WO2019165685A1 - 3d打印系统 - Google Patents

3d打印系统 Download PDF

Info

Publication number
WO2019165685A1
WO2019165685A1 PCT/CN2018/083174 CN2018083174W WO2019165685A1 WO 2019165685 A1 WO2019165685 A1 WO 2019165685A1 CN 2018083174 W CN2018083174 W CN 2018083174W WO 2019165685 A1 WO2019165685 A1 WO 2019165685A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
material output
print
printed
output device
Prior art date
Application number
PCT/CN2018/083174
Other languages
English (en)
French (fr)
Inventor
安雪晖
周力
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019165685A1 publication Critical patent/WO2019165685A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This application relates to 3D printing technology, and more particularly to a 3D printing system.
  • additive Manufacturing (AM) technology is a technique for manufacturing solid parts by gradually adding materials. Compared with traditional material removal-cutting technology, it is a "bottom-up" manufacturing method.
  • This technology eliminates the need for traditional tools, fixtures, and multiple processing steps to quickly and precisely create parts of any complex shape on a single device, enabling "free manufacturing” to solve many complex structures that were difficult to manufacture in the past.
  • the forming of the parts greatly reduces the number of processing steps and shortens the processing cycle. And the more complex the product, the more significant the speed of its manufacture.
  • This technology is an advanced manufacturing technology that has developed rapidly in the past 30 years. Its advantage lies in the rapid and free manufacturing of three-dimensional structure, which is widely used in new product development and single-piece small batch manufacturing.
  • Additive manufacturing technology directly adding materials to form the required parts, also known as printing is a hot topic at home and abroad, and some people call it the emerging manufacturing technology that caused the third industrial revolution.
  • 3D printing With the expansion of market demand, 3D printing will show the following trends: First, with the maturity of technology, printing speed and printing efficiency will gradually increase; Second, with the development of new materials, printing materials are more abundant, The cost is lower; third, the price of printing equipment will be lower and lower; fourth, the application field of 3D printing will be further expanded. Overall, it is foreseeable that 3D printing will have a promising future, which will bring about a revolutionary change in social life and production methods.
  • the application of additive manufacturing technology provides rapid manufacturing technology for the development of many new industries and technologies.
  • the application of bioprosthesis and tissue engineering provides an effective technical means for artificially customized prosthesis manufacturing and three-dimensional tissue scaffold manufacturing.
  • Rapid manufacturing technology that provides rapid prototyping for automotive models and aircraft shape design accelerates product design.
  • the application of foreign additive manufacturing technology in the aviation field exceeds 9%, while the application volume in China is very low.
  • Additive manufacturing technology is especially suitable for the manufacture of parts and small batches of aerospace products with low cost and high efficiency. It has the advantages of aero-engine hollow turbine blades, wind tunnel model manufacturing and complex precision structural parts manufacturing. Great application potential. Therefore, the combination of additive manufacturing technology and enterprise product innovation is the fundamental direction for the development of additive manufacturing technology and a sharp tool for realizing innovative countries.
  • the development goal of additive manufacturing is to achieve micro-nano-scale manufacturing precision, effectively improve the manufacturing efficiency of large components, and develop multi-material and multi-process composite control and control manufacturing technology.
  • additive manufacturing technology is profound in construction, medical, aerospace, mold processing, automotive industry, industrial design, cultural and creative, consumer electronics, construction, education, food processing, metal additive processing, etc. A wide range of applications.
  • Additive manufacturing has broad prospects for development, but there are also huge challenges.
  • the biggest problem at present is that the physical and chemical properties of the material constrain its implementation technology.
  • organic polymer materials and metal materials currently mainly organic polymer materials and metal materials.
  • Direct forming of metal materials is a research hotspot for more than a decade, and it is gradually being applied to industry. The difficulty lies in how to improve accuracy.
  • the new research direction is to directly accumulate soft tissue materials (biomatrix materials and cells) with additive manufacturing technology to form living organisms, which are cultured in vitro and cultured in vivo to produce complex tissues and organs.
  • the precision of additive manufacturing depends on the increased layer thickness of the material and the size and precision control of the additive unit.
  • the biggest difference between additive manufacturing and cutting manufacturing is that the material needs a layer-by-layer system. Therefore, recoating is a necessary process for material accumulation.
  • the thickness of the coating directly determines the precision and surface roughness of the part in the cumulative direction.
  • Degree, the control of the additive unit directly determines the minimum feature manufacturing capability and workpiece precision of the part.
  • a laser beam or an electron beam is used to form a additive unit on a material point by point to perform material accumulation manufacturing, for example, in the direct metal forming, the size of the laser melting micro-melting pool and the external atmosphere control, Directly affect manufacturing precision and part performance.
  • the laser spot is 0.1 to 0.2 mm, the laser acts on the metal powder, and the molten pool formed by the melting of the metal powder has an important influence on the forming precision.
  • forming process scanning speed, energy density
  • material properties effectively controlling the size of the additive unit is a key technology to improve the accuracy of the part.
  • the laser spot is controlled to be finer in the direct manufacturing of metal, and the point-by-point scanning method enables the additive unit to reach the micro-nano level and improve the parts.
  • the other direction is the planar projection technology of photocuring forming technology.
  • the projection control unit is gradually improved in resolution, and the additive unit is smaller, which can realize high precision and high efficiency manufacturing.
  • the development goal is to achieve a 10 to 100 times reduction in the thickness of the additive layer and the size of the additive unit, which is developed from the existing 0.1 mm level to 0.01 to 0.001 mm, and the manufacturing precision reaches the micro-nano level.
  • Additive manufacturing is developing in the direction of manufacturing large-sized components.
  • the metal laser directly manufactures the titanium alloy frame beam structure on the aircraft.
  • the length of the frame beam structure can reach 6m.
  • the current production time is too long.
  • How to realize multi-laser beam synchronous manufacturing, Increasing manufacturing efficiency, ensuring consistency between synchronized additive organizations, and manufacturing combined regional quality are key technologies for development.
  • the development of additive manufacturing and material removal manufacturing composite manufacturing technology is a key technology to improve manufacturing efficiency.
  • additive manufacturing is mainly to manufacture parts of a single material, such as a single polymer material and a single metal material, which is currently being developed into a single ceramic material.
  • a single material such as a single polymer material and a single metal material
  • composite or graded material parts become an urgent need for development.
  • artificial joints need to be compounded with Ti alloy and CoCrMo alloy in the future. It is necessary to ensure that the artificial joint has a good wear-resistant interface (CoCrMo alloy guarantee) and a good biocompatible interface (Ti alloy) with bone tissue.
  • Artificial joints that need to be manufactured have a composite structure. Since additive manufacturing has a stacking process of micro-units, each stacking unit can realize the control of shape control and control by realizing the recombination of different materials in one part by changing materials.
  • multi-material additive manufacturing will be developed, and the synchronization between multi-material structures in the forming process is a key technology. For example, how different materials control similar temperature ranges for physical or chemical transformation, how to control the size of the additive unit and the thickness of the additive layer.
  • the compounding of this material including the combination of metal and ceramic, the compounding of various metals, and the compounding of cells and biological materials, provides new technologies for the integrated manufacturing of macrostructures and microstructures.
  • the development goals are: to realize the compounding of different materials in micro-manufacturing units, to achieve active control of ceramic and metal components, to achieve controlled forming and microstructure manufacturing of living body units, from structural free forming to structural and performance controllable forming.
  • 3D metal printing technology is based on computer pre-designed 3D solid image.
  • the physical image is sliced and layered by computer software, and the 3D shape is created by layer-by-layer changing section.
  • Automated coupling no need for special molds or fixtures, the shape and structure of the parts can be free of any constraints, saving time in tooling and special tool design and manufacturing, reducing manufacturing processes and improving manufacturing efficiency.
  • Metal 3D printing technology is the most intensive and promising 3D printing technology, and has been applied to the manufacture of complex and expensive parts in high-tech fields such as medical equipment, shipbuilding, automotive and aerospace.
  • EBM electron beam melting
  • EW electron beam welding
  • SLM selective laser melting
  • DLP digital light processing
  • LENS type of manufacturing
  • droplet printing technology the application of these technologies, make 3D metal printing products stronger than traditional casting technology, and even comparable to traditional forging technology.
  • 3D printing saves raw materials, the raw materials are only 1/3 to 1/2 of the original, and the manufacturing speed is 3 to 4 times faster.
  • 3D printing technology for metal parts is an important development direction of advanced manufacturing technology.
  • Metal 3D printing is achieved through metal 3D printing design to achieve a comprehensive cost reduction. Through metal 3D printing, it has to achieve four major purposes: 1. reduce the number of parts; 2 reduce the weight of zero components; 3. reduce the assembly amount; 4. make high-complexity parts, reduce the integration through this "three reductions and one high" For the purpose of cost, such advantages are particularly prominent in the aerospace industry.
  • Metal 3D printing technology was produced in the United States in the late 1980s and soon expanded to Japan and Europe. It was introduced to China in the early 1990s and is a major breakthrough in manufacturing technology in the past 20 years. In recent years, the metal 3D printing field has developed rapidly. According to statistics, global metal 3D printer sales increased by 35% in 2015 and by 17% in the first half of 2016. The global 3D printing market is expected to grow to $2,240 million by 2020, and the compound annual growth rate will reach double digits. The ever-increasing 3D printing technology has led to an ever-increasing industrial level of 3D printing. 3D printing is preparing for entry into mainstream manufacturing and has become an indispensable part of the manufacturing industry. From 2015 to 2020, the metal 3D printing market is expected to grow more than threefold.
  • concrete is only used as a compressive member in the whole structure. It needs to be used together with tensile, shearing and other materials of steel bars (steel cables, steel columns or other ribs), so that the entire structure can resist common pulling, pressing, bending and shearing.
  • the role of twisting and twisting; in general, the construction of concrete materials mainly includes the raw material mining, transportation processing, mixing, transportation, watering, tamping, surface cleaning, curing and demoulding of concrete.
  • the concrete structure (or X+ concrete structure, preferably, X may be steel, steel cable, polymer reinforcement, etc.) has the characteristics of complex structure, long construction period, strong dependence on construction personnel, low degree of automation, etc.; Not only the concrete structure, but the entire building structure has such characteristics.
  • the materials of the above components are usually evenly arranged in a certain direction, but this does not give full play to the performance of each material, resulting in A lot of waste and environmental protection issues.
  • the traditional 3D printing concrete technology combines 3D printing technology with the technology of commercial concrete.
  • the main principle is to use 3D modeling and segmentation of concrete components by computer to produce 3D information, and then the prepared concrete mixture is squeezed.
  • the device is out, according to a set program, by mechanical control, and is extruded by a nozzle for printing, and finally a concrete member is obtained.
  • the advantages of traditional 3D printing construction technology are as follows: 1 faster than traditional construction technology, greatly improving production efficiency and shortening investment recovery period; 2 not requiring a large number of construction workers and management teams, labor costs can be almost Neglected; 3 does not need to use templates and scaffolding, can save a lot of cost; 4 almost no waste, greatly reducing material waste and sewage; 5 printing process produces almost no noise and vibration, and has low carbon, green, environmental protection
  • the characteristics of 6; can easily print out high-cost curve buildings that are difficult to construct in other ways; 7 can print high-strength and lightweight concrete structures; 8 avoid the safety hazards at the construction site, ensure the personal safety of operators, reduce Accidents and casualties; 9 follow the computer program, print a layer to automatically climb a layer, very orderly, even more accurate than manual, product quality is guaranteed; 10 based on accurate geometric calculations, using durable materials, guaranteed use There will be no quality problems in the house during the life.
  • the existing 3D printing technology is a single printing material output device working mode, and multiple printing material output devices cannot work at the same time, and there is no multi-printing material output device working together, and it is also impossible to solve different performance materials on the same print.
  • this design directly limits the improvement of printing speed and the composite application of a variety of printing materials.
  • the prior art solutions are all single print material output device working modes, and there are two problems in the following aspects.
  • the printing speed mainly depends on the printing speed of the 3D printer depends on: the selection of parameters such as the thickness of the layer, the packing density, and the output of a single printed material output device. Work efficiency and 3D component design level. Then, in the single printing material output device mode, there are only four ways to improve the working speed of the single printing material output device 3D printer: 1. increase the thickness of the layer; 2. reduce the packing density; 3. improve the working efficiency of the single printing material output device. 4, improve the design 3D level.
  • the maximum printing speed of a single printing material output device has been basically developed to the limit; if the thickness of the sheet is increased to increase the printing speed, the printing accuracy is greatly reduced; and the reduction of the packing density may impair the structural mechanical properties of the printing. , durability, fatigue resistance and other performance; improve the level of 3D design, according to the existing finite element simulation software, the current design level can make the components without any redundant materials, can also give the best printing angle Reduce support. In summary, it is basically impossible to increase the printing speed from the above four ways.
  • an object of the embodiments of the present application is to provide a 3D printing system to improve the 3D printing speed, realize a composite application of a plurality of printing materials, and solve the single printing material in the prior art.
  • the problem that the output device operating mode does not work together with multiple printed material output devices.
  • the 3D printing system proposed by the embodiment of the present application includes:
  • a printing material output system comprising a printing material processing conveying system and a plurality of printing material output devices, each of the printing material output devices for outputting different printing materials, that is, each printing material corresponds to an output device for outputting the printing material;
  • At least one printing material output device control system is connected to each printing material output device for generating a printing control instruction according to the three-dimensional model of the object to be printed, and controlling different printing material output devices to cooperate with the printing material output;
  • a monitoring feedback system connected to the printing material output device control system, for obtaining the printing process information of the object to be printed in real time, analyzing whether the printing abnormality occurs according to the printing process information, and if so, controlling the output device to the printing material
  • the system outputs a print modification command to adjust the print policy of the corresponding print material output device.
  • the present application can improve the 3D printing speed and realize the composite application of various printing materials.
  • FIG. 1A and FIG. 1B are schematic diagrams showing two materials composited by two printers in the prior art
  • FIG. 2 is a schematic view showing two materials composited by two printers in the prior art
  • FIG. 3 is a schematic structural diagram of a 3D printing system according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of printing of a 3D building molding system according to an embodiment of the present application.
  • FIG. 5 is a schematic view showing printing of metal additive manufacturing according to an embodiment of the present application.
  • FIG. 6 is a schematic view showing printing of a food processing product according to an embodiment of the present application.
  • FIG. 7A is a three-dimensional view of a food of a 3D printing system according to an embodiment of the present application.
  • FIG. 7B is a horizontal cross-sectional view of a food of a 3D printing system according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a material reduction operation of a 3D printing system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a 3D printing system according to an embodiment of the present invention. As shown in FIG. 3, the 3D printing system includes: a printing material output system 1, at least one printing material output device control system 2, and a monitoring feedback system 3.
  • the printing material output system 1 includes a printing material processing conveying system and a plurality of printing material output devices, each of which prints different printing materials, that is, each printing material corresponds to an output device that outputs the printing material.
  • the printing material output device control system 2 is connected to each of the printing material output devices of the printing material output system 1 for generating a printing control command according to the three-dimensional model of the object to be printed, and controlling different printing material output devices to cooperate with the printing material output.
  • the meaning of the word synergy here should be: print material output devices of different materials (each material is not limited to one) work at the same time or at different times, and the work can be coordinated or independent. of.
  • the monitoring feedback system 3 is connected to the printing material output device control system 2 for obtaining the printing process information of the object to be printed in real time, analyzing whether the printing abnormality occurs according to the printing process information, and if so, outputting the printing to the printing material output device control system 2 Modify the command to adjust the printing strategy of the corresponding print material output device.
  • different kinds of printing material output devices are used for outputting different printing materials, and the number of types of printing material output devices is determined by an object to be printed, and two kinds of printing material output devices A and B are shown in FIG. limited.
  • the printing material output device is a filling device for releasing the printing material, and may be a head plate, and may also be other devices, such as a device for grasping a printing material by a robot arm for filling.
  • Each of the printing material output devices includes at least one printing material output device for outputting a corresponding material, and each of the printing material output devices outputs the printing time according to the prescribed printing material according to the printing control instruction of the printing material output device control system 2.
  • Output device coordinates, print material output speed, print material output angle, etc. (including one or more of the above parameters, but not for limitation) work together to complete the printing of the object to be printed.
  • the printing material output device control system 2 can generate a print control command to respectively generate a print material output command of the corresponding print material output device for each print material, and each print material output command constitutes a print control command.
  • Each print material output instruction includes a print material output time of the print material output device, a print material output device coordinate, a print material output speed, a print material output angle, and the like (including one or more of the above parameters, but not for limitation), each The printing material output instruction respectively controls the corresponding printing material output device to perform printing material output, so that each printing material output device works in cooperation.
  • the monitoring feedback system 3 is responsible for supervising and controlling the printing process.
  • the printing process information includes a printing process image
  • the monitoring feedback system includes at least: an image capturing device (which may be a SLR camera, a digital camera, a CCD, and a smart phone).
  • Image processing unit can capture a state image (ie, a print progress image) of the object to be printed during printing in real time.
  • the image processing unit is responsible for processing the image of the printing process, and analyzing whether a printing abnormality occurs according to the image of the printing process.
  • the printing process image For example, by comparing the printing process image with the three-dimensional model, it is analyzed whether there is a non-correspondence between the printing process image and the three-dimensional model (ie, the printing state is different from the three-dimensional model of the object to be printed), and if there is a non-correspondence, the printing is explained.
  • Abnormal for example, based on the apparent image of the printed portion, combined with AI technology (artificial intelligence) for quality evaluation, if the given quality assessment coefficient is not within the target range, the printing is abnormal.
  • the printing process information includes three-dimensional information
  • the monitoring feedback system comprises: a laser scanning device and an information processing unit.
  • the laser scanning device scans the real-time three-dimensional information of the object to be printed in real time during the printing process; the information processing unit processes the three-dimensional information, and analyzes whether the printing abnormality occurs according to the three-dimensional information, and the printing abnormality includes: a printing state and a to-be-printed The three-dimensional model of the object is different, and the quality does not meet the requirements.
  • the three-dimensional information can be compared with the three-dimensional model to analyze whether there is a non-correspondence between the three-dimensional information and the three-dimensional model (ie, the printing state is different from the three-dimensional model of the object to be printed), and if there is a non-correspondence, Explain that the printing is abnormal; it can also be based on the apparent image of the printed part, combined with AI technology (artificial intelligence) for quality evaluation. If the quality evaluation coefficient is not within the target range, the printing is abnormal.
  • AI technology artificial intelligence
  • the monitoring feedback system 3 outputs a print modification instruction to the printing material output device control system 2 to adjust the printing policy of the corresponding printing material output device.
  • the print modification command includes adjustment of the print material output device coordinates, the print material output speed, the print material output angle, and the like.
  • the 3D printing system may further include: a 3D model segmentation module for cutting the three-dimensional model of the object to be printed into a plurality of regions (these regions are not limited in size, not limited in shape, and are not limited to module filling methods and filling materials, etc.)
  • the print material output device control system generates corresponding area print control commands according to the respective areas of the three-dimensional model, and controls the different print material output devices to sequentially output the print materials of the respective areas by the area print control command.
  • the printing order of the printing materials of each layer may be from bottom to top.
  • the 3D model segmentation module is: a layering module, configured to cut a three-dimensional model of the object to be printed into multiple layers, and the printing material output device control system generates corresponding layer printing control commands according to each layer of the three-dimensional model.
  • the layer print control command is used to control different print material output devices to sequentially perform the output of each layer of the printed material.
  • the object to be printed generally contains a supporting material which, due to its supporting action, usually requires partial priority printing.
  • the supporting function mainly refers to the need to support when the object to be printed has a "cantilever” or “hollow” structure, and the priority printing refers to the priority before the upper structure.
  • the objects to be printed include many, such as building components, metal parts, foods, etc., which are respectively described below in conjunction with specific examples.
  • 1, 3D building molding system (the corresponding object to be printed is a building component, such as a positive bending beam)
  • the beam with a total height of H can be cut from the design into n layers, the layer height h, numbered h1, h2, ..., hn from top to bottom;
  • component A has two main functions: 1.
  • the construction period serves as a template to support the B component (possibly a fluid); 2. It is used as a protective layer and a tensile layer. Part A is printed first during the construction process.
  • Component C mainly plays a tensile role, and can be a material with high tensile strength such as steel bars, steel cables and polymer materials. Printed after the A component starts printing during the construction process.
  • Component B mainly plays a role in compression resistance, and may be concrete or the like. Printing can be started after the A and C components are partially completed during the construction process.
  • Printing a 3D building molding system using the 3D printing system of the present application has the following advantages:
  • metal additive manufacturing corresponding objects to be printed are metal parts
  • the key application areas can be but not limited to: aerospace materials
  • Food processing products are foods, such as cakes.
  • the overall printing design idea of the food processing product can be as follows:
  • Printing food processing products using the 3D printing system of the present application has the following advantages:
  • the objects to be reduced include: collapsed bodies, which are described below in conjunction with specific examples.
  • the 3D printing system may further include: a three-dimensional scanning device and a material reducing device.
  • a three-dimensional scanning device connected to the printing material output device control system 2, the three-dimensional scanning device is configured to scan the area to be reduced, generate a three-dimensional model of the object to be reduced, and identify the reduced material portion of the three-dimensional model of the object to be reduced The portion is removed; the printed material output device control system 2 also generates a material reduction instruction based on the identification of the three-dimensional scanning device.
  • the material reducing device is connected to the printing material output device control system, and performs a material reduction operation according to the material reduction instruction.
  • the material reduction device can be a sanding device for grinding the reduced material portion.
  • the material reduction equipment may also include excavation equipment and an automatic driving system.
  • the excavating device excavates the reduced material portion; the automatic driving system controls the excavating device.
  • a 3D printing system incorporating a three-dimensional scanning device can be used to reduce the printed material during 3D printing.
  • the 3D printing system including the 3D scanning device can also be applied to the emergency rescue planning of small venues.
  • Rescue planning and implementation of landslides and earthquake disasters in narrow sites has always been a difficult task.
  • the 3D printing system may further include: a three-dimensional scanning device (not shown) and a material reducing device 4.
  • the central system performs rescue planning according to the received information, and automatically assigns tasks to each rescue device (the automatic driving system carried by the rescue device is similar to the attitude control system of the printed material output device in the additive system);
  • the 3D printing system including the 3D scanning device has the following beneficial effects:
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种3D打印系统,该3D打印系统包括:打印材料输出系统(1),包括打印材料加工输送系统及多种打印材料输出设备,每种打印材料输出设备用于输出不同的打印材料;至少一打印材料输出设备控制系统(2),连接至各打印材料输出设备,用于根据待打印物体的三维模型生成打印控制指令,控制不同打印材料输出设备协同进行打印材料输出;监控反馈系统(3),连接至打印材料输出设备控制系统(2) ,用于实时获取待打印物体的打印进程信息,根据打印进程信息分析是否出现打印异常,如果是,向打印材料输出设备控制系统输出打印修改指令,调整对应打印材料输出设备的打印策略。该3D打印系统可以提高3D打印速度,实现多种打印材料的复合应用。

Description

3D打印系统 技术领域
本申请是关于3D打印技术,特别是关于一种3D打印系统。
背景技术
增材制造(AdditiveManufacturing,AM)技术俗称3D打印技术,是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除-切削加工技术,是一种“自下而上”的制造方法,这一技术不需要传统的刀具、夹具及多道加工工序,在一台设备上可快速而精密地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。该技术是近30年快速发展的先进制造技术,其优势在于三维结构的快速和自由制造,被广泛应用于新产品开发、单件小批量制造。增材制造技术,直接将材料逐渐叠加形成所需要的零件也称作打印是目前国内外研究的热点,也有人将其称为引起第三次工业革命的新兴制造技术。
随着市场需求的扩大,3D打印将呈现以下几个方面的发展趋势:一是随着技术的成熟,打印速度和打印效率将逐步提高;二是随着新材料的研发,打印材料更加丰富,成本更低;三是打印设备价格会越来越低;四是3D打印的应用领域将进一步扩大。总体来说,可以预见,3D打印前景广阔,将对社会生活及生产方式带来一场革命性的变革。
具体的,传统的增材制造技术发展趋势有三个方面:
(1)向日常消费品制造方向发展。三维打印技术是国外近年来的发展热点,其设备称为三维打印机,将其作为计算机一个外部输出设备而应用。它可直接将计算机中的三维图形输出为三维的塑料零件。在工业造型、产品创意、工艺美术等方面有着广泛的应用前景和巨大的商业价值。
(2)向功能零件制造发展。采用激光或电子束直接熔化金属粉,逐层堆积金属,形成金属直接成形技术。该技术可直接制造复杂结构金属功能零件,制件力学性能可达到锻件性能指标。进一步的发展方向是陶瓷零件的快速成形技术和复合材料的快速成形技术。
(3)向组织与结构一体化制造发展。实现从微观组织到宏观结构的可控制造。如:在制造复合材料零件中,将复合材料组织设计制造与外形结构设计制造同步完成,从而实现结构体“设计-材料-制造”的一体化。美国正在开展梯度材料结构的人工关节、陶瓷涡轮叶片等零件增材制造的研究。
增材制造技术的应用,为许多新产业和新技术的发展提供了快速制造技术。在生物假体与组织工程上的应用,为人工定制化假体制造、三维组织支架制造提供了有效的技术手段。为汽车车型快速开发和飞机外形设计提供原型的快速制造技术,加快了产品设计速度。如:国外增材制造技术在航空领域的应用量超过9%,而我国的应用量则非常低。增材制造技术尤其适合于航空航天产品中的零部件单件小批量的制造,具有成本低和效率高的优点,在航空发动机的空心涡轮叶片、风洞模型制造和复杂精密结构件制造方面具有巨大的应用潜力。因此,增材制造技术与企业产品创新结合,是增材制造技术发展的根本方向,也是实现创新性国家的锐利工具。增材制造的发展目标是实现微纳米级的制造精度,有效提高大构件的制造效率,发展多材料和多工艺复合的控形控性制造技术。
综上,增材制造技术在建筑施工,医疗、航空航天、模具加工、汽车工业、工业设计、文创创意、消费电子、建筑、教育、食品加工,金属增材加工等方面都有深刻而又广泛的应用。
增材制造有广阔的发展前景,但也存在巨大的挑战。目前最大的难题是材料的物理与化学性能制约了其实现技术。如:在成形材料上,目前主要是有机高分子材料和金属材料。金属材料直接成形是近十多年的研究热点,正逐渐向工业应用,难点在于如何提高精度。新的研究方向是用增材制造技术直接把软组织材料(生物基质材料和细胞)堆积起来,形成类生命体,经过体外培养和体内培养去制造复杂组织器官。
以下关键技术的研发将有力地推动增材技术的发展:
1)精度控制技术
增材制造的精度取决于材料增加的层厚和增材单元的尺寸和精度控制。增材制造与切削制造的最大不同是材料需要一个逐层累加的系统,因此再涂层(recoating)是材料累加的必要工序,再涂层的厚度直接决定了零件在累加方向的精度和表面粗糙度,增材单元的控制直接决定了制件的最小特征制造能力和制件精度。现有的增材制造方法中,多采用激光束或电子束在材料上逐点形成增材单元进行材料累加制造,如:金属直接成形中,激光熔化的微小熔池的尺寸和外界气氛控制,直接影响制造精度和制件性能。激光光斑在0.1~0.2mm,激光作用于金属粉末,金属粉末熔化形成的熔池对成形精度有着重要影响。通过激光或电子束光斑直径、成形工艺(扫描速度、能量密度)、材料性能的协调,有效控制增材单元尺寸是提高制件精度的关键技术。
随着激光、电子束及光投影技术的发展,未来将发展两个关键技术:一是金属直接制造中控制激光光斑更细小,逐点扫描方式使增材单元能达到微纳米级,提高制件精度;另一个方向是光固化成形技术的平面投影技术,投影控制单元随着液晶技术的发展,分辨率逐步提高,增材单元更小,可实现高精度和高效率制造。发展目标是实现增材层厚和增材单元尺寸减小10~100倍,从现有的0.1mm级向0.01~0.001mm发展,制造精度达到微纳米级。
2)高速制造技术
增材制造在向大尺寸构件制造方向发展,如金属激光直接制造飞机上的钛合金框梁结构件,框梁结构件长度可达6m,目前制作时间过长,如何实现多激光束同步制造、提高制造效率、保证同步增材组织之间的一致性和制造结合区域质量是发展的关键技术。此外,为提高效率,增材制造与传统切削制造结合,发展增材制造与材料去除制造的复合制造技术是提高制造效率的关键技术。
为实现大尺寸零件的高效制造,发展增材制造多加工单元的集成技术。如:对于大尺寸金属零件,采用多激光束(4~6个激光源)同步加工,提高制造效率,成形效率提高10倍。对于大尺寸零件,研究增材制造与切削制造结合的复合关键技术,发挥各工艺方法的其优势,提高制造效率。发展目标是:增材制造零件尺寸达到20m,制件效率提高10倍。形成增材制造与传统切削加工结合,使复杂金属零件的高效高精度制造技术在工业生产上得到广泛应用。
3)复合材料零件增材制造技术
现阶段增材制造主要是制造单一材料的零件,如单一高分子材料和单一金属材料,目前正在向单一陶瓷材料发展。随着零件性能要求的提高,复合材料或梯度材料零件成为迫切需要发展的产品。如:人工关节未来需要Ti合金和CoCrMo合金的复合,既要保证人工关节具有良好的耐磨界面(CoCrMo合金保证),又要与骨组织有良好的生物相容界面(Ti合金),这就需要制造的人工关节具有复合材料结构。由于增材制造具有微量单元的堆积过程,每个堆积单元可通过不断变化材料实现一个零件中不同材料的复合,实现控形和控性的制造。
未来将发展多材料的增材制造,多材料组织之间在成形过程中的同步性是关键技术。如:不同材料如何控制相近的温度范围进行物理或化学转变,如何控制增材单元的尺寸和增材层的厚度。这种材料的复合,包括金属与陶瓷的复合、多种金属的复合、细胞与生物材料的复合,为实现宏观结构与微观组织一体化制造提供新的技术。发展目标是: 实现不同材料在微小制造单元的复合,达到陶瓷与金属成份的主动控制,实现生命体单元的受控成形与微结构制造,从结构自由成形向结构与性能可控成形方向发展。
下面就几种现有3D打印技术的应用做简介:
1)3D金属打印技术
3D金属打印技术以计算机预先设计好的三维实体图为基础,通过计算机软件对实体图进行切片分层,用逐层变化的截面来制造三维形体,在制造每一层片时都和前一层自动实现联接,无需专用的模具或夹具,零件的形状和结构可不受任何约束,节省了工装和专用工具设计制造的时间,减少了制造流程,提高了制造效率。金属3D打印技术是技术最为密集,最有潜力的3D打印技术,已经应用于医疗器械、造船、汽车和航空航天等高精尖领域中形状复杂、价格昂贵的零件制造。目前,可用于直接制造金属功能零件的快速成型方法主要有电子束熔融(EBM)技术、电子束焊接(EBW)技术、选择性激光熔融(SLM)技术、数字光处理(DLP)技术、激光净型制造(LENS)技术和熔滴打印技术,这些技术的应用,使得3D金属打印的产品强度大于传统铸造技术,甚至可以与传统的锻造技术相媲美。
相比传统制造工艺,3D打印节省原材料,用料只有原来的1/3到1/2,制造速度却快3~4倍。金属零件3D打印技术作为整个3D打印体系中最前沿和最有潜力的技术,是先进制造技术的重要发展方向。金属3D打印就是通过金属3D打印设计来达到综合成本降低的目的。通过金属3D打印要达到四大目的:1.减少零件的个数;2减轻零构件重量;3.减少装配量;4.制作高复杂度零件,通过这“三减一高”来达到降低综合成本的目的,这样的优势在航空航天领域尤为突出。
金属3D打印技术是20世纪80年代后期产生于美国,并很快扩展到日本及欧洲,于20世纪90年代初引入我国,是近20年来制造技术领域的一项重大突破。近年来,金属3D打印领域得到快速发展,据统计,2015年全球金属3D打印机销量增长了35%,2016年上半年同比增长了17%。全球3D打印市场规模预计到2020年将会增长到22.40亿美元,年复合增长率将会达到两位数。日益进步的3D打印技术使得3D打印的工业水平不断提高。3D打印正在为进入主流制造业做准备,已成为制造业不可缺少的部分。从2015年到2020年,金属3D打印市场增长有望超过三倍。由于3D打印技术的不断成熟,可用性得到提高,3D金属打印的价格预计将会降低。随着时间的推移,金属3D打印有望渗透到国内消费水平中,从而拉动消费的增长。金属3D打印关键技术的专利期 限也进一步加强了对这一领域的研究和开发,从而在实现金属3D打印价格下降方面做出进一步贡献。
传统的单打印材料输出设备金属3D打印,通常除了精度控制提高、打印速度提升和多种打印材料复合应用几个常见关键技术难点外,还有金属打印的支撑结构要求较高,这还会造成另外两个问题,一个就是额外的费用,第二个就是额外的工序,主要是指去支撑。
2)3D建筑打印技术
当代建筑用量最大、范围最广、最经济的建筑材料-混凝土的发展虽然只有不到200年的历史,却已成为当代社会使用量巨大的建筑工程材料,为人类社会的发展与前进做出了不可取代的贡献。然而随着工程建设的不断加快,混凝土在生产应用方面的高能耗、高污染的弊端也逐渐显露出来,严重阻碍了其发展。为适应绿色制造发展需求,混凝土需要不断地注入新鲜的血液。以3D打印为基础的3D打印混凝土技术作为一种新型技术,必将成为混凝土发展史上的重大转折点。
通常混凝土在整个结构中仅作为抗压构件,需要与钢筋(钢索、钢柱或者其它筋材)抗拉、抗剪等材料配合使用,使得整个结构达到抵抗常见的拉、压、弯、剪和扭的作用;一般来说,混凝土材料施工主要包括混凝土的原材料开采、运输加工、拌和、运输、浇灌、捣实、抹面、养护和脱模等过程。混凝土结构(或者X+混凝土结构,优选地,X可以是钢材,钢索,高分子筋材等)具有结构复杂、施工周期长、对施工人员依赖性强、自动化程度低等特点;不例外的,不仅是混凝土结构,实际上整个建筑结构都具有这样的特点。另外,为了到达构造、结构、耐久性要求,或者为了施工简便,上述各组分的材料通常会在某一个方向上均匀布置,但是这并不能很好的充分发挥每一种材料的性能,造成诸多的浪费和环境保护问题。
传统的3D打印混凝土技术,将3D打印技术与商品混凝土领域的技术相结合,其主要原理是将混凝土构件利用计算机进行3D建模和分割生产三维信息,然后将配制好的混凝土拌合物通过挤出装置,按照设定好的程序,通过机械控制,由喷嘴挤出进行打印,最后得到混凝土构件。
相比传统建造施工,传统3D打印建筑技术的优势体现在:①比传统施工技术快,大大提高了生产效率,缩短投资回收期;②不需要数量庞大的建筑工人和管理队伍,人力成本几乎可以忽略不计;③不需要使用模板和脚手架,可以大幅节约成本;④几乎不产生废料,大大地减少材料浪费和排污;⑤打印过程中几乎不产生噪声和大振动,并且具有低 碳、绿色、环保的特点;⑥可以非常容易地打印出其他方式很难建造的高成本曲线建筑;⑦可以打印出高强轻质的混凝土结构;⑧避免了施工现场存在的安全隐患,保障作业人员的人身安全,减少事故和伤亡;⑨遵照计算机程序,打印完一层自动爬上一层,非常有序,甚至比人工的更加准确,产品质量有保证;⑩依据精确的几何计算,采用坚固耐用的材料,保证使用寿命期内,房屋不会有质量问题。
3D打印在建筑工程领域的前景:自动化生产在工业制造领域应用广泛,但是在建筑业却发展缓慢。近年来发展迅猛的3D打印技术使打印建筑物成为可能,从而实现建筑建造自动化。另外,建筑工程要做到“生态建筑”、“环保建筑”以及“绿色建筑”的要求,就要不断发展新的科学技术,创造更为环保、低碳的建筑方案。而3D打印技术正好迎合的这一要求,3D打印技术运用在建
建筑工程方面,不仅能够节省原材料、运输费用、建筑成本等,还能够实现绿色低碳、高能环保的作用,使得建筑工程进入新的技术革新。3D打印建造技术催生出新型建造逻辑、新型结构形式和新型建筑材料,它将广泛而深入地影响设计和建造的每个环节,颠覆传统的建筑行业。
但是传统的单打印材料输出设备3D建筑打印依旧没有解决建筑施工中的结构复杂、施工效率低下、多种材料复合的问题。
3)现有技术总结
综上所述,精度控制提高、打印速度提升和多种打印材料复合应用已经成制约增材制造技术发展的关键因素。
现有的3D打印技术均为单一打印材料输出设备工作模式,无法多个打印材料输出设备同时工作,更不存在多打印材料输出设备协同工作,同时亦无法解决不同性能材料在同一个打印件上应用,这一设计直接制约了打印速度的提升和多种打印材料复合应用。现有技术方案均为单一打印材料输出设备工作模式,存在以下两个方面的问题。
1)打印速度慢,效率低
从整个打印件的层次来看,在单一打印材料输出设备工作模式下,打印速度主要取决于,3D打印机的打印速度取决于:层片厚度、填充密度等参数的选择、单个打印材料输出设备的工作效率和3D零构件设计水平。那么在单一打印材料输出设备模式下,提升单一打印材料输出设备3D打印机工作速度的途径只有4条:1、提高层片厚度;2、降低填充密度;3、提升单一打印材料输出设备的工作效率;4、提升设计3D水平。目前单一打印材料输出设备的最大打印速度基本已经被开发到极限;如果从提高片层厚度 来提升打印速度,则会极大的降低打印精度;降低填充密度则会有损所打印的结构力学性能、耐久性、抗疲劳性等性能;提升3D设计水平,根据现有的有限元仿真软件,现在的设计水平能够让零构件上没有任何冗余的材料,也可以给出最佳的打印角度来减少支撑。综上,从以上四条途径来提升打印速度基本不可能实现。
2)只进行单一材料打印
现有技术下的3D打印机,如果要想实现多种打印材料复合应用,最佳的解决途径就是将打印层片进行二维平面上的再切割,同时对打印时间轴也进行分段切割,然后通过人工或者自动化的手段进行打印材料输出设备和打印材料的更换(如图1A、图1B及图2所示)。这一系列的复杂操作,不仅会降低打印的精度,增大人工成本,更极大的降低了3D打印的整体速度。
发明内容
为解决现有技术中的上述问题,本申请实施例的一个目的在于提供了一种3D打印系统,以提高3D打印速度,实现多种打印材料的复合应用,解决了现有技术中单一打印材料输出设备工作模式导致的无法多个打印材料输出设备协同工作的问题。
为达到上述目的,本申请实施例提出的3D打印系统,包括:
打印材料输出系统,包括打印材料加工输送系统及多种打印材料输出设备,每种打印材料输出设备用于输出不同的打印材料,即每种打印材料对应一种输出该打印材料的输出设备;
至少一打印材料输出设备控制系统,连接至各打印材料输出设备,用于根据待打印物体的三维模型生成打印控制指令,控制不同打印材料输出设备协同进行打印材料输出;
监控反馈系统,连接至所述打印材料输出设备控制系统,用于实时获取待打印物体的打印进程信息,根据所述打印进程信息分析是否出现打印异常,如果是,向所述打印材料输出设备控制系统输出打印修改指令,调整对应打印材料输出设备的打印策略。
由以上本申请实施例提供的技术方案可见,本申请可以提高3D打印速度,实现多种打印材料的复合应用。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A及图1B为现有技术两种打印机复合两种材料示意图;
图2为现有技术两种打印机复合两种材料示意图;
图3为本申请一实施例提出的3D打印系统的结构示意图;
图4为本申请一实施例提出的3D建筑成型系统的打印示意图;
图5为本申请一实施例提出的金属增材制造的打印示意图;
图6为本申请一实施例提出的食品加工产品的打印示意图;
图7A为本申请一实施例提出的3D打印系统的食品三维视图;
图7B为本申请一实施例提出的3D打印系统的食品水平剖面图;
图8为本申请一实施例提出的3D打印系统的减材作业示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图3为本申请一实施例提出的3D打印系统的结构示意图,如图3所示,该3D打印系统包括:打印材料输出系统1、至少一打印材料输出设备控制系统2及监控反馈系统3。
打印材料输出系统1包括打印材料加工输送系统及多种打印材料输出设备,每种打印材料输出设备用于输出不同的打印材料,即每种打印材料对应一种输出该打印材料的输出设备。
打印材料输出设备控制系统2,连接至打印材料输出系统1的各打印材料输出设备,用于根据待打印物体的三维模型生成打印控制指令,控制不同打印材料输出设备协同进行打印材料输出。协同一词在此处的意义应该是:不同材料的打印材料输出设备(每种材料不局限于1个)同时或不同时进行工作,而且这种工作可以是相互配合的,也可以是相互独立的。
监控反馈系统3,连接至打印材料输出设备控制系统2,用于实时获取待打印物体的打印进程信息,根据打印进程信息分析是否出现打印异常,如果是,向打印材料输出设备控制系统2输出打印修改指令,调整对应打印材料输出设备的打印策略。
本申请中,不同种打印材料输出设备用于输出不同的打印材料,打印材料输出设备的种类数量由待打印物体决定,图3中示出了A、B两种打印材料输出设备,并非用于限定。
打印材料输出设备为用于释放打印材料的填料设备,可以为喷头,还可以为其他设备,例如通过机械臂抓取打印材料进行填料的设备。
每种打印材料输出设备至少包含一个打印材料输出设备,用于输出某种对应材料,每种打印材料输出设备根据打印材料输出设备控制系统2的打印控制指令按照规定的打印材料输出时间、打印材料输出设备坐标、打印材料输出速度、打印材料输出角度等(包括以上一个或多个参数,但并非用于限定)分别协同工作,完成待打印物体的打印。
本申请具体实施时,在对待打印物体进行打印之前,需要首先建立对待打印物体的三维模型。该三维模型中,对待打印物体不同部分对应的打印材料进行了区分,例如不同的打印材料可以用不同的颜色表示。根据该三维模型的具体结构,打印材料输出设备控制系统2可以生成打印控制指令,对各个打印材料分别生成对应的打印材料输出设备的打印材料输出指令,各打印材料输出指令构成了打印控制指令。各打印材料输出指令分别包括打印材料输出设备的打印材料输出时间、打印材料输出设备坐标、打印材料输出速度、打印材料输出角度等(包括以上一个或多个参数,但并非用于限定),各打印材料输出指令分别控制对应的打印材料输出设备进行打印材料输出,实现各打印材料输出设备协同工作。
监控反馈系统3负责对打印过程进行监督控制,一实施例中,打印进程信息包括打印进程图像,该监控反馈系统至少包括:图像采集设备(可以是单反相机、数码相机、CCD和智能手机)及图像处理单元。图像采集设备可以实时拍摄待打印物体在打印过程中的状态图像(即打印进程图像)。图像处理单元负责对打印进程图像进行处理,根据打印进程图像分析是否出现打印异常。例如通过将打印进程图像与三维模型进行比对,分析打印进程图像与三维模型是否存在不对应之处(即打印状态与待打印物体的三维模型有差异),如果存在不对应之处,说明打印异常;再例如,根据打印完成部分的表观 图像,结合AI技术(人工智能)进行质量评估,如果给出的质量评定系数不在目标范围内,说明打印异常。
一实施例中,打印进程信息包括三维信息,该监控反馈系统包括:激光扫描设备及信息处理单元。
激光扫描设备实时扫描待打印物体在打印过程中实时的三维信息;信息处理单元对所述三维信息进行处理,根据所述三维信息分析是否出现打印异常,所述打印异常包括:打印状态与待打印物体的三维模型有差异、质量不符合要求等。具体实施时,可以通过将三维信息与三维模型进行比对,分析三维信息与三维模型是否存在不对应之处(即打印状态与待打印物体的三维模型有差异),如果存在不对应之处,说明打印异常;还可以根据打印完成部分的表观图像,结合AI技术(人工智能)进行质量评估,如果给出的质量评定系数不在目标范围内,说明打印异常。
如果出现打印异常,监控反馈系统3向打印材料输出设备控制系统2输出打印修改指令,调整对应打印材料输出设备的打印策略。该打印修改指令包括打印材料输出设备坐标、打印材料输出速度、打印材料输出角度等的调整。
本申请中,3D打印系统还可以包括:3D模型分割模块,用于将待打印物体的三维模型切割为多个区域(这些区域不限体积、不限形状、不限模块填充方式和填充材料等),所述打印材料输出设备控制系统根据三维模型的各个区域分别生成对应的区域打印控制指令,通过区域打印控制指令控制不同打印材料输出设备依次进行各区域打印材料输出。各层打印材料的打印顺序可以为从下至上。
一实施例中,3D模型分割模块为:分层模块,用于将待打印物体的三维模型切割为多层,打印材料输出设备控制系统根据三维模型的各层分别生成对应的层打印控制指令,通过层打印控制指令控制不同打印材料输出设备依次进行各层打印材料输出。
待打印物体中一般包含起支撑作用的材料,由于其支撑作用,该材料通常需要部分优先打印。支撑作用主要是指在待打印物体有“悬臂”或者“镂空”结构出现时,需要进行支撑,优先打印是指在上部结构之前的优先。
待打印物体包括很多,例如:建筑构件、金属零件、食品等,下面结合具体的例子分别说明。
1、3D建筑成型系统(对应的待打印物体为建筑构件,例如正弯矩梁)
如图4所示,总体打印设计思路可以如下:
(1)可以将总高度为H的梁从设计上切割成n层,层高h,从上至下依次编号为h1,h2,…,hn;
(需要说明的是:分层不是必须,只是为了更好的说明,采取分层的技术,其它技术,例如像堆乐高积木、或者由机械臂抓起一块砖头并将其放到指定位置等等这样的技术)。
(2)根据设计要求分析各层材料组成,打印材料输出设备控制系统2分别生成各层的打印控制指令,控制多打印材料输出设备(喷头)协调完成各材料打印;
(3)逐次完成各层h1,h2,…,hn的打印,最终完成整根梁的打印。
图4中,A组份主要有两个功能:1、施工期作为模板,起到支撑B组份(可能为流体)的作用;2、使用作为保护层、抗拉层。A组份在施工过程中首先打印。
C组份主要起到抗拉作用,可以是钢筋,钢索,高分子筋材等抗拉强度较大的材料。在施工过程中在A组份开始打印之后打印。
B组份主要起到抗压的作用,可以是混凝土等。在施工过程中在A、C组份部分完成后即可开始打印。
利用本申请的3D打印系统打印3D建筑成型系统,具备如下优势:
(1)建筑施工标准化、智能化;
(2)降低了对工人技艺水平和责任心的依赖,提高建筑质量的可靠度;
(3)充分利用了各种建筑材料性能,降低能耗、绿色环保可持续、同等条件下提高建筑结构可靠度;
(4)提升了建筑施工速度、加快工期、降低影响(低影响建筑);
(5)综合降低建筑成本。
2、金属增材制造(对应的待打印物体为金属零件,重点应用领域可以是但不局限于:航空航天材料)
如图5所示,金属增材制造的总体打印设计思路可以如下:
(1)将总高度为H的零件从设计上切割成n层,层高h,从下至上依次编号为h1,h2,…,hn;
(需要说明的是:分层不是必须,只是为了更好的说明,采取分层的技术,其它技术,例如像堆乐高积木、或者由机械臂抓起一块砖头并将其放到指定位置等等这样的技术)。
(2)根据设计要求分析各片层材料组成,多打印材料输出设备协调共同完成整个片层的打印;
(3)逐次完成h1,h2,…,hn,最终完成整个零件的加工。
相比传统单个打印材料输出设备(喷头)3D打印技术,利用本申请的3D打印系统进行金属增材制造的工作优点如下:
(1)效率(打印速度)提高;
(2)可使用其它(非零件所用低价金属)材料作为支撑结构打印材料,降低造价;
(3)降低零件后处理成本;
(4)在现有3D金属打印技术基础上进一步减轻零构件重量;
(5)在现有3D金属打印技术基础上进一步减少装配量;
(6)在现有3D金属打印技术基础上可以制作更高复杂度零件。
3、食品加工产品(对应的待打印物体为食品,例如蛋糕)
如图6、图7A及图7B所示,食品加工产品的总体打印设计思路可以如下:
(1)将总高度为H的蛋糕从设计上切割成n层,层高h,从下至上依次编号为h1,h2,…,hn;
(2)根据设计要求分析各片层材料组成,多打印材料输出设备协调共同完成整个片层的打印;
(3)逐次完成h1,h2,…,hn,最终完成整个蛋糕的制作。
利用本申请的3D打印系统打印食品加工产品,具备如下优势:
食品加工自动化、标准化;更高效;降低了成本。
待减材物体包括:坍塌体,下面结合具体的例子分别说明。
4、坍塌体抢险救灾(对应的待减材物体为坍塌体)
一实施例中,3D打印系统还可以包括:三维扫描设备及减材设备。
三维扫描设备,连接打印材料输出设备控制系统2,三维扫描设备用于扫描待减材区域,生成待减材物体的三维模型,并标识所述待减材物体的三维模型的减材部分(待去掉部分);打印材料输出设备控制系统2还根据所述三维扫描设备的标识生成减材指令。减材设备,连接所述打印材料输出设备控制系统,根据所述减材指令执行减材操作。
减材设备可以为打磨设备,用于将减材部分打磨掉。减材设备还可以包括挖掘设备及自动驾驶系统。挖掘设备对减材部分进行挖掘;自动驾驶系统对所述挖掘设备进行控制。
包含了三维扫描设备的3D打印系统可以用于在3D打印过程中对打印的材料进行减材处理。
另外,包含了三维扫描设备的3D打印系统还可以应用于小场地的应急救援规划。狭小场地的滑坡体、地震灾害等的救援规划与实施,一直以来都是一个比较难的课题,一方面是救援的规划,另一方面是救援人员的自身安全问题。
因此可借助包含了三维扫描设备的3D打印系统,从相反的方向来思考,进行“减材”救援(实际可以是滑坡体、坍塌体的清理)。如图8所示,3D打印系统还可以包括:三维扫描设备(图中未示出)及减材设备4。
技术思路如下:
1、利用利用地形扫描系统建立救援区域三维模型、对拟开挖区域进行标识,并将以上信息输入救援中枢系统;
2、中枢系统根据接收到的信息进行救援规划,并自动给各救援设备分配任务(救援设备搭载的自动驾驶系统类似于增材系统中的打印材料输出设备姿态控制系统);
3、实时监控并反馈救援状态。
包含了三维扫描设备的3D打印系统具备如下有益效果:
(1)利用计算机进行救援开挖规划,减低重复工作量,提高救援速度,最大限度降低经济损失,挽救被困者;
(2)降低现场工作人员数量,降低参与救援的人员的风险。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理 器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本申请中应用了具体实施例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (13)

  1. 一种3D打印系统,其特征在于,包括:
    打印材料输出系统,包括打印材料加工输送系统及多种打印材料输出设备,每种打印材料输出设备用于输出不同的打印材料;
    至少一打印材料输出设备控制系统,连接至各打印材料输出设备,用于根据待打印物体的三维模型生成打印控制指令,控制不同打印材料输出设备协同进行打印材料输出;
    监控反馈系统,连接至所述打印材料输出设备控制系统,用于实时获取待打印物体的打印进程信息,根据所述打印进程信息分析是否出现打印异常,如果是,向所述打印材料输出设备控制系统输出打印修改指令,调整对应打印材料输出设备的打印策略。
  2. 根据权利要求1所述的3D打印系统,其特征在于,还包括:
    3D模型分割模块,用于将待打印物体的三维模型切割为多个区域,所述打印材料输出设备控制系统根据三维模型的各个区域分别生成对应的区域打印控制指令,通过区域打印控制指令控制不同打印材料输出设备依次进行各区域打印材料输出。
  3. 根据权利要求1所述的3D打印系统,其特征在于,所述打印材料输出设备控制系统具体用于根据所述三维模型生成打印材料输出参数,并根据所述打印材料输出参数生成打印控制指令;所述打印材料输出参数至少包括以下一个或多个参数:打印材料输出时间、打印材料输出设备坐标、打印材料输出速度、打印材料输出角度。
  4. 根据权利要求1所述的3D打印系统,其特征在于,所述打印进程信息包括打印进程图像,所述监控反馈系统包括:
    图像采集设备,用于实时拍摄待打印物体的打印进程图像;
    图像处理单元,用于对所述打印进程图像进行处理,根据所述打印进程图像分析是否出现打印异常,所述打印异常包括:打印状态与待打印物体的三维模型有差异、质量不符合要求。
  5. 根据权利要求1所述的3D打印系统,其特征在于,所述打印进程信息包括三维信息,所述监控反馈系统包括:
    激光扫描设备,用于实时扫描待打印物体的三维信息;
    信息处理单元,用于对所述三维信息进行处理,根据所述三维信息分析是否出现打印异常,所述打印异常包括:打印状态与待打印物体的三维模型有差异、质量不符合要求。
  6. 根据权利要求1所述的3D打印系统,其特征在于,还包括:
    三维扫描设备,连接所述打印材料输出设备控制系统,用于扫描待减材区域,生成待减材物体的三维模型,并标识所述待减材物体的三维模型的减材部分;所述打印材料输出设备控制系统根据所述三维扫描设备的标识生成减材指令;
    减材设备,连接所述打印材料输出设备控制系统,根据所述减材指令执行减材操作。
  7. 根据权利要求6所述的3D打印系统,其特征在于,所述减材设备为打磨设备,用于将减材部分打磨掉。
  8. 根据权利要求6所述的3D打印系统,其特征在于,所述减材设备包括:
    挖掘设备,用于对减材部分进行挖掘;
    自动驾驶系统,用于对所述挖掘设备进行控制。
  9. 根据权利要求1所述的3D打印系统,其特征在于,所述待打印物体中起支撑作用的材料部分优先打印。
  10. 根据权利要求1所述的3D打印系统,其特征在于,所述待打印物体包括:建筑构件、金属零件、食品。
  11. 根据权利要求1所述的3D打印系统,其特征在于,打印材料输出设备包括喷头。
  12. 根据权利要求1所述的3D打印系统,其特征在于,所述3D模型分割模块为:分层模块,用于将待打印物体的三维模型切割为多层,所述打印材料输出设备控制系统根据三维模型的各层分别生成对应的层打印控制指令,通过层打印控制指令控制不同打印材料输出设备依次进行各层打印材料输出。
  13. 根据权利要求6所述的3D打印系统,其特征在于,所述待减材物体包括:坍塌体。
PCT/CN2018/083174 2018-03-02 2018-04-16 3d打印系统 WO2019165685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810174441.1A CN110216874B (zh) 2018-03-02 2018-03-02 3d打印系统
CN201810174441.1 2018-03-02

Publications (1)

Publication Number Publication Date
WO2019165685A1 true WO2019165685A1 (zh) 2019-09-06

Family

ID=67804831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083174 WO2019165685A1 (zh) 2018-03-02 2018-04-16 3d打印系统

Country Status (2)

Country Link
CN (1) CN110216874B (zh)
WO (1) WO2019165685A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2811418C1 (ru) * 2023-05-19 2024-01-11 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Автоматическая система управления процессом 3d печати изделий полного цикла

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110625944A (zh) * 2019-09-18 2019-12-31 南京航空航天大学 一种风力发电机叶片模具的3d打印方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140232035A1 (en) * 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
CN104708822A (zh) * 2015-02-13 2015-06-17 济南爱华达新材料有限公司 一种新型多功能数控3d打印设备及使用方法
CN107097406A (zh) * 2016-02-23 2017-08-29 施乐公司 用具有不同性质的不同材料构建三维打印物体的系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407823B (zh) * 2014-05-31 2017-09-22 福州大学 一种基于三视图的3d打印监视纠错方法
CN104550954A (zh) * 2014-12-19 2015-04-29 机械科学研究总院先进制造技术研究中心 一种3d打印复合铣削的金属件成形方法
CN105599108A (zh) * 2016-01-26 2016-05-25 江苏敦超电子科技有限公司 机器人打印建筑物的成型方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140232035A1 (en) * 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
CN104708822A (zh) * 2015-02-13 2015-06-17 济南爱华达新材料有限公司 一种新型多功能数控3d打印设备及使用方法
CN107097406A (zh) * 2016-02-23 2017-08-29 施乐公司 用具有不同性质的不同材料构建三维打印物体的系统和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2811418C1 (ru) * 2023-05-19 2024-01-11 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Автоматическая система управления процессом 3d печати изделий полного цикла

Also Published As

Publication number Publication date
CN110216874B (zh) 2020-10-16
CN110216874A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
Ding et al. Development of a BIM-based automated construction system
Strauss Am envelope: the potential of additive manufacturing for facade constructions
CN103454974A (zh) 复杂构件工艺方案驱动的智能数控编程方法
Brell-Cokcan et al. Rob| Arch 2012: Robotic fabrication in architecture, art and design
CN107451350B (zh) 一种基于bim建模技术空间三维异形桥墩模板施工方法
Dixit et al. Manufacturing technology in terms of digital fabrication of contemporary biomimetic structures
CN103920877A (zh) 一种slm制造金属零件易去除支撑结构设计方法
CN110561667A (zh) 鞋底成型模具及其金属3d打印制造方法
CN106649989A (zh) 一种预制钢筋笼模块分解系统及方法
CN108396858A (zh) 一种结合bim的混凝土施工方法
CN105799172A (zh) 一种3d打印建筑装饰的设备与方法
WO2019165685A1 (zh) 3d打印系统
CN101585233B (zh) 冰光固化快速成型装置及其使用方法
Willmann et al. New paradigms of the automatic: robotic timber construction in architecture
CN106166647A (zh) 一种光纤激光切割设备及其切割方法
Chen et al. Research progress of curved plates in China. I: Classification and forming methods
CN110593478A (zh) 一种装配式uhpc薄壳设计与施工方法
CN104493424B (zh) 熔覆智能锻造成形工艺
Liuti et al. Where design meets construction: a review of bending active structures
Kaseman et al. Digital fabrication in the construction sector
Lu et al. Model Analysis and Design of 3D Printing Control System Based on Cement Components
Seifi Topology optimisation and additive manufacturing of structural nodes of gridshell structures
Liu et al. Design and Experiment of Surface Shaping Robot for Precast Concrete Based on BIM
Rao et al. Research Review on Digital Technology of 3D Printing for Construction
Ott et al. Generative concrete spraying of a free-form chair–a case study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907749

Country of ref document: EP

Kind code of ref document: A1