WO2019139194A1 - V2x communication device and geo-networking transmission method - Google Patents

V2x communication device and geo-networking transmission method Download PDF

Info

Publication number
WO2019139194A1
WO2019139194A1 PCT/KR2018/000656 KR2018000656W WO2019139194A1 WO 2019139194 A1 WO2019139194 A1 WO 2019139194A1 KR 2018000656 W KR2018000656 W KR 2018000656W WO 2019139194 A1 WO2019139194 A1 WO 2019139194A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
geo
destination
networking
information
Prior art date
Application number
PCT/KR2018/000656
Other languages
French (fr)
Korean (ko)
Inventor
백서영
고우석
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to PCT/KR2018/000656 priority Critical patent/WO2019139194A1/en
Publication of WO2019139194A1 publication Critical patent/WO2019139194A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a device for V2X communication and a geo-networking transmission method thereof, and more particularly, to a forwarding algorithm capable of reliably transmitting data outside a transmission range.
  • V2X Vehicle to Everything
  • V2X communication Various services can be provided through V2X communication.
  • a plurality of frequency bands have been used to provide various services.
  • reliable communication and delivery of safety service is very important because of the nature of vehicle communication.
  • a geo-networking transmission method using hopping can be used to transmit data outside the transmission range.
  • packet forwarding algorithms can be used for data hopping and destination delivery. Especially, in the V2X communication environment where the communication environment changes dynamically, the efficiency and reliability of the packet forwarding algorithm must be considered.
  • a geo-networking method for a V2X communication apparatus comprising: determining a forwarder from neighbor V2X communication devices included in location information; To a link layer address; Transmitting a geo-networking packet based on the link layer address; And retransmitting the geo-networking packet at specific time intervals until a maximum repetition time expires, wherein the location information includes information about at least one neighbor V2X communication device executing a geo-networking protocol, The forwarder is determined based on the distance between the neighboring V2X communication devices included in the localization information and the destination.
  • the conform packet may correspond to a sender conform packet in which the forwarder confirms receipt of the geo-networking packet, or the destination V2X communication device transmits the geo- It may correspond to a destination-conform packet that agrees to reach the destination region of the packet.
  • the sender confirm packet includes at least one of a received sequence number information and a conform status information
  • the received sequence number information includes sequence number information of the transmitted geo-networking packet
  • the conform status information may indicate whether the forwarder is capable of forwarding the geo-networking packet and an impossible state if forwarding is not possible.
  • the destination confirm packet includes at least one of sequence number information, received sequence number information, and redundancy number information
  • the received sequence number information has the same value as the sequence number information of the transmitted geo-networking packet
  • the duplicate number information may indicate the number of arrivals of the same packet.
  • the destination confirm packet further includes source position vector information and destination position vector information
  • the source position vector information includes information on a destination of the destination V2X communication apparatus
  • the destination position vector information may indicate a position vector of the source V2X communication apparatus that multi-hop transmits the geo-networking packet.
  • the sender confirm packet corresponds to a single hop packet
  • the destination confirm packet corresponds to a multi-hop packet
  • a V2X communication apparatus including: a memory for storing data; A communication unit for transmitting and receiving a radio signal including geo-networking packets; And a processor for controlling the memory and the communication unit, the processor determining a forwarder from the neighboring V2X communication devices included in the location information, setting the address of the determined forwarder as a link layer address , Transmitting a geo-networking packet based on the link-layer address, and retransmitting the geo-networking packet at specific time intervals until a maximum repetition time ends, the location information comprising at least one neighbor V2X And the forwarder is determined based on the distance between the neighboring V2X communication devices included in the localization information and the destination.
  • the present invention it is possible to prevent unnecessary repetitive transmission of the same packet by transmitting a CONFESS packet to the sender router that the packet has been received in the forwarding router.
  • the conform packet it is possible to reduce the repetitive transmission of unnecessary packets and improve the channel use efficiency.
  • packet reception at the final destination can be confirmed, and more reliable packet transmission with guaranteed QoS can be performed.
  • FIG. 1 shows a protocol structure of an ITS system according to an embodiment of the present invention.
  • FIG. 2 shows a packet structure of a network / transport layer according to an embodiment of the present invention.
  • 3 is a header structure of a geo-networking packet according to an embodiment of the present invention, and shows a structure of a basic header and a common header.
  • FIG. 4 illustrates a geographically-scoped unicast (GUC) type geo-networking method according to an embodiment of the present invention and a GUC packet header structure according to the method.
  • GUC geographically-scoped unicast
  • TSB topologically scoped broadcast
  • FIG. 6 illustrates a SHB (Single Hop Broadcast) type geo-networking method and an SHB packet header configuration according to another embodiment of the present invention.
  • SHB Single Hop Broadcast
  • FIG. 7 illustrates a Geographically-Scope Broadcast (GBC) / Geographic-Scoped Anycast (GAC) type geo-networking method and a BC / GAC packet header according to another embodiment of the present invention.
  • GBC Geographically-Scope Broadcast
  • GAC Geographic-Scoped Anycast
  • FIG. 8 illustrates a beacon type geo-networking according to another embodiment of the present invention, and a beacon packet header according to the present invention.
  • FIG. 9 shows a structure of an LS (Location Service) request packet header and an LS response packet header according to an embodiment of the present invention.
  • LS Location Service
  • FIG. 10 shows position vector information according to an embodiment of the present invention.
  • FIG. 11 shows a packet forwarding method of a greedy forwarding algorithm according to an embodiment of the present invention.
  • FIG. 12 illustrates a packet delivery method of a non-area contention-based algorithm according to an embodiment of the present invention.
  • FIG. 13 shows a packet delivery method of an area contention-based algorithm according to an embodiment of the present invention.
  • FIG. 14 shows service primitives, SDUs, and PDUs related to a geo-networking protocol according to an embodiment of the present invention.
  • FIG. 15 shows an example of use of a complaint, a request, and an indication through a service primitive according to an embodiment of the present invention.
  • 16 shows parameters of GN-DATA.request according to an embodiment of the present invention.
  • FIG. 17 shows a repetition interval and a maximum repetition time according to an embodiment of the present invention.
  • FIG. 19 shows a packet structure used in greedy forwarding according to an embodiment of the present invention.
  • Figure 21 illustrates conform packet reception and packet repeat transmission in accordance with an embodiment of the present invention.
  • FIG. 23 shows a conform packet reception and packet repetition transmission according to another embodiment of the present invention.
  • FIG. 24 shows a sender confirm packet according to an embodiment of the present invention.
  • 25 shows a geo-networking transmission method according to an embodiment of the present invention.
  • 26 shows a packet transmission method of the GUC according to the embodiment of the present invention.
  • FIG. 28 shows a Destination Confidence packet according to another embodiment of the present invention.
  • 29 shows a header type and a subheader type of a geo-networking packet according to an embodiment of the present invention.
  • FIG. 30 shows a configuration of a V2X communication apparatus according to an embodiment of the present invention.
  • FIG. 31 shows a flowchart of a geo-networking transmission method according to an embodiment of the present invention.
  • the present invention relates to a V2X communication device, wherein the V2X communication device is included in an Intelligent Transport System (ITS) system to perform all or some of the functions of the ITS system.
  • V2X communication devices can communicate with vehicles and vehicles, vehicles and infrastructure, vehicles and bicycles, and mobile devices.
  • the V2X communication device may be abbreviated as a V2X device.
  • the V2X device may correspond to an on-board unit (OBU) of a vehicle or may be included in an OBU.
  • the OBU may also be referred to as OBE (On Board Equipment).
  • the V2X communication device may correspond to an infrastructure's road side unit (RSU) or may be included in an RSU.
  • RSU may also be referred to as RSE (Road Side Equipment).
  • the V2X communication device may correspond to the ITS station (ITS-S) or may be included in the ITS station. Any OBU, RSU, mobile device, etc. performing V2X communication may be referred to as an ITS station or a V2X communication device. In geo-networking communications, a V2X communications device may be referred to as a router.
  • the V2X communication device can communicate based on various communication protocols.
  • the V2X communication device can implement IEEE 1609.1 ⁇ 4 Wireless In Vehicular Environments (WAVE) protocols.
  • WAVE Wireless In Vehicular Environments
  • the V2X communication device may be referred to as a WAVE device or a WAVE communication device.
  • the V2X communication device can transmit a Cooperative Awareness Message (CAM) or a Decentralized Environmental Notification Message (DENM).
  • CAM Cooperative Awareness Message
  • DENM Decentralized Environmental Notification Message
  • the CAM is distributed in the ITS network and provides information about at least one of the presence, location, communication state, or operating state of the ITS station.
  • DENM provides information about detected events.
  • the DENM may provide information about any driving situation or event detected by the ITS station.
  • DENM can provide information on situations such as emergency electronic brakes, vehicle accidents, vehicle problems, traffic conditions, and so on.
  • FIG. 1 shows a protocol structure of an ITS system according to an embodiment of the present invention.
  • the application layer can implement and support various use cases.
  • the application may provide road safety, Efficient Traffic Information, and other application information.
  • the facilities layer can support various applications defined at the application layer effectively.
  • the facility layer can perform application support, information support, and session / communication support.
  • the access layer can transmit the message / data received from the upper layer through the physical channel.
  • the access layer may include an ITS-G5 wireless communication technology based on IEEE 802.11 and / or 802.11p standards based communication technology, a physical transmission technology of the IEEE 802.11 and / or 802.11p standard, a satellite / And can perform / support data communication based on 2G / 3G / 4G (LTE) / 5G wireless cellular communication technology, broadband terrestrial digital broadcasting technology such as DVB-T / T2 / ATSC, GPS technology and IEEE 1609 WAVE technology.
  • LTE Long Term Evolution
  • 5G wireless cellular communication technology broadband terrestrial digital broadcasting technology
  • DVB-T / T2 / ATSC GPS technology
  • IEEE 1609 WAVE technology IEEE 1609 WAVE technology.
  • the network / transport layer can configure a network for vehicle communication between homogenous and heterogeneous networks by using various transport protocols and network protocols.
  • the transport layer is the link layer between the services provided by the upper layer (session layer, presentation layer, application layer) and lower layer (network layer, data link layer, physical layer).
  • the transport layer can manage the transmission data to arrive at the destination exactly.
  • the transport layer processes the data into packets of reasonable size for efficient data transmission, and at the receiving end, the transport layer can perform processing to recover the received packets back to the original file.
  • protocols such as Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Basic Transport Protocol (BTP) may be used as the transport protocol.
  • TCP Transmission Control Protocol
  • UDP User Datagram Protocol
  • BTP Basic Transport Protocol
  • the network layer manages the logical address and can determine the delivery path of the packet.
  • the network layer can receive the packet generated at the transport layer and add the logical address of the destination to the network layer header.
  • the packet path may be considered for unicast / broadcast between vehicles, between vehicle and fixed stations, and between fixed stations.
  • Geo-Networking, IPv6 support with mobility support, and IPv6 over geo-networking may be considered as networking protocols.
  • the ITS architecture may further include a management layer and a security layer.
  • FIG. 2 shows a packet structure of a network / transport layer according to an embodiment of the present invention.
  • the transport layer may generate BTP packets, and the network layer may encapsulate BTP packets to generate geo-networking packets.
  • Geo-networking packets can be encapsulated in LLC packets.
  • the data may comprise a message set, and the message set may be a basic safety message.
  • the BTP header is a protocol for transmitting messages such as CAM and DENM generated by the facility layer to the lower layer.
  • the BTP header consists of A type and B type.
  • the A-type BTP header may include a destination / destination port and a source port required for transmission / reception for interactive packet transmission.
  • the B type header may include destination and destination port information required for transmission for non-interactive packet transmission.
  • the fields / information included in the header are as follows.
  • the destination port identifies a facility entity corresponding to the destination of the data (BTP-PDU) contained in the BTP packet.
  • Source Port A field created in the case of the BTP-A type, indicating the port of the protocol entity of the facility layer at the source from which the packet is transmitted. This field may have a size of 16 bits.
  • Destination Port Info This field is created for the BTP-B type. It can provide additional information if the destination port is the best known port. This field may have a size of 16 bits.
  • a geonetworking packet includes a basic header and a common header according to a protocol of a network layer, and optionally includes an extension header according to a geo networking mode.
  • the geo-networking header is described below again.
  • An LLC header is added to the geo-networking packet to generate an LLC packet.
  • the LLC header provides a function to distinguish and transmit IP data from geo-networking data.
  • IP data and geo-networking data can be distinguished by SNAP's Ethertype.
  • Ether type when IP data is transmitted, the Ether type may be set to 0x86DD and included in the LLC header.
  • geo-networking data if geo-networking data is transmitted, the Ether type may be set to 0x86DC and included in the LLC header.
  • the receiver can identify the Ethertype field of the LLC packet header and forward and process the packet to the IP data path or the geo networking path according to the value.
  • 3 is a header structure of a geo-networking packet according to an embodiment of the present invention, and shows a structure of a basic header and a common header.
  • FIG. 3 (a) shows the basic header of the geo-networking packet header shown in Fig. 2, and Fig. 3 (b) shows the common header of the geo-networking packet header shown in Fig.
  • the basic header can be 32 bits (4 bytes).
  • the basic header may include at least one of a version field, an NH field (Next Header), a LT (LifeTime) field, and a Remaining Hop Limit (RHL) field. Fields included in the basic header are described below. The bit size constituting each field is only an embodiment and may be changed.
  • Version (4-bit) The version field indicates the version of the geo-networking protocol.
  • NH (4 bits): NH (Next Header) field indicates the type of the following header / field. If the field value is 1, a common header is followed. If the field value is 2, a secured packet can be followed.
  • the LT (LifeTime) field indicates the maximum lifetime of the packet.
  • RHL 8 bits: The Remaining Hop Limit (RHL) field indicates the residual hop limit.
  • the RHL field value can be reduced by one for each forwarding on the GeoAdhoc router. When the RHL field value reaches 0, the packet is no longer forwarded.
  • the common header can be 64 bits (8 bytes).
  • the common header includes a Next Header (NH) field, an HT (HeaderType) field, a HST (Header Sub-Type) field, a TC (Traffic Class) field, a Flags field, a PayloadLength Or the like.
  • NH Next Header
  • HST Header Sub-Type
  • TC Traffic Class
  • NH (4 bits): NH (Next Header) field indicates the type of the following header / field. If the field value is 0, it indicates an undefined "ANY" type, 1 indicates a BTP-A type packet, 2 indicates a BTP-B type packet, and 3 indicates an IP diagram of IPv6.
  • Geo-networking types include Beacon, GeoUnicast, GeoAnycast, GeoBroadcast, Topologically-Scoped Broadcast (TSB), and Location Service (LS).
  • the header subtype field indicates the header type as well as the detailed type. As an example, when the HT type is set to TSB, a single hop is indicated when the HST value is '0', and a multi-hop can be designated when the HST value is '1'.
  • the traffic class field may include Store-Carry-Forward (SCF), Channel Offload (Channel Offload), and TC ID.
  • SCF Store-Carry-Forward
  • Channel Offload Channel Offload
  • TC ID TC ID
  • the SCF field indicates whether to store the packet if there is no neighbor to which to transmit the packet.
  • the channel offload field indicates that a packet can be delivered to another channel in the case of a multi-channel operation.
  • the TC ID field is a value assigned at the time of packet forwarding in the facility layer and can be used to set the contention window value at the physical layer.
  • the flag field indicates whether the ITS device is mobile or stationary, and may be the last one bit as an example.
  • the payload length field indicates the length of data, in bytes, following the geo-networking header.
  • the PL field may indicate the length of the BTP header and the CAM.
  • MHL 8 bits
  • the Maximum Hop Limit (MHL) field can indicate the maximum number of hops.
  • the geo-networking header includes the above-described basic header, common header, and extended header.
  • the configuration of the extension header differs depending on the geo-networking type.
  • a header configuration according to each geo networking type will be described.
  • a V2X communication device that performs geo-networking may be referred to as a router or a geo ad-hoc router.
  • a V2X communication device that transmits geo-networking packets may be referred to as a source router or a sender.
  • a V2X communication device that receives and forwards a geo-networking packet from a source router to a sander can be referred to as a forwarding router or forwarder.
  • the V2X communication device, which is the final destination of the geo-networking packet, or the V2X communication device of the final destination area, may be referred to as a destination or destination router.
  • FIG. 4 illustrates a geographically-scoped unicast (GUC) type geo-networking method according to an embodiment of the present invention and a GUC packet header structure according to the method.
  • GUC geographically-scoped unicast
  • FIG. 4 (a) shows a GUC (Geographically-Scoped Unicast) type data transmission method
  • FIG. 4 (b) shows a GUC header structure.
  • GUC is a method of transferring data from a specific source router to a destination router.
  • the source router S can transmit data to the destination router N8 via the multi-hop in the GUC type.
  • the source router must have information about the destination router in its location table. If there is no information about the destination router, the source router can use the "LS request and LS reply" procedures to find the desired destination.
  • the GUC packet header includes a basic header, a common header, and an extension header.
  • the HT field of the common header indicates GUC
  • the extension header includes an SN field, an SO PV (Source Position Vector) field, and a DE PV (Destination Position Vector) field.
  • SO PV Source Position Vector
  • DE PV Destination Position Vector
  • SN Sequence Number: The sequence number field indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when transmitting packets from the source. In the receiving router, it is possible to determine whether or not to receive a packet by using a sequence number (or a sequence number and a TST value). SN is the value used for multi-hop transmission.
  • SO PV Indicates the position of the source and can be a long position vector format.
  • DE PV Indicates the location of the destination and can be a short position vector format.
  • TSB topologically scoped broadcast
  • TSB Topicologically Scoped Broadcast
  • Fig. 5 (b) shows a TSB header configuration
  • the TSB is a broadcast scheme that adjusts the distance that data is transmitted by the number of hops. Location-based information is not used. Since the number of hops only determines the delivery of data, the location address of the destination or the area information to which the data is delivered is not used. Data can be forwarded from the source router (s) to all routers in the n-hop.
  • the TSB packet header includes a basic header, a common header, and an extension header.
  • the HT field of the common header indicates the TSB
  • the extension header includes an SN field and an SO PV (Source Position Vector) field.
  • SO PV Source Position Vector
  • SN Sequence Number: The sequence number field indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when transmitting packets from the source. In the receiving router, it is possible to determine whether or not to receive a packet by using a sequence number (or a sequence number and a TST value). SN is the value used for multi-hop transmission.
  • SO PV Indicates the position of the source and can be a long position vector format.
  • the number of transmissions is limited by the number of hops, so the destination address may be omitted.
  • FIG. 6 illustrates a SHB (Single Hop Broadcast) type geo-networking method and an SHB packet header configuration according to another embodiment of the present invention.
  • SHB Single Hop Broadcast
  • FIG. 6A shows a data transmission method of SHB (Single Hop Broadcast) type
  • FIG. 5B shows a SHB header configuration
  • SHB packets are transmitted only to routers within the source router transmission range. Since data can be transmitted with the lowest latency, the SHB can be used for transmission of security messages such as CAM. Packets are transmitted only to the one-hop range routers N1, N2 and N3 of the source S as shown in FIG. 6 (a).
  • the SHB packet header includes a basic header, a common header, and an extension header.
  • the HT field of the common header points to the TSB, and the extension header contains an SO PV (Source Position Vector) field.
  • SO PV Source Position Vector
  • SO PV Indicates the position of the source and can be a long position vector format.
  • the destination address can be omitted because the number of times of transmission is limited by the number of hops. Since the multi-hop transmission is not performed, the SN field for redundancy check can also be omitted.
  • FIG. 7 illustrates a Geographically-Scope Broadcast (GBC) / Geographic-Scoped Anycast (GAC) type geo-networking method and a BC / GAC packet header according to another embodiment of the present invention.
  • GBC Geographically-Scope Broadcast
  • GAC Geographic-Scoped Anycast
  • FIG. 7A shows a GBC (Geographically-Scope Broadcast) / GAC (Geographically-Scoped Anycast) type data transmission method
  • FIG. 4B shows a GBC / GAC header configuration.
  • GeoBroadcast / GBC is a transmission method that broadcasts packets to all routers in a certain area.
  • GeoAnycast / GAC transmits packets to only one router that receives the first packet in a specific area. Transmission method.
  • the packet In the GBC, when the data transferred from the source router is delivered to a specific destination area, the packet is broadcast in a predetermined area.
  • the packet In the GAC, when a packet is delivered to one router in a specific destination area, the packet is no longer transmitted.
  • the GBC / GAC header includes a basic header, a common header, and an extension header.
  • the HT field of the common header indicates the GBC or the GAC
  • the extension header includes an SN field, an SO PV (Source Position Vector) field, and destination area information.
  • the destination area information includes a GeoAreaPosLatitude field, a GeoAreaPosLongitude field and a distance field (Distance a, b) and an angle field for indicating a range of the area.
  • SN Sequence Number: The sequence number field indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when transmitting packets from the source. In the receiving router, it is possible to determine whether or not to receive a packet by using a sequence number (or a sequence number and a TST value). SN is the value used for multi-hop transmission.
  • SO PV Indicates the position of the source and can be a long position vector format.
  • DE PV Indicates the location of the destination and can be a short position vector format.
  • FIG. 8 illustrates a beacon type geo-networking according to another embodiment of the present invention, and a beacon packet header according to the present invention.
  • the beacon packet header includes a basic header, a common header, and an extension header, and the extension header may include SO PV information.
  • the beacon packet may be configured similar to the SHB packet header described above. The difference is that the SHB packet is used to carry data such as a CAM after which a message can be appended, and a beacon is used for the header itself without data being appended.
  • CAM using SHB or beacon can be transmitted periodically. By transmitting and receiving the CAM or the beacon, the router obtains the location information of neighboring routers, and can perform routing using this location information. As an example, if the CAM is transmitted, the beacon may not be transmitted.
  • FIG. 9 shows a structure of an LS (Location Service) request packet header and an LS response packet header according to an embodiment of the present invention.
  • LS Location Service
  • Fig. 9 (a) shows the LS request packet header
  • Fig. 9 (b) shows the LS response packet header.
  • the source router can request geo-networking address information (GN_ADDR) for the destination in the vicinity.
  • This address information request can be performed by transmitting an LS request packet (LS request) to the LS request packet.
  • LS request LS request packet
  • the router can transmit LS response information (LS_reply).
  • the router at the destination can transmit the LS response information to the LS request information.
  • the LS response information includes position vector information of GN_ADDR.
  • the source router may update the location table via the LS response information.
  • the source router can perform the GUC transmission by using the received geo-networking address information in response.
  • the configuration of the LS request packet header is similar to the GUC header.
  • a geo networking address request field (RequestGN_ADDR) is included in place of the destination address field of the GUC header.
  • the LS response packet header configuration is the same as the GUC packet header.
  • the SO PV field includes the position vector information of the router
  • the DE PV field includes the position vector information of the router that transmitted the request.
  • FIG. 10 shows position vector information according to an embodiment of the present invention.
  • the geo-networking packet header includes a position vector (PV) field associated with a location.
  • the types of position vectors include long PV and short PV. 10 (a) shows long position vector information, and FIG. 10 (b) shows short position vector information.
  • the long position vector information includes the following subfields.
  • the geo-networking address field can consist of a total of 64 bits.
  • a geo ad-hoc router with geo-networking transport has a unique geo-networking address value.
  • the geo-networking address field may include the following sub-fields.
  • M Field to distinguish between geo networking address and manually set value. As an example, if the value is '1', it may be a manually set value.
  • the ITS-S type field indicates the type of ITS station.
  • the ITS-S type can be used for pedestrians, bicycle cyclists, mopeds, motorcycles, passenger cars, buses, light trucks, heavy trucks, trailers, special vehicles, , Trams, RSUs.
  • MAC address As the V2X device identification information, the MAC address can be used.
  • TST TimeSTamp: The Type Stamp field indicates the time at which the ITS station obtained the latitude / longitude value on the geo ad-hoc router. As a millisecond unit, a Universal Time Coordinated (UTC) value may be used.
  • UTC Universal Time Coordinated
  • LAT Long
  • Long Long
  • Long Long
  • the latitude and longitude fields indicate latitude and longitude values of the geo ad-hoc routers.
  • PAI Part Accuracy Indicator
  • H Indicates the direction of the geo ad hoc router.
  • the short position vector information includes a GN_ADDR field, a TST field, a LAT field, and a Long field. The description of each field is as described above for the long position vector.
  • Various packet forwarding methods can be used for geo-networking transport. For example, a greedy forwarding algorithm, a contention-based forwarding algorithm, a non-area contention-based forwarding algorithm, an area contention-based forwarding algorithm, an area advanced forwarding Algorithm or the like may be used.
  • the forwarding algorithm is used to effectively transfer and distribute the data to the desired area.
  • the source router determines the forwarding router, and in the case of the contention-based forwarding algorithm, the receiving router determines whether to forward the packet using the contention.
  • a V2X device / router that processes geo-networking algorithms may be referred to as an ego router.
  • each V2X device performs the function of a router and can use an ad hoc method to determine the routing of the packet.
  • Each V2X device transmits location information, speed information, and heading direction information of the vehicle around, and using this information, each V2X device can determine the routing of the packet.
  • the information received periodically is stored in the LocT (Location Table) of the network & transport layer, and the stored information can be timed out after a certain period of time.
  • LocT may be stored in a LocTE (Location Table Entry).
  • each ad hoc router must have information about the other ad hoc routers.
  • Information about the neighboring routers may be received via SHB or beacon packets.
  • Routers can update LocT when new information is received.
  • the transmission period of the SHB or the beacon packet may be changed according to the channel state.
  • the location / location table may also be referred to as LocT.
  • Information about the neighboring routers is stored in the LocT, and the stored information may include at least one of the following information.
  • the information stored in the LocT may be deleted from the list when the lifetime set in the soft-state state has expired.
  • GN_ADDR Geo-network address of ITS station
  • Type of ITS-S Indicates the type of ITS station, for example, vehicle or RSU.
  • Position vector PV The position vector information includes geographical position information, velocity information, heading information, time stamp information indicating the position information measurement time, position accuracy indicator (PAI) information indicating the accuracy of the position providing information Or the like.
  • PAI position accuracy indicator
  • LS_PENDING flag A flag indicating when a location service request is in progress because the current LocT does not have an address for the destination
  • FLAG IS_NEIGHBOUR A flag indicating whether there is a geo ad-hoc router capable of communicating within communication range
  • DPL Duplicate Packet List for source GN_ADDR
  • Type Stamp The time stamp of the last packet indicating the end of duplication
  • PDR Packet Data Rate
  • FIG. 11 shows a packet forwarding method of a greedy forwarding algorithm according to an embodiment of the present invention.
  • the greedy forwarding algorithm determines which of the neighbor routers the sander will know about to forward the packet to.
  • the LocT (Locator Table) of the sander can be updated to the latest value through a periodically distributed SHB or beacon packet.
  • the sander selects the router closest to the destination from the LocT, which allows the packet to be delivered to the destination with the least number of hops.
  • routers 1 to 5 exist in the communication range of the source router.
  • the source router transmits the packet by setting the MAC address of the router 2 closest to the destination to the link layer destination address.
  • the Greedy Forwarding Algorithm does not use buffering, and can forward a packet to its destination as fast as it can without breaking the connection between routers. However, if the connection between the routers is lost, that is, if the router to which the next hop is to be transmitted deviates from the transmission range or disappears, the reliability of the packet can not be transmitted.
  • the contention-based forwarding algorithm determines, by contention, whether the receiver will forward the packet, unlike the greedy forwarding algorithm described above. Any receiver that receives a packet broadcast by the sander can be a potential forwarder. The receiver sets its own timer according to the distance, and the receiver whose timer has expired first forwards the packet. If the receiver does not receive a packet from other receivers until the timer expires, the receiver forwards the packet when the timer expires. If a packet is received before the timer expires, the receiver will turn its timer off and will not forward the packet.
  • Contention-based forwarding algorithms do not need to know the location of neighboring routers, unlike the greedy forwarding algorithm.
  • the packet forwarding can be performed even if the SHB packet or the beacon packet is not periodically transmitted, i.e., the location table is not present. Since there are a plurality of candidate forwarders, the reliability may be high and the probability of delivering packets to the destination may be high. However, buffering time is required for packet delivery and latency may increase. In addition, additional buffer usage is required.
  • FIG. 12 illustrates a packet delivery method of a non-area contention-based algorithm according to an embodiment of the present invention.
  • Non-area contention-based algorithms are used to deliver packets in the destination direction.
  • the source router S may broadcast packets for packet transmission. Routers (1 to 5) within the communication range of the source router receive the packet. Of routers, only the router closest to the destination can be a forwarding candidate. In Fig. 12, the routers 1-3 can be forwarder candidates.
  • Forwarder candidates can store the received packet in a Contention-based Forwarding (CBF) packet buffer and set a timer.
  • the timer can be set to a smaller value as the distance from the source increases.
  • the timer of the router 1 can be set to 25 ms, the timer of the router 2 to 10 ms, and the timer of the router 3 to 20 ms, respectively.
  • the router broadcasts the buffered packet.
  • Router 2 whose timer expires first, broadcasts the packet.
  • Router 1 and Router 3 which have received the packet broadcasted by Router 2, stop their timer and delete the packet stored in the buffer. However, if Router 2 disappears or if Router 1 and Router 3 do not exist within the communication range of Router 2, the timers of Router 1 and Router 3 are still valid, and thus the router that broadcasts the packet first becomes a timer of 0.
  • FIG. 13 shows a packet delivery method of an area contention-based algorithm according to an embodiment of the present invention.
  • the area contention-based forwarding algorithm aims at efficiently spreading data in a certain area. Therefore, there is no fixed destination and the timer setting can be determined only considering the distance from the source.
  • the area contention based algorithm is performed when the router belongs to a specific area, and it is aimed at rapidly distributing / transmitting information within the area.
  • a packet broadcasted by the source router S is transmitted to the routers 1 to 6.
  • Router 2 which is farthest from the source router, broadcasts the packet first, and Router 1 and Router 3, which receive it, stop the timer and do not forward the same packet.
  • Routers 4 and 6 do not receive packets forwarded by router 2. Therefore, routers 4 to 6 operate their respective timers and broadcast received packets when the timer expires.
  • the router 5 forwards the packet, the router 4 that has received the packet ends its timer and removes the packet being prepared for transmission from the buffer.
  • the source router can quickly forward and share packets in a certain area in all directions.
  • an area advanced forwarding algorithm may be used.
  • the area advanced forwarding algorithm is an algorithm that operates by combining the above-described greedy forwarding algorithm and contention-based forwarding algorithm.
  • Area advanced forwarding algorithms such as contention-based forwarding algorithms, use packet-forwarding algorithms to route packets in certain directions to minimize delays, while contention-based forwarding methods are used to increase delivery efficiency .
  • a forwarding algorithm that delivers packets to a specific destination area is called a non-area algorithm.
  • Non-region algorithms include greedy forwarding algorithms and non-area contention-based forwarding algorithms.
  • An algorithm for distributing data around a specific area is called an area-forwarding algorithm.
  • the area-forwarding algorithm includes a simple geo-broadcast forwarding algorithm, an area contention-based forwarding algorithm, and an area advanced forwarding algorithm.
  • SS Service Set
  • STAs stations
  • AP access point
  • ESS Extended Service Set
  • a STA in an IBSS acting as a controller or an access point (AP) in the BSS periodically broadcasts a beacon containing a service set ID (SSID) and other information.
  • SSID service set ID
  • Another STA in the Service Set (SS) receives the beacon and synchronizes time and frequency based on the beacon.
  • STAs can communicate with each other only if they are members of the same SS, and these same SS architectures can be used for WAVE applications.
  • shaping the SS requires multiple steps, including time and frequency synchronization, authentication and association, which results in an unacceptable time delay in some safety applications such as vehicles.
  • OCB Outside the Context of a BSS
  • the OCB mode is applied to two or more devices within a service area of a single wireless link, and an STA in OCB mode can configure and transmit any SD and data and control frames at any time the member knows. While there is an advantage of low latency, OCB mode does not receive authentication, connection or data confidentiality services at the MAC layer, and equivalent services in WAVE have been partially moved to higher layers defined in IEEE 1609.2.
  • 802.11p OCB mode guarantees low latency but does not support interoperability. There is no way in the MAC layer to ensure that intercommunication has been successfully performed.
  • FIG. 14 shows service primitives, SDUs, and PDUs related to a geo-networking protocol according to an embodiment of the present invention.
  • the Service Access Points (SAP) connected to the networking / transport layer are shown in FIG.
  • Each SAP sends and receives service primitives of request / request and confirm / confirm.
  • the service primitive GN_DATA.request is used via GN-SAP.
  • the network layer receiving the GN-DATA.request generates a geo-networking packet according to this information and delivers it to the LLC layer through IN-SAP. It informs the upper layer through the CONFIRM primitive whether the requested packet can be sent or not. If a packet is received, GN-DATA.indication can be delivered to the upper layer.
  • FIG. 15 shows an example of use of a complaint, a request, and an indication through a service primitive according to an embodiment of the present invention.
  • the ge-networking layer receiving the GN-DATA request transmits geo-networking packets to the LLC layer through IN-SAP. Whether or not the request packet can be sent is notified to the upper layer through the CONFIRM primitive. When a packet is received, GN-DATA.indication is delivered to the upper layer.
  • 16 shows parameters of GN-DATA.request according to an embodiment of the present invention.
  • whether to transmit the same packet several times can be determined by a repetition interval and an maximum repetition time.
  • FIG. 17 shows a repetition interval and a maximum repetition time according to an embodiment of the present invention.
  • the upper layer of the geo-networking protocol determines and delivers two parameter-repetition interval and maximum repetition time for packet delivery.
  • the repetition interval represents the time interval (ms) in which the same geo-networking packet is repeatedly transmitted for the maximum repetition time. This value is an optional value, and if not used, the packet transmission is not repeated.
  • the maximum repetition time indicates the period (ms) in which the packet is repeated when the repetition interval is set. If the repeat interval is not used, the value of the maximum repeat time is also omitted.
  • the maximum repetition time parameter performs a function to receive data to disseminate when a new router enters the transmission area. Also, the maximum repetition time parameter may be set in preparation for path loss in data forwarding.
  • the geo-networking layer Upon receipt of these parameter values and messages from the facility layer, the geo-networking layer generates geo-networking packets by repeating the received data for each repetition interval for a maximum repetition time.
  • the geo-networking header includes a sequence number field.
  • a geo ad hoc router can receive multiple copies of the same packet in the course of a plurality of hops. This can be referred to as packet duplication. Packet duplication can occur when packets are forwarded from multiple routers, when a routing loop occurs, or when a router malfunctions. When a duplicate packet is received, a sequence number is used to eliminate it.
  • the sequence number is used only for a multi-hop packet (GUC, TSB, GBC, GAC, LS Request, LR Reply) and may not be included in a single-hop packet (beacon, SHB).
  • the value of the sequence number is incremented by 1 each time a multi-hop message is generated on the source router. As an example, 2 ⁇ 16-1 sequence numbers may be generated. Different sequence numbers are applied to the packets repeatedly generated even when packets having the same content are generated on the basis of the repeat interval for the maximum repeat time described above.
  • the router receiving the packet including the sequence number information may perform packet duplication detection.
  • the router generates a sequence number list received by the address of the source router, and can check duplication through this list. For example, the router can compare the source address of the received packet with the DPL (Duplication Packet List) of the location table to determine duplication.
  • DPL Duplication Packet List
  • the greedy forwarding algorithm determines which of the known neighboring routers will forward the packet.
  • the location table in the sender is updated to the latest value via a periodically transmitted SHB or beacon packet.
  • the router closest to the destination is selected as the forwarder, so that packets can be delivered to the destination with the least number of hops.
  • packets can be forwarded quickly to the destination unless the connection between the forwarding routers is broken.
  • the packet may not be delivered. For example, if the router that will deliver the next hop is out of range or disappears, there is no way to forward the packet, which reduces reliability.
  • the sender router can respond to a path loss in which the forwarding router temporarily disappears by repeatedly transmitting the same packet.
  • the present invention proposes a method for informing a forwarder / forwarder router that a packet has been received that a packet has been received to a sender router. In addition, the present invention proposes a method of notifying that a destination router has received a packet to an original packet generation router.
  • the sander can receive and confirm the packet transmitted by the forwarder in order to check whether the forwarder has transmitted the packet transmitted by the forwarder.
  • the sander can confirm that the forwarder has received and transmitted the packet.
  • the router marks the destination address in the last MAC address and transmits the packet. And the router can not receive and decode the packet unless the destination address is its own address. Accordingly, the present invention proposes a method of efficiently using a channel by increasing reliability and reducing the number of packet repetition transmissions in a packet forwarding method using a greedy forwarding algorithm.
  • the present invention proposes a case in which a conform packet is transmitted to a sender in a multi-hop transmission and a case where a complete packet is transmitted in a destination.
  • FIG. 18 shows an embodiment in which a geo-networking transmission is performed to notify a nearby vehicle of an accident or a road hazard when a vehicle traveling on a road is operated.
  • the source router need not know whether or not the message reaches the destination.
  • the source router can repeat the message multiple times, taking into account the path loss regardless of whether the forwarding message arrives at the destination well.
  • the responsibility for transmitting the packet is transferred to each router corresponding to the forwarder together with the packet transmission. Therefore, the mode that informs the previous forwarder or the source router that the packet has been received is defined as the confirm_sender mode.
  • the forwarder or source that transmitted the received packet corresponds to the transmitting router / sender router in the case of the receiving router.
  • FIG. 19 shows a packet structure used in greedy forwarding according to an embodiment of the present invention.
  • the access layer includes a DSAP field and an SSAP field
  • the payload contains a geo-networking packet.
  • the geo-networking packet includes a base header, a common header, and an extended header. The description of each header is as described above.
  • the transmission router can transmit multi-hop packet GUC, GBC, GAC, LS request, LS response.
  • a router selects a router closest to a destination in a location table including information on the locations, speeds, directions, and the like of neighboring routers, and transmits the MAC address of the router to an access layer packet To the destination address of the MAC header of the MAC header.
  • the router generates a packet (S20010).
  • the generated packet may be received at the upper layer and generated, or may be the packet forwarded from another router.
  • the router can determine whether to forward the packet (S20020). When a packet is forwarded to the geo-networking layer, the type of forwarding of the packet can be determined in the upper layer. If the packet is a forwarded packet from another router, the packet forwarding method / method can be determined by the packet transmission type included in the header of the packet. The router can decide to forward the packet if the transport packet type corresponds to one of GUC, GBC, GAC, LS request, or LS response requiring multi-hop transmission.
  • the router may broadcast the packet in a single hop or discard the packet (S20030).
  • the router examines the packet type described above, and in the case of an SHB packet, the packet can be single-hop broadcasted. Also, the router can check the duplication of the packet and discard the packet if the packet is a duplicate packet.
  • the router can transmit the packet (S20040). Routers can send packets using a greedy forwarding algorithm.
  • the transmission method according to the greedy forwarding algorithm is as described in FIG. In other words, the router retrieves the forwarder from the location table and transmits the packet according to the greedy forwarding to the retrieved forwarder.
  • the router determines the router closest to the destination in the location table as a forwarder, and transmits the packet by setting the MAC address of the router to the destination address of the packet.
  • the router operates according to receipt of the conform packet (S20050).
  • the router sets the wait time (T_wait) and waits for the receipt of the acknowledgment packet during the waiting time.
  • T_wait wait time
  • the router does not repeatedly transmit the packet.
  • the router confirms the maximum number of iterations N (S20070). If the number of packet transmissions does not exceed the maximum number of iterations (N), the router retransmits the packet. If the packet transmission count exceeds the maximum number of repetitions (N), the router discards the packet (S20080).
  • the maximum number of repetitions of a packet can be set differently depending on the channel condition or the lifetime of the packet.
  • Figure 21 illustrates conform packet reception and packet repeat transmission in accordance with an embodiment of the present invention.
  • Fig. 21 (a) shows packet repetition transmission of the router described in Fig.
  • Fig. 21 (a) the router retransmits the same packet for each repetition interval for the maximum repetition time. In the embodiment of Fig. 21 (a), the router transmits the same packet seven times.
  • Fig. 21 (b) shows a packet repetitive transmission of a router when a conform packet is used.
  • the router waits for a conform packet for a waiting time (T_wait) after packet transmission.
  • T_wait waiting time
  • the router receives a conform packet before the first waiting time, it does not retransmit the same packet any more.
  • FIG. 21 (b-2) if the CONFESS packet is not received during the first waiting time, the router transmits the same packet and again waits for the reception of the CONFESS packet during the second waiting time. If a CONFIRM packet is received before the second waiting time has elapsed, the router stops transmitting the packet repeatedly.
  • the maximum number of repetitions may be set to 3 or less.
  • the size of the conform packet can be smaller than the transmission packet, the efficiency can still be increased in terms of channel usage.
  • the upper layers of the geo-networking layer can provide information on the repetition transmission and the maximum repetition time.
  • the router may try to repeat transmission until it receives a confirm packet within the maximum repetition time.
  • the maximum number of iterations can be determined how many times the packet is repeatedly transmitted over the maximum iterative time.
  • the maximum number of iterations can be determined according to the following equation (1) based on the CBR (Channel Busy Ratio) value.
  • the V2X device communicates in an ad hoc network based on 802.11.
  • DCC Decentralized Congestion Control
  • CBR Channel Busy Ratio
  • the present invention may refer to ETSI TS 102 636-4-2 v.1.1.1 for CBR information.
  • the CBR information may include local CBR information measured and obtained by itself and remote CBR information obtained from the neighboring vehicle.
  • CBR Channel Busy Ratio
  • Local CBR Local Channel Busy Ratio
  • the router may not perform iterative transmission or it may repeat transmission / forwarding only once. If CBR is less than CBR_max, iterative transmission may be performed by a certain integer value in inverse proportion to CBR.
  • the N value can be obtained by using the CBR which is twice higher than the current CBR.
  • the waiting time T_wait can be obtained by dividing the predetermined maximum repetition time by the N value.
  • the waiting time T_wait may be determined by influencing the CBR, and may be set to a larger value as the channel is busy and a smaller value as the channel is less busy. As shown in Equation (1),? May be set according to the channel status or the system setting to determine the maximum number of transmissions.
  • FIG. 22 is a modified example of the packet retransmission determination portion in the embodiment of Fig. 20, and the same description of the same step / operation as that of Fig. 20 is omitted.
  • the steps S20010 to S20040 of FIG. 20 are applied equally to the steps S22010 to S22040.
  • the router waits for a waiting time after the packet transmission, and retransmits the packet if the conform packet is not received.
  • the router repeatedly transmits a packet according to the repetition interval, but stops repeating when a conform packet is received.
  • the router transmits the packet based on the set repetition interval.
  • the router's geo-networking layer can receive them from the upper layer by receiving the repetition interval and the maximum repetition time. As described in the embodiment of FIG. 17, the router performs the greedy forwarding transmission for each repetition interval for the maximum repetition time.
  • the router terminates the repeated transmission of the packet. If no confirm packet is received (S22060), the router confirms whether it is within the maximum repeat time (S22070). If no acknowledgment packet is received and the maximum iteration time has not elapsed, the router retransmits the packet. If the maximum repeat time has elapsed with no acknowledgment packet being received, the router discards the packet (S22080). The router discards the packet (S22080), and starts transmission of another packet.
  • FIG. 23 shows a conform packet reception and packet repetition transmission according to another embodiment of the present invention.
  • the router repeatedly transmits the same packet at each repetition interval within the maximum repetition time. However, when the router receives the CONFIRM packet from the forwarder, the same packet repetition transmission after the reception time is ended.
  • the SN (Sequence Number) of the repeatedly transmitted packets can be set to the same value.
  • the sequence numbers of repeatedly transmitted packets may not be the same. It is not guaranteed that the packets are transmitted in the order of the sequence numbers in the vehicle ad hoc network.
  • the sequence number used in geo-ad hoc network is used to identify a packet in the network layer rather than to indicate the order of the packet. That is, a sequence number is used for the purpose of removing a redundancy packet that may occur in an ad hoc network operation or a same packet due to a broadcast storm / loop. Therefore, although the sequence numbers of the duplicated packets may be different, in the embodiment of the present invention in which duplicate transmissions are performed using the conform packet, the duplicate transmission packets have the same sequence number.
  • the number of iterations can be reset in the forwarder.
  • the sander router that received the CONFIRM packet from the forwarder during multi-hop is no longer required to retransmit the same packet.
  • the need for retransmissions is transferred to the forwarder that received the packet.
  • the overall transmission process is multi-hop, but the transmission of each router corresponds to single-hop. Therefore, repeated packets do not need to have different SNs in terms of sending a consult message.
  • the number of iterations can be set differently by the forwarder depending on the channel conditions.
  • FIG. 24 shows a sender confirm packet according to an embodiment of the present invention.
  • FIG. 24 is a CONFIRM packet transmitted by the forwarding router to the sender router, and may be referred to as a CONFIRM_SENDER packet or a sender / sender conform packet.
  • 24 is encapsulated at the MAC layer, and the destination address of the MAC packet header is set to the MAC address of the sender router determined in the greedy forwarding algorithm.
  • the basic configuration of the packet is similar to the geo-networking packet described above, and the same configuration will not be described again.
  • Sender Confirmation Packets are sent in a single hop.
  • the "CONFIRM" type is added to the HT (Header Type) field of the common header.
  • the Received SN (Receive SN) field indicates the sequence number of the packet received from the sender router.
  • the forwarding router copies the sequence number (SN) of the received message to the received SN field to indicate which of the received messages it is conforming to.
  • the CONFIRM_STATUS field indicates whether the packet can be forwarded.
  • the CONFORMATION status field can indicate why forwarding is possible or impossible if forwarding is not possible.
  • Reasons for the inability to forward can be indicated by code for reasons such as i) no traffic around, ii) impossible due to an internal state such as a full buffer, and iii) unable to forward in CBR saturation.
  • the forwarder can forward the message to the sender, then forward the message to the sender that forwarding is possible.
  • the forwarder can forward packets to the forwarder closest to the destination in greedy forwarding.
  • the sander may not receive the sender confirm packet, or the sender confirm packet may be received but the forwarding is not possible. In this case, under the condition that retransmission is possible, the sender tries forwarding again.
  • the sender can send a packet to a forwarder other than the forwarder to increase the transmission probability. For example, the sender may select a router that is less than the destination of the router as the forwarder and send the packet to the router. The sender can select another forwarder based on the reason of the agreed status field.
  • 25 shows a geo-networking transmission method according to an embodiment of the present invention.
  • Fig. 25 shows a case where the source router desires to know whether or not a destination of a transmission message has arrived. This relates to Quality of Service (QoS) of transmission data, and the embodiment of FIG. 13 shows an example of GUC transmission. That is, when the source router confirms that the packet arrives at the destination, the source router can terminate the repeated transmission of the same packet.
  • QoS Quality of Service
  • the router of the final destination area transmits the confirm packet / message to the source router in multi-hop.
  • This CONFIRM packet can be referred to as a CONFIRM_DESTINATION packet.
  • 26 shows a packet transmission method of the GUC according to the embodiment of the present invention.
  • the router generates a packet (S26010).
  • the generated packet may be received at the upper layer and generated, or may be the packet forwarded from another router.
  • the router can determine whether to forward the packet (S26020). When a packet is forwarded to the geo-networking layer, the type of forwarding of the packet can be determined in the upper layer. If the packet is a forwarded packet from another router, the packet forwarding method / method can be determined by the packet transmission type included in the header of the packet. The router may decide to forward the packet if the transport packet type corresponds to GUC.
  • GBC For GBC, GAC, there is no specific destination address.
  • LS request / LS response there is also no specific destination address. If the LS request requires a specific geo address, any router knowing the location information for the requested address can inform the source router of the location information.
  • the TSB scheme may be used for the LS request, and the GUC may be used for the LS response.
  • the above-described sender confirm packet may be more suitable for use than the destination confirm packet.
  • the embodiment of the destination conform packet can be used when the transmission packet type is GUC.
  • the packet may be broadcasted in a single hop or discarded (S26030).
  • the router examines the packet type described above, and in the case of an SHB packet, the packet can be single-hop broadcasted. Also, the router can check the duplication of the packet and discard the packet if the packet is a duplicate packet.
  • the router can transmit the packet (S26040). Routers can send packets using a greedy forwarding algorithm.
  • the transmission method according to the greedy forwarding algorithm is as described in FIG. In other words, the router retrieves the forwarder from the location table and transmits the packet according to the greedy forwarding to the retrieved forwarder.
  • the router determines the router closest to the destination in the location table as a forwarder, and transmits the packet by setting the MAC address of the router to the destination address of the packet.
  • the router operates according to receipt of the conform packet (S26050).
  • the router sets the wait time (T_wait) and waits for the receipt of the acknowledgment packet during the waiting time.
  • T_wait wait time
  • the router does not repeatedly transmit the packet.
  • the router confirms the maximum number N of repetitions (S26070). If the number of packet transmissions does not exceed the maximum number of iterations (N), the router retransmits the packet. If the number of packet transmissions exceeds the maximum number of repetitions (N), the router discards the packet (S26080).
  • the maximum number of repetitions of a packet can be set differently depending on the channel condition or the lifetime of the packet.
  • the waiting time may be a value larger than the waiting time of the embodiment of FIG. This is because a longer time may be required to receive the conform packet from the destination to the multi-hop after the packet transmission.
  • the router can variably determine the length of the waiting time by predicting the number of hops.
  • the number of repetitive transmissions can be determined within a range that does not exceed the maximum repetition time determined at the upper layer of the source router.
  • the number of repetitive transmissions may be determined according to the state of the channel regardless of the maximum number of repetitions.
  • FIG. 27 shows an embodiment in which the packet retransmission determination part is modified in the embodiment of FIG. 26, and description of the same steps / operations as those of FIG. 27 is omitted.
  • the description of steps S26010 to S26040 of FIG. 26 applies equally to the steps S27010 to S27040.
  • the router waits for a waiting time after the packet transmission, and retransmits the packet if the conform packet is not received.
  • the router repeatedly transmits a packet according to the repetition interval, but stops repeating when a conform packet is received.
  • the router transmits the packet based on the set repetition interval.
  • the router's geo-networking layer can receive them from the upper layer by receiving the repetition interval and the maximum repetition time. As described in the embodiment of FIG. 17, the router performs greedy forwarding for each repetition interval for a maximum repetition time.
  • the router ends the repeated transmission of the packet. If the CONFIRM packet is not received (S27060), the router confirms whether it is within the maximum repetition time (S27070). If no acknowledgment packet is received and the maximum iteration time has not elapsed, the router retransmits the packet. If the maximum repetition time has elapsed with no acknowledgment packet being received, the router discards the packet (S27080). The router discards the packet (S27080), and starts transmission of another packet.
  • FIG. 28 shows a Destination Confidence packet according to another embodiment of the present invention.
  • Fig. 28 is a CONFIRM packet transmitted by a destination router to a sander router, and may be referred to as a CONFIRM_DESTINATION packet or a destination-conform packet.
  • 28 is encapsulated at the MAC layer, and the destination address of the MAC packet header can be set to the MAC address of the source router.
  • the basic configuration of the packet is similar to the geo-networking packet described above, and the same configuration will not be described again.
  • the Sender Confidence packet can be sent in either single-hop or multi-hop. A description of the fields included in the packet is as follows.
  • the sequence number field / information indicates the sequence number (SN).
  • the destination router can forward the conform packet to the source router in multi-hop mode. Sequence number information can be used to detect the redundancy of the destination conform packet.
  • Received SN (Receiveed SN) field: The received SN field indicates the sequence number of the packet received from the source router. With this value, the source router can confirm that the transmitted packet arrives at the destination, and can determine that there is no need for redundant transmission for the packet.
  • the RN field indicates how many times the same packet transmitted from the same source router arrived at the destination.
  • the RN field may also be referred to as duplication frequency information.
  • the value of the RN field may be a value for the currently negotiated packet or a value for the previously received packet. This field can be used to determine how many retransmissions the source router will attempt to send the packet to its destination. Considering efficient use of channels, it may be desirable to set the number of duplicates to one.
  • the source router that has received the RN information can determine whether it is repeating the packet an appropriate number of times. For example, if a plurality of conform packets include a high value RN field, the source router may reduce the number of redundant transmissions.
  • the SO PV field indicates the position vector of the destination router transmitting the destination conform packet.
  • the DE PV field indicates the source router's position vector.
  • the SO PV field may be referred to as source position vector information, and the DE PV field may be referred to as destination position vector information, respectively.
  • the geo-networking layer can additionally receive the maximum repetition time information when receiving the GN-DATA.request from the upper layer.
  • 29 shows a header type and a subheader type of a geo-networking packet according to an embodiment of the present invention.
  • a header type and a subheader type may be added to the HT field and the HST field of the common header shown in FIG. 3, as shown in FIG.
  • header type is geo unicast, Normal, CONFIRM_SENDER, and CONFIRM_DESTINATION can be added as the header subtype.
  • the normal type indicates the case of using the repetition interval and the maximum repetition time without using the conform packet in the case of repetitive transmission.
  • the header type is geo unicast and the subheader type is sender conform (that is, in the case of GEOUNICAST_CONFIRM_SENDER)
  • the forwarder is requested to receive the sender conform packet.
  • the forwarder that receives the packet including this header transmits the sender confirm packet to the sander that transmitted this packet.
  • the sender router which received the sender confirm packet confirms that the packet has been delivered to the forwarder, so it stops the repeat transmission.
  • the destination router is requested to receive the destination conform packet.
  • the router at the final destination receiving the packet containing this header transmits the destination conform packet to the source router that transmitted this packet.
  • the source router which receives the destination confirm packet confirms that the packet has been delivered to the destination, so it stops the repeated transmission. End-to-end packet transmission can be confirmed. Therefore, when requesting a destination conform packet, more reliable packet transmission / reception can be assured compared to a sender conform packet.
  • header subtype requesting a sender conform packet may be added. That is, header subtypes of sender conform can be added.
  • the forwarder router that receives it sends a sander confirm packet to the sender router that sent the packet.
  • CONFIRM_SENDER and a CONFIRM_DESTINATION header subtype can be added.
  • FIG. 30 shows a configuration of a V2X communication apparatus according to an embodiment of the present invention.
  • the V2X communication device 30000 may include a communication unit 30010, a processor 30020, and a memory 30030.
  • the communication unit 30010 can be connected to the processor 30020 to transmit / receive radio signals.
  • the communication unit 30010 can upconvert the data received from the processor 30020 to the transmission / reception band and transmit the signal or downconvert the reception signal.
  • the communication unit 30010 may implement the operation of at least one of a physical layer and an access layer.
  • the communication unit 30010 may include a plurality of sub RF units for communicating in accordance with a plurality of communication protocols.
  • the communication unit 30010 may be an ITS-G5 wireless communication technology based on physical transmission techniques of DSRC (Dedicated Short Range Communication), IEEE 802.11 and / or 802.11p standards, IEEE 802.11 and / Data communication based on 2G / 3G / 4G (LTE) / 5G wireless cellular communication technology including broadband wireless mobile communication, broadband terrestrial digital broadcasting technology such as DVB-T / T2 / ATSC, GPS technology and IEEE 1609 WAVE technology Can be performed.
  • Communication unit 30010 may comprise a plurality of transceivers implementing each communication technique.
  • the processor 30020 may be connected to the RF unit 30030 to implement the operation of the layers according to the ITS system or the WAVE system.
  • Processor 30020 may be configured to perform operations in accordance with various embodiments of the present invention in accordance with the above figures and description. Also, at least one of the modules, data, programs, or software that implement the operation of the V2X communication device 30000 according to various embodiments of the present invention described above may be stored in the memory 30010 and executed by the processor 30020 have.
  • the memory 30010 is connected to the processor 30020 and stores various information for driving the processor 30020.
  • the memory 30010 may be included inside the processor 30020 or installed outside the processor 30020 and connected to the processor 30020 by a known means.
  • the processor 30020 of the V2X communication device 30000 can perform the geo-networking packet transmission described in the present invention.
  • the geo-networking packet transmission method of the V2X communication apparatus 30000 will be described below.
  • FIG. 31 shows a flowchart of a geo-networking transmission method according to an embodiment of the present invention.
  • the V2X communication device can determine the forwarder from the location information and set the address of the determined forwarder to the link layer address (S31010).
  • the V2X communication device can transmit the geo-networking packet based on the above-described Greedy algorithm.
  • the V2X communication device can determine the forwarder based on the location table, i.e., the distance between the neighboring V2X communication devices included in the location information and the destination. That is, the V2X communication apparatus closest to the destination among neighbor V2X communication apparatuses included in the location table can be determined as a forwarder.
  • the address of the forwarder may be set to the link layer address of the geo-networking packet.
  • the location information includes information about at least one neighbor V2X communication device executing a geo-networking protocol. As described above, the location information may include at least one of geo network address information, link layer address information, type information, position vector information, or SCH information for at least one neighboring V2X communication apparatus that has received the geo networking packet from the V2X communication apparatus .
  • the V2X communication apparatus can transmit the geo-networking packet (S31020).
  • the V2X communication device can transmit the geo-networking packet based on the set link layer address. That is, the V2X communication device can transmit the packet to the determined forwarder.
  • the V2X communication apparatus may retransmit the geo-networking packet at a specific time interval until the maximum repetition time ends (S31030).
  • the specific time interval may correspond to the above-described repeat interval or wait time.
  • the embodiment of the repetition interval or the waiting time is as described above.
  • the V2X communication apparatus can terminate the retransmission of the geo-networking packet when receiving the conform packet from the forwarder.
  • a conform packet may correspond to a sender conform packet in which the forwarder confirms receipt of the geo networking packet.
  • the conform packet may correspond to a destination conform packet in which the destination V2X communication device conforms to reaching the destination region of the geo-networking packet.
  • the sender confirm packet may include at least one of the received sequence number information or the conform status information.
  • the received sequence number information may have the same value as the sequence number information of the transmitted geo-networking packet.
  • the conform status information may indicate whether the forwarder is capable of forwarding the genino networking and if the forwarding is not possible.
  • the destination confirm packet may include at least one of sequence number information, received sequence number information, and duplication count information.
  • the sequence number information may indicate the sequence number of the destination conform packet.
  • the received sequence number information may have the same value as the sequence number information of the transmitted geo-networking packet.
  • the number of times of duplication can indicate the number of times the same packet reaches the destination.
  • the destination conform packet may further include source position vector information and destination position vector information.
  • the source position vector information represents a position vector of a destination V2X communication apparatus that transmits a destination conform packet.
  • the destination position vector information may represent a position vector of a source V2X communication apparatus that multi-hop transmits a geo networking packet.
  • the sender-conform packet may correspond to a single-hop packet.
  • the destination conform packet may correspond to a multi-hop packet.
  • Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) field programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • an embodiment of the present invention may be implemented in the form of a module, a procedure, a function, or the like which performs the functions or operations described above.
  • the software code can be stored in memory and driven by the processor.
  • the memory is located inside or outside the processor and can exchange data with the processor by various means already known.
  • the present invention is used in a range of vehicle communications.

Abstract

Disclosed is a geo-networking transmission method of a V2X communication device. A geo-networking transmission method according to an embodiment of the present invention comprises the steps of: determining a forwarder from neighboring V2X communication devices included in location information, and setting an address of the determined forwarder as a link layer address; transmitting a geo-networking packet on the basis of the link layer address; and retransmitting the geo-networking packet at specific time intervals until a maximum repetition time expires.

Description

V2X 통신 장치 및 지오네트워킹 전송 방법V2X communication device and geo-networking transfer method
본 발명은 V2X 통신을 위한 장치 및 그의 지오네트워킹 전송 방법에 관한 것으로, 특히, 본 발명은 전송 범위 밖으로 데이터를 신뢰도있게 전달할 수 있는 포워딩 알고리즘에 대한 것이다.The present invention relates to a device for V2X communication and a geo-networking transmission method thereof, and more particularly, to a forwarding algorithm capable of reliably transmitting data outside a transmission range.
최근 차량(vehicle)은 기계 공학 중심에서 전기, 전자, 통신 기술이 융합된 복합적인 산업 기술의 결과물이 되어 가고 있으며, 이러한 면에서 차량은 스마트카라고도 불린다. 스마트카는 운전자, 차량, 교통 인프라 등을 연결하여 교통 안전/복잡 해소와 같은 전통적인 의미의 차량 기술뿐 아니라 다양한 사용자 맞춤형 이동 서비스를 제공하게 되었다. 이러한 연결성은 V2X(Vehicle to Everything) 통신 기술을 사용하여 구현될 수 있다.In recent years, vehicles have become a result of complex industrial technology that is a fusion of electric, electronic, and communication technologies centering on mechanical engineering. In this respect, vehicles are also called smart cars. Smart cars have been providing various customized mobile services as well as traditional vehicle technologies such as traffic safety / complicatedness by connecting drivers, vehicles, and transportation infrastructures. This connectivity can be implemented using V2X (Vehicle to Everything) communication technology.
V2X 통신을 통해 다양한 서비스가 제공될 수 있다. 또한, 다양한 서비스를 제공하기 위해 복수의 주파수 대역을 사용하게 되었다. 이러한 환경에서도 차량 통신의 특성상 안전 서비스의 신뢰도 높은 전달 및 제공은 매우 중요한 문제이다. Various services can be provided through V2X communication. In addition, a plurality of frequency bands have been used to provide various services. In this environment, reliable communication and delivery of safety service is very important because of the nature of vehicle communication.
V2X 통신에 있어서, 데이터를 전송 범위 밖으로 전송하기 위해, 호핑을 사용한 지오네트워킹 전송 방법을 사용할 수 있다. 지오네트워킹 전송에서, 데이터 호핑 및 목적지 전달을 위해 패킷 포워딩 알고리즘이 사용될 수 있다. 특히 통신 환경이 다이나믹하게 변화하는 V2X 통신 환경에 있어서, 패킷 포워딩 알고리즘은 효율성 및 신뢰도가 고려되어야만 한다.In V2X communication, a geo-networking transmission method using hopping can be used to transmit data outside the transmission range. In geo-networking transmissions, packet forwarding algorithms can be used for data hopping and destination delivery. Especially, in the V2X communication environment where the communication environment changes dynamically, the efficiency and reliability of the packet forwarding algorithm must be considered.
상술한 기술적 과제를 해결하기 위하여, 본 발명의 실시예에 따른 V2X 통신 장치의 지오네트워킹 전송 방법은, 로케이션 정보에 포함된 상기 이웃 V2X 통신 장치들로부터 포워더(forwarder)를 결정하고, 결정된 포워더의 어드레스를 링크 레이어 어드레스로 설정하는 단계; 상기 링크 레이어 어드레스에 기초하여 지오네트워킹 패킷을 전송하는 단계; 및 최대 반복 시간이 종료할 때까지 특정 시간 간격으로 상기 지오네트워킹 패킷을 재전송하는 단계를 포함하며, 상기 로케이션 정보는 지오네트워킹 프로토콜을 실행하는 적어도 하나의 이웃 V2X 통신 장치에 대한 정보를 포함하고, 상기 포워더는 상기 로케이선 정보에 포함된 이웃 V2X 통신 장치들과 목적지와의 거리에 기초하여 결정된다. According to an aspect of the present invention, there is provided a geo-networking method for a V2X communication apparatus, the method comprising: determining a forwarder from neighbor V2X communication devices included in location information; To a link layer address; Transmitting a geo-networking packet based on the link layer address; And retransmitting the geo-networking packet at specific time intervals until a maximum repetition time expires, wherein the location information includes information about at least one neighbor V2X communication device executing a geo-networking protocol, The forwarder is determined based on the distance between the neighboring V2X communication devices included in the localization information and the destination.
본 발명의 실시예에 따른 지오네트워킹 전송 방법에 있어서, 상기 포워더로부터 컨펌 패킷을 수신하는 경우, 상기 지오네트워킹 패킷의 재전송을 종료될 수 있다.In the geo-networking transmission method according to the embodiment of the present invention, when a conform packet is received from the forwarder, retransmission of the geo-networking packet may be terminated.
본 발명의 실시예에 따른 지오네트워킹 전송 방법에 있어서, 상기 컨펌 패킷은, 상기 포워더가 상기 지오네트워킹 패킷의 수신을 컨펌하는 센더(sender) 컨펌 패킷에 해당하거나, 목적지의 V2X 통신 장치가 상기 지오네트워킹 패킷의 목적지 영역 도달을 컨펌하는 목적지 컨펌 패킷에 해당할 수 있다.In the geo-networking transmission method according to an embodiment of the present invention, the conform packet may correspond to a sender conform packet in which the forwarder confirms receipt of the geo-networking packet, or the destination V2X communication device transmits the geo- It may correspond to a destination-conform packet that agrees to reach the destination region of the packet.
본 발명의 실시예에 따른 지오네트워킹 전송 방법에 있어서, 상기 센더 컨펌 패킷은 수신 시퀀스 넘버 정보 또는 컨펌 상태 정보 중 적어도 하나를 포함하고, 상기 수신 시퀀스 넘버 정보는 상기 전송된 지오네트워킹 패킷의 시퀀스 넘버 정보와 같은 값을 갖고, 상기 컨펌 상태 정보는 상기 포워더가 상기 지오네트워킹 패킷의 포워딩이 가능한지 여부 및 포워딩이 불가능한 경우 불가능 상태를 나타낼 수 있다.In the geo-networking transmission method according to an embodiment of the present invention, the sender confirm packet includes at least one of a received sequence number information and a conform status information, and the received sequence number information includes sequence number information of the transmitted geo-networking packet , And the conform status information may indicate whether the forwarder is capable of forwarding the geo-networking packet and an impossible state if forwarding is not possible.
본 발명의 실시예에 따른 지오네트워킹 전송 방법에 있어서, 상기 목적지 컨펌 패킷은, 시퀀스 넘버 정보, 수신 시퀀스 넘버 정보, 또는 중복 횟수 정보 중 적어도 하나를 포함하고, 상기 시퀀스 넘버 정보는 상기 목적지 컨펌 패킷의 시퀀스 넘버를 나타내고, 상기 수신 시퀀스 넘버 정보는 상기 전송된 지오네트워킹 패킷의 시퀀스 넘버 정보와 같은 값을 갖고, 상기 중복 횟수 정보는 동일 패킷의 목적지 도달 횟수를 나타낼 수 있다.In the geo-networking transmission method according to an exemplary embodiment of the present invention, the destination confirm packet includes at least one of sequence number information, received sequence number information, and redundancy number information, The received sequence number information has the same value as the sequence number information of the transmitted geo-networking packet, and the duplicate number information may indicate the number of arrivals of the same packet.
본 발명의 실시예에 따른 지오네트워킹 전송 방법에 있어서, 상기 목적지 컨펌 패킷은, 소스 포지션 벡터 정보 및 목적지 포지션 벡터 정보를 더 포함하고, 상기 소스 포지션 벡터 정보는 상기 목적지 컨펌 패킷을 전송하는 상기 목적지의 V2X 통신 장치의 포지션 벡터를 나타내고, 상기 목적지 포지션 벡터 정보는, 상기 지오네트워킹 패킷을 멀티홉 전송한 소스 V2X 통신 장치의 포지션 벡터를 나타낼 수 있다.In the geo-networking transmission method according to an exemplary embodiment of the present invention, the destination confirm packet further includes source position vector information and destination position vector information, and the source position vector information includes information on a destination of the destination V2X communication apparatus, and the destination position vector information may indicate a position vector of the source V2X communication apparatus that multi-hop transmits the geo-networking packet.
본 발명의 실시예에 따른 지오네트워킹 전송 방법에 있어서, 상기 센더 컨펌 패킷은 싱글 홉 패킷에 해당하고, 상기 목적지 컨펌 패킷은 멀티 홉 패킷에 해당할 수 있다.In the geo-networking transmission method according to an embodiment of the present invention, the sender confirm packet corresponds to a single hop packet, and the destination confirm packet corresponds to a multi-hop packet.
또한, 상술한 기술적 과제를 해결하기 위하여, 본 발명의 실시예에 따른 V2X 통신 장치는, 데이터를 저장하는 메모리; 지오네트워킹 패킷을 포함하는 무선 신호를 송수신하는 통신 유닛; 및 상기 메모리 및 상기 통신 유닛을 제어하는 프로세서를 포함하고, 상기 프로세서는, 로케이션 정보에 포함된 상기 이웃 V2X 통신 장치들로부터 포워더(forwarder)를 결정하고, 결정된 포워더의 어드레스를 링크 레이어 어드레스로 설정하고, 상기 링크 레이어 어드레스에 기초하여 지오네트워킹 패킷을 전송하고, 최대 반복 시간이 종료할 때까지 특정 시간 간격으로 상기 지오네트워킹 패킷을 재전송하며, 상기 로케이션 정보는 지오네트워킹 프로토콜을 실행하는 적어도 하나의 이웃 V2X 통신 장치에 대한 정보를 포함하고, 상기 포워더는 상기 로케이선 정보에 포함된 이웃 V2X 통신 장치들과 목적지와의 거리에 기초하여 결정된다.According to another aspect of the present invention, there is provided a V2X communication apparatus including: a memory for storing data; A communication unit for transmitting and receiving a radio signal including geo-networking packets; And a processor for controlling the memory and the communication unit, the processor determining a forwarder from the neighboring V2X communication devices included in the location information, setting the address of the determined forwarder as a link layer address , Transmitting a geo-networking packet based on the link-layer address, and retransmitting the geo-networking packet at specific time intervals until a maximum repetition time ends, the location information comprising at least one neighbor V2X And the forwarder is determined based on the distance between the neighboring V2X communication devices included in the localization information and the destination.
본 발명에 따르면, 포워딩 라우터에서 패킷을 전달받았다는 컨펌 패킷을 센더 라우터로 전송함으로써, 불필요한 동일 패킷의 반복 전송을 방지할 수 있다. 또한, 목적지 라우터에서 패킷을 전달받았다는 컨펌 패킷을 소스 라우터로 전송함으로써, 불필요한 동일 패킷의 반복 전송을 방지할 수 있다. 컨펌 패킷을 사용함으로써, 불필요한 패킷의 반복 전송이 줄어들어 채널 사용 효율이 개선될 수 있다. 또한, 최종 목적지의 패킷 수신을 확인할 수 있어, QoS가 보장되는 더 신뢰할 수 있는(reliable) 패킷 전송이 가능해진다.According to the present invention, it is possible to prevent unnecessary repetitive transmission of the same packet by transmitting a CONFESS packet to the sender router that the packet has been received in the forwarding router. In addition, it is possible to prevent unnecessary repetitive transmission of the same packet by transmitting a CONFESS packet to the source router that the packet has been received from the destination router. By using the conform packet, it is possible to reduce the repetitive transmission of unnecessary packets and improve the channel use efficiency. In addition, packet reception at the final destination can be confirmed, and more reliable packet transmission with guaranteed QoS can be performed.
본 발명에 대해 더욱 이해하기 위해 포함되며 본 출원에 포함되고 그 일부를 구성하는 첨부된 도면은 본 발명의 원리를 설명하는 상세한 설명과 함께 본 발명의 실시예를 나타낸다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
도 1은 본 발명의 실시예에 따른 ITS 시스템의 프로토콜 구조를 나타낸다.1 shows a protocol structure of an ITS system according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 네트워크/트랜스포트 레이어의 패킷 구조를 나타낸다.2 shows a packet structure of a network / transport layer according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 지오네트워킹 패킷의 헤더 구조로서, 베이직 헤더 및 커먼 헤더의 구성을 나타낸다.3 is a header structure of a geo-networking packet according to an embodiment of the present invention, and shows a structure of a basic header and a common header.
도 4는 본 발명의 일 실시예에 따른 GUC(Geographically-Scoped Unicast) 타입의 지오네트워킹 방법 및 그에 따른 GUC 패킷 헤더 구성을 나타낸다.FIG. 4 illustrates a geographically-scoped unicast (GUC) type geo-networking method according to an embodiment of the present invention and a GUC packet header structure according to the method.
도 5는 본 발명의 다른 일 실시예에 따른 TSB(Topologically Scoped Broadcast) 타입 지오네트워킹 방법 및 그에 따른 TSB 패킷 헤더 구성을 나타낸다.5 is a topologically scoped broadcast (TSB) type geo-networking method according to another embodiment of the present invention and a TSB packet header structure according to the method.
도 6은 본 발명의 다른 일 실시예에 따른 SHB(Single Hop Broadcast) 타입 지오네트워킹 방법 및 SHB 패킷 헤더 구성을 나타낸다.6 illustrates a SHB (Single Hop Broadcast) type geo-networking method and an SHB packet header configuration according to another embodiment of the present invention.
도 7은 본 발명의 다른 일 실시예에 따른 GBC(Geographically-Scope Broadcast)/GAC(Geographically-Scoped Anycast) 타입 지오네트워킹 방법 및 BC/GAC 패킷 헤더 구성을 나타낸다.FIG. 7 illustrates a Geographically-Scope Broadcast (GBC) / Geographic-Scoped Anycast (GAC) type geo-networking method and a BC / GAC packet header according to another embodiment of the present invention.
도 8은 본 발명의 다른 일 실시예에 따른 비콘 타입 지오네트워킹 및 그에 따른 비콘 패킷 헤더 구성을 나타낸다.FIG. 8 illustrates a beacon type geo-networking according to another embodiment of the present invention, and a beacon packet header according to the present invention.
도 9는 본 발명의 실시예에 따른 LS(Location Service) 요청 패킷 헤더 및 LS 응답 패킷 헤더의 구성을 나타낸다.FIG. 9 shows a structure of an LS (Location Service) request packet header and an LS response packet header according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따른 포지션 벡터 정보를 나타낸다.FIG. 10 shows position vector information according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 그리디(greedy) 포워딩 알고리즘의 패킷 전달 방법을 나타낸다.11 shows a packet forwarding method of a greedy forwarding algorithm according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 비-영역(non-area) 컨텐션-기반(contension-based) 알고리즘의 패킷 전달 방법을 나타낸다.12 illustrates a packet delivery method of a non-area contention-based algorithm according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따른 영역(area) 컨텐션-기반(contention-based) 알고리즘의 패킷 전달 방법을 나타낸다. 13 shows a packet delivery method of an area contention-based algorithm according to an embodiment of the present invention.
도 14는 본 발명의 실시예에 따른 지오네트워킹 프로토콜에 관련된 서비스 프리미티브(primitive), SDU 및 PDU를 나타낸다.14 shows service primitives, SDUs, and PDUs related to a geo-networking protocol according to an embodiment of the present invention.
도 15는 본 발명의 실시예에 따른 서비스 프리미티브를 통한 컴펌, 리퀘스트, 인디케이션의 사용 예를 나타낸다.FIG. 15 shows an example of use of a complaint, a request, and an indication through a service primitive according to an embodiment of the present invention.
도 16은 본 발명의 실시예에 따른 GN-DATA.request의 파라미터를 나타낸다.16 shows parameters of GN-DATA.request according to an embodiment of the present invention.
도 17은 본 발명의 실시예에 따른 반복 인터벌(Repetition interval) 및 최대 반복 시간(Maximum repetition time)을 나타낸다.FIG. 17 shows a repetition interval and a maximum repetition time according to an embodiment of the present invention.
도 18은 본 발명의 실시예에 따른 지오네트워킹 전송 방법을 나타낸다.18 shows a geo-networking transmission method according to an embodiment of the present invention.
도 19는 본 발명의 실시예에 따른 그리디 포워딩에서 사용되는 패킷 구조를 나타낸다.19 shows a packet structure used in greedy forwarding according to an embodiment of the present invention.
도 20은 본 발명의 실시예에 따른 그리디 포워딩의 패킷 전송 방법을 나타낸다.20 shows a packet transmission method of greedy forwarding according to an embodiment of the present invention.
도 21은 본 발명의 실시예에 따른 컨펌 패킷 수신 및 패킷 반복 전송을 나타낸다.Figure 21 illustrates conform packet reception and packet repeat transmission in accordance with an embodiment of the present invention.
도 22은 본 발명의 다른 실시예에 따른 그리디 포워딩의 패킷 전송 방법을 나타낸다.22 shows a packet transmission method of greedy forwarding according to another embodiment of the present invention.
도 23은 본 발명의 다른 실시예에 따른 컨펌 패킷 수신 및 패킷 반복 전송을 나타낸다.23 shows a conform packet reception and packet repetition transmission according to another embodiment of the present invention.
도 24는 본 발명의 실시예에 따른 센더 컨펌 패킷을 나타낸다.24 shows a sender confirm packet according to an embodiment of the present invention.
도 25는 본 발명의 실시예에 따른 지오네트워킹 전송 방법을 나타낸다.25 shows a geo-networking transmission method according to an embodiment of the present invention.
도 26은 본 발명의 실시예에 따른 GUC의 패킷 전송 방법을 나타낸다.26 shows a packet transmission method of the GUC according to the embodiment of the present invention.
도 27은 본 발명의 다른 실시예에 따른 그리디 포워딩의 패킷 전송 방법을 나타낸다.27 shows a packet transmission method of greedy forwarding according to another embodiment of the present invention.
도 28은 본 발명의 다른 실시예에 따른 목적지(데스티네이션) 컨펌 패킷을 나타낸다.FIG. 28 shows a Destination Confidence packet according to another embodiment of the present invention. FIG.
도 29는 본 발명의 실시예에 따른 지오네트워킹 패킷의 헤더 타입 및 서브 헤더 타입을 나타낸다. 29 shows a header type and a subheader type of a geo-networking packet according to an embodiment of the present invention.
도 30은 본 발명의 실시예에 따른 V2X 통신 장치의 구성을 나타낸다.30 shows a configuration of a V2X communication apparatus according to an embodiment of the present invention.
도 31은 본 발명의 실시예에 따른 지오네트워킹 전송 방법에 대한 순서도를 나타낸다.31 shows a flowchart of a geo-networking transmission method according to an embodiment of the present invention.
본 발명의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 본 발명의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 본 발명의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 본 발명에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함하지만, 본 발명이 이러한 세부 사항을 모두 필요로 하는 것은 아니다. 본 발명은 이하에서 설명되는 실시예들은 각각 따로 사용되어야 하는 것은 아니다. 복수의 실시예 또는 모든 실시예들이 함께 사용될 수 있으며, 특정 실시예들은 조합으로서 사용될 수도 있다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following detailed description with reference to the attached drawings is for the purpose of illustrating preferred embodiments of the present invention rather than illustrating only embodiments that may be implemented according to embodiments of the present invention. The following detailed description includes details in order to provide a thorough understanding of the present invention, but the present invention does not require all of these details. The present invention is not limited to the embodiments described below. Multiple embodiments or all of the embodiments may be used together, and specific embodiments may be used as a combination.
본 발명에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 본 발명은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.Most of the terms used in the present invention are selected from common ones widely used in the field, but some terms are arbitrarily selected by the applicant and the meaning will be described in detail in the following description as necessary. Accordingly, the invention should be understood based on the intended meaning of the term rather than the mere name or meaning of the term.
본 발명은 V2X 통신 장치에 대한 것으로, V2X 통신 장치는 ITS(Intelligent Transport System) 시스템에 포함되어, ITS 시스템의 전체 또는 일부 기능들을 수행할 수 있다. V2X 통신 장치는 차량과 차량, 차량과 인프라, 차량과 자전거, 모바일 기기 등과의 통신을 수행할 수 있다. V2X 통신 장치는 V2X 장치라고 약칭될 수도 있다. 실시예로서 V2X 장치는 차량의 온보드유닛(OBU; On Board Unit)에 해당하거나, OBU에 포함될 수도 있다. OBU는 OBE(On Board Equipment)라고 치칭될 수도 있다. V2X 통신 장치는 인프라스트럭처의 RSU(Road Side Unit)에 해당하거나, RSU에 포함될 수도 있다. RSU는 RSE(Road Side Equipment)라고 지칭될 수도 있다. 또는, V2X 통신 장치는 ITS 스테이션(ITS-S)에 해당하거나, ITS 스테이션에 포함될 수 있다. V2X 통신을 수행하는 임의의 OBU, RSU 및 모바일 장비 등을 모두 ITS 스테이션 또는 V2X 통신 장치라고 지칭될 수도 있다. 지오네트워킹 통신에서, V2X 통신 장치는 라우터로 지칭될 수도 있다.The present invention relates to a V2X communication device, wherein the V2X communication device is included in an Intelligent Transport System (ITS) system to perform all or some of the functions of the ITS system. V2X communication devices can communicate with vehicles and vehicles, vehicles and infrastructure, vehicles and bicycles, and mobile devices. The V2X communication device may be abbreviated as a V2X device. As an embodiment, the V2X device may correspond to an on-board unit (OBU) of a vehicle or may be included in an OBU. The OBU may also be referred to as OBE (On Board Equipment). The V2X communication device may correspond to an infrastructure's road side unit (RSU) or may be included in an RSU. The RSU may also be referred to as RSE (Road Side Equipment). Alternatively, the V2X communication device may correspond to the ITS station (ITS-S) or may be included in the ITS station. Any OBU, RSU, mobile device, etc. performing V2X communication may be referred to as an ITS station or a V2X communication device. In geo-networking communications, a V2X communications device may be referred to as a router.
V2X 통신 장치는 다양한 통신 프로토콜에 기초하여 통신할 수 있다. V2X 통신 장치가 IEEE 1609.1~4의 WAVE(Wireless Access In Vehicular Environments) 프로토콜을 구현할 수 있다. 이러한 경우 V2X 통신 장치는 WAVE 장치 또는 WAVE 통신 장치라고 지칭할 수도 있다.The V2X communication device can communicate based on various communication protocols. The V2X communication device can implement IEEE 1609.1 ~ 4 Wireless In Vehicular Environments (WAVE) protocols. In this case, the V2X communication device may be referred to as a WAVE device or a WAVE communication device.
V2X 통신 장치는 CAM(Cooperative Awareness Message) 또는 DENM(Decentralized Environmental Notification Message)를 전송할 수 있다. CAM은 ITS 네트워크에서 분배(distribute)되며, ITS 스테이션의 존재(presence), 위치, 통신 상태, 또는 운행 상태 중 적어도 하나에 대한 정보를 제공한다. DENM은 감지된 이벤트에 대한 정보를 제공한다. DENM은 ITS 스테이션이 감지한 임의의 주행 상황 또는 이벤트에 대한 정보를 제공할 수 있다. 예를 들면, DENM은 비상 전자 브레이크 등, 차량 사고, 차량 문제, 교통 컨디션, 등과 같은 상황에 대한 정보를 제공할 수 있다.The V2X communication device can transmit a Cooperative Awareness Message (CAM) or a Decentralized Environmental Notification Message (DENM). The CAM is distributed in the ITS network and provides information about at least one of the presence, location, communication state, or operating state of the ITS station. DENM provides information about detected events. The DENM may provide information about any driving situation or event detected by the ITS station. For example, DENM can provide information on situations such as emergency electronic brakes, vehicle accidents, vehicle problems, traffic conditions, and so on.
도 1은 본 발명의 실시예에 따른 ITS 시스템의 프로토콜 구조를 나타낸다.1 shows a protocol structure of an ITS system according to an embodiment of the present invention.
어플리케이션(application) 레이어: 어플리케이션 레이어는 다양한 사용예(use case)를 구현 및 지원할 수 있다. 예를 들면, 어플리케이션은 도로 안전(Road Safety), 효율적 교통 정보(Efficient Traffic Information), 기타 애플리케이션 정보(Other application)를 제공할 수 있다.Application layer: The application layer can implement and support various use cases. For example, the application may provide road safety, Efficient Traffic Information, and other application information.
퍼실리티(facilities) 레이어: 퍼실리티 레이어는 어플리케이션 레이어에서 정의된 다양한 사용예를 효과적으로 실현할 수 있도록 지원할 수 있다. 예를 들면, 퍼실리티 레이어는 어플리케이션 지원(application support), 정보 지원(information support), 세션/통신 지원(session/communication support)을 수행할 수 있다.Facilities layer: The facilities layer can support various applications defined at the application layer effectively. For example, the facility layer can perform application support, information support, and session / communication support.
액세스(Access) 레이어: 액세스 레이어는 상위 레이어에서 수신한 메세지/데이터를 물리적 채널을 통해 전송할 수 있다. 예를 들면, 액세스 레이어는 IEEE 802.11 및/또는 802.11p 표준 기반 통신 기술, IEEE 802.11 및/또는 802.11p 표준의 피지컬 전송 기술에 기초하는 ITS-G5 무선 통신 기술, 위성/광대역 무선 이동 통신을 포함하는 2G/3G/4G(LTE)/5G 무선 셀룰러 통신 기술, DVB-T/T2/ATSC 등 광대역 지상파 디지털 방송 기술, GPS 기술, IEEE 1609 WAVE 기술 등에 기초하여 데이터 통신을 수행/지원할 수 있다.Access layer: The access layer can transmit the message / data received from the upper layer through the physical channel. For example, the access layer may include an ITS-G5 wireless communication technology based on IEEE 802.11 and / or 802.11p standards based communication technology, a physical transmission technology of the IEEE 802.11 and / or 802.11p standard, a satellite / And can perform / support data communication based on 2G / 3G / 4G (LTE) / 5G wireless cellular communication technology, broadband terrestrial digital broadcasting technology such as DVB-T / T2 / ATSC, GPS technology and IEEE 1609 WAVE technology.
네트워크 및 트랜스포트(Networking & Transport) 레이어: 네트워크/트랜스포트 레이어는 다양한 트랜스포트 프로토콜 및 네트워크 프로토콜을 사용함으로써 동종(homogenous)/이종(heterogeneous) 네트워크 간의 차량 통신을 위한 네트워크를 구성할 수 있다. Network and Transport Layer: The network / transport layer can configure a network for vehicle communication between homogenous and heterogeneous networks by using various transport protocols and network protocols.
트랜스포트 레이어는 상위 레이어(세션(session) 레이어, 프리젠테이션(presentation) 레이어, 어플리케이션 레이어)와 하위 레이어(네트워크 레이어, 데이터 링크 레이어, 피지컬 레이어)에서 제공하는 서비스들 간의 연결 계층이다. 트랜스포트 레이어는 전송 데이터가 목적지에 정확히 도착하도록 관리할 수 있다. 송신측에서, 트랜스포트 레이어는 효율적인 데이터 전송을 위해 데이터를 적당한 크기의 패킷으로 프로세싱하고, 수신측에서, 트랜스포트 레이어는 수신된 패킷들을 원래의 파일로 복구하는 프로세싱을 수행할 수 있다. 실시예로서, 트랜스포트 프로토콜로서 TCP(Transmission Control Protocol), UDP(User Datagram Protocol), BTP(Basic Transport Protocol)과 같은 프로토콜이 사용될 수 있다.The transport layer is the link layer between the services provided by the upper layer (session layer, presentation layer, application layer) and lower layer (network layer, data link layer, physical layer). The transport layer can manage the transmission data to arrive at the destination exactly. At the transmitting end, the transport layer processes the data into packets of reasonable size for efficient data transmission, and at the receiving end, the transport layer can perform processing to recover the received packets back to the original file. As an example, protocols such as Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Basic Transport Protocol (BTP) may be used as the transport protocol.
네트워크 레이어는 논리적인 주소를 매니징하고, 패킷의 전달 경로를 결정할 수 있다. 네트워크 레이어는 트랜스포트 레이어에서 생성된 패킷을 수신하여 목적지의 논리적인 주소를 네트워크 계층 헤더에 추가할 수 있다. 실시예로서, 패킷 경로는 차량들간, 차량과 고정 스테이션간, 고정 스테이션들 간의 유니캐스트/브로드캐스트가 고려될 수 있다. 실시예로서, 지오-네트워킹(Geo-Networking), 모바일 지원(with mobility support) IPv6 네트워킹, 지오-네트워킹을 거치는(over) IPv6 등이 네트워킹 프로토콜로서 고려될 수 있다.The network layer manages the logical address and can determine the delivery path of the packet. The network layer can receive the packet generated at the transport layer and add the logical address of the destination to the network layer header. As an embodiment, the packet path may be considered for unicast / broadcast between vehicles, between vehicle and fixed stations, and between fixed stations. As an example, Geo-Networking, IPv6 support with mobility support, and IPv6 over geo-networking may be considered as networking protocols.
ITS 아키텍처는 추가로 매니지먼트(Management) 레이어 및 시큐리티(security) 레이어를 더 포함할 수 있다. The ITS architecture may further include a management layer and a security layer.
도 2는 본 발명의 실시예에 따른 네트워크/트랜스포트 레이어의 패킷 구조를 나타낸다.2 shows a packet structure of a network / transport layer according to an embodiment of the present invention.
트랜스포트 레이어는 BTP 패킷을 생성하고, 네트워크 레이어는 BTP 패킷을 인캡슐레이팅하여 지오-네트워킹 패킷을 생성할 수 있다. 지오-네트워킹 패킷은 LLC 패킷으로 인캡슐레이션될 수 있다. 도 2의 실시예에서, 데이터는 메세지 세트를 포함하고, 메세지 세트는 베이직 세이프티 메세지가 될 수 있다.The transport layer may generate BTP packets, and the network layer may encapsulate BTP packets to generate geo-networking packets. Geo-networking packets can be encapsulated in LLC packets. In the embodiment of FIG. 2, the data may comprise a message set, and the message set may be a basic safety message.
BTP는 퍼실리티 레이어에서 생성한 CAM, DENM과 같은 메세지를 하위(lower) 레이어로 전송하기 위한 프로토콜이다. BTP 헤더는 A타입, B타입으로 구성된다. A 타입 BTP 헤더는 인터랙티브(interactive) 패킷 전송을 위해 송수신에 필요한, 목적지/데스티네이션(destination) 포트 및 소스 포트를 포함할 수 있다. B 타입 헤더는 비-인터랙티브(non-interactive) 패킷 전송을 위해 송신에 필요한, 데스티네이션 포트 및 데스티테이션 포트 정보를 포함할 수 있다. 헤더에 포함된 필드/정보에 대한 설명은 아래와 같다.BTP is a protocol for transmitting messages such as CAM and DENM generated by the facility layer to the lower layer. The BTP header consists of A type and B type. The A-type BTP header may include a destination / destination port and a source port required for transmission / reception for interactive packet transmission. The B type header may include destination and destination port information required for transmission for non-interactive packet transmission. The fields / information included in the header are as follows.
데스티네이션 포트(Destination Port): 데스티네이션 포트는 BTP 패킷에 포함된 데이터(BTP-PDU)의 목적지에 해당하는 퍼실리티 엔터티를 식별한다.Destination Port: The destination port identifies a facility entity corresponding to the destination of the data (BTP-PDU) contained in the BTP packet.
소스 포트(Source Port): BTP-A 타입의 경우 생성되는 필드로서, 해당 패킷이 전송되는 소스에서의 퍼실리티 레이어의 프로토콜 엔터티의 포트를 지시한다. 이 필드는 16비트의 사이즈를 가질 수 있다.Source Port: A field created in the case of the BTP-A type, indicating the port of the protocol entity of the facility layer at the source from which the packet is transmitted. This field may have a size of 16 bits.
데스티네이션 포트 정보(Destination Port Info): BTP-B 타입의 경우 생성되는 필드로서, 데스티네이션 포트가 가장 잘 알려진 포트인 경우 추가 정보를 제공할 수 있다. 이 필드는 16비트의 사이즈를 가질 수 있다.Destination Port Info: This field is created for the BTP-B type. It can provide additional information if the destination port is the best known port. This field may have a size of 16 bits.
지오네트워킹 패킷(Geonetworking packet)은 네트워크 계층의 프로토콜에 따라서 베이직 헤더 및 커먼 헤더를 포함하고, 지오네트워킹 모드에 따라서 익스텐션(Extension) 헤더를 선택적으로(optional) 포함한다. 지오네트워킹 헤더에 대해서는 이하에서 다시 설명한다.A geonetworking packet includes a basic header and a common header according to a protocol of a network layer, and optionally includes an extension header according to a geo networking mode. The geo-networking header is described below again.
지오네트워킹 패킷에 LLC 헤더가 부가되어 LLC 패킷이 생성된다. LLC 헤더는 IP 데이터와 지오네트워킹 데이터를 구별하여 전송하는 기능을 제공한다. IP 데이터와 지오네트워킹 데이터는 SNAP의 이더타입(Ethertype)에 의해 구별될 수 있다. 실시예로서, IP 데이터가 전송되는 경우, 이더타입은 0x86DD로 설정되어 LLC 헤더에 포함될 수 있다. 실시예로서, 지오네트워킹 데이터가 전송되는 경우, 이더타입은 0x86DC로 설정되어 LLC 헤더에 포함될 수 있다. 수신기는 LLC 패킷 헤더의 이더타입 필드를 확인하고, 그 값에 따라서 패킷을 IP 데이터 경로 또는 지오네트워킹 경로로 포워딩 및 처리할 수 있다.An LLC header is added to the geo-networking packet to generate an LLC packet. The LLC header provides a function to distinguish and transmit IP data from geo-networking data. IP data and geo-networking data can be distinguished by SNAP's Ethertype. As an embodiment, when IP data is transmitted, the Ether type may be set to 0x86DD and included in the LLC header. As an embodiment, if geo-networking data is transmitted, the Ether type may be set to 0x86DC and included in the LLC header. The receiver can identify the Ethertype field of the LLC packet header and forward and process the packet to the IP data path or the geo networking path according to the value.
도 3은 본 발명의 실시예에 따른 지오네트워킹 패킷의 헤더 구조로서, 베이직 헤더 및 커먼 헤더의 구성을 나타낸다.3 is a header structure of a geo-networking packet according to an embodiment of the present invention, and shows a structure of a basic header and a common header.
도 3(a)는 도 2에서 나타낸 지오네트워킹 패킷 헤더의 베이직 헤더를, 도 3(b)는 도 2에서 나타낸 지오네트워킹 패킷 헤더의 커먼 헤더를 나타낸다.3 (a) shows the basic header of the geo-networking packet header shown in Fig. 2, and Fig. 3 (b) shows the common header of the geo-networking packet header shown in Fig.
베이직 헤더는 32비트(4바이트)가 될 수 있다. 베이직 헤더는 버전 필드, NH 필드(Next Header), LT(LifeTime) 필드, RHL(Remaining Hop Limit) 필드 중 적어도 하나를 포함할 수 있다. 베이직 헤더에 포함된 필드들에 대한 설명은 아래와 같다. 각 필드를 구성하는 비트 사이즈는 실시예에 불과한 것으로, 변경될 수도 있다.The basic header can be 32 bits (4 bytes). The basic header may include at least one of a version field, an NH field (Next Header), a LT (LifeTime) field, and a Remaining Hop Limit (RHL) field. Fields included in the basic header are described below. The bit size constituting each field is only an embodiment and may be changed.
Version(4비트): 버전(version) 필드는 지오네트워킹 프로토콜을 버전을 지시한다.Version (4-bit): The version field indicates the version of the geo-networking protocol.
NH(4비트): NH(Next Header) 필드는 후속 헤더/필드의 타입을 지시한다. 필드 값이 1이면 커먼 헤더가 이어지고, 2이면 보안 설정된 보안(secured) 패킷이 이어질 수 있다.NH (4 bits): NH (Next Header) field indicates the type of the following header / field. If the field value is 1, a common header is followed. If the field value is 2, a secured packet can be followed.
LT(8비트): LT(LifeTime) 필드는 해당 패킷의 최대 생존 시간을 지시한다. LT (8 bits): The LT (LifeTime) field indicates the maximum lifetime of the packet.
RHL(8비트): RHL(Remaining Hop Limit) 필드는 잔여 홉 제한을 지시한다. RHL 필드값은 지오애드혹(GeoAdhoc) 라우터에서 포워딩할 때마다 1씩 줄어들 수 있다. RHL 필드값이 0이 되면 해당 패킷은 더 이상 포워딩되지 않는다.RHL (8 bits): The Remaining Hop Limit (RHL) field indicates the residual hop limit. The RHL field value can be reduced by one for each forwarding on the GeoAdhoc router. When the RHL field value reaches 0, the packet is no longer forwarded.
커먼 헤더는 64비트(8바이트)가 될 수 있다. 커먼 헤더는 NH(NextHeader) 필드, HT(HeaderType) 필드, HST(Header Sub-Type) 필드, TC(Traffic Class) 필드, 플래그(Flags) 필드, PL(PayloadLength) 필드, MHL(Maximum Hop Limit) 필드 중 적어도 하나를 포함할 수 있다. 각 필드들에 대한 설명은 아래와 같다.The common header can be 64 bits (8 bytes). The common header includes a Next Header (NH) field, an HT (HeaderType) field, a HST (Header Sub-Type) field, a TC (Traffic Class) field, a Flags field, a PayloadLength Or the like. The description of each field is as follows.
NH(4비트): NH(Next Header) 필드는 후속 헤더/필드의 타입을 지시한다. 필드 값이 0이면 정의되지 않은 "ANY" 타입을 지시하고, 1이면 BTP-A 타입 패킷을, 2이면 BTP-B 타입 패킷을, 3이면 IPv6의 IP 다이어그램을 각각 지시할 수 있다. NH (4 bits): NH (Next Header) field indicates the type of the following header / field. If the field value is 0, it indicates an undefined "ANY" type, 1 indicates a BTP-A type packet, 2 indicates a BTP-B type packet, and 3 indicates an IP diagram of IPv6.
HT(4비트): 헤더 타입 필드는 지오네트워킹 타입을 지시한다. 지오네트워킹 타입은 비콘(Beacon), 지오유니캐스트(GeoUnicast), 지오애니캐스트(GeoAnycast), 지오브로드캐스트(GeoBroadcast), TSB(Topologically-Scoped Broadcast), LS(Location Service)을 포함한다.HT (4 bits): The header type field indicates the geo-networking type. Geo-networking types include Beacon, GeoUnicast, GeoAnycast, GeoBroadcast, Topologically-Scoped Broadcast (TSB), and Location Service (LS).
HST(4비트): 헤더 서브 타입 필드는 헤더 타입과 함께 세부적인 타입을 지시한다. 실시예로서, HT 타입이 TSB로 설정되면 HST값이 '0'인 경우는 싱글 홉을 지시하고, '1'인 경우에는 멀티 홉을 지정할 수 있다.HST (4 bits): The header subtype field indicates the header type as well as the detailed type. As an example, when the HT type is set to TSB, a single hop is indicated when the HST value is '0', and a multi-hop can be designated when the HST value is '1'.
TC(8비트): 트래픽 클래스 필드는 SCF(Store-Carry-Forward), 채널 오프로드(Channel Offload), TC ID를 포함할 수 있다. SCF 필드는 패킷을 전달할 이웃이 없는 경우 패킷 저장 여부를 지시한다. 채널 오프로드 필드는 멀티채널 오퍼레이션의 경우 다른 채널로 패킷이 전달될 수 있음을 지시한다. TC ID 필드는 퍼실리티 레이어에서 패킷 전달 시 할당되는 값으로, 피지컬 레이어에서 컨탠션(contention) 윈도우 값 설정에 사용될 수 있다.TC (8 bits): The traffic class field may include Store-Carry-Forward (SCF), Channel Offload (Channel Offload), and TC ID. The SCF field indicates whether to store the packet if there is no neighbor to which to transmit the packet. The channel offload field indicates that a packet can be delivered to another channel in the case of a multi-channel operation. The TC ID field is a value assigned at the time of packet forwarding in the facility layer and can be used to set the contention window value at the physical layer.
플래그(8비트): 플래그 필드는 ITS 장치가 이동형(mobile)인지 고정형(stationary)인지를 지시하고, 실시예로서 마지막 1비트가 될 수 있다.Flag (8 bits): The flag field indicates whether the ITS device is mobile or stationary, and may be the last one bit as an example.
PL(8비트): 페이로드 길이 필드는 지오네트워킹 헤더에 후속하는 데이터 길이를 바이트 단위로 지시한다. 예를 들면, CAM을 운반(carry)하는 지오-네트워킹 패킷의 경우, PL 필드는 BTP 헤더와 CAM의 길이를 지시할 수 있다.PL (8 bits): The payload length field indicates the length of data, in bytes, following the geo-networking header. For example, in the case of a geo-networking packet carrying a CAM, the PL field may indicate the length of the BTP header and the CAM.
MHL(8비트): MHL(Maximum Hop Limit) 필드는 최대 호핑 수를 지시할 수 있다.MHL (8 bits): The Maximum Hop Limit (MHL) field can indicate the maximum number of hops.
지오네트워킹 헤더는 상술한 베이직 헤더와 커먼 헤더 및 확장(extended) 헤더를 포함한다. 확장 헤더는 지오네트워킹 타입에 따라서 구성이 달라진다. 이하에서는 각 지오네트워킹 타입에 따른 헤더 구성을 설명한다. The geo-networking header includes the above-described basic header, common header, and extended header. The configuration of the extension header differs depending on the geo-networking type. Hereinafter, a header configuration according to each geo networking type will be described.
본 명세서에서, 지오네트워킹을 수행하는 V2X 통신 장치를 라우터 또는 지오애드혹 라우터라고 지칭할 수 있다. 지오네트워킹 패킷을 전송하는 V2X 통신 장치를 소스 라우터 또는 샌더(sender)라고 지칭할 수 있다. 소스 라우터로부터 지오네트워킹 패킷을 수신하여 샌더로 릴레이(relay)/포워딩하는 V2X 통신 장치를 포워딩 라우터 또는 포워더(forwarder)라고 지칭할 수 있다. 그리고 지오네트워킹 패킷의 최종 목적지인 V2X 통신 장치 또는 최종 목적지 영역의 V2X 통신 장치를 목적지(destination) 또는 목적지 라우터라고 지칭할 수 있다. In this specification, a V2X communication device that performs geo-networking may be referred to as a router or a geo ad-hoc router. A V2X communication device that transmits geo-networking packets may be referred to as a source router or a sender. A V2X communication device that receives and forwards a geo-networking packet from a source router to a sander can be referred to as a forwarding router or forwarder. The V2X communication device, which is the final destination of the geo-networking packet, or the V2X communication device of the final destination area, may be referred to as a destination or destination router.
도 4는 본 발명의 일 실시예에 따른 GUC(Geographically-Scoped Unicast) 타입의 지오네트워킹 방법 및 그에 따른 GUC 패킷 헤더 구성을 나타낸다.FIG. 4 illustrates a geographically-scoped unicast (GUC) type geo-networking method according to an embodiment of the present invention and a GUC packet header structure according to the method.
도 4(a)는 GUC(Geographically-Scoped Unicast) 타입의 데이터 전달 방법을 나타내고, 도 4(b)는 GUC 헤더 구성을 나타낸다.4 (a) shows a GUC (Geographically-Scoped Unicast) type data transmission method, and FIG. 4 (b) shows a GUC header structure.
GUC는 특정 소스 라우터에서 목적지 라우터까지 데이터를 전달하는 방법이다. 도 4(a)에서와 같이, 소스 라우터(S)는 멀티 홉을 경유하여 목적지 라우터(N8)까지 데이터를 GUC 타입으로 전송할 수 있다. 소스 라우터는 위치(location) 테이블에 목적지 라우터에 대한 정보를 갖고 있어야 한다. 목적지 라우터에 대한 정보가 없는 경우, 소스 라우터는 "LS 요청(request) 및 LS 응답(reply)" 과정을 사용하여 원하는 목적지를 찾을 수 있다.GUC is a method of transferring data from a specific source router to a destination router. As shown in FIG. 4 (a), the source router S can transmit data to the destination router N8 via the multi-hop in the GUC type. The source router must have information about the destination router in its location table. If there is no information about the destination router, the source router can use the "LS request and LS reply" procedures to find the desired destination.
도 4(b)에서, GUC 패킷 헤더는 베이직 헤더, 커먼 헤더 및 확장 헤더를 포함한다. 커먼 헤더의 HT 필드가 GUC를 지시하고, 확장 헤더는 SN 필드, SO PV(Source Position Vector) 필드, DE PV(Destination Position Vector)필드를 포함한다. 포함된 필드에 대한 설명은 아래와 같다.4 (b), the GUC packet header includes a basic header, a common header, and an extension header. The HT field of the common header indicates GUC, and the extension header includes an SN field, an SO PV (Source Position Vector) field, and a DE PV (Destination Position Vector) field. The description of the included fields is as follows.
SN(Sequence Number): 시퀀스 넘버 필드는 패킷 중복성을 검사하기 위해 사용되는 값을 지시한다. 시퀀스 넘버 필드의 값은 소스에서 패킷을 전송할 때 1씩 증가된다. 수신 라우터에서는 시퀀스 넘버(또는, 시퀀스 넘버 및 TST 값)를 사용함으로써 패킷의 중복 수신 여부를 결정할 수 있다. SN은 멀티 홉 전송 시 사용되는 값이다.SN (Sequence Number): The sequence number field indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when transmitting packets from the source. In the receiving router, it is possible to determine whether or not to receive a packet by using a sequence number (or a sequence number and a TST value). SN is the value used for multi-hop transmission.
SO PV: 소스의 위치를 나타내며, 롱(long) 포지션 벡터 포맷이 될 수 있다.SO PV: Indicates the position of the source and can be a long position vector format.
DE PV: 목적지의 위치를 나타내며, 숏(short) 포지션 벡터 포맷이 될 수 있다.DE PV: Indicates the location of the destination and can be a short position vector format.
도 5는 본 발명의 다른 일 실시예에 따른 TSB(Topologically Scoped Broadcast) 타입 지오네트워킹 방법 및 그에 따른 TSB 패킷 헤더 구성을 나타낸다.5 is a topologically scoped broadcast (TSB) type geo-networking method according to another embodiment of the present invention and a TSB packet header structure according to the method.
도 5(a)는 TSB(Topologically Scoped Broadcast) 타입의 데이터 전달 방법을 나타내고, 도 5(b)는 TSB 헤더 구성을 나타낸다.5 (a) shows a TSB (Topologically Scoped Broadcast) type data transmission method, and Fig. 5 (b) shows a TSB header configuration.
TSB는 홉의 개수로 데이터가 전달되는 거리를 조절하는 브로드캐스트 방식이다. 위치에 기반한 정보는 사용되지 않는다. 홉의 개수만으로 데이터의 전달 여부가 결정되므로, 목적지의 위치 주소나 데이터가 전달되는 지역 정보는 사용되지 않는다. 소스 라우터(s)로부터 n홉 내의 모든 라우터로 데이터가 포워딩될 수 있다.The TSB is a broadcast scheme that adjusts the distance that data is transmitted by the number of hops. Location-based information is not used. Since the number of hops only determines the delivery of data, the location address of the destination or the area information to which the data is delivered is not used. Data can be forwarded from the source router (s) to all routers in the n-hop.
도 5(a)는 n-2인 TSB 방식의 데이터 전송을 나타낸다. 소스 라우터는 n=2로 설정하여 신호를 브로드캐스트하고, 소스 라우터의 전송 범위 내의 라우터들은 이 신호를 수신한다. N=2이므로, 1홉으로 데이터를 수신한 포워딩 라우터들(N1, N2, N3)은 수신 패킷을 다시(re)-브로드캐스트한다. N=2 이므로 다시-브로드캐스트된 신호를 수신한 라우터들은 수신 패킷을 다시-브로드캐스트하지 않는다. 이러한 TSB 전송 방법에서, 단일 홉(n=1)인 경우는 SHB(Single Hop Broadcast)로 지칭할 수 있다.5 (a) shows data transmission of the TSB scheme of n-2. The source router broadcasts the signal by setting n = 2, and the routers within the transmission range of the source router receive this signal. Since N = 2, the forwarding routers N1, N2, and N3 receiving the data in one hop re-broadcast the received packet. Since N = 2, the routers receiving the re-broadcast signal do not re-broadcast the received packet. In this TSB transmission method, a single hop (n = 1) can be referred to as a single hop broadcast (SHB).
도 5(b)에서, TSB 패킷 헤더는 베이직 헤더, 커먼 헤더 및 확장 헤더를 포함한다. 커먼 헤더의 HT 필드가 TSB를 지시하고, 확장 헤더는 SN 필드, SO PV(Source Position Vector) 필드를 포함한다. 포함된 필드에 대한 설명은 아래와 같다.5 (b), the TSB packet header includes a basic header, a common header, and an extension header. The HT field of the common header indicates the TSB, and the extension header includes an SN field and an SO PV (Source Position Vector) field. The description of the included fields is as follows.
SN(Sequence Number): 시퀀스 넘버 필드는 패킷 중복성을 검사하기 위해 사용되는 값을 지시한다. 시퀀스 넘버 필드의 값은 소스에서 패킷을 전송할 때 1씩 증가된다. 수신 라우터에서는 시퀀스 넘버(또는, 시퀀스 넘버 및 TST 값)를 사용함으로써 패킷의 중복 수신 여부를 결정할 수 있다. SN은 멀티 홉 전송 시 사용되는 값이다.SN (Sequence Number): The sequence number field indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when transmitting packets from the source. In the receiving router, it is possible to determine whether or not to receive a packet by using a sequence number (or a sequence number and a TST value). SN is the value used for multi-hop transmission.
SO PV: 소스의 위치를 나타내며, 롱(long) 포지션 벡터 포맷이 될 수 있다.SO PV: Indicates the position of the source and can be a long position vector format.
TSB 헤더의 경우 홉수로 전송 회수를 제한하므로, 목적지 주소가 생략될 수 있다.In the case of the TSB header, the number of transmissions is limited by the number of hops, so the destination address may be omitted.
도 6은 본 발명의 다른 일 실시예에 따른 SHB(Single Hop Broadcast) 타입 지오네트워킹 방법 및 SHB 패킷 헤더 구성을 나타낸다.6 illustrates a SHB (Single Hop Broadcast) type geo-networking method and an SHB packet header configuration according to another embodiment of the present invention.
도 6(a)는 SHB(Single Hop Broadcast) 타입의 데이터 전달 방법을 나타내고, 도 5(b)는 SHB 헤더 구성을 나타낸다.FIG. 6A shows a data transmission method of SHB (Single Hop Broadcast) type, and FIG. 5B shows a SHB header configuration.
SHB는 상술한 TSB에서 홉수가 1(n=1)인 경우에 해당한다. SHB 패킷은 소스 라우터 전송 범위 내의 라우터들에게만 전송된다. 가장 적은 레이턴시(Latency)로 데이터가 전송될 수 있으므로, SHB는 CAM과 같은 안전 메세지 전송에 사용될 수 있다. 도 6(a)에서와 같이 소스(S)의 1홉 범위 라우터들(N1, N2, N3)에게만 패킷이 전송된다.The SHB corresponds to a case in which the number of hops is 1 (n = 1) in the TSB described above. SHB packets are transmitted only to routers within the source router transmission range. Since data can be transmitted with the lowest latency, the SHB can be used for transmission of security messages such as CAM. Packets are transmitted only to the one-hop range routers N1, N2 and N3 of the source S as shown in FIG. 6 (a).
도 6(b)에서, SHB 패킷 헤더는 베이직 헤더, 커먼 헤더 및 확장 헤더를 포함한다. 커먼 헤더의 HT 필드가 TSB를 지시하고, 확장 헤더는 SO PV(Source Position Vector) 필드를 포함한다. 포함된 필드에 대한 설명은 아래와 같다.6 (b), the SHB packet header includes a basic header, a common header, and an extension header. The HT field of the common header points to the TSB, and the extension header contains an SO PV (Source Position Vector) field. The description of the included fields is as follows.
SO PV: 소스의 위치를 나타내며, 롱(long) 포지션 벡터 포맷이 될 수 있다.SO PV: Indicates the position of the source and can be a long position vector format.
SHB 패킷의 경우 홉수로 전송 회수를 제한하므로, 목적지 주소가 생략될 수 있다. 멀티홉 전송되지 않으므로, 중복 검사를 위한 SN 필드도 생략될 수 있다.In case of SHB packet, the destination address can be omitted because the number of times of transmission is limited by the number of hops. Since the multi-hop transmission is not performed, the SN field for redundancy check can also be omitted.
도 7은 본 발명의 다른 일 실시예에 따른 GBC(Geographically-Scope Broadcast)/GAC(Geographically-Scoped Anycast) 타입 지오네트워킹 방법 및 BC/GAC 패킷 헤더 구성을 나타낸다.FIG. 7 illustrates a Geographically-Scope Broadcast (GBC) / Geographic-Scoped Anycast (GAC) type geo-networking method and a BC / GAC packet header according to another embodiment of the present invention.
도 7(a)는 GBC(Geographically-Scope Broadcast)/GAC(Geographically-Scoped Anycast) 타입의 데이터 전달 방법을 나타내고, 도 4(b)는 GBC/GAC 헤더 구성을 나타낸다.FIG. 7A shows a GBC (Geographically-Scope Broadcast) / GAC (Geographically-Scoped Anycast) type data transmission method, and FIG. 4B shows a GBC / GAC header configuration.
지오브로드캐스트(GeoBroadcast)/GBC는 특정 지역의 모든 라우터로 패킷을 브로트캐스트하는 전송 방식이고, 지오애니캐스트(GeoAnycast)/GAC는 특정 지역 내에서 처음 패킷을 수신하는 하나의 라우터에게만 패킷을 전송하는 전송 방식이다. GBC에서, 소스 라우터로부터 전달된 데이터가 특정 목적지(destination) 영역에 전달되면, 패킷은 정해진 영역 내에서 브로드캐스트된다. GAC에서, 특정 목적지 영역 내의 하나의 라우터로 패킷이 전달되면, 패킷은 더이상 전송되지 않는다.GeoBroadcast / GBC is a transmission method that broadcasts packets to all routers in a certain area. GeoAnycast / GAC transmits packets to only one router that receives the first packet in a specific area. Transmission method. In the GBC, when the data transferred from the source router is delivered to a specific destination area, the packet is broadcast in a predetermined area. In the GAC, when a packet is delivered to one router in a specific destination area, the packet is no longer transmitted.
도 7(b)에서, GBC/GAC 헤더는 베이직 헤더, 커먼 헤더 및 확장 헤더를 포함한다. 커먼 헤더의 HT 필드가 GBC 또는 GAC를 지시하고, 확장 헤더는 SN 필드, SO PV(Source Position Vector) 필드, 목적지 영역 정보를 포함한다. 목적지 영역 정보는 목적지 영역 중심의 위도(GeoAreaPosLatitude) 필드, 경도(GeoAreaPosLongitude) 필드 및 영역의 범위를 알려주기 위한 거리 필드들(Distance a, b) 및 각도(angle) 필드를 포함한다.7 (b), the GBC / GAC header includes a basic header, a common header, and an extension header. The HT field of the common header indicates the GBC or the GAC, and the extension header includes an SN field, an SO PV (Source Position Vector) field, and destination area information. The destination area information includes a GeoAreaPosLatitude field, a GeoAreaPosLongitude field and a distance field (Distance a, b) and an angle field for indicating a range of the area.
SN(Sequence Number): 시퀀스 넘버 필드는 패킷 중복성을 검사하기 위해 사용되는 값을 지시한다. 시퀀스 넘버 필드의 값은 소스에서 패킷을 전송할 때 1씩 증가된다. 수신 라우터에서는 시퀀스 넘버(또는, 시퀀스 넘버 및 TST 값)를 사용함으로써 패킷의 중복 수신 여부를 결정할 수 있다. SN은 멀티 홉 전송 시 사용되는 값이다.SN (Sequence Number): The sequence number field indicates a value used for checking packet redundancy. The value of the sequence number field is incremented by one when transmitting packets from the source. In the receiving router, it is possible to determine whether or not to receive a packet by using a sequence number (or a sequence number and a TST value). SN is the value used for multi-hop transmission.
SO PV: 소스의 위치를 나타내며, 롱(long) 포지션 벡터 포맷이 될 수 있다.SO PV: Indicates the position of the source and can be a long position vector format.
DE PV: 목적지의 위치를 나타내며, 숏(short) 포지션 벡터 포맷이 될 수 있다.DE PV: Indicates the location of the destination and can be a short position vector format.
도 8은 본 발명의 다른 일 실시예에 따른 비콘 타입 지오네트워킹 및 그에 따른 비콘 패킷 헤더 구성을 나타낸다.FIG. 8 illustrates a beacon type geo-networking according to another embodiment of the present invention, and a beacon packet header according to the present invention.
도 8은 비콘 패킷의 헤더 구성을 나타낸다. 비콘 패킷 헤더는 베이직 헤더, 커먼 헤더 및 확장 헤더를 포함하고, 확장 헤더는 SO PV 정보를 포함할 수 있다. 8 shows a header configuration of a beacon packet. The beacon packet header includes a basic header, a common header, and an extension header, and the extension header may include SO PV information.
비콘 패킷은 상술한 SHB 패킷 헤더와 유사하게 구성될 수 있다. 차이점은, SHB 패킷은 뒤에 메시지가 부가될 수 있어 CAM과 같은 데이터를 전달하는데 사용되고, 비콘은 데이터가 부가되지 않고 헤더 자체로 사용되는 것이다. SHB를 사용한 CAM 또는 비콘은 주기적으로 전송될 수 있다. CAM 또는 비콘을 전송 및 수신함으로써 라우터는 주변 라우터들의 위치 정보를 획득하고, 이 위치 정보를 사용하여 라우팅을 수행할 수 있다. 실시예로서, CAM이 전송되면 비콘은 전송되지 않을 수도 있다.The beacon packet may be configured similar to the SHB packet header described above. The difference is that the SHB packet is used to carry data such as a CAM after which a message can be appended, and a beacon is used for the header itself without data being appended. CAM using SHB or beacon can be transmitted periodically. By transmitting and receiving the CAM or the beacon, the router obtains the location information of neighboring routers, and can perform routing using this location information. As an example, if the CAM is transmitted, the beacon may not be transmitted.
도 9는 본 발명의 실시예에 따른 LS(Location Service) 요청 패킷 헤더 및 LS 응답 패킷 헤더의 구성을 나타낸다.FIG. 9 shows a structure of an LS (Location Service) request packet header and an LS response packet header according to an embodiment of the present invention.
도 9(a)는 LS 요청 패킷 헤더를, 도 9(b)는 LS 응답 패킷 헤더를 나타낸다.Fig. 9 (a) shows the LS request packet header, and Fig. 9 (b) shows the LS response packet header.
소스 라우터는 자신의 위치 테이블에 목적지 정보가 없는 경우, 주변에 목적지에 대한 지오네트워킹 어드레스 정보(GN_ADDR)를 요청할 수 있다. 이러한 주소 정보 요청은 LS 요청 패킷은 LS 요청 정보(LS_request)를 전송함으로써 수행될 수 있다. LS 요청 패킷을 수신한 라우터의 로케이션 테이블에 소스 라우터가 요청한 정보가 포함되어 있는 경우, 해당 라우터는 LS 응답 정보(LS_reply)를 전송할 수 있다. 또한, 목적지의 라우터가 LS 요청 정보에 대해 LS 응답 정보를 전송할 수 있다.If there is no destination information in its location table, the source router can request geo-networking address information (GN_ADDR) for the destination in the vicinity. This address information request can be performed by transmitting an LS request packet (LS request) to the LS request packet. If the location table of the router receiving the LS request packet contains the information requested by the source router, the router can transmit LS response information (LS_reply). In addition, the router at the destination can transmit the LS response information to the LS request information.
LS 응답 정보는 GN_ADDR의 포지션 벡터 정보를 포함한다. 소스 라우터는 LS 응답 정보를 통해 위치 테이블을 업데이트할 수 있다. 소스 라우터는 응답으로 수신한 지오네트워킹 어드레스 정보를 사용함으로써 GUC 전송을 수행할 수 있다.The LS response information includes position vector information of GN_ADDR. The source router may update the location table via the LS response information. The source router can perform the GUC transmission by using the received geo-networking address information in response.
도 9(a)에서, LS 요청 패킷 헤더의 구성은 GUC 헤더와 유사하다. LS 요청 패킷 헤더에서, GUC 헤더의 목적지 어드레스 필드 대신 지오네트워킹 어드레스 요청 필드(RequestGN_ADDR)가 포함된다.9 (a), the configuration of the LS request packet header is similar to the GUC header. In the LS request packet header, a geo networking address request field (RequestGN_ADDR) is included in place of the destination address field of the GUC header.
도 9(b)에서, LS 응답 패킷 헤더 구성은 GUC 패킷 헤더와 동일하다. 다만, SO PV 필드는 라우터의 포지션 벡터 정보를 포함하고, DE PV 필드는 요청을 전송한 라우터의 포지션 벡터 정보를 포함한다.9 (b), the LS response packet header configuration is the same as the GUC packet header. However, the SO PV field includes the position vector information of the router, and the DE PV field includes the position vector information of the router that transmitted the request.
도 10은 본 발명의 실시예에 따른 포지션 벡터 정보를 나타낸다.FIG. 10 shows position vector information according to an embodiment of the present invention.
상술한 바와 같이, 지오네트워킹 패킷 헤더는 위치와 관련된 포지션 벡터(PV) 필드를 포함한다. 포지션 벡터의 타입은 롱(long) PV와 숏(short) PV를 포함한다. 도 10(a)는 롱 포지션 벡터 정보를, 도 10(b)는 숏 포지션 벡터 정보를 나타낸다.As described above, the geo-networking packet header includes a position vector (PV) field associated with a location. The types of position vectors include long PV and short PV. 10 (a) shows long position vector information, and FIG. 10 (b) shows short position vector information.
도 10(a)와 같이, 롱 포지션 벡터 정보는 아래와 같은 하위 필드들을 포함한다.As shown in FIG. 10 (a), the long position vector information includes the following subfields.
GN_ADDR: 지오네트워킹 어드레스 필드는 총 64 비트로 구성될 수 있다. 지오네트워킹 전송을 하는 지오애드혹 라우터는 하나의 유일한 지오네트워킹 어드레스 값을 갖는다. 지오네트워킹 어드레스 필드는 아래와 같은 하위 필드들을 포함할 수 있다.GN_ADDR: The geo-networking address field can consist of a total of 64 bits. A geo ad-hoc router with geo-networking transport has a unique geo-networking address value. The geo-networking address field may include the following sub-fields.
a) M: 지오네트워킹 어드레스인지 메뉴얼하게 설정된 값인지 구별하기 위한 필드. 실시예로서, 값이 '1'이면 매뉴얼하게 설정된 값이 될 수 있음.a) M: Field to distinguish between geo networking address and manually set value. As an example, if the value is '1', it may be a manually set value.
b) ST: ITS-S 타입 필드는 ITS 스테이션의 타입을 지시한다. ITS-S 타입은 보행자(pedestrian), 자전거 주행자(cyclist), 모페드(moped), 모터사이클(motorcycle), 승용차(passenger car), 버스, 경트럭, 중트럭, 트레일러, 특별 차량(special vehicle), 트램, RSU를 포함할 수 있다.b) ST: The ITS-S type field indicates the type of ITS station. The ITS-S type can be used for pedestrians, bicycle cyclists, mopeds, motorcycles, passenger cars, buses, light trucks, heavy trucks, trailers, special vehicles, , Trams, RSUs.
c) MID: V2X 장치 식별 정보로서, MAC 어드레스가 사용될 수 있다.c) MID: As the V2X device identification information, the MAC address can be used.
TST(TimeSTamp): 타입 스탬프 필드는 ITS 스테이션이 지오애드혹 라우터에서 위도/경도 값을 획득한 시간을 지시한다. 밀리초(millisecond) 단위로서, UTC(Universal Time Coordinated) 값이 사용될 수 있다.TST (TimeSTamp): The Type Stamp field indicates the time at which the ITS station obtained the latitude / longitude value on the geo ad-hoc router. As a millisecond unit, a Universal Time Coordinated (UTC) value may be used.
LAT(Latitude), Long(Longitude): 위도 필드 및 경도 필드는 지오애드혹 라우터의 위도 값, 경도 값을 지시한다.LAT (Latitude), Long (Longitude): The latitude and longitude fields indicate latitude and longitude values of the geo ad-hoc routers.
PAI(Position Accuracy Indicator): 지오애드혹 라우터 위치의 정확도를 지시한다.PAI (Position Accuracy Indicator): Indicates the accuracy of geo ad-hoc router location.
S(Speed): 지오애드혹 라우터의 속도를 지시한다.S (Speed): Indicates the speed of the geo ad-hoc router.
H(Heading): 지오애드혹 라우터의 방향을 지시한다.H (Heading): Indicates the direction of the geo ad hoc router.
도 10(b)와 같이, 숏 포지션 벡터 정보는 GN_ADDR 필드, TST 필드, LAT 필드, Long 필드를 포함한다. 각 필드에 대한 설명은 롱 포지션 벡터에 대해 상술한 바와 같다.10 (b), the short position vector information includes a GN_ADDR field, a TST field, a LAT field, and a Long field. The description of each field is as described above for the long position vector.
지오네트워킹 전송을 위해 다양한 패킷 포워딩 방법이 사용될 수 있다. 예를 들면, 그리디(greedy) 포워딩 알고리즘, 컨텐션-기반(contention-based) 포워딩 알고리즘, 비-영역(non-area) 컨텐션-기반 포워딩 알고리즘, 영역 컨텐션-기반 포워딩 알고리즘, 영역 어드밴스드 포워딩 알고리즘 등이 사용될 수 있다. 포워딩 알고리즘은 데이터를 목적하는 영역에 효과적으로 전달 및 분산시키기 위해 사용된다. 그리디 포워딩 알고리즘의 경우는 소스 라우터가 포워딩 라우터를 결정하고, 컨텐션-기반 포워딩 알고리즘의 경우는 수신 라우터가 패킷을 포워딩할지 여부를 컨텐션을 이용하여 결정한다. 이하에서, 지오네트워킹 알고리즘을 프로세싱하는 V2X 장치/라우터를 에고 라우터라고 지칭할 수도 있다.Various packet forwarding methods can be used for geo-networking transport. For example, a greedy forwarding algorithm, a contention-based forwarding algorithm, a non-area contention-based forwarding algorithm, an area contention-based forwarding algorithm, an area advanced forwarding Algorithm or the like may be used. The forwarding algorithm is used to effectively transfer and distribute the data to the desired area. In the case of the greedy forwarding algorithm, the source router determines the forwarding router, and in the case of the contention-based forwarding algorithm, the receiving router determines whether to forward the packet using the contention. In the following, a V2X device / router that processes geo-networking algorithms may be referred to as an ego router.
지오네트워킹에 있어서, 각 V2X 장치는 라우터의 기능을 수행하며, 패킷의 라우팅을 결정하는 애드혹(ad hoc) 방법을 사용할 수 있다. 각 V2X 장치가 차량의 위치 정보, 속도 정보, 헤드 방향 정보를 주변에 전송하고, 이러한 정보를 사용하여 각 V2X 장치는 패킷의 라우팅을 결정할 수 있다. 주기적으로 전달받은 정보는 네트워크&트랜스포트 레이어의 LocT(로케이션 테이블, Location Table)에 저장되고, 저장된 정보는 일정 시간이 지나면 타임 아웃될 수 있다. LocT는 LocTE(Location Table Entry)에 저장될 수도 있다. In geo-networking, each V2X device performs the function of a router and can use an ad hoc method to determine the routing of the packet. Each V2X device transmits location information, speed information, and heading direction information of the vehicle around, and using this information, each V2X device can determine the routing of the packet. The information received periodically is stored in the LocT (Location Table) of the network & transport layer, and the stored information can be timed out after a certain period of time. LocT may be stored in a LocTE (Location Table Entry).
지오네트워킹 프로토콜 동작을 위해서, 각각의 애드혹 라우터가 다른 애드혹 라우터에 대한 정보를 갖고 있어야 한다. 주변 라우터에 대한 정보는 SHB 또는 비콘 패킷을 통해 수신될 수 있다. 라우터는 새로운 정보가 수신되면 LocT를 업데이트할 수 있다. SHB 또는 비콘 패킷의 전송 주기는 채널 상태에 따라서 바뀔 수 있다. 위치/로케이션 테이블은 LocT로 지칭할 수도 있다.For geo-networking protocol operation, each ad hoc router must have information about the other ad hoc routers. Information about the neighboring routers may be received via SHB or beacon packets. Routers can update LocT when new information is received. The transmission period of the SHB or the beacon packet may be changed according to the channel state. The location / location table may also be referred to as LocT.
주변 라우터에 대한 정보는 LocT에 저장되며, 저장되는 정보는 아래와 같은 정보 중 적어도 하나를 포함할 수 있다. LocT에 저장된 정보는 소프트-스테이트 상태로 설정된 수명(lifetime)이 만료되면 리스트에서 삭제될 수 있다.Information about the neighboring routers is stored in the LocT, and the stored information may include at least one of the following information. The information stored in the LocT may be deleted from the list when the lifetime set in the soft-state state has expired.
GN_ADDR: ITS 스테이션의 지오-네트워크 주소GN_ADDR: Geo-network address of ITS station
Type of ITS-S: ITS 스테이션의 타입으로, 예를 들면 차량인지 RSU 인지를 지시함.Type of ITS-S: Indicates the type of ITS station, for example, vehicle or RSU.
Version: ITS 스테이션에 사용된 지오-네트워킹 버전Version: Geo-networking version used for ITS station
Position vector PV: 포지션 벡터 정보는 지리적(geographical) 포지션 정보, 속도 정보, 헤드 방향(Heading) 정보, 위치 정보 측정 시간을 알려주는 타임 스탬프 정보, 제공 위치의 정확도를 지시하는 PAI(Position accuracy indicator) 정보 중 적어도 하나를 포함할 수 있다.Position vector PV: The position vector information includes geographical position information, velocity information, heading information, time stamp information indicating the position information measurement time, position accuracy indicator (PAI) information indicating the accuracy of the position providing information Or the like.
Flag LS_PENDING(LS_PENDING 플래그): 현재 LocT에 목적지에 대한 주소가 없어서 위치(location) 서비스 리퀘스트가 진행되는 경우 이를 지시하는 플래그Flag LS_PENDING (LS_PENDING flag): A flag indicating when a location service request is in progress because the current LocT does not have an address for the destination
FLAG IS_NEIGHBOUR(IS_NEIGHBOUR 플래그): 통신 범위 내에 통신 가능한 지오애드혹 라우터가 존재하는지를 지시하는 플래그FLAG IS_NEIGHBOUR (IS_NEIGHBOUR flag): A flag indicating whether there is a geo ad-hoc router capable of communicating within communication range
DPL: 소스 GN_ADDR에 대한 중복 패킷 리스트(Duplicate Packet List)DPL: Duplicate Packet List for source GN_ADDR
타입스탬프: 중복의 마지막임을 알리는 마지막 패킷의 타임 스탬프Type Stamp: The time stamp of the last packet indicating the end of duplication
PDR(Packet Data Rate): 지오애드혹 라우터에서 유지해야하는 패킷 전송율PDR (Packet Data Rate): Packet data rate to be maintained in geo ad hoc routers
도 11은 본 발명의 실시예에 따른 그리디(greedy) 포워딩 알고리즘의 패킷 전달 방법을 나타낸다.11 shows a packet forwarding method of a greedy forwarding algorithm according to an embodiment of the present invention.
그리디 포워딩 알고리즘은 샌더가 자신이 알고 있는 이웃 라우터들 중 누구에게 패킷을 전달할지를 결정한다. 샌더의 LocT(Location Table)는 주기적으로 분포되는 SHB 또는 비콘 패킷을 통해 최신 값으로 업데이트될 수 있다. 샌더는 LocT로부터 목적지에 가장 가까운 라우터를 선택하고, 이를 통해 가장 적은 홉으로 목적지까지 패킷이 전달될 수 있다.The greedy forwarding algorithm determines which of the neighbor routers the sander will know about to forward the packet to. The LocT (Locator Table) of the sander can be updated to the latest value through a periodically distributed SHB or beacon packet. The sander selects the router closest to the destination from the LocT, which allows the packet to be delivered to the destination with the least number of hops.
도 11에서, 소스 라우터의 통신 범위 내에 라우터 1~5가 존재한다. 소스라우터는 목적지에 가장 가까운 라우터 2의 MAC 어드레스를 링크 레이어 목적지 주소로 설정하여 패킷을 전송한다.11, routers 1 to 5 exist in the communication range of the source router. The source router transmits the packet by setting the MAC address of the router 2 closest to the destination to the link layer destination address.
그리디 포워딩 알고리즘은 버퍼링을 사용하지 않고, 라우터 간의 연결이 끊어지지 않는 한 패킷을 목적지까지 빠르게 전달할 수 있다. 그러나 라우터 간의 연결이 끊기는 경우 즉 다음 홉을 전송할 라우터가 전송 범위에서 벗어나거나 사라지는 경우, 패킷을 전달할 수 없어 신뢰도가 떨어질 수 있다.The Greedy Forwarding Algorithm does not use buffering, and can forward a packet to its destination as fast as it can without breaking the connection between routers. However, if the connection between the routers is lost, that is, if the router to which the next hop is to be transmitted deviates from the transmission range or disappears, the reliability of the packet can not be transmitted.
이하에서는 컨텐션(contension) 기반 포워딩 알고리즘의 패킷 전달 방법에 대해 설명한다.Hereinafter, a packet delivery method of a contention-based forwarding algorithm will be described.
컨텐션 기반(contension-based) 포워딩 알고리즘은 상술한 그리디 포워딩 알고리즘과 달리 수신기가 패킷을 전달할지 여부를 컨텐션에 의해 결정한다. 샌더가 브로드캐스트한 패킷을 수신한 모든 수신기는 잠재적인 포워더가 될 수 있다. 수신기는 거리에 따라 각자 타이머를 설정하고, 타이머가 만료된 수신기가 먼저 패킷을 포워딩한다. 타이머가 만료될 때까지 다른 수신기들로부터 패킷을 수신하지 못하면, 수신기는 타이머가 만료되면 패킷을 포워딩한다. 타이머가 만료되기 전에 패킷을 수신하면, 수신기는 자신의 타이머를 아웃시키고 패킷을 포워딩하지 않는다. The contention-based forwarding algorithm determines, by contention, whether the receiver will forward the packet, unlike the greedy forwarding algorithm described above. Any receiver that receives a packet broadcast by the sander can be a potential forwarder. The receiver sets its own timer according to the distance, and the receiver whose timer has expired first forwards the packet. If the receiver does not receive a packet from other receivers until the timer expires, the receiver forwards the packet when the timer expires. If a packet is received before the timer expires, the receiver will turn its timer off and will not forward the packet.
컨탠션-기반 포워딩 알고리즘은 그리디 포워딩 알고리즘과 달리 주변 이웃 라우터들의 위치를 알 필요가 없다. 주기적으로 SHB 패킷이나 비콘 패킷이 전송되지 않아도, 즉 로케이션 테이블이 없어도 패킷 포워딩이 수행될 수 있다. 복수의 후보 전달자가 존재하므로, 신뢰도(reliability)가 높아지고 목적지까지의 패킷 전달 가능성이 높아질 수 있다. 그러나 패킷 전달에 버퍼링 시간이 필요하여 레이턴시가 증가할 수 있다. 또한, 추가로 버퍼 사용이 필요하다.Contention-based forwarding algorithms do not need to know the location of neighboring routers, unlike the greedy forwarding algorithm. The packet forwarding can be performed even if the SHB packet or the beacon packet is not periodically transmitted, i.e., the location table is not present. Since there are a plurality of candidate forwarders, the reliability may be high and the probability of delivering packets to the destination may be high. However, buffering time is required for packet delivery and latency may increase. In addition, additional buffer usage is required.
도 12는 본 발명의 실시예에 따른 비-영역(non-area) 컨텐션-기반(contension-based) 알고리즘의 패킷 전달 방법을 나타낸다.12 illustrates a packet delivery method of a non-area contention-based algorithm according to an embodiment of the present invention.
비-영역(non-area) 컨텐션 기반 알고리즘은 목적지 방향으로 패킷을 전달하기 위해 사용된다. 도 12에서, 소스 라우터(S)는 패킷 전송을 위해, 패킷을 브로드캐스팅할 수 있다. 소스 라우터의 통신 범위 내에 있는 라우터들(1~5)이 패킷을 수신한다. 라우터들 중 목적지에 가장 가까운 라우터만이 전달자 후보(forwarding candidate)가 될 수 있다. 도 12에서 라우터들(1~3)이 전달자 후보가 될 수 있다.Non-area contention-based algorithms are used to deliver packets in the destination direction. In Fig. 12, the source router S may broadcast packets for packet transmission. Routers (1 to 5) within the communication range of the source router receive the packet. Of routers, only the router closest to the destination can be a forwarding candidate. In Fig. 12, the routers 1-3 can be forwarder candidates.
전달자 후보들은 수신 패킷을 CBF(Contention-based Forwarding) 패킷 버퍼에 저장하고 타이머를 설정할 수 있다. 타이머는 소스와 거리가 멀수록 작은 값으로 설정될 수 있다. 도 11에서, 라우터 1의 타이머는 25ms로, 라우터 2의 타이머는 10ms로, 라우터 3의 타이머는 20ms로 각각 설정될 수 있다. 타이머가 종료된 라우터는 버퍼링한 패킷을 브로드캐스트한다.Forwarder candidates can store the received packet in a Contention-based Forwarding (CBF) packet buffer and set a timer. The timer can be set to a smaller value as the distance from the source increases. In Fig. 11, the timer of the router 1 can be set to 25 ms, the timer of the router 2 to 10 ms, and the timer of the router 3 to 20 ms, respectively. When the timer expires, the router broadcasts the buffered packet.
타이머가 제일 먼저 종료되는 라우터 2가 패킷을 브로드캐스트한다. 라우터 2가 브로드캐스트한 패킷을 수신한 라우터 1 및 라우터 3은 자신의 타이머를 정지시키고 버퍼에 저장한 패킷을 삭제한다. 그러나 라우터 2가 사라지거나 라우터 2의 통신 범위 내에 라우터 1 및 라우터 3이 존재하지 않으면, 라우터 1 및 라우터 3의 타이머는 여전히 유효하고, 따라서 타이머가 먼저 0이 되는 라우터가 패킷을 브로드캐스팅한다. Router 2, whose timer expires first, broadcasts the packet. Router 1 and Router 3, which have received the packet broadcasted by Router 2, stop their timer and delete the packet stored in the buffer. However, if Router 2 disappears or if Router 1 and Router 3 do not exist within the communication range of Router 2, the timers of Router 1 and Router 3 are still valid, and thus the router that broadcasts the packet first becomes a timer of 0.
도 13은 본 발명의 실시예에 따른 영역(area) 컨텐션-기반(contention-based) 알고리즘의 패킷 전달 방법을 나타낸다. 13 shows a packet delivery method of an area contention-based algorithm according to an embodiment of the present invention.
영역 컨텐션-기반 포워딩 알고리즘은 일정 지역에 효율적으로 데이터를 퍼뜨리는 것을 목적으로 한다. 따라서, 정해진 목적지가 없으며 타이머 설정은 소스와의 거리만을 고려하여 결정될 수 있다. 영역 컨텐션 기반 알고리즘은 라우터가 특정 영역에 속한 경우 진행되며, 해당 영역 내에서 빠르게 정보를 분산/전달하는 것이 목적이다. The area contention-based forwarding algorithm aims at efficiently spreading data in a certain area. Therefore, there is no fixed destination and the timer setting can be determined only considering the distance from the source. The area contention based algorithm is performed when the router belongs to a specific area, and it is aimed at rapidly distributing / transmitting information within the area.
도 13에서, 소스 라우터(S)가 브로드캐스트한 패킷은 라우터 1~라우터 6에게 전달된다. 소스 라우터에서 가장 먼 라우터 2가 먼저 패킷을 브로드캐스트하고, 이를 수신한 라우터 1 및 라우터 3은 타이머를 정지하고 동일 패킷을 포워딩하지 않는다. 라우터 4~6은 라우터 2가 포워딩한 패킷을 수신하지 못한다. 따라서 라우터 4~6은 각자의 타이머를 동작시키고, 타이머가 종료되면 수신 패킷을 브로드캐스트한다. 라우터 5가 패킷을 포워딩하면, 패킷을 수신한 라우터 4는 자신의 타이머를 종료시키고 전송 준비 중인 패킷을 버퍼에서 제거한다. 그리고 다른 라우터가 포워딩한 패킷을 수신하지 못한 라우터 6은 자신의 타이머가 만료되면 패킷을 포워딩한다. 영역 컨텐션 기반 알고리즘의 경우, 소스 라우터는 특정 영역 내에서 전 방향으로 패킷을 빠르게 전달 및 공유할 수 있다.In Fig. 13, a packet broadcasted by the source router S is transmitted to the routers 1 to 6. Router 2, which is farthest from the source router, broadcasts the packet first, and Router 1 and Router 3, which receive it, stop the timer and do not forward the same packet. Routers 4 and 6 do not receive packets forwarded by router 2. Therefore, routers 4 to 6 operate their respective timers and broadcast received packets when the timer expires. When the router 5 forwards the packet, the router 4 that has received the packet ends its timer and removes the packet being prepared for transmission from the buffer. Router 6, which has not received the packet forwarded by another router, forwards the packet when its timer expires. In the case of the area contention-based algorithm, the source router can quickly forward and share packets in a certain area in all directions.
도 12 및 도 13의 실시예에 추가로 영역(area) 어드밴스드(advanced) 포워딩 알고리즘이 사용될 수 있다. 영역 어드밴스드 포워딩 알고리즘은 상술한 그리디 포워딩 알고리즘과 컨텐션 기반 포워딩 알고리즘을 조합하여 동작하는 알고리즘이다. 영역 어드밴스드 포워딩 알고리즘은, 컨텐션 기반 포워딩 알고리즘과 같이 딜레이를 최소화하기 위해, 특정 방향으로는 그리디 포워딩 알고리즘을 사용하여 패킷을 전달하고, 주변으로는 컨텐션 기반 포워딩 방법을 사용함으로써 전달 효율성을 높일 수 있다.In addition to the embodiments of Figures 12 and 13, an area advanced forwarding algorithm may be used. The area advanced forwarding algorithm is an algorithm that operates by combining the above-described greedy forwarding algorithm and contention-based forwarding algorithm. Area advanced forwarding algorithms, such as contention-based forwarding algorithms, use packet-forwarding algorithms to route packets in certain directions to minimize delays, while contention-based forwarding methods are used to increase delivery efficiency .
특정 목적지에 해당하는 영역까지 패킷을 전달하는 포워딩 알고리즘을 비-영역 알고리즘이라고 지칭한다. 비-영역 알고리즘은 그리디 포워딩 알고리즘과 비-영역 컨텐션 기반 포워딩 알고리즘을 포함한다. 특정 영역에 도착해서 주변에 데이터를 분산시키는 알고리즘을 영역-포워딩 알고리즘이라고 지칭한다. 영역-포워딩 알고리즘은 심플(simple) 지오브로드캐스트 포워딩 알고리즘, 영역 컨텐션 기반 포워딩 알고리즘, 영역 어드밴스드 포워딩 알고리즘을 포함한다.A forwarding algorithm that delivers packets to a specific destination area is called a non-area algorithm. Non-region algorithms include greedy forwarding algorithms and non-area contention-based forwarding algorithms. An algorithm for distributing data around a specific area is called an area-forwarding algorithm. The area-forwarding algorithm includes a simple geo-broadcast forwarding algorithm, an area contention-based forwarding algorithm, and an area advanced forwarding algorithm.
##이하에서는, 더욱 효율적인 그리디 알고리즘에 따른 지오네트워킹 전송 방법에 대해 설명한다.In the following paragraphs, we describe a more efficient method of transmitting geodetic networks according to the greedy algorithm.
IEEE 802.11p 네트워크의 아키텍처에는 베이직 서비스 세트(Basic Service Set; BSS), 독립 베이직 서비스 세트(Independent BSS; IBSS), 확장 서비스 세트(Extended Service Set; ESS)의 세가지 종류가 SS(Service Set)로 정의된다. 이 중 IBSS는 일반적으로 ad-hoc 네트워크라고 하는 인프라가 없는 스테이션(STA)들로 구성되며, BSS는 컨트롤러/마스터 STA로 동작하는 액세스 포인트(AP)를 포함한다. ESS는 분산 시스템(Distribution System, DS)으로 연결된 두개 이상의 BSS 결합체이다. 이들 사이의 관계를 보면, BSS 내의 제어기 또는 액세스 포인트(AP)로서 동작하는 IBSS 내의 STA는 서비스 세트 ID(SSID) 및 다른 정보를 포함하는 비콘을 주기적으로 방송한다. SS(Service Set) 내의 다른 STA는 비콘을 수신하고 비콘에 기초하여 시간 및 주파수를 동기화한다. In the architecture of the IEEE 802.11p network, three types of Basic Service Set (BSS), Independent BSS (IBSS) and Extended Service Set (ESS) are defined as SS (Service Set) do. Among these, the IBSS is composed of stations (STAs) which generally do not have an infrastructure called an ad-hoc network, and the BSS includes an access point (AP) operating as a controller / master STA. An ESS is a combination of two or more BSSs connected by a distribution system (DS). Looking at the relationship between them, a STA in an IBSS acting as a controller or an access point (AP) in the BSS periodically broadcasts a beacon containing a service set ID (SSID) and other information. Another STA in the Service Set (SS) receives the beacon and synchronizes time and frequency based on the beacon.
STA는 동일한 SS의 구성원인 경우에만 서로 통신할 수 있으며 이러한 동일한 SS 아키텍처가 WAVE 응용 프로그램에 사용될 수 있다. 그러나 SS를 형상하는 것은 시간 및 주파수 동기화, 인증 및 연관을 포함하는 복수의 단계를 필요로 하며, 이 단계들은 차량과 같은 일부 안전 응용 프로그램에서 허용할 수 없는 시간 딜레이를 초래한다. 차량의 경우, 복수의 차량이 1초도 안되는 시간 동안 각 무선 링크에 포함될 수 있다. 따라서 차량의 통신에 적합하도록 메세지 대기 시간을 최소화하기 위해 OCB(Outside the Context of a BSS) 모드가 적용된다. OCB 모드는 단일 무선 링크의 서비스 지역 내에 있는 둘 이상의 장치에 적용되며, OCB 모드의 STA는 임의의 SS를 구성하거나 구성원이 아는 임의의 시간에 데이터 및 제어 프레임을 송신 및 수신할 수 있다. 낮은 대기 시간(low latency)의 이점이 있지만, OCB 모드는 MAC 계층에서 인증, 연결 또는 데이터 기밀 서비스를 받지 못하며, WAVE에서 동등한 서비스는 부분적으로 IEEE1609.2에 정의된 상위 계층으로 이동되었다.STAs can communicate with each other only if they are members of the same SS, and these same SS architectures can be used for WAVE applications. However, shaping the SS requires multiple steps, including time and frequency synchronization, authentication and association, which results in an unacceptable time delay in some safety applications such as vehicles. In the case of a vehicle, a plurality of vehicles can be included in each wireless link for less than a second. Therefore, OCB (Outside the Context of a BSS) mode is applied to minimize the message waiting time so as to be suitable for vehicle communication. The OCB mode is applied to two or more devices within a service area of a single wireless link, and an STA in OCB mode can configure and transmit any SD and data and control frames at any time the member knows. While there is an advantage of low latency, OCB mode does not receive authentication, connection or data confidentiality services at the MAC layer, and equivalent services in WAVE have been partially moved to higher layers defined in IEEE 1609.2.
802.11p OCB 모드에서는 낮은 대기시간이 보장되나, 상호 통신에 대한 확인 방법이 지원되지 않는다. 상호 통신이 성공적으로 수행되었는지를 확인할 수 있는 방법이 MAC 레이어에서 제공되지 않는다.802.11p OCB mode guarantees low latency but does not support interoperability. There is no way in the MAC layer to ensure that intercommunication has been successfully performed.
도 14는 본 발명의 실시예에 따른 지오네트워킹 프로토콜에 관련된 서비스 프리미티브(primitive), SDU 및 PDU를 나타낸다.14 shows service primitives, SDUs, and PDUs related to a geo-networking protocol according to an embodiment of the present invention.
네트워킹/트랜스포트 레이어와 연결된 SAP(Service Access Point)들은 도 14와 같다. 각 SAP 에서는 요청/리퀘스트(request)와 확인/컨펌(confirm)의 서비스 프리미티브를 송수신한다. 예를 들어 트랜스포트 레이어에서 지오네트워킹 패킷을 보내는 것을 하위 레이어인 네트워크 레이어에 요청하는 경우, GN-SAP를 통해서 서비스 프리미티브 GN_DATA.request가 사용된다. GN-DATA.request를 수신한 네트워크 레이어는 이 정보에 따라 지오네트워킹 패킷을 생성하고, 이를 IN-SAP를 통해서 LLC 레이어로 전달한다. 요청된 패킷을 보낼 수 있는지 또는 보내지 못하는지를 컨펌 프리미티브를 통해 상위 레이어에 알려준다. 패킷을 받은 경우에는 상위 레이어로 GN-DATA.indication을 전달할 수 있다.The Service Access Points (SAP) connected to the networking / transport layer are shown in FIG. Each SAP sends and receives service primitives of request / request and confirm / confirm. For example, when requesting a network layer that is a sublayer of sending a geo-networking packet from a transport layer, the service primitive GN_DATA.request is used via GN-SAP. The network layer receiving the GN-DATA.request generates a geo-networking packet according to this information and delivers it to the LLC layer through IN-SAP. It informs the upper layer through the CONFIRM primitive whether the requested packet can be sent or not. If a packet is received, GN-DATA.indication can be delivered to the upper layer.
도 15는 본 발명의 실시예에 따른 서비스 프리미티브를 통한 컴펌, 리퀘스트, 인디케이션의 사용 예를 나타낸다.FIG. 15 shows an example of use of a complaint, a request, and an indication through a service primitive according to an embodiment of the present invention.
도 15에서과 같이, GN-DATA,request를 받은 지오네트워킹 레이어는 지오네트워킹 패킷을 생성하고, 이를 IN-SAP를 통해 LLC 레이어로 전달한다. 요청 패킷을 보낼 수 있는지 여부는 컨펌 프리미티브를 통해 상위 레이어로 통지된다. 패킷을 수신된 경우, 상위 레이어로 GN-DATA.indication이 전달된다.As shown in FIG. 15, the ge-networking layer receiving the GN-DATA request transmits geo-networking packets to the LLC layer through IN-SAP. Whether or not the request packet can be sent is notified to the upper layer through the CONFIRM primitive. When a packet is received, GN-DATA.indication is delivered to the upper layer.
도 16은 본 발명의 실시예에 따른 GN-DATA.request의 파라미터를 나타낸다.16 shows parameters of GN-DATA.request according to an embodiment of the present invention.
도 16의 파라미터들 중에서, 동일한 패킷을 몇 번 전송할지 여부는 반복 인터벌(Repetition interval) 및 최대 반복 시간(Maximum repetition time)에 의해 결정될 수 있다.Among the parameters shown in FIG. 16, whether to transmit the same packet several times can be determined by a repetition interval and an maximum repetition time.
도 17은 본 발명의 실시예에 따른 반복 인터벌(Repetition interval) 및 최대 반복 시간(Maximum repetition time)을 나타낸다.FIG. 17 shows a repetition interval and a maximum repetition time according to an embodiment of the present invention.
지오네트워킹 프로토콜의 상위 레이어는 패킷 전달 시 두 개의 파라미터-반복 인터벌 및 최대 반복 시간-을 결정하여 전달한다. 반복 인터벌은 최대 반복 시간 동안 동일한 지오네트워킹 패킷이 반복하여 전송되는 시간 간격(ms)을 나타낸다. 이 값은 옵셔널한 값이며, 사용되지 않으면 패킷 전송은 반복되지 않는다. 최대 반복 시간은 반복 인터벌이 설정된 경우 패킷이 반복되는 기간(ms)을 나타낸다. 반복 인터벌이 사용되지 않으면, 최대 반복 시간의 값도 생략된다. 최대 반복 시간 파라미터는 전송 영역 내에 새로운 라우터가 진입한 경우 전파(dissemination)하려는 데이터를 받을 수 있도록 하는 기능을 수행한다. 또한, 최대 반복 시간 파라미터는 데이터 포워딩 시 경로 손실(path loss)를 대비하여 설정될 수 있다. 퍼실리티 레이어에서 이 파라미터 값들과 메세지를 수신한 지오네트워킹 레이어는, 전달 받은 데이터를 최대 반복 시간 동안 반복 인터벌마다 반복하여 지오네트워킹 패킷을 생성한다.The upper layer of the geo-networking protocol determines and delivers two parameter-repetition interval and maximum repetition time for packet delivery. The repetition interval represents the time interval (ms) in which the same geo-networking packet is repeatedly transmitted for the maximum repetition time. This value is an optional value, and if not used, the packet transmission is not repeated. The maximum repetition time indicates the period (ms) in which the packet is repeated when the repetition interval is set. If the repeat interval is not used, the value of the maximum repeat time is also omitted. The maximum repetition time parameter performs a function to receive data to disseminate when a new router enters the transmission area. Also, the maximum repetition time parameter may be set in preparation for path loss in data forwarding. Upon receipt of these parameter values and messages from the facility layer, the geo-networking layer generates geo-networking packets by repeating the received data for each repetition interval for a maximum repetition time.
상술한 바와 같이, 지오네트워킹 헤더는 시퀀스 넘버 필드를 포함한다. 지오애드혹 라우터는 복수의 홉을 진행하는 과정에서 동일한 패킷의 복수의 복사본을 수신할 수 있다. 이를 패킷 중복(duplication)이라고 지칭할 수 있다. 패킷 중복은 복수의 라우터에서 패킷이 포워딩되는 경우나, 라우팅 루프(loop)가 생기는 경우, 또는 라우터가 오동작하는 경우 발생할 수 있다. 중복된 패킷이 수신된 경우, 이를 제거하기 위해 시퀀스 넘버가 사용된다.As described above, the geo-networking header includes a sequence number field. A geo ad hoc router can receive multiple copies of the same packet in the course of a plurality of hops. This can be referred to as packet duplication. Packet duplication can occur when packets are forwarded from multiple routers, when a routing loop occurs, or when a router malfunctions. When a duplicate packet is received, a sequence number is used to eliminate it.
시퀀스 넘버는 멀티홉 패킷(GUC, TSB, GBC, GAC, LS Request, LR Reply)에만 사용되며, 싱글홉 패킷(비콘, SHB)에는 포함되지 않을 수도 있다. 시퀀스 넘버의 값은 소스 라우터에서 멀티 홉 메세지를 생성할 때마다 1씩 증가된다. 실시예로서, 2^16-1개의 시퀀스 넘버가 생성될 수 있다. 상술한 최대 반복 시간 동안 반복 인터벌에 기초하여 동일 내용의 패킷을 생성하는 경우에도, 반복 생성되는 패킷들에 대해 서로 다른 시퀀스 넘버가 적용된다.The sequence number is used only for a multi-hop packet (GUC, TSB, GBC, GAC, LS Request, LR Reply) and may not be included in a single-hop packet (beacon, SHB). The value of the sequence number is incremented by 1 each time a multi-hop message is generated on the source router. As an example, 2 ^ 16-1 sequence numbers may be generated. Different sequence numbers are applied to the packets repeatedly generated even when packets having the same content are generated on the basis of the repeat interval for the maximum repeat time described above.
시퀀스 넘버 정보를 포함하는 패킷을 수신한 라우터는 패킷 중복 검출/디텍션(packet duplication detection)을 수행할 수 있다. 라우터는 소스 라우터의 어드레스별로 전달받은 시퀀스 넘버 리스트를 생성하고, 이 리스트를 통해 중복 여부를 확인할 수 있다. 예를 들면, 라우터는 수신 패킷의 소스 지오오드레스와 로케이션 테이블의 DPL(Duplication Packet List)를 비교하여 중복 여부를 판단할 수 있다.The router receiving the packet including the sequence number information may perform packet duplication detection. The router generates a sequence number list received by the address of the source router, and can check duplication through this list. For example, the router can compare the source address of the received packet with the DPL (Duplication Packet List) of the location table to determine duplication.
상술한 바와 같이, 그리디 포워딩 알고리즘은 알고 있는 이웃 라우터들 중 패킷을 전달할 라우터를 결정한다. 센더(sender) 내의 로케이션 테이블은 주기적으로 전송되는 SHB 또는 비콘 패킷을 통해 최신 값으로 업데이트된다. 센더의 로케이션 테이블에 포함된 라우터들 중 목적지에 가장 가까운 라우터가 전달자로 선택되며, 이를 통해 가장 적은 홉으로 목적지까지 패킷이 전달될 수 있다. 그리디 포워딩 알고리즘의 경우 전달 라우터들 간의 연결이 끊어지지 않는 한 패킷을 빠르게 목적지에 전달할 수 있다. 그러나 전달 라우터들의 연결 관계가 끊어지면, 패킷이 전달되지 못할 수 있다. 예를 들면, 다음 홉을 전달할 라우터가 전송 범위에서 벗어나거나 사라지는 경우, 패킷을 전달할 방법이 없어 신뢰도가 떨어진다. 다만, 센더 라우터는 동일한 패킷을 반복 전송함으로써 포워딩 라우터가 일시적으로 사라지는 경로 손실에 대응할 수 있다.As described above, the greedy forwarding algorithm determines which of the known neighboring routers will forward the packet. The location table in the sender is updated to the latest value via a periodically transmitted SHB or beacon packet. Among the routers included in the sender's location table, the router closest to the destination is selected as the forwarder, so that packets can be delivered to the destination with the least number of hops. In the case of the greedy forwarding algorithm, packets can be forwarded quickly to the destination unless the connection between the forwarding routers is broken. However, if the connection between the forwarding routers is broken, the packet may not be delivered. For example, if the router that will deliver the next hop is out of range or disappears, there is no way to forward the packet, which reduces reliability. However, the sender router can respond to a path loss in which the forwarding router temporarily disappears by repeatedly transmitting the same packet.
멀티-홉을 통해 패킷을 전송하는 경우, 동일 패킷을 반복 전송하면 패스 로스의 발생 확률을 낮출 수 있다. 다만, 채널 사용 효율에서는 동일 데이터가 중복하여 채널을 점유하므로 비효율적이다. 또한, 패킷 전달 확률을 높이기 위한 반복 회수의 결정이 어렵다. 따라서 이하에서는 멀티-홉 전달 시 컨펌 패킷을 사용하여 채널을 효율적으로 사용하는 방법을 제안한다. 본 발명은 패킷을 받은 전달자/포워더(forwarder) 라우터가 샌더(sender) 라우터에게 패킷을 전달 받았음을 알려주는 방법을 제안한다. 또한, 본 발명은 목적지(destination) 라우터가 최초 패킷 생성 라우터(source)로 패킷을 전달 받았음을 알려주는 방법을 제안한다.When a packet is transmitted through a multi-hop, the probability of occurrence of path loss can be reduced by repeatedly transmitting the same packet. However, channel efficiency is inefficient because the same data overlap and occupy the channel. In addition, it is difficult to determine the number of repetitions to increase the packet delivery probability. Therefore, we propose a method to efficiently use the channel by using the conform packet in the multi-hop transmission. The present invention proposes a method for informing a forwarder / forwarder router that a packet has been received that a packet has been received to a sender router. In addition, the present invention proposes a method of notifying that a destination router has received a packet to an original packet generation router.
그리디 포워딩 방식을 사용하여 멀티-홉 전송 시 자신이 전송한 패킷을 포워더가 전송하였는지 여부를 확인하기 위해, 포워더가 전송한 패킷을 샌더가 수신하여 확인할 수 있다. 수신 패킷 중 전송 패킷과 동일한 패킷을 포워더로부터 수신하면, 샌더는 포워더가 자신의 패킷을 수신하여 전송하고 있음을 확인할 수 있다. 다만, 그리디 포워딩 알고리즘의 경우, 라우터는 최종 MAC 어드레스에 목적지 어드레스를 표기하여 패킷을 전송한다. 그리고 라우터는 해당 목적지 어드레스가 자신의 어드레스가 아니면 패킷을 수신 및 디코딩할 수 없다. 따라서 본 발명은 그리디 포워딩 알고리즘을 사용하는 패킷 전달 방법에서, 신뢰도를 높이고 패킷 반복 전송의 횟수를 낮춤으로써 채널을 효율적으로 사용할 수 있는 방법을 제안한다. 본 발명은 멀티-홉 전송에서 센더에게 컨펌 패킷을 전송하는 경우 및 목적지에서 컴펌 패킷을 전송하는 경우를 제안한다.In the multi-hop transmission using the greedy forwarding method, the sander can receive and confirm the packet transmitted by the forwarder in order to check whether the forwarder has transmitted the packet transmitted by the forwarder. When a packet identical to the transmission packet is received from the forwarder, the sander can confirm that the forwarder has received and transmitted the packet. However, in case of the greedy forwarding algorithm, the router marks the destination address in the last MAC address and transmits the packet. And the router can not receive and decode the packet unless the destination address is its own address. Accordingly, the present invention proposes a method of efficiently using a channel by increasing reliability and reducing the number of packet repetition transmissions in a packet forwarding method using a greedy forwarding algorithm. The present invention proposes a case in which a conform packet is transmitted to a sender in a multi-hop transmission and a case where a complete packet is transmitted in a destination.
1. 센더 컨펌 패킷의 사용1. Use of Sender Confidence Packets
도 18은 본 발명의 실시예에 따른 지오네트워킹 전송 방법을 나타낸다.18 shows a geo-networking transmission method according to an embodiment of the present invention.
도 18은 도로를 운행하던 차량이 사고(accident)나 도로 위험(Road hazard)을 주변 차량들에게 알리기 위해 지오네트워킹 전송을 수행하는 실시예를 나타낸다. 도 18의 경우, 소스 라우터는 메세지가 목적지에 도달했는지 여부를 알 필요는 없다. 소스 라우터는 전달 메세지가 목적지에 잘 도착했는지와 무관하게 경로 손실을 고려하여 복수회 반복하여 메세지를 전송할 수 있다.FIG. 18 shows an embodiment in which a geo-networking transmission is performed to notify a nearby vehicle of an accident or a road hazard when a vehicle traveling on a road is operated. In the case of Fig. 18, the source router need not know whether or not the message reaches the destination. The source router can repeat the message multiple times, taking into account the path loss regardless of whether the forwarding message arrives at the destination well.
도 18과 같이 차량이 도로 상황을 전달하는 경우, 패킷을 전송하는 책임은 포워더에 해당하는 각각의 라우터에게 패킷 전송과 함께 이전된다. 따라서 패킷을 전달받았음을 이전 포워더 또는 소스 라우터에게 알려주는 모드를 컨펌_센더(confirm_sender) 모드로 정의한다. 수신 패킷을 전송한 포워더 또는 소스는 수신 라우터 입장에서는 모두 전송 라우터/센더 라우터에 해당한다.When the vehicle delivers a road condition as shown in FIG. 18, the responsibility for transmitting the packet is transferred to each router corresponding to the forwarder together with the packet transmission. Therefore, the mode that informs the previous forwarder or the source router that the packet has been received is defined as the confirm_sender mode. The forwarder or source that transmitted the received packet corresponds to the transmitting router / sender router in the case of the receiving router.
도 19는 본 발명의 실시예에 따른 그리디 포워딩에서 사용되는 패킷 구조를 나타낸다.19 shows a packet structure used in greedy forwarding according to an embodiment of the present invention.
그리디 포워딩의 경우, 액세스 레이어는 DSAP 필드 및 SSAP 필드를 포함하고, 페이로드에는 지오네트워킹 패킷이 포함된다. 지오네트워킹 패킷은 베이스 헤더, 커먼 헤더, 확장(extended) 헤더를 포함하며, 각 헤더에 대한 설명은 상술한 바와 같다. In the case of greedy forwarding, the access layer includes a DSAP field and an SSAP field, and the payload contains a geo-networking packet. The geo-networking packet includes a base header, a common header, and an extended header. The description of each header is as described above.
멀티-홉 동작에서 동일한 데이터를 반복 전송하는 경우, 전송 라우터는 멀티홉 패킷 GUC, GBC, GAC, LS 요청, LS 응답을 전송할 수 있다. 그리디 포워딩에서, 라우터는 주변 라우터들의 위치, 속도, 방향 등의 정보를 포함하는 로케이션 테이블에서 목적지와 가장 가까운 라우터를 선택하고, 이 라우터의 MAC 어드레스를 지오 네트워킹 패킷을 인캡슐레이팅하는 액세스 레이어 패킷의 MAC 헤더의 목적지 주소로 설정한다.When the same data is repeatedly transmitted in the multi-hop operation, the transmission router can transmit multi-hop packet GUC, GBC, GAC, LS request, LS response. In Greedy Forwarding, a router selects a router closest to a destination in a location table including information on the locations, speeds, directions, and the like of neighboring routers, and transmits the MAC address of the router to an access layer packet To the destination address of the MAC header of the MAC header.
도 20은 본 발명의 실시예에 따른 그리디 포워딩의 패킷 전송 방법을 나타낸다.20 shows a packet transmission method of greedy forwarding according to an embodiment of the present invention.
라우터는 패킷을 생성한다(S20010). 생성되는 패킷은 상위 레이어에서 수신되어 생성되거나, 다른 라우터로부터 포워딩된 패킷이 될 수 있다. The router generates a packet (S20010). The generated packet may be received at the upper layer and generated, or may be the packet forwarded from another router.
라우터는 패킷의 포워딩 여부를 결정할 수 있다(S20020). 패킷이 지오네트워킹 레이어로 전달되는 경우, 패킷이 어떤 타입으로 포워딩될지는 상위 레이어에서 결정될 수 있다. 패킷이 다른 라우터로부터 포워딩된 패킷인 경우, 패킷의 헤더에 포함된 패킷 전송 타입에 의해 패킷 포워딩 여부/방법이 결정될 수 있다. 라우터는, 전송 패킷 타입이 멀티-홉 전송이 필요한 GUC, GBC, GAC, LS 요청, LS 응답 중 하나에 해당하는 경우, 패킷을 포워딩하는 것으로 결정할 수 있다. The router can determine whether to forward the packet (S20020). When a packet is forwarded to the geo-networking layer, the type of forwarding of the packet can be determined in the upper layer. If the packet is a forwarded packet from another router, the packet forwarding method / method can be determined by the packet transmission type included in the header of the packet. The router can decide to forward the packet if the transport packet type corresponds to one of GUC, GBC, GAC, LS request, or LS response requiring multi-hop transmission.
라우터는, 포워딩되는 패킷이 아닌 경우, 패킷을 싱글 홉 브로드캐스팅하거나 패킷을 폐기할 수 있다(S20030). 라우터는 상술한 패킷 타입을 검토하고, SHB 패킷의 경우 패킷을 싱글 홉 브로드캐스팅할 수 있다. 또한, 라우터는 패킷의 중복을 확인하여, 패킷이 중복 패킷인 경우 패킷을 폐기할 수 있다.If the packet is not a forwarded packet, the router may broadcast the packet in a single hop or discard the packet (S20030). The router examines the packet type described above, and in the case of an SHB packet, the packet can be single-hop broadcasted. Also, the router can check the duplication of the packet and discard the packet if the packet is a duplicate packet.
라우터는 패킷을 전송할 수 있다(S20040). 라우터는 패킷을 그리디 포워딩 알고리즘을 사용하여 전송할 수 있다. 그리디 포워딩 알고리즘에 따른 전송 방법은 도 11에서 설명한 바와 같다. 즉 라우터는 로케이션 테이블로부터 포워더를 검색하고, 검색된 포워더로 그리디 포워딩에 따라서 패킷을 전송한다. 라우터는 로케이션 테이블에서 목적지에 가장 가까운 라우터를 포워더로 결정하고, 해당 라우터의 MAC 어드레스를 패킷의 목적지 어드레스로 설정하여 패킷을 전송한다.The router can transmit the packet (S20040). Routers can send packets using a greedy forwarding algorithm. The transmission method according to the greedy forwarding algorithm is as described in FIG. In other words, the router retrieves the forwarder from the location table and transmits the packet according to the greedy forwarding to the retrieved forwarder. The router determines the router closest to the destination in the location table as a forwarder, and transmits the packet by setting the MAC address of the router to the destination address of the packet.
라우터는 컨펌 패킷 수신 여부에 따라 동작한다(S20050). 라우터는 대기 시간(T_wait)을 설정하고, 대기 시간 동안 컨펌 패킷 수신을 기다린다. 대기 시간 내에 컨펌 패킷이 수신되면, 라우터는 패킷을 반복 전송하지 않는다. The router operates according to receipt of the conform packet (S20050). The router sets the wait time (T_wait) and waits for the receipt of the acknowledgment packet during the waiting time. When a conform packet is received within the waiting time, the router does not repeatedly transmit the packet.
컨펌 패킷이 수신되지 않고, 대기 시간이 종료되는 경우(S20060), 라우터는 최대 반복 회수(N)를 확인한다(S20070). 패킷 전송 회수가 최대 반복 회수(N)를 초과하지 않는 경우, 라우터는 패킷을 다시 전송한다. 패킷 전송 회수가 최대 반복 회수(N) 초과하는 경우, 라우터는 패킷을 폐기한다(S20080). 패킷의 최대 반복 횟수는 채널의 상황이나 패킷의 수명에 따라 다르게 설정될 수 있다. When the wait packet is not received and the wait time is terminated (S20060), the router confirms the maximum number of iterations N (S20070). If the number of packet transmissions does not exceed the maximum number of iterations (N), the router retransmits the packet. If the packet transmission count exceeds the maximum number of repetitions (N), the router discards the packet (S20080). The maximum number of repetitions of a packet can be set differently depending on the channel condition or the lifetime of the packet.
도 21은 본 발명의 실시예에 따른 컨펌 패킷 수신 및 패킷 반복 전송을 나타낸다.Figure 21 illustrates conform packet reception and packet repeat transmission in accordance with an embodiment of the present invention.
도 21(a)는 도 17에서 설명한 라우터의 패킷 반복 전송을 나타낸다.Fig. 21 (a) shows packet repetition transmission of the router described in Fig.
도 21(a)에서, 라우터는 최대 반복 시간 동안 반복 인터벌마다 동일 패킷을 재전송한다. 도 21(a)의 실시예에서, 라우터는 동일 패킷을 7번 전송한다.In Fig. 21 (a), the router retransmits the same packet for each repetition interval for the maximum repetition time. In the embodiment of Fig. 21 (a), the router transmits the same packet seven times.
도 21(b)는, 컨펌 패킷을 사용하는 경우 라우터의 패킷 반복 전송을 나타낸다.Fig. 21 (b) shows a packet repetitive transmission of a router when a conform packet is used.
도 21(b)의 경우, 도 20에서 설명한 바와 같이, 라우터는 패킷 전송 후 대기 시간(T_wait) 만큼 컨펌 패킷을 대기한다. 도 21(b-1)과 같이, 제 1 대기 시간 전에 라우터가 컨펌 패킷을 수신하는 경우, 더이상 동일 패킷을 재전송하지 않는다. 도 21(b-2)와 같이 제 1 대기 시간 동안 컨펌 패킷이 수신되지 않으면, 라우터는 동일 패킷을 전송하고, 다시 제 2 대기 시간 동안 컨펌 패킷의 수신을 대기한다. 제 2 대기 시간이 경과하기 전에 컨펌 패킷이 수신되면, 라우터는 패킷 반복 전송을 중단한다. 도 21(b)의 실시예에서 컨펌 패킷을 사용함으로써, 도 21(a)에 비해 최대 6개의 반복 전송이 생략될 수 있다. 다만, 컨펌 패킷이 송수신되어야 하므로, 정해진 반복 회수의 절반보다 작은 회수로 반복 전송되어야 채널 사용에 있어 더 이익이 될 수 있다. 따라서, 도 21(b)의 경우 최대 반복 회수가 3 이하로 설정될 수도 있다. 다만, 컨펌 패킷의 사이즈가 전송 패킷보다 작을 수 있으므로, 여전히 채널 사용 면에서는 효율이 증가될 수 있다.In the case of FIG. 21 (b), as described in FIG. 20, the router waits for a conform packet for a waiting time (T_wait) after packet transmission. As shown in FIG. 21 (b-1), when the router receives a conform packet before the first waiting time, it does not retransmit the same packet any more. As shown in FIG. 21 (b-2), if the CONFESS packet is not received during the first waiting time, the router transmits the same packet and again waits for the reception of the CONFESS packet during the second waiting time. If a CONFIRM packet is received before the second waiting time has elapsed, the router stops transmitting the packet repeatedly. By using a conform packet in the embodiment of FIG. 21 (b), up to six repetitive transmissions can be omitted compared to FIG. 21 (a). However, since a conform packet must be transmitted and received, it is more advantageous to use the channel by repeatedly transmitting the number of times less than half of the predetermined number of repetitions. Therefore, in the case of FIG. 21 (b), the maximum number of repetitions may be set to 3 or less. However, since the size of the conform packet can be smaller than the transmission packet, the efficiency can still be increased in terms of channel usage.
실시예로서, 지오네트워킹 레이어의 상위 레이어에서 반복 전송 여부 및 최대 반복 시간 정보를 제공할 수 있다. 실시예로서, 라우터는 반복 인터벌 간격으로 반복 전송을 하는 대신, 최대 반복 시간 내에서 컨펌 패킷을 수신할 때까지 반복 전송을 시도할 수 있다.As an embodiment, the upper layers of the geo-networking layer can provide information on the repetition transmission and the maximum repetition time. As an example, instead of repeating transmission at intervals of repetition interval, the router may try to repeat transmission until it receives a confirm packet within the maximum repetition time.
최대 반복 회수에 따라서 최대 반복 시간동안 패킷이 몇 번 반복 전송되는지가 결정될 수 있다. 최대 반복 회수는 CBR(Channel Busy Ratio) 값에 기초하여 아래 수학식 1과 같이 결정될 수 있다.Depending on the maximum number of iterations, it can be determined how many times the packet is repeatedly transmitted over the maximum iterative time. The maximum number of iterations can be determined according to the following equation (1) based on the CBR (Channel Busy Ratio) value.
V2X 장치는 802.11에 기반한 애드혹 네트워크에서 통신한다. 애드혹 네트워크에서, 시스템 운영을 안정화하고 특정 주파수 채널에서 트래픽 분산을 위해 DCC(Decentralized Congestion Control)가 사용될 수 있다. DCC 알고리즘을 효과적으로 운용하고, 네트워크 강인성(robustness)을 제공하기 위해 인접 기기들 간에서 CBR(Channel Busy Ratio) 정보가 교환될 수 있다. 본 발명은 CBR 정보에 대해 ETSI TS 102 636-4-2 v.1.1.1을 참조할 수 있다. CBR 정보는 자체적으로 측정되어 획득된 로컬 CBR 정보 및 주변 차량으로부터 획득된 리모트 CBR 정보를 포함할 수 있다. The V2X device communicates in an ad hoc network based on 802.11. In ad hoc networks, DCC (Decentralized Congestion Control) can be used to stabilize system operation and to distribute traffic on specific frequency channels. CBR (Channel Busy Ratio) information can be exchanged between adjacent devices to effectively operate the DCC algorithm and provide network robustness. The present invention may refer to ETSI TS 102 636-4-2 v.1.1.1 for CBR information. The CBR information may include local CBR information measured and obtained by itself and remote CBR information obtained from the neighboring vehicle.
CBR(Channel Busy Ratio)은 채널이 사용중(busy)인 시간의 부분(fraction)을 나타내는 0이상 1이하의 시간-의존(time-dependent) 값을 나타낸다. 로컬 CBR(Local Channel Busy Ratio)는 특정 ITS 스테이션에 의해 로컬하게 감지(perceive)되는 CBR로서, 0이상 1이하의 시간-의존(time-dependent) 값을 나타낸다. CBR (Channel Busy Ratio) represents a time-dependent value between 0 and 1, indicating a fraction of time that the channel is busy. Local CBR (Local Channel Busy Ratio) is a CBR that is perceived locally by a particular ITS station and represents a time-dependent value of 0 to 1, inclusive.
Figure PCTKR2018000656-appb-M000001
Figure PCTKR2018000656-appb-M000001
현재 CBR이 CBR_max보다 큰 경우, 라우터는 반복 전송을 시도하지 않거나 1번만 반복 전송/포워딩을 할 수 있다. CBR이 CBR_max보다 작은 경우, CBR에 반비례하는 특정 정수 값의 크기만큼 반복 전송이 수행될 수 있다. 실시예로서, 본 발명은 컨펌 패킷의 전송을 고려하므로, 현재 CBR 보다 2배 높은 CBR을 사용하여 N 값을 획득할 수 있다. 소정의 최대 반복 시간을 N 값으로 나누면 대기 시간(T_wait)가 획득될 수 있다. 대기 시간(T_wait)은 CBR에 영향받아 결정될 수 있으며, 채널이 바쁠수록 큰 값으로, 채널이 덜 바쁠수록 작은 값으로 설정될 수 있다. 수학식 1에서와 같이, 채널 상황 또는 시스템 설정에 따라서 α가 설정되어 최대 전송 횟수가 결정될 수도 있다.If the current CBR is larger than CBR_max, the router may not perform iterative transmission or it may repeat transmission / forwarding only once. If CBR is less than CBR_max, iterative transmission may be performed by a certain integer value in inverse proportion to CBR. As an embodiment, since the present invention considers transmission of a conform packet, the N value can be obtained by using the CBR which is twice higher than the current CBR. The waiting time T_wait can be obtained by dividing the predetermined maximum repetition time by the N value. The waiting time T_wait may be determined by influencing the CBR, and may be set to a larger value as the channel is busy and a smaller value as the channel is less busy. As shown in Equation (1),? May be set according to the channel status or the system setting to determine the maximum number of transmissions.
도 22은 본 발명의 다른 실시예에 따른 그리디 포워딩의 패킷 전송 방법을 나타낸다.22 shows a packet transmission method of greedy forwarding according to another embodiment of the present invention.
도 22는 도 20의 실시예에서, 패킷 재전송 결정 부분을 수정한 실시예로서, 도 20과 동일한 단계/동작에 대해서 동일한 설명은 생략한다. 도 22의 실시예의 경우, 단계들(S22010~S22040)에 대해서는 도 20의 단계들(S20010~S20040)에 대한 설명이 동일하게 적용된다.22 is a modified example of the packet retransmission determination portion in the embodiment of Fig. 20, and the same description of the same step / operation as that of Fig. 20 is omitted. In the case of the embodiment of FIG. 22, the steps S20010 to S20040 of FIG. 20 are applied equally to the steps S22010 to S22040.
도 20의 실시예에서, 라우터는 패킷 전송 후 대기 시간만큼 기다리고, 컨펌 패킷이 수신되지 않으면 패킷을 재전송한다. 그에 비해, 도 22의 실시예에서, 라우터는 반복 인터벌에 따라서 패킷을 반복 전송하되, 컨펌 패킷이 수신되면 반복을 중단한다. 도 22에 도시되어 있지는 않지만, 라우터는 설정된 반복 인터벌에 기초하여 패킷을 전송한다. 라우터의 지오네트워킹 레이어는 상위 레이어로부터 반복 인터벌과 최대 반복 시간을 전달받아 이들을 설정할 수 있다. 그리고 도 17의 실시예에서 설명한 것처럼, 라우터는 최대 반복 시간 동안 반복 인터벌마다 그리디 포워딩 전송을 수행한다.In the embodiment of FIG. 20, the router waits for a waiting time after the packet transmission, and retransmits the packet if the conform packet is not received. On the other hand, in the embodiment of FIG. 22, the router repeatedly transmits a packet according to the repetition interval, but stops repeating when a conform packet is received. Although not shown in FIG. 22, the router transmits the packet based on the set repetition interval. The router's geo-networking layer can receive them from the upper layer by receiving the repetition interval and the maximum repetition time. As described in the embodiment of FIG. 17, the router performs the greedy forwarding transmission for each repetition interval for the maximum repetition time.
컨펌 패킷이 수신되면(S22060), 라우터는 패킷의 반복 전송을 종료한다. 컨펌 패킷이 수신되지 않으면(S22060), 라우터는 최대 반복 시간 내인지 확인한다(S22070). 컨펌 패킷이 수신되지 않은 체로, 최대 반복 시간이 경과하지 않은 경우, 라우터는 패킷을 다시 전송한다. 컨펌 패킷이 수신되지 않은 체로, 최대 반복 시간이 경과한 경우, 라우터는 패킷을 폐기한다(S22080). 라우터는 패킷을 폐기(S22080)하고, 다른 패킷의 전송을 시작한다.When the CONFIRM packet is received (S22060), the router terminates the repeated transmission of the packet. If no confirm packet is received (S22060), the router confirms whether it is within the maximum repeat time (S22070). If no acknowledgment packet is received and the maximum iteration time has not elapsed, the router retransmits the packet. If the maximum repeat time has elapsed with no acknowledgment packet being received, the router discards the packet (S22080). The router discards the packet (S22080), and starts transmission of another packet.
도 23은 본 발명의 다른 실시예에 따른 컨펌 패킷 수신 및 패킷 반복 전송을 나타낸다.23 shows a conform packet reception and packet repetition transmission according to another embodiment of the present invention.
라우터는 최대 반복 시간 내에서 반복 인터벌마다 동일 패킷을 반복 전송한다. 다만, 라우터가 포워더로부터 컨펌 패킷을 수신하면, 수신 시점 이후의 동일 패킷 반복 전송은 종료된다. The router repeatedly transmits the same packet at each repetition interval within the maximum repetition time. However, when the router receives the CONFIRM packet from the forwarder, the same packet repetition transmission after the reception time is ended.
상술한 컨펌 패킷을 사용한 패킷 반복 전송 방법에 있어서, 반복 전송되는 패킷의 SN(Sequence Number)은 동일한 값으로 설정될 수 있다. 실시예로서, 반복 전송되는 패킷들의 시퀀스 넘버는 동일하지 않을 수도 있다. 차량 애드혹 네트워크에서 패킷이 시퀀스 넘버의 순서대로 전송되는 것은 보장되지 않는다. 또한, 지오-애드혹 네트퉈크에서 사용되는 시퀀스 넘버는 패킷의 순서를 나타내기 보단 네트워크 레이어에서 패킷을 식별하는 용도로 사용된다. 즉, 애드혹 네트워크 동작 시 발생할 수 있는 과잉(redundancy) 패킷이나, 브로드캐스트 폭풍(storm)/루프(loop)에 의한 동일 패킷을 제거하는 목적으로 시퀀스 넘버가 사용된다. 따라서 중복 전송되는 패킷들의 시퀀스 넘버는 상이할 수 있지만, 컨펌 패킷을 사용하여 중복 전송하는 본 발명의 실시예에서, 중복 전송 패킷들은 동일한 시퀀스 넘버를 갖는다.In the packet repetition transmission method using the above-described confirm packet, the SN (Sequence Number) of the repeatedly transmitted packets can be set to the same value. As an example, the sequence numbers of repeatedly transmitted packets may not be the same. It is not guaranteed that the packets are transmitted in the order of the sequence numbers in the vehicle ad hoc network. In addition, the sequence number used in geo-ad hoc network is used to identify a packet in the network layer rather than to indicate the order of the packet. That is, a sequence number is used for the purpose of removing a redundancy packet that may occur in an ad hoc network operation or a same packet due to a broadcast storm / loop. Therefore, although the sequence numbers of the duplicated packets may be different, in the embodiment of the present invention in which duplicate transmissions are performed using the conform packet, the duplicate transmission packets have the same sequence number.
컨펌 패킷을 사용하는 경우, 반복 횟수는 포워더에서 재설정할 수 있다. 멀티홉이 진행되는 동안 포워더로부터 컨펌 패킷을 수신한 샌더 라우터는 더이상 동일 패킷을 재전송할 필요가 없다. 재전송의 필요성은 패킷을 수신한 포워더에게 넘어가기 때문이다. 전체적인 전송 과정은 멀티홉이나, 각 라우터의 전송은 싱글-홉에 해당한다. 따라서 컨펌 메세지를 보내는 측면에서는 반복되는 패킷이 다른 SN을 가질 필요가 없다. 반복 횟수는 채널 상황에 따라 포워더가 다르게 설정할 수 있다. When using a conform packet, the number of iterations can be reset in the forwarder. The sander router that received the CONFIRM packet from the forwarder during multi-hop is no longer required to retransmit the same packet. The need for retransmissions is transferred to the forwarder that received the packet. The overall transmission process is multi-hop, but the transmission of each router corresponds to single-hop. Therefore, repeated packets do not need to have different SNs in terms of sending a consult message. The number of iterations can be set differently by the forwarder depending on the channel conditions.
도 24는 본 발명의 실시예에 따른 센더 컨펌 패킷을 나타낸다.24 shows a sender confirm packet according to an embodiment of the present invention.
도 24는 포워딩 라우터가 센더 라우터에게 전송하는 컨펌 패킷으로서, 컨펌-센더(CONFIRM_SENDER) 패킷 또는 센더/전송자 컨펌 패킷으로 지칭할 수도 있다. 도 24의 컨펌 패킷은 MAC 레이어에서 인캡슐레이팅되며, MAC 패킷 헤더의 목적지 주소는 그리디 포워딩 알고리즘에서 결정된 센더 라우터의 MAC 어드레스로 설정된다. 패킷의 기본적인 구성은 상술한 지오네트워킹 패킷과 유사하며, 동일 구성에 대해서는 다시 설명하지 않는다. 센더 컨펌 패킷은 싱글 홉으로 전송된다. FIG. 24 is a CONFIRM packet transmitted by the forwarding router to the sender router, and may be referred to as a CONFIRM_SENDER packet or a sender / sender conform packet. 24 is encapsulated at the MAC layer, and the destination address of the MAC packet header is set to the MAC address of the sender router determined in the greedy forwarding algorithm. The basic configuration of the packet is similar to the geo-networking packet described above, and the same configuration will not be described again. Sender Confirmation Packets are sent in a single hop.
커먼 헤더(common header)의 HT(Header Type) 필드에 "컨펌(CONFIRM)" 타입이 추가된다. The "CONFIRM" type is added to the HT (Header Type) field of the common header.
Received SN(수신 SN) 필드는 센더 라우터로부터 수신한 패킷의 시퀀스 넘버를 지시한다. 포워딩 라우터는 받은 메세지들 중 어떤 메세지에 대한 컨펌인지를 알려주기 위해, 받은 메세지의 시퀀스 넘버(SN)를 복사하여 수신 SN 필드에 추가한다.The Received SN (Receive SN) field indicates the sequence number of the packet received from the sender router. The forwarding router copies the sequence number (SN) of the received message to the received SN field to indicate which of the received messages it is conforming to.
컨펌 상태(CONFIRM_STATUS) 필드는 패킷의 포워딩 가능성 여부를 지시한다. 컨펌 상태 필드는 포워딩이 가능한지, 포워딩이 불가능하면 불가능한 이유를 지시할 수 있다. 포워딩이 불가능한 이유로는, i) 주변에 차가 없음, ii) 버퍼 풀(full)과 같은 내부 상태로 인해 불가능함, iii) CBR 포화(busy)로 포워딩 불가 등의 이유가 코드로 지시될 수 있다.The CONFIRM_STATUS field indicates whether the packet can be forwarded. The CONFORMATION status field can indicate why forwarding is possible or impossible if forwarding is not possible. Reasons for the inability to forward can be indicated by code for reasons such as i) no traffic around, ii) impossible due to an internal state such as a full buffer, and iii) unable to forward in CBR saturation.
포워더는 포워딩이 가능하다는 센더 컨펌 메세지를 센더에게 전송한 후, 포워딩을 수행할 수 있다. 포워더는 그리디 포워딩 방식으로 목적지에 가장 가까운 포워더에게 패킷을 전송할 수 있다. The forwarder can forward the message to the sender, then forward the message to the sender that forwarding is possible. The forwarder can forward packets to the forwarder closest to the destination in greedy forwarding.
샌더가 센더 컨펌 패킷을 수신하지 못하거나, 센더 컨펌 패킷을 수신하였지만 포워딩이 불가능함으로 표시될 수 있다. 이 경우, 재전송이 가능한 조건 하에서, 센더는 다시 한번 포워딩을 시도한다. 센더는 전송 확률을 높이기 위해, 기전송한 포워더 외의 다른 포워더에게 패킷을 전송할 수 있다. 예를 들면, 센더는 패킷을 전송한 라우터보다 목적지에 덜 가까운 라우터를 포워더로 선정하고, 이 라우터로 패킷을 전송할 수 있다. 센더는 컨펌 상태 필드의 이유를 참고하여 다른 포워더를 선택할 수도 있다. The sander may not receive the sender confirm packet, or the sender confirm packet may be received but the forwarding is not possible. In this case, under the condition that retransmission is possible, the sender tries forwarding again. The sender can send a packet to a forwarder other than the forwarder to increase the transmission probability. For example, the sender may select a router that is less than the destination of the router as the forwarder and send the packet to the router. The sender can select another forwarder based on the reason of the agreed status field.
2. 목적지 컨펌 패킷의 사용2. Use of Destination Confidence Packets
도 25는 본 발명의 실시예에 따른 지오네트워킹 전송 방법을 나타낸다.25 shows a geo-networking transmission method according to an embodiment of the present invention.
도 25는 소스 라우터가 전송 메세지의 목적지 도착 여부를 알고 싶은 경우를 나타낸다. 이는 전송 데이터의 QoS(Quality of Service)와 관련되며, 도 13의 실시예는 GUC 전송의 예를 나타낸다. 즉, 소스 라우터는 패킷이 목적지에 도착한 것을 확인하면, 동일 패킷의 반복 전송을 종료할 수 있다.Fig. 25 shows a case where the source router desires to know whether or not a destination of a transmission message has arrived. This relates to Quality of Service (QoS) of transmission data, and the embodiment of FIG. 13 shows an example of GUC transmission. That is, when the source router confirms that the packet arrives at the destination, the source router can terminate the repeated transmission of the same packet.
도 25의 실시예는 센더 컨펌 패킷의 경우와 달리, 최종 목적지 영역의 라우터가 소스 라우터에게 컨펌 패킷/메세지를 멀티 홉으로 전송한다. 이 컨펌 패킷을 목적지 컨펌(CONFIRM_DESTINATION) 패킷이라고 지칭할 수 있다. In the embodiment of FIG. 25, unlike the case of the sender confirm packet, the router of the final destination area transmits the confirm packet / message to the source router in multi-hop. This CONFIRM packet can be referred to as a CONFIRM_DESTINATION packet.
도 26은 본 발명의 실시예에 따른 GUC의 패킷 전송 방법을 나타낸다.26 shows a packet transmission method of the GUC according to the embodiment of the present invention.
라우터는 패킷을 생성한다(S26010). 생성되는 패킷은 상위 레이어에서 수신되어 생성되거나, 다른 라우터로부터 포워딩된 패킷이 될 수 있다. The router generates a packet (S26010). The generated packet may be received at the upper layer and generated, or may be the packet forwarded from another router.
라우터는 패킷의 포워딩 여부를 결정할 수 있다(S26020). 패킷이 지오네트워킹 레이어로 전달되는 경우, 패킷이 어떤 타입으로 포워딩될지는 상위 레이어에서 결정될 수 있다. 패킷이 다른 라우터로부터 포워딩된 패킷인 경우, 패킷의 헤더에 포함된 패킷 전송 타입에 의해 패킷 포워딩 여부/방법이 결정될 수 있다. 라우터는, 전송 패킷 타입이 GUC에 해당하는 경우, 패킷을 포워딩하는 것으로 결정할 수 있다. The router can determine whether to forward the packet (S26020). When a packet is forwarded to the geo-networking layer, the type of forwarding of the packet can be determined in the upper layer. If the packet is a forwarded packet from another router, the packet forwarding method / method can be determined by the packet transmission type included in the header of the packet. The router may decide to forward the packet if the transport packet type corresponds to GUC.
GBC, GAC의 경우 특정 목적지 주소가 존재하지 않는다. LS 요청/LS 응답의 경우 역시 특정 목적지 주소가 존재하지 않는다. LS 요청이 특정 지오어드레스를 요구하면, 요구한 어드레스에 대한 위치 정보를 알고 있는 임의의 라우터가 위치 정보를 소스 라우터에게 알려줄 수 있다. LS 요청 시에는 TSB 방식이 사용될 수 있으며, LS 응답의 경우 GUC가 사용될 수도 있다. 다만, LS 응답의 경우에도 목적지 컨펌 패킷보다는 상술한 센더 컨펌 패킷이 사용에 더 적합할 수 있다. 따라서 목적지 컨펌 패킷의 실시예는 전송 패킷 타입이 GUC인 경우에 사용될 수 있다.For GBC, GAC, there is no specific destination address. For the LS request / LS response, there is also no specific destination address. If the LS request requires a specific geo address, any router knowing the location information for the requested address can inform the source router of the location information. The TSB scheme may be used for the LS request, and the GUC may be used for the LS response. However, even in the case of the LS response, the above-described sender confirm packet may be more suitable for use than the destination confirm packet. Thus, the embodiment of the destination conform packet can be used when the transmission packet type is GUC.
라우터는 포워딩될 패킷이 아닌 경우, 패킷을 싱글 홉 브로드캐스팅하거나 패킷을 폐기할 수 있다(S26030). 라우터는 상술한 패킷 타입을 검토하고, SHB 패킷의 경우 패킷을 싱글 홉 브로드캐스팅할 수 있다. 또한, 라우터는 패킷의 중복을 확인하여, 패킷이 중복 패킷인 경우 패킷을 폐기할 수 있다.If the router is not a packet to be forwarded, the packet may be broadcasted in a single hop or discarded (S26030). The router examines the packet type described above, and in the case of an SHB packet, the packet can be single-hop broadcasted. Also, the router can check the duplication of the packet and discard the packet if the packet is a duplicate packet.
라우터는 패킷을 전송할 수 있다(S26040). 라우터는 패킷을 그리디 포워딩 알고리즘을 사용하여 전송할 수 있다. 그리디 포워딩 알고리즘에 따른 전송 방법은 도 11에서 설명한 바와 같다. 즉 라우터는 로케이션 테이블로부터 포워더를 검색하고, 검색된 포워더로 그리디 포워딩에 따라서 패킷을 전송한다. 라우터는 로케이션 테이블에서 목적지에 가장 가까운 라우터를 포워더로 결정하고, 해당 라우터의 MAC 어드레스를 패킷의 목적지 어드레스로 설정하여 패킷을 전송한다.The router can transmit the packet (S26040). Routers can send packets using a greedy forwarding algorithm. The transmission method according to the greedy forwarding algorithm is as described in FIG. In other words, the router retrieves the forwarder from the location table and transmits the packet according to the greedy forwarding to the retrieved forwarder. The router determines the router closest to the destination in the location table as a forwarder, and transmits the packet by setting the MAC address of the router to the destination address of the packet.
라우터는 컨펌 패킷 수신 여부에 따라 동작한다(S26050). 라우터는 대기 시간(T_wait)을 설정하고, 대기 시간 동안 컨펌 패킷 수신을 기다린다. 대기 시간 내에 컨펌 패킷이 수신되면, 라우터는 패킷을 반복 전송하지 않는다. The router operates according to receipt of the conform packet (S26050). The router sets the wait time (T_wait) and waits for the receipt of the acknowledgment packet during the waiting time. When a conform packet is received within the waiting time, the router does not repeatedly transmit the packet.
컨펌 패킷이 수신되지 않고, 대기 시간이 종료되는 경우(S26060), 라우터는 최대 반복 회수(N)를 확인한다(S26070). 패킷 전송 회수가 최대 반복 회수(N)를 초과하지 않는 경우, 라우터는 패킷을 다시 전송한다. 패킷 전송 회수가 최대 반복 회수(N) 초과하는 경우, 라우터는 패킷을 폐기한다(S26080). 패킷의 최대 반복 횟수는 채널의 상황이나 패킷의 수명에 따라 다르게 설정될 수 있다. When the wait packet is not received and the wait time is terminated (S26060), the router confirms the maximum number N of repetitions (S26070). If the number of packet transmissions does not exceed the maximum number of iterations (N), the router retransmits the packet. If the number of packet transmissions exceeds the maximum number of repetitions (N), the router discards the packet (S26080). The maximum number of repetitions of a packet can be set differently depending on the channel condition or the lifetime of the packet.
대기 시간은 도 20의 실시예의 대기 시간보다 더 큰 값이 사용될 수 있다. 패킷 전송 후 목적지에서 멀티 홉으로 컨펌 패킷이 수신되는데 더 긴 시간이 소모될 수 있기 때문이다. 라우터는 홉의 수를 미리 예측하여 대기 시간의 길이를 가변적으로 결정할 수 있다. 반복 전송의 횟수는 소스 라우터의 상위 레이어에서 결정된 최대 반복 시간을 초과하지 않는 범위에서 결정될 수 있다. 최대 반복 회수에 상관 없이 채널의 상태에 따라 반복 전송 횟수가 결정될 수도 있다. The waiting time may be a value larger than the waiting time of the embodiment of FIG. This is because a longer time may be required to receive the conform packet from the destination to the multi-hop after the packet transmission. The router can variably determine the length of the waiting time by predicting the number of hops. The number of repetitive transmissions can be determined within a range that does not exceed the maximum repetition time determined at the upper layer of the source router. The number of repetitive transmissions may be determined according to the state of the channel regardless of the maximum number of repetitions.
도 27은 본 발명의 다른 실시예에 따른 그리디 포워딩의 패킷 전송 방법을 나타낸다.27 shows a packet transmission method of greedy forwarding according to another embodiment of the present invention.
도 27는 도 26의 실시예에서, 패킷 재전송 결정 부분을 수정한 실시예로서, 도 27과 동일한 단계/동작에 대해서 동일한 설명은 생략한다. 도 27의 실시예의 경우, 단계들(S27010~S27040)에 대해서는 도 26의 단계들(S26010~S26040)에 대한 설명이 동일하게 적용된다.27 shows an embodiment in which the packet retransmission determination part is modified in the embodiment of FIG. 26, and description of the same steps / operations as those of FIG. 27 is omitted. In the case of the embodiment of FIG. 27, the description of steps S26010 to S26040 of FIG. 26 applies equally to the steps S27010 to S27040.
도 27의 실시예에서, 라우터는 패킷 전송 후 대기 시간만큼 기다리고, 컨펌 패킷이 수신되지 않으면 패킷을 재전송한다. 그에 비해, 도 27의 실시예에서, 라우터는 반복 인터벌에 따라서 패킷을 반복 전송하되, 컨펌 패킷이 수신되면 반복을 중단한다. 도 27에 도시되어 있지는 않지만, 라우터는 설정된 반복 인터벌에 기초하여 패킷을 전송한다. 라우터의 지오네트워킹 레이어는 상위 레이어로부터 반복 인터벌과 최대 반복 시간을 전달받아 이들을 설정할 수 있다. 그리고 도 17의 실시예에서 설명한 것처럼, 라우터는 최대 반복 시간 동안 반복 인터벌마다 그리디 포워딩을 수행한다.In the embodiment of FIG. 27, the router waits for a waiting time after the packet transmission, and retransmits the packet if the conform packet is not received. On the other hand, in the embodiment of FIG. 27, the router repeatedly transmits a packet according to the repetition interval, but stops repeating when a conform packet is received. Although not shown in FIG. 27, the router transmits the packet based on the set repetition interval. The router's geo-networking layer can receive them from the upper layer by receiving the repetition interval and the maximum repetition time. As described in the embodiment of FIG. 17, the router performs greedy forwarding for each repetition interval for a maximum repetition time.
컨펌 패킷이 수신되면(S27060), 라우터는 패킷의 반복 전송을 종료한다. 컨펌 패킷이 수신되지 않으면(S27060), 라우터는 최대 반복 시간 내인지 확인한다(S27070). 컨펌 패킷이 수신되지 않은 체로, 최대 반복 시간이 경과하지 않은 경우, 라우터는 패킷을 다시 전송한다. 컨펌 패킷이 수신되지 않은 체로, 최대 반복 시간이 경과한 경우, 라우터는 패킷을 폐기한다(S27080). 라우터는 패킷을 폐기(S27080)하고, 다른 패킷의 전송을 시작한다.When the CONFIRM packet is received (S27060), the router ends the repeated transmission of the packet. If the CONFIRM packet is not received (S27060), the router confirms whether it is within the maximum repetition time (S27070). If no acknowledgment packet is received and the maximum iteration time has not elapsed, the router retransmits the packet. If the maximum repetition time has elapsed with no acknowledgment packet being received, the router discards the packet (S27080). The router discards the packet (S27080), and starts transmission of another packet.
도 28은 본 발명의 다른 실시예에 따른 목적지(데스티네이션) 컨펌 패킷을 나타낸다.FIG. 28 shows a Destination Confidence packet according to another embodiment of the present invention. FIG.
도 28은, 목적지의 라우터가 샌더 라우터에게 전송하는 컨펌 패킷으로서, 컨펌-목적지(CONFIRM_DESTINATION) 패킷 또는 목적지-컨펌 패킷으로 지칭할 수 있다. 도 28의 컨펌 패킷은 MAC 레이어에서 인캡슐레이팅되며, MAC 패킷 헤더의 목적지 주소는 소스 라우터의 MAC 어드레스로 설정될 수 있다. 패킷의 기본적인 구성은 상술한 지오네트워킹 패킷과 유사하며, 동일 구성에 대해서는 다시 설명하지 않는다. 센더 컨펌 패킷은 싱글 홉 또는 멀티 홉으로 전송될 수 있다. 패킷에 포함된 필드들에 대한 설명은 아래와 같다.Fig. 28 is a CONFIRM packet transmitted by a destination router to a sander router, and may be referred to as a CONFIRM_DESTINATION packet or a destination-conform packet. 28 is encapsulated at the MAC layer, and the destination address of the MAC packet header can be set to the MAC address of the source router. The basic configuration of the packet is similar to the geo-networking packet described above, and the same configuration will not be described again. The Sender Confidence packet can be sent in either single-hop or multi-hop. A description of the fields included in the packet is as follows.
SN 필드: 시퀀스 넘버 필드/정보는 시퀀스 넘버(SN)를 지시한다. 목적지 라우터는 소스 라우터로 컨펌 패킷을 멀티 홉 전송할 수 있다. 시퀀스 넘버 정보는 목적지 컨펌 패킷의 중복성을 검출하는데 사용될 수 있다.SN field: The sequence number field / information indicates the sequence number (SN). The destination router can forward the conform packet to the source router in multi-hop mode. Sequence number information can be used to detect the redundancy of the destination conform packet.
수신 SN(Receiveed SN) 필드: 수신 SN 필드는 소스 라우터로부터 수신한 패킷의 시퀀스 넘버를 지시한다. 이 값을 통해 소스 라우터는 전송한 패킷이 목적지에 도착하였음을 확인할 수 있으며, 해당 패킷을 위한 중복 전송은 필요 없음을 결정할 수 있다. Received SN (Receiveed SN) field: The received SN field indicates the sequence number of the packet received from the source router. With this value, the source router can confirm that the transmitted packet arrives at the destination, and can determine that there is no need for redundant transmission for the packet.
RN(Redundancy Number) 필드: RN 필드는 동일한 소스 라우터에서 전송한 동일 패킷이 목적지에 몇번 도착했는지를 지시한다. RN 필드는 중복 횟수 정보라고 지칭할 수도 있다. RN 필드의 값은 현재 컨펌하는 패킷에 대한 값일 수도 있고, 이전에 수신한 패킷에 대한 값이 될 수도 있다. 이 필드는 소스 라우터가 몇 번의 재전송을 시도하여 패킷을 목적지로 보낼지를 결정하는데 사용될 수 있다. 채널의 효율적 사용을 고려하면, 중복 횟수는 1로 설정되는 것이 바람직할 수 있다. RN 정보를 수신한 소스 라우터는 자신이 적절한 횟수로 패킷을 반복하고 있는지를 파악할 수 있다. 예를 들면, 복수의 컨펌 패킷이 높은 값의 RN 필드를 포함하는 경우, 소스 라우터는 중복 전송 횟수를 낮출 수 있다.RN (Redundancy Number) field: The RN field indicates how many times the same packet transmitted from the same source router arrived at the destination. The RN field may also be referred to as duplication frequency information. The value of the RN field may be a value for the currently negotiated packet or a value for the previously received packet. This field can be used to determine how many retransmissions the source router will attempt to send the packet to its destination. Considering efficient use of channels, it may be desirable to set the number of duplicates to one. The source router that has received the RN information can determine whether it is repeating the packet an appropriate number of times. For example, if a plurality of conform packets include a high value RN field, the source router may reduce the number of redundant transmissions.
SO PV 필드는 목적지 컨펌 패킷을 전송하는 목적지의 라우터의 포지션 벡터를 지시한다. The SO PV field indicates the position vector of the destination router transmitting the destination conform packet.
DE PV 필드는 소스 라우터의 포지션 벡터를 지시한다.The DE PV field indicates the source router's position vector.
SO PV 필드는 소스 포지션 벡터 정보로, DE PV 필드는 목적지 포지션 벡터 정보로 각각 지칭할 수 있다.The SO PV field may be referred to as source position vector information, and the DE PV field may be referred to as destination position vector information, respectively.
본 발명에 따른 컨펌 패킷을 사용하기 위해, 지오네트워킹 레이어는 상위 레이어로부터 GN-DATA.request를 수신하는 경우 최대 반복 시간 정보를 추가로 수신할 수 있다. In order to use the conform packet according to the present invention, the geo-networking layer can additionally receive the maximum repetition time information when receiving the GN-DATA.request from the upper layer.
도 29는 본 발명의 실시예에 따른 지오네트워킹 패킷의 헤더 타입 및 서브 헤더 타입을 나타낸다. 29 shows a header type and a subheader type of a geo-networking packet according to an embodiment of the present invention.
도 3에서 설명한 커먼 헤더의 HT 필드 및 HST 필드에 도 29와 같이 헤더 타입 및 서브헤더 타입이 추가될 수 있다. A header type and a subheader type may be added to the HT field and the HST field of the common header shown in FIG. 3, as shown in FIG.
헤더 타입이 지오유니캐스트인 경우, 헤더 서브 타입으로 노멀(Normal), 센더 컨펌(CONFIRM_SENDER), 목적지 컨펌(CONFIRM_DESTINATION)이 추가될 수 있다. 노멀 타입은 반복 전송의 경우 컨펌 패킷의 사용 없이 반복 인터벌과 최대 반복 시간을 사용하는 경우를 나타낸다. 헤더 타입이 지오유니캐스트이고 서브 헤더 타입이 센더 컨펌인 경우(즉, 지오유니캐스트_컨펌_센더(GEOUNICAST_CONFIRM_SENDER)의 경우), 포워더에게 센더 컨펌 패킷의 수신이 요청된다. 이 헤더를 포함하는 패킷을 수신한 포워더는, 이 패킷을 전송한 샌더에게 센더 컨펌 패킷을 전송한다. 센더 컨펌 패킷을 수신한 센더 라우터는 패킷이 포워더에게 전달되었음을 확인하므로, 반복 전송을 중단한다. 헤더 타입이 지오유니캐스트이고 서브 헤더 타입이 목적지 컨펌인 경우(즉, 지오유니캐스트_컨펌_목적지(GEOUNICAST_CONFIRM_DESTINATION)의 경우), 목적지의 라우터에게 목적지 컨펌 패킷의 수신이 요청된다. 이 헤더를 포함하는 패킷을 수신한 최종 목적지의 라우터는, 이 패킷을 전송한 소스 라우터에게 목적지 컨펌 패킷을 전송한다. 목적지 컨펌 패킷을 수신한 소스 라우터는 패킷이 목적지에 전달되었음을 확인하므로, 반복 전송을 중단한다. 종단간 패킷 전송을 확인할 수 있으므로, 목적지 컨펌 패킷을 요청하는 경우 센더 컨펌 패킷에 비해 더 신뢰도있는 패킷 송수신을 보장할 수 있다.If the header type is geo unicast, Normal, CONFIRM_SENDER, and CONFIRM_DESTINATION can be added as the header subtype. The normal type indicates the case of using the repetition interval and the maximum repetition time without using the conform packet in the case of repetitive transmission. If the header type is geo unicast and the subheader type is sender conform (that is, in the case of GEOUNICAST_CONFIRM_SENDER), the forwarder is requested to receive the sender conform packet. The forwarder that receives the packet including this header transmits the sender confirm packet to the sander that transmitted this packet. The sender router which received the sender confirm packet confirms that the packet has been delivered to the forwarder, so it stops the repeat transmission. If the header type is geo unicast and the subheader type is destination conform (ie, GEOUNICAST_CONFIRM_DESTINATION), the destination router is requested to receive the destination conform packet. The router at the final destination receiving the packet containing this header transmits the destination conform packet to the source router that transmitted this packet. The source router which receives the destination confirm packet confirms that the packet has been delivered to the destination, so it stops the repeated transmission. End-to-end packet transmission can be confirmed. Therefore, when requesting a destination conform packet, more reliable packet transmission / reception can be assured compared to a sender conform packet.
헤더 타입이 지오유니캐스트/지오브로드캐스트인 경우, 센더 컨펌 패킷을 요청하는 헤더 서브 타입이 추가될 수 있다. 즉, 센더 컨펌의 헤더 서브 타입이 추가될 수 있다. 추가된 타입으로 패킷을 전송하는 경우, 이를 수신한 포워더 라우터는 패킷을 전송한 샌더 라우터에게 샌더 컨펌 패킷을 전송한다.If the header type is geo unicast / geo-broadcast, a header subtype requesting a sender conform packet may be added. That is, header subtypes of sender conform can be added. When a packet is transmitted with the added type, the forwarder router that receives it sends a sander confirm packet to the sender router that sent the packet.
멀티-홉 전송 패킷을 수신하였음을 샌더 또는 소스에게 확인해주는 패킷을 사용하기 위해, 헤더 타입에 컨펌(CONFIRM)을 추가할 수 있다. 그리고 헤더 서브 타입으로 센더 컨펌(CONFIRM_SENDER), 목적지 컨펌(CONFIRM_DESTINATION)이 추가될 수 있다. You can add CONFIRM to the header type to use a packet that confirms to the sander or source that it has received a multi-hop transport packet. A CONFIRM_SENDER and a CONFIRM_DESTINATION header subtype can be added.
도 30은 본 발명의 실시예에 따른 V2X 통신 장치의 구성을 나타낸다.30 shows a configuration of a V2X communication apparatus according to an embodiment of the present invention.
도 30에서, V2X 통신 장치(30000)는 통신 유닛(30010), 프로세서(30020) 및 메모리(30030)을 포함할 수 있다. In Fig. 30, the V2X communication device 30000 may include a communication unit 30010, a processor 30020, and a memory 30030.
통신 유닛(30010)은 프로세서(30020)와 연결되어 무선 신호를 송신/수신할 수 있다. 통신 유닛(30010)은 프로세서(30020)로부터 수신된 데이터를 송수신 대역으로 업컨버팅하여 신호를 전송하거나, 수신 신호를 다운컨버팅할 수 있다. 통신 유닛(30010)은 피지컬 레이어 또는 액세스 레이어 중 적어도 하나의 동작을 구현할 수 있다. The communication unit 30010 can be connected to the processor 30020 to transmit / receive radio signals. The communication unit 30010 can upconvert the data received from the processor 30020 to the transmission / reception band and transmit the signal or downconvert the reception signal. The communication unit 30010 may implement the operation of at least one of a physical layer and an access layer.
통신 유닛(30010)은 복수의 통신 프로토콜에 따라 통신하기 위해 복수의 서브 RF 유닛을 포함할 수도 있다. 실시예로서, 통신 유닛(30010)은 DSRC(Dedicated Short Range Communication), IEEE 802.11 및/또는 802.11p 표준, IEEE 802.11 및/또는 802.11p 표준의 피지컬 전송 기술에 기초하는 ITS-G5 무선 통신 기술, 위성/광대역 무선 이동 통신을 포함하는 2G/3G/4G(LTE)/5G 무선 셀룰러 통신 기술, DVB-T/T2/ATSC 등 광대역 지상파 디지털 방송 기술, GPS 기술, IEEE 1609 WAVE 기술 등에 기초하여 데이터 통신을 수행할 수 있다. 통신 유닛(30010)은 각 통신 기술을 구현하는 복수의 트랜스시버를 포함할 수도 있다.The communication unit 30010 may include a plurality of sub RF units for communicating in accordance with a plurality of communication protocols. As an example, the communication unit 30010 may be an ITS-G5 wireless communication technology based on physical transmission techniques of DSRC (Dedicated Short Range Communication), IEEE 802.11 and / or 802.11p standards, IEEE 802.11 and / Data communication based on 2G / 3G / 4G (LTE) / 5G wireless cellular communication technology including broadband wireless mobile communication, broadband terrestrial digital broadcasting technology such as DVB-T / T2 / ATSC, GPS technology and IEEE 1609 WAVE technology Can be performed. Communication unit 30010 may comprise a plurality of transceivers implementing each communication technique.
프로세서(30020)는 RF 유닛(30030)과 연결되어 ITS 시스템 또는 WAVE 시스템에 따른 레이어들의 동작을 구현할 수 있다. 프로세서(30020)는 상술한 도면 및 설명에 따른 본 발명의 다양한 실시예에 따른 동작을 수행하도록 구성될 수 있다. 또한, 상술한 본 발명의 다양한 실시예에 따른 V2X 통신 장치(30000)의 동작을 구현하는 모듈, 데이터, 프로그램 또는 소프트웨어 중 적어도 하나가 메모리(30010)에 저장되고, 프로세서(30020)에 의하여 실행될 수 있다. The processor 30020 may be connected to the RF unit 30030 to implement the operation of the layers according to the ITS system or the WAVE system. Processor 30020 may be configured to perform operations in accordance with various embodiments of the present invention in accordance with the above figures and description. Also, at least one of the modules, data, programs, or software that implement the operation of the V2X communication device 30000 according to various embodiments of the present invention described above may be stored in the memory 30010 and executed by the processor 30020 have.
메모리(30010)는 프로세서(30020)와 연결되어, 프로세서(30020)를 구동하기 위한 다양한 정보를 저장한다. 메모리(30010)는 프로세서(30020)의 내부에 포함되거나 또는 프로세서(30020)의 외부에 설치되어 프로세서(30020)와 공지의 수단에 의해 연결될 수 있다. The memory 30010 is connected to the processor 30020 and stores various information for driving the processor 30020. [ The memory 30010 may be included inside the processor 30020 or installed outside the processor 30020 and connected to the processor 30020 by a known means.
V2X 통신 장치(30000)의 프로세서(30020)는 본 발명에서 설명한 지오네트워킹 패킷 전송을 수행할 수 있다. V2X 통신 장치(30000)의 지오네트워킹 패킷 전송 방법에 대해서는 이하에서 설명한다.The processor 30020 of the V2X communication device 30000 can perform the geo-networking packet transmission described in the present invention. The geo-networking packet transmission method of the V2X communication apparatus 30000 will be described below.
도 31은 본 발명의 실시예에 따른 지오네트워킹 전송 방법에 대한 순서도를 나타낸다.31 shows a flowchart of a geo-networking transmission method according to an embodiment of the present invention.
V2X 통신 장치는 로케이션 정보로부터 포워더를 결정하고, 결정된 포워더의 어드레스를 링크 레이어 어드레스로 설정할 수 있다(S31010).The V2X communication device can determine the forwarder from the location information and set the address of the determined forwarder to the link layer address (S31010).
V2X 통신 장치는 상술한 그리디 알고리즘에 기초하여 지오네트워킹 패킷을 전송할 수 있다. V2X 통신 장치는 로케이션 테이블 즉 로케이션 정보에 포함된 이웃 V2X 통신 장치들과 목적지와의 거리에 기초하여 포워더를 결정할 수 있다. 즉, 로케이션 테이블에 포함된 이웃 V2X 통신 장치들 중 목적지와 가장 가까운 V2X 통신 장치가 포워더로 결정될 수 있다. 그리고 포워더에게 패킷을 전송하기 위해, 포워더의 어드레스가 지오네트워킹 패킷의 링크 레이어 어드레스로 설정될 수 있다. 로케이션 정보는 지오네트워킹 프로토콜을 실행하는 적어도 하나의 이웃 V2X 통신 장치에 대한 정보를 포함한다. 상술한 바와 같이, 로케이션 정보는 V2X 통신 장치가 지오네트워킹 패킷을 수신한 적어도 하나의 이웃 V2X 통신 장치에 대한 지오네트워크 어드레스 정보, 링크 레이어 어드레스 정보, 타입 정보, 포지션 벡터 정보, 또는 SCH 정보 중 적어도 하나를 포함한다.The V2X communication device can transmit the geo-networking packet based on the above-described Greedy algorithm. The V2X communication device can determine the forwarder based on the location table, i.e., the distance between the neighboring V2X communication devices included in the location information and the destination. That is, the V2X communication apparatus closest to the destination among neighbor V2X communication apparatuses included in the location table can be determined as a forwarder. To forward the packet to the forwarder, the address of the forwarder may be set to the link layer address of the geo-networking packet. The location information includes information about at least one neighbor V2X communication device executing a geo-networking protocol. As described above, the location information may include at least one of geo network address information, link layer address information, type information, position vector information, or SCH information for at least one neighboring V2X communication apparatus that has received the geo networking packet from the V2X communication apparatus .
V2X 통신 장치는 지오네트워킹 패킷을 전송할 수 있다(S31020).The V2X communication apparatus can transmit the geo-networking packet (S31020).
V2X 통신 장치는 설정된 링크 레이어 어드레스에 기초하여 지오네트워킹 패킷을 전송할 수 있다. 즉, V2X 통신 장치는 결정된 포워더에게 패킷을 전송할 수 있다.The V2X communication device can transmit the geo-networking packet based on the set link layer address. That is, the V2X communication device can transmit the packet to the determined forwarder.
V2X 통신 장치는 최대 반복 시간이 종료할 때까지 특정 시간 간격으로 지오네트워킹 패킷을 재전송할 수 있다(S31030). 특정 시간 간격은, 상술한 반복 인터벌 또는 대기 시간에 해당할 수 있다. 반복 인터벌 또는 대기 시간에 대한 실시예는 상술한 바와 같다.The V2X communication apparatus may retransmit the geo-networking packet at a specific time interval until the maximum repetition time ends (S31030). The specific time interval may correspond to the above-described repeat interval or wait time. The embodiment of the repetition interval or the waiting time is as described above.
V2X 통신 장치는, 포워더로부터 컨펌 패킷을 수신하는 경우, 지오네트워킹 패킷의 재전송을 종료할 수 있다. 컨펌 패킷은, 포워더가 지오네트워킹 패킷의 수신을 컨펌하는 센더 컨펌 패킷에 해당할수 있다. 또는, 컨펌 패킷은, 목적지의 V2X 통신 장치가 지오네트워킹 패킷의 목적지 영역 도달을 컨펌하는 목적지 컨펌 패킷에 해당할 수 있다.The V2X communication apparatus can terminate the retransmission of the geo-networking packet when receiving the conform packet from the forwarder. A conform packet may correspond to a sender conform packet in which the forwarder confirms receipt of the geo networking packet. Alternatively, the conform packet may correspond to a destination conform packet in which the destination V2X communication device conforms to reaching the destination region of the geo-networking packet.
도 24에서와 같이, 센더 컨펌 패킷은 수신 시퀀스 넘버 정보 또는 컨펌 상태 정보 중 적어도 하나를 포함할 수 있다. 수신 시퀀스 넘버 정보는 전송된 지오네트워킹 패킷의 시퀀스 넘버 정보와 같은 값을 가질 수 있다. 컨펌 상태 정보는 포워더가 지노네트워킹을 포워딩할 수 있는지 여부 및 포워딩이 불가능한 경우 불가능 상태를 나타낼 수 있다.As shown in FIG. 24, the sender confirm packet may include at least one of the received sequence number information or the conform status information. The received sequence number information may have the same value as the sequence number information of the transmitted geo-networking packet. The conform status information may indicate whether the forwarder is capable of forwarding the genino networking and if the forwarding is not possible.
도 28에서와 같이, 목적지 컨펌 패킷은 시퀀스 넘버 정보, 수신 시퀀스 넘버 정보 또는 중복 횟수 정보 중 적어도 하나를 포함할 수 있다. 시퀀스 넘버 정보는 목적지 컨펌 패킷의 시퀀스 넘버를 나타낼 수 있다. 수신 시퀀스 넘버 정보는 전송된 지오네트워킹 패킷의 시퀀스 넘버 정보와 같은 값을 가질 수 있다. 중복 횟수 정보는 동일 패킷의 목적지 도달 횟수를 나타낼 수 있다. 목적지 컨펌 패킷은, 소스 포지션 벡터 정보 및 목적지 포지션 벡터 정보를 더 포함할 수 있다. 소스 포지션 벡터 정보는 목적지 컨펌 패킷을 전송하는 목적지의 V2X 통신 장치의 포지션 벡터를 나타내고, 목적지 포지션 벡터 정보는, 지오네트워킹 패킷을 멀티홉 전송한 소스 V2X 통신 장치의 포지션 벡터를 나타낼 수 있다.As shown in FIG. 28, the destination confirm packet may include at least one of sequence number information, received sequence number information, and duplication count information. The sequence number information may indicate the sequence number of the destination conform packet. The received sequence number information may have the same value as the sequence number information of the transmitted geo-networking packet. The number of times of duplication can indicate the number of times the same packet reaches the destination. The destination conform packet may further include source position vector information and destination position vector information. The source position vector information represents a position vector of a destination V2X communication apparatus that transmits a destination conform packet. The destination position vector information may represent a position vector of a source V2X communication apparatus that multi-hop transmits a geo networking packet.
센더 컨펌 패킷은 싱글 홉 패킷에 해당할 수 있다. 목적지 컨펌 패킷은 멀티홉 패킷에 해당할 수 있다. The sender-conform packet may correspond to a single-hop packet. The destination conform packet may correspond to a multi-hop packet.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are those in which the elements and features of the present invention are combined in a predetermined form. Each component or feature shall be considered optional unless otherwise expressly stated. Each component or feature may be implemented in a form that is not combined with other components or features. It is also possible to construct embodiments of the present invention by combining some of the elements and / or features. The order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of certain embodiments may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments. It is clear that the claims that are not expressly cited in the claims may be combined to form an embodiment or be included in a new claim by an amendment after the application.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of hardware implementation, an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) field programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, a procedure, a function, or the like which performs the functions or operations described above. The software code can be stored in memory and driven by the processor. The memory is located inside or outside the processor and can exchange data with the processor by various means already known.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the essential characteristics thereof. Accordingly, the foregoing detailed description is to be considered in all respects illustrative and not restrictive. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the scope of equivalents of the present invention are included in the scope of the present invention.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 이해된다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.It will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the spirit or scope of the invention. Accordingly, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
본 명세서에서 장치 및 방법 발명이 모두 언급되고, 장치 및 방법 발명 모두의 설명은 서로 보완하여 적용될 수 있다.In the present specification, the apparatus and method inventions are all referred to, and descriptions of both the apparatus and method inventions can be supplemented and applied to each other.
다양한 실시예가 본 발명을 실시하기 위한 최선의 형태에서 설명되었다.Various embodiments have been described in the best mode for carrying out the invention.
본 발명은 일련의 차량 통신 분야에서 이용된다.The present invention is used in a range of vehicle communications.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Accordingly, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (14)

  1. V2X 통신 장치의 지오네트워킹 전송 방법에 있어서,In a geo-networking transmission method of a V2X communication device,
    로케이션 정보에 포함된 상기 이웃 V2X 통신 장치들로부터 포워더(forwarder)를 결정하고, 결정된 포워더의 어드레스를 링크 레이어 어드레스로 설정하는 단계; Determining a forwarder from the neighboring V2X communication devices included in the location information, and setting an address of the determined forwarder as a link layer address;
    상기 링크 레이어 어드레스에 기초하여 지오네트워킹 패킷을 전송하는 단계; 및Transmitting a geo-networking packet based on the link layer address; And
    최대 반복 시간이 종료할 때까지 특정 시간 간격으로 상기 지오네트워킹 패킷을 재전송하는 단계를 포함하며,Retransmitting the geo-networking packet at specific time intervals until a maximum repetition time is reached,
    상기 로케이션 정보는 지오네트워킹 프로토콜을 실행하는 적어도 하나의 이웃 V2X 통신 장치에 대한 정보를 포함하고,Wherein the location information comprises information about at least one neighbor V2X communication device executing a geo-networking protocol,
    상기 포워더는 상기 로케이선 정보에 포함된 이웃 V2X 통신 장치들과 목적지와의 거리에 기초하여 결정되는, 지오네트워킹 전송 방법.Wherein the forwarder is determined based on a distance between the neighboring V2X communication devices included in the localization information and a destination.
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 포워더로부터 컨펌 패킷을 수신하는 경우, 상기 지오네트워킹 패킷의 재전송을 종료하는, 지오네트워킹 전송 방법.And terminating retransmission of the geo-networking packet when receiving a conform packet from the forwarder.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 컨펌 패킷은, 상기 포워더가 상기 지오네트워킹 패킷의 수신을 컨펌하는 센더(sender) 컨펌 패킷에 해당하거나, 목적지의 V2X 통신 장치가 상기 지오네트워킹 패킷의 목적지 영역 도달을 컨펌하는 목적지 컨펌 패킷에 해당하는, 지오네트워킹 전송 방법.The conform packet may be a sender conform packet in which the forwarder confirms receipt of the geo-networking packet or a destination conform packet in which the destination V2X communication device confirms arrival of the geo-networking packet in the destination region , Geo-networking transmission method.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 센더 컨펌 패킷은 수신 시퀀스 넘버 정보 또는 컨펌 상태 정보 중 적어도 하나를 포함하고, Wherein the sender confirm packet comprises at least one of receive sequence number information or conform status information,
    상기 수신 시퀀스 넘버 정보는 상기 전송된 지오네트워킹 패킷의 시퀀스 넘버 정보와 같은 값을 갖고,The received sequence number information has the same value as the sequence number information of the transmitted geo-networking packet,
    상기 컨펌 상태 정보는 상기 포워더가 상기 지오네트워킹 패킷의 포워딩이 가능한지 여부 및 포워딩이 불가능한 경우 불가능 상태를 나타내는, 지오네트워킹 전송 방법.Wherein the conform status information indicates whether the forwarder is capable of forwarding the geo-networking packet and is not possible if forwarding is not possible.
  5. 제 3 항에 있어서,The method of claim 3,
    상기 목적지 컨펌 패킷은, 시퀀스 넘버 정보, 수신 시퀀스 넘버 정보, 또는 중복 횟수 정보 중 적어도 하나를 포함하고,Wherein the destination confirm packet includes at least one of sequence number information, received sequence number information, or duplication count information,
    상기 시퀀스 넘버 정보는 상기 목적지 컨펌 패킷의 시퀀스 넘버를 나타내고,Wherein the sequence number information indicates a sequence number of the destination match packet,
    상기 수신 시퀀스 넘버 정보는 상기 전송된 지오네트워킹 패킷의 시퀀스 넘버 정보와 같은 값을 갖고,The received sequence number information has the same value as the sequence number information of the transmitted geo-networking packet,
    상기 중복 횟수 정보는 동일 패킷의 목적지 도달 횟수를 나타내는, 지오네트워킹 전송 방법.Wherein the number of times of duplication indicates the number of times the same packet reaches a destination.
  6. 제 5 항에 있어서,6. The method of claim 5,
    상기 목적지 컨펌 패킷은, 소스 포지션 벡터 정보 및 목적지 포지션 벡터 정보를 더 포함하고,The destination confirm packet further includes source position vector information and destination position vector information,
    상기 소스 포지션 벡터 정보는 상기 목적지 컨펌 패킷을 전송하는 상기 목적지의 V2X 통신 장치의 포지션 벡터를 나타내고,Wherein the source position vector information represents a position vector of the destination V2X communication device transmitting the destination match packet,
    상기 목적지 포지션 벡터 정보는, 상기 지오네트워킹 패킷을 멀티홉 전송한 소스 V2X 통신 장치의 포지션 벡터를 나타내는, 지오네트워킹 전송 방법.Wherein the destination position vector information indicates a position vector of a source V2X communication apparatus that multi-hop transmits the geo-networking packet.
  7. 제 3 항에 있어서, The method of claim 3,
    상기 센더 컨펌 패킷은 싱글 홉 패킷에 해당하고, 상기 목적지 컨펌 패킷은 멀티 홉 패킷에 해당하는, 지오네트워킹 전송 방법.Wherein the sender confirm packet corresponds to a single hop packet and the destination confirm packet corresponds to a multi-hop packet.
  8. V2X 통신 장치에 있어서, In the V2X communication apparatus,
    데이터를 저장하는 메모리;A memory for storing data;
    지오네트워킹 패킷을 포함하는 무선 신호를 송수신하는 통신 유닛; 및A communication unit for transmitting and receiving a radio signal including geo-networking packets; And
    상기 메모리 및 상기 통신 유닛을 제어하는 프로세서를 포함하고, And a processor for controlling the memory and the communication unit,
    상기 프로세서는, The processor comprising:
    로케이션 정보에 포함된 상기 이웃 V2X 통신 장치들로부터 포워더(forwarder)를 결정하고, 결정된 포워더의 어드레스를 링크 레이어 어드레스로 설정하고,Determining a forwarder from the neighboring V2X communication devices included in the location information, setting the address of the determined forwarder as a link layer address,
    상기 링크 레이어 어드레스에 기초하여 지오네트워킹 패킷을 전송하고,Transmits a geo-networking packet based on the link layer address,
    최대 반복 시간이 종료할 때까지 특정 시간 간격으로 상기 지오네트워킹 패킷을 재전송하며,Retransmits the geo-networking packet at specific time intervals until the maximum repetition time ends,
    상기 로케이션 정보는 지오네트워킹 프로토콜을 실행하는 적어도 하나의 이웃 V2X 통신 장치에 대한 정보를 포함하고,Wherein the location information comprises information about at least one neighbor V2X communication device executing a geo-networking protocol,
    상기 포워더는 상기 로케이선 정보에 포함된 이웃 V2X 통신 장치들과 목적지와의 거리에 기초하여 결정되는, V2X 통신 장치.Wherein the forwarder is determined based on a distance between the neighbor V2X communication devices included in the localization information and a destination.
  9. 제 8 항에 있어서,9. The method of claim 8,
    상기 프로세서는, 상기 포워더로부터 컨펌 패킷을 수신하는 경우, 상기 지오네트워킹 패킷의 재전송을 종료하는, V2X 통신 장치.Wherein the processor terminates retransmission of the geo-networking packet when receiving a conform packet from the forwarder.
  10. 제 9 항에 있어서, 10. The method of claim 9,
    상기 컨펌 패킷은, 상기 포워더가 상기 지오네트워킹 패킷의 수신을 컨펌하는 센더(sender) 컨펌 패킷에 해당하거나, 목적지의 V2X 통신 장치가 상기 지오네트워킹 패킷의 목적지 영역 도달을 컨펌하는 목적지 컨펌 패킷에 해당하는, V2X 통신 장치.The conform packet may be a sender conform packet in which the forwarder confirms receipt of the geo-networking packet or a destination conform packet in which the destination V2X communication device confirms arrival of the geo-networking packet in the destination region , V2X communication device.
  11. 제 10 항에 있어서, 11. The method of claim 10,
    상기 센더 컨펌 패킷은 수신 시퀀스 넘버 정보 또는 컨펌 상태 정보 중 적어도 하나를 포함하고, Wherein the sender confirm packet comprises at least one of receive sequence number information or conform status information,
    상기 수신 시퀀스 넘버 정보는 상기 전송된 지오네트워킹 패킷의 시퀀스 넘버 정보와 같은 값을 갖고,The received sequence number information has the same value as the sequence number information of the transmitted geo-networking packet,
    상기 컨펌 상태 정보는 상기 포워더가 상기 지오네트워킹 패킷의 포워딩이 가능한지 여부 및 포워딩이 불가능한 경우 불가능 상태를 나타내는, V2X 통신 장치.Wherein the conform status information indicates whether the forwarder is capable of forwarding the geo-networking packet and is not possible if forwarding is not possible.
  12. 제 10 항에 있어서, 11. The method of claim 10,
    상기 목적지 컨펌 패킷은, 시퀀스 넘버 정보, 수신 시퀀스 넘버 정보, 또는 중복 횟수 정보 중 적어도 하나를 포함하고,Wherein the destination confirm packet includes at least one of sequence number information, received sequence number information, or duplication count information,
    상기 시퀀스 넘버 정보는 상기 목적지 컨펌 패킷의 시퀀스 넘버를 나타내고,Wherein the sequence number information indicates a sequence number of the destination match packet,
    상기 수신 시퀀스 넘버 정보는 상기 전송된 지오네트워킹 패킷의 시퀀스 넘버 정보와 같은 값을 갖고,The received sequence number information has the same value as the sequence number information of the transmitted geo-networking packet,
    상기 중복 횟수 정보는 동일 패킷의 목적지 도달 횟수를 나타내는, V2X 통신 장치.Wherein the number-of-duplication information indicates the number of arrivals of a destination of the same packet.
  13. 제 12 항에 있어서, 13. The method of claim 12,
    상기 목적지 컨펌 패킷은, 소스 포지션 벡터 정보 및 목적지 포지션 벡터 정보를 더 포함하고,The destination confirm packet further includes source position vector information and destination position vector information,
    상기 소스 포지션 벡터 정보는 상기 목적지 컨펌 패킷을 전송하는 상기 목적지의 V2X 통신 장치의 포지션 벡터를 나타내고,Wherein the source position vector information represents a position vector of the destination V2X communication device transmitting the destination match packet,
    상기 목적지 포지션 벡터 정보는, 상기 지오네트워킹 패킷을 멀티홉 전송한 소스 V2X 통신 장치의 포지션 벡터를 나타내는, V2X 통신 장치.Wherein the destination position vector information represents a position vector of a source V2X communication apparatus that multi-hop transmits the geo-networking packet.
  14. 제 10 항에 있어서, 11. The method of claim 10,
    상기 센더 컨펌 패킷은 싱글 홉 패킷에 해당하고, 상기 목적지 컨펌 패킷은 멀티 홉 패킷에 해당하는, V2X 통신 장치.Wherein the sender confirm packet corresponds to a single hop packet and the destination confirm packet corresponds to a multi-hop packet.
PCT/KR2018/000656 2018-01-15 2018-01-15 V2x communication device and geo-networking transmission method WO2019139194A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/000656 WO2019139194A1 (en) 2018-01-15 2018-01-15 V2x communication device and geo-networking transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/000656 WO2019139194A1 (en) 2018-01-15 2018-01-15 V2x communication device and geo-networking transmission method

Publications (1)

Publication Number Publication Date
WO2019139194A1 true WO2019139194A1 (en) 2019-07-18

Family

ID=67219724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000656 WO2019139194A1 (en) 2018-01-15 2018-01-15 V2x communication device and geo-networking transmission method

Country Status (1)

Country Link
WO (1) WO2019139194A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102328492B1 (en) * 2020-10-30 2021-11-18 주식회사 아이티텔레콤 Multi-hoped based v2x data transmit and receipt device
WO2022161292A1 (en) * 2021-01-27 2022-08-04 Huawei Technologies Co.,Ltd. Systems and methods for outside the context of a bss (ocb) communications in unlicensed bands
WO2022271278A1 (en) * 2021-06-25 2022-12-29 Qualcomm Incorporated Techniques to facilitate v2x identifier-based transport types of a geographical network layer protocol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170138458A (en) * 2015-04-01 2017-12-15 엘지전자 주식회사 Method and apparatus for transmitting and receiving signals in a V2X terminal in a wireless communication system
US20180012048A1 (en) * 2016-07-07 2018-01-11 NextEv USA, Inc. Vehicle with a soft-touch antenna for communicating sensitive information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170138458A (en) * 2015-04-01 2017-12-15 엘지전자 주식회사 Method and apparatus for transmitting and receiving signals in a V2X terminal in a wireless communication system
US20180012048A1 (en) * 2016-07-07 2018-01-11 NextEv USA, Inc. Vehicle with a soft-touch antenna for communicating sensitive information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JASPER KUPERUS: "Geonetworking solutions in V2V infrastructures", DISSERTATION, vol. 5, 2010, pages 2 - 3, XP055625588, Retrieved from the Internet <URL:https://pdfs.semanticscholar.org/36c4/ea8717938801f1918573d1d5aa73df7764cc.pdf> *
SEBASTIAN KUHLMORGEN: "Performance Evaluation of ETSI GeoNetworking for Vehicular Ad Hoc Networks", 2015 IEEE 81ST VEHICULAR TECHNOLOGY CONFERE NCE (VTC SPRING, 2015, pages 1 - 6, XP033167469, doi:10.1109/VTCSpring.2015.7146003 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102328492B1 (en) * 2020-10-30 2021-11-18 주식회사 아이티텔레콤 Multi-hoped based v2x data transmit and receipt device
WO2022161292A1 (en) * 2021-01-27 2022-08-04 Huawei Technologies Co.,Ltd. Systems and methods for outside the context of a bss (ocb) communications in unlicensed bands
US11665629B2 (en) 2021-01-27 2023-05-30 Huawei Technologies Co., Ltd. Systems and methods for outside the context of a BSS (OCB) communications in unlicensed bands
WO2022271278A1 (en) * 2021-06-25 2022-12-29 Qualcomm Incorporated Techniques to facilitate v2x identifier-based transport types of a geographical network layer protocol

Similar Documents

Publication Publication Date Title
WO2019156266A1 (en) V2x communication device and v2x communication method of v2x communication device
WO2019066106A1 (en) V2x communication device and multimedia content transmitting/receiving method thereof
WO2019240548A1 (en) Method and apparatus for performing sidelink communication by ue in nr v2x
WO2019240544A1 (en) Method and apparatus for performing sidelink communication by ue in nr v2x
WO2019132082A1 (en) V2x communication device and method for transmitting and receiving v2x message thereof
WO2018174385A1 (en) V2x communication device and method for transmitting and receiving v2x message thereof
WO2020197298A1 (en) Method and apparatus for initiating radio resource control (rrc) connection for vehicle-to-everything (v2x) communication
WO2019160177A1 (en) V2x communication device and method for transmitting and receiving v2x message by means of same
WO2020022526A1 (en) V2x communication device and geo-networking transmission method
WO2017164641A2 (en) Method and user equipment for transmitting data unit, and method and user equipment for receiving data unit
WO2019066108A1 (en) Device and method for v2x communication
WO2019240550A1 (en) Method and apparatus for reporting cast type by ue in nr v2x
WO2019004519A1 (en) V2x communication device and geo-networking transmission method
WO2017122976A1 (en) Method and apparatus for transmitting v2x message
WO2020036454A1 (en) Method and apparatus for transmitting or receiving data in wireless communication system
WO2018128205A1 (en) Device and method for v2x communication
WO2017047878A1 (en) Bearer setting method and device supporting same for transmitting/receiving data in wireless communication system
WO2018182074A1 (en) Device and method for v2x communication
WO2019031625A1 (en) V2x communication device and geo-networking transmission method
WO2020197310A1 (en) Method for transmitting safety message in wireless communication system supporting sidelink and apparatus therefortherefor
WO2019117369A1 (en) V2x communication device and communication method thereof
WO2019139194A1 (en) V2x communication device and geo-networking transmission method
WO2018225883A1 (en) V2x communication device and method for operating multi-channels thereof
WO2019074242A1 (en) Communication method and device for ultra-high-speed vehicle
WO2018124320A1 (en) V2x communication apparatus and data communication method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899685

Country of ref document: EP

Kind code of ref document: A1