WO2019164019A1 - V2x communication device and geo-networking transmission method - Google Patents

V2x communication device and geo-networking transmission method Download PDF

Info

Publication number
WO2019164019A1
WO2019164019A1 PCT/KR2018/002065 KR2018002065W WO2019164019A1 WO 2019164019 A1 WO2019164019 A1 WO 2019164019A1 KR 2018002065 W KR2018002065 W KR 2018002065W WO 2019164019 A1 WO2019164019 A1 WO 2019164019A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
geonetworking
communication
communication device
router
Prior art date
Application number
PCT/KR2018/002065
Other languages
French (fr)
Korean (ko)
Inventor
백서영
고우석
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to PCT/KR2018/002065 priority Critical patent/WO2019164019A1/en
Publication of WO2019164019A1 publication Critical patent/WO2019164019A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage

Definitions

  • the present invention relates to an apparatus for V2X communication and a method for transmitting a geonetworking thereof, and more particularly, to a method for setting a timer and a communication range in a method for geonetworking transmission of a contention-based algorithm.
  • V2X Vehicle to Everything
  • V2X communication Various services can be provided through V2X communication.
  • a plurality of frequency bands have been used to provide various services. Even in this environment, reliable delivery and provision of safety services is a very important issue due to the characteristics of vehicle communication.
  • a geonetworking transmission method using hopping may be used to transfer data out of the transmission range.
  • packet forwarding algorithms may be used for data hopping and destination delivery. Especially in the V2X communication environment where the communication environment is dynamically changed, the packet forwarding algorithm must consider efficiency and reliability.
  • a method for transmitting a geonetworking by a V2X communication device comprising: receiving a geonetworking packet from a sender V2X communication device; Checking whether the received geonetworking packet is a packet previously stored in a buffer; If the received geonetworking packet is not a previously stored packet, storing the geonetworking packet in a buffer, setting a timeout duration, and starting a timer for retransmitting the packet; And transmitting the geonetworking packet when the timer expires, wherein the timeout period indicates a time period during which the packet is buffered in the buffer.
  • the maximum communication distance of the sender V2X communication device includes a plurality of sectors, and each of the plurality of sectors has a constant timeout period.
  • the timeout period of the plurality of sectors is determined based on a distance between the sender V2X device and the V2X device that transmitted the received packet. The larger the distance, the smaller the timeout period.
  • the geonetworking packet includes communication range information of a V2X communication device transmitting the geonetworking packet.
  • the value of the communication range information is a difference value between the location of the surrounding V2X communication devices and the location of the V2X communication device communicating during the first time interval. Is determined by the maximum value.
  • the peripheral V2X communication device is a V2X communication device in which a response packet or a forwarding packet to the packet transmitted by the V2X communication device is received.
  • the value of the communication range information is a difference between the position of the surrounding V2X communication devices and the location of the V2X communication device communicating during the first time interval.
  • the maximum of the values is used during the second time interval.
  • the memory for storing data;
  • a communication unit for transmitting and receiving a radio signal including a geonetworking packet;
  • a processor for controlling the memory and the communication unit, the processor receiving a geonetworking packet from a sender V2X communication device, checking whether the received geonetworking packet is a packet previously stored in a buffer, If the networking packet is not a pre-stored packet, the geonetworking packet is stored in a buffer, a timeout duration is set, a timer for retransmitting the packet is started, and the geonetworking packet is terminated when the timer expires.
  • the timeout period represents a time period during which the packet is buffered in the buffer.
  • the present invention by setting the CBF buffer waiting time in consideration of the CBF buffer as well as the buffer of the access layer, it is possible to improve the latency of the CBF operation in terms of the system. By dividing the communicable area into certain sectors, since the CBF buffer times out at the same time for routers in the sector, unnecessary latency in forwarding can be reduced.
  • the latency of the CBF algorithm can be improved.
  • unnecessary latency can be reduced.
  • FIG. 1 shows a protocol structure of an ITS system according to an embodiment of the present invention.
  • FIG. 2 illustrates a packet structure of a network / transport layer according to an embodiment of the present invention.
  • FIG. 3 is a header structure of a geonetworking packet according to an embodiment of the present invention, and shows a structure of a basic header and a common header.
  • FIG. 4 illustrates a method for geonetworking of a GUC type according to an embodiment of the present invention and a GUC packet header configuration according thereto.
  • FIG. 5 illustrates a topologically scoped broadcast (TSB) type geonetworking method and a TSB packet header configuration according thereto according to another embodiment of the present invention.
  • TSB topologically scoped broadcast
  • FIG. 6 illustrates a SHB (Single Hop Broadcast) type geonetworking method and an SHB packet header configuration according to another embodiment of the present invention.
  • SHB Single Hop Broadcast
  • FIG. 7 illustrates a Geographically-Scope Broadcast (GBC) / Geographically-Scoped Anycast (GAC) type geonetworking method and a BC / GAC packet header configuration according to another embodiment of the present invention.
  • GBC Geographically-Scope Broadcast
  • GAC Geographically-Scoped Anycast
  • beacon type geonetworking and a beacon packet header configuration according to another embodiment of the present invention.
  • FIG. 9 illustrates the configuration of a location service (LS) request packet header and an LS response packet header according to an embodiment of the present invention.
  • LS location service
  • FIG 10 shows position vector information according to an embodiment of the present invention.
  • FIG. 11 illustrates a packet forwarding method of a greedy forwarding algorithm according to an embodiment of the present invention.
  • FIG. 12 is a conceptual diagram of a non-region contention-based algorithm according to an embodiment of the present invention.
  • FIG 13 illustrates contention-based transmission according to an embodiment of the present invention.
  • FIG. 14 illustrates a packet delivery method of an area contention-based algorithm according to an embodiment of the present invention.
  • FIG. 15 shows an ITS-G5 architecture according to an embodiment of the invention.
  • 16 illustrates an example of timeout time according to distance when using the CBF algorithm according to an embodiment of the present invention.
  • FIG. 17 illustrates an example of a timeout time considering a buffer when using a CBF algorithm according to an embodiment of the present invention.
  • FIG. 18 illustrates an example of a timeout time in consideration of a buffer when using the CBF algorithm according to an embodiment of the present invention.
  • FIG. 19 illustrates an example of different communication ranges of routers in a multi-channel environment, in accordance with an embodiment of the invention.
  • FIG. 20 shows a GUC packet structure according to an embodiment of the present invention.
  • FIG. 21 shows a GAC / GBC packet structure according to an embodiment of the present invention.
  • FIG. 22 (a) shows an LS request packet structure according to an embodiment of the present invention
  • FIG. 22 (b) shows an LS response packet structure according to an embodiment of the present invention.
  • FIG. 25 shows a configuration of a V2X communication device according to an embodiment of the present invention.
  • the present invention relates to a V2X communication device, and the V2X communication device may be included in an intelligent transport system (ITS) system to perform all or some functions of the ITS system.
  • the V2X communication device can communicate with vehicles and vehicles, vehicles and infrastructure, vehicles and bicycles, and mobile devices.
  • the V2X communication device may be abbreviated as a V2X device.
  • the V2X device may correspond to an onboard unit (OBU) of the vehicle or may be included in the OBU.
  • OBU On Board Equipment
  • OBU On Board Equipment
  • the V2X communication device may correspond to a road side unit (RSU) of the infrastructure or may be included in the RSU.
  • the RSU may be referred to as Road Side Equipment (RSE).
  • the V2X communication device may correspond to the ITS station (ITS-S) or may be included in the ITS station. Any OBU, RSU, mobile equipment, etc. that perform V2X communication may all be referred to as ITS stations or V2X communication devices. In geonetworking communication, a V2X communication device may be referred to as a router.
  • V2X communication devices can communicate based on various communication protocols.
  • the V2X communication device may implement the WAVE (Wireless Access In Vehicular Environments) protocol of IEEE 1609.1-4.
  • the V2X communication device may be referred to as a WAVE device or a WAVE communication device.
  • the V2X communication device may transmit a Cooperative Awareness Message (CAM) or a Decentralized Environmental Notification Message (DENM).
  • CAM Cooperative Awareness Message
  • DENM Decentralized Environmental Notification Message
  • the CAM is distributed in the ITS network and provides information about at least one of the presence, location, communication state, or running state of the ITS station.
  • DENM provides information about detected events.
  • the DENM can provide information about any driving situation or event detected by the ITS station.
  • the DENM can provide information about situations such as vehicle accidents, vehicle problems, traffic conditions, and the like, such as emergency electronic brakes.
  • FIG. 1 shows a protocol structure of an ITS system according to an embodiment of the present invention.
  • the application layer may implement and support various use cases.
  • the application may provide road safety, efficient traffic information, and other application information.
  • the facility layer can support the effective realization of the various uses defined in the application layer.
  • the facility layer may perform application support, information support, and session / communication support.
  • the access layer may transmit a message / data received from a higher layer through a physical channel.
  • the access layer may include an IEEE 802.11 and / or 802.11p standard based communication technology, an ITS-G5 wireless communication technology based on the physical transmission technology of the IEEE 802.11 and / or 802.11p standard, and satellite / broadband wireless mobile communication.
  • Data communication can be performed / supported based on 2G / 3G / 4G (LTE) / 5G wireless cellular communication technology, broadband terrestrial digital broadcasting technology such as DVB-T / T2 / ATSC, GPS technology, and IEEE 1609 WAVE technology.
  • the network / transport layer can form a network for vehicle communication between homogeneous / heterogeneous networks by using various transport protocols and network protocols.
  • the transport layer is a connection layer between services provided by upper layers (session layer, presentation layer, application layer) and lower layers (network layer, data link layer, physical layer).
  • the transport layer can manage the transmission data to arrive exactly at the destination.
  • the transport layer processes the data into packets of appropriate size for efficient data transmission, and at the receiving side, the transport layer can perform processing to restore the received packets to the original file.
  • protocols such as Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Basic Transport Protocol (BTP) may be used as the transport protocol.
  • the network layer can manage logical addresses and determine the delivery path of packets.
  • the network layer may receive the packet generated at the transport layer and add a logical address of the destination to the network layer header.
  • the packet path may be considered unicast / broadcast between vehicles, between vehicles and fixed stations, and between fixed stations.
  • Geo-Networking, with mobility support IPv6 networking, over IPv6, and the like can be considered as a networking protocol.
  • the ITS architecture may further include a management layer and a security layer.
  • FIG. 2 illustrates a packet structure of a network / transport layer according to an embodiment of the present invention.
  • the transport layer generates a BTP packet
  • the network layer may generate a geo-networking packet by encapsulating the BTP packet.
  • Geo-networking packets may be encapsulated into LLC packets.
  • the data includes a message set, which may be a basic safety message.
  • the BTP header is a protocol for transmitting messages such as CAM and DENM generated by the facility layer to the lower layer.
  • the BTP header consists of A type and B type.
  • the type A BTP header may include a destination / destination port and a source port, which are required for transmission and reception for interactive packet transmission.
  • the B type header may include destination port and destination port information, which is required for transmission for non-interactive packet transmission. Descriptions of the fields / information included in the header are as follows.
  • the destination port identifies the facility entity corresponding to the destination of the data (BTP-PDU) included in the BTP packet.
  • Source Port A field generated in the case of a BTP-A type, indicating a port of a protocol entity of a facility layer in a source through which a corresponding packet is transmitted. This field may have a size of 16 bits.
  • This field is generated for the BTP-B type and may provide additional information when the destination port is the best known port. This field may have a size of 16 bits.
  • the geonetworking packet includes a basic header and a common header according to the protocol of the network layer, and optionally includes an extension header according to the geonetworking mode.
  • the geonetworking header is described again below.
  • the LLC header is added to the geonetworking packet to generate the LLC packet.
  • the LLC header provides the function of distinguishing IP data and geonetworking data. IP data and geonetworking data can be distinguished by the Ethertype of SNAP. As an embodiment, when IP data is transmitted, the Ethertype may be set to 0x86DD and included in the LLC header. As an embodiment, when geonetworking data is transmitted, the Ethertype may be set to 0x86DC and included in the LLC header.
  • the receiver may check the Ethertype field of the LLC packet header and forward and process the packet to the IP data path or the geonetworking path according to the value.
  • FIG. 3 is a header structure of a geonetworking packet according to an embodiment of the present invention, and shows a structure of a basic header and a common header.
  • FIG. 3 (a) shows the basic header of the geonetworking packet header shown in FIG. 2, and FIG. 3 (b) shows the common header of the geonetworking packet header shown in FIG.
  • the basic header can be 32 bits (4 bytes).
  • the basic header may include at least one of a version field, an NH field (Next Header), an LT (LifeTime) field, and a Remaining Hop Limit (RHL) field.
  • the fields included in the basic header are described below.
  • the bit size constituting each field is only an embodiment and may be changed.
  • Version (4-bit) The version field indicates the version of the geonetworking protocol.
  • NH Next Header
  • the NH (Next Header) field indicates the type of the next header / field. If the field value is 1, the common header is followed. If the field value is 2, the secured secure packet may be followed.
  • the LT (LifeTime) field indicates the maximum survival time of the packet.
  • RHL 8 bits: The Remaining Hop Limit (RHL) field indicates the remaining hop limit.
  • the RHL field value may be decremented by 1 each time it is forwarded by a GeoAdhoc router. If the RHL field value is 0, the packet is no longer forwarded.
  • the common header can be 64 bits (8 bytes).
  • Common headers include NH (NextHeader) field, HT (HeaderType) field, HST (Header Sub-Type) field, TC (Traffic Class) field, Flags field, PayloadLength field, PL (Maximum Hop Limit) field It may include at least one of. Description of each field is as follows.
  • the NH (Next Header) field indicates the type of the next header / field.
  • a field value of 0 may indicate an undefined "ANY" type, 1 indicates a BTP-A type packet, 2 indicates a BTP-B type packet, and 3 indicates an IPv6 IP diagram.
  • Geonetworking types include Beacon, GeoUnicast, GeoAnycast, GeoBroadcast, Topologically-Scoped Broadcast, and Location Service (LS).
  • HST (4-bit): The Header Subtype field indicates the detailed type along with the header type.
  • TSB When the HT type is set to TSB, when the HST value is '0', a single hop may be indicated, and when it is '1', a multi hop may be designated.
  • the traffic class field may include a Store-Carry-Forward (SCF), Channel Offload, and TC ID.
  • SCF Store-Carry-Forward
  • the SCF field indicates whether to store a packet when there is no neighbor to deliver the packet.
  • the channel offload field indicates that a packet can be delivered to another channel in case of a multichannel operation.
  • the TC ID field is a value assigned during packet transmission in the facility layer and may be used to set a contention window value in the physical layer.
  • the flag field indicates whether the ITS device is mobile or stationary, and may be the last 1 bit as an embodiment.
  • the Payload Length field indicates the data length following the geonetworking header in bytes.
  • the PL field may indicate the length of the BTP header and the CAM.
  • MHL 8-bit
  • MHL The Maximum Hop Limit (MHL) field may indicate the maximum number of hops.
  • the geonetworking header includes the above-described basic header, common header and extended header.
  • the extension header is configured differently according to the geonetworking type.
  • a header configuration according to each geonetworking type will be described.
  • a V2X communication device performing geonetworking may be referred to as a router or a geoad hoc router.
  • a V2X communication device that transmits a geonetworking packet may be referred to as a source router or a sander.
  • a V2X communication device that receives a geonetworking packet from a source router and relays / forwards it to a sander may be referred to as a forwarding router or a forwarder.
  • the V2X communication device or the V2X communication device in the final destination area of the geonetworking packet may be referred to as a destination or a destination router.
  • FIG. 4 illustrates a method for geonetworking of a GUC type according to an embodiment of the present invention and a GUC packet header configuration according thereto.
  • FIG. 4 (a) shows a method of data transmission of a Geographically-Scoped Unicast (GUC) type
  • FIG. 4 (b) shows a GUC header configuration
  • GUC is a method of passing data from a specific source router to a destination router.
  • the source router S may transmit data in a GUC type to the destination router N8 via multi-hop.
  • the source router must have information about the destination router in its location table. If there is no information about the destination router, the source router can use the "LS request and LS reply" process to find the desired destination.
  • the GUC packet header includes a basic header, a common header, and an extension header.
  • the HT field of the common header indicates a GUC
  • the extended header includes an SN field, an SO PV (Source Position Vector) field, and a DE PV (Destination Position Vector) field. Description of the included fields is as follows.
  • Sequence Number indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when a packet is sent from the source.
  • the receiving router may determine whether a packet is duplicated by using a sequence number (or a sequence number and a TST value). SN is a value used for multi-hop transmission.
  • SO PV Indicates the position of the source and may be in a long position vector format.
  • DE PV indicates the location of the destination, and may be in a short position vector format.
  • FIG. 5 illustrates a topologically scoped broadcast (TSB) type geonetworking method and a TSB packet header configuration according thereto according to another embodiment of the present invention.
  • TSB topologically scoped broadcast
  • FIG. 5 (a) shows a method of data transmission of a TSB (Topologically Scoped Broadcast) type
  • FIG. 5 (b) shows a TSB header configuration
  • TSB is a broadcast scheme that adjusts the distance that data is transmitted by the number of hops. Location based information is not used. Since only the number of hops determines whether data is delivered, the location address of the destination or local information to which the data is delivered is not used. Data can be forwarded from the source router s to all routers within n hops.
  • the TSB packet header includes a basic header, a common header, and an extended header.
  • the HT field of the common header indicates a TSB
  • the extension header includes an SN field and an SO PV (Source Position Vector) field. Description of the included fields is as follows.
  • Sequence Number indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when a packet is sent from the source.
  • the receiving router may determine whether a packet is duplicated by using a sequence number (or a sequence number and a TST value). SN is a value used for multi-hop transmission.
  • SO PV Indicates the position of the source and may be in a long position vector format.
  • the destination address may be omitted.
  • FIG. 6 illustrates a SHB (Single Hop Broadcast) type geonetworking method and an SHB packet header configuration according to another embodiment of the present invention.
  • SHB Single Hop Broadcast
  • FIG. 6 (a) shows a data transfer method of a single hop broadcast (SHB) type
  • FIG. 5 (b) shows a structure of an SHB header.
  • SHB single hop broadcast
  • SHB packets are sent only to routers within the source router transmission range. Since data can be transmitted with the least latency, SHB can be used to send safety messages such as CAM. As shown in FIG. 6 (a), the packet is transmitted only to one-hop range routers N1, N2, and N3 of the source S.
  • the SHB packet header includes a basic header, a common header, and an extension header.
  • the HT field of the common header indicates the TSB
  • the extension header includes an SO PV (Source Position Vector) field. Description of the included fields is as follows.
  • SO PV Indicates the position of the source and may be in a long position vector format.
  • the destination address may be omitted. Since the multihop transmission is not performed, the SN field for redundancy check may also be omitted.
  • FIG. 7 illustrates a Geographically-Scope Broadcast (GBC) / Geographically-Scoped Anycast (GAC) type geonetworking method and a BC / GAC packet header configuration according to another embodiment of the present invention.
  • GBC Geographically-Scope Broadcast
  • GAC Geographically-Scoped Anycast
  • FIG. 7 (a) shows a method of transferring data of a Geographically-Scope Broadcast (GBC) / Geographically-Scoped Anycast (GAC) type
  • FIG. 4 (b) shows a GBC / GAC header configuration.
  • GeoBroadcast / GBC is a transmission method that broadcasts a packet to all routers in a specific region, and GeoAnycast / GAC transmits a packet only to one router that first receives the packet in a specific region. Transmission method.
  • GBC if the data delivered from the source router is delivered to a specific destination area, the packet is broadcast within the defined area. In the GAC, when a packet is delivered to one router in a particular destination area, the packet is no longer sent.
  • the GBC / GAC header includes a basic header, a common header, and an extended header.
  • the HT field of the common header indicates GBC or GAC
  • the extended header includes an SN field, an SO PV (Source Position Vector) field, and destination region information.
  • the destination area information includes a latitude (GeoAreaPosLatitude) field, a longitude (GeoAreaPosLongitude) field of the center of the destination area, and distance fields (Distance a, b) and an angle field for indicating a range of the area.
  • Sequence Number indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when a packet is sent from the source.
  • the receiving router may determine whether a packet is duplicated by using a sequence number (or a sequence number and a TST value). SN is a value used for multi-hop transmission.
  • SO PV Indicates the position of the source and may be in a long position vector format.
  • DE PV indicates the location of the destination, and may be in a short position vector format.
  • beacon type geonetworking and a beacon packet header configuration according to another embodiment of the present invention.
  • the beacon packet header may include a basic header, a common header and an extension header, and the extension header may include SO PV information.
  • the beacon packet may be configured similarly to the SHB packet header described above. The difference is that SHB packets can be appended with a message later to be used to carry data such as CAM, and beacons are used as headers without data added. CAM or beacons using SHB may be sent periodically. By sending and receiving a CAM or beacon, a router can obtain location information of neighboring routers and use this location information to perform routing. In an embodiment, the beacon may not be transmitted if the CAM is transmitted.
  • FIG. 9 illustrates the configuration of a location service (LS) request packet header and an LS response packet header according to an embodiment of the present invention.
  • LS location service
  • FIG. 9 (a) shows an LS request packet header
  • FIG. 9 (b) shows an LS response packet header
  • the source router may request geonetworking address information (GN_ADDR) for the destination in the vicinity.
  • This address information request may be performed by transmitting the LS request packet LS request information LS_request.
  • the corresponding router may transmit LS response information LS_reply.
  • the router of the destination may transmit the LS response information with respect to the LS request information.
  • LS response information includes position vector information of GN_ADDR.
  • the source router may update the location table through the LS response information.
  • the source router can perform GUC transmission by using the geonetworking address information received in response.
  • the configuration of the LS request packet header is similar to the GUC header.
  • a geonetworking address request field (RequestGN_ADDR) is included instead of the destination address field of the GUC header.
  • the LS response packet header configuration is the same as the GUC packet header.
  • the SO PV field includes position vector information of the router
  • the DE PV field includes position vector information of the router which transmitted the request.
  • FIG 10 shows position vector information according to an embodiment of the present invention.
  • the geonetworking packet header includes a position vector (PV) field associated with the location.
  • Types of position vectors include long PV and short PV. 10 (a) shows long position vector information and FIG. 10 (b) shows short position vector information.
  • the long position vector information includes the following subfields.
  • the geonetworking address field may consist of a total of 64 bits.
  • a geoad hoc router that performs geonetworking transmissions has one unique geonetworking address value.
  • the geonetworking address field may include the following subfields.
  • M A field for distinguishing between a geonetworking address or a manually set value. For example, if the value is '1', the value may be set manually.
  • the ITS-S type field indicates the type of the ITS station. ITS-S type is pedestrian, cyclist, moped, motorcycle, passenger car, bus, light truck, heavy truck, trailer, special vehicle It may include trams, RSUs.
  • MID As V2X device identification information, a MAC address may be used.
  • TST TimeSTamp: The type stamp field indicates the time at which the ITS station obtained the latitude / longitude value from the geoad hoc router. As a millisecond unit, a Universal Time Coordinated (UTC) value may be used.
  • UTC Universal Time Coordinated
  • Latitude (LAT), Long (Longitude) The latitude field and the longitude field indicate latitude and longitude values of the geoad hoc router.
  • Position Accuracy Indicator Indicates the accuracy of the geoad hoc router location.
  • H Indicates the direction of the geoad hoc router.
  • the short position vector information includes a GN_ADDR field, a TST field, a LAT field, and a long field. Description of each field is as described above for the long position vector.
  • Various packet forwarding methods may be used for geonetworking transmission. For example, greedy forwarding algorithm, contention-based forwarding algorithm, non-area contention-based forwarding algorithm, area contention-based forwarding algorithm, area advanced forwarding Algorithms and the like can be used. Forwarding algorithms are used to effectively deliver and distribute data to desired areas.
  • the source router determines the forwarding router, and in the case of the contention-based forwarding algorithm, the receiving router determines whether to forward the packet using contention.
  • a V2X device / router processing a geonetworking algorithm may be referred to as an ego router.
  • each V2X device acts as a router and can use an ad hoc method to determine the routing of packets.
  • Each V2X device transmits the vehicle's location information, speed information, and head direction information to the surroundings, and using this information, each V2X device can determine the routing of packets.
  • the periodically received information is stored in a LocT (location table) of the network & transport layer, and the stored information can time out after a certain time.
  • LocT may be stored in a location table entry (LocTE).
  • each ad hoc router must have information about another ad hoc router.
  • Information about the peripheral router may be received through the SHB or beacon packet.
  • the router may update LocT when new information is received.
  • the transmission period of the SHB or beacon packet may change depending on the channel state.
  • the location / location table may be referred to as LocT.
  • Information about the neighbor router is stored in the LocT, and the stored information may include at least one of the following information.
  • Information stored in the LocT may be deleted from the list when the lifetime set to the soft-state expires.
  • GN_ADDR Geo-network address of the ITS station
  • Type of ITS-S Type of ITS station, for example indicating whether it is a vehicle or an RSU.
  • Position vector information includes geographic position information, velocity information, heading information, time stamp information indicating the position measurement time, position accuracy indicator (PAI) information indicating the accuracy of the provided position. It may include at least one of.
  • Flag LS_PENDING A flag indicating when a location service request is in progress because the current LocT does not have an address for the destination.
  • FLAG IS_NEIGHBOUR Flag indicating if there is a geoad hoc router that can communicate within the communication range.
  • DPL Duplicate Packet List for Source GN_ADDR
  • Typestamp the timestamp of the last packet indicating the end of the duplication
  • PDR Packet Data Rate
  • FIG. 11 illustrates a packet forwarding method of a greedy forwarding algorithm according to an embodiment of the present invention.
  • the greedy forwarding algorithm decides to which of the neighbor routers Sander knows which packet to forward.
  • Sander's LocT Location Table
  • LocT Location Table
  • routers 1 to 5 exist within the communication range of the source router.
  • the source router transmits the packet by setting the MAC address of router 2 closest to the destination as the link layer destination address.
  • the greedy-forwarding algorithm uses no buffering and can quickly forward packets to their destinations as long as the connection between routers is not broken. However, if the connection between routers is lost, i.e., if the router to transmit the next hop is out of the transmission range or disappears, the packet cannot be delivered and reliability may be deteriorated.
  • the following describes the packet delivery method of the contention-based forwarding algorithm.
  • the contention-based forwarding algorithm determines whether the receiver forwards a packet by contention / content. Any receiver that receives a packet broadcast by Sander can be a potential forwarder. The receiver sets the timer according to the distance, and the receiver which the timer expires forwards the packet first. If no packet is received from other receivers until the timer expires, the receiver forwards the packet when the timer expires. If a packet is received before the timer expires, the receiver times out its timer and does not forward the packet.
  • the contention-based forwarding algorithm unlike the greedy forwarding algorithm, does not need to know the location of neighboring neighbor routers. Even if the SHB packet or the beacon packet is not periodically transmitted, that is, even without a location table, packet forwarding may be performed. Since there are a plurality of candidate forwarders, reliability may be increased and packet forwarding to the destination may be increased. However, the buffering time required for packet delivery can increase latency. In addition, the use of additional buffers is required.
  • FIG. 12 is a conceptual diagram of a non-region contention-based algorithm according to an embodiment of the present invention.
  • a contention-based algorithm is an algorithm in which a receiver determines the next sender through contention / contention, instead of the sander determining the next hop.
  • Sander broadcasts a GN (GeoNetworking) packet, and all routers around it that receive the GN packet store it in the CBF buffer and start a timer.
  • the timer is set as in Equation 1 below.
  • T0_CBF timeout for CBF buffered packets
  • TO_CBF_MIN Minimum duration that a packet is buffered in the CBF packet buffer
  • TO_CBF_MAX Maximum duration that packets are buffered in CBF packet buffers
  • PROG The difference in the distance of the sander from the destination and the local distance between the ad hoc routers from the destination. That is, the difference between D and d4 in FIG.
  • DIST_MAX The theoretical maximum communication range of radio access technology. By way of example, this value may be specified in the specification describing the ITS access technology or in the 'itsGnDefaultMaxCommunicationRange' of the GN protocol.
  • PROG ⁇ DIST_MAX indicates a case where a packet is delivered to a router within a maximum communication range.
  • the value of TO_CBF_MIN-TO_CBF_MAX is always negative. Therefore, the larger the value of PROG / DIST_MAX, the smaller the buffering time.
  • DIST_MAX can be a fixed value that is preset, so that larger PROG values result in packets being buffered for less periods of time, so packets are re-broadcasted faster. In other words, the router closest to the destination with the fewest PROGs retransmits the packet fastest.
  • PRFG> DIST_MAX represents a case where a packet is delivered to a router outside the maximum communication range. If the router is not within the transmission range of the sander, the router can buffer the minimum time and then retransmit the packet. If the router is not within the transmission range of the sander, it means that the information about the sander is not stored in the router's location table.
  • the extended header includes the PV of the source router and the PV of the destination, but not the PV of the forwarding router.
  • the router that receives the packet can know the location of the forwarding router that forwarded the packet through GN_ADDR corresponding to the MID stored in its LocT (Location Table).
  • the geonetworking packet of the network layer is delivered to the link layer, and the link layer adds MIDs (MAC IDs) of the source and the destination.
  • the link layer packet configuration is shown in FIG.
  • the source MID is the MID of the Sander Router, and the destination MID can be 'Broadcast' in CBF.
  • a packet is transmitted to a neighbor router in a broadcast type in a DSAP (Destination Service Access Point) of an LLC header, and a sander MID is transmitted to a source destination (Service Access Point) SSAP.
  • DSAP Distribution Service Access Point
  • a sander MID is transmitted to a source destination (Service Access Point) SSAP.
  • information of neighboring neighbor routers through beacons or SHBs should be stored in the location table.
  • FIG 13 illustrates contention-based transmission according to an embodiment of the present invention.
  • the TO_CBF_MIN and TO_CBF_MAX values in relation to Equation 1 described above may be set to values preset in the GN protocol.
  • the TO_CBF_MIN value and the TO_CBF_MAX value may be defined in MIB itsGnCbfMinTime, itsGnCbfMaxTime, respectively.
  • the TO_CBF_MIN value may be set to 1 ms and the TO_CBF_MAX value to 100 ms.
  • the maximum communication distance DIST_MAX is set to 300ms, which is a typical DSRC transmission range, the buffer timer value of the CBF operation is calculated.
  • the forwarder candidate 2 broadcasts the packet if it does not receive a signal forwarding the same packet for 34 ms.
  • FIG. 14 illustrates a packet delivery method of an area contention-based algorithm according to an embodiment of the present invention.
  • Region contention-based forwarding algorithms aim at spreading data efficiently over a given area. Therefore, there is no fixed destination and the timer setting may be determined considering only the distance to the source. Area contention based algorithm proceeds when the router belongs to a specific area, and the purpose is to quickly distribute / deliver information within the area.
  • the packet broadcasted by the source router S is delivered to routers 1 to 6.
  • Router 2 furthest from the source router, first broadcasts the packet, which receives Router 1 and Router 3 stops the timer and does not forward the same packet.
  • Routers 4-6 do not receive packets forwarded by Router 2. Therefore, routers 4-6 run their own timers and broadcast their received packets when the timer expires.
  • Router 5 forwards the packet
  • Router 4 which has received the packet, terminates its timer and removes the packet that is ready for transmission from the buffer.
  • Router 6, which has not received a packet forwarded by another router forwards the packet when its timer expires.
  • the source router can quickly forward and share packets in all directions within a particular area.
  • the timeout in which the CBF packet stays in the CBF buffer may be calculated as in Equation 2 below.
  • Equation 2 values of TO_CBF_MIN and TO_CBF_MAX are as described in Equation 1.
  • DIST represents a distance difference between the router itself and the sender.
  • the sender can be either a previous forwarder or a source router.
  • the router can refer to its LocT to determine the location of the sander.
  • the timer may be set so that a router far from the sander first broadcasts a CBF packet.
  • a timer is set for a non-area CBF to send a packet first to a router close to the destination, and a router far from the sander to send a packet first for a region-CBF. The timer is set.
  • FIG. 15 shows an ITS-G5 architecture according to an embodiment of the invention.
  • the ITS-G5 architecture includes an application & facility layer, a transport & network layer, an access layer, a management layer, and a security layer.
  • the management layer coordinates inter-layer motion.
  • the transport layer encapsulates the message to include in the header the port information to which the message will be delivered.
  • the network layer adds the information needed for ad hoc network communication to the message header and forwards the message to the access layer.
  • the access layer transmits packets in an enhanced distributed channel access (EDCA) manner.
  • EDCA refers to a method in which a packet having a high priority occupies the channel in preference to a channel content, discriminating the order of accessing the channel according to a traffic class.
  • Four buffers may be configured according to the traffic class. There are four types of buffers: VO (Voice), VI (Video), BE (Best Effort), and BK (Background).
  • the access layer includes GateKeeper logic for decentralized congestion control (DCC). Therefore, the access layer may control the flow of packets and control the power according to the busy situation of the channel. To this end, four buffers equal to the traffic class configured for EDCA can be used. (ETSI TS 102 612)
  • the operation of the CBF is as follows. Packets forwarded to CBF are stored in the CBF buffer of the network layer. When the timeout time set in the above-mentioned area CBF algorithm and non-area CBF algorithm elapses, the corresponding packet is delivered to the access layer in the CBR buffer. The access layer stores the packet in the gatekeeper's buffer based on the traffic class included in the packet header. All buffers in the access layer operate with a First Input First Output (FIFO) type, and when the packet's lifetime expires while stored in the buffer, the packet is destroyed.
  • FIFO First Input First Output
  • 16 illustrates an example of timeout time according to distance when using the CBF algorithm according to an embodiment of the present invention.
  • the time-out time for determining the time that a packet waits in the CBF buffer in the CBR algorithm is determined in inverse proportion to the distance between the sander and the router itself. That is, as shown in FIG. 16, the waiting time of a packet in the CBF buffer is calculated differently according to the distance to the sender.
  • the embodiment of FIG. 16 is an example of an area CBF algorithm, and is calculated assuming that the value of DIS_MAX is 300m.
  • the ad hoc router farther from the sender the packet is queued in the CBF buffer for a shorter time. Therefore, in terms of the network layer, since the router farthest from the sender broadcasts first, transmission efficiency can be improved. However, in terms of the system as a whole, the desired transmission efficiency may not be achieved. This is because the transmission time to the actual channel may be different from the intended time due to the buffer for the gatekeeper and EDCA operation included in the access layer.
  • the internal buffer situation of the system (ITS-G5) of each router that receives a packet from the sender is different from each other independently.
  • the amount of data accumulated in the buffer can vary depending on the application you use and the opportunity to access the channel.
  • the packet stored in the CBF buffer at the network layer for the CBF operation is delivered to the access layer when the timeout time set according to the distance from the sender ends. Packets delivered to the access layer are stored in a corresponding buffer based on the traffic class information in the packet header.
  • the buffer refers to both the buffer present in the gatekeeper and the buffer for EDCA, and may be stored in the gatekeeper's buffer first.
  • FIG. 17 illustrates an example of a timeout time considering a buffer when using a CBF algorithm according to an embodiment of the present invention.
  • the traffic class buffer of each router represents the combined size of the buffer used by the gatekeeper logic and the buffer used for the EDCA.
  • CBF packets broadcast by the sender are received by routers R1, R2, and R3.
  • the received packet is stored in the CBF buffer of each router.
  • the waiting time in the CBF buffer corresponds to 1ms for R1, 4.3ms for R2, and 7.6ms for R3, respectively.
  • the forwarding packet of R1 is first timed out of the CBR buffer and forwarded to the access layer. However, if the queue of R1's access layer is almost full, the forwarding packet must be queued and waiting until other packets are sent.
  • the forwarding packet of R3 is stored in the CBF buffer for 7.6 ms, and the packet is forwarded to the access layer unless another router broadcasts the same packet. R3 does not have many packets stored in the buffer queue. As a result, a situation may occur in which a forwarding packet of R3 is broadcast before a forwarding packet of R1.
  • the broadcasting order of packets in the overall system side may be different from the setting order of the network layer.
  • the amount of packets accumulated in the queue of each router's access layer is constantly changing, which no other router knows about.
  • the forwarding order may not be inversely proportional to distance, and if R3 and R1 are broadcast after being stored in the CBF buffer for the same 1 ms latency, efficiency is improved in terms of system latency. Can be.
  • the present invention proposes a method for calculating a timeout time for each sector in order to reduce latency, which is a disadvantage of CBF.
  • packets are stored in the CBR buffer with the same timeout, and the time actually broadcast can be determined differently depending on the internal queue state of each access layer. Equation for setting timeout according to an embodiment of the present invention is as follows.
  • TO_CBF_MIN Minimum time a packet should stay in the CBF packet buffer
  • TO_CBF_MAX Maximum time a packet should stay in the CBF packet buffer
  • SECTOR_NUM_MAX Maximum number of compartments dividing the maximum communication distance (DIST_MAX)
  • SECTOR_NUM (1) In the case of the area CBF, SECTOR_NUM represents the numerical value of the sector (SECTOR) to which it belongs, and the sector is determined to be larger as the distance from the sander increases. (2) For non-area CBF, SECTOR_NUM represents the numeric value of the sector to which this value belongs after acquiring the distance difference between the destination and the sender and the distance between the destination and the router's local distance.
  • the sector may be set as shown in Table 1 below.
  • the maximum number of sectors (SECTOR_NUM_MAX) can be set to six.
  • the wait time for each sector may be set as shown in Table 1, and the wait time values in Table 1 are obtained using Equation 3.
  • the six sectors may not be equally spaced.
  • the sector number SECTOR_NUM may be set such that a value farther from the sender has a larger waiting value.
  • the CBF buffer wait times of routers included in the same sector are all set identically. However, a router that first broadcasts a packet in the same sector is determined based on the buffer state of the access layer.
  • FIG. 18 illustrates an example of a timeout time in consideration of a buffer when using the CBF algorithm according to an embodiment of the present invention.
  • the waiting time in the CBF buffer is all 1ms.
  • packets accumulated in the buffer of the access layer have the least R3.
  • the R3 router can first broadcast the packet.
  • the DIST_MAX value of the CBF algorithm is determined based on the theoretical maximum communication distance of the access layer description. This value may be determined as the power / power value of the transmitting ITS station channel. However, in a multichannel environment, there may be interference between adjacent channels and characteristics of an antenna included in an actual ITS station may be different. Thus, the actual communication range may be different for each ITS station and may change dynamically. When TCP (Transmit Power Control) DCC is applied to change power dynamically, the dynamic characteristics of the communication range may be greater.
  • Candidate forwarders consult the MAC source address of a packet received from the sender. That is, candidate forwarders may compare the MAC source address of the received packet with the values contained in their location table, and estimate the location of the sender from the location table.
  • Geonetworking Packet-The MPDU includes a MAC header, LLC header, geonetworking header and payload. Payload is optional.
  • the MAC header includes a destination MAC address and a source MAC address.
  • the sender's location vector is stored in the neighbor router's location table.
  • the candidate forwarder may know how close it is to the destination compared to the sender. Since the communication range of the sender is assumed to be the same as the communication range of the sender, the setting time of the timer in the buffer of the router may also be determined based on the communication range of the sender. Thus, among the routers in the destination direction from the sender, the timer of the router closest to the destination ends first, and the packet is broadcast to the surroundings. In the case of the area CBF, the purpose is to propagate the packet in a geographic area, and the router is located farther from the sender, the timer is first timed out and transmits the packet to the surroundings.
  • the communication range can vary depending on interference, power control DCC, antenna location, vehicle height, and the like.
  • the use of a fixed maximum communication range value can lead to inefficiency.
  • ETSI-ITS uses a plurality of channels by frequency allocation.
  • the communication method of 802.11 may have a lot of interference, and when the channel power is adjusted to DCC, the communication range and the interference may be changed dynamically.
  • FIG. 19 illustrates an example of different communication ranges of routers in a multi-channel environment, in accordance with an embodiment of the invention.
  • the theoretical communication range and the actual communication range of the sender are different.
  • the sender's theoretical communication range includes candidate forwarder 1 and candidate forwarder 2, but the sender's actual communication range includes only candidate forwarder 2. Therefore, when the sender transmits multihop data, candidate forwarder 1 does not receive the packet.
  • candidate forwarder 2 is located at the boundary of the sender's communication range, so that a low waiting time of the CBF buffer is suitable.
  • the waiting time is calculated in the theoretical communication range, the waiting time is increased, and thus the packet propagation speed is slowed down. Therefore, in order to solve such a problem, a description will be given of a method of forwarding its own communication range during forwarding and determining a CBF waiting time based on the reception router.
  • FIG. 20 shows a GUC packet structure according to an embodiment of the present invention.
  • FIG. 21 shows a GAC / GBC packet structure according to an embodiment of the present invention.
  • FIG. 22 (a) shows an LS request packet structure according to an embodiment of the present invention
  • FIG. 22 (b) shows an LS response packet structure according to an embodiment of the present invention.
  • Communication range information indicates the actual communication range of the sender.
  • the value of the communication range field may be a theoretical value considering transmission power, antenna characteristics, interference, and the like.
  • the value of the communication range field may be an estimated value based on the measured communication situation.
  • the communication range value can be changed every hop.
  • the communication range value may be determined by each sender.
  • the displayed distance value may be indicated in meters (m). As an example, the distance value may be displayed based on a particular unit, such as 10 meters or 20 meters.
  • the communication range of the ad-hoc router is the same. However, it is not assumed to be the maximum communication range of the theoretical access layer. Due to peripheral obstacles, the communication line may not be guaranteed in the communication, or the communication range may vary due to various factors such as a fading channel environment and interference caused by other surrounding channels. However, routers around them are subject to similar environmental impacts, so the range of communication can be assumed to be similar. In this case, the router may determine its own communication range using the location vector included in the geonetworking header of the data received from the neighbor router to the SHB.
  • a difference between location information received from neighboring routers and a location of a user for a predetermined time T may be calculated, and a maximum value may be determined as the maximum communication range of the device, and the packet may be included in a packet and transmitted.
  • the maximum distance value obtained by monitoring for a certain time interval may be used for the next time interval. That is, the router may use the maximum distance value checked during the T time interval from time t to T + t during the next T time interval from time T + t to 2T + t.
  • the router may observe the maximum communication range again during the second interval (T + t ⁇ 2T + t) and use the updated value at the next interval.
  • the maximum communication range may be calculated by adaptively reflecting.
  • the maximum communication range may be obtained as shown in Equation 4.
  • MAX_t Maximum distance from neighboring routers observed over time interval (T)
  • the average of the maximum distance values obtained for each time interval T may be set as the maximum communication range.
  • the router can be used in the calculation of the buffer of the CBF, in which case the calculation can be performed according to a sliding window method. .
  • the communication range value depends on the available vehicle position or the number of vehicles. Limits on distance or number of vehicles may be placed to reduce errors due to measurements. For example, when the specific communication ranger is less than or equal to the predetermined threshold value, a previously obtained value may be used or a theoretical communication range value may be used. In addition, when the number of neighbor routers used to calculate the communication range is less than or equal to a predetermined threshold value, a previously obtained value or a theoretical communication range value may be used.
  • the present invention proposes a method of using a location of a router transmitting a packet corresponding to a response of a packet transmitted by the router. Receiving the response confirms that the data sent by the router has been delivered. Therefore, the router can confirm that there is a router that responds to the communication range.
  • the sender When the sender broadcasts the packet, at least one of the forwarder candidates that received the packet forwards the packet. Forwarded packets are also propagated in a broadcast manner, and senders belonging to the forwarder's communication range can also receive these packets. Whether the packet sent by itself is forwarded can be confirmed through the SN in the packet. Since routers broadcasting the same packet as the transmitted packet are certainly included in the communication range, the ego router can estimate the communication range using only the locations of these routers. This method can be useful especially when communication using CBF occurs frequently in vehicle networks.
  • the router which transmitted the response packet is sure to exist within the communication range of the ego router, so that the communication range is obtained using the location information of the router. can do.
  • the router may obtain a communication range by using the location information of the router which transmitted the forwarding packet or the response packet.
  • the access layer uses a communication technology of 802.11p.
  • the 802.11p access layer does not use signals such as Clear To Send (CTS), Request To Send (RTS), or Acknowledge (ACK).
  • CTS Clear To Send
  • RTS Request To Send
  • ACK Acknowledge
  • the RTS is a signal that the transmitting device reserves a radio link for transmission
  • the CTS is a signal that the receiving party is ready to receive the signal and does not transmit to all node devices listening to the radio link from now on.
  • the ACK is a signal for receiving a packet of a receiving device and informing the reception, and may indicate that the channel has become available.
  • a communication technology other than 802.11p may be used as the access layer technology of the V2X communication device.
  • RTS Radio Transport Stream
  • CTS CTS
  • ACK ACK
  • the router may use the measured communication range information to determine the timeout time of the CBF packet.
  • DIST_MAX in Equations 1 to 3 may be set to the determined actual communication range.
  • the range of actual communication can be estimated based on the location information of the neighbor routers, and it can be shared with the candidate forwarders. Therefore, buffer setting may be more efficient in CBF transmission. Since the actual communication range according to the channel environment of the actual field may be smaller than the theoretical maximum communication range than the theoretical maximum communication range, the CBR buffer latency can be set more efficiently, and thus the system latency can be improved.
  • the candidate forwarder 2 may forward the packet after a shorter buffer wait time than the conventional method.
  • FIG. 25 shows a configuration of a V2X communication device according to an embodiment of the present invention.
  • the V2X communication device 25000 may include a communication unit 25010, a processor 25020, and a memory 25030.
  • the communication unit 25010 may be connected to the processor 25020 to transmit / receive a radio signal.
  • the communication unit 25010 may upconvert data received from the processor 25020 into a transmission / reception band to transmit a signal, or downconvert the received signal.
  • the communication unit 25010 may implement at least one of the physical layer and the access layer.
  • the communication unit 25010 may include a plurality of sub-RF units for communicating in accordance with a plurality of communication protocols.
  • the communication unit 25010 includes 2G including Dedicated Short Range Communication (DSRC), ITS-G5 wireless communication technology based on physical transmission technology of the IEEE 802.11 and / or 802.11p standards, and satellite / wideband wireless mobile communication. Data communication may be performed based on / 3G / 4G (LTE) / 5G wireless cellular communication technology, broadband terrestrial digital broadcasting technology such as DVB-T / T2 / ATSC, GPS technology, IEEE 1609 WAVE technology, and the like.
  • the communication unit 25010 may include a plurality of transceivers that implement each communication technology.
  • the processor 25020 may be connected to the communication unit 25010 to implement operations of layers according to the ITS system or the WAVE system.
  • the processor 25020 may be configured to perform an operation according to various embodiments of the present disclosure according to the above-described drawings and descriptions.
  • at least one of a module, data, a program, or software for implementing the operation of the V2X communication device 25000 according to various embodiments of the present disclosure described above may be stored in the memory 25030 and executed by the processor 25020. have.
  • the memory 25030 is connected to the processor 25020 and stores various information for driving the processor 25020.
  • the memory 25030 may be included in the processor 25020 or may be installed outside the processor 25020 and connected to the processor 25020 by known means.
  • the processor 25020 of the V2X communication device 25000 may perform the geonetworking packet transmission described in the present invention. A method of transmitting a geonetworking packet by the V2X communication device 25000 will be described below.
  • 26 is a flowchart illustrating a geonetworking transmission method according to an embodiment of the present invention.
  • the V2X communication device receives a geonetworking packet from the sender V2X communication device (S26010).
  • the V2X communication device checks whether the received geonetworking packet is a packet previously stored in the buffer (S26020).
  • the V2X communication device discards the received geonetworking packet (S26030).
  • the V2X communication device If the V2X communication device does not store the received geonetworking packet in the buffer, the V2X communication device stores the received geonetworking packet in the buffer and starts a timer (26040). The V2X communication device sets a timeout duration and starts a timer for packet retransmission.
  • the V2X communication device transmits a packet when the timer expires (S26050).
  • the timeout period represents the time period during which a packet is buffered in a buffer.
  • the maximum communication distance of the sander V2X communication device may include a plurality of sectors. Each of the plurality of sectors may have a constant time out period. The sector and time out period may be set as shown in Table 1. The timeout period of the plurality of sectors may be determined based on the distance between the sender V2X device and the V2X device that transmitted the received packet. The larger the distance, the smaller the timeout period can be.
  • the geo-networking packet may include communication range information of the V2X communication device for transmitting the geo-networking packet.
  • the value of the communication range information may be determined as the maximum value of difference values between the positions of the peripheral V2X communication apparatuses and the positions of the V2X communication apparatuses that communicated during the specific time interval.
  • the peripheral V2X communication device may correspond to a V2X communication device in which a response packet or a forwarding packet is received for a packet transmitted by the V2X communication device.
  • the value of the communication range information may be used during the second time interval as a maximum value of difference values between the position of the V2X communication apparatuses and the position of the V2X communication apparatus that communicated during the specific time interval. Determination and use of the communication range information value are as described with reference to FIGS. 23 and 24.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention is used in the field of vehicle communications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Disclosed is a geo-networking transmission method of a V2X communication device. A geo-networking transmission method according to an embodiment of the present invention comprises the steps of: receiving a geo-networking packet from a sender V2X transmission device; checking whether the received geo-networking packet is a packet pre-stored in a buffer; when the received geo-networking packet is not a pre-stored packet, determining whether to progress forwarding of the geo-networking packet; when it is determined to progress the forwarding, storing the geo-networking packet in the buffer, configuring a timeout duration, and starting a timer for re-transmission of the packet; and when the timer expires, transmitting the geo-networking packet.

Description

V2X 통신 장치 및 지오네트워킹 전송 방법V2X Communication Device and Geonetworking Transmission Method
본 발명은 V2X 통신을 위한 장치 및 그의 지오네트워킹 전송 방법에 관한 것으로, 특히, 컨텐션-기반 알고리즘의 지오네트워킹 전송 방법에서, 타이머 설정 및 통신 범위 설정 방법에 관한 것이다.The present invention relates to an apparatus for V2X communication and a method for transmitting a geonetworking thereof, and more particularly, to a method for setting a timer and a communication range in a method for geonetworking transmission of a contention-based algorithm.
최근 차량(vehicle)은 기계 공학 중심에서 전기, 전자, 통신 기술이 융합된 복합적인 산업 기술의 결과물이 되어 가고 있으며, 이러한 면에서 차량은 스마트카라고도 불린다. 스마트카는 운전자, 차량, 교통 인프라 등을 연결하여 교통 안전/복잡 해소와 같은 전통적인 의미의 차량 기술뿐 아니라 다양한 사용자 맞춤형 이동 서비스를 제공하게 되었다. 이러한 연결성은 V2X(Vehicle to Everything) 통신 기술을 사용하여 구현될 수 있다.Recently, vehicles have become the result of complex industrial technologies in which electrical, electronic, and communication technologies converge at the center of mechanical engineering. In this respect, vehicles are also called smart cars. Smart cars connect drivers, vehicles, and traffic infrastructure to provide a variety of customized mobility services, as well as traditional vehicle technologies such as traffic safety and complexity. This connectivity can be implemented using Vehicle to Everything (V2X) communication technology.
V2X 통신을 통해 다양한 서비스가 제공될 수 있다. 또한, 다양한 서비스를 제공하기 위해 복수의 주파수 대역을 사용하게 되었다. 이러한 환경에서도 차량 통신의 특성상 안전 서비스의 신뢰도 높은 전달 및 제공은 매우 중요한 문제이다. Various services can be provided through V2X communication. In addition, a plurality of frequency bands have been used to provide various services. Even in this environment, reliable delivery and provision of safety services is a very important issue due to the characteristics of vehicle communication.
V2X 통신에 있어서, 데이터를 전송 범위 밖으로 전송하기 위해, 호핑을 사용한 지오네트워킹 전송 방법을 사용할 수 있다. 지오네트워킹 전송에서, 데이터 호핑 및 목적지 전달을 위해 패킷 포워딩 알고리즘이 사용될 수 있다. 특히 통신 환경이 다이나믹하게 변화하는 V2X 통신 환경에 있어서, 패킷 포워딩 알고리즘은 효율성 및 신뢰도가 고려되어야만 한다.In V2X communication, a geonetworking transmission method using hopping may be used to transfer data out of the transmission range. In geonetworking transmissions, packet forwarding algorithms may be used for data hopping and destination delivery. Especially in the V2X communication environment where the communication environment is dynamically changed, the packet forwarding algorithm must consider efficiency and reliability.
상술한 기술적 과제를 해결하기 위하여, V2X 통신 장치 및 V2X 통신 장치의 지오네트워킹 전송 방법이 개시된다.In order to solve the above technical problem, a geo-networking transmission method of the V2X communication device and the V2X communication device is disclosed.
본 발명의 실시예에 따른 V2X 통신 장치의 지오네트워킹 전송 방법은, 센더 V2X 통신 장치로부터 지오네트워킹 패킷을 수신하는 단계; 수신 지오네트워킹 패킷이 버퍼에 기저장된 패킷인지 여부를 확인하는 단계; 상기 수신 지오네트워킹 패킷이 기저장된 패킷이 아닌 경우, 상기 지오네트워킹 패킷을 버퍼에 저장하고, 타임아웃 주기(duration)를 설정하고, 상기 패킷 재전송을 위한 타이머를 시작하는 단계; 및 상기 타이머가 종료되면 상기 지오네트워킹 패킷을 전송하는 단계를 포함하고, 상기 타임아웃 주기는 상기 패킷이 상기 버퍼에 버퍼링되는 시간 주기를 나타낸다. According to an aspect of the present invention, there is provided a method for transmitting a geonetworking by a V2X communication device, the method comprising: receiving a geonetworking packet from a sender V2X communication device; Checking whether the received geonetworking packet is a packet previously stored in a buffer; If the received geonetworking packet is not a previously stored packet, storing the geonetworking packet in a buffer, setting a timeout duration, and starting a timer for retransmitting the packet; And transmitting the geonetworking packet when the timer expires, wherein the timeout period indicates a time period during which the packet is buffered in the buffer.
본 발명의 실시예에 따른 V2X 통신 장치의 지오네트워킹 전송 방법에 있어서, 상기 센더 V2X 통신 장치의 최대 통신 거리는 복수의 섹터들을 포함하고, 상기 복수의 섹터들 각각은 일정한 타임아웃 주기를 갖는다.In the geonetworking transmission method of a V2X communication device according to an embodiment of the present invention, the maximum communication distance of the sender V2X communication device includes a plurality of sectors, and each of the plurality of sectors has a constant timeout period.
본 발명의 실시예에 따른 V2X 통신 장치의 지오네트워킹 전송 방법에 있어서, 상기 복수의 섹터들의 타임아웃 주기는, 상기 수신 패킷을 전송한 센더 V2X 장치와 상기 V2X 장치의 거리에 기초하여 결정되며, 상기 거리가 클수록 상기 타임아웃 주기는 작아진다.In the geonetworking transmission method of a V2X communication device according to an embodiment of the present invention, the timeout period of the plurality of sectors is determined based on a distance between the sender V2X device and the V2X device that transmitted the received packet. The larger the distance, the smaller the timeout period.
본 발명의 실시예에 따른 V2X 통신 장치의 지오네트워킹 전송 방법에 있어서, 상기 지오네트워킹 패킷은 상기 지오네트워킹 패킷을 전송하는 V2X 통신 장치의 통신 범위 정보를 포함한다.In the geonetworking transmission method of a V2X communication device according to an embodiment of the present invention, the geonetworking packet includes communication range information of a V2X communication device transmitting the geonetworking packet.
본 발명의 실시예에 따른 V2X 통신 장치의 지오네트워킹 전송 방법에 있어서, 상기 통신 범위 정보의 값은, 제 1 시간 인터벌 동안 통신한 주변의 V2X 통신 장치들의 위치 및 상기 V2X 통신 장치의 위치 간의 차이 값들 중 최대 값으로 결정된다.In the geonetworking transmission method of a V2X communication device according to an embodiment of the present invention, the value of the communication range information is a difference value between the location of the surrounding V2X communication devices and the location of the V2X communication device communicating during the first time interval. Is determined by the maximum value.
본 발명의 실시예에 따른 V2X 통신 장치의 지오네트워킹 전송 방법에 있어서, 상기 주변의 V2X 통신 장치는, 상기 V2X 통신 장치가 전송한 패킷에 대한 응답 패킷 또는 포워딩 패킷이 수신된 V2X 통신 장치이다.In the geonetworking transmission method of a V2X communication device according to an embodiment of the present invention, the peripheral V2X communication device is a V2X communication device in which a response packet or a forwarding packet to the packet transmitted by the V2X communication device is received.
본 발명의 실시예에 따른 V2X 통신 장치의 지오네트워킹 전송 방법에 있어서, 상기 통신 범위 정보의 값은, 상기 제 1 시간 인터벌 동안 통신한 주변의 V2X 통신 장치들의 위치 및 상기 V2X 통신 장치의 위치 간의 차이 값들 중 최대 값으로서 제 2 시간 인터벌 동안 사용된다.In the geonetworking transmission method of a V2X communication device according to an embodiment of the present invention, the value of the communication range information is a difference between the position of the surrounding V2X communication devices and the location of the V2X communication device communicating during the first time interval. The maximum of the values is used during the second time interval.
본 발명의 실시예에 따른 V2X 통신 장치는, 데이터를 저장하는 메모리; 지오네트워킹 패킷을 포함하는 무선 신호를 송수신하는 통신 유닛; 및 상기 메모리 및 상기 통신 유닛을 제어하는 프로세서를 포함하고, 상기 프로세서는, 센더 V2X 통신 장치로부터 지오네트워킹 패킷을 수신하고, 수신 지오네트워킹 패킷이 버퍼에 기저장된 패킷인지 여부를 확인하고, 상기 수신 지오네트워킹 패킷이 기저장된 패킷이 아닌 경우, 상기 지오네트워킹 패킷을 버퍼에 저장하고, 타임아웃 주기(duration)를 설정하고, 상기 패킷 재전송을 위한 타이머를 시작하고, 상기 타이머가 종료되면 상기 지오네트워킹 패킷을 전송하며, 상기 타임아웃 주기는 상기 패킷이 상기 버퍼에 버퍼링되는 시간 주기를 나타낸다. V2X communication apparatus according to an embodiment of the present invention, the memory for storing data; A communication unit for transmitting and receiving a radio signal including a geonetworking packet; And a processor for controlling the memory and the communication unit, the processor receiving a geonetworking packet from a sender V2X communication device, checking whether the received geonetworking packet is a packet previously stored in a buffer, If the networking packet is not a pre-stored packet, the geonetworking packet is stored in a buffer, a timeout duration is set, a timer for retransmitting the packet is started, and the geonetworking packet is terminated when the timer expires. Wherein the timeout period represents a time period during which the packet is buffered in the buffer.
본 발명에 따르면, CBF 버퍼 뿐 아니라 액세스 레이어의 버퍼까지 고려하여 CBF 버퍼 대기 시간을 설정함으로써 시스템 측면에서 CBF 동작의 레이턴시를 개선할 수 있다. 통신 가능한 영역을 일정 섹터로 구분하여, 섹터 내의 라우터들에 대해서는 동일 시간에 CBF 버퍼가 타임아웃되므로, 포워딩 시의 불필요한 레이턴시가 감소될 수 있다.According to the present invention, by setting the CBF buffer waiting time in consideration of the CBF buffer as well as the buffer of the access layer, it is possible to improve the latency of the CBF operation in terms of the system. By dividing the communicable area into certain sectors, since the CBF buffer times out at the same time for routers in the sector, unnecessary latency in forwarding can be reduced.
본 발명에 따르면, 통신 범위를 가변으로 적용함으로써, CBF 알고리즘의 레이턴시를 개선할 수 있다. 멀티 채널 환경에서 간섭으로 인한 통신 범위의 다이나믹한 변화를 CBF 알고리즘에 적용함으로써, 불필요한 레이턴시가 감소될 수 있다.According to the present invention, by varying the communication range, the latency of the CBF algorithm can be improved. By applying a dynamic change in communication range due to interference in a multi-channel environment to the CBF algorithm, unnecessary latency can be reduced.
본 발명에 대해 더욱 이해하기 위해 포함되며 본 출원에 포함되고 그 일부를 구성하는 첨부된 도면은 본 발명의 원리를 설명하는 상세한 설명과 함께 본 발명의 실시예를 나타낸다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of this application for further understanding of the invention, illustrate embodiments of the invention, together with a detailed description that illustrates the principles of the invention.
도 1은 본 발명의 실시예에 따른 ITS 시스템의 프로토콜 구조를 나타낸다.1 shows a protocol structure of an ITS system according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 네트워크/트랜스포트 레이어의 패킷 구조를 나타낸다.2 illustrates a packet structure of a network / transport layer according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 지오네트워킹 패킷의 헤더 구조로서, 베이직 헤더 및 커먼 헤더의 구성을 나타낸다.3 is a header structure of a geonetworking packet according to an embodiment of the present invention, and shows a structure of a basic header and a common header.
도 4는 본 발명의 일 실시예에 따른 GUC(Geographically-Scoped Unicast) 타입의 지오네트워킹 방법 및 그에 따른 GUC 패킷 헤더 구성을 나타낸다.FIG. 4 illustrates a method for geonetworking of a GUC type according to an embodiment of the present invention and a GUC packet header configuration according thereto.
도 5는 본 발명의 다른 일 실시예에 따른 TSB(Topologically Scoped Broadcast) 타입 지오네트워킹 방법 및 그에 따른 TSB 패킷 헤더 구성을 나타낸다.FIG. 5 illustrates a topologically scoped broadcast (TSB) type geonetworking method and a TSB packet header configuration according thereto according to another embodiment of the present invention.
도 6은 본 발명의 다른 일 실시예에 따른 SHB(Single Hop Broadcast) 타입 지오네트워킹 방법 및 SHB 패킷 헤더 구성을 나타낸다.FIG. 6 illustrates a SHB (Single Hop Broadcast) type geonetworking method and an SHB packet header configuration according to another embodiment of the present invention.
도 7은 본 발명의 다른 일 실시예에 따른 GBC(Geographically-Scope Broadcast)/GAC(Geographically-Scoped Anycast) 타입 지오네트워킹 방법 및 BC/GAC 패킷 헤더 구성을 나타낸다.FIG. 7 illustrates a Geographically-Scope Broadcast (GBC) / Geographically-Scoped Anycast (GAC) type geonetworking method and a BC / GAC packet header configuration according to another embodiment of the present invention.
도 8은 본 발명의 다른 일 실시예에 따른 비콘 타입 지오네트워킹 및 그에 따른 비콘 패킷 헤더 구성을 나타낸다.8 illustrates beacon type geonetworking and a beacon packet header configuration according to another embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 LS(Location Service) 요청 패킷 헤더 및 LS 응답 패킷 헤더의 구성을 나타낸다.9 illustrates the configuration of a location service (LS) request packet header and an LS response packet header according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따른 포지션 벡터 정보를 나타낸다.10 shows position vector information according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 그리디(greedy) 포워딩 알고리즘의 패킷 전달 방법을 나타낸다.11 illustrates a packet forwarding method of a greedy forwarding algorithm according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 비-영역 컨텐션-기반 알고리즘의 개념도이다.12 is a conceptual diagram of a non-region contention-based algorithm according to an embodiment of the present invention.
도 13는 본 발명의 실시예에 따른 컨텐션-기반 전송을 나타낸다.13 illustrates contention-based transmission according to an embodiment of the present invention.
도 14는 본 발명의 실시예에 따른 영역(area) 컨텐션-기반(contention-based) 알고리즘의 패킷 전달 방법을 나타낸다. 14 illustrates a packet delivery method of an area contention-based algorithm according to an embodiment of the present invention.
도 15는 본 발명의 실시예에 따른 ITS-G5 아키텍처를 나타낸다. 15 shows an ITS-G5 architecture according to an embodiment of the invention.
도 16은 본 발명의 실시예에 따른 CBF 알고리즘을 사용하는 경우 거리에 따른 타임아웃 시간의 예를 나타낸다.16 illustrates an example of timeout time according to distance when using the CBF algorithm according to an embodiment of the present invention.
도 17은 본 발명의 실시예에 따른 CBF 알고리즘을 사용하는 경우 버퍼를 감안한 타임아웃 시간의 예를 나타낸다.17 illustrates an example of a timeout time considering a buffer when using a CBF algorithm according to an embodiment of the present invention.
도 18은 본 발명의 실시예에 따른 CBF 알고리즘을 사용하는 경우 버퍼를 감안한 타임아웃 시간의 예를 나타낸다.18 illustrates an example of a timeout time in consideration of a buffer when using the CBF algorithm according to an embodiment of the present invention.
도 19는 본 발명의 실시예에 따른, 멀티 채널 환경의 라우터들의 상이한 통신 범위의 예를 나타낸다.19 illustrates an example of different communication ranges of routers in a multi-channel environment, in accordance with an embodiment of the invention.
도 20은 본 발명의 실시예에 따른 GUC 패킷 구조를 나타낸다.20 shows a GUC packet structure according to an embodiment of the present invention.
도 21은 본 발명의 실시예에 따른 GAC/GBC 패킷 구조를 나타낸다.21 shows a GAC / GBC packet structure according to an embodiment of the present invention.
도 22(a)는 본 발명의 실시예에 따른 LS 요청 패킷 구조를 나타내고, 도 22(b)는 본 발명의 실시예에 따른 LS 응답 패킷 구조를 나타낸다. 22 (a) shows an LS request packet structure according to an embodiment of the present invention, and FIG. 22 (b) shows an LS response packet structure according to an embodiment of the present invention.
도 23은 본 발명의 실시예에 따른 통신 범위 측정 방법을 나타낸다.23 illustrates a communication range measuring method according to an embodiment of the present invention.
도 24는 본 발명의 다른 일 실시예에 따른 통신 범위 측정 방법을 나타낸다.24 illustrates a communication range measuring method according to another embodiment of the present invention.
도 25은 본 발명의 실시예에 따른 V2X 통신 장치의 구성을 나타낸다.25 shows a configuration of a V2X communication device according to an embodiment of the present invention.
본 발명의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 본 발명의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 본 발명의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 본 발명에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함하지만, 본 발명이 이러한 세부 사항을 모두 필요로 하는 것은 아니다. 본 발명은 이하에서 설명되는 실시예들은 각각 따로 사용되어야 하는 것은 아니다. 복수의 실시예 또는 모든 실시예들이 함께 사용될 수 있으며, 특정 실시예들은 조합으로서 사용될 수도 있다.Preferred embodiments of the present invention will be described in detail, examples of which are illustrated in the accompanying drawings. DETAILED DESCRIPTION The following detailed description with reference to the accompanying drawings is intended to explain preferred embodiments of the invention rather than to show only embodiments that may be implemented in accordance with embodiments of the invention. The following detailed description includes details in order to provide a thorough understanding of the present invention, but the present invention does not require all of these details. The present invention is not to be used separately the embodiments described below. Multiple or all embodiments may be used together, and specific embodiments may be used in combination.
본 발명에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 본 발명은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.Most of the terms used in the present invention are selected from general ones widely used in the art, but some terms are arbitrarily selected by the applicant, and their meanings are described in detail in the following description as necessary. Therefore, the present invention should be understood based on the intended meaning of the term and not the simple name or meaning of the term.
본 발명은 V2X 통신 장치에 대한 것으로, V2X 통신 장치는 ITS(Intelligent Transport System) 시스템에 포함되어, ITS 시스템의 전체 또는 일부 기능들을 수행할 수 있다. V2X 통신 장치는 차량과 차량, 차량과 인프라, 차량과 자전거, 모바일 기기 등과의 통신을 수행할 수 있다. V2X 통신 장치는 V2X 장치라고 약칭될 수도 있다. 실시예로서 V2X 장치는 차량의 온보드유닛(OBU; On Board Unit)에 해당하거나, OBU에 포함될 수도 있다. OBU는 OBE(On Board Equipment)라고 치칭될 수도 있다. V2X 통신 장치는 인프라스트럭처의 RSU(Road Side Unit)에 해당하거나, RSU에 포함될 수도 있다. RSU는 RSE(Road Side Equipment)라고 지칭될 수도 있다. 또는, V2X 통신 장치는 ITS 스테이션(ITS-S)에 해당하거나, ITS 스테이션에 포함될 수 있다. V2X 통신을 수행하는 임의의 OBU, RSU 및 모바일 장비 등을 모두 ITS 스테이션 또는 V2X 통신 장치라고 지칭될 수도 있다. 지오네트워킹 통신에서, V2X 통신 장치는 라우터로 지칭될 수도 있다.The present invention relates to a V2X communication device, and the V2X communication device may be included in an intelligent transport system (ITS) system to perform all or some functions of the ITS system. The V2X communication device can communicate with vehicles and vehicles, vehicles and infrastructure, vehicles and bicycles, and mobile devices. The V2X communication device may be abbreviated as a V2X device. According to an embodiment, the V2X device may correspond to an onboard unit (OBU) of the vehicle or may be included in the OBU. OBU may be referred to as On Board Equipment (OBE). The V2X communication device may correspond to a road side unit (RSU) of the infrastructure or may be included in the RSU. The RSU may be referred to as Road Side Equipment (RSE). Alternatively, the V2X communication device may correspond to the ITS station (ITS-S) or may be included in the ITS station. Any OBU, RSU, mobile equipment, etc. that perform V2X communication may all be referred to as ITS stations or V2X communication devices. In geonetworking communication, a V2X communication device may be referred to as a router.
V2X 통신 장치는 다양한 통신 프로토콜에 기초하여 통신할 수 있다. V2X 통신 장치가 IEEE 1609.1~4의 WAVE(Wireless Access In Vehicular Environments) 프로토콜을 구현할 수 있다. 이러한 경우 V2X 통신 장치는 WAVE 장치 또는 WAVE 통신 장치라고 지칭할 수도 있다.V2X communication devices can communicate based on various communication protocols. The V2X communication device may implement the WAVE (Wireless Access In Vehicular Environments) protocol of IEEE 1609.1-4. In this case, the V2X communication device may be referred to as a WAVE device or a WAVE communication device.
V2X 통신 장치는 CAM(Cooperative Awareness Message) 또는 DENM(Decentralized Environmental Notification Message)를 전송할 수 있다. CAM은 ITS 네트워크에서 분배(distribute)되며, ITS 스테이션의 존재(presence), 위치, 통신 상태, 또는 운행 상태 중 적어도 하나에 대한 정보를 제공한다. DENM은 감지된 이벤트에 대한 정보를 제공한다. DENM은 ITS 스테이션이 감지한 임의의 주행 상황 또는 이벤트에 대한 정보를 제공할 수 있다. 예를 들면, DENM은 비상 전자 브레이크 등, 차량 사고, 차량 문제, 교통 컨디션, 등과 같은 상황에 대한 정보를 제공할 수 있다.The V2X communication device may transmit a Cooperative Awareness Message (CAM) or a Decentralized Environmental Notification Message (DENM). The CAM is distributed in the ITS network and provides information about at least one of the presence, location, communication state, or running state of the ITS station. DENM provides information about detected events. The DENM can provide information about any driving situation or event detected by the ITS station. For example, the DENM can provide information about situations such as vehicle accidents, vehicle problems, traffic conditions, and the like, such as emergency electronic brakes.
도 1은 본 발명의 실시예에 따른 ITS 시스템의 프로토콜 구조를 나타낸다.1 shows a protocol structure of an ITS system according to an embodiment of the present invention.
어플리케이션(application) 레이어: 어플리케이션 레이어는 다양한 사용예(use case)를 구현 및 지원할 수 있다. 예를 들면, 어플리케이션은 도로 안전(Road Safety), 효율적 교통 정보(Efficient Traffic Information), 기타 애플리케이션 정보(Other application)를 제공할 수 있다.Application layer: The application layer may implement and support various use cases. For example, the application may provide road safety, efficient traffic information, and other application information.
퍼실리티(facilities) 레이어: 퍼실리티 레이어는 어플리케이션 레이어에서 정의된 다양한 사용예를 효과적으로 실현할 수 있도록 지원할 수 있다. 예를 들면, 퍼실리티 레이어는 어플리케이션 지원(application support), 정보 지원(information support), 세션/통신 지원(session/communication support)을 수행할 수 있다.Facilityities layer: The facility layer can support the effective realization of the various uses defined in the application layer. For example, the facility layer may perform application support, information support, and session / communication support.
액세스(Access) 레이어: 액세스 레이어는 상위 레이어에서 수신한 메세지/데이터를 물리적 채널을 통해 전송할 수 있다. 예를 들면, 액세스 레이어는 IEEE 802.11 및/또는 802.11p 표준 기반 통신 기술, IEEE 802.11 및/또는 802.11p 표준의 피지컬 전송 기술에 기초하는 ITS-G5 무선 통신 기술, 위성/광대역 무선 이동 통신을 포함하는 2G/3G/4G(LTE)/5G 무선 셀룰러 통신 기술, DVB-T/T2/ATSC 등 광대역 지상파 디지털 방송 기술, GPS 기술, IEEE 1609 WAVE 기술 등에 기초하여 데이터 통신을 수행/지원할 수 있다.Access layer: The access layer may transmit a message / data received from a higher layer through a physical channel. For example, the access layer may include an IEEE 802.11 and / or 802.11p standard based communication technology, an ITS-G5 wireless communication technology based on the physical transmission technology of the IEEE 802.11 and / or 802.11p standard, and satellite / broadband wireless mobile communication. Data communication can be performed / supported based on 2G / 3G / 4G (LTE) / 5G wireless cellular communication technology, broadband terrestrial digital broadcasting technology such as DVB-T / T2 / ATSC, GPS technology, and IEEE 1609 WAVE technology.
네트워크 및 트랜스포트(Networking & Transport) 레이어: 네트워크/트랜스포트 레이어는 다양한 트랜스포트 프로토콜 및 네트워크 프로토콜을 사용함으로써 동종(homogenous)/이종(heterogeneous) 네트워크 간의 차량 통신을 위한 네트워크를 구성할 수 있다. Networking & Transport Layer: The network / transport layer can form a network for vehicle communication between homogeneous / heterogeneous networks by using various transport protocols and network protocols.
트랜스포트 레이어는 상위 레이어(세션(session) 레이어, 프리젠테이션(presentation) 레이어, 어플리케이션 레이어)와 하위 레이어(네트워크 레이어, 데이터 링크 레이어, 피지컬 레이어)에서 제공하는 서비스들 간의 연결 계층이다. 트랜스포트 레이어는 전송 데이터가 목적지에 정확히 도착하도록 관리할 수 있다. 송신측에서, 트랜스포트 레이어는 효율적인 데이터 전송을 위해 데이터를 적당한 크기의 패킷으로 프로세싱하고, 수신측에서, 트랜스포트 레이어는 수신된 패킷들을 원래의 파일로 복구하는 프로세싱을 수행할 수 있다. 실시예로서, 트랜스포트 프로토콜로서 TCP(Transmission Control Protocol), UDP(User Datagram Protocol), BTP(Basic Transport Protocol)과 같은 프로토콜이 사용될 수 있다.The transport layer is a connection layer between services provided by upper layers (session layer, presentation layer, application layer) and lower layers (network layer, data link layer, physical layer). The transport layer can manage the transmission data to arrive exactly at the destination. At the transmitting side, the transport layer processes the data into packets of appropriate size for efficient data transmission, and at the receiving side, the transport layer can perform processing to restore the received packets to the original file. As an embodiment, protocols such as Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Basic Transport Protocol (BTP) may be used as the transport protocol.
네트워크 레이어는 논리적인 주소를 매니징하고, 패킷의 전달 경로를 결정할 수 있다. 네트워크 레이어는 트랜스포트 레이어에서 생성된 패킷을 수신하여 목적지의 논리적인 주소를 네트워크 계층 헤더에 추가할 수 있다. 실시예로서, 패킷 경로는 차량들간, 차량과 고정 스테이션간, 고정 스테이션들 간의 유니캐스트/브로드캐스트가 고려될 수 있다. 실시예로서, 지오-네트워킹(Geo-Networking), 모바일 지원(with mobility support) IPv6 네트워킹, 지오-네트워킹을 거치는(over) IPv6 등이 네트워킹 프로토콜로서 고려될 수 있다.The network layer can manage logical addresses and determine the delivery path of packets. The network layer may receive the packet generated at the transport layer and add a logical address of the destination to the network layer header. As an embodiment, the packet path may be considered unicast / broadcast between vehicles, between vehicles and fixed stations, and between fixed stations. As an embodiment, Geo-Networking, with mobility support IPv6 networking, over IPv6, and the like can be considered as a networking protocol.
ITS 아키텍처는 추가로 매니지먼트(Management) 레이어 및 시큐리티(security) 레이어를 더 포함할 수 있다. The ITS architecture may further include a management layer and a security layer.
도 2는 본 발명의 실시예에 따른 네트워크/트랜스포트 레이어의 패킷 구조를 나타낸다.2 illustrates a packet structure of a network / transport layer according to an embodiment of the present invention.
트랜스포트 레이어는 BTP 패킷을 생성하고, 네트워크 레이어는 BTP 패킷을 인캡슐레이팅하여 지오-네트워킹 패킷을 생성할 수 있다. 지오-네트워킹 패킷은 LLC 패킷으로 인캡슐레이션될 수 있다. 도 2의 실시예에서, 데이터는 메세지 세트를 포함하고, 메세지 세트는 베이직 세이프티 메세지가 될 수 있다.The transport layer generates a BTP packet, and the network layer may generate a geo-networking packet by encapsulating the BTP packet. Geo-networking packets may be encapsulated into LLC packets. In the embodiment of Figure 2, the data includes a message set, which may be a basic safety message.
BTP는 퍼실리티 레이어에서 생성한 CAM, DENM과 같은 메세지를 하위(lower) 레이어로 전송하기 위한 프로토콜이다. BTP 헤더는 A타입, B타입으로 구성된다. A 타입 BTP 헤더는 인터랙티브(interactive) 패킷 전송을 위해 송수신에 필요한, 목적지/데스티네이션(destination) 포트 및 소스 포트를 포함할 수 있다. B 타입 헤더는 비-인터랙티브(non-interactive) 패킷 전송을 위해 송신에 필요한, 데스티네이션 포트 및 데스티테이션 포트 정보를 포함할 수 있다. 헤더에 포함된 필드/정보에 대한 설명은 아래와 같다.BTP is a protocol for transmitting messages such as CAM and DENM generated by the facility layer to the lower layer. The BTP header consists of A type and B type. The type A BTP header may include a destination / destination port and a source port, which are required for transmission and reception for interactive packet transmission. The B type header may include destination port and destination port information, which is required for transmission for non-interactive packet transmission. Descriptions of the fields / information included in the header are as follows.
데스티네이션 포트(Destination Port): 데스티네이션 포트는 BTP 패킷에 포함된 데이터(BTP-PDU)의 목적지에 해당하는 퍼실리티 엔터티를 식별한다.Destination Port: The destination port identifies the facility entity corresponding to the destination of the data (BTP-PDU) included in the BTP packet.
소스 포트(Source Port): BTP-A 타입의 경우 생성되는 필드로서, 해당 패킷이 전송되는 소스에서의 퍼실리티 레이어의 프로토콜 엔터티의 포트를 지시한다. 이 필드는 16비트의 사이즈를 가질 수 있다.Source Port: A field generated in the case of a BTP-A type, indicating a port of a protocol entity of a facility layer in a source through which a corresponding packet is transmitted. This field may have a size of 16 bits.
데스티네이션 포트 정보(Destination Port Info): BTP-B 타입의 경우 생성되는 필드로서, 데스티네이션 포트가 가장 잘 알려진 포트인 경우 추가 정보를 제공할 수 있다. 이 필드는 16비트의 사이즈를 가질 수 있다.Destination Port Info: This field is generated for the BTP-B type and may provide additional information when the destination port is the best known port. This field may have a size of 16 bits.
지오네트워킹 패킷(Geonetworking packet)은 네트워크 계층의 프로토콜에 따라서 베이직 헤더 및 커먼 헤더를 포함하고, 지오네트워킹 모드에 따라서 익스텐션(Extension) 헤더를 선택적으로(optional) 포함한다. 지오네트워킹 헤더에 대해서는 이하에서 다시 설명한다.The geonetworking packet includes a basic header and a common header according to the protocol of the network layer, and optionally includes an extension header according to the geonetworking mode. The geonetworking header is described again below.
지오네트워킹 패킷에 LLC 헤더가 부가되어 LLC 패킷이 생성된다. LLC 헤더는 IP 데이터와 지오네트워킹 데이터를 구별하여 전송하는 기능을 제공한다. IP 데이터와 지오네트워킹 데이터는 SNAP의 이더타입(Ethertype)에 의해 구별될 수 있다. 실시예로서, IP 데이터가 전송되는 경우, 이더타입은 0x86DD로 설정되어 LLC 헤더에 포함될 수 있다. 실시예로서, 지오네트워킹 데이터가 전송되는 경우, 이더타입은 0x86DC로 설정되어 LLC 헤더에 포함될 수 있다. 수신기는 LLC 패킷 헤더의 이더타입 필드를 확인하고, 그 값에 따라서 패킷을 IP 데이터 경로 또는 지오네트워킹 경로로 포워딩 및 처리할 수 있다.The LLC header is added to the geonetworking packet to generate the LLC packet. The LLC header provides the function of distinguishing IP data and geonetworking data. IP data and geonetworking data can be distinguished by the Ethertype of SNAP. As an embodiment, when IP data is transmitted, the Ethertype may be set to 0x86DD and included in the LLC header. As an embodiment, when geonetworking data is transmitted, the Ethertype may be set to 0x86DC and included in the LLC header. The receiver may check the Ethertype field of the LLC packet header and forward and process the packet to the IP data path or the geonetworking path according to the value.
도 3은 본 발명의 실시예에 따른 지오네트워킹 패킷의 헤더 구조로서, 베이직 헤더 및 커먼 헤더의 구성을 나타낸다.3 is a header structure of a geonetworking packet according to an embodiment of the present invention, and shows a structure of a basic header and a common header.
도 3(a)는 도 2에서 나타낸 지오네트워킹 패킷 헤더의 베이직 헤더를, 도 3(b)는 도 2에서 나타낸 지오네트워킹 패킷 헤더의 커먼 헤더를 나타낸다.FIG. 3 (a) shows the basic header of the geonetworking packet header shown in FIG. 2, and FIG. 3 (b) shows the common header of the geonetworking packet header shown in FIG.
베이직 헤더는 32비트(4바이트)가 될 수 있다. 베이직 헤더는 버전 필드, NH 필드(Next Header), LT(LifeTime) 필드, RHL(Remaining Hop Limit) 필드 중 적어도 하나를 포함할 수 있다. 베이직 헤더에 포함된 필드들에 대한 설명은 아래와 같다. 각 필드를 구성하는 비트 사이즈는 실시예에 불과한 것으로, 변경될 수도 있다.The basic header can be 32 bits (4 bytes). The basic header may include at least one of a version field, an NH field (Next Header), an LT (LifeTime) field, and a Remaining Hop Limit (RHL) field. The fields included in the basic header are described below. The bit size constituting each field is only an embodiment and may be changed.
Version(4비트): 버전(version) 필드는 지오네트워킹 프로토콜을 버전을 지시한다.Version (4-bit): The version field indicates the version of the geonetworking protocol.
NH(4비트): NH(Next Header) 필드는 후속 헤더/필드의 타입을 지시한다. 필드 값이 1이면 커먼 헤더가 이어지고, 2이면 보안 설정된 보안(secured) 패킷이 이어질 수 있다.NH (4 bits): The NH (Next Header) field indicates the type of the next header / field. If the field value is 1, the common header is followed. If the field value is 2, the secured secure packet may be followed.
LT(8비트): LT(LifeTime) 필드는 해당 패킷의 최대 생존 시간을 지시한다. LT (8 bits): The LT (LifeTime) field indicates the maximum survival time of the packet.
RHL(8비트): RHL(Remaining Hop Limit) 필드는 잔여 홉 제한을 지시한다. RHL 필드값은 지오애드혹(GeoAdhoc) 라우터에서 포워딩할 때마다 1씩 줄어들 수 있다. RHL 필드값이 0이 되면 해당 패킷은 더 이상 포워딩되지 않는다.RHL (8 bits): The Remaining Hop Limit (RHL) field indicates the remaining hop limit. The RHL field value may be decremented by 1 each time it is forwarded by a GeoAdhoc router. If the RHL field value is 0, the packet is no longer forwarded.
커먼 헤더는 64비트(8바이트)가 될 수 있다. 커먼 헤더는 NH(NextHeader) 필드, HT(HeaderType) 필드, HST(Header Sub-Type) 필드, TC(Traffic Class) 필드, 플래그(Flags) 필드, PL(PayloadLength) 필드, MHL(Maximum Hop Limit) 필드 중 적어도 하나를 포함할 수 있다. 각 필드들에 대한 설명은 아래와 같다.The common header can be 64 bits (8 bytes). Common headers include NH (NextHeader) field, HT (HeaderType) field, HST (Header Sub-Type) field, TC (Traffic Class) field, Flags field, PayloadLength field, PL (Maximum Hop Limit) field It may include at least one of. Description of each field is as follows.
NH(4비트): NH(Next Header) 필드는 후속 헤더/필드의 타입을 지시한다. 필드 값이 0이면 정의되지 않은 "ANY" 타입을 지시하고, 1이면 BTP-A 타입 패킷을, 2이면 BTP-B 타입 패킷을, 3이면 IPv6의 IP 다이어그램을 각각 지시할 수 있다. NH (4 bits): The NH (Next Header) field indicates the type of the next header / field. A field value of 0 may indicate an undefined "ANY" type, 1 indicates a BTP-A type packet, 2 indicates a BTP-B type packet, and 3 indicates an IPv6 IP diagram.
HT(4비트): 헤더 타입 필드는 지오네트워킹 타입을 지시한다. 지오네트워킹 타입은 비콘(Beacon), 지오유니캐스트(GeoUnicast), 지오애니캐스트(GeoAnycast), 지오브로드캐스트(GeoBroadcast), TSB(Topologically-Scoped Broadcast), LS(Location Service)을 포함한다.HT (4 bits): The header type field indicates the geonetworking type. Geonetworking types include Beacon, GeoUnicast, GeoAnycast, GeoBroadcast, Topologically-Scoped Broadcast, and Location Service (LS).
HST(4비트): 헤더 서브 타입 필드는 헤더 타입과 함께 세부적인 타입을 지시한다. 실시예로서, HT 타입이 TSB로 설정되면 HST값이 '0'인 경우는 싱글 홉을 지시하고, '1'인 경우에는 멀티 홉을 지정할 수 있다.HST (4-bit): The Header Subtype field indicates the detailed type along with the header type. As an embodiment, when the HT type is set to TSB, when the HST value is '0', a single hop may be indicated, and when it is '1', a multi hop may be designated.
TC(8비트): 트래픽 클래스 필드는 SCF(Store-Carry-Forward), 채널 오프로드(Channel Offload), TC ID를 포함할 수 있다. SCF 필드는 패킷을 전달할 이웃이 없는 경우 패킷 저장 여부를 지시한다. 채널 오프로드 필드는 멀티채널 오퍼레이션의 경우 다른 채널로 패킷이 전달될 수 있음을 지시한다. TC ID 필드는 퍼실리티 레이어에서 패킷 전달 시 할당되는 값으로, 피지컬 레이어에서 컨탠션(contention) 윈도우 값 설정에 사용될 수 있다.TC (8 bits): The traffic class field may include a Store-Carry-Forward (SCF), Channel Offload, and TC ID. The SCF field indicates whether to store a packet when there is no neighbor to deliver the packet. The channel offload field indicates that a packet can be delivered to another channel in case of a multichannel operation. The TC ID field is a value assigned during packet transmission in the facility layer and may be used to set a contention window value in the physical layer.
플래그(8비트): 플래그 필드는 ITS 장치가 이동형(mobile)인지 고정형(stationary)인지를 지시하고, 실시예로서 마지막 1비트가 될 수 있다.Flag (8 bits): The flag field indicates whether the ITS device is mobile or stationary, and may be the last 1 bit as an embodiment.
PL(8비트): 페이로드 길이 필드는 지오네트워킹 헤더에 후속하는 데이터 길이를 바이트 단위로 지시한다. 예를 들면, CAM을 운반(carry)하는 지오-네트워킹 패킷의 경우, PL 필드는 BTP 헤더와 CAM의 길이를 지시할 수 있다.PL (8 bits): The Payload Length field indicates the data length following the geonetworking header in bytes. For example, in the case of a geo-networking packet carrying a CAM, the PL field may indicate the length of the BTP header and the CAM.
MHL(8비트): MHL(Maximum Hop Limit) 필드는 최대 호핑 수를 지시할 수 있다.MHL (8-bit): The Maximum Hop Limit (MHL) field may indicate the maximum number of hops.
지오네트워킹 헤더는 상술한 베이직 헤더와 커먼 헤더 및 확장(extended) 헤더를 포함한다. 확장 헤더는 지오네트워킹 타입에 따라서 구성이 달라진다. 이하에서는 각 지오네트워킹 타입에 따른 헤더 구성을 설명한다. The geonetworking header includes the above-described basic header, common header and extended header. The extension header is configured differently according to the geonetworking type. Hereinafter, a header configuration according to each geonetworking type will be described.
본 명세서에서, 지오네트워킹을 수행하는 V2X 통신 장치를 라우터 또는 지오애드혹 라우터라고 지칭할 수 있다. 지오네트워킹 패킷을 전송하는 V2X 통신 장치를 소스 라우터 또는 샌더(sender)라고 지칭할 수 있다. 소스 라우터로부터 지오네트워킹 패킷을 수신하여 샌더로 릴레이(relay)/포워딩하는 V2X 통신 장치를 포워딩 라우터 또는 포워더(forwarder)라고 지칭할 수 있다. 그리고 지오네트워킹 패킷의 최종 목적지인 V2X 통신 장치 또는 최종 목적지 영역의 V2X 통신 장치를 목적지(destination) 또는 목적지 라우터라고 지칭할 수 있다. In the present specification, a V2X communication device performing geonetworking may be referred to as a router or a geoad hoc router. A V2X communication device that transmits a geonetworking packet may be referred to as a source router or a sander. A V2X communication device that receives a geonetworking packet from a source router and relays / forwards it to a sander may be referred to as a forwarding router or a forwarder. The V2X communication device or the V2X communication device in the final destination area of the geonetworking packet may be referred to as a destination or a destination router.
도 4는 본 발명의 일 실시예에 따른 GUC(Geographically-Scoped Unicast) 타입의 지오네트워킹 방법 및 그에 따른 GUC 패킷 헤더 구성을 나타낸다.FIG. 4 illustrates a method for geonetworking of a GUC type according to an embodiment of the present invention and a GUC packet header configuration according thereto.
도 4(a)는 GUC(Geographically-Scoped Unicast) 타입의 데이터 전달 방법을 나타내고, 도 4(b)는 GUC 헤더 구성을 나타낸다.FIG. 4 (a) shows a method of data transmission of a Geographically-Scoped Unicast (GUC) type, and FIG. 4 (b) shows a GUC header configuration.
GUC는 특정 소스 라우터에서 목적지 라우터까지 데이터를 전달하는 방법이다. 도 4(a)에서와 같이, 소스 라우터(S)는 멀티 홉을 경유하여 목적지 라우터(N8)까지 데이터를 GUC 타입으로 전송할 수 있다. 소스 라우터는 위치(location) 테이블에 목적지 라우터에 대한 정보를 갖고 있어야 한다. 목적지 라우터에 대한 정보가 없는 경우, 소스 라우터는 "LS 요청(request) 및 LS 응답(reply)" 과정을 사용하여 원하는 목적지를 찾을 수 있다.GUC is a method of passing data from a specific source router to a destination router. As shown in FIG. 4A, the source router S may transmit data in a GUC type to the destination router N8 via multi-hop. The source router must have information about the destination router in its location table. If there is no information about the destination router, the source router can use the "LS request and LS reply" process to find the desired destination.
도 4(b)에서, GUC 패킷 헤더는 베이직 헤더, 커먼 헤더 및 확장 헤더를 포함한다. 커먼 헤더의 HT 필드가 GUC를 지시하고, 확장 헤더는 SN 필드, SO PV(Source Position Vector) 필드, DE PV(Destination Position Vector)필드를 포함한다. 포함된 필드에 대한 설명은 아래와 같다.In FIG. 4B, the GUC packet header includes a basic header, a common header, and an extension header. The HT field of the common header indicates a GUC, and the extended header includes an SN field, an SO PV (Source Position Vector) field, and a DE PV (Destination Position Vector) field. Description of the included fields is as follows.
SN(Sequence Number): 시퀀스 넘버 필드는 패킷 중복성을 검사하기 위해 사용되는 값을 지시한다. 시퀀스 넘버 필드의 값은 소스에서 패킷을 전송할 때 1씩 증가된다. 수신 라우터에서는 시퀀스 넘버(또는, 시퀀스 넘버 및 TST 값)를 사용함으로써 패킷의 중복 수신 여부를 결정할 수 있다. SN은 멀티 홉 전송 시 사용되는 값이다.Sequence Number (SN): The Sequence Number field indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when a packet is sent from the source. The receiving router may determine whether a packet is duplicated by using a sequence number (or a sequence number and a TST value). SN is a value used for multi-hop transmission.
SO PV: 소스의 위치를 나타내며, 롱(long) 포지션 벡터 포맷이 될 수 있다.SO PV: Indicates the position of the source and may be in a long position vector format.
DE PV: 목적지의 위치를 나타내며, 숏(short) 포지션 벡터 포맷이 될 수 있다.DE PV: indicates the location of the destination, and may be in a short position vector format.
도 5는 본 발명의 다른 일 실시예에 따른 TSB(Topologically Scoped Broadcast) 타입 지오네트워킹 방법 및 그에 따른 TSB 패킷 헤더 구성을 나타낸다.FIG. 5 illustrates a topologically scoped broadcast (TSB) type geonetworking method and a TSB packet header configuration according thereto according to another embodiment of the present invention.
도 5(a)는 TSB(Topologically Scoped Broadcast) 타입의 데이터 전달 방법을 나타내고, 도 5(b)는 TSB 헤더 구성을 나타낸다.FIG. 5 (a) shows a method of data transmission of a TSB (Topologically Scoped Broadcast) type, and FIG. 5 (b) shows a TSB header configuration.
TSB는 홉의 개수로 데이터가 전달되는 거리를 조절하는 브로드캐스트 방식이다. 위치에 기반한 정보는 사용되지 않는다. 홉의 개수만으로 데이터의 전달 여부가 결정되므로, 목적지의 위치 주소나 데이터가 전달되는 지역 정보는 사용되지 않는다. 소스 라우터(s)로부터 n홉 내의 모든 라우터로 데이터가 포워딩될 수 있다.TSB is a broadcast scheme that adjusts the distance that data is transmitted by the number of hops. Location based information is not used. Since only the number of hops determines whether data is delivered, the location address of the destination or local information to which the data is delivered is not used. Data can be forwarded from the source router s to all routers within n hops.
도 5(a)는 n-2인 TSB 방식의 데이터 전송을 나타낸다. 소스 라우터는 n=2로 설정하여 신호를 브로드캐스트하고, 소스 라우터의 전송 범위 내의 라우터들은 이 신호를 수신한다. N=2이므로, 1홉으로 데이터를 수신한 포워딩 라우터들(N1, N2, N3)은 수신 패킷을 다시(re)-브로드캐스트한다. N=2 이므로 다시-브로드캐스트된 신호를 수신한 라우터들은 수신 패킷을 다시-브로드캐스트하지 않는다. 이러한 TSB 전송 방법에서, 단일 홉(n=1)인 경우는 SHB(Single Hop Broadcast)로 지칭할 수 있다.5 (a) shows a TSB data transmission of n-2. The source router broadcasts the signal by setting n = 2, and routers within the transmission range of the source router receive this signal. Since N = 2, forwarding routers N1, N2, N3 that have received data in one hop re-broadcast the received packet. Since N = 2, routers receiving a re-broadcasted signal do not re-broadcast the received packet. In this TSB transmission method, a single hop (n = 1) may be referred to as a single hop broadcast (SHB).
도 5(b)에서, TSB 패킷 헤더는 베이직 헤더, 커먼 헤더 및 확장 헤더를 포함한다. 커먼 헤더의 HT 필드가 TSB를 지시하고, 확장 헤더는 SN 필드, SO PV(Source Position Vector) 필드를 포함한다. 포함된 필드에 대한 설명은 아래와 같다.In FIG. 5B, the TSB packet header includes a basic header, a common header, and an extended header. The HT field of the common header indicates a TSB, and the extension header includes an SN field and an SO PV (Source Position Vector) field. Description of the included fields is as follows.
SN(Sequence Number): 시퀀스 넘버 필드는 패킷 중복성을 검사하기 위해 사용되는 값을 지시한다. 시퀀스 넘버 필드의 값은 소스에서 패킷을 전송할 때 1씩 증가된다. 수신 라우터에서는 시퀀스 넘버(또는, 시퀀스 넘버 및 TST 값)를 사용함으로써 패킷의 중복 수신 여부를 결정할 수 있다. SN은 멀티 홉 전송 시 사용되는 값이다.Sequence Number (SN): The Sequence Number field indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when a packet is sent from the source. The receiving router may determine whether a packet is duplicated by using a sequence number (or a sequence number and a TST value). SN is a value used for multi-hop transmission.
SO PV: 소스의 위치를 나타내며, 롱(long) 포지션 벡터 포맷이 될 수 있다.SO PV: Indicates the position of the source and may be in a long position vector format.
TSB 헤더의 경우 홉수로 전송 회수를 제한하므로, 목적지 주소가 생략될 수 있다.In the case of the TSB header, since the number of transmissions is limited by the number of hops, the destination address may be omitted.
도 6은 본 발명의 다른 일 실시예에 따른 SHB(Single Hop Broadcast) 타입 지오네트워킹 방법 및 SHB 패킷 헤더 구성을 나타낸다.FIG. 6 illustrates a SHB (Single Hop Broadcast) type geonetworking method and an SHB packet header configuration according to another embodiment of the present invention.
도 6(a)는 SHB(Single Hop Broadcast) 타입의 데이터 전달 방법을 나타내고, 도 5(b)는 SHB 헤더 구성을 나타낸다.FIG. 6 (a) shows a data transfer method of a single hop broadcast (SHB) type, and FIG. 5 (b) shows a structure of an SHB header.
SHB는 상술한 TSB에서 홉수가 1(n=1)인 경우에 해당한다. SHB 패킷은 소스 라우터 전송 범위 내의 라우터들에게만 전송된다. 가장 적은 레이턴시(Latency)로 데이터가 전송될 수 있으므로, SHB는 CAM과 같은 안전 메세지 전송에 사용될 수 있다. 도 6(a)에서와 같이 소스(S)의 1홉 범위 라우터들(N1, N2, N3)에게만 패킷이 전송된다.SHB corresponds to a case where the hop number is 1 (n = 1) in the above-described TSB. SHB packets are sent only to routers within the source router transmission range. Since data can be transmitted with the least latency, SHB can be used to send safety messages such as CAM. As shown in FIG. 6 (a), the packet is transmitted only to one-hop range routers N1, N2, and N3 of the source S.
도 6(b)에서, SHB 패킷 헤더는 베이직 헤더, 커먼 헤더 및 확장 헤더를 포함한다. 커먼 헤더의 HT 필드가 TSB를 지시하고, 확장 헤더는 SO PV(Source Position Vector) 필드를 포함한다. 포함된 필드에 대한 설명은 아래와 같다.In FIG. 6B, the SHB packet header includes a basic header, a common header, and an extension header. The HT field of the common header indicates the TSB, and the extension header includes an SO PV (Source Position Vector) field. Description of the included fields is as follows.
SO PV: 소스의 위치를 나타내며, 롱(long) 포지션 벡터 포맷이 될 수 있다.SO PV: Indicates the position of the source and may be in a long position vector format.
SHB 패킷의 경우 홉수로 전송 회수를 제한하므로, 목적지 주소가 생략될 수 있다. 멀티홉 전송되지 않으므로, 중복 검사를 위한 SN 필드도 생략될 수 있다.In the case of the SHB packet, since the number of transmissions is limited by the number of hops, the destination address may be omitted. Since the multihop transmission is not performed, the SN field for redundancy check may also be omitted.
도 7은 본 발명의 다른 일 실시예에 따른 GBC(Geographically-Scope Broadcast)/GAC(Geographically-Scoped Anycast) 타입 지오네트워킹 방법 및 BC/GAC 패킷 헤더 구성을 나타낸다.FIG. 7 illustrates a Geographically-Scope Broadcast (GBC) / Geographically-Scoped Anycast (GAC) type geonetworking method and a BC / GAC packet header configuration according to another embodiment of the present invention.
도 7(a)는 GBC(Geographically-Scope Broadcast)/GAC(Geographically-Scoped Anycast) 타입의 데이터 전달 방법을 나타내고, 도 4(b)는 GBC/GAC 헤더 구성을 나타낸다.FIG. 7 (a) shows a method of transferring data of a Geographically-Scope Broadcast (GBC) / Geographically-Scoped Anycast (GAC) type, and FIG. 4 (b) shows a GBC / GAC header configuration.
지오브로드캐스트(GeoBroadcast)/GBC는 특정 지역의 모든 라우터로 패킷을 브로트캐스트하는 전송 방식이고, 지오애니캐스트(GeoAnycast)/GAC는 특정 지역 내에서 처음 패킷을 수신하는 하나의 라우터에게만 패킷을 전송하는 전송 방식이다. GBC에서, 소스 라우터로부터 전달된 데이터가 특정 목적지(destination) 영역에 전달되면, 패킷은 정해진 영역 내에서 브로드캐스트된다. GAC에서, 특정 목적지 영역 내의 하나의 라우터로 패킷이 전달되면, 패킷은 더이상 전송되지 않는다.GeoBroadcast / GBC is a transmission method that broadcasts a packet to all routers in a specific region, and GeoAnycast / GAC transmits a packet only to one router that first receives the packet in a specific region. Transmission method. In GBC, if the data delivered from the source router is delivered to a specific destination area, the packet is broadcast within the defined area. In the GAC, when a packet is delivered to one router in a particular destination area, the packet is no longer sent.
도 7(b)에서, GBC/GAC 헤더는 베이직 헤더, 커먼 헤더 및 확장 헤더를 포함한다. 커먼 헤더의 HT 필드가 GBC 또는 GAC를 지시하고, 확장 헤더는 SN 필드, SO PV(Source Position Vector) 필드, 목적지 영역 정보를 포함한다. 목적지 영역 정보는 목적지 영역 중심의 위도(GeoAreaPosLatitude) 필드, 경도(GeoAreaPosLongitude) 필드 및 영역의 범위를 알려주기 위한 거리 필드들(Distance a, b) 및 각도(angle) 필드를 포함한다.In FIG. 7B, the GBC / GAC header includes a basic header, a common header, and an extended header. The HT field of the common header indicates GBC or GAC, and the extended header includes an SN field, an SO PV (Source Position Vector) field, and destination region information. The destination area information includes a latitude (GeoAreaPosLatitude) field, a longitude (GeoAreaPosLongitude) field of the center of the destination area, and distance fields (Distance a, b) and an angle field for indicating a range of the area.
SN(Sequence Number): 시퀀스 넘버 필드는 패킷 중복성을 검사하기 위해 사용되는 값을 지시한다. 시퀀스 넘버 필드의 값은 소스에서 패킷을 전송할 때 1씩 증가된다. 수신 라우터에서는 시퀀스 넘버(또는, 시퀀스 넘버 및 TST 값)를 사용함으로써 패킷의 중복 수신 여부를 결정할 수 있다. SN은 멀티 홉 전송 시 사용되는 값이다.Sequence Number (SN): The Sequence Number field indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when a packet is sent from the source. The receiving router may determine whether a packet is duplicated by using a sequence number (or a sequence number and a TST value). SN is a value used for multi-hop transmission.
SO PV: 소스의 위치를 나타내며, 롱(long) 포지션 벡터 포맷이 될 수 있다.SO PV: Indicates the position of the source and may be in a long position vector format.
DE PV: 목적지의 위치를 나타내며, 숏(short) 포지션 벡터 포맷이 될 수 있다.DE PV: indicates the location of the destination, and may be in a short position vector format.
도 8은 본 발명의 다른 일 실시예에 따른 비콘 타입 지오네트워킹 및 그에 따른 비콘 패킷 헤더 구성을 나타낸다.8 illustrates beacon type geonetworking and a beacon packet header configuration according to another embodiment of the present invention.
도 8은 비콘 패킷의 헤더 구성을 나타낸다. 비콘 패킷 헤더는 베이직 헤더, 커먼 헤더 및 확장 헤더를 포함하고, 확장 헤더는 SO PV 정보를 포함할 수 있다. 8 shows a header configuration of a beacon packet. The beacon packet header may include a basic header, a common header and an extension header, and the extension header may include SO PV information.
비콘 패킷은 상술한 SHB 패킷 헤더와 유사하게 구성될 수 있다. 차이점은, SHB 패킷은 뒤에 메시지가 부가될 수 있어 CAM과 같은 데이터를 전달하는데 사용되고, 비콘은 데이터가 부가되지 않고 헤더 자체로 사용되는 것이다. SHB를 사용한 CAM 또는 비콘은 주기적으로 전송될 수 있다. CAM 또는 비콘을 전송 및 수신함으로써 라우터는 주변 라우터들의 위치 정보를 획득하고, 이 위치 정보를 사용하여 라우팅을 수행할 수 있다. 실시예로서, CAM이 전송되면 비콘은 전송되지 않을 수도 있다.The beacon packet may be configured similarly to the SHB packet header described above. The difference is that SHB packets can be appended with a message later to be used to carry data such as CAM, and beacons are used as headers without data added. CAM or beacons using SHB may be sent periodically. By sending and receiving a CAM or beacon, a router can obtain location information of neighboring routers and use this location information to perform routing. In an embodiment, the beacon may not be transmitted if the CAM is transmitted.
도 9는 본 발명의 실시예에 따른 LS(Location Service) 요청 패킷 헤더 및 LS 응답 패킷 헤더의 구성을 나타낸다.9 illustrates the configuration of a location service (LS) request packet header and an LS response packet header according to an embodiment of the present invention.
도 9(a)는 LS 요청 패킷 헤더를, 도 9(b)는 LS 응답 패킷 헤더를 나타낸다.9 (a) shows an LS request packet header, and FIG. 9 (b) shows an LS response packet header.
소스 라우터는 자신의 위치 테이블에 목적지 정보가 없는 경우, 주변에 목적지에 대한 지오네트워킹 어드레스 정보(GN_ADDR)를 요청할 수 있다. 이러한 주소 정보 요청은 LS 요청 패킷은 LS 요청 정보(LS_request)를 전송함으로써 수행될 수 있다. LS 요청 패킷을 수신한 라우터의 로케이션 테이블에 소스 라우터가 요청한 정보가 포함되어 있는 경우, 해당 라우터는 LS 응답 정보(LS_reply)를 전송할 수 있다. 또한, 목적지의 라우터가 LS 요청 정보에 대해 LS 응답 정보를 전송할 수 있다.If there is no destination information in its location table, the source router may request geonetworking address information (GN_ADDR) for the destination in the vicinity. This address information request may be performed by transmitting the LS request packet LS request information LS_request. When the information requested by the source router is included in the location table of the router that receives the LS request packet, the corresponding router may transmit LS response information LS_reply. In addition, the router of the destination may transmit the LS response information with respect to the LS request information.
LS 응답 정보는 GN_ADDR의 포지션 벡터 정보를 포함한다. 소스 라우터는 LS 응답 정보를 통해 위치 테이블을 업데이트할 수 있다. 소스 라우터는 응답으로 수신한 지오네트워킹 어드레스 정보를 사용함으로써 GUC 전송을 수행할 수 있다.LS response information includes position vector information of GN_ADDR. The source router may update the location table through the LS response information. The source router can perform GUC transmission by using the geonetworking address information received in response.
도 9(a)에서, LS 요청 패킷 헤더의 구성은 GUC 헤더와 유사하다. LS 요청 패킷 헤더에서, GUC 헤더의 목적지 어드레스 필드 대신 지오네트워킹 어드레스 요청 필드(RequestGN_ADDR)가 포함된다.In Figure 9 (a), the configuration of the LS request packet header is similar to the GUC header. In the LS request packet header, a geonetworking address request field (RequestGN_ADDR) is included instead of the destination address field of the GUC header.
도 9(b)에서, LS 응답 패킷 헤더 구성은 GUC 패킷 헤더와 동일하다. 다만, SO PV 필드는 라우터의 포지션 벡터 정보를 포함하고, DE PV 필드는 요청을 전송한 라우터의 포지션 벡터 정보를 포함한다.In FIG. 9B, the LS response packet header configuration is the same as the GUC packet header. However, the SO PV field includes position vector information of the router, and the DE PV field includes position vector information of the router which transmitted the request.
도 10은 본 발명의 실시예에 따른 포지션 벡터 정보를 나타낸다.10 shows position vector information according to an embodiment of the present invention.
상술한 바와 같이, 지오네트워킹 패킷 헤더는 위치와 관련된 포지션 벡터(PV) 필드를 포함한다. 포지션 벡터의 타입은 롱(long) PV와 숏(short) PV를 포함한다. 도 10(a)는 롱 포지션 벡터 정보를, 도 10(b)는 숏 포지션 벡터 정보를 나타낸다.As discussed above, the geonetworking packet header includes a position vector (PV) field associated with the location. Types of position vectors include long PV and short PV. 10 (a) shows long position vector information and FIG. 10 (b) shows short position vector information.
도 10(a)와 같이, 롱 포지션 벡터 정보는 아래와 같은 하위 필드들을 포함한다.As shown in FIG. 10A, the long position vector information includes the following subfields.
GN_ADDR: 지오네트워킹 어드레스 필드는 총 64 비트로 구성될 수 있다. 지오네트워킹 전송을 하는 지오애드혹 라우터는 하나의 유일한 지오네트워킹 어드레스 값을 갖는다. 지오네트워킹 어드레스 필드는 아래와 같은 하위 필드들을 포함할 수 있다.GN_ADDR: The geonetworking address field may consist of a total of 64 bits. A geoad hoc router that performs geonetworking transmissions has one unique geonetworking address value. The geonetworking address field may include the following subfields.
a) M: 지오네트워킹 어드레스인지 메뉴얼하게 설정된 값인지 구별하기 위한 필드. 실시예로서, 값이 '1'이면 매뉴얼하게 설정된 값이 될 수 있음.a) M: A field for distinguishing between a geonetworking address or a manually set value. For example, if the value is '1', the value may be set manually.
b) ST: ITS-S 타입 필드는 ITS 스테이션의 타입을 지시한다. ITS-S 타입은 보행자(pedestrian), 자전거 주행자(cyclist), 모페드(moped), 모터사이클(motorcycle), 승용차(passenger car), 버스, 경트럭, 중트럭, 트레일러, 특별 차량(special vehicle), 트램, RSU를 포함할 수 있다.b) ST: The ITS-S type field indicates the type of the ITS station. ITS-S type is pedestrian, cyclist, moped, motorcycle, passenger car, bus, light truck, heavy truck, trailer, special vehicle It may include trams, RSUs.
c) MID: V2X 장치 식별 정보로서, MAC 어드레스가 사용될 수 있다.c) MID: As V2X device identification information, a MAC address may be used.
TST(TimeSTamp): 타입 스탬프 필드는 ITS 스테이션이 지오애드혹 라우터에서 위도/경도 값을 획득한 시간을 지시한다. 밀리초(millisecond) 단위로서, UTC(Universal Time Coordinated) 값이 사용될 수 있다.TST (TimeSTamp): The type stamp field indicates the time at which the ITS station obtained the latitude / longitude value from the geoad hoc router. As a millisecond unit, a Universal Time Coordinated (UTC) value may be used.
LAT(Latitude), Long(Longitude): 위도 필드 및 경도 필드는 지오애드혹 라우터의 위도 값, 경도 값을 지시한다.Latitude (LAT), Long (Longitude): The latitude field and the longitude field indicate latitude and longitude values of the geoad hoc router.
PAI(Position Accuracy Indicator): 지오애드혹 라우터 위치의 정확도를 지시한다.Position Accuracy Indicator (PAI): Indicates the accuracy of the geoad hoc router location.
S(Speed): 지오애드혹 라우터의 속도를 지시한다.S (Speed): Indicates the speed of the geoad hoc router.
H(Heading): 지오애드혹 라우터의 방향을 지시한다.H (Heading): Indicates the direction of the geoad hoc router.
도 10(b)와 같이, 숏 포지션 벡터 정보는 GN_ADDR 필드, TST 필드, LAT 필드, Long 필드를 포함한다. 각 필드에 대한 설명은 롱 포지션 벡터에 대해 상술한 바와 같다.As shown in FIG. 10B, the short position vector information includes a GN_ADDR field, a TST field, a LAT field, and a long field. Description of each field is as described above for the long position vector.
지오네트워킹 전송을 위해 다양한 패킷 포워딩 방법이 사용될 수 있다. 예를 들면, 그리디(greedy) 포워딩 알고리즘, 컨텐션-기반(contention-based) 포워딩 알고리즘, 비-영역(non-area) 컨텐션-기반 포워딩 알고리즘, 영역 컨텐션-기반 포워딩 알고리즘, 영역 어드밴스드 포워딩 알고리즘 등이 사용될 수 있다. 포워딩 알고리즘은 데이터를 목적하는 영역에 효과적으로 전달 및 분산시키기 위해 사용된다. 그리디 포워딩 알고리즘의 경우는 소스 라우터가 포워딩 라우터를 결정하고, 컨텐션-기반 포워딩 알고리즘의 경우는 수신 라우터가 패킷을 포워딩할지 여부를 컨텐션을 이용하여 결정한다. 이하에서, 지오네트워킹 알고리즘을 프로세싱하는 V2X 장치/라우터를 에고 라우터라고 지칭할 수도 있다.Various packet forwarding methods may be used for geonetworking transmission. For example, greedy forwarding algorithm, contention-based forwarding algorithm, non-area contention-based forwarding algorithm, area contention-based forwarding algorithm, area advanced forwarding Algorithms and the like can be used. Forwarding algorithms are used to effectively deliver and distribute data to desired areas. In the case of the greedy forwarding algorithm, the source router determines the forwarding router, and in the case of the contention-based forwarding algorithm, the receiving router determines whether to forward the packet using contention. In the following, a V2X device / router processing a geonetworking algorithm may be referred to as an ego router.
지오네트워킹에 있어서, 각 V2X 장치는 라우터의 기능을 수행하며, 패킷의 라우팅을 결정하는 애드혹(ad hoc) 방법을 사용할 수 있다. 각 V2X 장치가 차량의 위치 정보, 속도 정보, 헤드 방향 정보를 주변에 전송하고, 이러한 정보를 사용하여 각 V2X 장치는 패킷의 라우팅을 결정할 수 있다. 주기적으로 전달받은 정보는 네트워크&트랜스포트 레이어의 LocT(로케이션 테이블, Location Table)에 저장되고, 저장된 정보는 일정 시간이 지나면 타임 아웃될 수 있다. LocT는 LocTE(Location Table Entry)에 저장될 수도 있다. In geonetworking, each V2X device acts as a router and can use an ad hoc method to determine the routing of packets. Each V2X device transmits the vehicle's location information, speed information, and head direction information to the surroundings, and using this information, each V2X device can determine the routing of packets. The periodically received information is stored in a LocT (location table) of the network & transport layer, and the stored information can time out after a certain time. LocT may be stored in a location table entry (LocTE).
지오네트워킹 프로토콜 동작을 위해서, 각각의 애드혹 라우터가 다른 애드혹 라우터에 대한 정보를 갖고 있어야 한다. 주변 라우터에 대한 정보는 SHB 또는 비콘 패킷을 통해 수신될 수 있다. 라우터는 새로운 정보가 수신되면 LocT를 업데이트할 수 있다. SHB 또는 비콘 패킷의 전송 주기는 채널 상태에 따라서 바뀔 수 있다. 위치/로케이션 테이블은 LocT로 지칭할 수도 있다.For geonetworking protocol operation, each ad hoc router must have information about another ad hoc router. Information about the peripheral router may be received through the SHB or beacon packet. The router may update LocT when new information is received. The transmission period of the SHB or beacon packet may change depending on the channel state. The location / location table may be referred to as LocT.
주변 라우터에 대한 정보는 LocT에 저장되며, 저장되는 정보는 아래와 같은 정보 중 적어도 하나를 포함할 수 있다. LocT에 저장된 정보는 소프트-스테이트 상태로 설정된 수명(lifetime)이 만료되면 리스트에서 삭제될 수 있다.Information about the neighbor router is stored in the LocT, and the stored information may include at least one of the following information. Information stored in the LocT may be deleted from the list when the lifetime set to the soft-state expires.
GN_ADDR: ITS 스테이션의 지오-네트워크 주소GN_ADDR: Geo-network address of the ITS station
Type of ITS-S: ITS 스테이션의 타입으로, 예를 들면 차량인지 RSU 인지를 지시함.Type of ITS-S: Type of ITS station, for example indicating whether it is a vehicle or an RSU.
Version: ITS 스테이션에 사용된 지오-네트워킹 버전Version: Geo-networking version used for the ITS station
Position vector PV: 포지션 벡터 정보는 지리적(geographical) 포지션 정보, 속도 정보, 헤드 방향(Heading) 정보, 위치 정보 측정 시간을 알려주는 타임 스탬프 정보, 제공 위치의 정확도를 지시하는 PAI(Position accuracy indicator) 정보 중 적어도 하나를 포함할 수 있다.Position vector PV: Position vector information includes geographic position information, velocity information, heading information, time stamp information indicating the position measurement time, position accuracy indicator (PAI) information indicating the accuracy of the provided position. It may include at least one of.
Flag LS_PENDING(LS_PENDING 플래그): 현재 LocT에 목적지에 대한 주소가 없어서 위치(location) 서비스 리퀘스트가 진행되는 경우 이를 지시하는 플래그Flag LS_PENDING: A flag indicating when a location service request is in progress because the current LocT does not have an address for the destination.
FLAG IS_NEIGHBOUR(IS_NEIGHBOUR 플래그): 통신 범위 내에 통신 가능한 지오애드혹 라우터가 존재하는지를 지시하는 플래그FLAG IS_NEIGHBOUR (IS_NEIGHBOUR flag): Flag indicating if there is a geoad hoc router that can communicate within the communication range.
DPL: 소스 GN_ADDR에 대한 중복 패킷 리스트(Duplicate Packet List)DPL: Duplicate Packet List for Source GN_ADDR
타입스탬프: 중복의 마지막임을 알리는 마지막 패킷의 타임 스탬프Typestamp: the timestamp of the last packet indicating the end of the duplication
PDR(Packet Data Rate): 지오애드혹 라우터에서 유지해야하는 패킷 전송율Packet Data Rate (PDR): The packet rate that Geoad Hoc Routers must maintain
도 11은 본 발명의 실시예에 따른 그리디(greedy) 포워딩 알고리즘의 패킷 전달 방법을 나타낸다.11 illustrates a packet forwarding method of a greedy forwarding algorithm according to an embodiment of the present invention.
그리디 포워딩 알고리즘은 샌더가 자신이 알고 있는 이웃 라우터들 중 누구에게 패킷을 전달할지를 결정한다. 샌더의 LocT(Location Table)는 주기적으로 분포되는 SHB 또는 비콘 패킷을 통해 최신 값으로 업데이트될 수 있다. 샌더는 LocT로부터 목적지에 가장 가까운 라우터를 선택하고, 이를 통해 가장 적은 홉으로 목적지까지 패킷이 전달될 수 있다.The greedy forwarding algorithm decides to which of the neighbor routers Sander knows which packet to forward. Sander's LocT (Location Table) can be updated to the latest value through periodically distributed SHB or beacon packets. The sander selects the router closest to the destination from LocT so that packets can be delivered to the destination with the least hops.
도 11에서, 소스 라우터의 통신 범위 내에 라우터 1~5가 존재한다. 소스라우터는 목적지에 가장 가까운 라우터 2의 MAC 어드레스를 링크 레이어 목적지 주소로 설정하여 패킷을 전송한다.In Fig. 11, routers 1 to 5 exist within the communication range of the source router. The source router transmits the packet by setting the MAC address of router 2 closest to the destination as the link layer destination address.
그리디 포워딩 알고리즘은 버퍼링을 사용하지 않고, 라우터 간의 연결이 끊어지지 않는 한 패킷을 목적지까지 빠르게 전달할 수 있다. 그러나 라우터 간의 연결이 끊기는 경우 즉 다음 홉을 전송할 라우터가 전송 범위에서 벗어나거나 사라지는 경우, 패킷을 전달할 수 없어 신뢰도가 떨어질 수 있다.The greedy-forwarding algorithm uses no buffering and can quickly forward packets to their destinations as long as the connection between routers is not broken. However, if the connection between routers is lost, i.e., if the router to transmit the next hop is out of the transmission range or disappears, the packet cannot be delivered and reliability may be deteriorated.
##이하에서는 컨텐션(contention) 기반 포워딩 알고리즘의 패킷 전달 방법에 대해 설명한다.The following describes the packet delivery method of the contention-based forwarding algorithm.
컨텐션 기반(contention-based) 포워딩 알고리즘은 상술한 그리디 포워딩 알고리즘과 달리 수신기가 패킷을 전달할지 여부를 경쟁/컨텐션에 의해 결정한다. 샌더가 브로드캐스트한 패킷을 수신한 모든 수신기는 잠재적인 포워더가 될 수 있다. 수신기는 거리에 따라 각자 타이머를 설정하고, 타이머가 만료된 수신기가 먼저 패킷을 포워딩한다. 타이머가 만료될 때까지 다른 수신기들로부터 패킷을 수신하지 못하면, 수신기는 타이머가 만료되면 패킷을 포워딩한다. 타이머가 만료되기 전에 패킷을 수신하면, 수신기는 자신의 타이머를 타임아웃시키고 패킷을 포워딩하지 않는다. The contention-based forwarding algorithm, unlike the greedy forwarding algorithm described above, determines whether the receiver forwards a packet by contention / content. Any receiver that receives a packet broadcast by Sander can be a potential forwarder. The receiver sets the timer according to the distance, and the receiver which the timer expires forwards the packet first. If no packet is received from other receivers until the timer expires, the receiver forwards the packet when the timer expires. If a packet is received before the timer expires, the receiver times out its timer and does not forward the packet.
컨텐션-기반 포워딩 알고리즘은 그리디 포워딩 알고리즘과 달리 주변 이웃 라우터들의 위치를 알 필요가 없다. 주기적으로 SHB 패킷이나 비콘 패킷이 전송되지 않아도, 즉 로케이션 테이블이 없어도 패킷 포워딩이 수행될 수 있다. 복수의 후보 전달자가 존재하므로, 신뢰도(reliability)가 높아지고 목적지까지의 패킷 전달 가능성이 높아질 수 있다. 그러나 패킷 전달에 버퍼링 시간이 필요하여 레이턴시가 증가할 수 있다. 또한, 추가로 버퍼 사용이 필요하다.The contention-based forwarding algorithm, unlike the greedy forwarding algorithm, does not need to know the location of neighboring neighbor routers. Even if the SHB packet or the beacon packet is not periodically transmitted, that is, even without a location table, packet forwarding may be performed. Since there are a plurality of candidate forwarders, reliability may be increased and packet forwarding to the destination may be increased. However, the buffering time required for packet delivery can increase latency. In addition, the use of additional buffers is required.
도 12는 본 발명의 실시예에 따른 비-영역 컨텐션-기반 알고리즘의 개념도이다.12 is a conceptual diagram of a non-region contention-based algorithm according to an embodiment of the present invention.
컨텐션-기반 알고리즘은 샌더(sender)가 다음 홉을 결정하는 대신 수신자(receiver)가 경쟁/컨텐션(contention)을 통해 다음 전달자를 결정하는 알고리즘이다. 샌더는 GN(지오네트워킹) 패킷을 브로드캐스트하고, GN 패킷을 수신한 주변의 모든 라우터들은 이 패킷을 CBF 버퍼에 저장하고 타이머를 시작한다. 타이머의 설정은 아래 수학식 1과 같다.A contention-based algorithm is an algorithm in which a receiver determines the next sender through contention / contention, instead of the sander determining the next hop. Sander broadcasts a GN (GeoNetworking) packet, and all routers around it that receive the GN packet store it in the CBF buffer and start a timer. The timer is set as in Equation 1 below.
Figure PCTKR2018002065-appb-M000001
Figure PCTKR2018002065-appb-M000001
T0_CBF: CBF 버퍼링 패킷을 위한 타임 아웃T0_CBF: timeout for CBF buffered packets
TO_CBF_MIN: 패킷이 CBF 패킷 버퍼에서 버퍼링되는 최소 기간(duration)TO_CBF_MIN: Minimum duration that a packet is buffered in the CBF packet buffer
TO_CBF_MAX: 패킷이 CBF 패킷 버퍼에서 버퍼링되는 최대 기간(duration)TO_CBF_MAX: Maximum duration that packets are buffered in CBF packet buffers
PROG: 목적지로부터 샌더의 거리 및 목적지로부터 애드혹 라우터 간의 로컬 거리의 차이. 즉, 도 12에서 D와 d4의 차이.PROG: The difference in the distance of the sander from the destination and the local distance between the ad hoc routers from the destination. That is, the difference between D and d4 in FIG.
DIST_MAX: 무선 액세스 기술의 이론적인 최대 통신 범위(range). 실시예로서 이 값은 ITS 액세스 기술을 기술하는 스펙에서 정해지거나, GN 프로토콜의 'itsGnDefaultMaxCommunicationRange'에 정해질 수 있음.DIST_MAX: The theoretical maximum communication range of radio access technology. By way of example, this value may be specified in the specification describing the ITS access technology or in the 'itsGnDefaultMaxCommunicationRange' of the GN protocol.
수학식 1에서, PROG≤DIST_MAX인 경우는 패킷이 최대 통신 범위 내의 라우터로 전달된 경우를 나타낸다. 그리고 TO_CBF_MIN-TO_CBF_MAX의 값은 항상 음수가 된다. 따라서 PROG/DIST_MAX 값이 클수록 버퍼링 시간이 더 감소한다. DIST_MAX는 기설정되는 고정된 값이 될 수 있고, 결국 PROG 값이 클수록 패킷은 더 적은 기간 동안 버퍼링되고, 따라서 패킷은 더 빨리 재-브로드캐스팅 된다. 다시 말하면, PROG가 가장 적은, 목적지에 가장 가까운 라우터가 가장 빨리 패킷을 재전송한다.In Equation 1, PROG ≦ DIST_MAX indicates a case where a packet is delivered to a router within a maximum communication range. The value of TO_CBF_MIN-TO_CBF_MAX is always negative. Therefore, the larger the value of PROG / DIST_MAX, the smaller the buffering time. DIST_MAX can be a fixed value that is preset, so that larger PROG values result in packets being buffered for less periods of time, so packets are re-broadcasted faster. In other words, the router closest to the destination with the fewest PROGs retransmits the packet fastest.
수학식 1에서, PRFG>DIST_MAX인 경우는 패킷이 최대 통신 범위 외의 라우터로 전달된 경우를 나타낸다. 라우터가 샌더의 전송 범위 내에 있지 않은 경우, 라우터는 최소 시간만 버퍼링한 후 패킷을 재전송할 수 있다. 라우터가 샌더의 전송 범위 내에 속하지 않는다는 것은, 라우터의 위치 테이블에 샌더에 대한 정보가 저장되어 있지 않음을 의미한다.In Equation 1, PRFG> DIST_MAX represents a case where a packet is delivered to a router outside the maximum communication range. If the router is not within the transmission range of the sander, the router can buffer the minimum time and then retransmit the packet. If the router is not within the transmission range of the sander, it means that the information about the sander is not stored in the router's location table.
지오네트워킹에서 멀티홉을 가정하는 지오브로드캐스트, 지오애니캐스트, 지오유니캐스트의 패킷의 경우, 확장 헤더는 소스 라우터의 PV와 목적지의 PV를 포함하고, 포워딩 라우터의 PV는 포함하지 않는다. 패킷을 수신한 라우터는, 자신의 LocT(Location Table, 위치 테이블)에 저장된 MID에 해당하는 GN_ADDR를 통해 패킷을 포워딩한 포워딩 라우터의 위치를 알 수 있다. 전송 시 네트워크 레이어의 지오네트워킹 패킷은 링크 레이어로 전달되고, 링크 레이어는 소스와 목적지의 MID(MAC ID)를 부가한다. 링크레이어 패킷 구성은 도 2에서 도시하였다. 소스 MID는 샌더 라우터의 MID이고, 목적지 MID는 CBF에서는 'Broadcast'가 될 수 있다. LLC 헤더의 DSAP(Destination Service Access Point)에서 브로드캐스트 타입으로 패킷이 주변 라우터에 전달되고, SSAP(Source Destination, Service Access Point)에 샌더의 MID가 전송된다. 즉, 비-영역 컨텐션-기반 포워딩 알고리즘을 사용하기 위해서, 비콘이나 SHB를 통해 주변의 이웃 라우터들의 정보가 위치 테이블에 저장되어 있어야 한다.For geobroadcast, geoanicast, and geounicast packets that assume multihop in geonetworking, the extended header includes the PV of the source router and the PV of the destination, but not the PV of the forwarding router. The router that receives the packet can know the location of the forwarding router that forwarded the packet through GN_ADDR corresponding to the MID stored in its LocT (Location Table). During transmission, the geonetworking packet of the network layer is delivered to the link layer, and the link layer adds MIDs (MAC IDs) of the source and the destination. The link layer packet configuration is shown in FIG. The source MID is the MID of the Sander Router, and the destination MID can be 'Broadcast' in CBF. A packet is transmitted to a neighbor router in a broadcast type in a DSAP (Destination Service Access Point) of an LLC header, and a sander MID is transmitted to a source destination (Service Access Point) SSAP. In other words, in order to use a non-region contention-based forwarding algorithm, information of neighboring neighbor routers through beacons or SHBs should be stored in the location table.
도 13는 본 발명의 실시예에 따른 컨텐션-기반 전송을 나타낸다.13 illustrates contention-based transmission according to an embodiment of the present invention.
실시예로서, 상술한 수학식 1과 관련하여 TO_CBF_MIN 및 TO_CBF_MAX 값들은 GN 프로토콜에 기설정된 값으로 설정될 수 있다. GN 프로토콜에서, TO_CBF_MIN 값 및 TO_CBF_MAX 값은 각각 MIB itsGnCbfMinTime, itsGnCbfMaxTime에 정의될 수 있다. 실시예로서, TO_CBF_MIN 값은 1ms로, TO_CBF_MAX 값은 100ms로 설정될 수 있다. 최대 통신 거리 DIST_MAX 값을 일반적인 DSRC의 전송 범위인 300ms로 하여 CBF 동작의 버퍼 타이머 값을 계산하면, 결과는 아래와 같다.In an embodiment, the TO_CBF_MIN and TO_CBF_MAX values in relation to Equation 1 described above may be set to values preset in the GN protocol. In the GN protocol, the TO_CBF_MIN value and the TO_CBF_MAX value may be defined in MIB itsGnCbfMinTime, itsGnCbfMaxTime, respectively. As an embodiment, the TO_CBF_MIN value may be set to 1 ms and the TO_CBF_MAX value to 100 ms. When the maximum communication distance DIST_MAX is set to 300ms, which is a typical DSRC transmission range, the buffer timer value of the CBF operation is calculated.
포워더 후보 1의 PROG가 300m라고 가정하면, 포워더 후보 1의 타이머 세팅 값은 수학식 (1)로부터 TO_CBF=100+(1-100)/300*300=1ms로 결정된다. 포워더 후보 2의 PROG가 200m라고 가정하면, 포워더 후보 2의 타이머 세팅 값은 수학식 (1)로부터 TO_CBF=100+(1-100)/300*200=34ms로 결정된다. 따라서, 포워더 후보 1의 타이머는 패킷 수신 후 1ms 동안 동일 패킷을 포워딩하는 신호를 수신하지 못하면 패킷을 방송한다. 포워더 후보 2는 34ms 동안 동일 패킷을 포워딩하는 신호를 수신하지 못하면 패킷을 방송한다. Assuming that PROG of forwarder candidate 1 is 300m, the timer setting value of forwarder candidate 1 is determined from equation (1) as TO_CBF = 100 + (1-100) / 300 * 300 = 1ms. Assuming that PROG of forwarder candidate 2 is 200m, the timer setting value of forwarder candidate 2 is determined from equation (1) as TO_CBF = 100 + (1-100) / 300 * 200 = 34ms. Therefore, the timer of the forwarder candidate 1 broadcasts the packet if it does not receive a signal forwarding the same packet for 1 ms after receiving the packet. The forwarder candidate 2 broadcasts the packet if it does not receive a signal forwarding the same packet for 34 ms.
도 14는 본 발명의 실시예에 따른 영역(area) 컨텐션-기반(contention-based) 알고리즘의 패킷 전달 방법을 나타낸다. 14 illustrates a packet delivery method of an area contention-based algorithm according to an embodiment of the present invention.
영역 컨텐션-기반 포워딩 알고리즘은 일정 지역에 효율적으로 데이터를 퍼뜨리는 것을 목적으로 한다. 따라서, 정해진 목적지가 없으며 타이머 설정은 소스와의 거리만을 고려하여 결정될 수 있다. 영역 컨텐션 기반 알고리즘은 라우터가 특정 영역에 속한 경우 진행되며, 해당 영역 내에서 빠르게 정보를 분산/전달하는 것이 목적이다. Region contention-based forwarding algorithms aim at spreading data efficiently over a given area. Therefore, there is no fixed destination and the timer setting may be determined considering only the distance to the source. Area contention based algorithm proceeds when the router belongs to a specific area, and the purpose is to quickly distribute / deliver information within the area.
도 13에서, 소스 라우터(S)가 브로드캐스트한 패킷은 라우터 1~라우터 6에게 전달된다. 소스 라우터에서 가장 먼 라우터 2가 먼저 패킷을 브로드캐스트하고, 이를 수신한 라우터 1 및 라우터 3은 타이머를 정지하고 동일 패킷을 포워딩하지 않는다. 라우터 4~6은 라우터 2가 포워딩한 패킷을 수신하지 못한다. 따라서 라우터 4~6은 각자의 타이머를 동작시키고, 타이머가 종료되면 수신 패킷을 브로드캐스트한다. 라우터 5가 패킷을 포워딩하면, 패킷을 수신한 라우터 4는 자신의 타이머를 종료시키고 전송 준비 중인 패킷을 버퍼에서 제거한다. 그리고 다른 라우터가 포워딩한 패킷을 수신하지 못한 라우터 6은 자신의 타이머가 만료되면 패킷을 포워딩한다. 영역 컨텐션 기반 알고리즘의 경우, 소스 라우터는 특정 영역 내에서 전 방향으로 패킷을 빠르게 전달 및 공유할 수 있다.In FIG. 13, the packet broadcasted by the source router S is delivered to routers 1 to 6. Router 2, furthest from the source router, first broadcasts the packet, which receives Router 1 and Router 3 stops the timer and does not forward the same packet. Routers 4-6 do not receive packets forwarded by Router 2. Therefore, routers 4-6 run their own timers and broadcast their received packets when the timer expires. When Router 5 forwards the packet, Router 4, which has received the packet, terminates its timer and removes the packet that is ready for transmission from the buffer. Router 6, which has not received a packet forwarded by another router, forwards the packet when its timer expires. For area contention-based algorithms, the source router can quickly forward and share packets in all directions within a particular area.
영역 CBF 전송에 있어서, CBF 패킷이 CBF 버퍼에 머무르는 시간(timeout)은 아래의 수학식 2와 같이 계산될 수 있다.In the area CBF transmission, the timeout in which the CBF packet stays in the CBF buffer may be calculated as in Equation 2 below.
Figure PCTKR2018002065-appb-M000002
Figure PCTKR2018002065-appb-M000002
수학식 2에서, TO_CBF_MIN, TO_CBF_MAX의 값은 수학식 1에서 설명한 바와 같다. 다만, 수학식 2에서 DIST는 라우터 자신과 센더와의 거리 차를 나타낸다. 센더는 이전 포워더가 될 수도 있고, 소스 라우터가 될 수도 있다. 라우터는 자신의 LocT를 참조하여 샌더의 위치를 파악할 수 있다.In Equation 2, values of TO_CBF_MIN and TO_CBF_MAX are as described in Equation 1. However, in Equation 2, DIST represents a distance difference between the router itself and the sender. The sender can be either a previous forwarder or a source router. The router can refer to its LocT to determine the location of the sander.
샌더와 멀리 떨어진 라우터가 먼저 CBF 패킷을 브로드캐스트하도록 타이머가 설정될 수 있다. 상술한 비-영역 CBF와 다른 점은, 비-영역 CBF의 경우 목적지를 향해 목적지에 가까운 라우터가 먼저 패킷을 전송하도록 타이머가 설정되고, 영역-CBF의 경우 샌더에서 먼 라우터가 먼저 패킷을 전송하도록 타이머가 설정되는 점이다.The timer may be set so that a router far from the sander first broadcasts a CBF packet. In contrast to the non-area CBF described above, a timer is set for a non-area CBF to send a packet first to a router close to the destination, and a router far from the sander to send a packet first for a region-CBF. The timer is set.
도 15는 본 발명의 실시예에 따른 ITS-G5 아키텍처를 나타낸다. 15 shows an ITS-G5 architecture according to an embodiment of the invention.
ITS-G5 아키텍처는 어플리케이션&퍼실리티 레이어(Application & Facility layer), 트랜스포트&네트워크 레이어(transport&network layer), 액세스 레이어(access layer), 매니지먼트 레이어(management layer) 및 시큐리티 레이어(security layer)를 포함한다. 매니지먼트 레이어는 레이어간 동작을 조율한다. 어플리케이션&퍼실리티 레이어에서 필요한 메세지를 생성하면, 트랜스포트 레이어는 메세지가 전달될 포트 정보를 헤더에 포함하도록 메세지를 인캡슐레이팅한다. The ITS-G5 architecture includes an application & facility layer, a transport & network layer, an access layer, a management layer, and a security layer. The management layer coordinates inter-layer motion. When the application & facility layer generates the required message, the transport layer encapsulates the message to include in the header the port information to which the message will be delivered.
네트워크 레이어는 애드혹 네트워크 통신에 필요한 정보를 메세지 헤더에 추가하고, 메세지를 액세스 레이어에 전달한다. 액세스 레이어는 EDCA(Enhanced Distributed Channel Access) 방식으로 패킷을 전송한다. EDCA는 트래픽 클래스(traffic class)에 따라 채널에 액세스하는 순서에 차별을 두고, 우선도(priority)가 높은 패킷이 채널 컨탠션에 우선하여 채널을 점유하는 방식을 말한다. 트래픽 클래스에 따라 4개의 버퍼가 구성될 수 있다. 버퍼의 4가지- VO(Voice), VI(Video), BE(Best Effort), BK(Background)-의 버퍼로 구별된다. 액세스 레이어는 DCC(Decentralized Congestion Control)를 위해 게이트키퍼(GateKeeper) 로직을 포함한다. 따라서 액세스 레이어는 채널의 혼잡(busy) 상황에 따라 패킷의 흐름을 조절하고, 파워를 제어할 수 있다. 이를 위해, EDCA를 위해 구성된 트래픽 클래스와 동일한 4개의 버퍼가 사용될 수 있다. (ETSI TS 102 612)The network layer adds the information needed for ad hoc network communication to the message header and forwards the message to the access layer. The access layer transmits packets in an enhanced distributed channel access (EDCA) manner. EDCA refers to a method in which a packet having a high priority occupies the channel in preference to a channel content, discriminating the order of accessing the channel according to a traffic class. Four buffers may be configured according to the traffic class. There are four types of buffers: VO (Voice), VI (Video), BE (Best Effort), and BK (Background). The access layer includes GateKeeper logic for decentralized congestion control (DCC). Therefore, the access layer may control the flow of packets and control the power according to the busy situation of the channel. To this end, four buffers equal to the traffic class configured for EDCA can be used. (ETSI TS 102 612)
도 15에서, CBF의 동작은 다음과 같다. CBF로 포워딩되는 패킷은 네트워크 레이어의 CBF 버퍼에 저장된다. 상술한 영역 CBF 알고리즘, 비-영역 CBF 알고리즘에서 세팅된 타임아웃 시간이 경과하면, CBR 버퍼에서 해당 패킷이 액세스 레이어로 전달된다. 액세스 레이어는 패킷 헤더에 포함된 트래픽 클래스에 기초하여 게이트 키퍼의 버퍼에 패킷을 저장한다. 액세스 레이어의 모든 버퍼는 FIFO(First Input First Output) 타입으로 동작하며, 버퍼에 저장된 동안 패킷의 수명(lifetime)이 끝나면, 패킷은 소멸된다.In Fig. 15, the operation of the CBF is as follows. Packets forwarded to CBF are stored in the CBF buffer of the network layer. When the timeout time set in the above-mentioned area CBF algorithm and non-area CBF algorithm elapses, the corresponding packet is delivered to the access layer in the CBR buffer. The access layer stores the packet in the gatekeeper's buffer based on the traffic class included in the packet header. All buffers in the access layer operate with a First Input First Output (FIFO) type, and when the packet's lifetime expires while stored in the buffer, the packet is destroyed.
도 16은 본 발명의 실시예에 따른 CBF 알고리즘을 사용하는 경우 거리에 따른 타임아웃 시간의 예를 나타낸다.16 illustrates an example of timeout time according to distance when using the CBF algorithm according to an embodiment of the present invention.
상술한 수학식 1 및 수학식 2에서와 같이, CBR 알고리즘에서 CBF 버퍼에 패킷이 대기하는 시간을 결정하는 타임아웃 시간은 샌더와 라우터 자신과의 거리에 반비례하여 결정된다. 즉 도 16에서와 같이, 센더와의 거리에 따라 패킷이 CBF 버퍼에서 대기하는 시간은 다르게 계산된다. 도 16의 실시예는 영역 CBF 알고리즘의 예로서, DIS_MAX의 값은 300m로 가정하여 계산되었다. As in Equation 1 and Equation 2, the time-out time for determining the time that a packet waits in the CBF buffer in the CBR algorithm is determined in inverse proportion to the distance between the sander and the router itself. That is, as shown in FIG. 16, the waiting time of a packet in the CBF buffer is calculated differently according to the distance to the sender. The embodiment of FIG. 16 is an example of an area CBF algorithm, and is calculated assuming that the value of DIS_MAX is 300m.
도 16의 예에서, 센더와 멀리 있는 애드혹 라우터일수록 더 짧은 시간 동안 패킷이 CBF 버퍼에서 대기된다. 따라서 네트워크 레이어의 관점에서는, 센더에서 가장 먼 라우터가 먼저 브로드캐스팅을 하므로, 전송 효율이 향상될 수 있다. 다만, 시스템 전체적인 측면에서는 원하는 전송 효율이 달성되지 않을 수도 있다. 액세스 레이어에 포함된 게이트 키퍼 및 EDCA 동작을 위한 버퍼로 인해, 실제 채널로 전송 시점은 의도한 시점과 다를 수 있기 때문이다.In the example of FIG. 16, the ad hoc router farther from the sender, the packet is queued in the CBF buffer for a shorter time. Therefore, in terms of the network layer, since the router farthest from the sender broadcasts first, transmission efficiency can be improved. However, in terms of the system as a whole, the desired transmission efficiency may not be achieved. This is because the transmission time to the actual channel may be different from the intended time due to the buffer for the gatekeeper and EDCA operation included in the access layer.
센더로부터 패킷을 수신한 각 라우터의 시스템(ITS-G5)의 내부 버퍼 상황은 각자 독립적으로 다르다. 사용하는 어플리케이션과 채널에 액세스할 수 있는 기회에 따라 버퍼에 누적된 데이터의 양이 다를 수 있다. CBF 동작을 위해 네트워크 레이어에서 CBF 버퍼에 저장되어 있던 패킷은, 센더로부터의 거리에 따러 설정된 타임아웃 시간이 종료되면 액세스 레이어로 전달된다. 액세스 레이어로 전달된 패킷은 패킷 헤더의 트래픽 클래스 정보에 기초하여 해당 버퍼에 저장된다. 해당 버퍼는 게이트 키퍼에 존재하는 버퍼와 EDCA를 위한 버퍼 모두를 의미하며, 순서상 게이트키퍼의 버퍼에 먼저 저장될 수 있다.The internal buffer situation of the system (ITS-G5) of each router that receives a packet from the sender is different from each other independently. The amount of data accumulated in the buffer can vary depending on the application you use and the opportunity to access the channel. The packet stored in the CBF buffer at the network layer for the CBF operation is delivered to the access layer when the timeout time set according to the distance from the sender ends. Packets delivered to the access layer are stored in a corresponding buffer based on the traffic class information in the packet header. The buffer refers to both the buffer present in the gatekeeper and the buffer for EDCA, and may be stored in the gatekeeper's buffer first.
도 17은 본 발명의 실시예에 따른 CBF 알고리즘을 사용하는 경우 버퍼를 감안한 타임아웃 시간의 예를 나타낸다.17 illustrates an example of a timeout time considering a buffer when using a CBF algorithm according to an embodiment of the present invention.
도 17에서, 각 라우터의 트래픽 클래스 버퍼는 게이트키퍼 로직에 의해 사용되는 버퍼와 EDCA에 사용되는 버퍼를 합친 크기를 나타낸다. 센더가 브로드캐스팅한 CBF 패킷은 라우터 R1, 라우터 R2, 라우터 R3에 수신된다. 수신 패킷은 각 라우터의 CBF 버퍼에 저장되며, CBF 버퍼에서의 대기 시간은 각각 R1은 1ms, R2는 4.3ms, R3는 7.6ms에 해당한다. In FIG. 17, the traffic class buffer of each router represents the combined size of the buffer used by the gatekeeper logic and the buffer used for the EDCA. CBF packets broadcast by the sender are received by routers R1, R2, and R3. The received packet is stored in the CBF buffer of each router. The waiting time in the CBF buffer corresponds to 1ms for R1, 4.3ms for R2, and 7.6ms for R3, respectively.
R1의 포워딩 패킷이 CBR 버퍼에서 가장 먼저 타임아웃되어 액세스 레이어로 전달된다. 그러나 R1의 액세스 레이어의 큐가 거의 채워진 상태라면, 포워딩 패킷은 다른 패킷들이 전송될 때까지 큐잉(queuing)되어 대기해야만 한다. R3의 포워딩 패킷은 7.6ms동안 CBF 버퍼에 저장되고, 이 동안 다른 라우터에서 동일 패킷을 브로드캐스팅하지 않으면 패킷은 액세스 레이어로 전달된다. R3는 버퍼의 큐에 저장된 패킷이 많지 않다. 따라서 결국 R3의 포워딩 패킷이 R1의 포워딩 패킷보다 먼저 브로드캐스팅되는 상황이 발생할 수 있다. The forwarding packet of R1 is first timed out of the CBR buffer and forwarded to the access layer. However, if the queue of R1's access layer is almost full, the forwarding packet must be queued and waiting until other packets are sent. The forwarding packet of R3 is stored in the CBF buffer for 7.6 ms, and the packet is forwarded to the access layer unless another router broadcasts the same packet. R3 does not have many packets stored in the buffer queue. As a result, a situation may occur in which a forwarding packet of R3 is broadcast before a forwarding packet of R1.
CBF를 위한 타이머를 네트워크 레이어에서 거리에 기초하여 정밀하게 설정하더라도, 전체 시스템 측면에서 패킷의 브로드캐스팅 순서는 네트워크 레이어의 설정 순서와 달라질 수 있다. 각 라우터의 액세스 레이어의 큐에 쌓인 패킷의 양은 지속적으로 변화하며, 다른 라우터는 이를 알 수 없다. 도 17의 실시예와 같이 포워딩 순서가 거리에 반비례하게 진행되지 않을 수 있으며, 차라리 R3과 R1이 동일한 1ms의 대기 시간동안 CBF 버퍼에 저장된 후 브로드캐스팅된다면, 시스템 레이턴시(latency) 측면에서 효율이 향상될 수 있다.Although the timer for the CBF is precisely set based on the distance at the network layer, the broadcasting order of packets in the overall system side may be different from the setting order of the network layer. The amount of packets accumulated in the queue of each router's access layer is constantly changing, which no other router knows about. As shown in the embodiment of FIG. 17, the forwarding order may not be inversely proportional to distance, and if R3 and R1 are broadcast after being stored in the CBF buffer for the same 1 ms latency, efficiency is improved in terms of system latency. Can be.
본 발명은 CBF의 단점인 레이턴시를 저감하기 위해, 섹터별로 구별하여 타임아웃 시간을 계산하는 방법을 제안한다. 동일한 섹터 내에서, 패킷은 동일한 타임아웃을 갖고 CBR 버퍼에 저장되며, 실제로 브로드캐스트되는 시간은 각 액세스 레이어의 내부 큐 상태에 따라서 다르게 결정될 수 있다. 본 발명의 실시예에 따른 타임아웃 설정을 위한 수학식은 아래와 같다.The present invention proposes a method for calculating a timeout time for each sector in order to reduce latency, which is a disadvantage of CBF. Within the same sector, packets are stored in the CBR buffer with the same timeout, and the time actually broadcast can be determined differently depending on the internal queue state of each access layer. Equation for setting timeout according to an embodiment of the present invention is as follows.
Figure PCTKR2018002065-appb-M000003
Figure PCTKR2018002065-appb-M000003
TO_CBF: CBF 버퍼링 패킷을 위한 타임아웃TO_CBF: Timeout for CBF Buffered Packets
TO_CBF_MIN: 패킷이 CBF 패킷 버퍼에서 머물러야하는 최소 시간TO_CBF_MIN: Minimum time a packet should stay in the CBF packet buffer
TO_CBF_MAX: 패킷이 CBF 패킷 버퍼에서 머물러야하는 최대 시간TO_CBF_MAX: Maximum time a packet should stay in the CBF packet buffer
SECTOR_NUM_MAX: 최대 통신 거리(DIST_MAX)를 나누는 최대 구획의 수SECTOR_NUM_MAX: Maximum number of compartments dividing the maximum communication distance (DIST_MAX)
SECTOR_NUM: (1) 영역 CBF의 경우, SECTOR_NUM는, 자신이 속하는 섹터(SECTOR)의 숫자 값을 나타내며, 섹터는 샌더에서 거리가 멀수록 큰 값으로 결정된다. (2) 비-영역 CBF의 경우, SECTOR_NUM는, 목적지와 센더와의 거리, 목적지와 라우터의 로컬 거리 간의 거리 차를 획득한 후, 이 값이 속하는 섹터의 숫자 값을 나타낸다.SECTOR_NUM: (1) In the case of the area CBF, SECTOR_NUM represents the numerical value of the sector (SECTOR) to which it belongs, and the sector is determined to be larger as the distance from the sander increases. (2) For non-area CBF, SECTOR_NUM represents the numeric value of the sector to which this value belongs after acquiring the distance difference between the destination and the sender and the distance between the destination and the router's local distance.
일 실시예로서, 섹터는 아래 표 1과 같이 설정될 수 있다.In one embodiment, the sector may be set as shown in Table 1 below.
SECTOR_NUM (섹터 넘버)SECTOR_NUM (sector number) 센더와 라우터 간의 거리Distance between sender and router CBF 버퍼에서의 대기 시간Wait time in CBF buffer
77 300m 초과Over 300m 1ms1 ms
66 251m~300m251m ~ 300m 1ms1 ms
55 201m~250m201m ~ 250m 17.5ms17.5ms
44 151m~200m151m ~ 200m 34ms34 ms
33 101m~150m101m ~ 150m 50.5ms50.5 ms
22 51m~100m51m ~ 100m 67ms67 ms
1One 1m~50m1m ~ 50m 83.5ms83.5 ms
표 1에서와 같이, 최대 통신 범위를 300m로 가정하는 경우, 최대 섹터 수(SECTOR_NUM_MAX)를 6개로 설정할 수 있다. 각 섹터에 대한 대기 시간은 표 1과 같이 설정될 수 있으며, 표 1의 대기 시간 값들은 수학식 3을 사용하여 획득된다. As shown in Table 1, when the maximum communication range is assumed to be 300m, the maximum number of sectors (SECTOR_NUM_MAX) can be set to six. The wait time for each sector may be set as shown in Table 1, and the wait time values in Table 1 are obtained using Equation 3.
실시예로서, 6개의 섹터는 등간격이 아닐 수도 있다. 분할된 섹터에 대해, 센더로부터 먼 값일 수록 큰 대기 값을 갖도록 섹터 번호(SECTOR_NUM)가 설정될 수 있다. 동일 섹터에 포함된 라우터들의 CBF 버퍼 대기 시간은 모두 동일하게 설정된다. 다만, 액세스 레이어의 버퍼 상태에 기초하여 동일 섹터에서 먼저 패킷을 브로드캐스팅하는 라우터가 결정된다.As an embodiment, the six sectors may not be equally spaced. For the divided sectors, the sector number SECTOR_NUM may be set such that a value farther from the sender has a larger waiting value. The CBF buffer wait times of routers included in the same sector are all set identically. However, a router that first broadcasts a packet in the same sector is determined based on the buffer state of the access layer.
도 18은 본 발명의 실시예에 따른 CBF 알고리즘을 사용하는 경우 버퍼를 감안한 타임아웃 시간의 예를 나타낸다.18 illustrates an example of a timeout time in consideration of a buffer when using the CBF algorithm according to an embodiment of the present invention.
상술한 섹터 단위의 타임아웃 시간을 적용하면, R1~R3 라우터들은 모두 섹터 6에 속에 속하므로, CBF 버퍼 내의 대기 시간은 모두 1ms가 된다. 도 18에서, 액세스 레이어의 버퍼에 누적된 패킷은 R3이 상대적으로 가장 적다. 따라서, R3 라우터가 먼저 패킷을 브로드캐스팅할 수 있다. Applying the time-out time in sectors described above, since the R1 to R3 routers all belong to sector 6, the waiting time in the CBF buffer is all 1ms. In FIG. 18, packets accumulated in the buffer of the access layer have the least R3. Thus, the R3 router can first broadcast the packet.
도 18의 동작의 경우, 도 17에 비해 시스템의 레이턴시가 크게 줄어들게 된다. 또한, R3 라우터가 브로드캐스팅한 패킷을 R1 및 R2가 수신하면, R1 및 R2는 버퍼에서 대기중인 포워딩 패킷을 삭제하므로, 버퍼 큐 사용이 더 효율적으로 된다.In the case of the operation of FIG. 18, the latency of the system is greatly reduced compared to FIG. 17. In addition, when R1 and R2 receive a packet broadcast by the R3 router, R1 and R2 delete the forwarding packet waiting in the buffer, making the buffer queue more efficient.
이하에서는 센더의 실질적인 통신 가능 거리를 전달하여 타임아웃을 설정하는 방법에 대해 설명한다.Hereinafter, a description will be given of a method of setting a timeout by transmitting a substantial communication distance of the sender.
CBF 알고리즘의 DIST_MAX 값은 액세스 레이어 기술의 이론적인 최대 통신 거리에 기초하여 결정된다. 이 값은 송신 ITS 스테이션 채널의 전력/파워 값으로 결정될 수 있다. 그러나 멀티채널 환경에서는 인접 채널간 간섭(interference)이 존재하고 실제 ITS 스테이션에 포함된 안테나의 특성이 다를 수 있다. 따라서 실제 통신 범위는 각 ITS 스테이션마다 다를 수 있고, 다이나믹하게 변화할 수 있다. TCP(Transmit Power Control) DCC가 적용되어 파워가 다이나믹하게 변화하는 경우, 통신 범위의 다이나믹 특성은 더 커질 수도 있다.The DIST_MAX value of the CBF algorithm is determined based on the theoretical maximum communication distance of the access layer description. This value may be determined as the power / power value of the transmitting ITS station channel. However, in a multichannel environment, there may be interference between adjacent channels and characteristics of an antenna included in an actual ITS station may be different. Thus, the actual communication range may be different for each ITS station and may change dynamically. When TCP (Transmit Power Control) DCC is applied to change power dynamically, the dynamic characteristics of the communication range may be greater.
현재 CBF 알고리즘에서 버퍼의 타임아웃을 결정하는 시간을 만드는 상술한 수학식들은 센더와 전달자간의 통신 범위가 동일하다는 가정하에 제공된다. 센더의 위치는 패킷 헤더에 포함되지 않는다. 후보 전달자들은 센더로부터 수신된 패킷의 MAC 소스 어드레스를 참고한다. 즉, 후보 전달자들은 수신 패킷의 MAC 소스 어드레스를 자신의 로케이션 테이블에 포함된 값들과 비교하고, 센더의 위치를 로케이션테이블로부터 추정할 수 있다. The above equations, which make time to determine the timeout of a buffer in the current CBF algorithm, are provided on the assumption that the communication range between the sender and the sender is the same. The location of the sender is not included in the packet header. Candidate forwarders consult the MAC source address of a packet received from the sender. That is, candidate forwarders may compare the MAC source address of the received packet with the values contained in their location table, and estimate the location of the sender from the location table.
지오네트워킹 패킷- MPDU은 MAC 헤더, LLC 헤더, 지오네트워킹 헤더 및 페이로드를 포함한다. 페이로드는 옵셔널이다. MAC 헤더는 목적지(Destination) MAC 어드레스와 소스 MAC 어드레스를 포함한다. Geonetworking Packet-The MPDU includes a MAC header, LLC header, geonetworking header and payload. Payload is optional. The MAC header includes a destination MAC address and a source MAC address.
단일 채널만이 사용되며, 라우터들의 통신 범위가 동일하다고 가정하면, 센더의 위치 백터가 이웃 라우터의 로케이션 테이블에 저장되어 있다. 비-영역 CBF의 경우, 후보 전달자는 자신이 센더에 비해 얼마나 목적지에 가까운지 알 수 있다. 센더의 통신 범위가 자신의 통신 범위와 동일하다고 가정하므로, 라우터의 버퍼에서 타이머를 세팅 시간도 자신의 통신 범위를 기준으로 결정될 수 있다. 따라서 센더로부터 목적지 방향에 있는 라우터들 중 목적지와 가장 가까운 라우터의 타이머가 먼저 종료되고, 패킷이 주변으로 브로드캐스팅된다. 영역 CBF의 경우, 일정 지리적(geographical) 영역에 패킷을 전파하는 것이 목적이며, 센더로부터 먼 거리에 있는 라우터일수록 타이머가 먼저 타임아웃되어 패킷을 주변에 전송한다. Assuming only a single channel is used and the routers have the same communication range, the sender's location vector is stored in the neighbor router's location table. In the case of a non-region CBF, the candidate forwarder may know how close it is to the destination compared to the sender. Since the communication range of the sender is assumed to be the same as the communication range of the sender, the setting time of the timer in the buffer of the router may also be determined based on the communication range of the sender. Thus, among the routers in the destination direction from the sender, the timer of the router closest to the destination ends first, and the packet is broadcast to the surroundings. In the case of the area CBF, the purpose is to propagate the packet in a geographic area, and the router is located farther from the sender, the timer is first timed out and transmits the packet to the surroundings.
멀티-채널 환경에서는, 간섭, 파워 컨트롤 DCC, 안테나 위치 및 자동차의 높이 등에 따라서 상호간의 통신 범위가 달라질 수 있다. 따라서 고정된 최대 통신 범위 값의 사용은 비효율을 초래할 수 있다. ETSI-ITS는 복수의 채널을 주파수 할당하여 사용한다. 802.11의 통신 방식은 간섭이 많을 수 있으며, 채널 전력을 조정하여 DCC까지 수행되는 경우 통신 범위와 간섭은 다이나믹하게 변할 수 있다.In a multi-channel environment, the communication range can vary depending on interference, power control DCC, antenna location, vehicle height, and the like. Thus, the use of a fixed maximum communication range value can lead to inefficiency. ETSI-ITS uses a plurality of channels by frequency allocation. The communication method of 802.11 may have a lot of interference, and when the channel power is adjusted to DCC, the communication range and the interference may be changed dynamically.
도 19는 본 발명의 실시예에 따른, 멀티 채널 환경의 라우터들의 상이한 통신 범위의 예를 나타낸다.19 illustrates an example of different communication ranges of routers in a multi-channel environment, in accordance with an embodiment of the invention.
도 19에서, 센더의 이론적 통신 범위와 실제 통신 범위는 상이하다. 센더의 이론적인 통신 범위에는 후보 전달자 1 및 후보 전달자 2가 포함되나, 센더의 실제 통신 범위에는 후보 전달자 2만이 포함된다. 따라서 센더가 멀티홉 데이터를 전송하는 경우, 후보 전달자 1은 패킷을 수신하지 못한다.In Fig. 19, the theoretical communication range and the actual communication range of the sender are different. The sender's theoretical communication range includes candidate forwarder 1 and candidate forwarder 2, but the sender's actual communication range includes only candidate forwarder 2. Therefore, when the sender transmits multihop data, candidate forwarder 1 does not receive the packet.
도 19의 예에서, 후보 전달자 2는 센더의 통신 범위의 경계부분에 위치하므로, CBF 버퍼의 대기 시간이 적은 것이 적합하다. 그러나 이론적인 통신 범위로 대기 시간이 계산되므로, 대기 시간이 증가하고, 따라서 패킷의 전파 속도가 늦어진다. 따라서, 이하에서는 이러한 문제를 해결하기 위해 포워딩 시 자신의 통신 범위를 전달하고, 수신 라우터는 이에 기초하여 CBF 대기 시간을 결정하는 방법에 대해 설명한다. In the example of FIG. 19, candidate forwarder 2 is located at the boundary of the sender's communication range, so that a low waiting time of the CBF buffer is suitable. However, since the waiting time is calculated in the theoretical communication range, the waiting time is increased, and thus the packet propagation speed is slowed down. Therefore, in order to solve such a problem, a description will be given of a method of forwarding its own communication range during forwarding and determining a CBF waiting time based on the reception router.
도 20은 본 발명의 실시예에 따른 GUC 패킷 구조를 나타낸다.20 shows a GUC packet structure according to an embodiment of the present invention.
도 21은 본 발명의 실시예에 따른 GAC/GBC 패킷 구조를 나타낸다.21 shows a GAC / GBC packet structure according to an embodiment of the present invention.
도 22(a)는 본 발명의 실시예에 따른 LS 요청 패킷 구조를 나타내고, 도 22(b)는 본 발명의 실시예에 따른 LS 응답 패킷 구조를 나타낸다. 22 (a) shows an LS request packet structure according to an embodiment of the present invention, and FIG. 22 (b) shows an LS response packet structure according to an embodiment of the present invention.
도 20 내지 도 22에서, 도 4, 도 7 및 도 9에서 설명한 패킷 헤더 구성과 동일한 설명은 중복하지 않는다. 도 20 내지 도 22의 경우, 통신 범위(Communication Range) 필드가 추가된다.20 to 22, the same description as the packet header configuration described with reference to FIGS. 4, 7, and 9 does not overlap. In the case of FIGS. 20 to 22, a communication range field is added.
통신 범위(communication range) 정보는 센더의 실질적인 통신 범위를 나타낸다. 통신 범위 필드의 값은 전송 전력, 안테나 특성, 간섭 등을 고려한 이론적인 값이 될 수 있다. 또한, 통신 범위 필드의 값은 측정된 통신 상황에 기초하여 추정된 값이 될 수도 있다. 멀티 홉 전송 시 매 홉마다 통신 범위 값은 변경될 수 있다. 통신 범위 값은 각 센더에 의해 결정될 수 있다. 표시되는 거리 값은 미터(m) 단위로 지시될 수 있다. 실시예로서, 거리 값은 10미터 또는 20미터 단위와 같이 특정 단위에 기초하여 표시될 수 있다.Communication range information indicates the actual communication range of the sender. The value of the communication range field may be a theoretical value considering transmission power, antenna characteristics, interference, and the like. In addition, the value of the communication range field may be an estimated value based on the measured communication situation. In multi-hop transmission, the communication range value can be changed every hop. The communication range value may be determined by each sender. The displayed distance value may be indicated in meters (m). As an example, the distance value may be displayed based on a particular unit, such as 10 meters or 20 meters.
도 23은 본 발명의 실시예에 따른 통신 범위 측정 방법을 나타낸다.23 illustrates a communication range measuring method according to an embodiment of the present invention.
형평성의 관점에서 애드-혹 라우터의 통신 범위는 동일하다고 가정할 수 있다. 다만, 이론적인 액세스 레이어의 최대 통신 범위로 가정하는 것은 아니다. 주변 장애물로 인하여 통신에서 통신 라인(line of sight)이 보장되지 않거나, 페이딩(fading) 채널 환경, 주변 다른 채널로 인한 간섭 등 다양한 요인으로 통신 범위는 달라질 수 있다. 그라나 주변의 라우터들은 유사한 환경적 영향을 받게 되므로 통신 범위 또한 유사한 것으로 가정할 수 있다. 이 경우 라우터는 주변 라우터로부터 SHB으로 수신한 데이터의 지오네트워킹 헤더에 포함된 위치 벡터를 사용하여 자신의 통신 범위를 결정할 수 있다.In terms of equity, it can be assumed that the communication range of the ad-hoc router is the same. However, it is not assumed to be the maximum communication range of the theoretical access layer. Due to peripheral obstacles, the communication line may not be guaranteed in the communication, or the communication range may vary due to various factors such as a fading channel environment and interference caused by other surrounding channels. However, routers around them are subject to similar environmental impacts, so the range of communication can be assumed to be similar. In this case, the router may determine its own communication range using the location vector included in the geonetworking header of the data received from the neighbor router to the SHB.
도 23에서, 일정 시간(T)동안 주변의 라우터로부터 수신한 위치 정보와 자신의 위치의 차이를 계산하여, 최대 값을 자신의 최대 통신 범위로 결정하고, 이를 패킷에 포함시켜 전송할 수 있다. 일정 시간 인터벌 동안 모니터링하여 획득된 최대 거리 값을 다음 시간 인터벌 동안 사용할 수 있다. 즉, 라우터는 t 시점에서 T+t 시점까지 T 시간 인터벌 동안 확인한 최대 거리 값을 T+t 시점에서 2T+t 시점의 다음 T 시간 인터벌 동안 사용할 수 있다. 라우터는 2번째 인터벌(T+t~2T+t) 동안 다시 최대 통신 범위를 관찰하고, 다음 인터벌에서 업데이트된 값을 사용할 수 있다.In FIG. 23, a difference between location information received from neighboring routers and a location of a user for a predetermined time T may be calculated, and a maximum value may be determined as the maximum communication range of the device, and the packet may be included in a packet and transmitted. The maximum distance value obtained by monitoring for a certain time interval may be used for the next time interval. That is, the router may use the maximum distance value checked during the T time interval from time t to T + t during the next T time interval from time T + t to 2T + t. The router may observe the maximum communication range again during the second interval (T + t ~ 2T + t) and use the updated value at the next interval.
최대 통신 범위는 적응적으로 반영하여 산출될 수 있다. 최대 통신 범위는 수학식 4와 같이 획득될 수도 있다. The maximum communication range may be calculated by adaptively reflecting. The maximum communication range may be obtained as shown in Equation 4.
Figure PCTKR2018002065-appb-M000004
Figure PCTKR2018002065-appb-M000004
CR_t: 현재의 통신 범위CR_t: current communication range
CR_t-1: 과거의 통신 범위CR_t-1: past communication range
MAX_t: 일정 시간 인터벌(T) 동안 관찰한 주변 라우터들과의 거리 최대 값MAX_t: Maximum distance from neighboring routers observed over time interval (T)
α: 이전 CR_t-1 값에 부여되는 가중치(weight) 값, 0<α<1α: weight value assigned to previous CR_t-1 value, 0 <α <1
β: 현재 통신 범위에 부여되는 가중치(weight) 값, 0<β<1β: weight value given to the current communication range, 0 <β <1
시간 인터벌 (T)보다 더 큰 시간 인터벌(T') 동안, 시간 인터벌(T) 마다 구한 최대 거리 값들의 평균이 최대 통신 범위로 설정될 수 있다. 예를 들면, 10T 동안 획득된 최대 거리 값들의 평균을 가능한 통신 범위로 설정하고, 라우터는 CBF의 버퍼의 계산 시 사용할 수 있으며, 이 경우 계산은 슬라이딩 윈도우(sliding window) 방식에 따라 수행될 수 있다.During the time interval T 'greater than the time interval T, the average of the maximum distance values obtained for each time interval T may be set as the maximum communication range. For example, setting the average of the maximum distance values obtained for 10T as a possible communication range, the router can be used in the calculation of the buffer of the CBF, in which case the calculation can be performed according to a sliding window method. .
상술한 방법으로 통신 범위를 계산하는 경우, 주변 차량의 위치 정보만을 이용하기 때문에 이용할 수 있는 차량의 위치나 차량의 개수에 통신 범위 값이 의존하게 되는 단점이 있다. 측정으로 인한 오류를 줄이기 위해 거리나 차량 대수에 제한을 둘 수도 있다. 예를 들면, 구체적인 통신 범위기 일정 스레스홀드 값 이하인 경우에는, 이전에 구한 값이 사용되거나 이론적인 통신 범위 값이 사용될 수 있다. 또한, 통신 범위를 계산하는데 사용되는 주변 라우터의 개수가 일정 스레스홀드 값 이하인 경우, 이전에 구한 값 또는 이론적인 통신 범위 값이 사용될 수 있다.When calculating the communication range by the above-described method, since only the location information of the surrounding vehicles is used, there is a disadvantage in that the communication range value depends on the available vehicle position or the number of vehicles. Limits on distance or number of vehicles may be placed to reduce errors due to measurements. For example, when the specific communication ranger is less than or equal to the predetermined threshold value, a previously obtained value may be used or a theoretical communication range value may be used. In addition, when the number of neighbor routers used to calculate the communication range is less than or equal to a predetermined threshold value, a previously obtained value or a theoretical communication range value may be used.
도 24는 본 발명의 다른 일 실시예에 따른 통신 범위 측정 방법을 나타낸다.24 illustrates a communication range measuring method according to another embodiment of the present invention.
도 23에서 상술한 발명은 이웃 라우터들이 동일한 통신 범위를 갖는 경우를 가정한다. 그러나 통신 범위의 차이가 발생하는 경우, 도 23의 실시예에 따라 획득되는 통신 범위의 정확도가 떨어질 수 있다. 따라서, 라우터가 전송한 패킷의 응답에 해당하는 패킷을 전송하는 라우터의 위치를 사용하는 방법을 제안한다. 응답을 수신하는 것은, 라우터가 전송한 데이터가 전달되었음을 확인해준다. 따라서 라우터는 통신 범위에 응답을 한 라우터가 존재함을 확인할 수 있다.The invention described above in FIG. 23 assumes that neighboring routers have the same communication range. However, when a difference in communication range occurs, the accuracy of the communication range obtained according to the embodiment of FIG. 23 may be lowered. Therefore, the present invention proposes a method of using a location of a router transmitting a packet corresponding to a response of a packet transmitted by the router. Receiving the response confirms that the data sent by the router has been delivered. Therefore, the router can confirm that there is a router that responds to the communication range.
센더가 패킷을 브로드캐스팅하면, 패킷을 수신한 포워더 후보들 중 적어도 하나의 라우터가 패킷을 포워딩한다. 포워딩되는 패킷도 브로드캐스팅 방식으로 전파되며, 포워더의 통신 범위에 속하는 센더도 이 패킷을 수신할 수 있다. 자신이 보낸 패킷이 포워딩되었는지 여부는 패킷 내의 SN을 통해 확인될 수 있다. 전송한 패킷과 동일한 패킷을 브로드캐스팅하는 라우터는 통신 범위에 포함되는 것이 확실하므로, 에고(ego) 라우터는 이러한 라우터들의 위치만을 사용하여 통신 범위를 추정할 수 있다. 이 방법은 특히 차량 네트워크에서 CBF를 사용한 통신이 자주 발생하는 경우 유용할 수 있다.When the sender broadcasts the packet, at least one of the forwarder candidates that received the packet forwards the packet. Forwarded packets are also propagated in a broadcast manner, and senders belonging to the forwarder's communication range can also receive these packets. Whether the packet sent by itself is forwarded can be confirmed through the SN in the packet. Since routers broadcasting the same packet as the transmitted packet are certainly included in the communication range, the ego router can estimate the communication range using only the locations of these routers. This method can be useful especially when communication using CBF occurs frequently in vehicle networks.
또한, 싱글 홉으로 전송한 패킷의 응답에 해당하는 패킷을 수신한 경우, 응답 패킷을 전송한 라우터는 에고 라우터의 통신 범위 내에 존재하는 것이 확실하므로, 이 라우터의 위치 정보를 사용하여 통신 범위를 획득할 수 있다. 라우터는 포워딩 패킷 또는 응답 패킷을 전송한 라우터의 위치 정보를 사용하여 통신 범위를 획득할 수 있다.In addition, when a packet corresponding to a response of a packet transmitted in a single hop is received, the router which transmitted the response packet is sure to exist within the communication range of the ego router, so that the communication range is obtained using the location information of the router. can do. The router may obtain a communication range by using the location information of the router which transmitted the forwarding packet or the response packet.
본 발명의 실시예에서, 액세스 레이어는 802.11p의 통신 기술을 사용한다. 802.11p의 액세스 레이어는 CTS(Clear To Send), RTS(Request To Send), ACK(Acknowledge)와 같은 신호를 사용하지 않는다. RTS는 송신 장치가 전송을 위해 무선 링크를 예약하는 신호이고, CTS는 수신측이 자신이 신호를 받을 준비가 되어 있으며, 무선 링크를 듣고 있는 모든 노드 장치들에게 지금부터 송신을 하지 말라는 신호이다. ACK는 수신 디바이스의 패킷을 수신하고, 수신을 알리는 신호로서, 채널이 사용 가능한 상태가 되었음을 나타낼 수도 있다. 다만, 실시예로서, V2X 통신 장치의 액세스 레이어 기술로서, 802.11p가 아닌 다른 통신 기술이 사용될 수도 있다. 다른 통신 기술이 RTS, CTS, ACK를 사용하는 경우, 이 신호들을 사용하여 통신 범위를 측정할 수도 있다. 측정된 통신 범위는 네트워크 레이어로 전달되어, 패킷 헤더에 포함될 수 있다. 라우터는 측정된 통신 범위 정보를 사용하여 CBF 패킷의 타임아웃 시간을 결정할 수 있다.In an embodiment of the present invention, the access layer uses a communication technology of 802.11p. The 802.11p access layer does not use signals such as Clear To Send (CTS), Request To Send (RTS), or Acknowledge (ACK). The RTS is a signal that the transmitting device reserves a radio link for transmission, and the CTS is a signal that the receiving party is ready to receive the signal and does not transmit to all node devices listening to the radio link from now on. The ACK is a signal for receiving a packet of a receiving device and informing the reception, and may indicate that the channel has become available. However, as an embodiment, a communication technology other than 802.11p may be used as the access layer technology of the V2X communication device. If another communication technology uses RTS, CTS, ACK, these signals may be used to measure the communication range. The measured communication range is delivered to the network layer and may be included in the packet header. The router may use the measured communication range information to determine the timeout time of the CBF packet.
도 23~24와 같이 통신 범위가 결정되면, 수학식 1~3에서 DIST_MAX는 결정된 실제 통신 범위로 설정될 수 있다. 이 경우 주변 라우터의 위치 정보에 기초하여 실제 통신 가능한 범위를 추정할 수 있으며, 이를 후보 전달자들과 공유할 수 있다. 따라서 CBF 전송시 버퍼 설정이 더 효율적이될 수 있다. 이론적인 최대 통신 범위보다 실제 필드의 채널 환경에 따른 실제 통신 범위는 이론적 최대 통신 범위보다 작을 수 있으므로, CBR 버퍼 대기 시간이 더 효율적으로 설정될 수 있고, 따라서 시스템 레이턴시가 개선될 수 있다. 도 19의 실시예에서, 본 발명에 따르면 후보 포워더 2는 기존의 방법보다 더 짧은 버퍼 대기 시간 후 패킷을 포워딩할 수 있다. When the communication range is determined as shown in FIGS. 23 to 24, DIST_MAX in Equations 1 to 3 may be set to the determined actual communication range. In this case, the range of actual communication can be estimated based on the location information of the neighbor routers, and it can be shared with the candidate forwarders. Therefore, buffer setting may be more efficient in CBF transmission. Since the actual communication range according to the channel environment of the actual field may be smaller than the theoretical maximum communication range than the theoretical maximum communication range, the CBR buffer latency can be set more efficiently, and thus the system latency can be improved. In the embodiment of FIG. 19, the candidate forwarder 2 may forward the packet after a shorter buffer wait time than the conventional method.
도 25은 본 발명의 실시예에 따른 V2X 통신 장치의 구성을 나타낸다.25 shows a configuration of a V2X communication device according to an embodiment of the present invention.
도 25에서, V2X 통신 장치(25000)는 통신 유닛(25010), 프로세서(25020) 및 메모리(25030)을 포함할 수 있다. In FIG. 25, the V2X communication device 25000 may include a communication unit 25010, a processor 25020, and a memory 25030.
통신 유닛(25010)은 프로세서(25020)와 연결되어 무선 신호를 송신/수신할 수 있다. 통신 유닛(25010)은 프로세서(25020)로부터 수신된 데이터를 송수신 대역으로 업컨버팅하여 신호를 전송하거나, 수신 신호를 다운컨버팅할 수 있다. 통신 유닛(25010)은 피지컬 레이어 또는 액세스 레이어 중 적어도 하나의 동작을 구현할 수 있다. The communication unit 25010 may be connected to the processor 25020 to transmit / receive a radio signal. The communication unit 25010 may upconvert data received from the processor 25020 into a transmission / reception band to transmit a signal, or downconvert the received signal. The communication unit 25010 may implement at least one of the physical layer and the access layer.
통신 유닛(25010)은 복수의 통신 프로토콜에 따라 통신하기 위해 복수의 서브 RF 유닛을 포함할 수도 있다. 실시예로서, 통신 유닛(25010)은 DSRC(Dedicated Short Range Communication), IEEE 802.11 및/또는 802.11p 표준의 피지컬 전송 기술에 기초하는 ITS-G5 무선 통신 기술, 위성/광대역 무선 이동 통신을 포함하는 2G/3G/4G(LTE)/5G 무선 셀룰러 통신 기술, DVB-T/T2/ATSC 등 광대역 지상파 디지털 방송 기술, GPS 기술, IEEE 1609 WAVE 기술 등에 기초하여 데이터 통신을 수행할 수 있다. 통신 유닛(25010)은 각 통신 기술을 구현하는 복수의 트랜스시버를 포함할 수도 있다.The communication unit 25010 may include a plurality of sub-RF units for communicating in accordance with a plurality of communication protocols. As an embodiment, the communication unit 25010 includes 2G including Dedicated Short Range Communication (DSRC), ITS-G5 wireless communication technology based on physical transmission technology of the IEEE 802.11 and / or 802.11p standards, and satellite / wideband wireless mobile communication. Data communication may be performed based on / 3G / 4G (LTE) / 5G wireless cellular communication technology, broadband terrestrial digital broadcasting technology such as DVB-T / T2 / ATSC, GPS technology, IEEE 1609 WAVE technology, and the like. The communication unit 25010 may include a plurality of transceivers that implement each communication technology.
프로세서(25020)는 통신 유닛(25010)과 연결되어 ITS 시스템 또는 WAVE 시스템에 따른 레이어들의 동작을 구현할 수 있다. 프로세서(25020)는 상술한 도면 및 설명에 따른 본 발명의 다양한 실시예에 따른 동작을 수행하도록 구성될 수 있다. 또한, 상술한 본 발명의 다양한 실시예에 따른 V2X 통신 장치(25000)의 동작을 구현하는 모듈, 데이터, 프로그램 또는 소프트웨어 중 적어도 하나가 메모리(25030)에 저장되고, 프로세서(25020)에 의하여 실행될 수 있다. The processor 25020 may be connected to the communication unit 25010 to implement operations of layers according to the ITS system or the WAVE system. The processor 25020 may be configured to perform an operation according to various embodiments of the present disclosure according to the above-described drawings and descriptions. In addition, at least one of a module, data, a program, or software for implementing the operation of the V2X communication device 25000 according to various embodiments of the present disclosure described above may be stored in the memory 25030 and executed by the processor 25020. have.
메모리(25030)는 프로세서(25020)와 연결되어, 프로세서(25020)를 구동하기 위한 다양한 정보를 저장한다. 메모리(25030)는 프로세서(25020)의 내부에 포함되거나 또는 프로세서(25020)의 외부에 설치되어 프로세서(25020)와 공지의 수단에 의해 연결될 수 있다. The memory 25030 is connected to the processor 25020 and stores various information for driving the processor 25020. The memory 25030 may be included in the processor 25020 or may be installed outside the processor 25020 and connected to the processor 25020 by known means.
V2X 통신 장치(25000)의 프로세서(25020)는 본 발명에서 설명한 지오네트워킹 패킷 전송을 수행할 수 있다. V2X 통신 장치(25000)의 지오네트워킹 패킷 전송 방법에 대해서는 이하에서 설명한다.The processor 25020 of the V2X communication device 25000 may perform the geonetworking packet transmission described in the present invention. A method of transmitting a geonetworking packet by the V2X communication device 25000 will be described below.
도 26은 본 발명의 실시예에 따른 지오네트워킹 전송 방법에 대한 순서도를 나타낸다.26 is a flowchart illustrating a geonetworking transmission method according to an embodiment of the present invention.
V2X 통신 장치는 센더 V2X 통신 장치로부터 지오네트워킹 패킷을 수신한다(S26010). The V2X communication device receives a geonetworking packet from the sender V2X communication device (S26010).
V2X 통신 장치는 수신 지오네트워킹 패킷이 버퍼에 기저장된 패킷인지 여부를 확인한다(S26020). The V2X communication device checks whether the received geonetworking packet is a packet previously stored in the buffer (S26020).
V2X 통신 장치는 수신 지오네트워킹 패킷이 버퍼에 기저장된 패킷인 경우, 수신 지오네트워킹 패킷을 폐기한다(S26030). If the received geonetworking packet is a packet previously stored in the buffer, the V2X communication device discards the received geonetworking packet (S26030).
V2X 통신 장치는 수신 지오네트워킹 패킷이 버퍼에 기저장된 패킷이 아닌 경우, V2X 통신 장치는 수신 지오네트워킹 패킷을 버퍼에 저장하고, 타이머를 시작한다(26040). V2X 통신 장치는 타임아웃 주기(duration)를 설정하고, 패킷 재전송을 위한 타이머를 시작한다.If the V2X communication device does not store the received geonetworking packet in the buffer, the V2X communication device stores the received geonetworking packet in the buffer and starts a timer (26040). The V2X communication device sets a timeout duration and starts a timer for packet retransmission.
V2X 통신 장치는 타이머가 종료되면 패킷을 전송한다(S26050). The V2X communication device transmits a packet when the timer expires (S26050).
타임아웃 주기는 패킷이 버퍼에 버퍼링되는 시간 주기를 나타낸다. 샌더 V2X 통신 장치의 최대 통신 거리는 복수의 섹터들을 포함할 수 있다. 복수의 섹터들 각각은 일정한 타임 아웃 주기를 가질 수 있다. 섹터 및 타임 아웃 주기는 표1과 같이 설정될 수도 있다. 복수의 섹터들의 타임아웃 주기는, 수신 패킷을 전송한 센더 V2X 장치와 V2X 장치의 거리에 기초하여 결정될 수 있다. 거리가 클수록, 타임아웃 주기는 작아질 수 있다.The timeout period represents the time period during which a packet is buffered in a buffer. The maximum communication distance of the sander V2X communication device may include a plurality of sectors. Each of the plurality of sectors may have a constant time out period. The sector and time out period may be set as shown in Table 1. The timeout period of the plurality of sectors may be determined based on the distance between the sender V2X device and the V2X device that transmitted the received packet. The larger the distance, the smaller the timeout period can be.
도 20~도 22와 같이, 지오네트워킹 패킷은 지오네트워킹 패킷을 전송하는 V2X 통신 장치의 통신 범위 정보를 포함할 수 있다. 통신 범위 정보의 값은 특정 시간 인터벌동안 통신한 주변 V2X 통신 장치들의 위치 및 V2X 통신 장치의 위치 간의 차이 값들 중 최대 값으로 결정될 수 있다. 주변의 V2X 통신 장치는, V2X 통신 장치가 전송한 패킷에 대한 응답 패킷 또는 포워딩 패킷이 수신된 V2X 통신 장치에 해당할 수 있다. 통신 범위 정보의 값은, 특정 시간 인터벌 동안 통신한 주변의 V2X 통신장치들의 위치 및 V2X 통신 장치의 위치 간의 차이값들 증 최대 값으로서 제 2 시간 인터벌 동안 사용될 수 있다. 통신 범위 정보 값의 결정 및 사용은 도 23 및 도 24와 관련하여 설명한 바와 같다.20 to 22, the geo-networking packet may include communication range information of the V2X communication device for transmitting the geo-networking packet. The value of the communication range information may be determined as the maximum value of difference values between the positions of the peripheral V2X communication apparatuses and the positions of the V2X communication apparatuses that communicated during the specific time interval. The peripheral V2X communication device may correspond to a V2X communication device in which a response packet or a forwarding packet is received for a packet transmitted by the V2X communication device. The value of the communication range information may be used during the second time interval as a maximum value of difference values between the position of the V2X communication apparatuses and the position of the V2X communication apparatus that communicated during the specific time interval. Determination and use of the communication range information value are as described with reference to FIGS. 23 and 24.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of a hardware implementation, an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above. The software code may be stored in memory and driven by the processor. The memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the essential features of the present invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 이해된다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.It is understood by those skilled in the art that various changes and modifications can be made in the present invention without departing from the spirit or scope of the invention. Accordingly, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
본 명세서에서 장치 및 방법 발명이 모두 언급되고, 장치 및 방법 발명 모두의 설명은 서로 보완하여 적용될 수 있다.Reference is made herein to both apparatus and method inventions, and the descriptions of both apparatus and method inventions may be complementary to one another.
다양한 실시예가 본 발명을 실시하기 위한 최선의 형태에서 설명되었다.Various embodiments have been described in the best mode for carrying out the invention.
본 발명은 일련의 차량 통신 분야에서 이용된다.The present invention is used in the field of vehicle communications.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.It will be apparent to those skilled in the art that various changes and modifications can be made in the present invention without departing from the spirit or scope of the invention. Accordingly, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (14)

  1. V2X 통신 장치의 지오네트워킹 전송 방법에 있어서,In the geo-networking transmission method of the V2X communication device,
    센더 V2X 통신 장치로부터 지오네트워킹 패킷을 수신하는 단계;Receiving a geonetworking packet from a sender V2X communication device;
    수신 지오네트워킹 패킷이 버퍼에 기저장된 패킷인지 여부를 확인하는 단계;Checking whether the received geonetworking packet is a packet previously stored in a buffer;
    상기 수신 지오네트워킹 패킷이 기저장된 패킷이 아닌 경우, 상기 지오네트워킹 패킷을 버퍼에 저장하고, 타임아웃 주기(duration)를 설정하고, 상기 패킷 재전송을 위한 타이머를 시작하는 단계; 및If the received geonetworking packet is not a previously stored packet, storing the geonetworking packet in a buffer, setting a timeout duration, and starting a timer for retransmitting the packet; And
    상기 타이머가 종료되면 상기 지오네트워킹 패킷을 전송하는 단계를 포함하는, Transmitting the geonetworking packet when the timer expires,
    상기 타임아웃 주기는 상기 패킷이 상기 버퍼에 버퍼링되는 시간 주기를 나타내는, 지오네트워킹 전송 방법.And the timeout period represents a time period during which the packet is buffered in the buffer.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 센더 V2X 통신 장치의 최대 통신 거리는 복수의 섹터들을 포함하고, 상기 복수의 섹터들 각각은 일정한 타임아웃 주기를 갖는, 지오네트워킹 전송 방법.The maximum communication distance of the sender V2X communication device includes a plurality of sectors, each of the plurality of sectors having a constant timeout period.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 복수의 섹터들의 타임아웃 주기는, 상기 수신 패킷을 전송한 센더 V2X 장치와 상기 V2X 장치의 거리에 기초하여 결정되며, 상기 거리가 클수록 상기 타임아웃 주기는 작아지는, 지오네트워킹 전송 방법.The timeout period of the plurality of sectors is determined based on the distance between the sender V2X device and the V2X device that transmitted the received packet, the larger the timeout period, the smaller the geonetworking transmission method.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 지오네트워킹 패킷은 상기 지오네트워킹 패킷을 전송하는 V2X 통신 장치의 통신 범위 정보를 포함하는, 지오네트워킹 전송 방법.And the geonetworking packet includes communication range information of a V2X communication device transmitting the geonetworking packet.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 통신 범위 정보의 값은, 제 1 시간 인터벌 동안 통신한 주변의 V2X 통신 장치들의 위치 및 상기 V2X 통신 장치의 위치 간의 차이 값들 중 최대 값으로 결정되는, 지오네트워킹 전송 방법.And wherein the value of the communication range information is determined as a maximum value of difference values between a location of surrounding V2X communication devices and a location of the V2X communication device communicating during the first time interval.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 주변의 V2X 통신 장치는, 상기 V2X 통신 장치가 전송한 패킷에 대한 응답 패킷 또는 포워딩 패킷이 수신된 V2X 통신 장치인, 지오네트워킹 전송 방법.And the surrounding V2X communication device is a V2X communication device receiving a response packet or a forwarding packet to a packet transmitted by the V2X communication device.
  7. 제 5 항에 있어서, The method of claim 5,
    상기 통신 범위 정보의 값은, 상기 제 1 시간 인터벌 동안 통신한 주변의 V2X 통신 장치들의 위치 및 상기 V2X 통신 장치의 위치 간의 차이 값들 중 최대 값으로서 제 2 시간 인터벌 동안 사용되는, 지오네트워킹 전송 방법.And wherein the value of the communication range information is used during the second time interval as a maximum of difference values between the position of the surrounding V2X communication devices and the position of the V2X communication device communicating during the first time interval.
  8. V2X 통신 장치에 있어서, In the V2X communication device,
    데이터를 저장하는 메모리;A memory for storing data;
    지오네트워킹 패킷을 포함하는 무선 신호를 송수신하는 통신 유닛; 및A communication unit for transmitting and receiving a radio signal including a geonetworking packet; And
    상기 메모리 및 상기 통신 유닛을 제어하는 프로세서를 포함하고, A processor controlling the memory and the communication unit,
    상기 프로세서는, The processor,
    센더 V2X 통신 장치로부터 지오네트워킹 패킷을 수신하고,Receive geonetworking packets from the sender V2X communication device,
    수신 지오네트워킹 패킷이 버퍼에 기저장된 패킷인지 여부를 확인하고,Check whether the received geonetworking packet is a packet already stored in the buffer,
    상기 수신 지오네트워킹 패킷이 기저장된 패킷이 아닌 경우, 상기 지오네트워킹 패킷을 버퍼에 저장하고, 타임아웃 주기(duration)를 설정하고, 상기 패킷 재전송을 위한 타이머를 시작하고,If the received geonetworking packet is not a pre-stored packet, store the geonetworking packet in a buffer, set a timeout duration, start a timer for retransmission of the packet,
    상기 타이머가 종료되면 상기 지오네트워킹 패킷을 전송하며,Transmit the geonetworking packet when the timer expires,
    상기 타임아웃 주기는 상기 패킷이 상기 버퍼에 버퍼링되는 시간 주기를 나타내는, V2X 통신 장치.Wherein the timeout period represents a time period during which the packet is buffered in the buffer.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 센더 V2X 통신 장치의 최대 통신 거리는 복수의 섹터들을 포함하고, 상기 복수의 섹터들 각각은 일정한 타임아웃 주기를 갖는, V2X 통신 장치.The maximum communication distance of the sender V2X communication device comprises a plurality of sectors, each of the plurality of sectors having a constant timeout period.
  10. 제 9 항에 있어서, The method of claim 9,
    상기 복수의 섹터들의 타임아웃 주기는, 상기 수신 패킷을 전송한 센더 V2X 장치와 상기 V2X 장치의 거리에 기초하여 결정되며, 상기 거리가 클수록 상기 타임아웃 주기는 작아지는, V2X 통신 장치.The timeout period of the plurality of sectors is determined based on a distance between the sender V2X device and the V2X device that transmitted the received packet, and the larger the distance, the smaller the timeout period.
  11. 제 10 항에 있어서, The method of claim 10,
    상기 지오네트워킹 패킷은 상기 지오네트워킹 패킷을 전송하는 V2X 통신 장치의 통신 범위 정보를 포함하는, V2X 통신 장치.And the geonetworking packet includes communication range information of a V2X communication device transmitting the geonetworking packet.
  12. 제 10 항에 있어서, The method of claim 10,
    상기 통신 범위 정보의 값은, 제 1 시간 인터벌 동안 통신한 주변의 V2X 통신 장치들의 위치 및 상기 V2X 통신 장치의 위치 간의 차이 값들 중 최대 값으로 결정되는, V2X 통신 장치.And the value of the communication range information is determined as a maximum value of difference values between a location of surrounding V2X communication devices and a location of the V2X communication device communicating during a first time interval.
  13. 제 12 항에 있어서, The method of claim 12,
    상기 주변의 V2X 통신 장치는, 상기 V2X 통신 장치가 전송한 패킷에 대한 응답 패킷 또는 포워딩 패킷이 수신된 V2X 통신 장치인, V2X 통신 장치.The peripheral V2X communication device is a V2X communication device, wherein a response packet or a forwarding packet to a packet transmitted by the V2X communication device is received.
  14. 제 12 항에 있어서, The method of claim 12,
    상기 통신 범위 정보의 값은, 상기 제 1 시간 인터벌 동안 통신한 주변의 V2X 통신 장치들의 위치 및 상기 V2X 통신 장치의 위치 간의 차이 값들 중 최대 값으로서 제 2 시간 인터벌 동안 사용되는, V2X 통신 장치.And the value of the communication range information is used during the second time interval as a maximum value of difference values between the position of the surrounding V2X communication devices and the position of the V2X communication device communicating during the first time interval.
PCT/KR2018/002065 2018-02-20 2018-02-20 V2x communication device and geo-networking transmission method WO2019164019A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/002065 WO2019164019A1 (en) 2018-02-20 2018-02-20 V2x communication device and geo-networking transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/002065 WO2019164019A1 (en) 2018-02-20 2018-02-20 V2x communication device and geo-networking transmission method

Publications (1)

Publication Number Publication Date
WO2019164019A1 true WO2019164019A1 (en) 2019-08-29

Family

ID=67688142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002065 WO2019164019A1 (en) 2018-02-20 2018-02-20 V2x communication device and geo-networking transmission method

Country Status (1)

Country Link
WO (1) WO2019164019A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285796A (en) * 2021-11-30 2022-04-05 中国人民解放军战略支援部队信息工程大学 Route addressing method and system based on geographic space identification

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381408A (en) * 1992-05-19 1995-01-10 Cray Communications Limited Packet transmission system
US9252896B2 (en) * 2012-12-10 2016-02-02 Qualcomm Incorporated Efficient means of broadcast and relaying information between wireless terminals
WO2016177435A1 (en) * 2015-05-06 2016-11-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for handling data packet transmissions in a multi-path multi-hop adapted wireless communication network
US20170118691A1 (en) * 2015-10-22 2017-04-27 Leauto Intelligent Technology (Beijing) Co. Ltd. Vehicle ad hoc network routing method, device and system based on wireless access in vehicular environments
WO2017191918A2 (en) * 2016-05-01 2017-11-09 Lg Electronics Inc. Method for managing packets for v2x communication and apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381408A (en) * 1992-05-19 1995-01-10 Cray Communications Limited Packet transmission system
US9252896B2 (en) * 2012-12-10 2016-02-02 Qualcomm Incorporated Efficient means of broadcast and relaying information between wireless terminals
WO2016177435A1 (en) * 2015-05-06 2016-11-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for handling data packet transmissions in a multi-path multi-hop adapted wireless communication network
US20170118691A1 (en) * 2015-10-22 2017-04-27 Leauto Intelligent Technology (Beijing) Co. Ltd. Vehicle ad hoc network routing method, device and system based on wireless access in vehicular environments
WO2017191918A2 (en) * 2016-05-01 2017-11-09 Lg Electronics Inc. Method for managing packets for v2x communication and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285796A (en) * 2021-11-30 2022-04-05 中国人民解放军战略支援部队信息工程大学 Route addressing method and system based on geographic space identification

Similar Documents

Publication Publication Date Title
WO2019156266A1 (en) V2x communication device and v2x communication method of v2x communication device
WO2020197298A1 (en) Method and apparatus for initiating radio resource control (rrc) connection for vehicle-to-everything (v2x) communication
WO2019240548A1 (en) Method and apparatus for performing sidelink communication by ue in nr v2x
WO2018074708A1 (en) Method and apparatus for measuring inter-ru interference in order to perform space division duplex communication
WO2020022526A1 (en) V2x communication device and geo-networking transmission method
WO2017105052A1 (en) Relay-based communication method for communication terminal
WO2019117369A1 (en) V2x communication device and communication method thereof
WO2019004519A1 (en) V2x communication device and geo-networking transmission method
WO2018225883A1 (en) V2x communication device and method for operating multi-channels thereof
WO2021040352A1 (en) Method by which device transmits and receives cpm in wireless communication system for supporting sidelink, and device therefor
WO2020197310A1 (en) Method for transmitting safety message in wireless communication system supporting sidelink and apparatus therefortherefor
WO2019031625A1 (en) V2x communication device and geo-networking transmission method
WO2018070647A1 (en) Method and device for setting space division connection between terminals for v2x communication
WO2020004688A1 (en) V2x communication device and data transmission method thereof
WO2021150087A1 (en) Method for controlling vehicle driving by first device in wireless communication system supporting sidelink, and device therefor
WO2021034167A1 (en) Method by which terminal transmits/receives sidelink signal in wireless communication system for supporting sidelink, and apparatus therefor
WO2019209032A1 (en) Vehicle terminal for controlling v2x message transmission between vehicle terminals through v2x service in wireless communication system and communication control method thereof
EP3841781A1 (en) Method and apparatus for deciding packet communication range in terminal direct communication system
WO2021150089A1 (en) Method by which v2x vehicle transmits virtual v2x message in wireless communication system supporting sidelink, and device therefor
WO2020262714A1 (en) V2x communication device and data transmission method thereof
WO2018124320A1 (en) V2x communication apparatus and data communication method therefor
WO2019139194A1 (en) V2x communication device and geo-networking transmission method
WO2021221404A1 (en) Method and device for position compensation by first device in wireless communication system supporting sidelink
WO2019117367A1 (en) V2x communication device and communication method thereof
WO2021182935A1 (en) Method and device for generating vru path map related to moving path of vru by softv2x server in wireless communication system supporting sidelink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907354

Country of ref document: EP

Kind code of ref document: A1