WO2019165609A1 - 电池控制电路、电源控制系统和可移动平台 - Google Patents

电池控制电路、电源控制系统和可移动平台 Download PDF

Info

Publication number
WO2019165609A1
WO2019165609A1 PCT/CN2018/077617 CN2018077617W WO2019165609A1 WO 2019165609 A1 WO2019165609 A1 WO 2019165609A1 CN 2018077617 W CN2018077617 W CN 2018077617W WO 2019165609 A1 WO2019165609 A1 WO 2019165609A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
controller
mos transistor
signal line
electrically connected
Prior art date
Application number
PCT/CN2018/077617
Other languages
English (en)
French (fr)
Inventor
胡金刚
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880032241.0A priority Critical patent/CN110622386B/zh
Priority to EP18907941.1A priority patent/EP3761473A4/en
Priority to PCT/CN2018/077617 priority patent/WO2019165609A1/zh
Publication of WO2019165609A1 publication Critical patent/WO2019165609A1/zh
Priority to US17/003,628 priority patent/US20200395634A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to the field of UAV technologies, and in particular, to a battery control circuit, a power control system, and a movable platform.
  • the battery is an essential part of the drone, and the battery can supply power to the drone to drive the drone.
  • the drone is provided with a battery slot for accommodating the battery. After the battery is inserted into the battery compartment of the drone, the battery is electrically connected to the drone, and then the battery supplies power to the drone. The drone is turned off before the battery is inserted into the battery slot of the drone. After the battery is inserted into the battery slot of the drone, the drone is powered on according to the power provided by the battery.
  • the battery generally supplies power to the drone through a power line, wherein the power line includes: a high voltage output line and a low voltage output line, the low voltage output line is used to wake up the battery management system, and the high voltage output line is used to provide power required for powering on.
  • the battery is also connected to the switch button on the drone through the switch signal line. After the battery is just inserted into the battery slot of the drone, the high voltage output line does not output voltage. When the user presses the switch button, the output voltage of the low voltage output line is controlled. The voltage outputted by the low-voltage output line is used to wake up the battery management system.
  • the battery management system determines whether the voltage difference of each battery meets the boot condition.
  • the high-voltage output line of the battery is controlled to output power to control the drone to boot.
  • the battery is also connected to the flight controller in the drone through a communication signal line, so that the battery transmits the electrical parameters of the battery to the flight controller through the communication signal line.
  • FIG. 1 is a schematic diagram of a circuit for waking up a battery in the prior art, wherein when a user presses a switch button, the level of a port connected to the communication signal line in the battery is pulled low to drive the low voltage signal line. Output voltage to control the drone to power on. After the drone is turned on, the battery outputs electrical parameters to the flight controller through the communication signal line shown in FIG.
  • Embodiments of the present invention provide a battery control circuit, a power control system, and a movable platform for not interrupting communication between a battery and a controller even if a user mistakenly operates an operation switch, thereby ensuring normal transmission of communication data.
  • an embodiment of the present invention provides a battery control circuit, including:
  • a communication signal line for electrically connecting the controller and the battery, such that the controller is in communication connection with the battery
  • An operation switch electrically connected to the communication signal line for transmitting a switch signal to the battery through the communication signal line to control the battery to supply power to the controller;
  • a switching circuit electrically connected between the operation switch and the communication signal line for controlling communication between the operation switch and the communication signal line to be turned on or off;
  • the switch circuit controls communication disconnection between the operation switch and the communication signal line to block the operation switch transmission switch Signal to the communication signal line.
  • an embodiment of the present invention provides a power control system, including: a battery control circuit and at least one battery according to the first aspect of the present invention;
  • the battery control circuit is configured to control the at least one battery to supply power.
  • an embodiment of the present invention provides a mobile platform, including: a body, a power system, and a power control system according to the second aspect of the present invention;
  • the battery control circuit and the at least one battery are mounted to the body;
  • the at least one battery for supplying electrical energy to the power system
  • the power system is configured to provide mobile power to the movable platform.
  • the battery control circuit, the power supply control system and the movable platform provided by the embodiments of the present invention can control the communication between the operation switch and the communication signal line to be turned on or off by providing a switch circuit between the operation switch and the communication signal line.
  • the operation switch controls the battery to supply power to the controller, the communication between the open/close control switch and the communication signal line is disconnected. Therefore, even if the user mistakenly operates the operation switch, the operation switch does not affect the communication signal line. Therefore, the communication between the battery and the controller is not affected, and the normal transmission of data between the battery and the controller is ensured.
  • FIG. 1 is a schematic diagram of a circuit for waking up a battery in the prior art
  • FIG. 2 is a schematic structural diagram of a battery control circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a power control system according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a mobile platform according to an embodiment of the present invention.
  • the battery control circuit of this embodiment may include: a controller 210, a communication signal line 220, an operation switch 230, and a switch circuit 240.
  • the controller 210 is configured to control an operating state of the battery.
  • the communication signal line 220 is for electrically connecting the controller 210 and the battery such that the controller 210 is communicatively coupled to the battery.
  • the operation switch 230 is electrically connected to the communication signal line 220 for transmitting a switch signal to the battery through the communication signal line 220 to control the battery to supply power to the controller 210;
  • the switch circuit 240 is electrically connected between the operation switch 230 and the communication signal line 220 for controlling communication between the operation switch 230 and the communication signal line 220 to be turned on or off.
  • the switch circuit 240 controls communication disconnection between the operation switch 230 and the communication signal line 220 to block the The operation switch 230 transmits a switching signal to the communication signal line 220.
  • the controller 210 can be communicably connected to the battery through the communication signal line 220, and the controller 210 controls the working state of the battery through the communication signal line 220.
  • the electrical parameters of the battery can be transmitted to the controller 210 through the communication signal line 220.
  • the electrical parameters of the battery can include, for example, at least one of the following: voltage, current, etc., and the controller 210 can control the working state of the battery according to the electrical parameters of the battery. For example, when the controller 210 can meet certain conditions of the electrical parameters of the battery, the controller 210 controls the battery to supply power to the powered device to drive the powered device to operate.
  • a switch circuit 240 is disposed between the operation switch 230 and the communication signal line 220, and the switch circuit 240 can control the communication between the operation switch 230 and the communication signal line 220 to be turned on or off.
  • the switch circuit 240 controls the communication between the operation switch 230 and the communication signal line 220 to be turned on
  • the operation switch 230 can send a switch signal to the battery through the communication signal line 220.
  • the battery After receiving the switch signal, the battery according to the switch signal
  • the controller 210 is powered, the controller 210 is operational, and then the controller 210 can control the operating state of the battery.
  • the switching circuit 240 controls the communication between the operation switch 230 and the communication signal line 220 to be disconnected, the communication signal line 220 does not receive the signal from the operation switch 230, and therefore, even if the user erroneously operates the operation switch 230, the operation switch 230 The communication signal line 220 is not affected, so that the communication between the battery and the controller 210 is not affected, and the normal transmission of data between the battery and the controller 210 is ensured.
  • the state of the operation switch 230 can be, for example, a closed state or an open state. If the operation switch 230 is in the closed state, the operation switch 230 can issue a switch signal. If the operation switch 230 is in the off state, the operation switch 230 does not emit. Switching signal.
  • the operation switch 230 can be, for example, a knob switch or a button switch, etc., which is not limited in this embodiment.
  • FIG. 3 is an example in which the operation switch 230 is a push button switch, wherein FIG. 3 shows The button switch is grounded, but the embodiment is not limited thereto.
  • the operation switch 230 is a button switch
  • the button switch sends a low level signal to the battery.
  • the low level signal can be regarded as a switching signal, and the battery starts to supply power to the controller 210 after receiving the low level signal.
  • the switching circuit 240 controls the communication between the push button switch and the communication signal line 220 to be disconnected, the level signal transmitted by the push button switch does not interfere with the communication signal line 220.
  • FIG. 4 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention. As shown in FIG. 4, the battery control circuit of the present embodiment is based on the battery control circuit shown in FIG. 2 or FIG.
  • the controller 210 is electrically connected to the controller 210 for controlling the switch circuit to be turned off after the battery supplies power to the controller to control communication disconnection between the operation switch and the communication signal line.
  • the switch circuit 240 before the battery supplies power to the controller 210, the switch circuit 240 is turned on. It can also be considered that the switch circuit 240 is normally turned on. When the switch circuit 240 is turned on, the switch circuit 240 controls the operation switch 230 and the communication signal line 220. The communication between the two is turned on. After the battery supplies power to the controller 210, the controller 210 controls the switch circuit 240 to be turned off, and when the switch circuit 240 is turned off, the switch circuit 240 controls the communication between the operation switch 230 and the communication signal line 220 to be disconnected.
  • the opening of the switch circuit 240 is not controlled by the controller 210, as specifically described with respect to the battery control circuit shown in FIG. 2 or 3.
  • the switch circuit 240 is configured to automatically disconnect after the battery is powered by the controller 210.
  • the switch circuit 240 before the battery supplies power to the controller 210, the switch circuit 240 is turned on. It can also be considered that the switch circuit 240 is normally turned on.
  • the switch circuit 240 controls the operation switch 230 and the communication signal line 220. The communication between the two is turned on.
  • the switch circuit 240 is automatically turned off, and when the switch circuit 240 is turned off, the switch circuit 240 controls the communication between the operation switch 230 and the communication signal line 220 to be disconnected.
  • the switch circuit 240 may include an electronic switch, wherein the electronic switch includes at least one of the following: an insulated gate bipolar transistor, a metal oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effect) Transistor, MOS tube), solid state relay, thyristor.
  • the electronic switch includes at least one of the following: an insulated gate bipolar transistor, a metal oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effect) Transistor, MOS tube), solid state relay, thyristor.
  • FIG. 5 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • the switch circuit 240 includes a MOS transistor as an example for description.
  • the battery control circuit of the present embodiment is based on the battery control circuit shown in FIG. 2 or FIG. 3, wherein the switch circuit 240 includes a first MOS transistor 241, and the first MOS transistor 241 can control the operation switch 230 and the communication signal line.
  • the communication between 220 is turned on or off.
  • the first MOS transistor 241 is configured to control communication between the operation switch 230 and the communication signal line 220 when the first MOS transistor 241 is turned on, and to control the operation switch when the first MOS transistor 241 is turned off. Communication between 230 and communication signal line 220 is broken.
  • the first MOS transistor 241 is configured to be turned on when the level difference between the source of the first MOS transistor 241 and the gate of the first MOS transistor 241 meets a preset condition.
  • the communication between the operation switch 230 and the communication signal line 220 is turned on; and the level difference between the source of the first MOS transistor 241 and the gate of the first MOS transistor 241 is not satisfied.
  • the preset condition is turned off to control communication disconnection between the operation switch 230 and the communication signal line 220.
  • the switch circuit 240 further includes a first capacitor 242 and a first resistor 243, and two ends of the first capacitor 242 are electrically connected to the source and the gate of the first MOS transistor 241, respectively.
  • the gate of the first MOS transistor 241 is electrically connected between the first capacitor 242 and the first resistor 243, and the source of the first MOS transistor 241 is electrically connected to the communication signal line 220 and the Between the first capacitors 242, the drain of the first MOS transistor 241 is electrically connected to the operation switch 230.
  • the switching circuit 240 of this embodiment controls the conduction or disconnection of the first MOS transistor through the first capacitor 242 and the first resistor 243.
  • the first capacitor 242 is configured to be charged by the first resistor 243 when the first MOS transistor 241 is turned off, and to control the level drop of the gate during charging. Until the level difference between the source and the gate meets a preset condition; and is used to discharge through the first resistor 243 when the first MOS transistor 241 is turned on, and is controlled during discharge The level of the gate of the first MOS transistor 241 rises until the level difference between the source and the gate does not satisfy the preset condition.
  • the battery when the battery is inserted into the battery control circuit, the battery outputs a high level (for example, 3.3V or 5V, etc.) to the communication signal line 220, so the source of the first MOS transistor 241 is extremely high, and The source of the first MOS transistor 241 is connected to the first capacitor 242 and the first resistor 243 in sequence.
  • the first resistor 243 in this embodiment can be grounded, so the first capacitor 242 can be charged by the first resistor 243.
  • the gate of the first MOS transistor 241 is connected between the first capacitor 242 and the first resistor 243, the gate of the first MOS transistor 241 is in the process of charging the first capacitor 242 through the first resistor 243. The level is decreased.
  • the first MOS transistor 241 When the level of the gate of the first MOS transistor 241 drops to a level difference between the source of the first MOS transistor and the gate of the first MOS transistor 241, the first MOS transistor 241 leads. The communication between the operation switch 230 and the communication signal line 220 is turned on.
  • the operation switch 230 as a push button switch, and one end of the push switch is also grounded. Therefore, when the user presses the operation switch 230, the operation switch 230 is in an open state, and since the operation switch 230 is grounded, the operation switch 230 is operated. The level is pulled low to a low level (for example, 0 V), and accordingly, the level of the drain of the first MOS transistor 241 electrically connected to the operation switch 230 is also pulled low.
  • a low level for example, 0 V
  • the level of the drain of the first MOS transistor 241 affects the level of the source of the first MOS transistor, so that the level of the source of the first MOS transistor 241 is lowered to Low level, since the source of the first MOS transistor 241 is electrically connected to the battery through the communication signal line 220, when the level of the source of the first MOS transistor 241 is at a low level, the level of the communication signal line 220 is also Low, after the battery detects a low level through the communication signal line 220, the battery begins to supply power to the controller 210.
  • the first capacitor 242 is discharged, so that the level of the gate of the first MOS transistor 241 is raised, and then the source of the first MOS transistor 241 is The level difference between the gates of the first MOS transistor 241 may change.
  • the first The MOS transistor 241 is turned off.
  • the communication between the operation switch 230 and the communication signal line 220 is also disconnected, and therefore, even if the user erroneously operates the operation switch 230, the communication signal line 220 is not disturbed.
  • the battery control circuit of the present embodiment further includes a power supply signal line 250.
  • the power supply signal line 250 is for electrically connecting the controller 210 and the battery such that the battery supplies power to the controller through the power supply signal line 250.
  • the controller 210 in this embodiment is also electrically connected to the battery through the power supply signal line 250, and the battery supplies power to the controller 210 through the power supply signal line, wherein the output level of the battery is high when the power is supplied to the controller 210 through the power supply signal line.
  • Flat eg 3.3V or 5V, etc.
  • the switch circuit 240 of the present embodiment further includes a first diode 244.
  • the anode of the first diode 244 is electrically connected to the gate of the first MOS transistor 241, and the anode of the first diode 244 is electrically connected to the power supply signal line 250.
  • the battery further supplies power to the gate of the first MOS transistor 241 through the power supply signal line 250 to control the level of the gate of the first MOS transistor 241. rise.
  • the battery is powered by the power supply signal line 250 to the controller 210, and the positive pole of the first diode 244 is also electrically connected to the power supply signal line 250.
  • the level of the battery output through the power supply signal line is a high level, and since the positive electrode of the first diode 244 is electrically connected to the power supply signal line, the battery outputs high power through the power supply signal line.
  • the first diode 244 is turned on, and then the battery supplies power to the gate of the first MOS transistor 241, and the level of the gate of the first MOS transistor 241 rises until the level of the gate of the first MOS transistor 241 is The output levels of the batteries are the same, and the level of the gate of the first MOS transistor 241 is at a high level.
  • the gate of the first MOS transistor 241 is at a high level, which causes the level difference between the source of the first MOS transistor 241 and the gate of the first MOS 241 not to satisfy the preset condition. Thereby, the first MOS transistor 241 is locked, that is, the first MOS transistor 241 is in an off state. Therefore, in this embodiment, the gate of the first MOS transistor 241 is electrically connected to the first diode 244, and the first diode 244 is electrically connected to the battery, thereby ensuring that the first MOS transistor 241 is not supplied after the battery is powered by the controller 210. Will be turned on.
  • the first diode 244 can prevent the high level of the source of the first MOS transistor 241 from being pulled low to low by the first capacitor 242 and the power supply signal line 250 connected to the battery when the battery is inserted into the battery control circuit. Flat, avoiding the power supply to the controller as soon as the battery is inserted into the battery control circuit without the control of the operating switch.
  • FIG. 6 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • the battery control circuit of the embodiment is based on the battery control circuit shown in FIG. 5
  • the switch circuit 240 further includes a second MOS transistor 245 electrically connected between the first diode 244 and the power supply signal line 250; the second MOS transistor 245 for controlling the first diode
  • the electrical connection between the tube 244 and the power supply signal line 250 is conducted such that the battery supplies power to the gate of the first MOS transistor 241.
  • the electrical connection between the first diode 244 and the power supply signal line 250 is turned on, and then the battery can supply power to the gate of the first MOS transistor 241 through the power supply signal line 250.
  • the second MOS transistor 245 is also electrically coupled to the controller 210.
  • the controller 210 is configured to control the second MOS transistor 245 to be turned on to control electrical connection between the first diode 244 and the power supply signal line 250.
  • the second MOS transistor 245 is controlled by the controller 210, the controller 210 controls whether the second MOS transistor is turned on or off, and the second MOS transistor 245 can be considered to be normally disconnected. After the battery is powered by the controller 210, the controller controls the second The second MOS transistor 245 is turned on. When the second MOS transistor 245 is turned on, the electrical connection between the first diode 244 and the power supply signal line 250 is also turned on, and then the battery can pass through the power supply signal line 250 to the first MOS transistor. The gate of 241 is powered.
  • the source of the second MOS transistor 245 is electrically connected to the power supply signal line 250, and the gate of the second MOS transistor 245 is electrically connected to the controller 210, the second MOS The drain of the tube 245 is electrically coupled to the anode of the first diode 244.
  • the controller 210 is configured to control a level decrease of a gate of the second MOS transistor 245 until a level difference between a source of the second MOS transistor 245 and a gate of the second MOS transistor 245 Turns on when the preset conditions are met.
  • the source of the second MOS transistor 245 is electrically connected to the power supply signal line, so that the source of the second MOS transistor 245 is at a high level, and the controller 210 controls the second.
  • the level of the gate of the MOS transistor 245 is lowered.
  • the controller 210 is electrically connected to the gate of the second MOS transistor 245, and the controller 210 can emit a low level signal to the gate of the second MOS transistor 245, so that the second The level of the gate of the MOS transistor 245 is at a low level, so that the second MOS transistor 245 is turned on, and after the second MOS transistor 245 is turned on, the battery can supply power to the gate of the first MOS transistor.
  • FIG. 7 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention. As shown in FIG. 7, the battery control circuit of the present embodiment further includes a signal output circuit 260 on the basis of the foregoing embodiments. The signal output circuit 260 is electrically connected between the operation switch 230 and the controller 210.
  • the signal output circuit 260 is configured to output different levels to the controller according to different states of the operation switch 230 after the operation switch 230 controls the battery to start power supply to the controller.
  • the controller 210 is configured to output a corresponding control signal according to the level output by the signal output circuit 260.
  • the switch circuit 240 also controls the communication between the operation switch 230 and the communication signal line 220 to be disconnected, and the user operates the operation switch 230 without interfering with the communication.
  • Signal line a signal output circuit 260 is further disposed between the operation switch 230 and the controller 210, and the user can operate the operation switch 230 such that the operation switch 230 is in a different state, since the signal output circuit 260 is electrically connected to the operation switch 230.
  • the state of the operation switch 230 is different, the signal output circuit 260 outputs a different level to the controller 210, and then the controller 210 outputs a corresponding control signal according to the level output by the signal output circuit 260. Therefore, after the communication between the operation switch 230 and the communication signal line 220 is disconnected, the user can also implement other control functions by operating the operation switch 230.
  • control signal comprises at least one of: a control signal for controlling the battery reset and restart, and a control signal for controlling a powered device to perform a corresponding action.
  • FIG. 8 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • the signal output circuit 260 includes: a second capacitor 261 and a second Resistor 262.
  • the second resistor 262 is electrically connected between the second capacitor 261 and the battery, and the controller 210 is electrically connected to the second capacitor 261.
  • the second capacitor 261 is configured to be charged by the second resistor 262 and output to the controller 210 when the operating switch 230 is in a closed state after the battery starts supplying power to the controller 210.
  • a high level discharges when the operation switch 230 is in an off state and outputs a low level to the controller 210.
  • the second resistor 262 is electrically connected between the second capacitor 261 and the battery.
  • the second resistor 262 is electrically connected to the power supply signal line that the battery supplies to the controller 210, and the battery is powered by the controller 210. After that, the level of the output of the power supply signal line is a high level. If the user operates the operation switch 230 to be in the off state, the battery charges the second capacitor 261 through the power supply signal line and the second resistor 262, and when the second capacitor 261 is charged, The controller 210 is electrically connected between the second capacitor 261 and the second resistor 262, and the controller 210 detects a low level.
  • the controller 210 may then output a corresponding control signal according to the detected duration of at least one of: a low level, a high level, a low level, and a high level.
  • the signal output circuit 260 further includes: a second diode 263; wherein a positive electrode of the second diode 263 is electrically connected to the second resistor 262 and the second capacitor 261 The negative electrode of the second diode 263 is electrically connected between the switch circuit 240 and the operation switch 230.
  • the second diode 263 of the embodiment can prevent the drain of the first MOS transistor 241 from being pulled low to a low level before the button switch sends a switch signal to the battery, thereby preventing the battery from being inserted into the battery control circuit. Power is supplied to the controller without the control of the operating switch.
  • controllers 210 shown in FIG. 8 are actually the same controller 210.
  • FIG. 9 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • the battery control circuit of this embodiment is based on any of the above embodiments, the number of the battery and the communication.
  • the number of the signal lines 220 is N, and the N is an integer greater than or equal to 2; the N batteries are electrically connected to the N communication signal lines in one-to-one correspondence;
  • the N communication signal lines 220 are connected in parallel to the switch circuit 240.
  • the switch circuit 240 can control the communication between the operation switch 230 and the N communication signal lines 220 to be turned on, and the operation switch 230 can respectively pass through the N communication signal lines 220.
  • a switching signal is sent to the N batteries to control the N batteries to supply power to the controller 210. Therefore, as long as any one of the N communication signal lines 220 is electrically connected to the battery, the battery control circuit of the present embodiment can control the battery to supply power.
  • the switch button is electrically connected to a communication signal line.
  • the powered device can be powered by multiple batteries, only when the battery is inserted into the powered device and connected to the switch button When the signal line is connected, the switch button can control the battery to supply power to the controller. If the battery is inserted into the powered device but is not connected to the communication signal line connected to the switch button, the switch button cannot control the battery to supply power to the controller. Therefore, the prior art The switch button can only control one battery to power the controller.
  • the embodiment of the present invention circumvents the defects in the prior art. When a battery is inserted into the power supply device to electrically connect the communication signal line, the embodiment can control the battery to supply power to the controller. Therefore, the embodiment can control multiple The battery supplies power to the controller.
  • the battery control circuit of the present embodiment further includes: N third diodes 270, the anodes of the N third diodes 270 are connected in parallel to the switch circuit 240, and the N The cathodes of the third diodes 270 are electrically connected to the N of the communication signal lines 220 in one-to-one correspondence.
  • the third diode 270 in this embodiment can avoid mutual interference of data between the respective batteries.
  • FIG. 10 is a schematic structural diagram of a power control system according to an embodiment of the present invention.
  • the power control system 1000 of the present embodiment may include: a battery control circuit 1001 and at least one battery 1002.
  • the battery control circuit 1001 is configured to control the at least one battery 1002 to supply power.
  • the battery control circuit 1001 may adopt the structure of any of the foregoing embodiments, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a mobile platform according to an embodiment of the present invention.
  • the mobile platform of the present embodiment may include: a body 1101, a power system 1102, and a power control system 1103.
  • the power control system 1103 can adopt the structure of the foregoing embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the battery control circuit 1103a and the at least one battery 1103b in the power control system 1103 are mounted on the body 1101. At least one battery 1103b may be externally attached to the body 1101 or may be mounted in the body 1101.
  • the at least one battery 1103b is configured to supply power to the power system 1102;
  • the power system 1102 is configured to provide mobile power to the movable platform.
  • the movable platform is a drone or a ground remote control robot.

Abstract

一种电池控制电路、电源控制系统和可移动平台。电池控制电路包括:控制器(210),用于控制电池的工作状态;通信信号线(220),用于电连接控制器与电池,使得控制器与电池通信连接;操作开关(230),与通信信号线电连接,用于通过通信信号线发送开关信号给电池,以控制电池给控制器供电;以及开关电路(240),电连接于操作开关与通信信号线之间,用于控制操作开关与通信信号线之间的通信导通或断开。当操作开关控制电池给控制器开始供电后,开关电路控制操作开关与通信信号线之间的通信断开,以阻止操作开关发送开关信号至通信信号线。因此,操作开关不会影响到通信信号线,从而不会影响到电池与控制器之间的通信,保证了电池与控制器之间数据的正常传输。

Description

电池控制电路、电源控制系统和可移动平台 技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种电池控制电路、电源控制系统和可移动平台。
背景技术
电池是无人机的必要部件,电池可以给无人机提供电能,以驱动无人机工作。其中,无人机中开设有电池槽,该电池槽用于容纳电池。在电池插入至无人机的电池槽中后,电池与无人机实现电连接,然后由电池给无人机提供电能。其中,在电池未插入无人机的电池槽前,无人机处于关机状态,在电池插入到无人机的电池槽后,无人机再根据电池提供的电能来开机。
电池一般通过电源线向无人机提供电能,其中,电源线包括:高压输出线和低压输出线,低压输出线用于唤醒电池管理系统,高压输出线用于提供开机所需的电能。而且电池还通过开关信号线与无人机上的开关按键连接,在电池刚插入到无人机的电池槽中后,高压输出线未输出电压,当用户按压开关按键,控制低压输出线输出电压,该低压输出线输出的电压用于唤醒电池管理系统,由电池管理系统判断各电池的电压差是否满足开机条件,若满足开机条件,则控制电池的高压输出线输出电能,以控制无人机开机。另外,电池还与无人机中的飞行控制器通过通信信号线连接,以便于电池将电池的电参数通过通信信号线传输给飞行控制器。
目前可将上述的开关信号线连接到通信信号线,以将开关信号线引角与通信信号线引脚合并为一个引脚,以减少电池的引脚数量,从而可以减少体积与体积。如图1所示,图1为现有技术中唤醒电池的电路的示意图,其中,当用户按下开关按键后,电池中与通信信号线连接的端口的电平被拉低,驱使低压信号线输出电压,以便控制无人机开机。在无人机开机后,电池通过图1所示的通信信号线向飞行控制器输出电参数。
但是,在上述开关信号线连接到上述通信信号线的情况下,如果用户误操作无人机的上述开关按键,会中断电池与飞行控制器之间的通信,造成数 据丢失。
发明内容
本发明实施例提供一种电池控制电路、电源控制系统和可移动平台,用于即使用户误操作操作开关,也不会中断电池与控制器之间的通信,保证通信数据正常传输。
第一方面,本发明实施例提供一种电池控制电路,包括:
控制器,用于控制电池的工作状态;
通信信号线,用于电连接所述控制器与所述电池,使得所述控制器与所述电池通信连接;
操作开关,与所述通信信号线电连接,用于通过所述通信信号线发送开关信号给所述电池,以控制所述电池给所述控制器供电;以及
开关电路,电连接于所述操作开关与所述通信信号线之间,用于控制所述操作开关与所述通信信号线之间的通信导通或断开;
其中,当所述操作开关控制所述电池给所述控制器开始供电之后,所述开关电路控制所述操作开关与所述通信信号线之间的通信断开,以阻止所述操作开关发送开关信号至所述通信信号线。
第二方面,本发明实施例提供一种电源控制系统,包括:第一方面本发明实施例所述的电池控制电路和至少一个电池;
所述电池控制电路,用于控制所述至少一个电池进行供电。
第三方面,本发明实施例提供一种可移动平台,包括:机体、动力系统以及第二方面本发明实施例所述的电源控制系统;
所述电池控制电路以及所述至少一个电池安装于所述机体;
所述至少一个电池,用于向所述动力系统提供电能;
所述动力系统,用于给所述可移动平台提供移动动力。
本发明实施例提供的电池控制电路、电源控制系统和可移动平台,通过在操作开关与通信信号线之间设置开关电路,开关电路可以控制操作开关与通信信号线之间的通信导通或断开,在操作开关控制电池向控制器供电后,开电关路控制操作开关与通信信号线之间的通信断开,因此,即使用户误操作操作开关,操作开关均不会影响到通信信号线,从而不会影响到电池与控 制器之间的通信,保证了电池与控制器之间数据的正常传输。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中唤醒电池的电路的示意图;
图2为本发明一实施例提供的电池控制电路的结构示意图;
图3为本发明另一实施例提供的电池控制电路的结构示意图;
图4为本发明另一实施例提供的电池控制电路的结构示意图;
图5为本发明另一实施例提供的电池控制电路的结构示意图;
图6为本发明另一实施例提供的电池控制电路的结构示意图;
图7为本发明另一实施例提供的电池控制电路的结构示意图;
图8为本发明另一实施例提供的电池控制电路的结构示意图;
图9为本发明另一实施例提供的电池控制电路的结构示意图;
图10为本发明一实施例提供的电源控制系统的结构示意图;
图11为本发明一实施例提供的可移动平台的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2为本发明一实施例提供的电池控制电路的结构示意图,如图2所示,本实施例的电池控制电路可以包括:控制器210、通信信号线220、操作开关230以及开关电路240。
控制器210,用于控制电池的工作状态。
通信信号线220,用于电连接所述控制器210与所述电池,使得所述控 制器210与所述电池通信连接。
操作开关230,与所述通信信号线220电连接,用于通过所述通信信号线220发送开关信号给所述电池,以控制所述电池给所述控制器210供电;以及
开关电路240,电连接于所述操作开关230与所述通信信号线220之间,用于控制所述操作开关230与所述通信信号线220之间的通信导通或断开。
其中,当所述操作开关230控制所述电池给所述控制器210开始供电之后,所述开关电路240控制所述操作开关230与所述通信信号线220之间的通信断开,以阻止所述操作开关230发送开关信号至所述通信信号线220。
本实施例中,控制器210可以通过通信信号线220与电池通信连接,控制器210通过通信信号线220控制电池的工作状态。其中,电池的电参数可以通过通信信号线220传输给控制器210,电池的电参数例如可以包括以下至少一项:电压、电流等,控制器210可以根据电池的电参数控制电池的工作状态,例如控制器210可以在电池的电参数满足一定条件时,则控制器210控制电池向被供电设备供电,驱使被供电设备工作。
本实施例在操作开关230与通信信号线220之间设置有开关电路240,开关电路240可以控制操作开关230与通信信号线220之间的通信导通或者断开。在开关电路240控制操作开关230与通信信号线220之间的通信导通时,操作开关230可以通过通信信号线220向电池发送开关信号,电池在接收到开关信号后,电池根据该开关信号向控制器210供电,控制器210即可工作,然后控制器210可以控制电池的工作状态。在开关电路240控制操作开关230与通信信号线220之间的通信断开时,通信信号线220不会接收到操作开关230发出的信号,因此,即使用户误操作操作开关230,操作开关230均不会影响到通信信号线220,从而不会影响到电池与控制器210之间的通信,保证了电池与控制器210之间数据的正常传输。
其中,操作开关230的状态例如可以为闭合状态或者断开状态,若操作开关230处于闭合状态,则操作开关230可以发出开关信号,若操作开关230处于断开状态,则操作开关230不会发出开关信号。
在一些实施例中,操作开关230例如可以是旋钮开关或者按键开关等,本实施例对此不做限定,其中,图3以操作开关230为按键开关为例进行图 示,其中图3中示出按键开关接地,但本实施例并不限于此,在操作开关230为按键开关时,用户按下按键开关,此时按键开关闭合,在开关电路240控制按键开关与通信信号线220之间的通信导通的情况下,按键开关会向电池发送低电平信号,该低电平信号可以认为是开关信号,电池在接收到低电平信号后开始给控制器210供电。在开关电路240控制按键开关与通信信号线220之间的通信断开的情况下,按键开关发送的电平信号不会干扰到通信信号线220。
图4本发明另一实施例提供电池控制电路的结构示意图,如图4所示,本实施例的电池控制电路在图2或图3所示的电池控制电路的基础上,所述开关电路240电连接控制器210,控制器210,用于在所述电池给所述控制器供电后,控制开关电路断开,以控制所述操作开关与所述通信信号线之间的通信断开。
本实施例中,在电池给控制器210供电前,开关电路240是开启的,也可以认为开关电路240常态开启,在开关电路240开启时,开关电路240控制操作开关230与通信信号线220之间的通信导通。在电池给控制器210供电后,控制器210控制开关电路240断开,在开关电路240断开时,开关电路240控制操作开关230与通信信号线220之间的通信断开。
在另一些实施例中,开关电路240的断开不受控于控制器210,具体参见图2或图3所示的电池控制电路。开关电路240,用于在电池向控制器210供电后自动断开。本实施例中,在电池给控制器210供电前,开关电路240是开启的,也可以认为开关电路240常态开启,在开关电路240开启时,开关电路240控制操作开关230与通信信号线220之间的通信导通。在电池给控制器210供电后,开关电路240自动断开,在开关电路240断开时,开关电路240控制操作开关230与通信信号线220之间的通信断开。
在上述各实施例的基础上,开关电路240可以包括电子开关,其中,电子开关包括如下至少一种:绝缘栅双极型晶体管,金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOS管),固态继电器,晶闸管。
图5为本发明另一实施例提供的电池控制电路的结构示意图,如图5所示,本实施例以开关电路240包括MOS管为例进行说明。本实施例的电池控 制电路在图2或图3所示的电池控制电路的基础上,上述的开关电路240包括第一MOS管241,该第一MOS管241可以控制操作开关230与通信信号线220之间的通信导通或者断开。其中,第一MOS管241,用于在第一MOS管241导通时,控制操作开关230与通信信号线220之间的通信导通,以及在第一MOS管241断开时,控制操作开关230与通信信号线220之间的通信断开。
在一些实施例中,第一MOS管241,用于在所述第一MOS管241的源极与所述第一MOS管241的栅极的电平差满足预设条件时导通,以控制所述操作开关230与所述通信信号线220之间的通信导通;以及用于在所述第一MOS管241的源极与所述第一MOS管241的栅极的电平差不满足预设条件时断开,以控制所述操作开关230与所述通信信号线220之间的通信断开。
在一些实施例中,上述的开关电路240还包括第一电容242和第一电阻243,所述第一电容242的两端分别电连接所述第一MOS管241的源极和栅极,所述第一MOS管241的栅极电连接于所述第一电容242与所述第一电阻243之间,所述第一MOS管241的源极还电连接所述通信信号线220与所述第一电容242之间,所述第一MOS管241的漏极电连接所述操作开关230。本实施例开关电路240通过设置的第一电容242和第一电阻243来控制第一MOS管的导通或断开。
在一些实施例中,所述第一电容242,用于在所述第一MOS管241断开时通过所述第一电阻243充电,并在充电的过程中控制所述栅极的电平下降,直至所述源极与所述栅极的电平差满足预设条件;以及用于在所述第一MOS管241导通时通过所述第一电阻243放电,并在放电的过程中控制所述第一MOS管241的栅极的电平上升,直至所述源极与所述栅极的电平差不满足预设条件。
本实施例中,在电池插到电池控制电路上时,电池给通信信号线220输出的是高电平(例如3.3V或者5V等),因此第一MOS管241的源极为高电平,而且第一MOS管241的源极依次连接第一电容242和第一电阻243,本实施例中的第一电阻243可以接地,所以第一电容242可以通过第一电阻243充电。又由于第一MOS管241的栅极连接在第一电容242与第一电阻243之间,因此,在第一电容242通过第一电阻243充电的过程中,第一MOS 管241的栅极的电平下降,当第一MOS管241的栅极的电平下降至第一MOS管的源极与第一MOS管241的栅极的电平差满足预设条件时,第一MOS管241导通,从而操作开关230与通信信号线220之间的通信导通。
其中,图5以操作开关230为按键开关为例示出,且按键开关的一端还接地,因此当用户按压操作开关230时,操作开关230处于开启状态,由于操作开关230接地,因此操作开关230的电平拉低为低电平(例如0V),相应地,与操作开关230电连接的第一MOS管241的漏极的电平也拉低为低电平。另外由于第一MOS管241导通,所以第一MOS管241的漏极的电平影响到第一MOS管的源极的电平,使得第一MOS管241的源极的电平拉低为低电平,由于第一MOS管241的源极通过通信信号线220与电池电连接,因此,在第一MOS管241的源极的电平为低电平时,通信信号线220的电平也为低电平,在电池通过通信信号线220检测到低电平后,电池开始给控制器210供电。
在第一MOS管的源极的电平拉低为低电平后,第一电容242放电,使得第一MOS管241的栅极的电平升高,然后第一MOS管241的源极与第一MOS管241的栅极之间的电平差会发生变化,当第一MOS管241的源极与第一MOS管的栅极之间的电平差不满足预设条件时,第一MOS管241断开。在第一MOS管241断开时,操作开关230与通信信号线220之间的通信也断开,因此,即使用户误操作操作开关230,也不会干扰到通信信号线220。
在一些实施例中,本实施例的电池控制电路还包括:供电信号线250。所述供电信号线250用于电连接所述控制器210与所述电池,使得所述电池通过所述供电信号线250向所述控制器供电。本实施例中的控制器210还通过供电信号线250与电池电连接,电池通过供电信号线向控制器210供电,其中,电池通过供电信号线向控制器210供电时输出的电平为高电平(例如3.3V或者5V等)。
本实施例的开关电路240还包括第一二极管244。其中,该第一二极管244的负极电连接第一MOS管241的栅极,第一二极管244的正极电连接所述供电信号线250。本实施例中,所述电池在开始向控制器210供电后,还通过所述供电信号线250向第一MOS管241的栅极供电以控制所述第一MOS管241的栅极的电平上升。本实施例中,电池通过供电信号线250向控制器 210供电,第一二极管244的正极也电连接到该供电信号线250。在电池开始向控制器210供电后,电池通过供电信号线输出的电平为高电平,由于第一二极管244的正极电连接到该供电信号线,在电池通过供电信号线输出高电平时,第一二极管244导通,然后电池向第一MOS管241的栅极供电,第一MOS管241的栅极的电平上升,直至第一MOS管241的栅极的电平与电池的输出电平相同,此时第一MOS管241的栅极的电平为高电平。因此,电池向控制器开始供电后,第一MOS管241的栅极为高电平,这会导致第一MOS管241的源极与第一MOS241的栅极的电平差不满足预设条件,从而锁死第一MOS管241,即第一MOS管241处于断开状态。因此,本实施例将第一MOS管241的栅极电连接第一二极管244,并且第一二极管244电连接电池,从而保证电池向控制器210供电后,第一MOS管241不会导通。
第一二极管244可以防止电池插入到电池控制电路上时,第一MOS管241的源极的高电平通过第一电容242和与电池连接的供电信号线250而被拉低为低电平,避免了电池一插入到电池控制电路上未经操作开关的控制就向控制器供电。
图6为本发明另一实施例提供的电池控制电路的结构示意图,如图6所示,本实施例的电池控制电路在图5所示的电池控制电路的基础上,开关电路240还包括第二MOS管245,所述第二MOS管245电连接于所述第一二极管244与所述供电信号线250之间;所述第二MOS管245,用于控制所述第一二极管244与所述供电信号线250之间的电连接导通,使得所述电池向所述第一MOS管241的栅极供电。
其中,在第二MOS管245导通时,第一二极管244与供电信号线250之间的电连接导通,然后电池可以通过供电信号线250向第一MOS管241的栅极供电。
在一些实施例中,所述第二MOS管245还电连接控制器210。所述控制器210,用于控制所述第二MOS管245导通以控制所述第一二极管244与所述供电信号线250之间的电连接导通。第二MOS管245受控于控制器210,控制器210控制第二MOS管导通还是断开,第二MOS管245可以认为常态断开,在电池向控制器210供电后,控制器控制第二MOS管245导通,在第二MOS管245导通时,第一二极管244与供电信号线250之间的电连接也导 通,然后电池可以通过供电信号线250向第一MOS管241的栅极供电。
在一些实施例中,所述第二MOS管245的源极与所述供电信号线250电连接,所述第二MOS管245的栅极与所述控制器210电连接,所述第二MOS管245的漏极与所述第一二极管244的正极电连接。
所述控制器210,用于控制所述第二MOS管245的栅极的电平下降,直至所述第二MOS管245的源极与所述第二MOS管245的栅极的电平差满足预设条件时导通。
本实施例中,电池向控制器210供电后,由第二MOS管245的源极与供电信号线电连接,因此第二MOS管245的源极为高电平,而且,控制器210控制第二MOS管245的栅极的电平下降,例如:控制器210与第二MOS管245的栅极电连接,控制器210可以向第二MOS管245的栅极发出低电平信号,使得第二MOS管245的栅极的电平为低电平,从而使得第二MOS管245导通,第二MOS管245导通后,电池可以向第一MOS管的栅极供电。
图7为本发明另一实施例提供的电池控制电路的结构示意图,如图7所示,本实施例的电池控制电路在上述各实施例的基础上,还包括信号输出电路260。所述信号输出电路260电连接在所述操作开关230与所述控制器210之间。
所述信号输出电路260,用于当所述操作开关230控制所述电池给所述控制器开始供电之后,根据所述操作开关230的状态不同,向所述控制器输出不同的电平。
所述控制器210,用于根据所述信号输出电路260输出的电平,输出相应的控制信号。
本实施例中,在操作开关230控制电池向控制器210开始供电后,开关电路240也控制操作开关230与通信信号线220之间的通信断开,用户操作操作开关230,不会干扰到通信信号线。另外,本实施例还在操作开关230与控制器210之间设置有信号输出电路260,用户可以操作操作开关230,使得操作开关230处于不同的状态,由于信号输出电路260与操作开关230电连接,操作开关230的状态不同,信号输出电路260会向控制器210输出不同的电平,然后控制器210,根据信号输出电路260输出的电平,输出相应的控制信号。因此,在操作开关230与通信信号线220之间的通信断开后, 用户通过操作操作开关230还可以实现其它控制功能。
在一些实施例中,所述控制信号包括以下至少一种:用于控制所述电池复位重启的控制信号,用于控制被供电设备执行相应动作的控制信号。
图8为本发明另一实施例提供的电池控制电路的结构示意图,如图8所示,本实施例在上述实施例的基础上,所述信号输出电路260包括:第二电容261和第二电阻262。
所述第二电阻262电连接在所述第二电容261和所述电池之间,且所述控制器210电连接在所述第二电容261。
所述第二电容261,用于在所述电池给所述控制器210开始供电之后,在所述操作开关230处于闭合状态时,通过所述第二电阻262充电并向所述控制器210输出高电平,在所述操作开关230处于断开状态时放电并向所述控制器210输出低电平。
本实施例中,第二电阻262电连接在第二电容261与电池之间,例如:第二电阻262电连接到电池给控制器210供电的供电信号线上,在电池给控制器210开始供电后,供电信号线输出的电平为高电平,如果用户操作操作开关230处于断开状态,电池通过供电信号线和第二电阻262向第二电容261充电,第二电容261充电时,由于控制器210电连接在第二电容261与第二电阻262之间,控制器210检测到低电平。如果用户操作操作开关230处于闭合状态,第二电容261放电,控制器210检测到低电平。然后控制器210可以根据检测到的以至少一种:低电平的时长、高电平的时长、低电平的次数、高电平的次数来输出对应的控制信号。
在一些实施例中,所述信号输出电路260还包括:第二二极管263;其中,所述第二二极管263的正极电连接在所述第二电阻262与所述第二电容261之间,所述第二二极管263的负极电连接在所述开关电路240与所述操作开关230之间。本实施例的第二二极管263可以防止在按键开关向电池发送开关信号之前第一MOS管241的漏极由高电平拉低为低电平,避免了电池一插入到电池控制电路上未经操作开关的控制就向控制器供电。
需要说明的是,图8中所示的两个控制器210其实为同一控制器210。
图9为本发明另一实施例提供的电池控制电路的结构示意图,如图9所示,本实施例的电池控制电路在上述任一实施例的基础上,所述电池的数量 和所述通信信号线220的数量均为N,所述N为大于或等于2的整数;所述N个电池与所述N个通信信号线一一对应电连接;
其中,所述N个所述通信信号线220并联连接到所述开关电路240。
由于N个通信信号线220并联连接到开关电路240,在开关电路240可以控制操作开关230与N个通信信号线220之间的通信均导通,操作开关230可以通过N个通信信号线220分别向N个电池发送开关信号,以控制N个电池均向控制器210供电。因此,只要N个通信信号线220中任一通信信号线220电连接到电池,本实施例的电池控制电路可以控制该电池进行供电。而现有技术中,如图1所示,开关按键是电连接到一个通信信号线,如果被供电设备可以由多个电池供电时,只有当电池插入到被供电设备并与开关按键连接的通信信号线连接时,开关按键才能控制电池向控制器供电,若电池插入到被供电设备但未与开关按键连接的通信信号线连接时,开关按键无法控制电池向控制器供电,因此,现有技术的开关按键只能控制一个电池给控制器供电。而本发明实施例规避了现有技术中的缺陷,只要有电池插入到被供电设备电连接通信信号线时,本实施例就可以控制电池向控制器供电,因此,本实施例可以控制多个电池向控制器供电。
在一些实施例中,本实施例的电池控制电路还包括:N个第三二极管270,所述N个第三二极管270的正极并联连接到所述开关电路240,并且所述N个第三二极管270的负极与所述N个所述通信信号线220一一对应电连接。本实施例中的第三二极管270可以避免各个电池之间数据的相互干扰。
图10为本发明一实施例提供的电源控制系统的结构示意图,如图10所示,本实施例的电源控制系统1000可以包括:电池控制电路1001和至少一个电池1002。所述电池控制电路1001,用于控制所述至少一个电池1002进行供电。其中,所述电池控制电路1001可以采用上述任一实施例的结构,其实现原理和技术效果类似,此处不再赘述。
图11为本发明一实施例提供的可移动平台的结构示意图,如图11所示,本实施例的可移动平台可以包括:机体1101、动力系统1102以及电源控制系统1103。其中,所述电源控制系统1103可以采用上述实施例的结 构,其实现原理和技术效果类似,此处不再赘述。
其中,电源控制系统1103中的电池控制电路1103a以及至少一个电池1103b安装于所述机体1101。至少一个电池1103b可以外挂在机体1101外,也可以安装在机体1101内。
所述至少一个电池1103b,用于向所述动力系统1102提供电能;
所述动力系统1102,用于给所述可移动平台提供移动动力。
在一些实施例中,所述可移动平台为无人机或者地面摇控机器人。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

  1. 一种电池控制电路,其特征在于,包括:
    控制器,用于控制电池的工作状态;
    通信信号线,用于电连接所述控制器与所述电池,使得所述控制器与所述电池通信连接;
    操作开关,与所述通信信号线电连接,用于通过所述通信信号线发送开关信号给所述电池,以控制所述电池给所述控制器供电;以及
    开关电路,电连接于所述操作开关与所述通信信号线之间,用于控制所述操作开关与所述通信信号线之间的通信导通或断开;
    其中,当所述操作开关控制所述电池给所述控制器开始供电之后,所述开关电路控制所述操作开关与所述通信信号线之间的通信断开,以阻止所述操作开关发送开关信号至所述通信信号线。
  2. 根据权利要求1所述的电池控制电路,其特征在于,所述开关电路包括第一金属氧化物半导体场效应晶体管MOS管,
    所述第一MOS管,用于在所述第一MOS管的源极与所述第一MOS管的栅极的电平差满足预设条件时导通,以控制所述操作开关与所述通信信号线之间的通信导通;以及用于在所述第一MOS管的源极与所述第一MOS管的栅极的电平差不满足预设条件时断开,以控制所述操作开关与所述通信信号线之间的通信断开。
  3. 根据权利要求2所述的电池控制电路,其特征在于,所述开关电路还包括:第一电容和第一电阻;
    所述第一电容的两端分别电连接所述第一MOS管的源极和栅极,所述第一MOS管的栅极电连接于所述第一电容与所述第一电阻之间,所述第一MOS管的源极还电连接所述通信信号线与所述第一电容之间,所述第一MOS管的漏极电连接所述操作开关。
  4. 根据权利要求3所述的电池控制电路,其特征在于,
    所述第一电容,用于在所述第一MOS管断开时通过所述第一电阻充电,并在充电的过程中控制所述栅极的电平下降,直至所述源极与所述栅极的电平差满足预设条件;以及用于在所述第一MOS管导通时通过所述第一电阻放电,并在放电的过程中控制所述第一MOS管的栅极的电平上升,直至所述源 极与所述栅极的电平差不满足预设条件。
  5. 根据权利要求4所述的电池控制电路,其特征在于,还包括:供电信号线;所述供电信号线用于电连接所述控制器与所述电池,使得所述电池通过所述供电信号线向所述控制器供电;
    所述开关电路还包括第一二极管;
    所述第一二极管的负极电连接所述第一MOS管的栅极,所述第一二极管的正极电连接所述供电信号线;
    所述电池在开始向控制器供电后,还通过所述供电信号线向所述第一MOS管的栅极供电以控制所述第一MOS管的栅极的电平上升。
  6. 根据权利要求5所述的电池控制电路,其特征在于,所述开关电路还包括第二MOS管,所述第二MOS管电连接于所述第一二极管与所述供电信号线之间;
    所述第二MOS管,用于控制所述第一二极管与所述供电信号线之间的电连接导通,使得所述电池向所述第一MOS管的栅极供电。
  7. 根据权利要求6所述的电池控制电路,其特征在于,所述第二MOS管还电连接所述控制器;
    所述控制器,用于控制所述第二MOS管导通以控制所述第一二极管与所述供电信号线之间的电连接导通。
  8. 根据权利要求7所述的电池控制电路,其特征在于,所述第二MOS管的源极与所述供电信号线电连接,所述第二MOS管的栅极与所述控制器电连接,所述第二MOS管的漏极与所述第一二极管的正极电连接;
    所述控制器,用于控制所述第二MOS管的栅极的电平下降,直至所述第二MOS管的源极与所述第二MOS管的栅极的电平差满足预设条件时导通。
  9. 根据权利要求1所述的电池控制电路,其特征在于,所述开关电路包括电子开关,所述电子开关包括如下至少一种:绝缘栅双极型晶体管,MOS管,固态继电器,晶闸管。
  10. 根据权利要求1或9所述的电池控制电路,其特征在于,所述开关电路电连接所述控制器;
    所述控制器,用于在所述电池给所述控制器供电后,控制所述开关电路断开,以控制所述操作开关与所述通信信号线之间的通信断开。
  11. 根据权利要求1或9所述的电池控制电路,其特征在于,所述开关电路,用于在所述电池给所述控制器供电后自动断开,以控制所述操作开关与所述通信信号线之间的通信断开。
  12. 根据权利要求1-11任一项所述的电池控制电路,其特征在于,还包括:信号输出电路;
    所述信号输出电路电连接在所述操作开关与所述控制器之间;
    所述信号输出电路,用于当所述操作开关控制所述电池给所述控制器开始供电之后,根据所述操作开关的状态不同,向所述控制器输出不同的电平;
    所述控制器,用于根据所述信号输出电路输出的电平,输出相应的控制信号。
  13. 根据权利要求12所述的电池控制电路,其特征在于,所述控制信号包括以下至少一种:用于控制所述电池复位重启的控制信号,用于控制被供电设备执行相应动作的控制信号。
  14. 根据权利要求12或13所述的电池控制电路,其特征在于,所述信号输出电路包括:第二电容和第二电阻;
    所述第二电阻电连接在所述第二电容和所述电池之间,且所述控制器电连接在所述第二电容;
    所述第二电容,用于在所述电池给所述控制器开始供电之后,在所述操作开关处于断开状态时,通过所述第二电阻充电并向所述控制器输出高电平,在所述操作开关处于闭合状态时放电并向所述控制器输出低电平。
  15. 根据权利要求14所述的电池控制电路,其特征在于,所述信号输出电路还包括:第二二极管;
    其中,所述第二二极管的正极电连接在所述第二电阻与所述第二电容之间,所述第二二极管的负极电连接在所述开关电路与所述操作开关之间。
  16. 根据权利要求1-15任一项所述的电池控制电路,其特征在于,所述电池的数量和所述通信信号线的数量均为N,所述N为大于或等于2的整数;所述N个电池与所述N个通信信号线一一对应电连接;
    其中,所述N个所述通信信号线并联连接到所述开关电路。
  17. 根据权利要求16所述的电池控制电路,其特征在于,还包括:N个第三二极管,所述N个第三二极管的正极并联连接到所述开关电路,并 且所述N个第三二极管的负极与所述N个所述通信信号线一一对应电连接。
  18. 一种电源控制系统,其特征在于,包括:权利要求1-17任一项所述的电池控制电路和至少一个电池;
    所述电池控制电路,用于控制所述至少一个电池进行供电。
  19. 一种可移动平台,其特征在于,包括:机体、动力系统以及权利要求18所述的电源控制系统;
    所述电池控制电路以及所述至少一个电池安装于所述机体;
    所述至少一个电池,用于向所述动力系统提供电能;
    所述动力系统,用于给所述可移动平台提供移动动力。
  20. 根据权利要求19所述的可移动平台,其特征在于,所述可移动平台为无人机或者地面摇控机器人。
PCT/CN2018/077617 2018-02-28 2018-02-28 电池控制电路、电源控制系统和可移动平台 WO2019165609A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880032241.0A CN110622386B (zh) 2018-02-28 2018-02-28 电池控制电路、电源控制系统和可移动平台
EP18907941.1A EP3761473A4 (en) 2018-02-28 2018-02-28 BATTERY CONTROL CIRCUIT, POWER SUPPLY CONTROL SYSTEM AND MOBILE PLATFORM
PCT/CN2018/077617 WO2019165609A1 (zh) 2018-02-28 2018-02-28 电池控制电路、电源控制系统和可移动平台
US17/003,628 US20200395634A1 (en) 2018-02-28 2020-08-26 Battery control circuit, power supply control system, and mobile platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/077617 WO2019165609A1 (zh) 2018-02-28 2018-02-28 电池控制电路、电源控制系统和可移动平台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/003,628 Continuation US20200395634A1 (en) 2018-02-28 2020-08-26 Battery control circuit, power supply control system, and mobile platform

Publications (1)

Publication Number Publication Date
WO2019165609A1 true WO2019165609A1 (zh) 2019-09-06

Family

ID=67804787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077617 WO2019165609A1 (zh) 2018-02-28 2018-02-28 电池控制电路、电源控制系统和可移动平台

Country Status (4)

Country Link
US (1) US20200395634A1 (zh)
EP (1) EP3761473A4 (zh)
CN (1) CN110622386B (zh)
WO (1) WO2019165609A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991192A (zh) * 2021-09-17 2022-01-28 深圳市沛城电子科技有限公司 电池防盗保护方法、装置、电池管理系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203481886U (zh) * 2013-09-26 2014-03-12 胡根齐 一种具有脉冲启动电路的电池包
WO2016032525A1 (en) * 2014-08-29 2016-03-03 Hewlett-Packard Development Company, L.P. Disconnecting a battery from a system
CN206180638U (zh) * 2016-11-14 2017-05-17 深圳市大疆创新科技有限公司 移动平台

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309143C (zh) * 2002-12-30 2007-04-04 联想(北京)有限公司 一种无线终端模块供电系统
CN103780065B (zh) * 2014-02-28 2016-07-13 惠州市锦湖实业发展有限公司 一种软关断电源变换器
CN107769317B (zh) * 2015-06-29 2020-09-15 深圳市大疆创新科技有限公司 控制电路、具有该控制电路的电池及电池控制方法
CN204857890U (zh) * 2015-07-31 2015-12-09 广州极飞电子科技有限公司 一种智能电池控制电路及智能电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203481886U (zh) * 2013-09-26 2014-03-12 胡根齐 一种具有脉冲启动电路的电池包
WO2016032525A1 (en) * 2014-08-29 2016-03-03 Hewlett-Packard Development Company, L.P. Disconnecting a battery from a system
CN206180638U (zh) * 2016-11-14 2017-05-17 深圳市大疆创新科技有限公司 移动平台

Also Published As

Publication number Publication date
EP3761473A4 (en) 2021-10-13
EP3761473A1 (en) 2021-01-06
CN110622386A (zh) 2019-12-27
US20200395634A1 (en) 2020-12-17
CN110622386B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
CN110473742B (zh) 高压继电器控制电路、电池管理系统及电子装置
US20140292297A1 (en) Power supply having selectable operation based on communications with load
WO2018205167A1 (zh) 电池管理系统、电池和无人飞行器
WO2009069092A2 (en) Arrangement and approach for coupling power supplies using controlled switching techniques
US20190115628A1 (en) Electronic device, discharging method for the same, and charging method for the same
WO2019165609A1 (zh) 电池控制电路、电源控制系统和可移动平台
CN110138404B (zh) 用于向保护和控制设备提供无线连接的收发器设备
TW201509043A (zh) 保護電路及具有該保護電路之電子裝置
US7793116B2 (en) Power supply system with remote control circuit and power supply system operation method
KR102586102B1 (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
CN108683217B (zh) 可关断的电源电压监视电路
CN112564298A (zh) 一种电路保护系统、方法及lcc型的无线充电系统
CN113676166B (zh) 一种电池低压自动切断电路及其工作方法
CN217307659U (zh) 按键控制电路、智能门锁及智能门
US11689042B2 (en) Device and method for charging a battery discharged beyond at least one operating threshold
KR101628606B1 (ko) 과방전 배터리의 충전제어회로 및 방법
CN210087019U (zh) 一种充电枪电子锁控制电路
KR101602133B1 (ko) 도어록의 방전 방지 장치
KR102184369B1 (ko) 배터리 팩의 통신 시스템 및 이를 포함하는 배터리 팩
CN218387470U (zh) 一种控制电源通断电路及电源电路
CN216016467U (zh) 低压保护电路、装置及电器设备
CN210924256U (zh) 一种电池开机电路
CN215378508U (zh) 一种电池管理系统的控制电路、电池管理系统及电子设备
CN214798951U (zh) 反接保护电路、充电装置和电子设备
CN220421481U (zh) 一种电压翻转充放电控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018907941

Country of ref document: EP

Effective date: 20200928