WO2019164015A1 - Wire rod, steel wire, and aluminum-coated steel wire - Google Patents

Wire rod, steel wire, and aluminum-coated steel wire Download PDF

Info

Publication number
WO2019164015A1
WO2019164015A1 PCT/JP2019/007342 JP2019007342W WO2019164015A1 WO 2019164015 A1 WO2019164015 A1 WO 2019164015A1 JP 2019007342 W JP2019007342 W JP 2019007342W WO 2019164015 A1 WO2019164015 A1 WO 2019164015A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
less
steel wire
region
cross
Prior art date
Application number
PCT/JP2019/007342
Other languages
French (fr)
Japanese (ja)
Inventor
俊彦 手島
直樹 松井
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020501101A priority Critical patent/JP6881665B2/en
Publication of WO2019164015A1 publication Critical patent/WO2019164015A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Definitions

  • This disclosure relates to wire rods, steel wires, and aluminum-coated steel wires.
  • Patent Document 1 includes carbon (C) 0.9 to 1.2% by weight, silicon (Si) 1.0 to 1.5% by weight, manganese (Mn) 0.4 to 0.6% by weight, Chromium (Cr) 0.2 to 0.7 wt%, sulfur (S) 0.015 wt% or less (excluding 0%), phosphorus (P) 0.015 wt% or less (excluding 0%), And the rest is a step of producing a steel wire by drawing steel containing iron (Fe) and inevitable impurities, and primary plating the steel wire in a galvanizing tank, the iron is diffused, and the iron and zinc are A mixed iron-zinc alloy layer; a first plating step for forming a zinc plating layer formed on the iron-zinc alloy layer; and the iron-zinc alloy layer is transformed into an iron-zinc-aluminum alloy layer.
  • the first plating step so that the galvanized layer is transformed into a zinc-aluminum alloy layer.
  • a second plating step of performing secondary plating in a zinc-aluminum plating bath, and the thickness of the iron-zinc-aluminum alloy layer includes the iron-zinc-aluminum alloy layer, the zinc-aluminum alloy layer,
  • a method for producing a high-strength plated steel wire for reinforcing an overhead power transmission line is disclosed which is formed into a plated steel wire having a thickness of 40% to 60% of the total thickness.
  • Patent Document 2 as a steel material for electrical parts capable of performing cold forging with good dimensional accuracy and ensuring excellent electrical conductivity, C: 0.02% or less (0 %), Si: 0.1% or less (not including 0%), Mn: 0.1 to 0.5%, P: 0.02% or less (including 0%), S: 0.02 % Or less (including 0%), Al: 0.01% or less (including 0%), N: 0.005% or less (including 0%), O: 0.02% or less (including 0%)
  • fills (3) and a metal structure is a ferrite single phase structure is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-076482
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-226938
  • a steel core aluminum stranded cable (hereinafter sometimes referred to as “ACSR”), which is a cable using aluminum as a conductor, is used for applications such as power transmission lines.
  • the ACSR generally has a structure in which a galvanized steel wire or a stranded wire is used as a core material and an aluminum wire is twisted outside.
  • a galvanized steel wire or a stranded wire is used as a core material and an aluminum wire is twisted outside.
  • an aluminum-coated steel wire having an aluminum (aluminum) -containing layer that covers at least a part of the steel wire (hereinafter sometimes referred to as “AC wire”) may be used.
  • An object of the present disclosure is to provide a wire and a steel wire that have reduced electrical resistivity and excellent tensile strength. Moreover, the subject of this indication is providing the aluminum covering steel wire provided with the said steel wire.
  • the means for solving the above problems include the following aspects.
  • ⁇ 6> Any one of ⁇ 1> to ⁇ 5>, containing at least one of Al: 0.005% to 0.050% and Ti: 0.005% to 0.050% by mass% Wire described in one.
  • ⁇ 8> In a cross section perpendicular to the longitudinal direction, the average particle diameters of the pearlite blocks in a region within d / 10 from the center and a region within d / 10 from the outer peripheral surface are 23.0 ⁇ m or less, respectively The wire according to any one of to ⁇ 7>.
  • ⁇ 9> The wire according to any one of ⁇ 1> to ⁇ 8>, wherein an average lamella spacing of the pearlite structure in a region within d / 10 from the center is 90 nm or less in a cross section perpendicular to the longitudinal direction. . ⁇ 10> The wire according to any one of ⁇ 1> to ⁇ 9>, which satisfies that the electrical resistivity in the longitudinal direction is less than 0.180 ⁇ m. ⁇ 11> The wire according to any one of ⁇ 1> to ⁇ 10>, wherein the diameter is 3.0 mm or greater and 10.0 mm or less.
  • ⁇ 12> The wire according to any one of ⁇ 1> to ⁇ 11>, which is used for producing a steel wire in an aluminum-coated steel wire.
  • ⁇ 13> A steel wire that is a drawn product of the wire according to any one of ⁇ 1> to ⁇ 12>.
  • the chemical composition is mass%, C: 0.80% or more and 1.10% or less, Si: 0.005% or more and 0.100% or less, Mn: 0.05% or more and 0.30% or less, P: 0% to 0.030%, S: 0% or more and 0.030% or less, N: 0% or more and 0.0060% or less, Cr: 0.02% or more and less than 0.30%, Mo: 0.02% to 0.15%, Al: 0% or more and 0.050% or less, Ti: 0% or more and 0.050% or less, B: 0% or more and 0.0030% or less, and The balance: Fe and impurities, and the total amount of Mo and Cr is 0.13% or more, In the cross section perpendicular to the longitudinal direction, when the diameter of the steel wire is D, the average area ratio of the pearlite structure in the region within D / 7 from the center and the region within D / 7 from the outer peripheral surface is 90%.
  • the steel wire in which the average particle diameter of the pearlite block in the region within D / 7 from the center is 5.0 ⁇ m or less.
  • An aluminum-coated steel wire comprising the steel wire according to ⁇ 13> or ⁇ 14> and an aluminum-containing layer that covers at least a part of the steel wire.
  • an aluminum covering steel wire provided with the above-mentioned steel wire is provided.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • “%” indicating the content of a component (element) means “mass%”.
  • the content of C (carbon) may be referred to as “C content”.
  • the content of other elements may be expressed in the same manner.
  • the upper limit value or lower limit value of a stepwise numerical range may be replaced with the upper limit value or lower limit value of another stepwise numerical range. Also, the values shown in the examples may be substituted.
  • the wire of the present disclosure is Chemical composition is C: 0.80% or more and 1.10% or less by mass% Si: 0.005% or more and 0.100% or less, Mn: 0.05% or more and 0.30% or less, P: 0% to 0.030%, S: 0% or more and 0.030% or less, N: 0% or more and 0.0060% or less, Cr: 0.02% or more and less than 0.30%, Mo: 0.02% to 0.15%, Al: 0% or more and 0.050% or less, Ti: 0% or more and 0.050% or less, B: 0% or more and 0.0030% or less, and The balance: Fe and impurities, and the total amount of Mo and Cr is 0.13% or more, In the cross section perpendicular to the longitudinal direction, when the diameter is d, the average area ratio of the pearlite structure in the region within d / 7 from the center and the region within d / 7 from the outer peripheral surface is 90% or more.
  • the wire rod of the present disclosure has reduced electrical resistivity and excellent tensile strength.
  • the tensile strength of a wire means the tensile strength in the longitudinal direction of the wire at room temperature (for example, 20 ° C.).
  • the electrical resistivity of a wire means the electrical resistivity in the longitudinal direction of the wire at room temperature (for example, 20 ° C.).
  • the aforementioned effects of the wire of the present disclosure are achieved by a combination of the chemical composition and a metal structure in a cross section perpendicular to the longitudinal direction.
  • the content of Si, Mn, Cr, Mo, or the like is reduced below the upper limit value of the content of each element.
  • the electrical resistivity is reduced.
  • alloy elements such as Si, Mn, Cr, and Mo are reduced, the tensile strength may be reduced.
  • the average area ratio of the pearlite structure in the above-described region is limited to 90% or more by the combined addition of Cr and Mo.
  • the tensile strength is improved.
  • the electrical resistivity of the wire is improved and the tensile strength is improved by these configurations.
  • the chemical composition of the wire of the present disclosure is C: 0.80% to 1.10%, Si: 0.005% to 0.100%, Mn: 0.05% to 0.30%, P: 0% to 0.030%, S: 0% to 0.030%, N: 0% to 0.0060%, Cr: 0.02% to less than 0.30%, Mo: 0.02% 0.15% or less, Al: 0% or more and 0.050% or less, Ti: 0% or more and 0.050% or less, B: 0% or more and 0.0030% or less, and the balance: Fe and impurities, And the total amount of Mo and Cr is 0.13% or more.
  • the chemical composition of the raw material of the wire rod of the present disclosure (for example, melted steel, steel slab (for example, billet) described later) is the same as the chemical composition of the wire rod of the present disclosure. This is because the production process from molten steel to steel wire (for example, billet) to the wire does not affect the chemical composition.
  • the chemical composition of the wire or steel wire of the present disclosure may be referred to as “chemical composition in the present disclosure”.
  • the content of each element in the chemical composition of the wire of the present disclosure will be described.
  • C (C: 0.80% to 1.10%) C is an element effective for increasing the tensile strength of the wire. If the C content is less than 0.80%, the tensile strength of the wire may be insufficient. For this reason, C content is 0.80% or more. The C content is preferably 0.85% or more. On the other hand, if the C content exceeds 1.10%, the ductility of the wire may decrease. The reason for this is considered that when the C content exceeds 1.10%, it is industrially difficult to suppress the formation of proeutectoid cementite (cementite precipitated along the former austenite grain boundaries). . Therefore, the C content is 1.10% or less. The C content is preferably 1.05% or less, and more preferably 1.00% or less.
  • Si is an element effective for increasing the tensile strength of the wire by solid solution strengthening, and is also an element necessary as a deoxidizer. However, if the Si content is less than 0.005%, the effect of adding these Si may not be sufficient. For this reason, Si content is 0.005% or more. From the viewpoint of more stably enjoying these Si addition effects, the Si content is preferably 0.010%, more preferably 0.015% or more.
  • Si is an element that increases the electrical resistivity of the wire. If the Si content exceeds 0.100%, the electrical resistivity of the wire may be excessively increased. Therefore, the Si content is 0.100% or less. Si content becomes like this. Preferably it is 0.090% or less, More preferably, it is 0.070% or less, More preferably, it is 0.050% or less.
  • Mn is an element having an effect of increasing the tensile strength of the wire. Mn is also an element having an action of preventing hot brittleness of the wire by fixing S in steel as MnS. However, if the Mn content is less than 0.05%, these effects may not be sufficient. For this reason, the Mn content is 0.05% or more. Furthermore, in order to achieve the higher level of securing the tensile strength of the wire and preventing hot brittleness, the Mn content is preferably 0.10% or more, more preferably 0.13% or more. More preferably 0.15% or more. On the other hand, Mn has the effect of increasing the electrical resistivity of the wire. For this reason, when Mn content exceeds 0.30%, the electrical resistivity of a wire may become large too much. Therefore, the Mn content is 0.30% or less. The Mn content is preferably 0.25% or less.
  • N is an element that increases the electrical resistivity of the wire. For this reason, when N content exceeds 0.0060%, the electrical resistivity of a wire may become large too much. For this reason, N content is 0.0060% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the N content is preferably 0.0050% or less. The N content may be 0%. However, N is also an element that increases the tensile strength of the wire by fixing dislocations during cold drawing. From the viewpoint of such effects, the N content may be greater than 0%, may be 0.0010% or more, and may be 0.0020% or more.
  • P is an element that segregates at the grain boundaries of steel and increases the electrical resistivity. If the P content exceeds 0.030%, the electrical resistivity of the wire may be excessively increased. For this reason, P content is 0.030% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the P content is preferably 0.025% or less, and more preferably 0.020% or less. The P content may be 0%. However, from the viewpoint of reducing the manufacturing cost (dephosphorization cost), the P content may be more than 0%, 0.0005% or more, or 0.0010% or more. .
  • S is an element that increases the electrical resistivity of the wire. If the S content exceeds 0.030%, the electrical resistivity of the wire may be excessively increased. For this reason, S content is 0.030% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the S content is preferably 0.020% or less, and more preferably 0.015% or less. The S content may be 0%. However, from the viewpoint of reducing manufacturing costs (desulfurization costs), the S content may be more than 0%, 0.002% or more, or 0.005% or more.
  • Cr 0.02% or more and less than 0.30%)
  • Cr is an element that improves hardenability. For this reason, it is an element which raises the area ratio of a pearlite structure
  • Cr is also an element that increases the tensile strength of the wire by reducing the lamella spacing of the pearlite structure. In order to acquire these effects, it is necessary to make Cr content 0.02% or more. Cr content becomes like this. Preferably it is 0.05% or more, More preferably, it is 0.07% or more, More preferably, it is 0.10% or more. On the other hand, if the Cr content is 0.30% or more, the electrical resistivity of the wire may be excessively increased.
  • Cr when manufactured under manufacturing conditions in which the distribution of Cr to ferrite is not sufficient during the pearlite transformation, Cr may reduce the electrical resistivity.
  • the Cr content is less than 0.30%.
  • the Cr content is more preferably 0.25% or less.
  • Mo 0.02% to 0.15%
  • Mo is an element that improves hardenability. For this reason, it is an element which raises the area ratio of a pearlite structure
  • the Mo content exceeds 0.15%, the hardenability of the wire may be excessively increased. In this case, the pearlite transformation during patenting becomes insufficient, and the area ratio of the pearlite structure may decrease.
  • the addition amount of Mo becomes excessive, the electrical resistivity of a wire may become excessively large. From the viewpoint of suitability for manufacturing the wire, the Mo content is 0.15% or less, and more preferably 0.13% or less.
  • Addition of both Mo and Cr has the effect of increasing the area ratio of the pearlite structure and improving the tensile strength.
  • the present inventors have found that this effect can be further enhanced by adding both Mo and Cr in combination. That is, in the case where the above effect is obtained by adding Cr and Mo in combination, the necessary effect can be obtained with a small amount of alloy addition, compared with the case where Cr is added alone or Mo is added alone.
  • the electrical resistivity of the wire was not affected by the combined addition of Cr and Mo. That is, by adding Cr and Mo in combination, the amount of alloy addition can be reduced and the electrical resistivity of the wire can be reduced while ensuring the required area ratio and tensile strength of the pearlite structure.
  • the total amount of Mo and Cr is 0.13% or more, preferably 0.15% or more in mass%.
  • the total amount of Mo and Cr is mass%, preferably 0.40% or less, and more preferably 0.36% or less.
  • Al is an arbitrary element. That is, the Al content may be 0%.
  • Al is an element having a deoxidizing action, and is an element that reduces the pearlite block particle size by forming nitrides in the wire and refining the austenite particle size. It may be added to reduce the amount of oxygen in the wire. From the viewpoint of such action, the Al content may be more than 0%, 0.005% or more, or 0.030% or more.
  • the Al content exceeds 0.050%, the electrical resistivity of the wire may be excessively increased. The reason for this is considered that when the Al content exceeds 0.050%, coarse oxide inclusions are easily formed in the wire. For this reason, Al content is 0.050% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the Al content is preferably 0.040% or less, and more preferably 0.035% or less.
  • Ti is an arbitrary element. That is, the Ti content may be 0%. Ti is an element that reduces the pearlite block particle size by forming carbides or carbonitrides in the wire and refining the austenite particle size. Thereby, the ductility of a wire is improved. From the viewpoint of such action, the Ti content may be more than 0%, 0.002% or more, or 0.005% or more. On the other hand, if the Ti content exceeds 0.050%, the amount of carbide or carbonitride increases, and the austenite grain size is excessively refined, resulting in poor hardenability, resulting in a decrease in tensile strength. For this reason, Ti content is 0.050% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the Ti content is preferably 0.030% or less.
  • B is an arbitrary element. That is, the B content may be 0%. If the B content exceeds 0.0030%, coarse carbides or carbonitrides are likely to be formed in the wire, which may increase the electrical resistivity of the wire. For this reason, B content is 0.0030% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the B content is preferably 0.0025% or less.
  • B is an element that reduces the electrical resistivity of the wire by forming BN in the wire and reducing the solid solution N. From the viewpoint of such action, the B content may be more than 0%, 0.0001% or more, or 0.0005% or more.
  • the balance excluding the above-described elements is Fe and impurities.
  • the impurity refers to a component contained in the raw material or a component mixed in the manufacturing process and not intentionally contained in the steel. Examples of impurities include all elements other than the elements described above.
  • the element as the impurity may be only one type or two or more types. For example, for Nb, V, Ni, and Cu, 0.03% or less may be regarded as impurities.
  • the chemical composition in the present disclosure may contain at least one of Al: 0.005% to 0.050% and Ti: 0.005% to 0.050% in mass%.
  • Al 0.005% to 0.050%
  • Ti 0.005% to 0.050% in mass%.
  • FIG. 1 is a schematic diagram illustrating a center region and a surface layer region in which a structure is measured in a cross section perpendicular to the longitudinal direction of a wire rod of the present disclosure.
  • the wire of the present disclosure is centered when the diameter of the wire 10 is d in a cross section perpendicular to the longitudinal direction of the wire 10 (also referred to as “cross section” in this specification).
  • the average area ratio of the pearlite structure in a region within 7 d from C (hereinafter also referred to as “center region A”) and a region within 7 d from the outer peripheral surface (hereinafter also referred to as “surface layer region A”) is 90 % Or more.
  • the tensile strength of a wire improves.
  • the average area ratio of the pearlite structure in the cross section is less than 90%, the tensile strength of the wire may be lowered.
  • the electrical resistivity of the wire may decrease.
  • the average area ratio of the pearlite structure in the cross section is more preferably 93% or more, and still more preferably 95% or more.
  • the upper limit of the average area ratio of the pearlite structure in the cross section is not particularly limited, and the average area ratio of the pearlite structure may be 100%.
  • non-pearlite structure is preferably selected from the group consisting of ferrite, bainite, and martensite. Is at least one kind.
  • the average area ratio of the pearlite structure in the cross section of a wire means the value measured with the following measuring methods.
  • the cross section of the wire is mirror-polished, it corrodes with picral.
  • 5 points (5 fields of view) in the central region A and 5 points (5 fields of view) in the surface layer region A were used at a magnification of 2000 times using a field emission scanning electron microscope (FE-SEM). Observe and take a picture of each observation position.
  • the area per field of view is 2.7 ⁇ 10 ⁇ 3 mm 2 (vertical 0.045 mm, horizontal 0.060 mm).
  • a transparent sheet for example, an OHP (Over Head Projector) sheet
  • OHP Over Head Projector
  • a color is applied to the “non-perlite structure” in each transparent sheet.
  • the area ratio of the “colored region” that is, the non-pearlite structure
  • the area ratio of the obtained non-pearlite structure is subtracted from 100% to obtain an individual visual field.
  • the area ratio of the pearlite structure in is obtained.
  • the arithmetic average value for 10 visual fields of the area ratio of the pearlite structure is calculated, and the obtained value is set as the average area ratio of the pearlite structure.
  • the wire in the present disclosure is a region within d / 10 from the center C (hereinafter referred to as “central region B”) where the diameter of the wire 10 is d in a cross section (cross section) perpendicular to the longitudinal direction.
  • the average length of cementite is also preferably 2.0 ⁇ m or more.
  • the tensile strength can be further improved. More preferably, it is 2.1 micrometers or more, More preferably, it is 2.2 micrometers or more. This further improves the tensile strength of the wire.
  • the upper limit of the average length of cementite in the central region B of the wire is not particularly limited, but if the average length exceeds 4.0 ⁇ m, the structure may become coarse and the ductility may be reduced. 0 ⁇ m or less is preferable.
  • the average length of cementite in the central region B of the cross section of the wire means a value measured by the following measuring method.
  • a cross section perpendicular to the longitudinal direction of the wire that is, a cross section of the wire
  • FE-SEM field emission scanning electron microscope
  • the average lamella spacing of the pearlite structure in the region within d / 10 from the center (center region B) is preferably 90 nm or less.
  • the tensile strength of a wire improves more (for example, tensile strength can be 1220 Mpa or more). Further, the influence of the average lamella spacing on the electrical resistivity is not so great.
  • the average lamellar spacing of 90 nm or less is advantageous from the viewpoint of the balance between improvement in tensile strength and reduction in electrical resistivity.
  • the average lamella interval is more preferably 85 nm or less, and still more preferably 80 nm or less.
  • the average lamella spacing is preferably 50 nm or more, more preferably 55 nm or more, and further preferably 60 nm or more.
  • the average lamella interval of the pearlite structure in the cross section of a wire means the value measured by the following measuring methods. After the cross section of the wire is mirror-polished, it corrodes with picral. In the corroded cross section, five places (five fields of view) in the central region B are observed at a magnification of 10,000 times using a field emission scanning electron microscope (FE-SEM), and a photograph of each observation position is taken. The area per field of view is 1.08 ⁇ 10 ⁇ 4 mm 2 (vertical 0.009 mm, horizontal 0.012 mm).
  • the lamella orientation is the same and the lamella spacing is the smallest and the second lamella spacing is the smallest from the range in which the length corresponding to 5 lamellas can be measured.
  • the length for 5 lamella intervals is calculated
  • An arithmetic average value of 10 measurement locations (that is, 5 fields ⁇ 2 locations) of the obtained lamella spacing is obtained, and the obtained value is used as the average lamella spacing of the pearlite structure in the central region B of the cross section of the wire.
  • the wire rod of the present disclosure has an area within d / 10 from the center (that is, the center area B) and an area within d / 10 from the outer peripheral surface (hereinafter referred to as “surface layer area B”) when the diameter is d in the cross section.
  • the average particle size of the pearlite block in each case is preferably 23.0 ⁇ m or less. Thereby, the ductility of a wire can be improved more. Moreover, the influence which the average particle diameter of a pearlite block has on the tensile strength and electrical resistivity of a wire is not so great.
  • the average particle diameters of the pearlite blocks in the central region B and the surface layer region B are 23.0 ⁇ m or less, respectively, also from the viewpoint of the balance of improvement in ductility, improvement in tensile strength, and reduction in electrical resistivity. It is advantageous.
  • the average particle size of the pearlite block is more preferably 21.0 ⁇ m or less.
  • the average particle size of each pearlite block in the central region B and the surface layer region B is preferably 10.0 ⁇ m or more, more preferably 11.0 ⁇ m or more, and still more preferably. 13.0 ⁇ m or more.
  • the average particle size of the pearlite block is approximately the same in the surface layer region B and the central region B.
  • “average particle size of pearlite block in surface region B / average particle size of pearlite block in center region B” is 0.88 or more, and a structure having high uniformity in the cross section can be obtained.
  • the ratio of the average particle diameter of the surface layer and the pearlite block at the center in the wire rod of the present disclosure is not necessarily limited to this.
  • the pearlite block is a block constituting a pearlite structure.
  • the ductility of a wire is a physical property evaluated by the below-mentioned cross-sectional reduction rate.
  • the average particle diameter of each pearlite block in the center region B and the surface layer region B of the cross section of the wire means a value measured by the following measuring method.
  • the cross section of the wire is mirror-polished and then polished with colloidal silica.
  • four visual fields in the central region B and the surface layer region B are observed at a magnification of 400 times using a field emission scanning electron microscope (FE-SEM), and EBSD measurement (electron beam backscatter diffraction method) is performed. Measurement).
  • the area per field of view is 0.0324 mm 2 (vertical 0.18 mm, horizontal 0.18 mm), and the measurement step is 0.3 ⁇ m.
  • an angle difference between crystal orientations of 9 ° or more is defined as a grain boundary, and a weighted average of grain sizes of pearlite blocks is calculated.
  • the obtained value is defined as the particle size of the pearlite block in the visual field.
  • the arithmetic average value for the four visual fields of the particle size of the pearlite block is obtained, and the obtained value is set as the average particle size of the pearlite block in the cross section of the wire.
  • the particle size of a pearlite block can be obtained by using OIM analysis (EBSD analysis software of TSL Solutions, OIM: Orientation Imaging Microscopy).
  • OIM analysis EBSD analysis software of TSL Solutions, OIM: Orientation Imaging Microscopy.
  • a pixel having a CI value of 0.1 or less and a cluster of 9 or less pixels are regarded as noise because they have low data reliability, and are excluded.
  • the wire of the present disclosure is excellent in tensile strength.
  • the tensile strength of the wire is preferably 1220 MPa or more, more preferably 1260 MPa or more, and particularly preferably 1300 MPa or more. That the tensile strength of the wire is 1220 MPa or more is particularly easily achieved when the average value of the lamella spacing is 90 nm or less.
  • the tensile strength of the wire may be 1600 MPa or less from the viewpoint of ease of manufacturing the wire.
  • the tensile strength of a wire means a value measured by the following measuring method.
  • the wire is cut to a length of 340 mm, and then the longitudinal end 70 mm and the other end 70 mm of the wire are fixed with a wedge chuck, and a tensile test is performed.
  • the area of the cross section of the wire Prior to this tensile test, the area of the cross section of the wire is measured in advance.
  • the area of the cross section of the wire the area of the cross section at the center in the longitudinal direction of the wire cut to a length of 340 mm is measured.
  • the value obtained by dividing the maximum load obtained by the tensile test by the area of the cross section of the wire before the tensile test is taken as the tensile strength of the wire.
  • the cross-sectional reduction rate of the wire rod of the present disclosure is preferably 30% or more, and more preferably 32% or more. That the cross-section reduction rate of the wire is 30% or more is particularly easily achieved when the average particle size of the pearlite block is 23.0 ⁇ m or less in both the central region B and the surface layer region B.
  • the cross-sectional reduction rate of the wire may be 50% or less from the viewpoint of ease of manufacturing the wire.
  • the cross-sectional reduction rate of the wire means a value measured by the following measuring method.
  • the wire is cut to a length of 340 mm, and then the longitudinal end 70 mm and the other end 70 mm of the wire are fixed with a wedge chuck, and a tensile test is performed. Prior to this tensile test, the area of the cross section of the wire is measured in advance. After the tensile test (that is, when the wire is broken), the cross-sectional area of the wire at the portion where the wire diameter becomes the smallest is measured.
  • the amount of reduction in the area of the cross section before and after the tensile test is divided by the area of the cross section before the tensile test, and then multiplied by 100, and the obtained value is taken as the cross-sectional reduction rate (%) of the wire.
  • the wire rod of the present disclosure has reduced electrical resistivity.
  • the electrical resistivity of the wire is preferably less than 0.180 ⁇ m, more preferably 0.170 ⁇ m or less. There is no restriction
  • the electric resistivity of the wire may be 0.150 ⁇ m or more from the viewpoint of suitability for manufacturing the wire.
  • the electrical resistivity of a wire means a value measured by the following measurement method.
  • the wire is cut to a length of 100 mm, and then the oxidized scale on the surface layer of the wire is removed using sandblasting.
  • the electrical resistance value in the longitudinal direction of the wire from which the oxide scale has been removed (hereinafter referred to as “test piece”) is measured by a four-terminal method at a temperature of 20 ° C. In the four-terminal method, a pair of voltage terminals and a pair of current terminals are connected to the test piece.
  • the arrangement of the pair of voltage terminals and the pair of current terminals is such that the pair of voltage terminals is sandwiched between the pair of current terminals (that is, the current terminal, the voltage terminal, the voltage terminal, and the current terminal are arranged in this order). ).
  • the distance between a pair of voltage terminals is 20 mm.
  • the pair of current terminals may be connected to any part of the test piece as long as it is arranged as described above. In this state, a current is passed between the pair of current terminals, the voltage between the pair of voltage terminals is measured, and the electric resistance value is calculated based on the relationship between the current and the voltage.
  • the electrical resistivity in the longitudinal direction of the test piece ( ⁇ m) is calculated.
  • the obtained value is defined as the electrical resistivity ( ⁇ m) of the wire.
  • the diameter of the wire is preferably 3.0 mm or greater and 10.0 mm or less.
  • the diameter of the wire is 3.0 mm or more, the wire drawing when the wire is drawn to obtain a steel wire can be stabilized, and the production of the steel wire can be performed stably.
  • the diameter of a wire is 10.0 mm or less, the wire drawing distortion
  • the wire rod having a diameter of 3.0 mm or more and 10.0 mm or less is manufactured by drawing a steel wire in an aluminum-coated steel wire (preferably, a steel wire in an aluminum-coated steel wire for power transmission lines). It is particularly suitable as a material for the purpose.
  • the wire rod of the present disclosure is a wire rod having reduced electrical resistivity and excellent tensile strength, it is preferably used for manufacturing a steel wire that requires reduction in electrical resistivity and improvement in tensile strength.
  • steel wires include steel wires in aluminum-coated steel wires (preferably, steel wires in aluminum-coated steel wires for power transmission lines).
  • the steel wire of the present disclosure is a drawn product of the wire rod of the present disclosure described above. That is, the steel wire of the present disclosure has a chemical composition of mass%, C: 0.80% or more and 1.10% or less, Si: 0.005% or more and 0.100% or less, Mn: 0.05% or more and 0.30% or less, P: 0% to 0.030%, S: 0% or more and 0.030% or less, N: 0% or more and 0.0060% or less, Cr: 0.02% or more and less than 0.30%, Mo: 0.02% to 0.15%, Al: 0% or more and 0.050% or less, Ti: 0% or more and 0.050% or less, B: 0% or more and 0.0030% or less, and The balance: Fe and impurities, and the total amount of Mo and Cr is 0.13% or more, In the cross section perpendicular to the longitudinal direction, when the diameter of the steel wire is D, the average area ratio of the pearlite structure in the region within D /
  • the steel wire in the present disclosure includes a pearlite structure like the wire rod of the present disclosure described above, and is mainly composed of a plurality of pearlite blocks.
  • the average particle diameter of the pearlite block can be reduced, and ductility (cross-sectional reduction rate) can be improved.
  • the pearlite block particle size should be small.
  • the average particle diameter of the pearlite block in a region within D / 7 from the center when the diameter of the steel wire is D in a cross section perpendicular to the longitudinal direction is 5.0 ⁇ m or less. More preferably, it is 4.0 ⁇ m or less.
  • the cross-section reduction rate of a steel wire improves more, for example, it is easy to achieve the cross-section reduction rate of 40% or more.
  • the average particle diameter of the pearlite block in the center region within D / 7 from the center of the cross section of the steel wire means a value measured by the following measuring method.
  • the method other than the observation range is basically the same as the method for measuring the average particle size of the pearlite block in the wire described above.
  • a cross section perpendicular to the longitudinal direction of the steel wire that is, a cross section of the steel wire) is mirror-polished and then polished with colloidal silica.
  • a field emission scanning electron microscope (FE-SEM) is used to observe four visual fields in the central region at a magnification of 2000 times, and EBSD measurement (measurement by electron beam backscatter diffraction method) is performed.
  • the area per field of view is 0.0012 mm 2 (vertical 0.03 mm, horizontal 0.04 mm), and the measurement step is 0.10 ⁇ m.
  • an angle difference between crystal orientations of 9 ° or more is defined as a grain boundary, a weighted average of the particle sizes of the pearlite block is calculated, and the obtained value is defined as the pearlite block particle size in the field of view.
  • the average value (arithmetic average) of the pearlite block particle diameters for four visual fields in the central region is defined as the average particle diameter of the pearlite blocks in the cross section of the steel wire.
  • the particle size of a pearlite block can be obtained by using OIM analysis (EBSD analysis software of TSL Solutions, OIM: Orientation Imaging Microscopy).
  • OIM analysis EBSD analysis software of TSL Solutions, OIM: Orientation Imaging Microscopy.
  • the steel wire of the present disclosure having the above chemical composition and the average particle size of the pearlite block is obtained by drawing the wire of the present disclosure having reduced electrical resistivity and excellent tensile strength. For this reason, the steel wire of the present disclosure also has a reduced electrical resistivity and excellent tensile strength.
  • the diameter of the steel wire is preferably 1.0 mm or more and 3.5 mm or less. When the diameter of the steel wire is 1.0 mm or more, the wire drawing when obtaining the steel wire by wire drawing can be performed more stably. When the diameter of the steel wire is 3.5 mm or less, decomposition of cementite during wire drawing and an increase in electrical resistance due to this decomposition can be further suppressed.
  • the drawing strain in the drawing is preferably 1.50 or more.
  • the electrical resistivity can be further reduced by wire drawing.
  • the wire drawing strain in the wire drawing is preferably 2.40 or less.
  • the wire drawing strain refers to a value obtained by the following formula (A).
  • “ln” means a natural logarithm (ie, “log e ”).
  • Drawing strain 2 ⁇ ln (wire diameter (mm) / steel wire diameter (mm))
  • the aluminum-coated steel wire of the present disclosure includes the above-described steel wire of the present disclosure and an aluminum-containing layer (hereinafter, Al-containing layer) that covers at least a part of the steel wire.
  • the aluminum-coated steel wire of the present disclosure includes the steel wire of the present disclosure having excellent tensile strength and reduced electrical resistivity. For this reason, the aluminum-coated steel wire of the present disclosure is also excellent in tensile strength and reduced in electrical resistivity.
  • the diameter of the steel wire in the aluminum-coated steel wire is preferably 1.0 mm or more and 3.5 mm or less.
  • the wire-drawing process for obtaining an aluminum-coated steel wire by wire drawing can be performed more stably.
  • the diameter of the steel wire in the aluminum-coated steel wire is 3.5 mm or less, decomposition of cementite during wire drawing and an increase in electrical resistance due to this decomposition can be further suppressed.
  • the Al-containing layer is preferably a layer containing Al as a main component.
  • the layer containing Al as a main component means a layer containing Al as a component having the largest content (mass%).
  • the content of Al in the Al-containing layer is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • an Al layer made of Al (that is, pure Al) or an Al alloy layer made of an Al alloy is preferable.
  • the Al alloy an Al alloy containing Al and at least one selected from the group consisting of Mg, Si, Zn, and Mn is preferable.
  • the content of Al in the Al alloy is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • Al alloys in the 3000 to 7000 range in the international aluminum alloy name can be cited.
  • the Al layer made of Al may contain impurities in addition to Al.
  • the Al alloy layer made of an Al alloy here may contain impurities in addition to the above-described elements (Al, Mg, Si, Zn, Mn).
  • the area ratio of the Al-containing layer with respect to the entire cross section is preferably 10% to 64%.
  • the electrical resistance (specifically, the electrical resistance in the longitudinal direction) of the entire aluminum-coated steel wire is further reduced.
  • the area ratio of the Al-containing layer is 64% or less, the tensile strength of the entire aluminum-coated steel wire is further improved.
  • the area ratio of the Al-containing layer is more preferably 10% to 50%, still more preferably 10% to 40%, and still more preferably 15% to 35%.
  • the aluminum-coated steel wire of the present disclosure described above is preferably used as a core material of a steel core aluminum stranded wire (ACSR).
  • the steel core aluminum stranded wire include a general steel core aluminum stranded wire having a structure in which the aluminum-coated steel wire of the present disclosure is used as a core material, and an aluminum wire or an aluminum alloy wire is twisted outside the core material.
  • the aluminum-coated steel wire and the steel core aluminum stranded wire of the present disclosure are preferably an aluminum-coated steel wire for power transmission lines and a steel core aluminum stranded wire for power transmission lines, respectively.
  • the manufacturing method X includes a step of producing a steel slab having a chemical component in the present disclosure; a step of heating the steel slab; a step of hot rolling the heated steel slab to obtain hot-rolled steel; Water cooling and then winding up; cooling the hot rolled steel after winding; and patenting the cooled hot rolled steel.
  • each process in the manufacturing method X is demonstrated.
  • steel having a chemical component in the present disclosure is melted, and a steel piece having the chemical component in the present disclosure is manufactured using the obtained steel.
  • the steel slab is manufactured by a known method such as continuous casting or crack rolling.
  • the steel slab obtained in the steel slab manufacturing step is preferably heated to a heating temperature of 1150 to 1250 ° C.
  • the heating temperature means the highest temperature reached at the average temperature of the cross section of the steel slab.
  • the heating temperature is 1150 ° C. or higher, an increase in the reaction force during hot rolling can be further suppressed.
  • the heating temperature is 1250 ° C. or lower, excessive decarburization can be further suppressed.
  • the steel slab heated in the step of heating the steel slab is hot-rolled to obtain hot rolled steel.
  • the finishing temperature in hot rolling (specifically, the temperature of hot-rolled steel on the finish rolling exit side) is preferably higher than 950 ° C. When the finishing temperature is higher than 950 ° C., an increase in the reaction force during hot rolling can be further suppressed.
  • the finishing temperature in hot rolling is preferably 1100 ° C. or lower. When the finishing temperature is 1100 ° C. or less, the austenite grains can be further coarsened and the average grain diameter of the pearlite block after patenting can be further suppressed, and as a result, the ductility of the steel wire can be further reduced.
  • the finishing temperature means the temperature of the surface of the hot-rolled steel (the same applies to preferable temperatures in the steps after the “step of cooling the hot-rolled steel with water and then winding”, which will be described later).
  • the coiling temperature (that is, the water cooling stop temperature) is preferably 820 ° C. to 875 ° C.
  • the coiling temperature is 820 ° C. or higher, excessive reduction in the austenite grain size and the resulting decrease in hardenability can be further suppressed.
  • the coiling temperature is 875 ° C. or less, excessive coarsening of austenite grains and coarsening of the average particle diameter of the pearlite block after patenting can be suppressed, and as a result, a decrease in ductility can be further suppressed.
  • the water cooling is preferably started immediately after the end of hot rolling.
  • the cooling attainment temperature in the cooling corresponds to the immersion start temperature in the molten salt in the patenting described later.
  • a preferable range of the cooling attainment temperature that is, the immersion start temperature in molten salt
  • the immersion start temperature in the molten salt (hereinafter also simply referred to as “immersion start temperature”) is preferably 700 ° C. or higher. Since the ferrite transformation can be suppressed when the immersion start temperature is 700 ° C. or higher, it is easy to obtain the wire according to the present disclosure in which the average area ratio of the pearlite structure is 90% or higher.
  • the immersion starting temperature is preferably 750 ° C. or lower. When the immersion start temperature is 750 ° C. or lower, an increase in the temperature of the molten salt can be further suppressed.
  • the temperature of the molten salt is preferably 480 ° C. or higher.
  • the temperature of the molten salt is 480 ° C. or higher, excessive formation of a bainite structure can be suppressed, and thus the wire rod of the present disclosure in which the average area ratio of the pearlite structure is 90% or more is easily obtained.
  • the temperature of molten salt is 540 degrees C or less. When the temperature of the molten salt is 540 ° C. or less, it is possible to further suppress the coarsening of the lamella interval and the decrease in the tensile strength of the wire due thereto.
  • the immersion time in the molten salt is preferably 20 seconds or longer.
  • the immersion time in the molten salt is 20 seconds or more, the pearlite transformation is easily completed, and thus the wire of the present disclosure having an average area ratio of the pearlite structure of 90% or more is easily obtained.
  • the immersion time in the molten salt is 20 seconds or more, the formation of martensite can be further suppressed, so that the increase in electrical resistivity can be further suppressed, and the ductility is also advantageous.
  • the immersion time in the molten salt is preferably 200 seconds or less from the viewpoint of productivity.
  • the wire of this indication when manufacturing the wire of this indication through the said process, it is preferable not to perform a tempering process. If tempering is performed after the patenting step, the cementite is divided and shortened, and the tensile strength may be reduced. By not performing such tempering treatment, the average length of cementite in the region within d / 10 from the center can be maintained at 2.0 ⁇ m or more in the cross section perpendicular to the longitudinal direction.
  • the heating temperature, finishing temperature, winding temperature, soaking start temperature, molten salt temperature, and soaking time are respectively the heating temperature in the step of heating the steel slab, and the heated steel slab is hot rolled.
  • a wire diameter shows the diameter of the wire finally obtained.
  • Samples 1A to 35A shown in Table 5 were obtained as wire rods by using the billets obtained from Steels 1 to 35, respectively, and carrying out the steps after the step of heating the steel slab in Production Method X.
  • the conditions of the process after the process of heating the steel slab in the production method X were the above-described production condition A in any sample.
  • Samples 1A to 18A, 34A, and 35A are examples of the wire of the present disclosure, and samples 19A to 33A are comparative examples.
  • the numerical value in the “[Mo] + [Cr] (%)” column means the total amount (mass%) of Mo and Cr in the chemical composition of the wire.
  • the numerical value in the “ ⁇ ” column means ⁇ represented by the above-described formula (1).
  • the “ ⁇ ⁇ Mo” column indicates whether [Mo] and ⁇ satisfy ⁇ ⁇ [Mo] when the mass% of Mo is [Mo]. “A” means that ⁇ ⁇ [Mo] is satisfied, and “B” means that ⁇ ⁇ [Mo] is not satisfied.
  • the numerical value in the “ ⁇ ” column means ⁇ represented by the above-described formula (2).
  • the numerical value in the “ ⁇ 1” column means ⁇ 1 represented by the above-described formula (3).
  • A means that ⁇ ⁇ 1 is satisfied, and “B” means that ⁇ ⁇ 1 is not satisfied.
  • ⁇ 2" column refers to beta 2 of the formula (4) above. ⁇ " ⁇ ⁇ 2" column, and the ⁇ and ⁇ 2 is indicative of whether or not to satisfy the ⁇ ⁇ 2.
  • A means that ⁇ ⁇ 2 is satisfied, and “B” means that ⁇ ⁇ 2 is not satisfied.
  • Center PBS means the average particle diameter of the pearlite block in the center region within d / 10 from the center in the cross section.
  • “Surface PBS” means the average particle diameter of pearlite blocks in the surface area within d / 10 from the outer peripheral surface in the cross section.
  • d is the diameter of the wire.
  • “Cementite length” means the average length of cementite in the central region within d / 10 from the center in the cross section.
  • the “average lamella spacing” means the average lamella spacing of the pearlite structure in the central region within d / 10 from the center in the cross section.
  • the samples aA to aM which are examples of the wire rod according to the present disclosure, had a reduced electrical resistivity and an excellent tensile strength.
  • the samples aN to aP (all of the comparative examples) in which the area ratio of the pearlite structure was less than 90% had low tensile strength.
  • the reason why the area ratio of the pearlite structure was less than 90% is considered that the heating temperature was high and the decarburization on the surface of the wire progressed.
  • the reason why the area ratio of the pearlite structure was less than 90% in the sample aO is considered to be that the immersion start temperature was low and the ferrite structure was formed before the immersion.
  • the reason why the area ratio of the pearlite structure was less than 90% and the cementite length was short is considered to be that the molten salt temperature was low and a large amount of bainite structure was formed.
  • the wire of the sample aQ (comparative example) in which the area ratio of the pearlite structure was less than 90% had a high electric resistivity.
  • the area ratio of the pearlite structure was less than 90%, and the reason why the electrical resistivity was high was that the immersion time in the molten salt was short, the pearlite transformation was not completed, and the martensite structure was formed. It is done.
  • the cross-section reduction rate which is an index of ductility of the wire, was further improved.
  • the samples aA to aM which are examples the samples aA to aL having an average lamella spacing of 90 nm or less had higher tensile strength.
  • Samples 1A to 18A, 34A, and 35A which are examples of the wire of the present disclosure, had reduced electrical resistivity and excellent tensile strength.
  • Sample 19A not containing Mo had a low tensile strength.
  • Sample 20A having too much Si content had a high electrical resistivity.
  • Sample 21A with too much Mn content had high electrical resistivity.
  • Sample 22A not containing Cr had a low tensile strength.
  • Sample 23A with too much Cr content had high electrical resistivity.
  • Sample 24A having too little C content had a low tensile strength.
  • Sample 25A with too much Mo content had high electrical resistivity.
  • Sample 26A with too much Al content had a high electrical resistivity.
  • Sample 27A with too much N content had a high electrical resistivity.
  • Sample 28A having too much Ti content had low tensile strength.
  • sample 29A having an excessive content of B had a high electrical resistivity.
  • Sample 30A with too much C content had high electrical resistivity. The reason for this is considered that pro-eutectoid cementite was formed.
  • Sample 31A had a low Mo content, poor hardenability, and low tensile strength.
  • Sample 32A the area ratio of the pearlite structure was low, and the tensile strength was low.
  • Sample 33A had a low total content of Mo and Cr, poor hardenability, and low tensile strength.
  • Samples 1A ⁇ 18A is an example, 34A, among 35A, the alpha ⁇ Sample 1A ⁇ 11A satisfying ⁇ 1, 34A, 35A, the electrical resistivity has been further reduced.
  • the alpha ⁇ Sample 1A ⁇ 6A satisfying ⁇ 2, 34A, 35A the electrical resistivity has been particularly reduced.
  • Samples 1A to 18A, 34A, and 35A which are examples, were subjected to wire drawing with a wire drawing strain of 1.50 to 2.40 with a reduction in area of 23 to 25% in each pass, and a diameter of 1 A steel wire of 0.0 to 3.5 mm was obtained.
  • the wire drawing process was defined as a pass, and the amount of change in the cross-sectional area of the pass was defined as the area reduction rate.
  • the average area ratio of the pearlite structure was 90% or more, and the average particle diameter of the pearlite block was 5.0 ⁇ m or less.
  • the tensile strength and electrical resistivity of the obtained steel wire were measured in the same manner as the measurement method for the wire, the tensile strength was 2000 MPa or more and the electrical resistivity was less than 0.200 ⁇ m. It was.
  • the aluminum-coated steel wires in which the surfaces of the steel wires of Samples 1A to 18A, 34A, and 35A, which are the examples shown in Table 6, are coated with an Al-containing layer have reduced electrical resistivity, and Aluminum coated steel wire with excellent tensile strength.
  • Such an aluminum-coated steel wire is obtained by either a method of drawing after forming an Al coating on the wire of the present disclosure or a method of forming an Al-containing layer on the steel wire of the present disclosure after the wire drawing. It can be manufactured.

Abstract

This wire rod has a chemical composition containing, in mass%, 0.80-1.10% of C, 0.005-0.100% of Si, 0.05-0.30% of Mn, 0-0.030% of P, 0-0.030% of S, 0-0.0060% of N, not less than 0.02% but less than 0.30% of Cr, 0.02-0.15% of Mo, 0-0.050% of Al, 0-0.050% of Ti, and 0-0.0030% of B, the balance being Fe and impurities, and the total amount of Mo and Cr being 0.13% or more, wherein the average area ratio of a pearlite structure in a region within d/7 from the center of the wire rod and a region within d/7 from the peripheral surface of the wire rod is 90% or more in a cross-section perpendicular to the longitudinal direction of the wire rod, where d represents the diameter of the wire rod. This steel wire is obtained by subjecting the wire rod to a drawing process. This aluminum-coated steel wire is obtained by coating the steel wire with an aluminum-containing layer.

Description

線材、鋼線及びアルミ被覆鋼線Wire, steel wire and aluminum coated steel wire
 本開示は、線材、鋼線及びアルミ被覆鋼線に関する。 This disclosure relates to wire rods, steel wires, and aluminum-coated steel wires.
 従来より、送電線を補強するための鋼線に関する検討がなされている。
 例えば、特許文献1には、炭素(C)0.9~1.2重量%、ケイ素(Si)1.0~1.5重量%、マンガン(Mn)0.4~0.6重量%、クロム(Cr)0.2~0.7重量%、硫黄(S)0.015重量%以下(0%を含まない)、リン(P)0.015重量%以下(0%を含まない)、並びに残りは、鉄(Fe)及び不可避な不純物を含む鋼を伸線して鋼線を製造する段階と、亜鉛メッキ槽において前記鋼線を一次メッキし、前記鉄が拡散され、鉄及び亜鉛が混合された鉄-亜鉛合金層と、前記鉄-亜鉛合金層上に形成される亜鉛メッキ層を形成する第1メッキ段階と、前記鉄-亜鉛合金層は、鉄-亜鉛-アルミニウム合金層に変成され、前記亜鉛メッキ層は、亜鉛-アルミニウム合金層に変成されるように、前記第1メッキ段階後、亜鉛-アルミニウムメッキ槽において二次メッキする第2メッキ段階と、を含み、前記鉄-亜鉛-アルミニウム合金層の厚みは、前記鉄-亜鉛-アルミニウム合金層と、前記亜鉛-アルミニウム合金層と、を合わせた厚みの40%ないし60%であるメッキ鋼線に形成されることを特徴とする架空送電線補強用高強度メッキ鋼線の製造方法が開示されている。
Conventionally, studies on steel wires for reinforcing transmission lines have been made.
For example, Patent Document 1 includes carbon (C) 0.9 to 1.2% by weight, silicon (Si) 1.0 to 1.5% by weight, manganese (Mn) 0.4 to 0.6% by weight, Chromium (Cr) 0.2 to 0.7 wt%, sulfur (S) 0.015 wt% or less (excluding 0%), phosphorus (P) 0.015 wt% or less (excluding 0%), And the rest is a step of producing a steel wire by drawing steel containing iron (Fe) and inevitable impurities, and primary plating the steel wire in a galvanizing tank, the iron is diffused, and the iron and zinc are A mixed iron-zinc alloy layer; a first plating step for forming a zinc plating layer formed on the iron-zinc alloy layer; and the iron-zinc alloy layer is transformed into an iron-zinc-aluminum alloy layer. The first plating step so that the galvanized layer is transformed into a zinc-aluminum alloy layer. A second plating step of performing secondary plating in a zinc-aluminum plating bath, and the thickness of the iron-zinc-aluminum alloy layer includes the iron-zinc-aluminum alloy layer, the zinc-aluminum alloy layer, A method for producing a high-strength plated steel wire for reinforcing an overhead power transmission line is disclosed which is formed into a plated steel wire having a thickness of 40% to 60% of the total thickness.
 一方、鋼材に関し、電気伝導性の向上が求められる場合がある。
 例えば、特許文献2には、寸法精度の良好な冷間鍛造が行えるとともに、優れた電気伝導性を確保することのできる電気部品用鋼材として、質量%で、C:0.02%以下(0%を含む)、Si:0.1%以下(0%を含まない)、Mn:0.1~0.5%、P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)、Al:0.01%以下(0%を含む)、N:0.005%以下(0%を含む)、O:0.02%以下(0%を含む)を満たし、金属組織がフェライト単相組織である、冷間鍛造性及び電気伝導性に優れた電気部品用鋼材が開示されている。
On the other hand, there is a case where improvement in electrical conductivity is required for steel materials.
For example, in Patent Document 2, as a steel material for electrical parts capable of performing cold forging with good dimensional accuracy and ensuring excellent electrical conductivity, C: 0.02% or less (0 %), Si: 0.1% or less (not including 0%), Mn: 0.1 to 0.5%, P: 0.02% or less (including 0%), S: 0.02 % Or less (including 0%), Al: 0.01% or less (including 0%), N: 0.005% or less (including 0%), O: 0.02% or less (including 0%) The steel material for electrical parts excellent in cold forgeability and electrical conductivity which satisfy | fills (3) and a metal structure is a ferrite single phase structure is disclosed.
 特許文献1:特開2016-076482号公報
 特許文献2:特開2003-226938号公報
Patent Document 1: Japanese Patent Application Laid-Open No. 2016-076482 Patent Document 2: Japanese Patent Application Laid-Open No. 2003-226938
 ところで、送電線等の用途に対し、導電体としてアルミニウムを用いたケーブルである、鋼心アルミニウム撚線(aluminum conductor steel-reinforced cable、以下、「ACSR」と称する場合がある)が使用されることがある。
 ACSRは、一般に、亜鉛めっき鋼線の単線又は撚り線を芯材として、外側にアルミニウム線を撚り合わせた構造を有する。このような構造のACSRを海岸地帯等の湿度の高い地域で使用した場合には、雨水などを電解液として、電極電位の異なる亜鉛とアルミニウムとの接触部分で亜鉛が腐食し、さらに暴露した鉄とアルミニウムとが接触してアルミニウムが腐食する場合がある。そのため、これらの地域では、ACSRの芯材として、亜鉛めっき鋼線に代えて、鋼線と、この鋼線の少なくとも一部を被覆するAl(アルミニウム)含有層と、を備えるアルミ被覆鋼線(aluminum-clad steel wire、以下「AC線」と称する場合がある)が使用されることがある。
By the way, a steel core aluminum stranded cable (hereinafter sometimes referred to as “ACSR”), which is a cable using aluminum as a conductor, is used for applications such as power transmission lines. There is.
The ACSR generally has a structure in which a galvanized steel wire or a stranded wire is used as a core material and an aluminum wire is twisted outside. When an ACSR having such a structure is used in a high humidity area such as a coastal area, zinc is corroded at a contact portion between zinc and aluminum having different electrode potentials by using rainwater or the like as an electrolytic solution. May come into contact with aluminum and corrode aluminum. Therefore, in these areas, instead of the galvanized steel wire, as the core material of the ACSR, an aluminum-coated steel wire having an aluminum (aluminum) -containing layer that covers at least a part of the steel wire ( Aluminum-clad steel wire (hereinafter sometimes referred to as “AC wire”) may be used.
 AC線を芯材として用いたACSRにおいて、電流は、芯材の外側に撚り合わせられたアルミニウム線の部分だけでなく、芯材としてのAC線にも流れる。そのため、送電効率を向上させる観点から、AC線の電気抵抗率を低減させることが求められる場合がある。
 その一方で、AC線に対し、引張強さを向上させることが求められる場合がある。
In the ACSR using an AC wire as a core material, current flows not only in the aluminum wire portion twisted on the outside of the core material but also in the AC wire as the core material. Therefore, from the viewpoint of improving the power transmission efficiency, it may be required to reduce the electrical resistivity of the AC line.
On the other hand, it may be required to improve the tensile strength of the AC wire.
 AC線の電気抵抗率を低減させ、かつ、引張強さを向上させるためには、AC線中の鋼線の電気抵抗率を低減させ、かつ、上記鋼線の引張強さを向上させることが有効であると考えられる。そのためには、上記鋼線の製造に用いられる線材の電気抵抗率を低減させ、かつ、上記線材の引張強さを向上させることが有効であると考えられる。
 しかしながら、特許文献1や特許文献2で開示されている技術では、電気抵抗率が低減され、かつ、引張強さに優れる線材を得ることは困難である。
In order to reduce the electrical resistivity of the AC wire and improve the tensile strength, it is necessary to reduce the electrical resistivity of the steel wire in the AC wire and improve the tensile strength of the steel wire. It is considered effective. For this purpose, it is considered effective to reduce the electrical resistivity of the wire used for the production of the steel wire and to improve the tensile strength of the wire.
However, with the techniques disclosed in Patent Document 1 and Patent Document 2, it is difficult to obtain a wire material with reduced electrical resistivity and excellent tensile strength.
 本開示の課題は、電気抵抗率が低減され、かつ、引張強さに優れる線材及び鋼線を提供することである。
 また、本開示の課題は、上記鋼線を備えるアルミ被覆鋼線を提供することである。
An object of the present disclosure is to provide a wire and a steel wire that have reduced electrical resistivity and excellent tensile strength.
Moreover, the subject of this indication is providing the aluminum covering steel wire provided with the said steel wire.
 上記課題を解決するための手段には、以下の態様が含まれる。 The means for solving the above problems include the following aspects.
<1> 化学組成が、質量%で
C:0.80%以上1.10%以下、
Si:0.005%以上0.100%以下、
Mn:0.05%以上0.30%以下、
P:0%以上0.030%以下、
S:0%以上0.030%以下、
N:0%以上0.0060%以下、
Cr:0.02%以上0.30%未満、
Mo:0.02%以上0.15%以下、
Al:0%以上0.050%以下、
Ti:0%以上0.050%以下、
B:0%以上0.0030%以下、並びに、
残部:Fe及び不純物からなり、かつ、MoとCrとの合計量が、0.13%以上であり、
 長手方向に対して垂直な断面において、線材の直径をdとした場合に、中心からd/7以内の領域及び外周面からd/7以内の領域におけるパーライト組織の平均面積率が、90%以上である線材。
<2> 長手方向に垂直な断面において、中心からd/10以内の領域におけるセメンタイトの平均長さが、2.0μm以上である<1>に記載の線材。
<3> Moの質量%を[Mo]とした場合に、[Mo]と下記式(1)で表されるγとが、γ≦[Mo]を満たす<1>又は<2>に記載の線材。
 γ=0.0018/([C]×([Cr]+0.1))・・・(1)
 式(1)中の各元素記号は、各元素の質量%を示す。
<4> 下記式(2)で表されるαと下記式(3)で表されるβとが、α<βを満たす<1>~<3>のいずれか一つに記載の線材。
 α=4.4×[Si]+2.2×[Mn]+[Cr]+[Mo]・・・(2)
 β=0.54/[C]+[C]/10・・・(3)
 式(2)及び(3)中の各元素記号は、各元素の質量%を示す。
<5> 下記式(2)で表されるαと下記式(4)で表されるβとが、α<βを満たす<1>~<4>のいずれか一つに記載の線材。
 α=4.4×[Si]+2.2×[Mn]+[Cr]+[Mo]・・・(2)
 β=0.54/[C]・・・(4)
 式(2)及び(4)中の各元素記号は、各元素の質量%を示す。
<6> 質量%で、Al:0.005%以上0.050%以下及びTi:0.005%以上0.050%以下の少なくとも1種を含有する<1>~<5>のいずれか一つに記載の線材。
<7> 質量%で、B:0.0001%以上0.0030%以下を含有する<1>~<6>のいずれか一つに記載の線材。
<8> 長手方向に対して垂直な断面において、中心からd/10以内の領域及び外周面からd/10以内の領域におけるパーライトブロックの平均粒径が、それぞれ23.0μm以下である<1>~<7>のいずれか一つに記載の線材。
<9> 長手方向に対して垂直な断面において、中心からd/10以内の領域におけるパーライト組織の平均ラメラ間隔が、90nm以下である<1>~<8>のいずれか一つに記載の線材。
<10> 長手方向の電気抵抗率が、0.180μΩm未満となることを満たす<1>~<9>のいずれか一つに記載の線材。
<11> 直径が、3.0mm以上10.0mm以下である<1>~<10>のいずれか一つに記載の線材。
<12> アルミ被覆鋼線中の鋼線の製造に用いられる<1>~<11>のいずれか一つに記載の線材。
<13> <1>~<12>のいずれか一つに記載の線材の伸線加工品である鋼線。
<14>  化学組成が、質量%で、
C:0.80%以上1.10%以下、
Si:0.005%以上0.100%以下、
Mn:0.05%以上0.30%以下、
P:0%以上0.030%以下、
S:0%以上0.030%以下、
N:0%以上0.0060%以下、
Cr:0.02%以上0.30%未満、
Mo:0.02%以上0.15%以下、
Al:0%以上0.050%以下、
Ti:0%以上0.050%以下、
B:0%以上0.0030%以下、並びに、
残部:Fe及び不純物からなり、かつ、MoとCrとの合計量が、0.13%以上であり、
 長手方向に対して垂直な断面において、鋼線の直径をDとした場合に、中心からD/7以内の領域及び外周面からD/7以内の領域におけるパーライト組織の平均面積率が、90%以上であり、中心からD/7以内の領域におけるパーライトブロックの平均粒径が5.0μm以下である鋼線。
<15> <13>又は<14>に記載の鋼線と、前記鋼線の少なくとも一部を被覆するアルミニウム含有層と、を備えるアルミ被覆鋼線。
<1> C: 0.80% or more and 1.10% or less in terms of mass%
Si: 0.005% or more and 0.100% or less,
Mn: 0.05% or more and 0.30% or less,
P: 0% to 0.030%,
S: 0% or more and 0.030% or less,
N: 0% or more and 0.0060% or less,
Cr: 0.02% or more and less than 0.30%,
Mo: 0.02% to 0.15%,
Al: 0% or more and 0.050% or less,
Ti: 0% or more and 0.050% or less,
B: 0% or more and 0.0030% or less, and
The balance: Fe and impurities, and the total amount of Mo and Cr is 0.13% or more,
In a cross section perpendicular to the longitudinal direction, when the diameter of the wire is d, the average area ratio of the pearlite structure in the region within d / 7 from the center and the region within d / 7 from the outer peripheral surface is 90% or more Is a wire rod.
<2> The wire according to <1>, wherein an average length of cementite in a region within d / 10 from the center is 2.0 μm or more in a cross section perpendicular to the longitudinal direction.
<3> When the mass% of Mo is [Mo], [Mo] and γ represented by the following formula (1) satisfy γ ≦ [Mo]. wire.
γ = 0.018 / ([C] × ([Cr] +0.1) 2 ) (1)
Each element symbol in the formula (1) indicates mass% of each element.
<4> The wire according to any one of <1> to <3>, wherein α represented by the following formula (2) and β 1 represented by the following formula (3) satisfy α <β 1 .
α = 4.4 × [Si] + 2.2 × [Mn] + [Cr] + [Mo] (2)
β 1 = 0.54 / [C] 2 + [C] / 10 (3)
Each element symbol in the formulas (2) and (3) indicates mass% of each element.
<5> represented by alpha and the following formula by the following formula (2) (4) and beta 2 which is expressed by, alpha <satisfy beta 2 <1> ~ wire according to any one of <4> .
α = 4.4 × [Si] + 2.2 × [Mn] + [Cr] + [Mo] (2)
β 2 = 0.54 / [C] 2 (4)
Each element symbol in the formulas (2) and (4) indicates mass% of each element.
<6> Any one of <1> to <5>, containing at least one of Al: 0.005% to 0.050% and Ti: 0.005% to 0.050% by mass% Wire described in one.
<7> The wire according to any one of <1> to <6>, which contains B: 0.0001% to 0.0030% by mass.
<8> In a cross section perpendicular to the longitudinal direction, the average particle diameters of the pearlite blocks in a region within d / 10 from the center and a region within d / 10 from the outer peripheral surface are 23.0 μm or less, respectively The wire according to any one of to <7>.
<9> The wire according to any one of <1> to <8>, wherein an average lamella spacing of the pearlite structure in a region within d / 10 from the center is 90 nm or less in a cross section perpendicular to the longitudinal direction. .
<10> The wire according to any one of <1> to <9>, which satisfies that the electrical resistivity in the longitudinal direction is less than 0.180 μΩm.
<11> The wire according to any one of <1> to <10>, wherein the diameter is 3.0 mm or greater and 10.0 mm or less.
<12> The wire according to any one of <1> to <11>, which is used for producing a steel wire in an aluminum-coated steel wire.
<13> A steel wire that is a drawn product of the wire according to any one of <1> to <12>.
<14> The chemical composition is mass%,
C: 0.80% or more and 1.10% or less,
Si: 0.005% or more and 0.100% or less,
Mn: 0.05% or more and 0.30% or less,
P: 0% to 0.030%,
S: 0% or more and 0.030% or less,
N: 0% or more and 0.0060% or less,
Cr: 0.02% or more and less than 0.30%,
Mo: 0.02% to 0.15%,
Al: 0% or more and 0.050% or less,
Ti: 0% or more and 0.050% or less,
B: 0% or more and 0.0030% or less, and
The balance: Fe and impurities, and the total amount of Mo and Cr is 0.13% or more,
In the cross section perpendicular to the longitudinal direction, when the diameter of the steel wire is D, the average area ratio of the pearlite structure in the region within D / 7 from the center and the region within D / 7 from the outer peripheral surface is 90%. The steel wire in which the average particle diameter of the pearlite block in the region within D / 7 from the center is 5.0 μm or less.
<15> An aluminum-coated steel wire comprising the steel wire according to <13> or <14> and an aluminum-containing layer that covers at least a part of the steel wire.
 本開示によれば、電気抵抗率が低減され、かつ、引張強さに優れる線材及び鋼線が提供される。
 本開示によれば、上記鋼線を備えるアルミ被覆鋼線が提供される。
According to the present disclosure, it is possible to provide a wire and a steel wire that have reduced electrical resistivity and excellent tensile strength.
According to this indication, an aluminum covering steel wire provided with the above-mentioned steel wire is provided.
線材の長手方向に対して垂直な断面(横断面)において組織を測定する中心領域及び表層領域を示す概略図である。It is the schematic which shows the center area | region and surface layer area | region which measure a structure | tissue in a cross section (cross section) perpendicular | vertical with respect to the longitudinal direction of a wire.
 本明細書中、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書中、成分(元素)の含有量を示す「%」は、「質量%」を意味する。
 本明細書中、C(炭素)の含有量を、「C含有量」と表記することがある。他の元素の含有量についても同様に表記することがある。
 本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, “%” indicating the content of a component (element) means “mass%”.
In the present specification, the content of C (carbon) may be referred to as “C content”. The content of other elements may be expressed in the same manner.
In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of a stepwise numerical range may be replaced with the upper limit value or lower limit value of another stepwise numerical range. Also, the values shown in the examples may be substituted.
〔線材〕
 本開示の線材は、
化学組成が、質量%で
C:0.80%以上1.10%以下、
Si:0.005%以上0.100%以下、
Mn:0.05%以上0.30%以下、
P:0%以上0.030%以下、
S:0%以上0.030%以下、
N:0%以上0.0060%以下、
Cr:0.02%以上0.30%未満、
Mo:0.02%以上0.15%以下、
Al:0%以上0.050%以下、
Ti:0%以上0.050%以下、
B:0%以上0.0030%以下、並びに、
残部:Fe及び不純物からなり、かつ、MoとCrとの合計量が、0.13%以上であり、
 長手方向に垂直な断面において、直径をdとした場合に、中心からd/7以内の領域及び外周面からd/7以内の領域におけるパーライト組織の平均面積率が、90%以上である。
〔wire〕
The wire of the present disclosure is
Chemical composition is C: 0.80% or more and 1.10% or less by mass%
Si: 0.005% or more and 0.100% or less,
Mn: 0.05% or more and 0.30% or less,
P: 0% to 0.030%,
S: 0% or more and 0.030% or less,
N: 0% or more and 0.0060% or less,
Cr: 0.02% or more and less than 0.30%,
Mo: 0.02% to 0.15%,
Al: 0% or more and 0.050% or less,
Ti: 0% or more and 0.050% or less,
B: 0% or more and 0.0030% or less, and
The balance: Fe and impurities, and the total amount of Mo and Cr is 0.13% or more,
In the cross section perpendicular to the longitudinal direction, when the diameter is d, the average area ratio of the pearlite structure in the region within d / 7 from the center and the region within d / 7 from the outer peripheral surface is 90% or more.
 本開示の線材は、電気抵抗率が低減され、かつ、引張強さに優れる。
 本明細書において、線材の引張強さは、室温(例えば20℃)における、線材の長手方向の引張強さを意味する。
 本明細書において、線材の電気抵抗率は、室温(例えば20℃)における、線材の長手方向の電気抵抗率を意味する。
The wire rod of the present disclosure has reduced electrical resistivity and excellent tensile strength.
In this specification, the tensile strength of a wire means the tensile strength in the longitudinal direction of the wire at room temperature (for example, 20 ° C.).
In this specification, the electrical resistivity of a wire means the electrical resistivity in the longitudinal direction of the wire at room temperature (for example, 20 ° C.).
 本開示の線材の前述した効果(即ち、電気抵抗率の低減及び引張強さの向上)は、上記化学組成と、上記長手方向に対して垂直な断面における金属組織と、の組み合わせによって達成される。
 例えば、本開示における線材の化学組成では、Si、Mn、Cr、Mo等の含有量が、各元素の含有量の上限値以下に低減されている。これによって、電気抵抗率が低減されている。
 一般的には、Si、Mn、Cr、Mo等の合金元素を低減した場合、引張強さが低下する場合がある。この点に関し、本開示における線材では、Cr及びMoの複合添加によって、上述した領域におけるパーライト組織の平均面積率が90%以上に限定されている。これによって、引張強さが向上されている。
 本開示の線材では、これらの構成により、線材の電気抵抗率の低減及び引張強さの向上が達成される。
The aforementioned effects of the wire of the present disclosure (that is, reduction in electrical resistivity and improvement in tensile strength) are achieved by a combination of the chemical composition and a metal structure in a cross section perpendicular to the longitudinal direction. .
For example, in the chemical composition of the wire according to the present disclosure, the content of Si, Mn, Cr, Mo, or the like is reduced below the upper limit value of the content of each element. As a result, the electrical resistivity is reduced.
Generally, when alloy elements such as Si, Mn, Cr, and Mo are reduced, the tensile strength may be reduced. In this regard, in the wire according to the present disclosure, the average area ratio of the pearlite structure in the above-described region is limited to 90% or more by the combined addition of Cr and Mo. Thereby, the tensile strength is improved.
In the wire according to the present disclosure, the electrical resistivity of the wire is improved and the tensile strength is improved by these configurations.
<線材の化学組成>
 以下、本開示の線材の化学組成について説明する。
 本開示の線材の化学組成は、C:0.80%以上1.10%以下、Si:0.005%以上0.100%以下、Mn:0.05%以上0.30%以下、P:0%以上0.030%以下、S:0%以上0.030%以下、N:0%以上0.0060%以下、Cr:0.02%以上0.30%未満、Mo:0.02%以上0.15%以下、Al:0%以上0.050%以下、Ti:0%以上0.050%以下、B:0%以上0.0030%以下、並びに、残部:Fe及び不純物からなり、かつ、MoとCrとの合計量が、0.13%以上である。
 本開示の線材の原料(例えば、後述する、溶製された鋼、鋼片(例えばビレット)、等)の化学組成も、本開示の線材の化学組成と同様である。溶製された鋼から、鋼片(例えばビレット)を経て線材に至るまでの製造過程は、化学組成に影響を与えないためである。
 以下、本開示の線材又は鋼線の化学組成を、「本開示における化学組成」ということがある。
 以下、本開示の線材の化学組成における各元素の含有量について説明する。
<Chemical composition of wire>
Hereinafter, the chemical composition of the wire of the present disclosure will be described.
The chemical composition of the wire of the present disclosure is C: 0.80% to 1.10%, Si: 0.005% to 0.100%, Mn: 0.05% to 0.30%, P: 0% to 0.030%, S: 0% to 0.030%, N: 0% to 0.0060%, Cr: 0.02% to less than 0.30%, Mo: 0.02% 0.15% or less, Al: 0% or more and 0.050% or less, Ti: 0% or more and 0.050% or less, B: 0% or more and 0.0030% or less, and the balance: Fe and impurities, And the total amount of Mo and Cr is 0.13% or more.
The chemical composition of the raw material of the wire rod of the present disclosure (for example, melted steel, steel slab (for example, billet) described later) is the same as the chemical composition of the wire rod of the present disclosure. This is because the production process from molten steel to steel wire (for example, billet) to the wire does not affect the chemical composition.
Hereinafter, the chemical composition of the wire or steel wire of the present disclosure may be referred to as “chemical composition in the present disclosure”.
Hereinafter, the content of each element in the chemical composition of the wire of the present disclosure will be described.
(C:0.80%以上1.10%以下)
 Cは、線材の引張強さを高めるために有効な元素である。C含有量が0.80%未満であると、線材の引張強さが不足する場合がある。このため、C含有量は0.80%以上である。C含有量は、好ましくは0.85%以上である。
 一方、C含有量が1.10%を超えると、線材の延性が低下する場合がある。この理由は、C含有量が1.10%を超えると、初析セメンタイト(旧オ-ステナイト粒界に沿って析出するセメンタイト)の生成を抑制することが工業的に困難となるためと考えられる。従って、C含有量は、1.10%以下である。C含有量は、好ましくは1.05%以下であり、より好ましくは1.00%以下である。
(C: 0.80% to 1.10%)
C is an element effective for increasing the tensile strength of the wire. If the C content is less than 0.80%, the tensile strength of the wire may be insufficient. For this reason, C content is 0.80% or more. The C content is preferably 0.85% or more.
On the other hand, if the C content exceeds 1.10%, the ductility of the wire may decrease. The reason for this is considered that when the C content exceeds 1.10%, it is industrially difficult to suppress the formation of proeutectoid cementite (cementite precipitated along the former austenite grain boundaries). . Therefore, the C content is 1.10% or less. The C content is preferably 1.05% or less, and more preferably 1.00% or less.
(Si:0.005%以上0.100%以下)
 Siは、固溶強化によって線材の引張強さを高めるのに有効な元素であり、また脱酸剤としても必要な元素である。しかしながら、Si含有量が0.005%未満では、これらのSiの添加効果が十分でない場合がある。このため、Si含有量は、0.005%以上である。これらのSiの添加効果をより安定して享受する観点からは、Si含有量は、好ましくは0.010%であり、より好ましくは0.015%以上である。
 一方、Siは線材の電気抵抗率を増大させる元素である。Si含有量が0.100%を超えると、線材の電気抵抗率が過度に大きくなる場合がある。従って、Si含有量は、0.100%以下である。Si含有量は、好ましくは0.090%以下であり、より好ましくは0.070%以下であり、より好ましくは0.050%以下である。
(Si: 0.005% or more and 0.100% or less)
Si is an element effective for increasing the tensile strength of the wire by solid solution strengthening, and is also an element necessary as a deoxidizer. However, if the Si content is less than 0.005%, the effect of adding these Si may not be sufficient. For this reason, Si content is 0.005% or more. From the viewpoint of more stably enjoying these Si addition effects, the Si content is preferably 0.010%, more preferably 0.015% or more.
On the other hand, Si is an element that increases the electrical resistivity of the wire. If the Si content exceeds 0.100%, the electrical resistivity of the wire may be excessively increased. Therefore, the Si content is 0.100% or less. Si content becomes like this. Preferably it is 0.090% or less, More preferably, it is 0.070% or less, More preferably, it is 0.050% or less.
(Mn:0.05%以上0.30%以下)
 Mnは、線材の引張強さを高める作用を有する元素である。Mnは、鋼中のSをMnSとして固定することにより、線材の熱間脆性を防止する作用を有する元素でもある。しかしながら、Mn含有量が0.05%未満ではこれらの作用が十分でない場合がある。このため、Mn含有量は0.05%以上である。さらに、線材の引張強さの確保及び熱間脆性の防止をより高いレベルで実現するためには、Mn含有量は、好ましくは0.10%以上であり、より好ましくは0.13%以上であり、更に好ましくは0.15%以上である。
 一方、Mnには、線材の電気抵抗率を大きくする作用がある。このため、Mn含有量が0.30%を超えると、線材の電気抵抗率が過度に大きくなる場合がある。従って、Mn含有量は、0.30%以下である。Mn含有量は、好ましくは0.25%以下である。
(Mn: 0.05% or more and 0.30% or less)
Mn is an element having an effect of increasing the tensile strength of the wire. Mn is also an element having an action of preventing hot brittleness of the wire by fixing S in steel as MnS. However, if the Mn content is less than 0.05%, these effects may not be sufficient. For this reason, the Mn content is 0.05% or more. Furthermore, in order to achieve the higher level of securing the tensile strength of the wire and preventing hot brittleness, the Mn content is preferably 0.10% or more, more preferably 0.13% or more. More preferably 0.15% or more.
On the other hand, Mn has the effect of increasing the electrical resistivity of the wire. For this reason, when Mn content exceeds 0.30%, the electrical resistivity of a wire may become large too much. Therefore, the Mn content is 0.30% or less. The Mn content is preferably 0.25% or less.
(N:0%以上0.0060%以下)
 Nは、線材の電気抵抗率を上昇させる元素である。このため、N含有量が0.0060%を超えると、線材の電気抵抗率が過度に大きくなる場合がある。このため、N含有量は、0.0060%以下である。線材の電気抵抗率をより低減する観点から、N含有量は、好ましくは0.0050%以下である。
 N含有量は、0%であってもよい。但し、Nは、冷間での伸線加工中に転位を固着させることにより、線材の引張強さを上昇させる元素でもある。かかる効果の観点から、N含有量は、0%超であってもよく、0.0010%以上であってもよく、0.0020%以上であってもよい。
(N: 0% or more and 0.0060% or less)
N is an element that increases the electrical resistivity of the wire. For this reason, when N content exceeds 0.0060%, the electrical resistivity of a wire may become large too much. For this reason, N content is 0.0060% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the N content is preferably 0.0050% or less.
The N content may be 0%. However, N is also an element that increases the tensile strength of the wire by fixing dislocations during cold drawing. From the viewpoint of such effects, the N content may be greater than 0%, may be 0.0010% or more, and may be 0.0020% or more.
(P:0%以上0.030%以下)
 Pは、鋼の結晶粒界に偏析して電気抵抗率を上昇させる元素である。P含有量が0.030%を超えると、線材の電気抵抗率が過度に大きくなる場合がある。このため、P含有量は0.030%以下である。線材の電気抵抗率をより低減する観点から、P含有量は、好ましくは0.025%以下であり、より好ましくは0.020%以下である。
 P含有量は、0%であってもよい。但し、製造コスト(脱燐コスト)の低減の観点から、P含有量は、0%超であってもよく、0.0005%以上であってもよく、0.0010%以上であってもよい。
(P: 0% to 0.030%)
P is an element that segregates at the grain boundaries of steel and increases the electrical resistivity. If the P content exceeds 0.030%, the electrical resistivity of the wire may be excessively increased. For this reason, P content is 0.030% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the P content is preferably 0.025% or less, and more preferably 0.020% or less.
The P content may be 0%. However, from the viewpoint of reducing the manufacturing cost (dephosphorization cost), the P content may be more than 0%, 0.0005% or more, or 0.0010% or more. .
(S:0%以上0.030%以下)
 Sは、線材の電気抵抗率を上昇させる元素である。S含有量が0.030%を超えると、線材の電気抵抗率が過度に大きくなる場合がある。このため、S含有量は、0.030%以下である。線材の電気抵抗率をより低減する観点から、S含有量は、好ましくは0.020%以下であり、より好ましくは0.015%以下である。
 S含有量は、0%であってもよい。但し、製造コスト(脱硫コスト)の低減の観点から、S含有量は、0%超であってもよく、0.002%以上であってもよく、0.005%以上であってもよい。
(S: 0% to 0.030%)
S is an element that increases the electrical resistivity of the wire. If the S content exceeds 0.030%, the electrical resistivity of the wire may be excessively increased. For this reason, S content is 0.030% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the S content is preferably 0.020% or less, and more preferably 0.015% or less.
The S content may be 0%. However, from the viewpoint of reducing manufacturing costs (desulfurization costs), the S content may be more than 0%, 0.002% or more, or 0.005% or more.
(Cr:0.02%以上0.30%未満)
 Crは焼き入れ性を向上させる元素である。このため、後述するMoとの複合添加によりパーライト組織の面積率を高め、引張強さを向上させる元素である。また、Crはパーライト組織のラメラ間隔を小さくして線材の引張強さを高める元素でもある。これらの効果を得るためには、Cr含有量を0.02%以上にする必要がある。Cr含有量は、好ましくは0.05%以上であり、より好ましくは0.07%以上であり、さらに好ましくは0.10%以上である。
 一方、Cr含有量が0.30%以上であると、線材の電気抵抗率が過度に大きくなる場合がある。例えば、パーライト変態時にCrのフェライトへの分配が十分でない製造条件で製造した場合、Crが電気抵抗率を低減させる可能性がある。線材の電気抵抗率の過度の上昇を抑制する観点から、Cr含有量は0.30%未満である。Cr含有量はより好ましくは0.25%以下である。
(Cr: 0.02% or more and less than 0.30%)
Cr is an element that improves hardenability. For this reason, it is an element which raises the area ratio of a pearlite structure | tissue and improves tensile strength by compound addition with Mo mentioned later. Cr is also an element that increases the tensile strength of the wire by reducing the lamella spacing of the pearlite structure. In order to acquire these effects, it is necessary to make Cr content 0.02% or more. Cr content becomes like this. Preferably it is 0.05% or more, More preferably, it is 0.07% or more, More preferably, it is 0.10% or more.
On the other hand, if the Cr content is 0.30% or more, the electrical resistivity of the wire may be excessively increased. For example, when manufactured under manufacturing conditions in which the distribution of Cr to ferrite is not sufficient during the pearlite transformation, Cr may reduce the electrical resistivity. From the viewpoint of suppressing an excessive increase in the electrical resistivity of the wire, the Cr content is less than 0.30%. The Cr content is more preferably 0.25% or less.
(Mo:0.02%以上0.15%以下)
 Moは焼き入れ性を向上させる元素である。このため、前述するCrとの複合添加によりパーライト組織の面積率を高め、引張強さを向上させる元素である。この効果を得るためには0.02%以上にする必要がある。
 一方、Mo含有量が0.15%を超えると、線材の焼き入れ性が過度に大きくなる場合がある。この場合、パテンティング中のパーライト変態が不十分となり、パーライト組織の面積率が減少する場合がある。また、Moの添加量が過剰となると、線材の電気抵抗率が過度に大きくなる場合がある。線材の製造適性の観点から、Mo含有量は、0.15%以下であり、より好ましくは0.13%以下である。
(Mo: 0.02% to 0.15%)
Mo is an element that improves hardenability. For this reason, it is an element which raises the area ratio of a pearlite structure | tissue and improves tensile strength by compound addition with Cr mentioned above. In order to acquire this effect, it is necessary to make it 0.02% or more.
On the other hand, if the Mo content exceeds 0.15%, the hardenability of the wire may be excessively increased. In this case, the pearlite transformation during patenting becomes insufficient, and the area ratio of the pearlite structure may decrease. Moreover, when the addition amount of Mo becomes excessive, the electrical resistivity of a wire may become excessively large. From the viewpoint of suitability for manufacturing the wire, the Mo content is 0.15% or less, and more preferably 0.13% or less.
 MoとCrは、どちらも添加されることでパーライト組織の面積率を高め、引張強さを向上させる効果を持つ。本発明者らは、特に、MoとCrとの両方を複合添加することにより、この効果が一層高められることを知見した。すなわち、CrおよびMoを複合添加することによって上記効果を得る場合には、Crを単独、またはMoを単独で添加する場合に比べ、少ない合金添加量によって必要な効果が得られる。一方で、線材の電気抵抗率については、CrおよびMoの複合添加による影響は見られなかった。すなわち、CrとMoとを複合添加することにより、必要なパーライト組織の面積率および引張強さを確保しつつ、合金添加量を低減し、線材の電気抵抗率を低減することができる。
 MoとCrとの複合添加の効果をより発揮させる観点から、MoとCrの合計量は、質量%で、0.13%以上であり、好ましくは0.15%以上である。
 一方、線材の電気抵抗率をより低減させる観点から、MoとCrの合計量は、質量%で、好ましくは0.40%以下であり、より好ましくは0.36%以下である。
Addition of both Mo and Cr has the effect of increasing the area ratio of the pearlite structure and improving the tensile strength. The present inventors have found that this effect can be further enhanced by adding both Mo and Cr in combination. That is, in the case where the above effect is obtained by adding Cr and Mo in combination, the necessary effect can be obtained with a small amount of alloy addition, compared with the case where Cr is added alone or Mo is added alone. On the other hand, the electrical resistivity of the wire was not affected by the combined addition of Cr and Mo. That is, by adding Cr and Mo in combination, the amount of alloy addition can be reduced and the electrical resistivity of the wire can be reduced while ensuring the required area ratio and tensile strength of the pearlite structure.
From the viewpoint of further exerting the effect of combined addition of Mo and Cr, the total amount of Mo and Cr is 0.13% or more, preferably 0.15% or more in mass%.
On the other hand, from the viewpoint of further reducing the electrical resistivity of the wire, the total amount of Mo and Cr is mass%, preferably 0.40% or less, and more preferably 0.36% or less.
 線材の引張強さをより向上させる観点から、Mo、C、Crの各質量%をそれぞれ[Mo]、[C]、[Cr]とした場合に、[Mo]と下記式(1)で表されるγとが、γ≦[Mo]を満たすことが望ましい。
 γ=0.0018/([C]×([Cr]+0.1))・・・(1)
From the viewpoint of further improving the tensile strength of the wire, when the respective mass percentages of Mo, C, and Cr are [Mo], [C], and [Cr], respectively, [Mo] and the following formula (1) are used. It is preferable that γ satisfies γ ≦ [Mo].
γ = 0.018 / ([C] × ([Cr] +0.1) 2 ) (1)
(Al:0%以上0.050%以下)
 Alは、任意の元素である。即ち、Al含有量は、0%であってもよい。
 Alは、脱酸作用を有する元素であり、また、線材中に窒化物を形成して、オーステナイト粒径を微細化することでパーライトブロック粒径を小さくする元素である。線材中の酸素量低減のために添加してもよい。かかる作用の観点から、Al含有量は、0%超であってもよく、0.005%以上であってもよく、0.030%以上であってもよい。
 一方、Al含有量が0.050%を超えると、線材の電気抵抗率が過度に大きくなる場合がある。この理由は、Al含有量が0.050%を超えると、線材中に粗大な酸化物系介在物が過度に形成され易くなるためと考えられる。このため、Al含有量は、0.050%以下である。線材の電気抵抗率をより低減する観点から、Al含有量は、好ましくは0.040%以下であり、より好ましくは0.035%以下である。
(Al: 0% to 0.050%)
Al is an arbitrary element. That is, the Al content may be 0%.
Al is an element having a deoxidizing action, and is an element that reduces the pearlite block particle size by forming nitrides in the wire and refining the austenite particle size. It may be added to reduce the amount of oxygen in the wire. From the viewpoint of such action, the Al content may be more than 0%, 0.005% or more, or 0.030% or more.
On the other hand, if the Al content exceeds 0.050%, the electrical resistivity of the wire may be excessively increased. The reason for this is considered that when the Al content exceeds 0.050%, coarse oxide inclusions are easily formed in the wire. For this reason, Al content is 0.050% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the Al content is preferably 0.040% or less, and more preferably 0.035% or less.
(Ti:0%以上0.050%以下)
 Tiは、任意の元素である。即ち、Ti含有量は、0%であってもよい。
 Tiは、線材中に炭化物又は炭窒化物を形成して、オーステナイト粒径を微細化することでパーライトブロック粒径を小さくする元素である。これにより、線材の延性の向上が図られる。かかる作用の観点から、Ti含有量は、0%超であってもよく、0.002%以上であってもよく、0.005%以上であってもよい。
 一方、Ti含有量が0.050%を超えると、炭化物又は炭窒化物が多量となり、オーステナイト粒径を微細化し過ぎるため焼き入れ性が悪くなり、その結果、引張強さが低下する。このため、Ti含有量は、0.050%以下である。線材の電気抵抗率をより低減する観点から、Ti含有量は、好ましくは0.030%以下である。
(Ti: 0% to 0.050%)
Ti is an arbitrary element. That is, the Ti content may be 0%.
Ti is an element that reduces the pearlite block particle size by forming carbides or carbonitrides in the wire and refining the austenite particle size. Thereby, the ductility of a wire is improved. From the viewpoint of such action, the Ti content may be more than 0%, 0.002% or more, or 0.005% or more.
On the other hand, if the Ti content exceeds 0.050%, the amount of carbide or carbonitride increases, and the austenite grain size is excessively refined, resulting in poor hardenability, resulting in a decrease in tensile strength. For this reason, Ti content is 0.050% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the Ti content is preferably 0.030% or less.
(B:0%以上0.0030%以下)
 Bは、任意の元素である。即ち、B含有量は、0%であってもよい。
 B含有量が0.0030%を超えると、線材中に粗大な炭化物又は炭窒化物が形成され易くなり、線材の電気抵抗率が上昇するおそれがある。このため、B含有量は、0.0030%以下である。線材の電気抵抗率をより低減する観点から、B含有量は、好ましくは0.0025%以下である。
 一方、Bは、線材中にBNを形成し、固溶Nを低減することで、線材の電気抵抗率を低減させる元素である。かかる作用の観点から、B含有量は、0%超であってもよく、0.0001%以上であってもよく、0.0005%以上であってもよい。
(B: 0% to 0.0030%)
B is an arbitrary element. That is, the B content may be 0%.
If the B content exceeds 0.0030%, coarse carbides or carbonitrides are likely to be formed in the wire, which may increase the electrical resistivity of the wire. For this reason, B content is 0.0030% or less. From the viewpoint of further reducing the electrical resistivity of the wire, the B content is preferably 0.0025% or less.
On the other hand, B is an element that reduces the electrical resistivity of the wire by forming BN in the wire and reducing the solid solution N. From the viewpoint of such action, the B content may be more than 0%, 0.0001% or more, or 0.0005% or more.
(残部:Fe及び不純物)
 本開示における化学組成において、前述した各元素を除いた残部は、Fe及び不純物である。
 ここで、不純物とは、原材料に含まれる成分、または、製造の工程で混入する成分であって、意図的に鋼に含有させたものではない成分を指す。
 不純物としては、前述した元素以外のあらゆる元素が挙げられる。不純物としての元素は、1種のみであっても2種以上であってもよい。例えば、Nb、V、Ni、Cuについて、それぞれ0.03%以下は不純物とみなしてよい。
(Balance: Fe and impurities)
In the chemical composition in the present disclosure, the balance excluding the above-described elements is Fe and impurities.
Here, the impurity refers to a component contained in the raw material or a component mixed in the manufacturing process and not intentionally contained in the steel.
Examples of impurities include all elements other than the elements described above. The element as the impurity may be only one type or two or more types. For example, for Nb, V, Ni, and Cu, 0.03% or less may be regarded as impurities.
 本開示における化学組成は、質量%で、Al:0.005%以上0.050%以下及びTi:0.005%以上0.050%以下の少なくとも1種を含有することができる。この場合の、Al及びTiの各々の作用及び各々の好ましい含有量については前述のとおりである。 The chemical composition in the present disclosure may contain at least one of Al: 0.005% to 0.050% and Ti: 0.005% to 0.050% in mass%. In this case, the actions and preferred contents of Al and Ti are as described above.
 本開示の線材の化学組成を上述した範囲に制御することで、高い引張強さと低い電気抵抗率とが両立され得る。
 線材の電気抵抗率をより低減させる観点から、下記式(2)で表されるαと下記(3)で表されるβとが、α<βを満たすことが望ましい。なお、[Si]、[Mn]、[Cr]、[Mo]、[C]は、それぞれ各元素の質量%を表す。
 α=4.4×[Si]+2.2×[Mn]+[Cr]+[Mo]・・・(2)
 β=0.54/[C]+[C]/10・・・(3)
By controlling the chemical composition of the wire rod of the present disclosure within the above-described range, both high tensile strength and low electrical resistivity can be achieved.
From the viewpoint of further reducing the electric resistivity of the wire, it is desirable that α represented by the following formula (2) and β 1 represented by the following (3) satisfy α <β 1 . Note that [Si], [Mn], [Cr], [Mo], and [C] represent mass% of each element.
α = 4.4 × [Si] + 2.2 × [Mn] + [Cr] + [Mo] (2)
β 1 = 0.54 / [C] 2 + [C] / 10 (3)
 線材の電気抵抗率を更に低減させる観点から、上記式(2)で表されるαと下記(4)で表されるβとが、α<βを満たすことが望ましい。
 β=0.54/[C]・・・(4)
From the viewpoint of further reducing the electrical resistivity of the wire, it is desirable that α represented by the above formula (2) and β 2 represented by the following (4) satisfy α <β 2 .
β 2 = 0.54 / [C] 2 (4)
<線材の金属組織>
 次に、本開示の線材の金属組織について説明する。図1は、本開示の線材の長手方向に対して垂直な断面において組織を測定する中心領域及び表層領域を示す概略図である。
<Metal structure of wire>
Next, the metal structure of the wire of the present disclosure will be described. FIG. 1 is a schematic diagram illustrating a center region and a surface layer region in which a structure is measured in a cross section perpendicular to the longitudinal direction of a wire rod of the present disclosure.
(パーライト組織の平均面積率)
 本開示の線材は、図1に示すように線材10の長手方向に対して垂直な断面(本明細書において、「横断面」ともいう)において、線材10の直径をdとした場合に、中心Cからd/7以内の領域(以下、「中心領域A」ともいう)及び外周面からd/7以内の領域(以下、「表層領域A」ともいう)におけるパーライト組織の平均面積率が、90%以上である。これにより、線材の引張強さが向上する。
 横断面におけるパーライト組織の平均面積率が90%未満であると、線材の引張強さが低下する場合がある。また、横断面において、パーライト組織の平均面積率が90%未満であり、かつ、マルテンサイト組織の面積率が高い場合には、線材の電気抵抗率が低下する場合もある。
(Average area ratio of pearlite structure)
As shown in FIG. 1, the wire of the present disclosure is centered when the diameter of the wire 10 is d in a cross section perpendicular to the longitudinal direction of the wire 10 (also referred to as “cross section” in this specification). The average area ratio of the pearlite structure in a region within 7 d from C (hereinafter also referred to as “center region A”) and a region within 7 d from the outer peripheral surface (hereinafter also referred to as “surface layer region A”) is 90 % Or more. Thereby, the tensile strength of a wire improves.
When the average area ratio of the pearlite structure in the cross section is less than 90%, the tensile strength of the wire may be lowered. Moreover, in the cross section, when the average area ratio of the pearlite structure is less than 90% and the area ratio of the martensite structure is high, the electrical resistivity of the wire may decrease.
 線材の引張強さをより向上させる観点から、横断面におけるパーライト組織の平均面積率は、より好ましくは93%以上であり、さらに好ましくは95%以上である。
 横断面におけるパーライト組織の平均面積率の上限は特に制限はなく、パーライト組織の平均面積率は、100%であってもよい。
From the viewpoint of further improving the tensile strength of the wire, the average area ratio of the pearlite structure in the cross section is more preferably 93% or more, and still more preferably 95% or more.
The upper limit of the average area ratio of the pearlite structure in the cross section is not particularly limited, and the average area ratio of the pearlite structure may be 100%.
 横断面におけるパーライト組織の平均面積率が100%未満である場合、パーライト組織以外の組織(以下、「非パーライト組織」ともいう)は、好ましくは、フェライト、ベイナイト、及びマルテンサイトからなる群から選択される少なくとも1種である。 When the average area ratio of the pearlite structure in the cross section is less than 100%, the structure other than the pearlite structure (hereinafter also referred to as “non-pearlite structure”) is preferably selected from the group consisting of ferrite, bainite, and martensite. Is at least one kind.
-パーライト組織の平均面積率の測定方法-
 本明細書において、線材の横断面におけるパーライト組織の平均面積率は、以下の測定方法によって測定された値を意味する。
 線材の横断面を鏡面研磨した後、ピクラールで腐食する。腐食した横断面において、中心領域Aにおける5箇所(5視野)と、表層領域Aにおける5箇所(5視野)と、を電界放射型走査型電子顕微鏡(FE-SEM)を用いて倍率2000倍で観察し、各観察位置についての写真を撮影する。1視野あたりの面積は、2.7×10-3mm(縦0.045mm、横0.060mm)とする。
 次いで、各写真に透明シート(例えばOHP(Over Head Projector)シート)を重ねる。この状態で、各透明シートにおける「非パーライト組織」に色を塗る。次いで、各透明シートにおける「色を塗った領域」(即ち、非パーライト組織)の面積率を画像解析ソフトにより求め、得られた非パーライト組織の面積率を100%から差し引くことにより、個々の視野におけるパーライト組織の面積率を求める。パーライト組織の面積率の10視野分の算術平均値を算出し、得られた値を、パーライト組織の平均面積率とする。
-Measurement method of average area ratio of pearlite structure-
In this specification, the average area ratio of the pearlite structure in the cross section of a wire means the value measured with the following measuring methods.
After the cross section of the wire is mirror-polished, it corrodes with picral. In the corroded cross section, 5 points (5 fields of view) in the central region A and 5 points (5 fields of view) in the surface layer region A were used at a magnification of 2000 times using a field emission scanning electron microscope (FE-SEM). Observe and take a picture of each observation position. The area per field of view is 2.7 × 10 −3 mm 2 (vertical 0.045 mm, horizontal 0.060 mm).
Next, a transparent sheet (for example, an OHP (Over Head Projector) sheet) is overlaid on each photograph. In this state, a color is applied to the “non-perlite structure” in each transparent sheet. Next, the area ratio of the “colored region” (that is, the non-pearlite structure) in each transparent sheet is obtained by image analysis software, and the area ratio of the obtained non-pearlite structure is subtracted from 100% to obtain an individual visual field. The area ratio of the pearlite structure in is obtained. The arithmetic average value for 10 visual fields of the area ratio of the pearlite structure is calculated, and the obtained value is set as the average area ratio of the pearlite structure.
(セメンタイトの平均長さ)
 本開示における線材は、図1に示すように、長手方向に垂直な断面(横断面)において線材10の直径をdとした場合の中心Cからd/10以内の領域(以下、「中心領域B」ともいう)におけるセメンタイトの平均長さが2.0μm以上であることが好ましい。パーライト組織の上記平均面積率が90%以上であり、セメンタイトの平均長さが2.0μm以上であることで引張強さをより向上させることができる。より好ましくは2.1μm以上であり、さらに好ましくは2.2μm以上である。これにより、線材の引張強さが一層向上する。
 線材の中心領域Bにおけるセメンタイトの平均長さの上限は特に制限はないが、平均長さが4.0μmを超える場合、組織が粗大化して延性が低下している可能性があるため、4.0μm以下が好ましい。
(Average length of cementite)
As shown in FIG. 1, the wire in the present disclosure is a region within d / 10 from the center C (hereinafter referred to as “central region B”) where the diameter of the wire 10 is d in a cross section (cross section) perpendicular to the longitudinal direction. The average length of cementite is also preferably 2.0 μm or more. When the average area ratio of the pearlite structure is 90% or more and the average length of cementite is 2.0 μm or more, the tensile strength can be further improved. More preferably, it is 2.1 micrometers or more, More preferably, it is 2.2 micrometers or more. This further improves the tensile strength of the wire.
The upper limit of the average length of cementite in the central region B of the wire is not particularly limited, but if the average length exceeds 4.0 μm, the structure may become coarse and the ductility may be reduced. 0 μm or less is preferable.
-セメンタイトの平均長さの測定方法-
 本明細書において、線材の横断面の中心領域Bにおけるセメンタイトの平均長さは、以下の測定方法によって測定された値を意味する。
 線材の長手方向に垂直な断面(すなわち線材の横断面)を鏡面研磨した後、ピクラールで腐食し、電界放射型走査型電子顕微鏡(FE-SEM)を用いて倍率5000倍で中心からd/10以内の領域(中心領域B)の任意の位置における5箇所を観察し、各観察位置において写真撮影する。
 次いで、得られた各写真に直交する2方向に沿ってそれぞれ2μm毎に直線をひき、直線の交点上にあるセメンタイト(交点上にセメンタイトが無い場合には、交点に最も近接したセメンタイト)の長さを通常の方法、すなわち、画像解析ソフト(image-J)を用いて当該セメンタイトにおいて最も離れた二点間の直線距離を測定する。ただし、画像の左右上下の端部6μm未満の範囲はセメンタイトの全長が測定できない場合が多いため、当該範囲は測定から除外する。各写真について30箇所のセメンタイトの長さを測定し、セメンタイトの長さの加重平均値を算出し、線材の横断面の中心領域Bにおけるセメンタイトの平均長さとする。
-Measurement method of average length of cementite-
In the present specification, the average length of cementite in the central region B of the cross section of the wire means a value measured by the following measuring method.
A cross section perpendicular to the longitudinal direction of the wire (that is, a cross section of the wire) is mirror-polished, then corroded with picral, and d / 10 from the center at a magnification of 5000 using a field emission scanning electron microscope (FE-SEM). Five locations at arbitrary positions in the inner region (central region B) are observed, and a photograph is taken at each observation position.
Next, draw a straight line every 2 μm along two directions orthogonal to each photograph obtained, and the length of cementite on the intersection of the straight lines (if there is no cementite on the intersection, the length of the cementite closest to the intersection) The straight line distance between the two most distant points in the cementite is measured using an ordinary method, that is, image analysis software (image-J). However, the range of less than 6 μm at the left, right, top and bottom edges of the image is often excluded from the measurement because the total length of cementite cannot be measured in many cases. The length of 30 cementites is measured for each photograph, the weighted average value of the cementite lengths is calculated, and the average length of the cementite in the central region B of the cross section of the wire is taken.
(パーライト組織の平均ラメラ間隔)
 本開示の線材は、線材の横断面において、線材の直径をdとした場合に、中心からd/10以内の領域(中心領域B)におけるパーライト組織の平均ラメラ間隔(即ち、ラメラ間隔の平均値)が、90nm以下であることが好ましい。これにより、線材の引張強さがより向上する(例えば、引張強さを1220MPa以上とすることができる)。また、平均ラメラ間隔が電気抵抗率に与える影響はあまり大きくない。そのため、平均ラメラ間隔が90nm以下であることは、引張強さの向上と電気抵抗率の低減とのバランスの観点からみても有利である。
 上記平均ラメラ間隔は、より好ましくは85nm以下であり、さらに好ましくは80nm以下である。
 一方、線材の製造容易性の観点から、上記平均ラメラ間隔は、50nm以上が好ましく、より好ましくは55nm以上であり、さらに好ましくは60nm以上である。
(Average lamella spacing of pearlite structure)
In the wire rod of the present disclosure, in the cross section of the wire rod, when the diameter of the wire rod is d, the average lamella spacing of the pearlite structure in the region within d / 10 from the center (center region B) (that is, the average value of the lamella spacing) ) Is preferably 90 nm or less. Thereby, the tensile strength of a wire improves more (for example, tensile strength can be 1220 Mpa or more). Further, the influence of the average lamella spacing on the electrical resistivity is not so great. For this reason, the average lamellar spacing of 90 nm or less is advantageous from the viewpoint of the balance between improvement in tensile strength and reduction in electrical resistivity.
The average lamella interval is more preferably 85 nm or less, and still more preferably 80 nm or less.
On the other hand, from the viewpoint of easy manufacture of the wire, the average lamella spacing is preferably 50 nm or more, more preferably 55 nm or more, and further preferably 60 nm or more.
-パーライト組織の平均ラメラ間隔の測定方法-
 本明細書において、線材の横断面におけるパーライト組織の平均ラメラ間隔は、以下の測定方法によって測定された値を意味する。
 線材の横断面を鏡面研磨した後、ピクラールで腐食する。腐食した横断面において、中心領域Bにおける5箇所(5視野)を電界放射型走査型電子顕微鏡(FE-SEM)を用いて倍率10000倍で観察し、各観察位置についての写真を撮影する。1視野あたりの面積は、1.08×10-4mm(縦0.009mm、横0.012mm)とする。
 各視野(即ち、各写真)内のパーライト組織において、ラメラの向きが揃っておりかつラメラ5間隔分の長さが測定可能な範囲から、最もラメラ間隔が小さい箇所及び2番目にラメラ間隔が小さい箇所を、測定箇所として選定する。各測定箇所について、ラメラ5間隔分の長さを求め、このラメラ5間隔分の長さを5で割ることにより、ラメラ間隔を求める。得られたラメラ間隔の、測定箇所10箇所(即ち、5視野×2箇所)分の算術平均値を求め、得られた値を、線材の横断面の中心領域Bにおける、パーライト組織の平均ラメラ間隔とする。
-Measurement of mean lamella spacing in pearlite structure-
In this specification, the average lamella interval of the pearlite structure in the cross section of a wire means the value measured by the following measuring methods.
After the cross section of the wire is mirror-polished, it corrodes with picral. In the corroded cross section, five places (five fields of view) in the central region B are observed at a magnification of 10,000 times using a field emission scanning electron microscope (FE-SEM), and a photograph of each observation position is taken. The area per field of view is 1.08 × 10 −4 mm 2 (vertical 0.009 mm, horizontal 0.012 mm).
In the pearlite structure in each field of view (that is, each photograph), the lamella orientation is the same and the lamella spacing is the smallest and the second lamella spacing is the smallest from the range in which the length corresponding to 5 lamellas can be measured. Select the location as the measurement location. About each measurement location, the length for 5 lamella intervals is calculated | required, The length for this 5 lamella intervals is divided by 5, and a lamella interval is calculated | required. An arithmetic average value of 10 measurement locations (that is, 5 fields × 2 locations) of the obtained lamella spacing is obtained, and the obtained value is used as the average lamella spacing of the pearlite structure in the central region B of the cross section of the wire. And
(パーライトブロックの平均粒径)
 本開示の線材は、横断面において、直径をdとした場合に、中心からd/10以内の領域(即ち、中心領域B)及び外周面からd/10以内の領域(以下、「表層領域B」という場合がある。)におけるパーライトブロックの平均粒径が、それぞれ23.0μm以下であることが好ましい。これにより、線材の延性をより向上させることができる。また、パーライトブロックの平均粒径が、線材の引張強さ及び電気抵抗率に与える影響はあまり大きくない。そのため、中心領域B及び表層領域Bにおけるパーライトブロックの平均粒径がそれぞれ23.0μm以下であることは、延性の向上、引張強さの向上、及び電気抵抗率の低減のバランスの観点からみても有利である。パーライトブロックの平均粒径は、より好ましくは21.0μm以下である。
 一方、線材の製造容易性の観点から、中心領域B及び表層領域Bにおける各パーライトブロックの平均粒径は、好ましくは10.0μm以上であり、より好ましくは11.0μm以上であり、さらに好ましくは13.0μm以上である。
 なお、CrとMoの複合効果で十分に焼き入れ性が高い場合、表層領域Bと中心領域Bでパーライトブロックの平均粒径は同程度となる。本開示の線材では、「表層領域Bのパーライトブロックの平均粒径/中心領域Bのパーライトブロックの平均粒径」が0.88以上となり、断面内で均一性が高い組織が得られる。しかし、本開示の線材における表層と中心部のパーライトブロックの平均粒径の比は必ずしもこれに限定されない。
(Average particle size of pearlite block)
The wire rod of the present disclosure has an area within d / 10 from the center (that is, the center area B) and an area within d / 10 from the outer peripheral surface (hereinafter referred to as “surface layer area B”) when the diameter is d in the cross section. The average particle size of the pearlite block in each case is preferably 23.0 μm or less. Thereby, the ductility of a wire can be improved more. Moreover, the influence which the average particle diameter of a pearlite block has on the tensile strength and electrical resistivity of a wire is not so great. Therefore, the average particle diameters of the pearlite blocks in the central region B and the surface layer region B are 23.0 μm or less, respectively, also from the viewpoint of the balance of improvement in ductility, improvement in tensile strength, and reduction in electrical resistivity. It is advantageous. The average particle size of the pearlite block is more preferably 21.0 μm or less.
On the other hand, from the viewpoint of ease of production of the wire, the average particle size of each pearlite block in the central region B and the surface layer region B is preferably 10.0 μm or more, more preferably 11.0 μm or more, and still more preferably. 13.0 μm or more.
When the hardenability is sufficiently high due to the combined effect of Cr and Mo, the average particle size of the pearlite block is approximately the same in the surface layer region B and the central region B. In the wire rod of the present disclosure, “average particle size of pearlite block in surface region B / average particle size of pearlite block in center region B” is 0.88 or more, and a structure having high uniformity in the cross section can be obtained. However, the ratio of the average particle diameter of the surface layer and the pearlite block at the center in the wire rod of the present disclosure is not necessarily limited to this.
 本明細書において、パーライトブロックは、パーライト組織を構成しているブロックである。
 また、本明細書において、線材の延性は、後述の断面減少率によって評価される物性である。
In this specification, the pearlite block is a block constituting a pearlite structure.
Moreover, in this specification, the ductility of a wire is a physical property evaluated by the below-mentioned cross-sectional reduction rate.
-線材におけるパーライトブロックの平均粒径の測定方法-
 本明細書において、線材の横断面の中心領域B及び表層領域Bにおける各パーライトブロックの平均粒径は、以下の測定方法によって測定された値を意味する。
 線材の横断面を鏡面研磨した後、コロイダルシリカで研磨する。研磨した横断面において、中心領域B及び表層領域Bにおけるそれぞれ4視野を、電界放射型走査型電子顕微鏡(FE-SEM)を用いて倍率400倍で観察し、EBSD測定(電子線後方散乱回折法による測定)を行う。1視野あたりの面積は、0.0324mm(縦0.18mm、横0.18mm)とし、測定時のステップは0.3μmとする。
 次いで、各視野について、9°以上の結晶方位の角度差を粒界と定義し、パーライトブロックの粒径の加重平均を算出する。得られた値を、その視野におけるパーライトブロックの粒径とする。次に、パーライトブロックの粒径の4視野分の算術平均値を求め、得られた値を、線材の横断面におけるパーライトブロックの平均粒径とする。例えば、OIM analysis(株式会社TSLソリューションズのEBSD解析ソフト、OIM:Orientation Imaging Microscopy)を用いることでパーライトブロックの粒径を得ることができる。OIM analysisを用いる場合、CI値が0.1以下のピクセル及び9個以下のピクセルの塊はデータの信頼性が低いためノイズとみなし、除外する。
-Measuring method of average particle size of pearlite block in wire-
In this specification, the average particle diameter of each pearlite block in the center region B and the surface layer region B of the cross section of the wire means a value measured by the following measuring method.
The cross section of the wire is mirror-polished and then polished with colloidal silica. In the polished cross section, four visual fields in the central region B and the surface layer region B are observed at a magnification of 400 times using a field emission scanning electron microscope (FE-SEM), and EBSD measurement (electron beam backscatter diffraction method) is performed. Measurement). The area per field of view is 0.0324 mm 2 (vertical 0.18 mm, horizontal 0.18 mm), and the measurement step is 0.3 μm.
Next, for each visual field, an angle difference between crystal orientations of 9 ° or more is defined as a grain boundary, and a weighted average of grain sizes of pearlite blocks is calculated. The obtained value is defined as the particle size of the pearlite block in the visual field. Next, the arithmetic average value for the four visual fields of the particle size of the pearlite block is obtained, and the obtained value is set as the average particle size of the pearlite block in the cross section of the wire. For example, the particle size of a pearlite block can be obtained by using OIM analysis (EBSD analysis software of TSL Solutions, OIM: Orientation Imaging Microscopy). When using OIM analysis, a pixel having a CI value of 0.1 or less and a cluster of 9 or less pixels are regarded as noise because they have low data reliability, and are excluded.
<線材の引張強さ>
 前述したとおり、本開示の線材は、引張強さに優れる。
 線材の引張強さは、好ましくは1220MPa以上であり、より好ましくは1260MPa以上であり、特に好ましくは1300MPa以上である。
 線材の引張強さが1220MPa以上であることは、ラメラ間隔の平均値が90nm以下の場合に特に達成されやすい。
 線材の引張強さの上限には特に制限はない。線材の引張強さは、線材の製造容易性の観点から、1600MPa以下であってもよい。
<Tensile strength of wire>
As described above, the wire of the present disclosure is excellent in tensile strength.
The tensile strength of the wire is preferably 1220 MPa or more, more preferably 1260 MPa or more, and particularly preferably 1300 MPa or more.
That the tensile strength of the wire is 1220 MPa or more is particularly easily achieved when the average value of the lamella spacing is 90 nm or less.
There is no restriction | limiting in particular in the upper limit of the tensile strength of a wire. The tensile strength of the wire may be 1600 MPa or less from the viewpoint of ease of manufacturing the wire.
-線材の引張強さの測定方法-
 本明細書において、線材の引張強さは、以下の測定方法によって測定された値を意味する。
 線材を長さ340mmに切断し、次いで線材の長手方向一端側70mm及び長手方向他端側70mmを、くさびチャックで固定し、引張試験を行う。
 この引張試験前に、予め、線材の横断面の面積を測定しておく。ここで、線材の横断面の面積としては、長さ340mmに切断された線材の長手方向中心部における横断面の面積を測定する。
 引張試験によって得られた最大荷重を、引張試験前の線材の横断面の面積で除した値を、線材の引張強さとする。
-Measuring method of tensile strength of wire-
In this specification, the tensile strength of a wire means a value measured by the following measuring method.
The wire is cut to a length of 340 mm, and then the longitudinal end 70 mm and the other end 70 mm of the wire are fixed with a wedge chuck, and a tensile test is performed.
Prior to this tensile test, the area of the cross section of the wire is measured in advance. Here, as the area of the cross section of the wire, the area of the cross section at the center in the longitudinal direction of the wire cut to a length of 340 mm is measured.
The value obtained by dividing the maximum load obtained by the tensile test by the area of the cross section of the wire before the tensile test is taken as the tensile strength of the wire.
<線材の断面減少率>
 本開示の線材の断面減少率は、好ましくは30%以上であり、より好ましくは32%以上である。線材の断面減少率が30%以上であることは、中心領域Bおよび表層領域Bの両方において、パーライトブロックの平均粒径が23.0μm以下の場合に特に達成されやすい。
 線材の断面減少率の上限には特に制限はない。線材の断面減少率は、線材の製造容易性の観点から、50%以下であってもよい。
<Cross section reduction rate of wire>
The cross-sectional reduction rate of the wire rod of the present disclosure is preferably 30% or more, and more preferably 32% or more. That the cross-section reduction rate of the wire is 30% or more is particularly easily achieved when the average particle size of the pearlite block is 23.0 μm or less in both the central region B and the surface layer region B.
There is no restriction | limiting in particular in the upper limit of the cross-section reduction rate of a wire. The cross-sectional reduction rate of the wire may be 50% or less from the viewpoint of ease of manufacturing the wire.
-線材の断面減少率の測定方法-
 本明細書において、線材の断面減少率は、以下の測定方法によって測定された値を意味する。
 線材を長さ340mmに切断し、次いで線材の長手方向一端側70mm及び長手方向他端側70mmを、くさびチャックで固定し、引張試験を行う。
 この引張試験前に、予め、線材の横断面の面積を測定しておく。
 引張試験後(即ち、線材の破断時)において、線径が最も細くなった箇所における線材の横断面の面積を測定する。
 引張試験前後での横断面の面積の減少量を引張試験前の横断面の面積で除し、次いで100を乗じ、得られた値を、線材の断面減少率(%)とする。
-Measuring method of cross-section reduction rate of wire-
In this specification, the cross-sectional reduction rate of the wire means a value measured by the following measuring method.
The wire is cut to a length of 340 mm, and then the longitudinal end 70 mm and the other end 70 mm of the wire are fixed with a wedge chuck, and a tensile test is performed.
Prior to this tensile test, the area of the cross section of the wire is measured in advance.
After the tensile test (that is, when the wire is broken), the cross-sectional area of the wire at the portion where the wire diameter becomes the smallest is measured.
The amount of reduction in the area of the cross section before and after the tensile test is divided by the area of the cross section before the tensile test, and then multiplied by 100, and the obtained value is taken as the cross-sectional reduction rate (%) of the wire.
<線材の電気抵抗率>
 前述したとおり、本開示の線材は、電気抵抗率が低減されている。
 線材の電気抵抗率は、好ましくは0.180μΩm未満であり、より好ましくは0.170μΩm以下である。
 線材の電気抵抗率の下限には特に制限はない。線材の電気抵抗率は、線材の製造適性の観点から、0.150μΩm以上でもよい。
<Electric resistivity of wire>
As described above, the wire rod of the present disclosure has reduced electrical resistivity.
The electrical resistivity of the wire is preferably less than 0.180 μΩm, more preferably 0.170 μΩm or less.
There is no restriction | limiting in particular in the minimum of the electrical resistivity of a wire. The electric resistivity of the wire may be 0.150 μΩm or more from the viewpoint of suitability for manufacturing the wire.
-線材の電気抵抗率の測定方法-
 本明細書において、線材の電気抵抗率は、以下の測定方法によって測定された値を意味する。
 線材を長さ100mmに切断し、次いで線材の表層の酸化スケールを、サンドブラストを用いて除去する。
 酸化スケールが除去された線材(以下、「試験片」とする)の長手方向の電気抵抗値を温度20℃にて4端子法によって測定する。4端子法では、試験片に対し、一対の電圧端子及び一対の電流端子を接続する。一対の電圧端子及び一対の電流端子の配置は、一対の電圧端子を一対の電流端子で挟む配置とする(即ち、電流端子、電圧端子、電圧端子、及び電流端子が、この順に並ぶ配置とする)。本明細書における測定では、一対の電圧端子間の距離を20mmとする。一対の電流端子は、上記配置である限り試験片のどこに接続してもよい。この状態で、一対の電流端子間に電流を流し、かつ、一対の電圧端子間の電圧を測定し、電流と電圧との関係に基づき、電気抵抗値を算出する。得られた電気抵抗値に試験片の横断面の面積を乗じ、得られた値を、一対の電圧端子間の距離(即ち20mm)で除することにより、試験片の長手方向の電気抵抗率(μΩm)を算出する。得られた値を、線材の電気抵抗率(μΩm)とする。
-Measuring method of electrical resistivity of wire-
In this specification, the electrical resistivity of a wire means a value measured by the following measurement method.
The wire is cut to a length of 100 mm, and then the oxidized scale on the surface layer of the wire is removed using sandblasting.
The electrical resistance value in the longitudinal direction of the wire from which the oxide scale has been removed (hereinafter referred to as “test piece”) is measured by a four-terminal method at a temperature of 20 ° C. In the four-terminal method, a pair of voltage terminals and a pair of current terminals are connected to the test piece. The arrangement of the pair of voltage terminals and the pair of current terminals is such that the pair of voltage terminals is sandwiched between the pair of current terminals (that is, the current terminal, the voltage terminal, the voltage terminal, and the current terminal are arranged in this order). ). In the measurement in this specification, the distance between a pair of voltage terminals is 20 mm. The pair of current terminals may be connected to any part of the test piece as long as it is arranged as described above. In this state, a current is passed between the pair of current terminals, the voltage between the pair of voltage terminals is measured, and the electric resistance value is calculated based on the relationship between the current and the voltage. By multiplying the obtained electrical resistance value by the area of the cross section of the test piece and dividing the obtained value by the distance between the pair of voltage terminals (ie, 20 mm), the electrical resistivity in the longitudinal direction of the test piece ( μΩm) is calculated. The obtained value is defined as the electrical resistivity (μΩm) of the wire.
<線材の直径>
 線材の直径は、好ましくは3.0mm以上10.0mm以下である。
 線材の直径が3.0mm以上である場合には、線材を伸線加工して鋼線を得る場合の伸線加工を安定させ、鋼線の製造を安定的に行うことができる。
 線材の直径が10.0mm以下である場合には、線材を伸線加工して鋼線を得る場合の伸線加工ひずみを高め、鋼線を高強度化させることができる。
<Diameter of wire>
The diameter of the wire is preferably 3.0 mm or greater and 10.0 mm or less.
When the diameter of the wire is 3.0 mm or more, the wire drawing when the wire is drawn to obtain a steel wire can be stabilized, and the production of the steel wire can be performed stably.
When the diameter of a wire is 10.0 mm or less, the wire drawing distortion | strain at the time of drawing a wire and obtaining a steel wire can be raised, and a steel wire can be strengthened.
 直径が3.0mm以上10.0mm以下である態様の線材は、例えば、伸線加工によりアルミ被覆鋼線中の鋼線(好ましくは、送電線用アルミ被覆鋼線中の鋼線)を製造するための素材として特に好適である。 For example, the wire rod having a diameter of 3.0 mm or more and 10.0 mm or less is manufactured by drawing a steel wire in an aluminum-coated steel wire (preferably, a steel wire in an aluminum-coated steel wire for power transmission lines). It is particularly suitable as a material for the purpose.
<用途>
 本開示の線材は、電気抵抗率が低減され、かつ、引張強さに優れる線材であるため、電気抵抗率の低減及び引張強さの向上が求められる鋼線の製造に用いられることが好ましい。このような鋼線として、例えば、アルミ被覆鋼線中の鋼線(好ましくは、送電線用アルミ被覆鋼線中の鋼線)が挙げられる。
<Application>
Since the wire rod of the present disclosure is a wire rod having reduced electrical resistivity and excellent tensile strength, it is preferably used for manufacturing a steel wire that requires reduction in electrical resistivity and improvement in tensile strength. Examples of such steel wires include steel wires in aluminum-coated steel wires (preferably, steel wires in aluminum-coated steel wires for power transmission lines).
〔鋼線〕
 本開示の鋼線は、前述した本開示の線材の伸線加工品である。即ち、本開示の鋼線は、化学組成が、質量%で、
C:0.80%以上1.10%以下、
Si:0.005%以上0.100%以下、
Mn:0.05%以上0.30%以下、
P:0%以上0.030%以下、
S:0%以上0.030%以下、
N:0%以上0.0060%以下、
Cr:0.02%以上0.30%未満、
Mo:0.02%以上0.15%以下、
Al:0%以上0.050%以下、
Ti:0%以上0.050%以下、
B:0%以上0.0030%以下、並びに、
残部:Fe及び不純物からなり、かつ、MoとCrとの合計量が、0.13%以上であり、
 長手方向に対して垂直な断面において、鋼線の直径をDとした場合に、中心からD/7以内の領域及び外周面からD/7以内の領域におけるパーライト組織の平均面積率が、90%以上であり、中心からD/7以内の領域におけるパーライトブロックの平均粒径が5.0μm以下である。
[Steel wire]
The steel wire of the present disclosure is a drawn product of the wire rod of the present disclosure described above. That is, the steel wire of the present disclosure has a chemical composition of mass%,
C: 0.80% or more and 1.10% or less,
Si: 0.005% or more and 0.100% or less,
Mn: 0.05% or more and 0.30% or less,
P: 0% to 0.030%,
S: 0% or more and 0.030% or less,
N: 0% or more and 0.0060% or less,
Cr: 0.02% or more and less than 0.30%,
Mo: 0.02% to 0.15%,
Al: 0% or more and 0.050% or less,
Ti: 0% or more and 0.050% or less,
B: 0% or more and 0.0030% or less, and
The balance: Fe and impurities, and the total amount of Mo and Cr is 0.13% or more,
In the cross section perpendicular to the longitudinal direction, when the diameter of the steel wire is D, the average area ratio of the pearlite structure in the region within D / 7 from the center and the region within D / 7 from the outer peripheral surface is 90% The average particle size of the pearlite block in the region within D / 7 from the center is 5.0 μm or less.
-鋼線におけるパーライト組織の平均面積率の測定方法-
 本明細書において、鋼線の横断面におけるパーライト組織の平均面積率は、前述した線材におけるパーライト組織の平均面積率の測定方法と同様であるため、ここでの説明は省略する。
-Measuring method of average area ratio of pearlite structure in steel wire-
In this specification, since the average area ratio of the pearlite structure in the cross section of the steel wire is the same as the method for measuring the average area ratio of the pearlite structure in the wire described above, description thereof is omitted here.
(パーライトブロックの平均粒径)
 本開示における鋼線は、前述した本開示の線材と同様にパーライト組織を含み、複数のパーライトブロックから主に構成されている。伸線加工を十分に行うことでパーライトブロックの平均粒径を小さくすることができ、延性(断面減少率)を向上させることができる。なお、パーライトブロック粒径が引張強さ及び電気抵抗率に与える影響はあまり大きくないため、断面減少率の向上と引張強さの向上、電気抵抗率の低減のバランスを高めるためには、パーライトブロック粒径を小さくするとよい。具体的には、長手方向に垂直な断面において鋼線の直径をDとした場合の中心からD/7以内の領域におけるパーライトブロックの平均粒径が5.0μm以下であることが好ましい。より好ましくは4.0μm以下である。これにより、鋼線の断面減少率がより向上し、例えば断面減少率40%以上を達成しやすい。
(Average particle size of pearlite block)
The steel wire in the present disclosure includes a pearlite structure like the wire rod of the present disclosure described above, and is mainly composed of a plurality of pearlite blocks. When the wire drawing is sufficiently performed, the average particle diameter of the pearlite block can be reduced, and ductility (cross-sectional reduction rate) can be improved. In addition, since the influence of the pearlite block particle size on the tensile strength and electrical resistivity is not so large, in order to improve the balance between the improvement of the cross-section reduction rate, the improvement of the tensile strength, and the reduction of the electrical resistivity, the pearlite block The particle size should be small. Specifically, it is preferable that the average particle diameter of the pearlite block in a region within D / 7 from the center when the diameter of the steel wire is D in a cross section perpendicular to the longitudinal direction is 5.0 μm or less. More preferably, it is 4.0 μm or less. Thereby, the cross-section reduction rate of a steel wire improves more, for example, it is easy to achieve the cross-section reduction rate of 40% or more.
-鋼線におけるパーライトブロックの平均粒径の測定方法-
 本明細書において、鋼線の横断面の中心からD/7以内の中心領域におけるパーライトブロックの平均粒径は、以下の測定方法によって測定された値を意味する。観察範囲以外は、基本的には、前述した線材におけるパーライトブロックの平均粒径の測定方法と同様である。
 鋼線の長手方向に垂直な断面(すなわち鋼線の横断面)を鏡面研磨した後、コロイダルシリカで研磨する。研磨した横断面において、電界放射型走査型電子顕微鏡(FE-SEM)を用いて倍率2000倍で中心領域において4視野を観察し、EBSD測定(電子線後方散乱回折法による測定)を行う。1視野あたりの面積は、0.0012mm(縦0.03mm、横0.04mm)とし、測定時のステップは0.10μmとする。
 次いで、各視野について、9°以上の結晶方位の角度差を粒界と定義し、パーライトブロックの粒径の加重平均を算出し、得られた値を、その視野におけるパーライトブロック粒径とする。中心領域の4視野分のパーライトブロック粒径の平均値(算術平均)を、鋼線の横断面におけるパーライトブロックの平均粒径とする。例えば、OIM analysis(株式会社TSLソリューションズのEBSD解析ソフト、OIM:Orientation Imaging Microscopy)を用いることでパーライトブロックの粒径を得ることができる。OIM analysisを用いる場合、CI値が0.1以下のピクセル及び9個以下のピクセルの塊はデータの信頼性が低いためノイズとみなし、除外する。
-Measurement method of average particle size of pearlite block in steel wire-
In this specification, the average particle diameter of the pearlite block in the center region within D / 7 from the center of the cross section of the steel wire means a value measured by the following measuring method. The method other than the observation range is basically the same as the method for measuring the average particle size of the pearlite block in the wire described above.
A cross section perpendicular to the longitudinal direction of the steel wire (that is, a cross section of the steel wire) is mirror-polished and then polished with colloidal silica. In the polished cross section, a field emission scanning electron microscope (FE-SEM) is used to observe four visual fields in the central region at a magnification of 2000 times, and EBSD measurement (measurement by electron beam backscatter diffraction method) is performed. The area per field of view is 0.0012 mm 2 (vertical 0.03 mm, horizontal 0.04 mm), and the measurement step is 0.10 μm.
Next, for each field of view, an angle difference between crystal orientations of 9 ° or more is defined as a grain boundary, a weighted average of the particle sizes of the pearlite block is calculated, and the obtained value is defined as the pearlite block particle size in the field of view. The average value (arithmetic average) of the pearlite block particle diameters for four visual fields in the central region is defined as the average particle diameter of the pearlite blocks in the cross section of the steel wire. For example, the particle size of a pearlite block can be obtained by using OIM analysis (EBSD analysis software of TSL Solutions, OIM: Orientation Imaging Microscopy). When using OIM analysis, a pixel having a CI value of 0.1 or less and a cluster of 9 or less pixels are regarded as noise because they have low data reliability, and are excluded.
 上記化学組成及びパーライトブロックの平均粒径を有する本開示の鋼線は、電気抵抗率が低減され、かつ、引張強さに優れる本開示の線材を伸線加工して得られる。このため、本開示の鋼線も、電気抵抗率が低減され、かつ、引張強さに優れる。
 鋼線の直径は、好ましくは1.0mm以上3.5mm以下である。
 鋼線の直径が1.0mm以上である場合には、伸線加工によって鋼線を得る場合の伸線加工をより安定的に行うことができる。
 鋼線の直径が3.5mm以下である場合には、伸線加工中のセメンタイトの分解及びこの分解による電気抵抗の上昇をより抑制できる。
The steel wire of the present disclosure having the above chemical composition and the average particle size of the pearlite block is obtained by drawing the wire of the present disclosure having reduced electrical resistivity and excellent tensile strength. For this reason, the steel wire of the present disclosure also has a reduced electrical resistivity and excellent tensile strength.
The diameter of the steel wire is preferably 1.0 mm or more and 3.5 mm or less.
When the diameter of the steel wire is 1.0 mm or more, the wire drawing when obtaining the steel wire by wire drawing can be performed more stably.
When the diameter of the steel wire is 3.5 mm or less, decomposition of cementite during wire drawing and an increase in electrical resistance due to this decomposition can be further suppressed.
 本開示の線材を伸線加工して鋼線を得る場合において、伸線加工における伸線加工ひずみは、1.50以上であることが好ましい。伸線加工ひずみが1.50以上である場合、伸線加工により、電気抵抗率をより低減できる。
 また、上記伸線加工における伸線加工ひずみは、2.40以下であることが好ましい。伸線加工ひずみが2.40以下である場合、伸線加工中のセメンタイトの分解及びこの分解による電気抵抗の上昇をより抑制できる。
 ここで、伸線加工ひずみとは、下記式(A)によって求められる値を指す。式(A)中、「ln」は、自然対数(即ち、「log」)を意味する。
 伸線加工ひずみ=2×ln(線材の直径(mm)/鋼線の直径(mm)) … 式(A)
In the case of obtaining a steel wire by drawing the wire according to the present disclosure, the drawing strain in the drawing is preferably 1.50 or more. When the wire drawing strain is 1.50 or more, the electrical resistivity can be further reduced by wire drawing.
The wire drawing strain in the wire drawing is preferably 2.40 or less. When the wire drawing strain is 2.40 or less, decomposition of cementite during wire drawing and an increase in electrical resistance due to this decomposition can be further suppressed.
Here, the wire drawing strain refers to a value obtained by the following formula (A). In the formula (A), “ln” means a natural logarithm (ie, “log e ”).
Drawing strain = 2 × ln (wire diameter (mm) / steel wire diameter (mm)) Formula (A)
〔アルミ被覆鋼線〕
 本開示のアルミ被覆鋼線は、前述した本開示の鋼線と、この鋼線の少なくとも一部を被覆するアルミニウム含有層(以下、Al含有層)と、を備える。
 本開示のアルミ被覆鋼線は、引張強さに優れ、かつ、電気抵抗率が低減された本開示の鋼線を備える。このため、本開示のアルミ被覆鋼線も、引張強さに優れ、かつ、電気抵抗率が低減されている。
[Aluminum-coated steel wire]
The aluminum-coated steel wire of the present disclosure includes the above-described steel wire of the present disclosure and an aluminum-containing layer (hereinafter, Al-containing layer) that covers at least a part of the steel wire.
The aluminum-coated steel wire of the present disclosure includes the steel wire of the present disclosure having excellent tensile strength and reduced electrical resistivity. For this reason, the aluminum-coated steel wire of the present disclosure is also excellent in tensile strength and reduced in electrical resistivity.
 アルミ被覆鋼線中の鋼線の直径は、好ましくは1.0mm以上3.5mm以下である。
 アルミ被覆鋼線中の鋼線の直径が1.0mm以上である場合には、伸線加工によってアルミ被覆鋼線を得る場合の伸線加工をより安定的に行うことができる。
 アルミ被覆鋼線中の鋼線の直径が3.5mm以下である場合には、伸線加工中のセメンタイトの分解及びこの分解による電気抵抗の上昇をより抑制できる。
The diameter of the steel wire in the aluminum-coated steel wire is preferably 1.0 mm or more and 3.5 mm or less.
When the diameter of the steel wire in the aluminum-coated steel wire is 1.0 mm or more, the wire-drawing process for obtaining an aluminum-coated steel wire by wire drawing can be performed more stably.
When the diameter of the steel wire in the aluminum-coated steel wire is 3.5 mm or less, decomposition of cementite during wire drawing and an increase in electrical resistance due to this decomposition can be further suppressed.
 Al含有層は、Alを主成分とする層であることが好ましい。
 ここで、Alを主成分とする層とは、含有量(質量%)が最も多い成分として、Alを含有する層を意味する。
 Al含有層におけるAlの含有量は、50質量%以上が好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましい。
 Al含有層としては、Al(即ち、純Al)からなるAl層、又は、Al合金からなるAl合金層が好ましい。
 Al合金としては、Alと、Mg、Si、Zn、及びMnからなる群から選択される少なくとも1種と、を含むAl合金が好ましい。Al合金におけるAlの含有量は、50質量%以上が好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましい。好ましいAl合金として、具体的には、国際アルミニウム合金名における3000番台~7000番台のAl合金が挙げられる。
The Al-containing layer is preferably a layer containing Al as a main component.
Here, the layer containing Al as a main component means a layer containing Al as a component having the largest content (mass%).
The content of Al in the Al-containing layer is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
As the Al-containing layer, an Al layer made of Al (that is, pure Al) or an Al alloy layer made of an Al alloy is preferable.
As the Al alloy, an Al alloy containing Al and at least one selected from the group consisting of Mg, Si, Zn, and Mn is preferable. The content of Al in the Al alloy is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more. As a preferable Al alloy, specifically, Al alloys in the 3000 to 7000 range in the international aluminum alloy name can be cited.
 ここでいうAlからなるAl層は、Al以外に不純物を含んでいてもよい。同様に、ここでいうAl合金からなるAl合金層は、上述した各元素(Al、Mg、Si、Zn,Mn)以外に不純物を含んでいてもよい。 Here, the Al layer made of Al may contain impurities in addition to Al. Similarly, the Al alloy layer made of an Al alloy here may contain impurities in addition to the above-described elements (Al, Mg, Si, Zn, Mn).
 本開示のアルミ被覆鋼線において、横断面全体に対するAl含有層の面積率は、好ましくは10%~64%である。
 Al含有層の面積率が10%以上であると、アルミ被覆鋼線全体の電気抵抗(詳細には、長手方向の電気抵抗)がより低減される。
 Al含有層の面積率が64%以下であると、アルミ被覆鋼線全体の引張強さがより向上する。
 Al含有層の面積率は、より好ましくは10%~50%であり、更に好ましくは10%~40%であり、更に好ましくは15%~35%である。
In the aluminum-coated steel wire of the present disclosure, the area ratio of the Al-containing layer with respect to the entire cross section is preferably 10% to 64%.
When the area ratio of the Al-containing layer is 10% or more, the electrical resistance (specifically, the electrical resistance in the longitudinal direction) of the entire aluminum-coated steel wire is further reduced.
When the area ratio of the Al-containing layer is 64% or less, the tensile strength of the entire aluminum-coated steel wire is further improved.
The area ratio of the Al-containing layer is more preferably 10% to 50%, still more preferably 10% to 40%, and still more preferably 15% to 35%.
 以上で説明した本開示のアルミ被覆鋼線は、好ましくは、鋼心アルミニウム撚線(ACSR)の芯材として用いられる。
 鋼心アルミニウム撚線としては、本開示のアルミ被覆鋼線を芯材とし、この芯材の外側にアルミニウム線又はアルミニウム合金線を撚り合わせた構造を有する一般的な鋼心アルミニウム撚線が挙げられ、特に制限はない。
 上記本開示のアルミ被覆鋼線及び上記鋼心アルミニウム撚線としては、それぞれ、送電線用アルミ被覆鋼線及び送電線用鋼心アルミニウム撚線が好ましい。
The aluminum-coated steel wire of the present disclosure described above is preferably used as a core material of a steel core aluminum stranded wire (ACSR).
Examples of the steel core aluminum stranded wire include a general steel core aluminum stranded wire having a structure in which the aluminum-coated steel wire of the present disclosure is used as a core material, and an aluminum wire or an aluminum alloy wire is twisted outside the core material. There is no particular limitation.
The aluminum-coated steel wire and the steel core aluminum stranded wire of the present disclosure are preferably an aluminum-coated steel wire for power transmission lines and a steel core aluminum stranded wire for power transmission lines, respectively.
〔線材の製造方法の一例(製法X)〕
 次に、本開示の線材の製造するための製造方法の一例(以下、「製法X」とする)を説明する。
 製法Xは、本開示における化学成分を有する鋼片を製造する工程と;鋼片を加熱する工程と;加熱された鋼片を熱間圧延して熱延鋼を得る工程と;熱延鋼を水冷し、次いで巻き取る工程と;巻き取り後の熱延鋼を冷却する工程と;冷却された熱延鋼をパテンティングする工程と;を有する。以下、製法Xにおける各工程について説明する。
[Example of production method of wire (production method X)]
Next, an example of a manufacturing method for manufacturing the wire of the present disclosure (hereinafter referred to as “manufacturing method X”) will be described.
The manufacturing method X includes a step of producing a steel slab having a chemical component in the present disclosure; a step of heating the steel slab; a step of hot rolling the heated steel slab to obtain hot-rolled steel; Water cooling and then winding up; cooling the hot rolled steel after winding; and patenting the cooled hot rolled steel. Hereinafter, each process in the manufacturing method X is demonstrated.
(鋼片を製造する工程)
 本工程では、例えば、本開示における化学成分を有する鋼を溶製し、得られた鋼を用い、本開示における化学成分を有する鋼片を製造する。
 鋼片の製造は、連続鋳造、分解圧延等の公知の方法によって行う。
(Process to manufacture steel slab)
In this step, for example, steel having a chemical component in the present disclosure is melted, and a steel piece having the chemical component in the present disclosure is manufactured using the obtained steel.
The steel slab is manufactured by a known method such as continuous casting or crack rolling.
(鋼片を加熱する工程)
 本工程では、鋼片を製造する工程で得られた鋼片を、1150~1250℃の加熱温度まで加熱することが好ましい。ここで、加熱温度とは、鋼片の断面の平均温度の最高到達温度を意味する。加熱温度が1150℃以上であると、熱間圧延の際の反力の上昇をより抑制できる。加熱温度が、1250℃以下であると、過度の脱炭をより抑制できる。
(Step of heating the steel piece)
In this step, the steel slab obtained in the steel slab manufacturing step is preferably heated to a heating temperature of 1150 to 1250 ° C. Here, the heating temperature means the highest temperature reached at the average temperature of the cross section of the steel slab. When the heating temperature is 1150 ° C. or higher, an increase in the reaction force during hot rolling can be further suppressed. When the heating temperature is 1250 ° C. or lower, excessive decarburization can be further suppressed.
(熱延鋼を得る工程)
 本工程では、鋼片を加熱する工程で加熱された鋼片を熱間圧延して熱延鋼を得る。
 熱間圧延における仕上げ温度(詳細には、仕上圧延出側における熱延鋼の温度)は、950℃超であることが好ましい。仕上げ温度が950℃超であると、熱間圧延の際の反力の上昇をより抑制できる。
 また、熱間圧延における仕上げ温度は1100℃以下が好ましい。仕上げ温度が1100℃以下であると、オーステナイト粒の粗大化及びパテンティング後のパーライトブロックの平均粒径の粗大化をより抑制でき、その結果、鋼線の延性低下をより抑制できる。
 ここで、仕上げ温度は、熱延鋼の表面の温度を意味する(後述する「熱延鋼を水冷し、次いで巻き取る工程」以降の工程における好ましい温度についても同様である)。
(Process to obtain hot rolled steel)
In this step, the steel slab heated in the step of heating the steel slab is hot-rolled to obtain hot rolled steel.
The finishing temperature in hot rolling (specifically, the temperature of hot-rolled steel on the finish rolling exit side) is preferably higher than 950 ° C. When the finishing temperature is higher than 950 ° C., an increase in the reaction force during hot rolling can be further suppressed.
The finishing temperature in hot rolling is preferably 1100 ° C. or lower. When the finishing temperature is 1100 ° C. or less, the austenite grains can be further coarsened and the average grain diameter of the pearlite block after patenting can be further suppressed, and as a result, the ductility of the steel wire can be further reduced.
Here, the finishing temperature means the temperature of the surface of the hot-rolled steel (the same applies to preferable temperatures in the steps after the “step of cooling the hot-rolled steel with water and then winding”, which will be described later).
(熱延鋼を水冷し、次いで巻き取る工程)
 本工程では、熱延鋼を得る工程で得られた熱延鋼を水冷し、次いで巻き取る。
 巻取温度(即ち、水冷停止温度)は、820℃~875℃であることが好ましい。巻取温度が820℃以上であると、オ-ステナイト粒径の過度な微細化及びこれによる焼入れ性の低下をより抑制できる。
 巻取温度が875℃以下であると、オーステナイト粒の過度な粗大化、及び、パテンティング後のパーライトブロックの平均粒径の粗大化を抑制でき、その結果、延性の低下をより抑制できる。
 なお、水冷は、好ましくは、熱間圧延終了の直後に開始される。
(Hot-rolled steel is water-cooled and then wound up)
In this step, the hot-rolled steel obtained in the step of obtaining hot-rolled steel is water-cooled and then wound up.
The coiling temperature (that is, the water cooling stop temperature) is preferably 820 ° C. to 875 ° C. When the coiling temperature is 820 ° C. or higher, excessive reduction in the austenite grain size and the resulting decrease in hardenability can be further suppressed.
When the coiling temperature is 875 ° C. or less, excessive coarsening of austenite grains and coarsening of the average particle diameter of the pearlite block after patenting can be suppressed, and as a result, a decrease in ductility can be further suppressed.
The water cooling is preferably started immediately after the end of hot rolling.
(巻き取り後の熱延鋼を冷却する工程)
 本工程では、巻き取り後の熱延鋼を冷却する。
 冷却における冷却到達温度は、後述するパテンティングにおける溶融塩への浸漬開始温度に対応する。
 冷却到達温度(即ち、溶融塩への浸漬開始温度)の好ましい範囲については後述する。
(Process to cool hot rolled steel after winding)
In this step, the hot-rolled steel after winding is cooled.
The cooling attainment temperature in the cooling corresponds to the immersion start temperature in the molten salt in the patenting described later.
A preferable range of the cooling attainment temperature (that is, the immersion start temperature in molten salt) will be described later.
(冷却された熱延鋼をパテンティングする工程)
 本工程では、巻き取り後の熱延鋼を冷却する工程で冷却された熱延鋼をパテンティングする。このパテンティングにより、本開示の線材が得られる。
 パテンティングは、上記冷却された熱延鋼を、溶融塩に浸漬させることにより行う。
(Process for patenting cooled hot-rolled steel)
In this step, the hot-rolled steel cooled in the step of cooling the hot-rolled steel after winding is patented. By this patenting, the wire of the present disclosure is obtained.
Patenting is performed by immersing the cooled hot-rolled steel in a molten salt.
 溶融塩への浸漬開始温度(以下、単に「浸漬開始温度」ともいう)は、700℃以上であることが好ましい。浸漬開始温度が、700℃以上であると、フェライト変態を抑制できるので、パーライト組織の平均面積率が90%以上である本開示の線材が得られやすい。
 浸漬開始温度は、750℃以下であることが好ましい。浸漬開始温度が750℃以下であると、溶融塩の温度の上昇をより抑制できる。
The immersion start temperature in the molten salt (hereinafter also simply referred to as “immersion start temperature”) is preferably 700 ° C. or higher. Since the ferrite transformation can be suppressed when the immersion start temperature is 700 ° C. or higher, it is easy to obtain the wire according to the present disclosure in which the average area ratio of the pearlite structure is 90% or higher.
The immersion starting temperature is preferably 750 ° C. or lower. When the immersion start temperature is 750 ° C. or lower, an increase in the temperature of the molten salt can be further suppressed.
 溶融塩の温度は、480℃以上であることが好ましい。溶融塩の温度が480℃以上であると、ベイナイト組織の過度な形成を抑制できるので、パーライト組織の平均面積率が90%以上である本開示の線材が得られやすい。
 また、溶融塩の温度は、540℃以下であることが好ましい。溶融塩の温度が540℃以下であると、ラメラ間隔の粗大化及びこれによる線材の引張強さの低下をより抑制できる。
The temperature of the molten salt is preferably 480 ° C. or higher. When the temperature of the molten salt is 480 ° C. or higher, excessive formation of a bainite structure can be suppressed, and thus the wire rod of the present disclosure in which the average area ratio of the pearlite structure is 90% or more is easily obtained.
Moreover, it is preferable that the temperature of molten salt is 540 degrees C or less. When the temperature of the molten salt is 540 ° C. or less, it is possible to further suppress the coarsening of the lamella interval and the decrease in the tensile strength of the wire due thereto.
 溶融塩への浸漬時間は、20秒以上であることが好ましい。溶融塩への浸漬時間が20秒以上であると、パーライト変態を完了させ易いので、パーライト組織の平均面積率が90%以上である本開示の線材が得られやすい。また、溶融塩への浸漬時間が20秒以上であると、マルテンサイトの形成をより抑制できるので、電気抵抗率の上昇をより抑制でき、また、延性の点でも有利である。
 一方、溶融塩への浸漬時間は、生産性の観点から、200秒以下であることが好ましい。
The immersion time in the molten salt is preferably 20 seconds or longer. When the immersion time in the molten salt is 20 seconds or more, the pearlite transformation is easily completed, and thus the wire of the present disclosure having an average area ratio of the pearlite structure of 90% or more is easily obtained. Further, when the immersion time in the molten salt is 20 seconds or more, the formation of martensite can be further suppressed, so that the increase in electrical resistivity can be further suppressed, and the ductility is also advantageous.
On the other hand, the immersion time in the molten salt is preferably 200 seconds or less from the viewpoint of productivity.
 なお、本開示の線材を上記工程を経て製造する際、焼き戻し処理を行わないことが好ましい。パテンティング工程後、焼き戻しを行うとセメンタイトが分断されて短くなり、引張強さが低下する可能性がある。このような焼き戻し処理を行わないことで、長手方向に垂直な断面において、中心からd/10以内の領域におけるセメンタイトの平均長さを2.0μm以上に維持することができる。 In addition, when manufacturing the wire of this indication through the said process, it is preferable not to perform a tempering process. If tempering is performed after the patenting step, the cementite is divided and shortened, and the tensile strength may be reduced. By not performing such tempering treatment, the average length of cementite in the region within d / 10 from the center can be maintained at 2.0 μm or more in the cross section perpendicular to the longitudinal direction.
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の実施例により制限されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
[線材の製造]
 表1及び表2に示す化学組成を有する鋼a及び鋼1~35を溶製し、後述する方法で線材を作製した。
 表1及び表2中の各元素の数値は、質量%を表し、「-」の表記は、該当する元素が含有されていない(意図的に添加していない)ことを示す。
 また、表1及び表2に示した元素を除いた残部は、Fe及び不純物である。
 また、表1~表5において、アンダーラインを付した数値又は鋼番号は、本開示における化学組成の範囲外であることを示す。
[Manufacture of wire]
Steels a and steels 1 to 35 having the chemical compositions shown in Tables 1 and 2 were melted, and wires were produced by the method described later.
The numerical value of each element in Table 1 and Table 2 represents mass%, and the notation “−” indicates that the corresponding element is not contained (not intentionally added).
Further, the balance excluding the elements shown in Tables 1 and 2 is Fe and impurities.
In Tables 1 to 5, underlined numerical values or steel numbers indicate that they are outside the range of the chemical composition in the present disclosure.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 まず、表1に示す鋼aを転炉によって溶製した後、通常の方法での分塊圧延によって、122mm角のビレット(鋼片)を得た。得られたビレットを用い、前述した製法Xにおける鋼片を加熱する工程以降の工程を、下記表3に示す製造条件A~Qのそれぞれにて実施することにより、線材として、表4に示す試料aA~aQをそれぞれ得た。ここで、試料aA~aMは、本開示の線材の実施例であり、試料aN~aQは、比較例である。
 下記表3において、加熱温度、仕上げ温度、巻取温度、浸漬開始温度、溶融塩温度、及び浸漬時間は、それぞれ、鋼片を加熱する工程における加熱温度、加熱された鋼片を熱間圧延して熱延鋼を得る工程における仕上げ温度、熱延鋼を水冷し次いで巻き取る工程における巻取温度、冷却された熱延鋼をパテンティングする工程における溶融塩への浸漬開始温度、同工程における溶融塩の温度、及び同工程における溶融塩への浸漬時間を意味する。
 また、表3において、線材直径は、最終的に得られる線材の直径を示す。
First, steel a shown in Table 1 was melted by a converter, and then a 122 mm square billet (steel piece) was obtained by ingot rolling by a normal method. By using the obtained billet and carrying out the steps after the step of heating the steel slab in the production method X described above under each of the production conditions A to Q shown in Table 3 below, a sample shown in Table 4 is used as a wire. aA to aQ were obtained respectively. Here, samples aA to aM are examples of the wire of the present disclosure, and samples aN to aQ are comparative examples.
In Table 3 below, the heating temperature, finishing temperature, winding temperature, soaking start temperature, molten salt temperature, and soaking time are respectively the heating temperature in the step of heating the steel slab, and the heated steel slab is hot rolled. Finishing temperature in the process of obtaining hot-rolled steel, winding temperature in the process of water-cooling and rolling the hot-rolled steel, temperature of starting immersion in molten salt in the process of patenting the cooled hot-rolled steel, melting in the same process It means the temperature of the salt and the immersion time in the molten salt in the same step.
Moreover, in Table 3, a wire diameter shows the diameter of the wire finally obtained.
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
 次に、表2に示す鋼1~35を転炉によって溶製した後、通常の方法での分塊圧延によって、122mm角のビレット(鋼片)を得た。鋼1~35から得られたビレットをそれぞれ用い、製法Xにおける鋼片を加熱する工程以降の工程を実施することにより、線材として、表5に示す試料1A~35Aをそれぞれ得た。ここで、製法Xにおける鋼片を加熱する工程以降の工程の条件は、いずれの試料においても、前述した製造条件Aとした。試料1A~18A、34A、35Aは、本開示の線材の実施例であり、試料19A~33Aは、比較例である。 Next, steels 1 to 35 shown in Table 2 were melted by a converter, and then a billet (steel piece) of 122 mm square was obtained by block rolling by a normal method. Samples 1A to 35A shown in Table 5 were obtained as wire rods by using the billets obtained from Steels 1 to 35, respectively, and carrying out the steps after the step of heating the steel slab in Production Method X. Here, the conditions of the process after the process of heating the steel slab in the production method X were the above-described production condition A in any sample. Samples 1A to 18A, 34A, and 35A are examples of the wire of the present disclosure, and samples 19A to 33A are comparative examples.
[評価]
 以上で得られた試料aA~aQ及び1A~35Aの各々について、パーライト組織の平均面積率、パーライトブロックの平均粒径(以下、「PBS」ともいう)、パーライト組織の平均ラメラ間隔、セメンタイト長さ、引張強さ、断面減少率、及び電気抵抗率を測定した。
 パーライト組織の平均面積率、パーライトブロックの平均粒径、パーライト組織の平均ラメラ間隔、セメンタイト長さ、引張強さ、断面減少率、及び電気抵抗率の測定方法については、それぞれ前述したとおりである。パーライトブロックの平均粒径の測定において、パーライトブロックの粒径の加重平均の算出は、TSL社製OIM analysis ver.7.0を用いて行った。
 結果を以下の表4及び表5に示す。
[Evaluation]
For each of the samples aA to aQ and 1A to 35A obtained above, the average area ratio of the pearlite structure, the average particle diameter of the pearlite block (hereinafter also referred to as “PBS”), the average lamella spacing of the pearlite structure, and the cementite length. , Tensile strength, cross-sectional reduction rate, and electrical resistivity were measured.
The methods for measuring the average area ratio of the pearlite structure, the average particle diameter of the pearlite block, the average lamella spacing of the pearlite structure, the cementite length, the tensile strength, the cross-sectional reduction rate, and the electrical resistivity are as described above. In the measurement of the average particle size of the pearlite block, the calculation of the weighted average of the particle size of the pearlite block was performed using OIM analysis ver. Performed with 7.0.
The results are shown in Table 4 and Table 5 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
-表4及び表5の説明-
・「[Mo]+[Cr](%)」欄の数値は、線材の化学組成における、MoとCrとの合計量(質量%)を意味する。
・「γ」欄の数値は、前述の式(1)で表されるγを意味する。
・「γ≦Mo」欄は、Moの質量%を[Mo]とした場合に、[Mo]とγとが、γ≦[Mo]を満たすかどうかを示している。「A」は、γ≦[Mo]を満たすことを意味し、「B」は、γ≦[Mo]を満たさないことを意味する。
・「α」欄の数値は、前述の式(2)で表されるαを意味する。
・「β1」欄の数値は、前述の式(3)で表されるβを意味する。
・「α<β1」欄は、αとβとが、α<βを満たすかどうかを示している。「A」は、α<βを満たすことを意味し、「B」は、α<βを満たさないことを意味する。
・「β2」欄の数値は、前述の式(4)で表されるβを意味する。
・「α<β2」欄は、αとβとが、α<βを満たすかどうかを示している。「A」は、α<βを満たすことを意味し、「B」は、α<βを満たさないことを意味する。
・「中心PBS」は、横断面における中心からd/10以内の中心領域におけるパーライトブロックの平均粒径を意味する。
・「表層PBS」は、横断面における外周面からd/10以内の表層領域におけるパーライトブロックの平均粒径を意味する。なお、dは線材の直径である。
・「セメンタイト長さ」は、横断面における中心からd/10以内の中心領域におけるセメンタイトの平均長さを意味する。
・「平均ラメラ間隔」は、横断面における中心からd/10以内の中心領域におけるパーライト組織の平均ラメラ間隔を意味する。
-Explanation of Table 4 and Table 5-
The numerical value in the “[Mo] + [Cr] (%)” column means the total amount (mass%) of Mo and Cr in the chemical composition of the wire.
The numerical value in the “γ” column means γ represented by the above-described formula (1).
The “γ ≦ Mo” column indicates whether [Mo] and γ satisfy γ ≦ [Mo] when the mass% of Mo is [Mo]. “A” means that γ ≦ [Mo] is satisfied, and “B” means that γ ≦ [Mo] is not satisfied.
The numerical value in the “α” column means α represented by the above-described formula (2).
The numerical value in the “β1” column means β 1 represented by the above-described formula (3).
· "Α <β1" column, α and β 1 and is indicative of whether or not to satisfy the α <β 1. “A” means that α <β 1 is satisfied, and “B” means that α <β 1 is not satisfied.
- figures "β2" column refers to beta 2 of the formula (4) above.
· "Α <β2" column, and the α and β 2 is indicative of whether or not to satisfy the α <β 2. “A” means that α <β 2 is satisfied, and “B” means that α <β 2 is not satisfied.
“Center PBS” means the average particle diameter of the pearlite block in the center region within d / 10 from the center in the cross section.
“Surface PBS” means the average particle diameter of pearlite blocks in the surface area within d / 10 from the outer peripheral surface in the cross section. Here, d is the diameter of the wire.
“Cementite length” means the average length of cementite in the central region within d / 10 from the center in the cross section.
The “average lamella spacing” means the average lamella spacing of the pearlite structure in the central region within d / 10 from the center in the cross section.
 表4に示すように、本開示の線材の実施例である試料aA~aMは、電気抵抗率が低減され、かつ、引張強さに優れていた。 As shown in Table 4, the samples aA to aM, which are examples of the wire rod according to the present disclosure, had a reduced electrical resistivity and an excellent tensile strength.
 これら実施例に対し、パーライト組織の面積率が90%未満である試料aN~aP(いずれも比較例)は、引張強さが低かった。
 試料aNにおいて、パーライト組織の面積率が90%未満であった理由は、加熱温度が高く、線材表面での脱炭が進行したためと考えられる。
 試料aOにおいて、パーライト組織の面積率が90%未満であった理由は、浸漬開始温度が低く、浸漬までの間にフェライト組織が形成されたためと考えられる。
 試料aPにおいて、パーライト組織の面積率が90%未満であり、セメンタイト長さが短かった理由は、溶融塩温度が低く、ベイナイト組織が多量に形成されたためと考えられる。
 また、パーライト組織の面積率が90%未満である試料aQ(比較例)の線材は、電気抵抗率が高かった。試料aQにおいて、パーライト組織の面積率が90%未満であり、電気抵抗率が高かった理由は、溶融塩への浸漬時間が短く、パーライト変態が完了せず、マルテンサイト組織が形成されたためと考えられる。
In contrast to these examples, the samples aN to aP (all of the comparative examples) in which the area ratio of the pearlite structure was less than 90% had low tensile strength.
In the sample aN, the reason why the area ratio of the pearlite structure was less than 90% is considered that the heating temperature was high and the decarburization on the surface of the wire progressed.
The reason why the area ratio of the pearlite structure was less than 90% in the sample aO is considered to be that the immersion start temperature was low and the ferrite structure was formed before the immersion.
In the sample aP, the reason why the area ratio of the pearlite structure was less than 90% and the cementite length was short is considered to be that the molten salt temperature was low and a large amount of bainite structure was formed.
Further, the wire of the sample aQ (comparative example) in which the area ratio of the pearlite structure was less than 90% had a high electric resistivity. In sample aQ, the area ratio of the pearlite structure was less than 90%, and the reason why the electrical resistivity was high was that the immersion time in the molten salt was short, the pearlite transformation was not completed, and the martensite structure was formed. It is done.
 実施例である試料aA~aMの中でも、中心PBS及び表層PBSがいずれも23.0μm以下である試料aA~aJ及びaMでは、線材の延性の指標である断面減少率がより向上されていた。
 また、実施例である試料aA~aMの中でも、平均ラメラ間隔が90nm以下である試料aA~aLは、引張強さがより高かった。
Among the samples aA to aM which are examples, in the samples aA to aJ and aM in which the central PBS and the surface layer PBS are both 23.0 μm or less, the cross-section reduction rate, which is an index of ductility of the wire, was further improved.
Among the samples aA to aM which are examples, the samples aA to aL having an average lamella spacing of 90 nm or less had higher tensile strength.
 また、表5に示すように、本開示の線材の実施例である試料1A~18A、34A、35Aは、電気抵抗率が低減され、かつ、引張強さに優れていた。 Further, as shown in Table 5, Samples 1A to 18A, 34A, and 35A, which are examples of the wire of the present disclosure, had reduced electrical resistivity and excellent tensile strength.
 これら実施例に対し、Moを含有しない試料19Aは、引張強さが低かった。
 Siの含有量が多すぎる試料20Aは、電気抵抗率が高かった。
 Mnの含有量が多すぎる試料21Aは、電気抵抗率が高かった。
 Crを含有しない試料22Aは、引張強さが低かった。
 Crの含有量が多すぎる試料23Aは、電気抵抗率が高かった。
 Cの含有量が少なすぎる試料24Aは、引張強さが低かった。
 Moの含有量が多すぎる試料25Aは、電気抵抗率が高かった。
 Alの含有量が多すぎる試料26Aは、電気抵抗率が高かった。
 Nの含有量が多すぎる試料27Aは、電気抵抗率が高かった。
 Tiの含有量が多すぎる試料28Aは、引張強さが低かった。この理由は、パテンティング直前のオーステナイト粒径が微細化し、これにより焼き入れ性が低下したためと推定される。
 Bの含有量が多すぎる試料29Aは、電気抵抗率が高かった。
 Cの含有量が多すぎる試料30Aは、電気抵抗率が高かった。この理由は、初析セメンタイトが形成されたためと考えられる。
 試料31Aは、Moの含有量が少なく、焼き入れ性が悪く、引張強さが低かった。
 試料32Aは、パーライト組織の面積率が低く、引張強さが低かった。
 試料33Aは、MoとCrの合計含有量が少なく、焼き入れ性が悪く、引張強さが低かった。
In contrast to these examples, Sample 19A not containing Mo had a low tensile strength.
Sample 20A having too much Si content had a high electrical resistivity.
Sample 21A with too much Mn content had high electrical resistivity.
Sample 22A not containing Cr had a low tensile strength.
Sample 23A with too much Cr content had high electrical resistivity.
Sample 24A having too little C content had a low tensile strength.
Sample 25A with too much Mo content had high electrical resistivity.
Sample 26A with too much Al content had a high electrical resistivity.
Sample 27A with too much N content had a high electrical resistivity.
Sample 28A having too much Ti content had low tensile strength. The reason for this is presumed that the austenite grain size immediately before patenting was refined, thereby reducing the hardenability.
The sample 29A having an excessive content of B had a high electrical resistivity.
Sample 30A with too much C content had high electrical resistivity. The reason for this is considered that pro-eutectoid cementite was formed.
Sample 31A had a low Mo content, poor hardenability, and low tensile strength.
In Sample 32A, the area ratio of the pearlite structure was low, and the tensile strength was low.
Sample 33A had a low total content of Mo and Cr, poor hardenability, and low tensile strength.
 実施例である試料1A~18A、34A、35Aの中でも、α<βを満たす試料1A~11A、34A、35Aでは、電気抵抗率がより低減されていた。
 これら試料1A~11Aの中でも、α<βを満たす試料1A~6A、34A、35Aでは、電気抵抗率が特に低減されていた。
Samples 1A ~ 18A is an example, 34A, among 35A, the alpha <Sample 1A ~ 11A satisfying β 1, 34A, 35A, the electrical resistivity has been further reduced.
Among these samples 1A ~ 11A, the alpha <Sample 1A ~ 6A satisfying β 2, 34A, 35A, the electrical resistivity has been particularly reduced.
[鋼線の製造]
 実施例である試料1A~18A、34A、35Aの線材について、各パスでの減面率を23~25%として1.50~2.40の伸線加工ひずみで伸線加工を施し、直径1.0~3.5mmの鋼線を得た。なお、一度の伸線加工をパスとし、一度のパスの断面積の変化量を減面率とした。減面率Rは加工前の横断面の面積をS、加工後の横断面の面積をSとした場合、R=(S-S)/S×100として計算できる。
[Manufacture of steel wire]
Samples 1A to 18A, 34A, and 35A, which are examples, were subjected to wire drawing with a wire drawing strain of 1.50 to 2.40 with a reduction in area of 23 to 25% in each pass, and a diameter of 1 A steel wire of 0.0 to 3.5 mm was obtained. In addition, the wire drawing process was defined as a pass, and the amount of change in the cross-sectional area of the pass was defined as the area reduction rate. The area of the area reduction rate R before processing cross section S 0, the area of the cross section after processing when the S 1, R = (S 0 -S 1) / S 0 can be calculated as × 100.
[評価]
 得られた鋼線について、前述した方法により、横断面の中心からD/7以内の領域及び外周面からD/7以内の領域におけるパーライト組織の平均面積率、並びに、中心からD/7以内の領域におけるパーライトブロックの平均粒径を測定した。結果を表6に示す。
[Evaluation]
About the obtained steel wire, the average area ratio of the pearlite structure in the region within D / 7 from the center of the cross section and the region within D / 7 from the outer peripheral surface, and within D / 7 from the center, by the method described above. The average particle size of the pearlite block in the region was measured. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 その結果、いずれの鋼線もパーライト組織の平均面積率は90%以上であり、パーライトブロックの平均粒径は5.0μm以下であった。 As a result, in all the steel wires, the average area ratio of the pearlite structure was 90% or more, and the average particle diameter of the pearlite block was 5.0 μm or less.
 また、得られた鋼線について、線材に対する測定方法と同様にして、引張強さ及び電気抵抗率を測定したところ、引張強さは、2000MPa以上であり、電気抵抗率は0.200μΩm未満であった。 Further, when the tensile strength and electrical resistivity of the obtained steel wire were measured in the same manner as the measurement method for the wire, the tensile strength was 2000 MPa or more and the electrical resistivity was less than 0.200 μΩm. It was.
 また、上記結果から、表6に示した実施例である試料1A~18A、34A、35Aの鋼線の表面をAl含有層で被覆したアルミ被覆鋼線は、電気抵抗率が低減され、かつ、引張強さに優れたアルミ被覆鋼線となる。このようなアルミ被覆鋼線は、本開示の線材にAl被膜を形成した後に伸線加工する方法、または、伸線加工後の本開示の鋼線にAl含有層を形成する方法のいずれによっても製造可能である。 Further, from the above results, the aluminum-coated steel wires in which the surfaces of the steel wires of Samples 1A to 18A, 34A, and 35A, which are the examples shown in Table 6, are coated with an Al-containing layer have reduced electrical resistivity, and Aluminum coated steel wire with excellent tensile strength. Such an aluminum-coated steel wire is obtained by either a method of drawing after forming an Al coating on the wire of the present disclosure or a method of forming an Al-containing layer on the steel wire of the present disclosure after the wire drawing. It can be manufactured.
 2018年2月26日に出願された日本特許出願2018-032547の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The entire disclosure of Japanese Patent Application No. 2018-032547 filed on February 26, 2018 is incorporated herein by reference. All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (15)

  1.  化学組成が、質量%で、
    C:0.80%以上1.10%以下、
    Si:0.005%以上0.100%以下、
    Mn:0.05%以上0.30%以下、
    P:0%以上0.030%以下、
    S:0%以上0.030%以下、
    N:0%以上0.0060%以下、
    Cr:0.02%以上0.30%未満、
    Mo:0.02%以上0.15%以下、
    Al:0%以上0.050%以下、
    Ti:0%以上0.050%以下、
    B:0%以上0.0030%以下、並びに、
    残部:Fe及び不純物からなり、かつ、MoとCrとの合計量が、0.13%以上であり、
     長手方向に対して垂直な断面において、線材の直径をdとした場合に、中心からd/7以内の領域及び外周面からd/7以内の領域におけるパーライト組織の平均面積率が、90%以上である線材。
    Chemical composition is mass%,
    C: 0.80% or more and 1.10% or less,
    Si: 0.005% or more and 0.100% or less,
    Mn: 0.05% or more and 0.30% or less,
    P: 0% to 0.030%,
    S: 0% or more and 0.030% or less,
    N: 0% or more and 0.0060% or less,
    Cr: 0.02% or more and less than 0.30%,
    Mo: 0.02% to 0.15%,
    Al: 0% or more and 0.050% or less,
    Ti: 0% or more and 0.050% or less,
    B: 0% or more and 0.0030% or less, and
    The balance: Fe and impurities, and the total amount of Mo and Cr is 0.13% or more,
    In a cross section perpendicular to the longitudinal direction, when the diameter of the wire is d, the average area ratio of the pearlite structure in the region within d / 7 from the center and the region within d / 7 from the outer peripheral surface is 90% or more Is a wire rod.
  2.  長手方向に垂直な断面において、中心からd/10以内の領域におけるセメンタイトの平均長さが、2.0μm以上である請求項1に記載の線材。 2. The wire according to claim 1, wherein an average length of cementite in a region within d / 10 from the center in a cross section perpendicular to the longitudinal direction is 2.0 μm or more.
  3.  Moの質量%を[Mo]とした場合に、[Mo]と下記式(1)で表されるγとが、γ≦[Mo]を満たす請求項1又は請求項2に記載の線材。
     γ=0.0018/([C]×([Cr]+0.1))・・・(1)
     式(1)中の元素記号は、各元素の質量%を示す。
    The wire according to claim 1 or 2, wherein [Mo] and γ represented by the following formula (1) satisfy γ ≤ [Mo] when the mass% of Mo is [Mo].
    γ = 0.018 / ([C] × ([Cr] +0.1) 2 ) (1)
    The element symbol in Formula (1) shows the mass% of each element.
  4.  下記式(2)で表されるαと下記式(3)で表されるβとが、α<βを満たす請求項1~請求項3のいずれか一項に記載の線材。
     α=4.4×[Si]+2.2×[Mn]+[Cr]+[Mo]・・・(2)
     β=0.54/[C]+[C]/10・・・(3)
     式(2)及び(3)中の元素記号は、各元素の質量%を示す。
    Following formula (2) represented by alpha and the following formula (3) beta 1 and which is expressed by, alpha <satisfy beta 1 claims 1 to wire according to any one of claims 3.
    α = 4.4 × [Si] + 2.2 × [Mn] + [Cr] + [Mo] (2)
    β 1 = 0.54 / [C] 2 + [C] / 10 (3)
    The element symbols in the formulas (2) and (3) indicate mass% of each element.
  5.  下記式(2)で表されるαと下記式(4)で表されるβとが、α<βを満たす請求項1~請求項4のいずれか一項に記載の線材。
     α=4.4×[Si]+2.2×[Mn]+[Cr]+[Mo]・・・(2)
     β=0.54/[C]・・・(4)
     式(2)及び(4)中の元素記号は、各元素の質量%を示す。
    Following formula (2) represented by alpha and the following formula (4) and beta 2 which is expressed by, alpha <wire according to any one of claims 1 to 4 satisfying the beta 2.
    α = 4.4 × [Si] + 2.2 × [Mn] + [Cr] + [Mo] (2)
    β 2 = 0.54 / [C] 2 (4)
    The element symbols in the formulas (2) and (4) indicate mass% of each element.
  6.  質量%で、Al:0.005%以上0.050%以下及びTi:0.005%以上0.050%以下の少なくとも1種を含有する請求項1~請求項5のいずれか一項に記載の線材。 The mass% contains at least one of Al: 0.005% or more and 0.050% or less and Ti: 0.005% or more and 0.050% or less. Wire rod.
  7.  質量%で、B:0.0001%以上0.0030%以下を含有する請求項1~請求項6のいずれか一項に記載の線材。 The wire according to any one of claims 1 to 6, which contains B: 0.0001% or more and 0.0030% or less in terms of mass%.
  8.  長手方向に対して垂直な断面において、中心からd/10以内の領域及び外周面からd/10以内の領域におけるパーライトブロックの平均粒径が、それぞれ23.0μm以下である請求項1~請求項7のいずれか一項に記載の線材。 In the cross section perpendicular to the longitudinal direction, the average particle diameters of the pearlite blocks in the region within d / 10 from the center and the region within d / 10 from the outer peripheral surface are 23.0 μm or less, respectively. The wire according to any one of 7.
  9.  長手方向に対して垂直な断面において、中心からd/10以内の領域におけるパーライト組織の平均ラメラ間隔が、90nm以下である請求項1~請求項8のいずれか一項に記載の線材。 The wire rod according to any one of claims 1 to 8, wherein an average lamella spacing of the pearlite structure in a region within d / 10 from the center is 90 nm or less in a cross section perpendicular to the longitudinal direction.
  10.  長手方向の電気抵抗率が、0.180μΩm未満である請求項1~請求項9のいずれか一項に記載の線材。 The wire according to any one of claims 1 to 9, wherein the electrical resistivity in the longitudinal direction is less than 0.180 µΩm.
  11.  直径が、3.0mm以上10.0mm以下である請求項1~請求項10のいずれか一項に記載の線材。 The wire according to any one of claims 1 to 10, wherein the diameter is 3.0 mm or more and 10.0 mm or less.
  12.  アルミ被覆鋼線中の鋼線の製造に用いられる請求項1~請求項11のいずれか一項に記載の線材。 The wire according to any one of claims 1 to 11, which is used for producing a steel wire in an aluminum-coated steel wire.
  13.  請求項1~請求項12のいずれか一項に記載の線材の伸線加工品である鋼線。 A steel wire, which is a wire drawing product of the wire according to any one of claims 1 to 12.
  14.  化学組成が、質量%で、
    C:0.80%以上1.10%以下、
    Si:0.005%以上0.100%以下、
    Mn:0.05%以上0.30%以下、
    P:0%以上0.030%以下、
    S:0%以上0.030%以下、
    N:0%以上0.0060%以下、
    Cr:0.02%以上0.30%未満、
    Mo:0.02%以上0.15%以下、
    Al:0%以上0.050%以下、
    Ti:0%以上0.050%以下、
    B:0%以上0.0030%以下、並びに、
    残部:Fe及び不純物からなり、かつ、MoとCrとの合計量が、0.13%以上であり、
     長手方向に対して垂直な断面において、鋼線の直径をDとした場合に、中心からD/7以内の領域及び外周面からD/7以内の領域におけるパーライト組織の平均面積率が、90%以上であり、中心からD/7以内の領域におけるパーライトブロックの平均粒径が5.0μm以下である鋼線。
    Chemical composition is mass%,
    C: 0.80% or more and 1.10% or less,
    Si: 0.005% or more and 0.100% or less,
    Mn: 0.05% or more and 0.30% or less,
    P: 0% to 0.030%,
    S: 0% or more and 0.030% or less,
    N: 0% or more and 0.0060% or less,
    Cr: 0.02% or more and less than 0.30%,
    Mo: 0.02% to 0.15%,
    Al: 0% or more and 0.050% or less,
    Ti: 0% or more and 0.050% or less,
    B: 0% or more and 0.0030% or less, and
    The balance: Fe and impurities, and the total amount of Mo and Cr is 0.13% or more,
    In the cross section perpendicular to the longitudinal direction, when the diameter of the steel wire is D, the average area ratio of the pearlite structure in the region within D / 7 from the center and the region within D / 7 from the outer peripheral surface is 90%. The steel wire in which the average particle diameter of the pearlite block in the region within D / 7 from the center is 5.0 μm or less.
  15.  請求項13又は請求項14に記載の鋼線と、前記鋼線の少なくとも一部を被覆するアルミニウム含有層と、を備えるアルミ被覆鋼線。 An aluminum-coated steel wire comprising: the steel wire according to claim 13 or claim 14; and an aluminum-containing layer that covers at least a part of the steel wire.
PCT/JP2019/007342 2018-02-26 2019-02-26 Wire rod, steel wire, and aluminum-coated steel wire WO2019164015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501101A JP6881665B2 (en) 2018-02-26 2019-02-26 Wire rod, steel wire and aluminum coated steel wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018032547 2018-02-26
JP2018-032547 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019164015A1 true WO2019164015A1 (en) 2019-08-29

Family

ID=67687161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007342 WO2019164015A1 (en) 2018-02-26 2019-02-26 Wire rod, steel wire, and aluminum-coated steel wire

Country Status (2)

Country Link
JP (1) JP6881665B2 (en)
WO (1) WO2019164015A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180330A (en) * 2019-04-24 2020-11-05 日本製鉄株式会社 Steel wire and aluminum-coated steel wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287451A (en) * 1992-04-09 1993-11-02 Nippon Steel Corp Pc steel wire excellent in salt resistance in concrete and its production
JP2004360022A (en) * 2003-06-05 2004-12-24 Nippon Steel Corp HIGH-STRENGTH Al-PLATED WIRE OR BOLT EXCELLENT IN DELAYED FRACTURE RESISTANCE AND METHOD FOR PRODUCING THE SAME
JP2007270293A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp High strength bearing joint part having excellent delayed fracture resistance characteristic and method for manufacturing the same, and steel for high strength bearing jointing part
WO2011126073A1 (en) * 2010-04-08 2011-10-13 新日本製鐵株式会社 Wire material for saw wire and method for producing same
JP2017141494A (en) * 2016-02-10 2017-08-17 新日鐵住金株式会社 High strength ultra-thin steel wire excellent in balance between strength and ductility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287451A (en) * 1992-04-09 1993-11-02 Nippon Steel Corp Pc steel wire excellent in salt resistance in concrete and its production
JP2004360022A (en) * 2003-06-05 2004-12-24 Nippon Steel Corp HIGH-STRENGTH Al-PLATED WIRE OR BOLT EXCELLENT IN DELAYED FRACTURE RESISTANCE AND METHOD FOR PRODUCING THE SAME
JP2007270293A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp High strength bearing joint part having excellent delayed fracture resistance characteristic and method for manufacturing the same, and steel for high strength bearing jointing part
WO2011126073A1 (en) * 2010-04-08 2011-10-13 新日本製鐵株式会社 Wire material for saw wire and method for producing same
JP2017141494A (en) * 2016-02-10 2017-08-17 新日鐵住金株式会社 High strength ultra-thin steel wire excellent in balance between strength and ductility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180330A (en) * 2019-04-24 2020-11-05 日本製鉄株式会社 Steel wire and aluminum-coated steel wire
JP7230669B2 (en) 2019-04-24 2023-03-01 日本製鉄株式会社 Steel wire and aluminum-coated steel wire

Also Published As

Publication number Publication date
JP6881665B2 (en) 2021-06-02
JPWO2019164015A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP5224009B2 (en) Steel wire rod and manufacturing method thereof
JP5169839B2 (en) PWS plated steel wire with excellent twisting characteristics and manufacturing method thereof
JP6587036B2 (en) Steel wire and method for manufacturing steel wire
CN106460119B (en) Steel wire rod
JP6687112B2 (en) Steel wire
WO2011125447A1 (en) High-carbon steel wire with excellent suitability for wiredrawing and fatigue property after wiredrawing
JP7226548B2 (en) wire
JP5945196B2 (en) High strength steel wire
JP6575691B2 (en) Steel wire and coated steel wire
JP6881665B2 (en) Wire rod, steel wire and aluminum coated steel wire
JP2018197375A (en) Hot rolling wire for wire drawing
JP7230669B2 (en) Steel wire and aluminum-coated steel wire
JP6825720B2 (en) Aluminum covered steel wire and its manufacturing method
JP6497156B2 (en) Steel wire with excellent conductivity
JP2000345294A (en) Steel wire rod, extra-fine steel wire, and stranded steel wire
TWI604068B (en) Steel wire rod and method for manufacturing the same
JP3428502B2 (en) Steel wire, extra fine steel wire and twisted steel wire
JP6330920B2 (en) wire
JP2021161443A (en) Wire and steel wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756955

Country of ref document: EP

Kind code of ref document: A1