advantageously in suspension, the electrically driven flying device to the cable, advantageously the at least one winding forms the hook.
  • the mechanical coupling means comprises a clamp provided with at least two gripper jaws, advantageously the at least one winding forms at least one of the gripper jaws.
  • the device is provided with means for measuring the induced current intended to monitor the state of charge of the at least one battery or to diagnose the signature of the line current flowing in the cable of the line .
  • the coupling means is provided with a rolling means arranged to allow movement of the electrically powered flying device along the cable of the line.
  • the charging means are arranged in a Faraday cage provided with an electrode arranged to be in contact with the cable as soon as the flying device is hooked to the cable, advantageously the electrode is disposed at level of the mechanical coupling means.
  • the mechanical coupling means make it possible to maintain the flying device in a rest position, advantageously when the charge of the at least one battery is complete.
  • the invention also relates to a flying device comprising a mechanical coupling means arranged to cooperate with a cable of an electrical distribution line so as to maintain the cable integral device flying in a rest position.
  • the mechanical coupling means comprises a hook for hanging, advantageously in suspension, the device flying to the cable.
  • the mechanical coupling means comprises a clamp provided with at least two gripper jaws for hooking the flying device to the cable.
  • the coupling means is provided with a rolling means arranged to allow movement of the flying device along the cable of the distribution line.
  • the flying device is electric propulsion.
  • the flying device comprises:
  • At least one rechargeable battery intended to supply the power necessary for the electric propulsion of the flying device
  • the charging means being adapted, since the cable is traversed by a current called current line, to cooperate, preferably magnetically, with said cable to recharge the at least one battery.
  • the charging means comprise at least one winding having two said main ends, respectively, first end and second end, the at least one winding being intended to be coupled magnetically with the cable as soon as a cooperation between the mechanical coupling means and the cable is operated so as to generate by induction the flow of a current, said induced current, in the at least one winding and for recharging the at least one battery.
  • the at least one winding forms the hook.
  • the at least one winding forms at least one of the jaws of the clamp.
  • the charging means comprise a current rectifier arranged to rectify the current induced with a DC component, called the charging current, before being injected into the at least one battery.
  • the rectifier comprises at least one diode, advantageously the rectifier comprises two diodes, still more advantageously, the rectifier comprises a diode arrangement forming a Graetz bridge.
  • the charging means comprise short-circuit means adapted to short-circuit the charging means, advantageously the short-circuit means are adapted to put the means of charging. short-circuit load when the at least one battery, during a charging phase, has reached a load at least equal to a predetermined load, even more advantageously the predetermined load corresponds to a complete load of the at least one battery.
  • the short-circuit means are arranged to short-circuit the at least one winding.
  • the short-circuit means are arranged to short-circuit the current rectifier, advantageously the charging means comprise a diode intended to prevent the circulation of a discharge current of the battery in the short-circuit means when the current rectifier is short-circuited.
  • the charging means comprise regulating means for limiting the charging current, advantageously the regulating means are adapted to perform a hash of one or the other of the induced and load currents. .
  • the charging means are arranged in a Faraday cage provided with an electrode arranged to be in contact with the cable as soon as the flying device is hooked to the cable, advantageously the electrode is disposed at level of the mechanical coupling means.
  • FIG. 1 is a functional schematic representation of an electrically powered flying device according to the present invention, the box in broken lines delimiting the charging means;
  • FIG. 2 is a diagrammatic representation of an electrically powered flying device, according to the present invention, hooked to a cable of the electrical distribution line according to a first example of attachment of said device;
  • FIGS. 3a and 3b are diagrammatic representations of an electrically powered flying device, according to the present invention, hooked to an electrical distribution line according to a second example of hooking up said device, in these two FIGS. 3a and 3b, FIG. flying device is provided with a Faraday cage, respectively, complete and partial, it is understood that one or the other of the complete or partial Faraday cages can be implemented for any one of the embodiments of the present invention;
  • FIG. 4 is an illustration of the saturation effect of the magnetic element during a recharging phase, in particular FIG. 4 represents the amplitude of the current in the cable of the line (ii) and the amplitude of the induced current (i 2 ) as a function of time symbolized by the horizontal axis;
  • FIGS. 5a to 5d are diagrammatic representations of charging means according to the present invention implementing a Graetz bridge, in particular FIGS. 5a and 5b illustrate various arrangements for the short-circuit means of the second winding or the winding. the input of the rectifier, and FIGS. 5c and 5d illustrate different arrangements for the regulating means of the charge current of the battery;
  • FIG. 6 is a schematic representation of the charging means comprising a rectifier made of a single diode, said direct diode;
  • FIGS. 7a to 7g are diagrammatic representations of charging means according to a first example of the present invention implementing a rectifier with two diodes, in this example the at least one winding comprises a first and a second winding, in particular FIGS. 7a to 7c illustrate particular examples of short circuit means, while FIGS. 7a to 7g illustrate particular examples of regulating means;
  • FIGS. 8a and 8b are diagrammatic representations of charging means according to two variants of a second example of the present invention implementing a rectifier with two diodes, in this example the at least one winding comprises a first and a second winding, and the at least one battery is made of first and second batteries connected at a node B, in particular according to the first variant shown in Figure 8a, the two batteries are connected in opposite polarities, and according to the second variant shown in Figure 8b, the two batteries are connected in series;
  • FIG. 9 is a schematic representation of charging means according to a third example implementing a rectifier with two diodes, in this example the at least one winding comprises the first and second windings devoid of a common node, and the at least one a battery is made of a first and a second battery connected in series;
  • FIG. 10 is a diagrammatic representation of charging means according to a fourth example implementing a rectifier with two diodes, in this example the at least one battery is made of a first and a second battery connected in series;
  • FIG. 11 is a diagrammatic representation of the charging means according to the present invention involving only one winding and a modified Graetz bridge.
  • the electrical distribution lines consist of pylons supporting cables, in particular 3 phase cables and possibly a neutral cable. They are provided with chains of electrical insulators, especially glass, which support these cables, classically uninsulated, the air around the cable being used as electrical insulation vis-à-vis other cables and the environment. To ensure protection of the cables crossed by the current of the line against lightning, an additional cable called guard is placed above them and it is connected to the pylons and to the ground
  • the present invention relates to an electrically powered flying device provided with at least one rechargeable battery and charging means.
  • the charging means within the meaning of the present invention, are adapted to allow charging of the rechargeable battery at a cable of a distribution line electrical, in particular a high voltage distribution line, by magnetic induction effect at the frequency of the electrical distribution.
  • the charging means may comprise a winding and at least one current rectifier arranged so as to be able to be coupled to one of the cables of the electrical distribution line, and thus to take energy at the level of the distribution line. power supply for charging the rechargeable battery.
  • the first winding (or the cables of the electrical distribution line) is then always traversed by an electric current.
  • the flying device within the meaning of the present invention, can adapt to the electric current flowing in the first winding.
  • “Flying device with electric propulsion” means, for example, a drone or any other remote-controlled or remote-controlled flying device whose energy required for electric propulsion is provided by a battery on board said device, in particular, within the meaning of the present invention, a rechargeable battery.
  • the rechargeable battery may, for example, be a lithium ion battery.
  • the invention can be extended to any type of rechargeable battery.
  • each cable of the electrical distribution line is a line traversed by an alternating current, in particular an alternating current of a frequency between 40 Hz and 70 Hz.
  • the cable 500a of the electrical distribution line 500 within the meaning of the present invention is also isolated from the other cables of the electrical distribution line.
  • the electric propulsion wheel device 100 includes charging means 300 of the at least one rechargeable battery 200.
  • the at least one rechargeable battery 200 comprises two main terminals, respectively, first terminal 200a and second terminal 200b.
  • the charging means 300 may comprise at least one winding 310 and a current rectifier 320 (FIGS. 2, 3a and 3b).
  • the at least one winding 310 is made of a winding of a conductive wire, for example a copper wire.
  • the conductive wire may be wound around a ferromagnetic element 370 which comprises, for example, iron. It is understood without it being necessary to specify that the conductor wire comprises two ends which are, throughout the rest of this description, called the ends of the at least one winding 310.
  • the winding 310 is made around a ferromagnetic iron sheet element with a copper wire insulated by several successive layers of varnish, called in the fields of enameled copper wire electronics.
  • the at least one winding 310 comprises two said main ends, respectively, first end 311a and second end 311b.
  • the main ends of the at least one winding are two isolated ends, in other words, a common node between two windings can not constitute a main end within the meaning of the present invention.
  • At least one winding made of two windings devoid of a common node also comprises two main ends.
  • each of the two windings comprises one of the two main ends.
  • the current rectifier 320 may comprise two input terminals, said respectively, first input terminal and second input terminal, and two output terminals said, respectively, first output terminal and second output terminal.
  • a current rectifier 320 within the meaning of the present invention is adapted to convert an alternating current into a direct current.
  • the current rectifier 320 is arranged to transform an alternating current at the frequency of the distribution line flowing in the at least one winding 310 into one direct current intended to be delivered to the terminals of the rechargeable battery 200.
  • a direct current in the sense of the present invention is a current that flows in only one direction.
  • the current rectifier 320 may comprise a Graetz bridge, or diodes.
  • the charging means 300 further comprise a coupling means 330.
  • the mechanical coupling means 330 is adapted to allow the attachment and / or the holding of the flying device 100 to one of the cables of the electrical distribution line 500.
  • mechanical coupling means means for attaching said means to a cable.
  • the hook may be a fixed link, a slide connection, a sliding pivot connection, the connection may be partial, via a hook, via a fork.
  • the mechanical coupling means 330 is adapted to couple the at least one winding 310 with the cable 500a of the electrical distribution line 500 so that the alternating current, called the current of the line cable, flowing in said line cable 500 inductively generates the flow of a current, called induced current, in the at least one winding 310.
  • the induced current can then be rectified by the current rectifier 320 into a current, called the charging current, intended to charge the current. rechargeable battery 200.
  • the mechanical coupling means 330 may comprise a clamp provided, for example, with two jaws 331 and 332 ("grippers" in the English terminology) pivoting about an axis. 333.
  • the clip may also include a number of upper jaws.
  • the at least one winding 310 may form at least one jaw of the clamp.
  • the at least one winding is overmolded with an insulating material, for example a polymer and / or plastic material.
  • the mechanical coupling means 330 may comprise a hook 334.
  • the hook 334 makes it possible, for example, to suspend the flying device 100 from the cable of the electrical distribution line 500.
  • suspend means maintaining the device flying under the cable (and cable) in the direction of gravity.
  • the at least one winding 310 forms the hook.
  • the at least one winding 310 is overmolded with an insulating material, for example a polymer and / or plastic material.
  • the mechanical coupling means 330 makes it possible to make the flying device 100 and the cable 500a of the electrical distribution line 500 cooperate during a recharging phase.
  • this coupling may be only mechanical allowing then stopping the flight of the device for its rest and its security.
  • this stop on a cable of a power distribution line also appears as an anti-theft system for this type of flying object having to stop miles away from their owner. This type of stop is then possible that the battery requires recharging or not.
  • a variant of this mechanical coupling is to be able to allow longitudinal movement of the electrically powered flying device along the cable while remaining in suspension without flying via a rolling means.
  • the charging means 300 can be arranged in a Faraday cage 380 provided with an electrode 390 arranged to be in contact with the cable of the electrical distribution line when the electrically powered flying device is in phase. approach and / or hooked to the cable of the electrical distribution line (in broken lines in Figures 3a and 3b).
  • the electrode 390 may be disposed at the coupling means so that a contact is established between the electrode and the cable 500a of the line 500 from the moment of coupling.
  • the Faraday cage 380 and its electrode 390 thus protect the charging means 300 and the electrical and electronic devices powered by the battery 200. effects of an electric arc that may occur when approaching the electric drive device 100 of the cable of the electrical distribution line 500.
  • the Faraday cage can be complete (FIG. 3a), that is to say completely surrounding the charging means 300, the battery 200 and the electrical and electronic devices powered by the battery 200, or partially (FIG. 3b), FIG. i.e. of limited area to screen the field lines of the distribution line or reduced to a conductive reference plane forming a screen.
  • one of the poles of the battery is connected to the total or partial Faraday cage to a conductive screen.
  • the charging means may also comprise short-circuit means 340 (FIGS. 2, 3a and 3b) adapted to short-circuit the charging means 300.
  • the short-circuiting of the charging means 300 stops the charging process of the rechargeable battery 200.
  • the short-circuit means 340 are adapted to put the charging means short-circuited when the rechargeable battery 200, during a phase load has reached a load at least equal to a predetermined load.
  • the short-circuit means 340 are arranged to interrupt the charging current flowing in the battery as soon as the state of charge of the latter has reached a predetermined state of charge.
  • the short-circuit means 340 thus make it possible to prevent the heating and / or damage of the at least one winding 310 as soon as the charge of the rechargeable battery 200 is complete.
  • the short-circuit means 340 also allow the flying device 100 to be attached to the cable of the electrical distribution line during a rest phase of said device 100.
  • the predetermined load is set by the user of the flywheel device 100.
  • the predetermined load corresponds to a full charge of the rechargeable battery 200, determined from the battery voltage or the current integral by the battery. Loading time.
  • Short-circuit means 340 may advantageously be arranged to short-circuit 340 the at least one winding 310 ( Figure 5a).
  • the short-circuit means 340 may be arranged to short-circuit the current rectifier 320 ( Figure 5b).
  • the charging means 300 comprise a diode D (FIGS. 2, 3a, 3b, and 5b) intended to prevent the flow of a discharge current from the rechargeable battery in the short-circuit means, when the rectifier current 320 is short-circuited.
  • the short-circuit means 340 may comprise a switch, for example a transistor, advantageously controlled by a card and / or a computer.
  • the charging means 300 may comprise regulation means 360 (FIG. 5c and 5d) intended to limit the charging current.
  • the regulation means are adapted to perform a hash of one or the other of the induced and load currents. This current hashing function makes it possible to regulate the charge current of the rechargeable battery 200, and thus to adapt to the current flowing in the cable of the electrical distribution line.
  • the regulation means 360 impose short circuit phases of the charging means 300 during the charging phase of the rechargeable battery 200.
  • the number of turns of the at least one winding 310 and the regulation means 360 can be dimensioned so that the charging current is constant as long as the line current is within a predetermined range.
  • the charging current can be set to an ampere for line currents between one hundred and one thousand amperes.
  • the regulation means 360 may comprise a bidirectional electronic switch, for example connected in parallel with the at least one winding 310.
  • the regulation means 360 may alternatively be interposed between the current rectifier 320 and the rechargeable battery 200.
  • the chopping of one or the other of the induced and load currents can be performed at a frequency of 20 kHz or more, so as to cut it beyond the auditory spectrum.
  • the ferromagnetic element 370 is dimensioned to be saturable. In other words, it is sized to interrupt the inductive coupling between the at least one winding 310 and the cable of the electrical distribution line 500 when the product of the voltage per turn of the winding (s) over time exceeds a predetermined value, which corresponds to the attainment by the magnetic material of its saturation field. In other words, the ferromagnetic element 370 is dimensioned so as to be brought to saturation at each half-period of the current of the cable of the line to limit the duration of the energy transfer of the cable 500a to the means of charge 300.
  • this saturation effect is generally an undesirable effect, particularly when the induction effect is implemented for measuring a current of a cable of the line.
  • this effect is advantageously used to transfer current in the secondary winding 310 only for a limited time which is a fraction of the period of the current of the cable of the power line.
  • the magnetic material desaturates, which allows the restoration of the coupling and the generation of an induced current in the coil 310.
  • the magnetic material saturates again after a determined time required to reach the opposite saturation field.
  • the dimensioning of the ferromagnetic element depends on the saturation field thereof, the section of the magnetic material, the number of turns of the winding 310, and the voltage across it. In such a case, one skilled in the art, with his general knowledge, can size the ferromagnetic element as needed. This is not to regulate the charging current but to regulate the charge of the battery via the charging time. In any case, a saturable ferromagnetic element implies the consideration of smaller dimensions for said element, and consequently, load means 300 of lower mass.
  • the induced current i2 flowing in the at least one coil has two so-called regimes, respectively, induction regime (Ri) and saturation regime (Rs).
  • the at least one winding 310 and the cable of the line 500 are magnetically coupled and an induced current i2, in phase with the current of the cable of the line II, circulates in the at least one winding 310.
  • the magnetic field in the ferromagnetic element 370 increases until it reaches a so-called magnetic field, saturation magnetic field, and from which the induced current i2 vanishes (the at least one winding 310 and the cable of the electrical distribution line 500 are no longer coupled, point S in Figure 4).
  • This instant of cancellation of the induced current marks the beginning of the saturation regime Rs during which the at least one winding 310 no longer takes energy from the cable of the electrical distribution line 500.
  • the inversion of the line current at the point P makes it possible to desaturate the ferromagnetic element and to start again an induction regime Ri at the beginning of the second half-period of the current of the cable of the line.
  • the flying device may comprise means for measuring the induced current.
  • the measurement of the induced current allows in particular to follow the state of charge of the at least one battery or to diagnose the signature of the line current (the current flowing from the cable 500a).
  • the charging means 300 are thus able to distinguish a phase line cable from a neutral cable, for cases where the neutral conductor would be distributed or a guard cable.
  • the current measuring means may comprise a resistor, for example a shunt resistor ("shunt" according to the English terminology).
  • the electric propulsion wheel device 100 according to the present invention is thus advantageously implemented for the monitoring of electrical distribution lines 500, and be recharged by energy sampling at the latter.
  • the flight of the electric drive device 100 near the power distribution lines also allows to consider the carriage of rechargeable batteries of lower capacity and therefore lighter.
  • the neutralization of the charging means with the short circuit means makes it possible to control the charge current and then cancel it when the charge level required in the battery 200 is reached.
  • the measurement of the induced current at the second winding can also be used to obtain information on the signature of the primary current so as to diagnose the electrical distribution lines being monitored.
  • Loading means 300 are given by way of example in FIGS. 5a-5d, 6b, 7a-7g, 8a, 8b, 9, 10 and 11.
  • FIGS. 5a to 5d illustrate charging means 300 comprising a single winding 310 (the implementation of several series windings is not excluded, however), and whose current rectifier 320 comprises a Graetz PG bridge.
  • a Graetz bridge is an assembly of four diodes mounted in bridge. The Graetz PG bridge is used to rectify an alternating current into a direct current (that is, flowing in one direction only).
  • the short-circuit means 340 may be arranged to short-circuit the winding 310 (FIG. 5a), or the current rectifier 320 (FIG. 5b).
  • the short circuit means 340 may comprise a switch, in particular a controlled switch, for example a MOS transistor.
  • FIGS. 5c and 5d illustrate various arrangements of the regulation means 360.
  • the regulation means 360 can comprise a bidirectional switch placed in parallel with the winding 310. (in other words upstream of the current rectifier).
  • a bidirectional switch comprises for example two MOS transistors.
  • the regulation means 360 comprise a switch disposed at the output of the current rectifier 320.
  • the rectifier 320 may comprise a diode, said direct diode DI ( Figure 6).
  • the direct diode DI can be arranged according to a polarity allowing charging of the at least one battery by the charging current.
  • the at least one battery 200 and the charging means form a closed circuit.
  • the ferromagnetic element 370 since the ferromagnetic element 370 is implemented, it may be advantageous to place clipping means 400 electrically connected in parallel with the at least one coil 310 for desaturating said element during the line current reversal.
  • the clipping means are in particular adapted to let a negative induced current flow in the closed loop formed by said clipping means and the at least one coil 310, and thus allow the desaturation of the ferromagnetic element 370.
  • the clipping means 400 may in particular comprise a variable voltage resistor (VDR).
  • VDR variable voltage resistor
  • the variable voltage resistor also called varistor, has in particular a significant resistance below a certain voltage threshold at its terminals and has a low resistance beyond this voltage.
  • the rectifier 320 may comprise the direct diode DI and another diode, said indirect diode D2.
  • the direct diode DI and the indirect diode D2 are each arranged in a polarity allowing the charging of the at least one battery by the charging current.
  • the at least one winding can be connected to the at least one battery 200 via two branches, respectively, first branch 312a and second branch 312b.
  • the direct diode DI and the indirect diode D2 are respectively mounted on the first branch 312a and the second branch 312b (or vice versa).
  • FIGS. 7a to 7g illustrate a first example implementing diodes direct DI and indirect D2.
  • the at least one winding 310 comprises two so-called windings, respectively, first winding 310a and second winding 310b connected in series at a common node N.
  • the common node N is, according to this example, connected by a main branch 312 to a terminal, for example the negative terminal, of the rechargeable battery 200.
  • the first end 311a and the second end 311b of the at least one winding 310 are connected respectively to the first branch 312a and the second branch 312b to the other terminal, for example the positive terminal, of the at least one a rechargeable battery.
  • the short circuit means 340 may comprise a switch for connecting the first 311a and second 311b ends ( Figure 7a).
  • the short circuit means 340 may comprise a first switch 340a and a second switch 340b each for connecting the node N with, respectively, the first end 311a and the second end 311b ( Figure 7b).
  • the short-circuit means may comprise a switch intended to connect the node N with the output of each of the two diodes DI and D2.
  • a diode D connecting the output of the two diodes and the positive terminal of the rechargeable battery, can also be considered in order to prevent the circulation of a discharge current of the rechargeable battery in the short circuit means when the rectifier of current 320 is short-circuited.
  • FIGS. 7d to 7f show examples of regulation means 360 when two coils are considered.
  • the regulation means 360 comprise a bidirectional voltage and current switch connecting the first end 311a and the second end 311b.
  • the bidirectional switch may then comprise two N-type MOS transistors. A gate voltage applied at the gate of the transistors, greater than the threshold voltage of the two transistors, makes it possible to short-circuit the first 311a and second 311b ends.
  • the regulation means 360 can comprise two interrupt modules, respectively said first module 361a and second module 361b connecting the node N, respectively, to the first end 311a and the second second end 311b.
  • the first module 361a and the second module 361b each comprise a diode connected in series with a switch, in particular a MOS type transistor.
  • the transistor of the first module 361a bypasses the first end 311a and the node N since the current generated by the first winding 310a is negative. Equivalently, the transistor of the second module 361b bypasses the second end 311b and the node N when the current generated by the second winding 310b is positive.
  • the regulation means 360 may comprise a third diode D3, a fourth diode D4 whose inputs are respectively connected to the first end 311a and to the second end 311b.
  • the diodes D3 and D4 also comprise a common output connected to the node N via a switch I, said switch being advantageously a MOS transistor.
  • the regulation means 360 can be arranged to connect the node N with the output of the first DI and the second diode D2.
  • a diode D connecting the output of the two diodes and the positive terminal of the rechargeable battery, can also be considered in order to prevent the circulation of a discharge current of the rechargeable battery in the short circuit means when the rectifier of current 320 is short-circuited.
  • an arrangement comprising the first winding and the second winding makes it possible to minimize the losses.
  • the induced current passes through only one diode, and is therefore affected only by losses associated with its passage through said diode.
  • FIGS. 8a and 8b illustrate two variants of a second example implementing diodes direct DI and indirect D2.
  • the at least one battery comprises a first battery 201a and a second battery 201b connected according to a common node B.
  • the at least one winding 310 comprises the first winding 310a and the second winding 310b arranged in series at a common node N.
  • the main branch 312 connects the node N to the node B, while the first branch 312a connects the first end 311a to one of the main terminals, and the second branch 312b connects the second end 311b to the other of the main terminals.
  • the first variant of this second example illustrated in FIG. 8a shows the first battery 201a and the second battery 201b connected in opposite polarities.
  • the second variant of this second example illustrated in FIG. 8b shows the first battery 201a and the second battery 201b arranged in series.
  • the first 310a and second 310b windings can each be implemented with the ferromagnetic element 370.
  • the clipping means 400 described with reference to FIG. 6 can advantageously be implemented.
  • FIG. 9 illustrates a third example implementing diodes direct DI and indirect D2.
  • the at least one battery comprises a first battery 201a and a second battery 201b connected according to a common node B, and arranged in series.
  • the at least one winding 310 also comprises the first winding 310a and the second winding 310b. The latter do not have a common knot.
  • the first winding 310a is connected according to the first branch 312a to the first terminal 200a, and according to another branch, said first secondary branch 313a to the common node B.
  • the second winding 310b is connected along the second branch 312b to the common node B, and according to another hip, said second secondary branch 313b, to the second terminal 200b.
  • FIG. 10 illustrates a fourth example implementing diodes direct DI and indirect D2.
  • the at least one battery 200 comprises the first battery 201a and the second battery 201b connected in series and have a common node B.
  • first leg 312a and the second leg 312b connect the first end 311a, respectively, to the first terminal 201a and the second terminal 201b.
  • a third branch 314 connects the second end 311b to the common node B.
  • the direct diode DI thus allows the charging of the first battery with the positive part of the induced current
  • the indirect diode D2 allows the charging of the second battery with the negative part of the induced current
  • FIG 11 shows another embodiment of the load means 300 according to the present invention.
  • the load means comprise a single winding 310, each end of which is connected to the input of a different diode, respectively, diode D5 and diode D6.
  • the two diodes D5 and D6 having a common output connected to the positive terminal of the rechargeable battery 200.
  • the charging means 300 also includes two switches 11 and 12 each connecting one end of the coil to the negative terminal of the rechargeable battery.
  • the two switches are for example MOS transistors. If they are not on, they behave like diodes thus making possible the charging of the rechargeable battery.
  • the electrically powered flying device comprises means adapted to recharge its rechargeable battery at an electrical distribution line.
  • the charge of said battery can be executed by hooking the device 100 to one of the cables of the line 500, it is not necessary to provide charging points specific to the charging means of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un dispositif volant à propulsion électrique (100) comprenant: une batterie rechargeable (200); des moyens de charge (300) de la batterie rechargeable (200) qui comprennent au moins un bobinage et un redresseur de courant, les moyens de charge (300) comprennent en outre un moyen de couplage (330) destiné à s'accrocher à une ligne de distribution électrique (500) parcoure pour un courant de ligne, et à coupler l'au moins un bobinage avec ladite ligne de distribution électrique (500) de manière à générer par induction la circulation d'un courant, dit courant induit, dans l'au moins un bobinage, le redresseur de courant étant agencé pour redresser le courant induit en un courant, dit courant de charge, destiné à charger la batterie rechargeable (200).

Description

TITRE
DISPOSITIF VOLANT À PROPULSION ELECTRIQUE
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne un dispositif volant à propulsion électrique. En particulier, la présente invention concerne un dispositif volant à propulsion électrique pourvu d'un système de recharge de sa batterie embarquée. Le système de recharge est, à cet égard, agencé pour prélever l'énergie nécessaire à la recharge de la batterie au niveau d'une ligne de distribution électrique afin de recharger la batterie.
La présente invention concerne notamment des objets volants de type drone, destinés à la surveillance de lignes de distribution électrique telles que des lignes haute tension. Elle permet d'envisager notamment une gestion de l'autonomie de ces objets volants ainsi qu'une mise en sécurité lorsqu'ils ne volent pas.
ART ANTÉRIEUR
La recharge d'une batterie rechargeable d'un équipement, notamment une batterie Li-ion, met en œuvre un système de charge destiné à injecter un courant de charge électrique inverse au sens d'utilisation.
Le système de charge peut impliquer un générateur de courant qui, lorsqu'il est électriquement connecté à la batterie rechargeable, débite un courant de charge dans ladite batterie.
Un système de charge par induction (donc nécessitant la génération d'une haute fréquence) pour la charge de la batterie rechargeable est proposé dans le document CN 103872795.
De manière alternative, la charge de la batterie rechargeable peut être exécutée par induction magnétique (CN103872795). A cet égard, un système de charge par induction magnétique comprend un premier bobinage magnétiquement couplé à un second bobinage de sorte que la circulation d'un courant alternatif dans l'un ou l'autre des premier et second bobinages génère la circulation d'un autre courant alternatif dans l'autre bobinage, et qui est destiné à être injecté dans la batterie rechargeable.
Selon un agencement particulier connu de l'état de la technique, le premier bobinage peut être compris dans une base, et alimenté par une source de courant alternatif, tandis que le second bobinage, connecté à la batterie rechargeable, peut être compris dans l'équipement. L'équipement et la base peuvent notamment comprendre des moyens de coopération destinés à permettre le couplage magnétique entre les premier et second bobinages lors d'une phase de charge de la batterie. En particulier, les moyens de couplage magnétique peuvent être agencés pour mettre le premier bobinage à proximité du second bobinage. Pour minimiser la taille des bobinages le courant alternatif est préférentiellement d'une haute fréquence supérieure à 20 kHz pour que les vibrations des bobinages ne soient pas audibles. Dans le cadre de cet art antérieur, une électronique permet de gérer l'alimentation du premier bobinage si le second bobinage est présent.
Ainsi, cet agencement, dans la mesure où il ne nécessite pas l'établissement de connexions électriques entre la base et l'équipement, peut être avantageusement mis en œuvre pour la recharge de batteries d'équipements électroportatifs, de téléphones portables, de brosses à dents électriques ou encore de véhicules électriques.
Toutefois, dès lors qu'il s'agit d'équipements itinérants sur de longues distances, notamment des dispositifs volant à propulsion électrique pour la surveillance des lignes de distribution électrique, cet agencement connu de l'état de la technique n'est pas satisfaisant.
En effet, lors d'un vol de surveillance d'une ligne de distribution électrique, notamment une ligne haute tension, le dispositif volant peut avoir à parcourir une distance importante.
L'autonomie limitée des batteries rechargeables impose cependant de recharger ces dernières régulièrement lors du vol de reconnaissance.
A cette fin, l'emport d'une base de recharge par le dispositif volant peut être considéré de manière à pouvoir recharger la batterie régulièrement. Toutefois, la masse de la base de recharge pénalise l'autonomie du dispositif volant, et limite d'autant le temps de vol entre deux phases de recharge de la batterie rechargeable.
Par ailleurs, une telle base nécessite, en général, un point de charge spécifiquement adapté afin d'être connecté électriquement à une source d'alimentation électrique. Pour parcourir des distances importantes, une infrastructure de points de recharge doit alors être mise en place tout au long de la ligne pour assurer la recharge régulière tout au long du vol de reconnaissance.
Le document US 7 318 564 divulgue un dispositif volant à propulsion électrique pourvu d'un module de charge permettant la chargement d'un batterie rechargeable au niveau d'une ligne de transport électrique. Toutefois, le module proposé dans ce document, fonctionnant par induction, ne permet de réguler le courant de charge de la batterie pendant la phase de charge.
Ainsi, un but de la présente invention est de proposer un dispositif volant à propulsion électrique dont l'autonomie n'est pas limitée par l'emport d'une base de recharge et qui ne nécessite pas la mise en place d'une infrastructure particulière de points de recharge.
Un autre but de la présente invention est de proposer un dispositif volant à propulsion électrique capable de recharger sa batterie rechargeable au niveau d'une ligne de distribution électrique.
EXPOSÉ DE L'INVENTION
Les buts de la présente invention sont, au moins en partie, atteints par un dispositif volant à propulsion électrique comprenant :
- au moins une batterie rechargeable présentant deux bornes principales dites, respectivement, première et seconde bornes ;
- des moyens de charge de la batterie rechargeable qui comprennent un moyen de couplage mécanique agencé pour coopérer avec un câble d'une ligne de distribution électrique, ledit câble étant parcouru par un courant de ligne, la coopération entre le moyen de couplage mécanique et le câble étant destinée à s'opérer de façon magnétique de manière à charger l'au moins une batterie rechargeable.
Selon un mode de mise en œuvre, les moyens de charge comprennent au moins un bobinage présentant deux extrémités principales dites, respectivement, première extrémité et seconde extrémité, l'au moins un bobinage étant destiné à être couplé magnétiquement avec le câble dès lors qu'une coopération entre le moyen de couplage mécanique et le câble s'opère de manière à générer par induction la circulation d'un courant, dit courant induit, dans l'au moins un bobinage et destiné à recharger l'au moins une batterie rechargeable.
Selon un mode de mise en œuvre, les moyens de charge comprennent un redresseur agencé pour redresser le courant induit en courant à composante continue, dit courant de charge, avant d'être injecté dans l'au moins une batterie rechargeable.
Selon un mode de mise en œuvre, le redresseur de courant comprend un pont de Graetz.
Selon un mode de mise en œuvre, le redresseur de courant comprend une diode, dite diode directe Dl, agencée selon une polarité permettant la charge de l'au moins une batterie par le courant de charge.
Selon un mode de mise en œuvre, le redresseur de courant comprend en outre une autre diode, dite diode indirecte D2, également agencée selon une polarité permettant la charge de l'au moins une batterie par le courant de charge.
Selon un mode de mise en œuvre, l'au moins un bobinage est connecté à l'au moins une batterie via deux branches dites, respectivement, première branche et seconde branche à l'au moins une batterie, la diode directe est montée sur l'une ou l'autre des première et seconde branches, tandis que la diode indirecte est montée sur l'autre des première et seconde hanches.
Selon un mode de mise en œuvre, l'au moins une batterie comprend deux batteries dites, respectivement, première batterie et seconde batterie, présentant un nœud commun B.
Selon un mode de mise en œuvre, l'au moins un bobinage comprend un premier bobinage et un second bobinage. Selon un mode de mise en œuvre, le premier bobinage et le second bobinage sont agencés en série au niveau d'un nœud commun N, connecté selon une banche principale à l'au moins une batterie rechargeable, la première extrémité et la seconde extrémité sont connectées, respectivement, selon la première branche et selon la seconde branche à l'au moins une batterie rechargeable.
Selon un mode de mise en œuvre, la branche principale connecte le nœud commun N à une borne principale de l'au moins une batterie, tandis que la première branche et la seconde branche connectent toute deux, respectivement, la première extrémité et la seconde extrémité à l'autre borne principale de l'au moins une batterie.
Selon un mode de mise en œuvre, la branche principale connecte le nœud N au nœud B, la première branche connecte la première extrémité à une des bornes principales, et la seconde branche connecte la seconde extrémité à l'autre des bornes principales, la première et la seconde batterie étant soit agencées en série soit selon des polarités opposées.
Selon un mode de mise en œuvre, le premier et le second bobinage sont dépourvus de nœud commun, le premier bobinage étant connecté selon la première branche à la première borne, et selon une autre branche, dite première branche secondaire au nœud commun B, le second bobinage étant connecté selon la seconde branche au nœud commun B, et selon une autre banche, dite seconde branche secondaire, à la seconde borne, les première et seconde batteries étant avantageusement agencées en série.
Selon un mode de mise en œuvre, la première batterie et la seconde batterie sont connectées en série, la première branche et la seconde branche connectant la première extrémité, respectivement, à la première borne et à la seconde borne, et une troisième branche connectant la seconde extrémité au nœud commun B.
Selon un mode de mise en œuvre, les moyens de charge comprennent des moyens de court-circuit adaptés pour mettre en court-circuit les moyens de charge (300), avantageusement les moyens de court-circuit sont adaptés pour mettre les moyens de charge en court-circuit dès lors que l'au moins une batterie rechargeable, au cours d'une phase de charge, a atteint une charge au moins égale à une charge prédéterminée, encore plus avantageusement la charge prédéterminée correspond à une charge complète de l'au moins une batterie rechargeable.
Selon un mode de mise en œuvre, les moyens de court-circuit sont agencés pour mettre en court-circuit l'au moins un bobinage.
Selon un mode de mise en œuvre, les moyens de court-circuit sont agencés pour mettre en court-circuit le redresseur de courant, avantageusement les moyens de charge comprennent une diode destinée à prévenir la circulation d'un courant de décharge de la batterie rechargeable dans les moyens de court-circuit dès lors que le redresseur de courant est en court-circuit.
Selon un mode de mise en œuvre, lequel les moyens de charge comprennent des moyens de régulation destinés à limiter le courant de charge, avantageusement les moyens de régulation sont adaptés pour exécuter un hachage de l'un ou l'autre des courants induit et de charge.
Selon un mode de mise en œuvre, lequel l'au moins un bobinage est formé autour d'un élément ferromagnétique, l'élément ferromagnétique étant dimensionné de manière à être amené jusqu'à saturation à chaque demi-période du courant du câble de la ligne pour limiter les durées du transfert d'énergie du câble vers les moyens de charge.
Selon un mode de mise en œuvre, l'au moins un bobinage, avantageusement chaque bobinage de l'au moins un bobinage, est électriquement connecté en parallèle avec des moyens d'écrêtage adaptés pour démagnétiser l'élément ferromagnétique, avantageusement, les moyens d'écrêtage comprennent une résistance variable en fonction d'une tension imposée à ces bornes.
Selon un mode de mise en œuvre, le moyen de couplage mécanique comprend un crochet pour accrocher, avantageusement en suspension, le dispositif volant à propulsion électrique au câble, avantageusement l'au moins un bobinage forme le crochet. Selon un mode de mise en œuvre, le moyen de couplage mécanique comprend une pince pourvue d'au moins deux mors de pince, avantageusement l'au moins un bobinage forme au moins un des mors de pince.
Selon un mode de mise en œuvre, le dispositif est pourvu de moyen de mesure du courant induit destinés à suivre l'état de charge de l'au moins une batterie ou de diagnostiquer la signature du courant de ligne circulant dans le câble de la ligne.
Selon un mode de mise en œuvre, le moyen de couplage est muni d'un moyen de roulement agencé pour permettre un déplacement du dispositif volant à propulsion électrique le long du câble de la ligne.
Selon un mode de mise en œuvre, les moyens de charge sont disposés dans une cage de Faraday pourvue d'une électrode agencée pour être en contact avec le câble dès lors que le dispositif volant est accroché au câble, avantageusement l'électrode est disposée au niveau du moyen de couplage mécanique.
Selon un mode de mise en œuvre, les moyens de couplage mécanique permettent de maintenir dans une position de repos le dispositif volant, avantageusement lorsque la charge de l'au moins une batterie est complète.
L'invention concerne également un dispositif volant comprenant un moyen de couplage mécanique agencé pour coopérer avec un câble d'une ligne de distribution électrique de manière à maintenir solidaire au câble le dispositif volant dans une position de repos.
Selon un mode de mise en œuvre, le moyen de couplage mécanique comprend un crochet pour accrocher, avantageusement en suspension, le dispositif volant au câble.
Selon un mode de mise en œuvre, le moyen de couplage mécanique comprend une pince pourvue d'au moins deux mors de pince pour accrocher le dispositif volant au câble.
Selon un mode de mise en œuvre, le moyen de couplage est muni d'un moyen de roulement agencé pour permettre un déplacement du dispositif volant le long du câble de la ligne de distribution. Selon un mode de mise en œuvre, le dispositif volant est à propulsion électrique.
Selon un mode de mise en œuvre, le dispositif volant comprend :
- au moins une batterie rechargeable destinée à fournir la puissance nécessaire à la propulsion électrique du dispositif volant ;
- des moyens de charge de l'au moins une batterie compris dans le moyen de couplage magnétique, les moyens de charge étant adaptés, dès lors que le câble est parcouru par un courant dit courant de ligne, pour coopérer, avantageusement de façon magnétique, avec ledit câble afin de recharger l'au moins une batterie.
Selon un mode de mise en œuvre, les moyens de charge comprennent au moins un bobinage présentant deux extrémités principales dites, respectivement, première extrémité et seconde extrémité, l'au moins un bobinage étant destiné à être couplé magnétiquement avec le câble dès lors qu'une coopération entre le moyen de couplage mécanique et le câble s'opère de manière à générer par induction la circulation d'un courant, dit courant induit, dans l'au moins un bobinage et destiné à recharger l'au moins une batterie.
Selon un mode de mise en œuvre, l'au moins un bobinage forme le crochet.
Selon un mode de mise en œuvre, l'au moins un bobinage forme au moins un des mors de la pince.
Selon un mode de mise en œuvre, les moyen de charge comprennent un redresseur de courant agencé pour redresser le courant induit en courant à composante continue, dit courant de charge, avant d'être injecté dans l'au moins une batterie.
Selon un mode de mise en œuvre, le redresseur comprend au moins une diode, avantageusement le redresseur comprend deux diodes, encore plus avantageusement, le redresseur comprend un agencement de diodes formant un pont de Graetz.
Selon un mode de mise en œuvre, les moyens de charge comprennent des moyens de court-circuit adaptés pour mettre en court-circuit les moyens de charge, avantageusement les moyens de court-circuit sont adaptés pour mettre les moyens de charge en court-circuit dès lors que l'au moins une batterie, au cours d'une phase de charge, a atteint une charge au moins égale à une charge prédéterminée, encore plus avantageusement la charge prédéterminée correspond à une charge complète de l'au moins une batterie.
Selon un mode de mise en œuvre, les moyens court-circuit sont agencés pour mettre en court-circuit l'au moins un bobinage.
Selon un mode de mise en œuvre, les moyens de court-circuit sont agencés pour mettre en court-circuit le redresseur de courant, avantageusement les moyens de charge comprennent une diode destinée à prévenir la circulation d'un courant de décharge de la batterie dans les moyens de court-circuit dès lors que le redresseur de courant est en court-circuit.
Selon un mode de mise en œuvre, les moyens de charge comprennent des moyens de régulation destinés à limiter le courant de charge, avantageusement les moyens de régulation sont adaptés pour exécuter un hachage de l'un ou l'autre des courants induit et de charge.
Selon un mode de mise en œuvre, les moyens de charge sont disposés dans une cage de Faraday pourvue d'une électrode agencée pour être en contact avec le câble dès lors que le dispositif volant est accroché au câble, avantageusement l'électrode est disposée au niveau du moyen de couplage mécanique.
BRÈVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre d'un dispositif volant à propulsion électrique selon l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels :
- la figure 1 est une représentation schématique fonctionnelle d'un dispositif volant à propulsion électrique selon la présente invention, le cadre en traits discontinus délimitant les moyens de charge ;
- la figure 2 est une représentation schématique d'un dispositif volant à propulsion électrique, selon la présente invention, accroché à un câble de la ligne de distribution électrique selon un premier exemple d'accroche dudit dispositif ; - les figures 3a et 3b sont des représentations schématiques d'un dispositif volant à propulsion électrique, selon la présente invention, accroché à une ligne de distribution électrique selon un second exemple d'accroche dudit dispositif, sur ces deux figures 3a et 3b, le dispositif volant est pourvu d'une cage de Faraday, respectivement, complète et partielle, il est entendu que l'une ou l'autre des cages de Faraday complète ou partielle peut être mise en œuvre pour l'un quelconque des modes de réalisation de la présente invention ;
- la figure 4 est illustration de l'effet de saturation de l'élément magnétique lors d'une phase de recharge, en particulier la figure 4 représente l'amplitude du courant dans le câble de la ligne (ii) et l'amplitude du courant induit (i2) en fonction du temps symbolisé par l'axe horizontal ;
- les figures 5a à 5d sont des représentations schématiques de moyens de charge selon la présente invention mettant en œuvre un pont de Graetz, en particulier, les figures 5a et 5b illustrent différents agencements pour les moyens de court-circuit du second bobinage ou de l'entrée du redresseur, et les figures 5c et 5d illustrent différents agencements pour les moyens de régulation du courant de charge de la batterie ;
- la figure 6 est une représentation schématique des moyens de charge comprenant un redresseur fait d'une unique diode, dite diode directe ;
- les figures 7a à 7g sont des représentations schématiques de moyens de charge selon un premier exemple de la présente invention mettant en œuvre un redresseur à deux diodes, dans cet exemple l'au moins un bobinage comprend un premier et un second bobinage, en particulier, les figures 7a à 7c illustrent des exemples particuliers de moyens court-circuit, tandis que les figures 7d à 7g illustrent des exemples particuliers de moyens de régulation ;
- les figures 8a et 8b sont des représentations schématiques de moyens de charge selon deux variantes d'un deuxième exemple de la présente invention mettant en œuvre un redresseur à deux diodes, dans cet exemple l'au moins un bobinage comprend un premier et un second bobinage, et l'au moins une batterie est faite d'une première et d'une seconde batteries connectées au niveau d'un nœud B, notamment selon la première variante représentée à la figure 8a, les deux batteries sont connectées selon des polarités opposées, et selon la seconde variante représentée à la figure 8b, les deux batteries sont connectées en série ;
- la figure 9 est une représentation schématique de moyens de charge selon un troisième exemple mettant en œuvre un redresseur à deux diodes, dans cet exemple l'au moins un bobinage comprend le premier et second bobinage dépourvus de nœud commun, et l'au moins une batterie est faite d'une première et d'une seconde batterie connectées en série ;
- la figure 10 est une représentation schématique de moyens de charge selon un quatrième exemple mettant en œuvre un redresseur à deux diodes, dans cet exemple l'au moins une batterie est faite d'une première et d'une seconde batterie connectées en série ;
- la figure 11 est une représentation schématique des moyens de charge selon la présente invention n'impliquant qu'un seul bobinage et un pont de Graetz modifié.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Les lignes de distributions électriques sont constituées de pylônes supportant des câbles, en particulier 3 câbles de phase et éventuellement un câble de neutre. Ils sont munis de chaînes d'isolateurs électriques, notamment en verre, qui supportent ces câbles, classiquement non isolés, l'air autour du câble étant utilisé comme isolant électrique vis-à-vis des autres câbles et de l'environnement. Pour assurer une protection des câbles parcourus par le courant de la ligne contre la foudre, un câble supplémentaire dit de garde est placé au-dessus d'eux et celui-ci est relié aux pylônes et à la terre
Ainsi, la présente invention concerne un dispositif volant à propulsion électrique pourvu d'au moins une batterie rechargeable et de moyens de charge. Les moyens de charge, au sens de la présente invention, sont adaptés pour permettre la charge de la batterie rechargeable au niveau d'un câble d'une ligne de distribution électrique, en particulier une ligne de distribution haute tension, par effet d'induction magnétique à la fréquence de la distribution électrique.
Selon la présente invention, les moyens de charge peuvent comprendre un bobinage et au moins un redresseur de courant agencés de manière à pouvoir être couplés à un des câbles de la ligne de distribution électrique, et ainsi prélever une énergie au niveau de la ligne de distribution électrique destinée à charger la batterie rechargeable.
Selon la présente invention, et contrairement aux solutions de l'art antérieur, le premier bobinage (le ou les câbles de la ligne de distribution électrique) est alors toujours parcouru par un courant électrique. Le dispositif volant, au sens de la présente invention, peut s'adapter au courant électrique circulant dans le premier bobinage.
A la figure 1, on peut voir une représentation fonctionnelle d'un dispositif volant à propulsion électrique 100 couplé à un câble 500a d'une ligne de distribution électrique 500.
Par « dispositif volant à propulsion électrique », on entend par exemple un drone ou tout autre dispositif volant télécommandé ou non, et dont l'énergie nécessaire à la propulsion électrique est fournie par une batterie embarquée par ledit dispositif, en particulier, au sens de la présente invention, une batterie rechargeable.
La batterie rechargeable peut, par exemple, être une batterie lithium ion. Toutefois, l'invention peut être étendue à tout type de batterie rechargeable.
Il est également entendu que chaque câble de la ligne de distribution électrique est une ligne parcourue par un courant alternatif, en particulier un courant alternatif d'une fréquence comprise entre 40 Hz et 70 Hz.
Le câble 500a de la ligne de distribution électrique 500 au sens de la présente invention est également isolé des autres câbles de la ligne de distribution électrique.
Le dispositif volant à propulsion électrique 100 comprend des moyens de charge 300 de l'au moins une batterie rechargeable 200. L'au moins une batterie rechargeable 200 comprend deux bornes principales dites, respectivement, première borne 200a et second borne 200b.
Les moyens de charge 300 peuvent comprendre au moins un bobinage 310 et un redresseur de courant 320 (figures 2, 3a et 3b).
L'au moins un bobinage 310 est fait d'un enroulement d'un fil conducteur, par exemple un fil en cuivre. Le fil conducteur peut être enroulé autour d'un élément ferromagnétique 370 qui comprend par exemple du fer. Il est entendu sans qu'il soit nécessaire de le préciser que le fil conducteur comprend deux extrémités qui sont, dans toute la suite de la présente description nommées extrémités de l'au moins un bobinage 310. De manière préférée, le bobinage 310 est réalisé autour d'un élément ferromagnétique en tôle de fer avec un fil de cuivre isolé par plusieurs couches successives de vernis, appelé dans les domaines de l'électronique fil de cuivre émaillé.
L'au moins un bobinage 310 comprend deux extrémités principales dites, respectivement, première extrémité 311a et seconde extrémité 311b.
Au sens de la présente invention, les extrémités principales de l'au moins un bobinage sont deux extrémités isolées, en d'autres termes, un nœud commun entre deux bobinage ne peut constituer une extrémité principale au sens de la présente invention.
Par ailleurs, un au moins un bobinage fait de deux bobinages dépourvus de nœud commun, au sens de la présente invention, comprend également deux extrémités principales. Dans ce cas de figure, chacun des deux bobinages comprend une des deux extrémités principales.
Le redresseur de courant 320 peut comprendre deux bornes d'entrée, dites, respectivement, première borne d'entrée et seconde borne d'entrée, et deux bornes de sortie dites, respectivement, première borne de sortie et seconde borne de sortie.
Un redresseur de courant 320 au sens de la présente invention est adapté pour convertir un courant alternatif en un courant continu. En d'autres termes, le redresseur de courant 320 est agencé pour transformer un courant alternatif à la fréquence de la ligne de distribution circulant dans l'au moins un bobinage 310 en un courant continu destiné à être délivré aux bornes de la batterie rechargeable 200. Un courant continu au sens de la présente invention est un courant qui ne circule que dans un sens.
Le redresseur de courant 320, qui sera décrit plus en détails dans la suite de l'énoncé de la présente invention, peut comprendre un pont de Graetz, ou encore des diodes.
Les moyens de charge 300 comprennent en outre un moyen de couplage 330.
Le moyen de couplage mécanique 330 est adapté pour permettre l'accroche et/ou le maintien du dispositif volant 100 à un des câbles de la ligne de distribution électrique 500.
Par « moyen de couplage mécanique », on entend un moyen d'accroche dudit moyen à un câble. En particulier, l'accroche peut être une liaison fixe, une liaison glissière, une liaison pivot glissant, la liaison peut être partielle, via un crochet, via une fourche.
Le moyen de couplage mécanique 330 est adapté pour coupler l'au moins un bobinage 310 avec le câble 500a de la ligne de distribution électrique 500 de manière à ce que le courant alternatif, dit courant du câble de ligne, circulant dans ledit câble de ligne 500 génère par induction la circulation d'un courant, dit courant induit, dans l'au moins un bobinage 310. Le courant induit peut alors être redressé par le redresseur de courant 320 en un courant, dit courant de charge, destiné à charger la batterie rechargeable 200.
Selon un premier exemple de réalisation illustré à la figure 2, le moyen de couplage mécanique 330 peut comprendre une pince pourvue, par exemple, de deux mors 331 et 332 (« grippers » selon la terminologie anglo-saxonne) pivotant autour d'un axe 333. La pince peut aussi comprendre un nombre de mors supérieur.
En particulier, l'au moins un bobinage 310 peut former au moins un mors de la pince. De manière avantageuse, l'au moins un bobinage est surmoulée d'un matériau isolant, par exemple un matériau polymère et/ou plastique. Selon un second exemple de réalisation illustré aux figures 3a et 3b, le moyen de couplage mécanique 330 peut comprendre un crochet 334. Le crochet 334 permet par exemple de suspendre le dispositif volant 100 au câble de la ligne de distribution électrique 500.
Par « suspendre », on entend le maintien du dispositif volant sous le câble (et au câble) dans le sens de la gravité.
En particulier, l'au moins un bobinage 310 forme le crochet. De manière avantageuse l'au moins un bobinage 310 est surmoulé d'un matériau isolant, par exemple un matériau polymère et/ou plastique.
Selon ces deux exemples de réalisation, le moyen de couplage mécanique 330 permet de faire coopérer le dispositif volant 100 et le câble 500a de la ligne de distribution électrique 500 pendant une phase de recharge. De plus, ce couplage peut n'être que mécanique permettant alors l'arrêt du vol du dispositif pour son repos et sa mise en sécurité. En effet, cet arrêt sur un câble d'une ligne de distribution électrique apparaît alors aussi comme un système anti vol pour ce type d'objet volant devant faire un arrêt à des kilomètres de leur propriétaire. Ce type d'arrêt est alors possible que la batterie nécessite un rechargement ou pas.
Une variante de ce couplage mécanique est de pouvoir permettre un déplacement longitudinal du dispositif volant à propulsion électrique le long du câble tout en restant en suspension sans voler via un moyen de roulement.
De manière particulièrement avantageuse les moyens de charge 300 peuvent être disposés dans une cage de Faraday 380 pourvue d'une électrode 390 agencée pour être en contact avec le câble de la ligne de distribution électrique dès lors que le dispositif volant à propulsion électrique est en phase d'approche et/ou accroché au câble de la ligne de distribution électrique (en traits discontinus aux figures 3a et 3b). De manière particulièrement avantageusement l'électrode 390 peut être disposée au niveau du moyen de couplage de sorte qu'un contact s'établisse entre l'électrode et le câble 500a de la ligne 500 dès l'instant de couplage.
La cage de Faraday 380 et son électrode 390 protègent ainsi les moyens de charge 300 et les dispositifs électriques et électroniques alimentées par la batterie 200 des effets d'un arc électrique pouvant survenir lors de l'approche du dispositif volant à propulsion électrique 100 du câble de la ligne de distribution électrique 500.
La cage de Faraday peut être complète (figure 3a), c'est-à-dire entourant complètement les moyens de charge 300, la batterie 200 et les dispositifs électriques et électroniques alimentées par la batterie 200, ou partielle (figure 3b), c'est- à-dire de surface limitée pour faire écran aux lignes de champ de la ligne de distribution ou réduite à un plan conducteur de référence faisant écran. De manière préférée, l'un des pôles de la batterie est relié à la cage de Faraday totale ou partielle à un écran conducteur.
De manière avantageuse, les moyens de charge peuvent également comprendre des moyens de court-circuit 340 (figures 2, 3a et 3b) adaptés pour mettre en court-circuit les moyens de charge 300. La mise en court-circuit des moyens de charge 300 arrête le processus de charge de la batterie rechargeable 200. De manière particulièrement, avantageuse, les moyens de court-circuit 340 sont adaptés pour mettre les moyens de charge en court-circuit dès lors que la batterie rechargeable 200, au cours d'une phase de charge, a atteint une charge au moins égale à une charge prédéterminée.
En d'autres termes, les moyens court-circuit 340 sont agencées pour interrompre le courant de charge circulant dans la batterie dès que l'état de charge de cette dernière a atteint un état de charge prédéterminé.
Les moyens de court-circuit 340 permettent ainsi de prévenir l'échauffement et/ou l'endommagement de l'au moins un bobinage 310 dès lors que la charge de la batterie rechargeable 200 est complète. Les moyens de court-circuit 340 permettent par ailleurs de laisser le dispositif volant 100 accroché au câble de la ligne de distribution électrique pendant une phase de repos dudit dispositif 100.
La charge prédéterminée est paramétrée par l'utilisateur du dispositif volant 100. De manière avantageuse, la charge prédéterminée correspond à une charge complète de la batterie rechargeable 200, déterminée à partir de la tension de la batterie ou sur l'intégrale du courant par le temps de charge. Ainsi, contrairement à la solution proposée dans le document US 7 318 564, il n'est pas nécessaire de désolidariser le dispositif volant du câble 500a dès lors que la charge de la batterie rechargeable 200 est complète.
Les moyens de court-circuit 340 peuvent avantageusement être agencés pour mettre en court-circuit 340 l'au moins un bobinage 310 (figure 5a).
De manière alternative, les moyens courts-circuits 340 peuvent être agencés pour mettre en court-circuit le redresseur de courant 320 (figure 5b). Selon cette alternative, les moyens de charge 300 comprennent une diode D (figures 2, 3a, 3b, et 5b) destinée à prévenir la circulation d'un courant décharge de la batterie rechargeable dans les moyens courts-circuits dès lors que le redresseur de courant 320 est en court-circuit.
Les moyens courts-circuits 340 peuvent comprendre un interrupteur, par exemple un transistor, avantageusement piloté par une carte et/ou un calculateur.
Les moyens de charge 300 peuvent comprendre des moyens de régulation 360 (figure 5c et 5d) destinés à limiter le courant de charge. De manière avantageuse, les moyens de régulation sont adaptés pour exécuter un hachage de l'un ou l'autre des courants induit et de charge. Cette fonction de hachage du courant permet de réguler le courant de charge de la batterie rechargeable 200, et donc de s'adapter au courant circulant dans le câble de la ligne de distribution électrique. En d'autres termes, les moyens de régulation 360 imposent des phases de court-circuit des moyens de charge 300 lors de la phase de charge de la batterie rechargeable 200.
Ainsi, le nombre de spires de l'au moins un bobinage 310 et les moyens de régulation 360 peuvent être dimensionnés pour que le courant de charge soit constant dès lors que le courant de ligne est compris dans une gamme prédéterminée.
Par exemple, le courant de charge peut être fixé à un ampère pour des courants de ligne compris entre cent et mille ampères.
Les moyens de régulation 360 peuvent comprendre un interrupteur électronique bidirectionnel, par exemple monté en parallèle avec l'au moins un bobinage 310.
Les moyens de régulation 360 peuvent de manière alternative être intercalés entre le redresseur de courant 320 et la batterie rechargeable 200. Le hachage de l'un ou l'autre des courants induit et de charge peut être exécuté à une fréquence de 20 kHz ou plus, de façon au découper au-delà du spectre auditif.
Selon un mode de réalisation particulièrement avantageux, l'élément ferromagnétique 370 est dimensionné pour être saturable. En d'autres termes, il est dimensionné pour interrompre le couplage inductif entre l'au moins un bobinage 310 et le câble de la ligne de distribution électrique 500 dès lors que le produit de la tension par spire du ou des bobinages par le temps dépasse une valeur prédéterminée, qui correspond à l'atteinte par le matériau magnétique de son champ de saturation. En d'autres termes, l'élément ferromagnétique 370 est dimensionné de manière à être amené jusqu'à saturation à chaque demi-période du courant du câble de la ligne pour limiter les durées du transfert d'énergie du câble 500a vers les moyens de charge 300.
Il est notable que cet effet de saturation est en général un effet indésirable, en particulier lorsque l'effet d'induction est mis en œuvre pour la mesure d'un courant d'un câble de la ligne. Cependant, dans le cadre de la présente invention, cet effet est avantageusement mis à profit pour ne transférer du courant dans le bobinage secondaire 310 que pendant un temps limité qui est une fraction de la période du courant du câble de la ligne électrique. A chaque inversion du sens du courant dans le câble, le matériau magnétique désature, ce qui permet le rétablissement du couplage et la génération d'un courant induit dans le bobinage 310. Le matériau magnétique sature à nouveau au bout d'un temps déterminé nécessaire pour atteindre le champ de saturation opposé.
Le dimensionnement de l'élément ferromagnétique dépend du champ de saturation de celui-ci, de la section du matériau magnétique, du nombre de spire du bobinage 310, et de la tension aux bornes de celui-ci. Dans pareil cas, l'homme du métier, avec ses connaissances générales, pourra dimensionner l'élément ferromagnétique en fonction du besoin. Il s'agit ici non pas de réguler le courant de charge mais de réguler la charge de la batterie via le temps de charge. En tout état de cause, un élément ferromagnétique saturable implique la considération de plus petites dimensions pour ledit élément, et par voie de conséquence, des moyens de charge 300 de plus faible masse.
Le principe de mise en saturation de l'élément ferromagnétique est illustré à la figure 4.
En particulier, le courant induit i2 circulant dans l'au moins une bobine présente deux régimes dits, respectivement, régime d'induction (Ri) et régime de saturation (Rs).
Pendant le régime d'induction Ri en début de période du courant du câble de la ligne, l'au moins un bobinage 310 et le câble de la ligne 500 sont magnétiquement couplés et un courant induit i2, en phase avec le courant du câble de la ligne il, circule dans l'au moins un bobinage 310. Pendant ce régime d'induction Ri, le champ magnétique dans l'élément ferromagnétique 370 augmente jusqu'à atteindre un champ magnétique dit, champ magnétique de saturation, et à partir duquel le courant induit i2 s'annule (l'au moins un bobinage 310 et le câble de la ligne de distribution électrique 500 ne sont plus couplés, point S sur la figure 4). Cet instant d'annulation du courant induit marque le début du régime de saturation Rs au cours duquel l'au moins un bobinage 310 ne prélève plus d'énergie au câble de la ligne de distribution électrique 500.
L'inversion du courant de ligne au point P permet de désaturer l'élément ferromagnétique et de débuter à nouveau un régime d'induction Ri en début de seconde demi période du courant du câble de la ligne.
De manière particulièrement avantageuse, le dispositif volant peut comprendre des moyens de mesure du courant induit. La mesure du courant induit permet notamment de suivre l'état de charge de l'au moins une batterie ou de diagnostiquer la signature du courant de ligne (le courant circulant de le câble 500a).
Les moyens de charge 300 sont ainsi en mesure de distinguer un câble de ligne de phase d'un câble de neutre, pour les cas où le conducteur de neutre serait distribué ou d'un câble de garde.
Les moyens de mesure de courant peuvent comprendre une résistance, par exemple une résistance calibrée (« shunt » selon la terminologie anglo-saxonne). Le dispositif volant à propulsion électrique 100 selon la présente invention est ainsi avantageusement mis en œuvre pour la surveillance de lignes de distribution électrique 500, et être rechargé par prélèvement d'énergie au niveau de ces dernières.
Le vol du dispositif volant à propulsion électrique 100 à proximité des lignes de distribution électriques permet également de considérer l'emport de batteries rechargeables de plus faible capacité et donc plus légères.
De plus, la neutralisation des moyens de charge avec les moyens de court-circuit permet de contrôler le courant de charge, puis de l'annuler lorsque le niveau de charge requis dans la batterie 200 est atteint.
Enfin, la mesure du courant induit au niveau du second bobinage peut aussi être utilisée pour obtenir des informations sur la signature du courant primaire de manière à diagnostiquer les lignes de distribution électriques en cours surveillance.
Des moyens de charge 300 sont donnés à titre d'exemple aux figures 5a- 5d, 6, 7a-7g, 8a, 8b, 9, 10 et 11.
En particulier, les figures 5a à 5d illustrent des moyens de charge 300 comprenant un unique bobinage 310 (la mise en œuvre de plusieurs bobinages en série n'est toutefois pas exclue), et dont le redresseur de courant 320 comprend un pont de Graetz PG. Un pont de Graetz est un assemblage de quatre diodes montées en pont. Le pont de Graetz PG permet de redresser un courant alternatif en un courant continu (c'est-à-dire circulant dans un seul sens).
Selon cet exemple, les moyens de court-circuit 340 peuvent être agencés pour mettre en court-circuit le bobinage 310 (figure 5a), ou le redresseur de courant 320 (figure 5b). Les moyens de court-circuit 340 peuvent comprendre un interrupteur, en particulier un interrupteur commandé, par exemple un transistor MOS.
Toujours selon cet exemple, les figures 5c et 5d illustrent différents agencements des moyens de régulation 360.
En particulier, à la figure 5c, les moyens de régulation 360 peuvent comprendre un interrupteur bidirectionnel placé en parallèle avec le bobinage 310 (autrement dit en amont du redresseur de courant). Un interrupteur bidirectionnel comprend par exemple deux transistors MOS.
A la figure 5d, les moyens de régulation 360 comprennent un interrupteur disposé en sortie du redresseur de courant 320.
De manière alternative, le redresseur 320 peut comprendre une diode, dite diode directe DI (figure 6).
En particulier, la diode directe DI peut être agencée selon une polarité permettant la charge de l'au moins une batterie par le courant de charge.
Selon cette configuration, l'au moins une batterie 200 et les moyens de charge forment un circuit fermé.
Dans ces conditions, dès lors que l'élément ferromagnétique 370 est mis en œuvre, il peut être avantageux de placer des moyens d'écrêtage 400 électriquement connectés en parallèle avec l'au moins une bobine 310 permettant de désaturer ledit élément lors de l'inversion de courant de ligne. Les moyens d'écrêtage sont notamment adaptés pour laisser circuler un courant induit négatif dans la boucle fermée formée par lesdits moyens d'écrêtage et l'au moins une bobine 310, et ainsi permettre la désaturation de l'élément ferromagnétique 370.
Les moyens d'écrêtage 400 peuvent notamment comprendre une résistance variable en tension (VDR). La résistance variable en tension, appelée aussi varistance, présente en particulier une résistance importante en dessous d'un certain seuil de tension à ses bornes et présente une résistance faible au-delà de cette tension.
Toujours de manière alternative, le redresseur 320 peut comprendre la diode directe DI et une autre diode, dite diode indirecte D2.
En particulier, la diode directe DI et la diode indirecte D2 sont agencées chacune selon une polarité permettant la charge de l'au moins une batterie par le courant de charge.
Selon cette configuration, l'au moins un bobinage peut être connecté à l'au moins une batterie 200 via deux branches dites, respectivement, première branche 312a et seconde branche 312b. Notamment, la diode directe DI et la diode indirecte D2 sont montées, respectivement, sur la première branche 312a et sur la seconde branche 312b (ou inversement).
Les figures 7a à 7g illustrent un premier exemple mettant en œuvre les diodes directe DI et indirecte D2.
Dans ce premier exemple, l'au moins un bobinage 310 comprend deux bobinages dits, respectivement, premier bobinage 310a et second bobinage 310b connectés en série au niveau d'un nœud commun N.
Le nœud commun N est, selon cet exemple, connecté par une branche principale 312 à une borne, par exemple la borne négative, de la batterie rechargeable 200.
La première extrémité 311a et la seconde extrémité 311b de l'au moins un bobinage 310, sont connectées, respectivement, selon la première branche 312a et la seconde branche 312b à l'autre borne, par exemple la borne positive, de l'au moins une batterie rechargeable.
Les moyens de court-circuit 340 peuvent comprendre un interrupteur destiné à raccorder les première 311a et seconde 311b extrémités (figure 7a).
De manière alternative, les moyens de court-circuit 340 peuvent comprendre un premier interrupteur 340a et un second interrupteur 340b destinés à connecter chacun le nœud N avec, respectivement, la première extrémité 311a et la seconde extrémité 311b (figure 7b).
Toujours de manière alternative (figure 7c), les moyens de court-circuit peuvent comprendre un interrupteur destiné à connecter le nœud N avec la sortie de chacune des deux diodes DI et D2. Une diode D, connectant la sortie des deux diodes et la borne positive de la batterie rechargeable, peut être également considérée afin de prévenir la circulation d'un courant décharge de la batterie rechargeable dans les moyens de court-circuit dès lors que le redresseur de courant 320 est en court-circuit.
Les figures 7d à 7f représentent des exemples de moyens de régulation 360 dès lors que deux bobinages sont considérés.
En particulier, à la figure 7d, les moyens de régulation 360 comprennent un interrupteur bidirectionnel tension et courant reliant la première extrémité 311a et la seconde extrémité 311b. L'interrupteur bidirectionnel peut alors comprendre deux transistors MOS de type N. Une tension de grille appliquée au niveau de la grille des transistors, supérieure à la tension de seuil des deux transistors, permet de court-circuiter les première 311a et seconde 311b extrémités.
De manière alternative, tel que représenté à la figure 7e, les moyens de régulation 360 peuvent comprendre deux modules d'interruption dits, respectivement, premier module 361a et second module 361b reliant le nœud N, respectivement, à la première extrémité 311a et à la seconde extrémité 311b.
Le premier module 361a et le second module 361b comprennent chacun une diode montée en série avec un interrupteur, en particulier, un transistor de type MOS.
Selon cet agencement, le transistor du premier module 361a court- circuite la première extrémité 311a et le nœud N dès lors que le courant généré par le premier bobinage 310a est négatif. De manière équivalente, le transistor du second module 361b court-circuite la seconde extrémité 311b et le nœud N dès lors que le courant généré par le second bobinage 310b est positif.
Selon encore une autre alternative représentée à la figure 7f, les moyens de régulation 360 peuvent comprendre une troisième diode D3, une quatrième diode D4 dont les entrées sont, respectivement connectées à la première extrémité 311a et à la seconde extrémité 311b. Les diodes D3 et D4 comprennent également une sortie commune reliée au nœud N via un interrupteur I, ledit interrupteur étant avantageusement un transistor MOS.
Toujours selon une autre alternative illustrée à la figure 7g, les moyens de régulation 360 peuvent être agencés pour connecter le nœud N avec la sortie de la première DI et de la seconde D2 diode. Une diode D, connectant la sortie des deux diodes et la borne positive de la batterie rechargeable, peut être également considérée afin de prévenir la circulation d'un courant décharge de la batterie rechargeable dans les moyens de court-circuit dès lors que le redresseur de courant 320 est en court-circuit.
De manière générale, un agencement comprenant le premier bobinage et le second bobinage permet de minimiser les pertes. En effet, selon cette configuration, le courant induit ne traverse qu'une seule diode, et n'est donc affecté que par des pertes associées à son passage dans ladite diode.
Les figures 8a et 8b illustrent deux variantes d'un deuxième exemple mettant en œuvre les diodes directe DI et indirecte D2.
Dans ce deuxième exemple, l'au moins une batterie comprend une première batterie 201a et une seconde batterie 201b raccordées selon un nœud commun B.
L'au moins un bobinage 310 comprend le premier bobinage 310a et le second bobinage 310b agencés en série au niveau d'un nœud commun N.
La branche principale 312 connecte le nœud N au nœud B, tandis que la première branche 312a connecte la première extrémité 311a à une des bornes principales, et la seconde branche 312b connecte la seconde extrémité 311b à l'autre des bornes principales.
La première variante de ce deuxième exemple illustrée à la figure 8a présente la première batterie 201a et la seconde batterie 201b connectées selon des polarités opposées.
La seconde variante de ce deuxième exemple illustrée à la figure 8b présente la première batterie 201a et la seconde batterie 201b agencées en série.
Selon ce deuxième exemple, les premier 310a et second 310b bobinages peuvent être mis en œuvre chacun avec l'élément ferromagnétique 370.
Dans ces conditions, et plus particulièrement dans le cadre de la seconde variante, les moyens d'écrêtage 400 décrits en relation avec la figure 6 peuvent avantageusement être mis en œuvre.
La figure 9 illustre un troisième exemple mettant en œuvre les diodes directe DI et indirecte D2.
Dans ce troisième exemple, l'au moins une batterie comprend une première batterie 201a et une seconde batterie 201b raccordées selon un nœud commun B, et agencée en série.
L'au moins un bobinage 310 comprend également le premier bobinage 310a et le second bobinage 310b. Ces derniers sont dépourvus de nœud commun. Le premier bobinage 310a est connecté selon la première branche 312a à la première borne 200a, et selon une autre branche, dite première branche secondaire 313a au nœud commun B.
Le second bobinage 310b est connecté selon la seconde branche 312b au nœud commun B, et selon une autre hanche, dite seconde branche secondaire 313b, à la seconde borne 200b.
La figure 10 illustre un quatrième exemple mettant en œuvre les diodes directe DI et indirecte D2.
Dans ce quatrième exemple, l'au moins une batterie 200 comprend la première batterie 201a et la seconde batterie 201b montées en série et présentent un nœud commun B.
Toujours selon ce quatrième exemple, la première branche 312a et la seconde branche 312b connectent la première extrémité 311a, respectivement, à la première borne 201a et à la seconde borne 201b. Une troisième branche 314 connecte la seconde extrémité 311b au nœud commun B.
La diode directe DI permet ainsi la charge de la première batterie avec la partie positive du courant induit, et la diode indirecte D2 permet la charge de la seconde batterie avec la partie négative du courant induit.
La figure 11 représente un autre exemple de réalisation des moyens de charge 300 selon la présente invention. Selon cet autre exemple, les moyen des charge comprennent un unique bobinage 310 dont chaque extrémité est connectée à l'entrée d'une diode différentes dites respectivement, diode D5 et diode D6. Les deux diodes D5 et D6 ayant une sortie commune connectée à la borne positive de la batterie rechargeable 200. Les moyens de charge 300 comprennent également deux interrupteurs Il et 12 reliant chacun une extrémité du bobinage à la borne négative de la batterie rechargeable.
Les deux interrupteurs sont par exemple des transistors MOS. Si ces derniers sont non passants, ils se comportent comme des diodes rendant ainsi possible la charge de la batterie rechargeable.
Au contraire, s'ils conduisent, le bobinage 310 est en court-circuit. Ainsi, selon la présente invention, le dispositif volant à propulsion électrique comprend des moyens adaptés pour recharger sa batterie rechargeable au niveau d'une ligne de distribution électrique.
Par ailleurs, dès lors que la charge de ladite batterie peut être exécutée en accrochant le dispositif 100 à un des câbles de la ligne 500, il n'est pas nécessaire de prévoir des points de charge spécifique aux moyens de charge de la présente invention.
La charge de la batterie rechargeable pouvant être exécuté en n'importe quel point des câbles de la ligne de distribution électrique, il n'est nullement nécessaire de prévoir une batterie à forte capacité.

Claims

REVENDICATIONS
1. Dispositif volant à propulsion électrique (100) comprenant :
- au moins une batterie rechargeable (200) présentant deux bornes principales dites, respectivement, première et seconde bornes ;
- des moyens de charge (300) de la batterie rechargeable (200) qui comprennent un moyen de couplage mécanique (330) agencé pour coopérer avec un câble (500a) d'une ligne de distribution électrique (500), ledit câble (500a) étant parcouru par un courant de ligne, la coopération entre le moyen de couplage mécanique et le câble étant destinée à s'opérer de façon magnétique de manière à charger l'au moins une batterie rechargeable (200).
2. Dispositif selon la revendication 1, dans lequel les moyens de charge (300) comprennent au moins un bobinage (310) présentant deux extrémités principales dites, respectivement, première extrémité (311a) et seconde extrémité (311b), l'au moins un bobinage étant destiné à être couplé magnétiquement avec le câble (500a) dès lors qu'une coopération entre le moyen de couplage mécanique (330) et le câble (500a) s'opère de manière à générer par induction la circulation d'un courant, dit courant induit, dans l'au moins un bobinage (310) et destiné à recharger l'au moins une batterie rechargeable.
3. Dispositif selon la revendication 2, dans lequel les moyens de charge (300) comprennent un redresseur (320) agencé pour redresser le courant induit en courant à composante continue, dit courant de charge, avant d'être injecté dans l'au moins une batterie rechargeable (200).
4. Dispositif selon la revendication 3, dans lequel le redresseur de courant (320) comprend un pont de Graetz.
5. Dispositif selon la revendication 3, dans lequel le redresseur de courant (320) comprend une diode, dite diode directe Dl, agencée selon une polarité permettant la charge de l'au moins une batterie par le courant de charge.
6. Dispositif selon la revendication 5, dans lequel le redresseur de courant (320) comprend en outre une autre diode, dite diode indirecte D2, également agencée selon une polarité permettant la charge de l'au moins une batterie par le courant de charge.
7. Dispositif selon la revendication 6, dans lequel l'au moins un bobinage est connecté à l'au moins une batterie via deux branches dites, respectivement, première branche (312a) et seconde branche (312b) à l'au moins une batterie (200), la diode directe est montée sur l'une ou l'autre des première et seconde branches, tandis que la diode indirecte est montée sur l'autre des première et seconde hanches.
8. Dispositif selon la revendication 7, dans lequel l'au moins une batterie comprend deux batteries dites, respectivement, première batterie (201a) et seconde batterie (201b), présentant un nœud commun B.
9. Dispositif selon la revendication 7 ou 8, dans lequel l'au moins un bobinage comprend un premier bobinage (310a) et un second bobinage (310b).
10. Dispositif selon la revendication 9, dans lequel le premier bobinage (310a) et le second bobinage (310b) sont agencés en série au niveau d'un nœud commun N, connecté selon une hanche principale (312) à l'au moins une batterie rechargeable (200), la première extrémité (311a) et la seconde extrémité (311b) sont connectées, respectivement, selon la première branche (312a) et selon la seconde branche (312b) à l'au moins une batterie rechargeable (200).
11. Dispositif selon la revendication 10, dans lequel la branche principale connecte le nœud commun N à une borne principale de l'au moins une batterie (200), tandis que la première branche (312a) et la seconde branche (312b) connectent toute deux, respectivement, la première extrémité (311a) et la seconde extrémité (311b) à l'autre borne principale de l'au moins une batterie (200).
12. Dispositif selon la revendication 10 et la revendication 8, dans lequel la branche principale (312) connecte le nœud N au nœud B, la première branche (312a) connecte la première extrémité (311a) à une des bornes principales, et la seconde branche (312b) connecte la seconde extrémité (311b) à l'autre des bornes principales, la première et la seconde batterie étant soit agencées en série soit selon des polarités opposées.
13. Dispositif selon les revendications 8 et 9, dans lequel le premier et le second bobinage sont dépourvus de nœud commun, le premier bobinage (310a) étant connecté selon la première branche (312a) à la première borne, et selon une autre branche, dite première branche secondaire au nœud commun B, le second bobinage (310b) étant connecté selon la seconde branche (312b) au nœud commun B, et selon une autre hanche, dite seconde branche secondaire, à la seconde borne, les première et seconde batteries étant avantageusement agencées en série.
14. Dispositif selon la revendication 8, dans lequel la première batterie (200a) et la seconde batterie (200b) sont connectées en série, la première branche (312a) et la seconde branche (312b) connectant la première extrémité (311a), respectivement, à la première borne (201a) et à la seconde borne (201b), et une troisième branche (314) connectant la seconde extrémité (311b) au nœud commun B.
15. Dispositif selon l'une des revendications 2 à 14, dans lequel les moyens de charge (300) comprennent des moyens de court-circuit (340) adaptés pour mettre en court-circuit les moyens de charge (300), avantageusement les moyens de court-circuit (340) sont adaptés pour mettre les moyens de charge (300) en court-circuit dès lors que l'au moins une batterie rechargeable (200), au cours d'une phase de charge, a atteint une charge au moins égale à une charge prédéterminée, encore plus avantageusement la charge prédéterminée correspond à une charge complète de l'au moins une batterie rechargeable (200).
16. Dispositif selon l'une des revendications 2 à 15, dans lequel l'au moins un bobinage (310) est formé autour d'un élément ferromagnétique (370), l'élément ferromagnétique (370) étant dimensionné de manière à être amené jusqu'à saturation à chaque demi-période du courant du câble de la ligne pour limiter les durées du transfert d'énergie du câble (500a) vers les moyens de charge (300).
17. Dispositif selon la revendication 16, dans lequel l'au moins un bobinage, avantageusement chaque bobinage de l'au moins un bobinage, est électriquement connecté en parallèle avec des moyens d'écrêtage adaptés pour démagnétiser l'élément ferromagnétique, avantageusement, les moyens d'écrêtage comprennent une résistance variable en fonction d'une tension imposée à ces bornes.
18. Dispositif selon l'une des revendications 2 à 17, dans lequel le moyen de couplage mécanique (330) comprend un crochet pour accrocher, avantageusement en suspension, le dispositif volant à propulsion électrique (100) au câble (500a), avantageusement l'au moins un bobinage (310) forme le crochet.
19. Dispositif selon l'une des revendications 2 à 18, dans lequel le moyen de couplage mécanique (330) comprend une pince pourvue d'au moins deux mors de pince, avantageusement l'au moins un bobinage (310) forme au moins un des mors de pince.
20. Dispositif selon l'une des revendications 2 à 19, dans lequel le dispositif est pourvu de moyen de mesure du courant induit destinés à suivre l'état de charge de l'au moins une batterie (200) ou de diagnostiquer la signature du courant de ligne circulant dans le câble de la ligne (500).
21. Dispositif selon l'une des revendications 1 à 20, dans lequel le moyen de couplage est muni d'un moyen de roulement agencé pour permettre un déplacement du dispositif volant à propulsion électrique le long du câble de la ligne.
22. Dispositif selon l'une des revendications 1 à 21, dans lequel les moyens de charge (300) sont disposés dans une cage de Faraday (380) pourvue d'une électrode (390) agencée pour être en contact avec le câble (500a) dès lors que le dispositif volant (100) est accroché au câble (500a), avantageusement l'électrode (390) est disposée au niveau du moyen de couplage mécanique (330).
23. Dispositif selon l'une des revendications 1 à 22, dans lequel les moyens de couplage mécanique permettent de maintenir dans une position de repos le dispositif volant, avantageusement lorsque la charge de l'au moins une batterie est complète.
PCT/FR2019/050420 2018-02-27 2019-02-25 Dispositif volant à propulsion électrique WO2019166723A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851742A FR3078316B1 (fr) 2018-02-27 2018-02-27 Dispositif volant a propulsion electrique
FR1851742 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019166723A1 true WO2019166723A1 (fr) 2019-09-06

Family

ID=61802218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050420 WO2019166723A1 (fr) 2018-02-27 2019-02-25 Dispositif volant à propulsion électrique

Country Status (2)

Country Link
FR (1) FR3078316B1 (fr)
WO (1) WO2019166723A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318564B1 (en) 2004-10-04 2008-01-15 The United States Of America As Represented By The Secretary Of The Air Force Power line sentry charging
US7714536B1 (en) * 2007-04-05 2010-05-11 The United States Of America As Represented By The Secretary Of The Navy Battery charging arrangement for unmanned aerial vehicle utilizing the electromagnetic field associated with utility power lines to generate power to inductively charge energy supplies
CN103872795A (zh) 2014-03-17 2014-06-18 王洋 用于无人飞机的充电系统
US20160137311A1 (en) * 2013-03-14 2016-05-19 Aurora Flight Sciences Corporation Aerial system and vehicle for continuous operation
WO2016103264A1 (fr) * 2014-12-24 2016-06-30 Noam Cohen Procédé et appareil permettant d'étendre une plage de petits véhicules aériens sans pilote-multicoptères
US9421869B1 (en) * 2015-09-25 2016-08-23 Amazon Technologies, Inc. Deployment and adjustment of airborne unmanned aerial vehicles
CN105882990A (zh) * 2016-05-12 2016-08-24 北京航空航天大学 一种适用于微小型无人机的感应取电挂钩
US20170015414A1 (en) * 2015-07-15 2017-01-19 Elwha Llc System and method for power transfer to an unmanned aircraft

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318564B1 (en) 2004-10-04 2008-01-15 The United States Of America As Represented By The Secretary Of The Air Force Power line sentry charging
US7714536B1 (en) * 2007-04-05 2010-05-11 The United States Of America As Represented By The Secretary Of The Navy Battery charging arrangement for unmanned aerial vehicle utilizing the electromagnetic field associated with utility power lines to generate power to inductively charge energy supplies
US20160137311A1 (en) * 2013-03-14 2016-05-19 Aurora Flight Sciences Corporation Aerial system and vehicle for continuous operation
CN103872795A (zh) 2014-03-17 2014-06-18 王洋 用于无人飞机的充电系统
WO2016103264A1 (fr) * 2014-12-24 2016-06-30 Noam Cohen Procédé et appareil permettant d'étendre une plage de petits véhicules aériens sans pilote-multicoptères
US20170015414A1 (en) * 2015-07-15 2017-01-19 Elwha Llc System and method for power transfer to an unmanned aircraft
US9421869B1 (en) * 2015-09-25 2016-08-23 Amazon Technologies, Inc. Deployment and adjustment of airborne unmanned aerial vehicles
CN105882990A (zh) * 2016-05-12 2016-08-24 北京航空航天大学 一种适用于微小型无人机的感应取电挂钩

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "MIT teaches a drone to perch on power lines so it can recharge during flight - Geek.com", 23 June 2014 (2014-06-23), XP055523524, Retrieved from the Internet <URL:https://www.geek.com/chips/mit-teaches-a-drone-to-perch-on-power-lines-so-it-can-recharge-during-flight-1597462/> [retrieved on 20181113] *

Also Published As

Publication number Publication date
FR3078316B1 (fr) 2022-04-01
FR3078316A1 (fr) 2019-08-30

Similar Documents

Publication Publication Date Title
EP3758970B1 (fr) Dispositif volant
EP3105845B1 (fr) Systeme d&#39;alimentation a tension continue configure pour precharger un condensateur de filtrage avant l&#39;alimentation d&#39;une charge
EP0017892B1 (fr) Dispositif de commutation automatique de deux batteries chargées en parallèle et déchargées en série
EP2532068B1 (fr) Systeme d&#39;equilibrage de charge pour batteries
EP3060422B1 (fr) Protection d&#39;une alimentation incluant plusieurs batteries en parallele contre un court circuit externe
CA2929408A1 (fr) Procede de charge de vehicule electrique a vehicule electrique
EP2882069B1 (fr) Système de conversion d&#39;énergie, ensemble de rechargement par induction et procédés d&#39;émission et de réception de données associés
WO2013128128A1 (fr) Detection d&#39;un courant de fuite comprenant une composante continue dans un vehicule
FR2997580A1 (fr) Procede de transfert de charge et dispositif electrique associe
EP3227137B1 (fr) Dispositif d&#39;alimentation et convertisseur de tension continue ameliore
WO2017212181A1 (fr) Système d&#39;alimentation électrique d&#39;un appareil téléopéré captif
WO2019166723A1 (fr) Dispositif volant à propulsion électrique
FR3015138A1 (fr) Dispositif et procede de compensation d&#39;un decalage de tension
WO2015144739A1 (fr) Dispositif de charge inductif pour vehicule electrique
WO2024003005A1 (fr) Module d&#39;alimentation électrique à rebouclage et double sortie
EP3065252B1 (fr) Dispositif et système d&#39;alimentation d&#39;une charge sans contact
WO2023110643A1 (fr) Module de conversion comprenant un circuit de recuperation d&#39;energie electrique
FR3020902A3 (fr) Dispositif de stockage d&#39;energie haute tension securitaire
FR2849298A1 (fr) Dispositif de controle de l&#39;etat de charge, a tension constante, d&#39;un ensemble de batterie a generateurs electrochimiques secondaires
EP0086679A1 (fr) Stabilisateur d&#39;énergie électrique variable
FR2600221A1 (fr) Alimentation en courant alternatif de forte puissance non susceptible d&#39;etre interrompue
FR3065598A1 (fr) Dispositif de filtrage pour chargeur de batterie de vehicules automobiles et chargeur de batterie equipe d&#39;un tel dispositif de filtrage
FR2694729A1 (fr) Procédé de conception des véhicules électriques autonomes.
BE563894A (fr)
CH283547A (fr) Dispositif auxiliaire pour batterie d&#39;accumulateurs.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19711984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19711984

Country of ref document: EP

Kind code of ref document: A1