WO2019163760A1 - Cryopump - Google Patents

Cryopump Download PDF

Info

Publication number
WO2019163760A1
WO2019163760A1 PCT/JP2019/006063 JP2019006063W WO2019163760A1 WO 2019163760 A1 WO2019163760 A1 WO 2019163760A1 JP 2019006063 W JP2019006063 W JP 2019006063W WO 2019163760 A1 WO2019163760 A1 WO 2019163760A1
Authority
WO
WIPO (PCT)
Prior art keywords
cryopump
cryopanel
housing
refrigerator
water
Prior art date
Application number
PCT/JP2019/006063
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 谷津
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201980011629.7A priority Critical patent/CN111712640A/en
Priority to KR1020207021960A priority patent/KR20200123100A/en
Publication of WO2019163760A1 publication Critical patent/WO2019163760A1/en
Priority to US16/998,582 priority patent/US20200378378A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • F04B37/085Regeneration of cryo-pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible

Definitions

  • the present invention relates to a cryopump.
  • the cryopump is a vacuum pump that traps and exhausts gas molecules by condensation or adsorption on a cryopanel cooled to a cryogenic temperature.
  • the cryopump is generally used to realize a clean vacuum environment required for a semiconductor circuit manufacturing process or the like. Since the cryopump is a so-called gas storage type vacuum pump, regeneration is required to periodically discharge the trapped gas to the outside.
  • the cryopump housing that houses the cryopanel is released from the vacuum.
  • the gas is filled in the housing by re-vaporizing the accumulated gas or introducing purge gas.
  • the cryopanels are still very cold. Since the vacuum insulation effect is lost by filling the gas, the housing can be cooled by the cryopanel through the gas. Since the housing is exposed to the surrounding environment, in some cases, condensation can occur on its outer surface. Condensed water can be dripped.
  • One of the exemplary purposes of an aspect of the present invention is to suppress condensation on the cryopump or to suppress dripping of condensed water.
  • the cryopump includes a cryopump housing and a water absorption layer attached to the outside of the cryopump housing.
  • condensation on the cryopump can be suppressed, or dripping of condensed water can be suppressed.
  • FIG. 2 is a cross-sectional view taken along line AA schematically showing the cryopump shown in FIG. It is the schematic which shows the other example of the dew condensation suppression structure which concerns on embodiment. It is the schematic which shows the other example of the dew condensation suppression structure which concerns on embodiment. It is the schematic which shows the other example of the dew condensation suppression structure which concerns on embodiment. It is the schematic which shows the other example of the dew condensation suppression structure which concerns on embodiment.
  • FIG. 1 is a side sectional view schematically showing a cryopump 10 according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along line AA schematically showing the cryopump 10 shown in FIG.
  • FIG. 1 shows a cross section including a cryopump central axis C indicated by a one-dot chain line.
  • the cryopump 10 has a dew condensation suppression structure.
  • the cryopump 10 is attached to a vacuum chamber of, for example, an ion implantation apparatus, a sputtering apparatus, a vapor deposition apparatus, or other vacuum process apparatus to increase the degree of vacuum inside the vacuum chamber to a level required for a desired vacuum process. used.
  • the cryopump 10 has an inlet 12 for receiving a gas to be evacuated from a vacuum chamber. Gas enters the internal space 14 of the cryopump 10 through the air inlet 12.
  • the cryopump 10 may be intended to be installed and used in a vacuum chamber with the orientation shown in the drawing, that is, the posture with the intake port 12 facing upward.
  • the posture of the cryopump 10 is not limited thereto, and the cryopump 10 may be installed in the vacuum chamber in another direction.
  • the terms “axial direction” and “radial direction” are sometimes used to express the positional relationship of the components of the cryopump 10 in an easy-to-understand manner.
  • the axial direction represents the direction passing through the air inlet 12 (in FIG. 1, the direction along the cryopump central axis C passing through the center of the air inlet 12), and the radial direction is the direction along the air inlet 12 (the direction perpendicular to the central axis C). ).
  • up the fact that it is relatively close to the inlet 12 in the axial direction
  • down the fact that it is relatively distant to the inlet 12 in the axial direction
  • the distance from the bottom of the cryopump 10 may be referred to as “up” and the distance from the bottom of the cryopump 10 as “lower”.
  • the vicinity of the center of the inlet 12 (center axis C in FIG. 1) may be referred to as “inside” and the vicinity of the periphery of the inlet 12 may be referred to as “outer”.
  • Such an expression is not related to the arrangement when the cryopump 10 is attached to the vacuum chamber.
  • the cryopump 10 may be attached to the vacuum chamber with the inlet 12 facing downward in the vertical direction.
  • the direction surrounding the axial direction may be called “circumferential direction”.
  • the circumferential direction is a second direction along the air inlet 12 and is a tangential direction orthogonal to the radial direction.
  • the cryopump 10 includes a refrigerator 16, a first stage cryopanel 18, a second stage cryopanel assembly 20, and a cryopump housing 70.
  • the first stage cryopanel 18 can also be referred to as a high temperature cryopanel section or a 100K section.
  • the second stage cryopanel assembly 20 can also be referred to as a low temperature cryopanel section or a 10K section.
  • the refrigerator 16 is a cryogenic refrigerator such as a Gifford-McMahon refrigerator (so-called GM refrigerator).
  • the refrigerator 16 is a two-stage refrigerator. Therefore, the refrigerator 16 includes a first cooling stage 22 and a second cooling stage 24.
  • the refrigerator 16 is configured to cool the first cooling stage 22 to the first cooling temperature and to cool the second cooling stage 24 to the second cooling temperature.
  • the second cooling temperature is lower than the first cooling temperature.
  • the first cooling stage 22 is cooled to about 65K to 120K, preferably 80K to 100K
  • the second cooling stage 24 is cooled to about 10K to 20K.
  • the refrigerator 16 also includes a refrigerator structure portion 21 that structurally supports the second cooling stage 24 on the first cooling stage 22 and structurally supports the first cooling stage 22 on the room temperature portion 26 of the refrigerator 16.
  • the refrigerator structure unit 21 includes a first cylinder 23 and a second cylinder 25 that extend coaxially along the radial direction.
  • the first cylinder 23 connects the room temperature part 26 of the refrigerator 16 to the first cooling stage 22.
  • the second cylinder 25 connects the first cooling stage 22 to the second cooling stage 24.
  • the room temperature section 26, the first cylinder 23, the first cooling stage 22, the second cylinder 25, and the second cooling stage 24 are arranged in a straight line in this order.
  • first displacer and a second displacer are disposed so as to be able to reciprocate.
  • a first regenerator and a second regenerator are incorporated in the first displacer and the second displacer, respectively.
  • the room temperature section 26 has a drive mechanism (not shown) for reciprocating the first displacer and the second displacer.
  • the drive mechanism includes a flow path switching mechanism that switches the flow path of the working gas so that the supply and discharge of the working gas (for example, helium) to the inside of the refrigerator 16 are periodically repeated.
  • the first cooling stage 22 is installed at the first stage low temperature end of the refrigerator 16.
  • the first cooling stage 22 is a member that encloses the end of the first cylinder 23 on the side opposite to the room temperature portion 26 and surrounds the first expansion space of the working gas.
  • the first expansion space is a variable volume that is formed between the first cylinder 23 and the first displacer inside the first cylinder 23 and whose volume changes with the reciprocation of the first displacer.
  • the first cooling stage 22 is made of a metal material having a higher thermal conductivity than the first cylinder 23.
  • the first cooling stage 22 is made of copper
  • the first cylinder 23 is made of stainless steel.
  • the second cooling stage 24 is installed at the second stage low temperature end of the refrigerator 16.
  • the second cooling stage 24 is a member that encloses the end portion of the second cylinder 25 on the side opposite to the room temperature portion 26 and surrounds the second expansion space of the working gas.
  • the second expansion space is a variable volume that is formed between the second cylinder 25 and the second displacer inside the second cylinder 25 and has a volume that changes as the second displacer reciprocates.
  • the second cooling stage 24 is made of a metal material having a higher thermal conductivity than the second cylinder 25.
  • the second cooling stage 24 is made of copper, and the second cylinder 25 is made of stainless steel. In FIG. 1, a boundary 24b between the second cooling stage 24 and the second cylinder 25 is shown.
  • the refrigerator 16 is connected to a working gas compressor (not shown).
  • the refrigerator 16 expands the working gas pressurized by the compressor to cool the first cooling stage 22 and the second cooling stage 24.
  • the expanded working gas is collected in the compressor and pressurized again.
  • the refrigerator 16 generates cold by repeating a heat cycle including supply and discharge of the working gas and reciprocation of the first displacer and the second displacer in synchronization therewith.
  • the illustrated cryopump 10 is a so-called horizontal cryopump.
  • the horizontal type cryopump is generally a cryopump in which the refrigerator 16 is disposed so as to intersect (usually orthogonal) the central axis C of the cryopump 10.
  • the first cooling stage 22 and the second cooling stage 24 of the refrigerator 16 are arranged in a direction perpendicular to the cryopump center axis C (the horizontal direction in FIG. 1 and the direction of the center axis D of the refrigerator 16). .
  • the first stage cryopanel 18 includes a radiation shield 30 and an entrance cryopanel 32 and surrounds the second stage cryopanel assembly 20.
  • the first stage cryopanel 18 is a cryopanel provided to protect the second stage cryopanel assembly 20 from radiant heat from the outside of the cryopump 10 or from the cryopump housing 70.
  • the first stage cryopanel 18 is thermally coupled to the first cooling stage 22. Therefore, the first stage cryopanel 18 is cooled to the first cooling temperature.
  • the first stage cryopanel 18 has a gap with the second stage cryopanel assembly 20, and the first stage cryopanel 18 is not in contact with the second stage cryopanel assembly 20.
  • the radiation shield 30 is provided to protect the second stage cryopanel assembly 20 from the radiant heat of the cryopump housing 70.
  • the radiation shield 30 is located between the cryopump housing 70 and the second stage cryopanel assembly 20 and surrounds the second stage cryopanel assembly 20.
  • the radiation shield 30 has a shield main opening 34 for receiving gas from the outside of the cryopump 10 into the internal space 14.
  • the shield main opening 34 is located at the air inlet 12.
  • the radiation shield 30 includes a shield front end 36 that defines the shield main opening 34, a shield bottom 38 that is located on the opposite side of the shield main opening 34, and a shield side 40 that connects the shield front end 36 to the shield bottom 38.
  • the shield front end 36 forms a part of the shield side portion 40.
  • the shield side portion 40 extends in the axial direction from the shield front end 36 to the side opposite to the shield main opening 34, and extends in the circumferential direction so as to surround the second cooling stage 24.
  • the radiation shield 30 has a cylindrical shape (for example, a cylinder) in which the shield bottom 38 is closed, and is formed in a cup shape.
  • An annular gap 42 is formed between the shield side portion 40 and the second stage cryopanel assembly 20.
  • the shield bottom portion 38 may be a separate member from the shield side portion 40.
  • the shield bottom portion 38 may be a flat disk having substantially the same diameter as the shield side portion 40, and may be attached to the shield side portion 40 on the side opposite to the shield main opening 34. Further, at least a part of the shield bottom 38 may be opened.
  • the radiation shield 30 may not be blocked by the shield bottom 38. That is, both ends of the shield side part 40 may be open.
  • the shield side part 40 has a shield side part opening 44 into which the refrigerator structure part 21 is inserted.
  • the second cooling stage 24 and the second cylinder 25 are inserted into the radiation shield 30 from outside the radiation shield 30 through the shield side opening 44.
  • the shield side part opening 44 is an attachment hole formed in the shield side part 40, and is circular, for example.
  • the first cooling stage 22 is disposed outside the radiation shield 30.
  • the shield side portion 40 includes a mounting seat 46 for the refrigerator 16.
  • the mounting seat 46 is a flat portion for mounting the first cooling stage 22 to the radiation shield 30 and is slightly recessed when viewed from the outside of the radiation shield 30.
  • the mounting seat 46 forms the outer periphery of the shield side opening 44.
  • the mounting seat 46 is closer to the shield bottom 38 than the shield front end 36 in the axial direction.
  • the radiation shield 30 is thermally coupled to the first cooling stage 22 by attaching the first cooling stage 22 to the mounting seat 46.
  • the inlet cryopanel 32 is provided in the shield main opening 34 in order to protect the second-stage cryopanel assembly 20 from radiant heat from a heat source outside the cryopump 10.
  • the heat source outside the cryopump 10 is, for example, a heat source in a vacuum chamber to which the cryopump 10 is attached.
  • the inlet cryopanel 32 can limit not only radiant heat but also the ingress of gas molecules.
  • the inlet cryopanel 32 occupies a part of the opening area of the shield main opening 34 so as to limit the gas flow into the internal space 14 through the shield main opening 34 to a desired amount.
  • An annular open region 48 is formed between the inlet cryopanel 32 and the shield front end 36.
  • the inlet cryopanel 32 is attached to the shield front end 36 by an appropriate attachment member and is thermally coupled to the radiation shield 30.
  • the inlet cryopanel 32 is thermally coupled to the first cooling stage 22 via the radiation shield 30.
  • the entrance cryopanel 32 has, for example, a plurality of annular or linear slats. Alternatively, the inlet cryopanel 32 may be a single plate-like member.
  • the second stage cryopanel assembly 20 is attached to the second cooling stage 24 so as to surround the second cooling stage 24. Therefore, the second stage cryopanel assembly 20 is thermally coupled to the second cooling stage 24, and the second stage cryopanel assembly 20 is cooled to the second cooling temperature.
  • the second stage cryopanel assembly 20 is surrounded by the shield side portion 40 together with the second cooling stage 24.
  • the second-stage cryopanel assembly 20 includes a top cryopanel 60 facing the shield main opening 34, a plurality (two in this example) of cryopanel members 62, and a cryopanel mounting member 64.
  • the cryopump 10 includes a cryopanel positioning member 67.
  • the heat transfer section that thermally couples the second stage cryopanel assembly 20 to the second cooling stage 24 includes a cryopanel mounting member 64 and a cryopanel positioning member 67.
  • the top cryopanel 60 and the cryopanel member 62 are attached to the second cooling stage 24 via a cryopanel attachment member 64 and a cryopanel positioning member 67.
  • both the top cryopanel 60 and the cryopanel member 62 are not in contact with the radiation shield 30.
  • the cryopanel member 62 is covered with a top cryopanel 60.
  • the top cryopanel 60 is the portion of the second stage cryopanel assembly 20 that is closest to the inlet cryopanel 32.
  • the top cryopanel 60 is disposed between the shield main opening 34 or the inlet cryopanel 32 and the refrigerator 16 in the axial direction.
  • the top cryopanel 60 is located at the center of the internal space 14 of the cryopump 10 in the axial direction. Therefore, a main storage space 65 for the condensed layer is widely formed between the front surface of the top cryopanel 60 and the inlet cryopanel 32.
  • the main storage space 65 of the condensed layer occupies the upper half of the internal space 14.
  • the top cryopanel 60 is a substantially flat cryopanel arranged perpendicular to the axial direction. That is, the top cryopanel 60 extends in the radial direction and the circumferential direction. As shown in FIG. 2, the top cryopanel 60 is a disk-like panel having a size (for example, a projected area) larger than the entrance cryopanel 32. However, the relationship between the dimensions of the top cryopanel 60 and the entrance cryopanel 32 is not limited to this, and the top cryopanel 60 may be smaller, or both may have substantially the same dimensions.
  • the top cryopanel 60 is disposed so as to form a gap region 66 between the top cryopanel 60 and the refrigerator structure portion 21.
  • the gap region 66 is a space formed in the axial direction between the back surface of the top cryopanel 60 and the second cylinder 25.
  • the cryopanel member 62 is provided with an adsorbent 74 such as activated carbon.
  • the adsorbent 74 is bonded to the back surface of the cryopanel member 62.
  • the front surface of the cryopanel member 62 is intended to function as a condensing surface and the back surface as an adsorption surface.
  • An adsorbent 74 may be provided on the front surface of the cryopanel member 62.
  • the top cryopanel 60 may have an adsorbent 74 on the front surface and / or back surface thereof. Alternatively, the top cryopanel 60 may not include the adsorbent 74.
  • the two cryopanel members 62 are disposed on both sides of the second cooling stage 24 with the cryopump central axis C interposed therebetween.
  • the cryopanel member 62 is disposed along a plane perpendicular to the center axis C of the cryopump.
  • the cryopanel member 62 and the cryopanel mounting member 64 are shown by broken lines in FIG.
  • the two cryopanel members 62 are arranged at a height position between the upper end and the lower end of the second cooling stage 24 in the direction of the cryopump central axis C.
  • the two cryopanel members 62 are arranged at the same height.
  • the second cooling stage 24 includes a flange portion 24a at the end in a direction perpendicular to the cryopump central axis C (the direction of the central axis D of the refrigerator 16).
  • An upper end and a lower end of the second cooling stage 24 in the direction of the cryopump central axis C are defined by a flange portion 24a. That is, the two cryopanel members 62 are arranged at a height position between the upper end and the lower end of the flange portion 24a of the second cooling stage 24 in the direction of the cryopump central axis C.
  • the two cryopanel members 62 are designed as the same part.
  • the two cryopanel members 62 have the same shape and are formed of the same material.
  • the cryopanel member 62 has a bow shape, a semimoon shape, or a semicircular shape.
  • the cryopanel member 62 is formed of a metal material having a high thermal conductivity such as copper, and may be covered with a plating layer such as nickel.
  • the cryopanel member 62 includes an arc portion 78 and a string 79.
  • the two cryopanel members 62 are arranged symmetrically with respect to an intermediate line between them (the central axis D of the refrigerator 16).
  • the arc portions 78 of the two cryopanel members 62 are on the same circumference around the cryopump central axis C.
  • Each cryopanel member 62 has a line-symmetric shape with a line E passing through the midpoint of the string 79 (or the cryopump central axis C) and perpendicular to the string 79 as an axis of symmetry.
  • the cryopanel positioning member 67 is fixed to the flange portion 24 a of the second cooling stage 24 and supported by the second cooling stage 24.
  • the cryopanel positioning member 67 is formed in an inverted L shape that is inverted upside down.
  • restrictions on the length of the refrigerator 16 in the direction of the central axis D are relaxed.
  • the flange portion 24a of the second cooling stage 24 is at a position deviated from the cryopump center axis C in the direction of the center axis D of the refrigerator 16
  • the length of the upper side portion 67a of the cryopanel positioning member 67 is adjusted.
  • the second stage cryopanel assembly 20 can be positioned on the cryopump central axis C.
  • an existing refrigerator can be employed in place of the refrigerator designed exclusively for the cryopump 10. This can be useful for reducing the manufacturing cost of the cryopump 10.
  • the upper side portion 67a of the cryopanel positioning member 67 is opposite to that shown in FIG. You may extend so that it may leave
  • the cryopanel positioning member 67 having such a shape may be suitable for the cryopump 10 having the large-diameter inlet 12.
  • the cryopump 10 includes a gas flow adjusting member 50 configured to deflect the flow of gas flowing in from the shield main opening 34 from the refrigerator structure unit 21.
  • the gas flow adjusting member 50 is configured to deflect the gas flow flowing into the main accommodating space 65 through the inlet cryopanel 32 or the open region 48 from the second cylinder 25.
  • the gas flow adjusting member 50 may be a gas flow deflecting member or a gas flow reflecting member disposed adjacent to and above the refrigerator structure 21 or the second cylinder 25.
  • the gas flow adjusting member 50 is locally provided at the same position as the shield side opening 44 in the circumferential direction.
  • the gas flow adjusting member 50 has a rectangular shape when viewed from above.
  • the gas flow adjusting member 50 is, for example, a single flat plate, but may be curved.
  • the gas flow adjusting member 50 extends from the shield side 40 and is inserted into the gap region 66. However, the gas flow adjusting member 50 is not in contact with the portion of the second cooling temperature surrounding the top cryopanel 60, the second cylinder 25, and the gap region 66. The gas flow adjusting member 50 is thermally coupled to the first cooling stage 22 via the radiation shield 30. Therefore, the gas flow adjusting member 50 is cooled to the first cooling temperature.
  • the cryopump housing 70 is a housing of the cryopump 10 that houses the first-stage cryopanel 18, the second-stage cryopanel assembly 20, and the refrigerator 16, and is configured to maintain the vacuum airtightness of the internal space 14. Vacuum container.
  • the cryopump housing 70 includes the first stage cryopanel 18 and the refrigerator structure 21 in a non-contact manner.
  • the cryopump housing 70 is attached to the room temperature portion 26 of the refrigerator 16.
  • the inlet 12 is defined by the front end of the cryopump housing 70.
  • the cryopump housing 70 includes an inlet flange 72 that extends radially outward from its front end.
  • the inlet flange 72 is provided over the entire circumference of the cryopump housing 70.
  • the cryopump 10 is attached to a vacuum chamber to be evacuated using an intake port flange 72.
  • the cryopump housing 70 includes a cryopanel housing portion 76 that surrounds the radiation shield 30 in a non-contact manner with the radiation shield 30, and a refrigerator housing portion 77 that surrounds the first cylinder 23 of the refrigerator 16.
  • the cryopanel housing portion 76 and the refrigerator housing portion 77 are integrally formed.
  • the cryopanel housing portion 76 has a cylindrical or dome shape in which an inlet flange 72 is formed at one end and the other end is closed as a housing bottom surface 70a.
  • an opening through which the refrigerator 16 is inserted is formed on the side wall of the cryopanel housing portion 76 that connects the air inlet flange 72 to the housing bottom surface 70 a.
  • the refrigerator accommodating portion 77 has a cylindrical shape extending from the opening to the room temperature portion 26 of the refrigerator 16.
  • the refrigerator housing unit 77 connects the cryopanel housing unit 76 to the room temperature unit 26 of the refrigerator 16.
  • the cryopump 10 includes a water absorption layer 80 mounted on the outside of the cryopump housing 70, and a heat insulating layer 82 disposed between the cryopump housing 70 and the water absorption layer 80.
  • a dew condensation suppressing structure of the cryopump 10 is formed by the water absorption layer 80 and the heat insulating layer 82.
  • the dew condensation suppressing structure includes a water absorbing and heat insulating sheet 84 having a water absorbing layer 80 on the outside and a heat insulating layer 82 on the inside.
  • the water absorbing heat insulating sheet 84 is configured as a sheet in which the water absorbing layer 80 is bonded to the outside of the heat insulating layer 82.
  • the water-absorbing heat insulating sheet 84 covers at least a part of the outer surface of the cryopump housing 70, for example, the entire surface.
  • the water-absorbing heat insulating sheet 84 is attached to both the cryopanel housing portion 76 and the refrigerator housing portion 77 and covers almost the entire surface thereof.
  • the water-absorbing heat insulating sheet 84 is wound around the side surface of the cryopanel housing portion 76 and covers the side surface.
  • the water absorption heat insulation sheet 84 is also attached to the housing bottom face 76a.
  • the water absorption heat insulating sheet 84 is also wound around the refrigerator housing portion 77.
  • the water-absorbing heat insulating sheet 84 is attached to the cryopump housing 70 using an appropriate bonding method.
  • the intake port flange 72 is not covered with the water absorption heat insulating sheet 84. In most cases, condensation does not occur even if the inlet flange 72 is exposed, so that it is not necessary to attach the water absorbing layer 80 and / or the heat insulating layer 82 to the inlet flange 72. If necessary, the water absorption layer 80 and / or the heat insulation layer 82 may be attached to the intake port flange 72.
  • the water absorbing layer 80 is a material that is superior in water absorption compared to a structural material (for example, stainless steel such as SUS304) that forms the outer surface of the cryopump housing 70 and / or a heat insulating material that forms the heat insulating layer 82. It is formed with.
  • the water-absorbing layer 80 is formed of, for example, a water-absorbing material that adsorbs moisture chemically and / or physically such as a water-absorbing resin or a water-absorbing porous material, or a material containing such a water-absorbing material.
  • the water absorption layer 80 can employ
  • the heat insulating layer 82 is made of a material having a lower thermal conductivity than the structural material forming the outer surface of the cryopump housing 70.
  • the heat insulating layer 82 may be formed of various known heat insulating materials such as a foam heat insulating material and / or a fiber heat insulating material.
  • the thickness 86 of the heat insulating layer 82 is determined so that the temperature of the water absorbing layer 80 is maintained at a temperature higher than 0 ° C. during the regeneration of the cryopump 10.
  • the thickness 86 of the heat insulating layer 82 may be determined such that the temperature of the water absorbing layer 80 is maintained at a temperature higher than 5 ° C or higher than 10 ° C. In other words, the thickness 86 of the heat insulating layer 82 is determined so that the temperature of the outer surface of the heat insulating layer 82 does not fall below the freezing point of water during the regeneration of the cryopump 10.
  • the vacuum chamber is first roughed to about 1 Pa with another appropriate roughing pump before the operation. Thereafter, the cryopump 10 is operated.
  • the first cooling stage 22 and the second cooling stage 24 are cooled to the first cooling temperature and the second cooling temperature, respectively, by driving the refrigerator 16. Therefore, the first-stage cryopanel 18 and the second-stage cryopanel assembly 20 that are thermally coupled to these are also cooled to the first cooling temperature and the second cooling temperature, respectively.
  • the inlet cryopanel 32 cools the gas flying from the vacuum chamber toward the cryopump 10.
  • a gas having a sufficiently low vapor pressure (for example, 10 ⁇ 8 Pa or less) condenses on the surface of the inlet cryopanel 32 at the first cooling temperature.
  • This gas may be referred to as a first type gas (also referred to as type 1 gas).
  • the first type gas is, for example, water vapor.
  • the inlet cryopanel 32 can exhaust the first type gas.
  • a part of the gas whose vapor pressure is not sufficiently low at the first cooling temperature passes through the inlet cryopanel 32 or the open region 48 and enters the main accommodating space 65. Alternatively, the other part of the gas is reflected by the inlet cryopanel 32 and does not enter the main accommodating space 65.
  • the gas that has entered the main housing space 65 is cooled by the second-stage cryopanel assembly 20.
  • a gas having a sufficiently low vapor pressure (for example, 10 ⁇ 8 Pa or less) is condensed on the surface of the second stage cryopanel assembly 20 at the second cooling temperature.
  • This gas may be referred to as a second type gas (also referred to as type 2 gas).
  • the second type gas is, for example, nitrogen or argon.
  • the second stage cryopanel assembly 20 can exhaust the second type gas. Since it faces the main housing space 65 directly, a condensed layer of the second type gas can grow greatly on the front surface of the top cryopanel 60.
  • the second type gas is a gas that does not condense at the first cooling temperature.
  • the gas whose vapor pressure is not sufficiently low at the second cooling temperature is adsorbed by the adsorbent 74 of the second stage cryopanel assembly 20.
  • This gas may be referred to as a third type gas (also referred to as type 3 gas).
  • the third type gas is, for example, hydrogen.
  • the second stage cryopanel assembly 20 can exhaust the third type gas. Therefore, the cryopump 10 can exhaust various gases by condensation or adsorption, and can reach the desired vacuum level of the vacuum chamber.
  • the gas is accumulated in the cryopump 10 by continuing the exhaust operation.
  • the cryopump 10 is regenerated. When the regeneration is completed, the exhaust operation can be started again.
  • cryopump housing 70 In order to accelerate the temperature rise of the cryopump 10 and shorten the regeneration time, generally, purge gas is introduced into the cryopump housing 70 at the start of regeneration.
  • the cryopump housing 70 is filled with the gas due to the re-vaporization of the purge gas or the stored gas, so that the vacuum heat insulating effect is lost unlike during the exhaust operation. Heat exchange between the cryopanel and the cryopump housing 70 is promoted through the gas.
  • the cryopump housing 70 can be cooled because the cryopanel is still cooled to an extremely low temperature.
  • the cryopump 10 since the cryopump 10 has a large main accommodating space 65, a large amount of the second type gas can be stored.
  • the second type gas dissolves into a liquid at a relatively early stage of regeneration.
  • the second type gas is nitrogen or argon, this liquefied gas is very cold.
  • the liquefied gas can flow down to the bottom of the radiation shield 30 or the cryopump housing 70 and contact the inner surface of the cryopump housing 70.
  • the cryopump housing 70 is significantly cooled. Therefore, moisture in the surrounding air may be condensed on the outer surface of the cryopump housing 70 or frost may be attached.
  • the cryopump 10 is gradually heated to room temperature, so that frost will eventually melt. If a large amount of frost is attached, it melts into a large amount of water and can be dripped. Other devices and articles around the cryopump 10 or the floor may be wetted.
  • the cryopump 10 includes a water absorption layer 80 attached to the outside of the cryopump housing 70. Moisture that tends to adhere to the outer surface of the cryopump housing 70 is absorbed by the water absorption layer 80. Therefore, condensation on the cryopump 10 can be suppressed. Since condensation is suppressed, dripping of water around the cryopump 10 and the floor surface is also suppressed.
  • the heat insulating layer 82 is disposed between the cryopump housing 70 and the water absorbing layer 80. Compared with the temperature drop of the cryopump housing 70, the temperature drop of the outer surface of the heat insulation layer 82 is small. The temperature difference between the outside air temperature and the water absorbing layer 80 can be reduced as compared with the case where the water absorbing layer 80 is directly attached to the cryopump housing 70 without the heat insulating layer 82. Therefore, condensation on the cryopump 10 can be suppressed.
  • the thickness 86 of the heat insulating layer 82 must be sufficiently thick. In this case, the required thickness 86 of the heat insulating layer 82 may become so large that it is difficult to actually mount the cryopump housing 70.
  • the cryopump 10 since the cryopump 10 according to the embodiment includes the water absorption layer 80, it can absorb moisture that can be condensed on the outer surface of the heat insulation layer 82.
  • the outer surface of the heat insulating layer 82 may be cooled to some extent from room temperature, and the heat insulating layer 82 can be made thin. It is expected that the water absorption layer 80 itself does not need that much thickness. Therefore, by combining the water absorption layer 80 and the heat insulating layer 82, a dew condensation suppressing structure having a small thickness as a whole can be realized, and mounting on the cryopump 10 becomes easier.
  • an electric heater such as a band heater is wound around a housing in order to suppress condensation.
  • the cryopump 10 according to the embodiment also has an advantage of not requiring such an electric heater (therefore, the cryopump 10 according to the embodiment does not have an electric heater for heating the cryopump housing 70).
  • cryopump 10 does not require a water receiving tray called a drain pan.
  • the cryopump 10 includes a water absorbing and heat insulating sheet 84 having a water absorbing layer 80 on the outside and a heat insulating layer 82 on the inside.
  • a two-step operation is required such that the heat insulating layer 82 is first attached to the cryopump housing 70 and the water absorbing layer 80 is attached to the heat insulating layer 82.
  • the water-absorbing heat insulating sheet 84 the water-absorbing layer 80 and the heat-insulating layer 82 can be mounted together on the cryopump housing 70, so that the manufacture becomes easy.
  • the outer surface temperature of the water-absorbing layer 80 is lower than 0 ° C., moisture that is condensed can freeze on the outer surface of the water-absorbing layer 80.
  • An ice layer separates from the water absorption layer 80 and adheres onto the water absorption layer 80.
  • the thickness 86 of the heat insulating layer 82 is determined such that the temperature of the water absorbing layer 80 is maintained at a temperature higher than 0 ° C. during the regeneration of the cryopump 10. Therefore, formation of an ice layer on the water absorption layer 80 is suppressed, and dripping of water is also suppressed.
  • the water-absorbing and heat-insulating sheet 84 is attached to both the cryopanel housing portion 76 and the refrigerator housing portion 77, but this is not essential.
  • the water absorption layer 80, the heat insulation layer 82, and / or the water absorption heat insulation sheet 84 may be attached to only one of the cryopanel accommodation portion 76 and the refrigerator accommodation portion 77.
  • the water absorption layer 80, the heat insulation layer 82, and / or the water absorption heat insulation sheet 84 may be attached to the cryopump housing 70 so as to cover only a part of the outer surface of the cryopump housing 70.
  • the water-absorbing heat insulating sheet 84 may be attached only to the lower part of the cryopanel housing portion 76. If it does in this way, the dew condensation which flows down from the upper part of the cryopanel accommodating part 76 is absorbed with the water absorption heat insulation sheet
  • the refrigerator accommodating portion 77 may be provided with components such as valves and sensors that protrude outward from the cylindrical portion. Such a component does not need to be covered with the water absorption heat insulation sheet 84.
  • the water absorbing layer 80 may be disposed between the cryopump housing 70 and the heat insulating layer 82. That is, the water absorption layer 80 may be disposed inside the heat insulation layer 82.
  • the cryopump housing 70 may have corners or curved portions. In order to provide good thermal insulation, the thickness 86 of the thermal insulation layer 82 is relatively large. Therefore, it is assumed that the heat insulating layer 82 is hardly adhered to the corner portion or the curved portion and is difficult to cover completely. In such a case, the corners or curved portions of the cryopump housing 70 may be covered with a water absorption layer 80 as shown in the drawing.
  • the water absorbing layer 80 may cover the heat insulating layer 82 from the outside.
  • a gap 87 may be formed between the corner or the curved portion and the water absorption layer 80.
  • the cryopump 10 may include a drain pan 88.
  • the drain pan 88 is provided as a water receiving tray disposed below the cryopump housing 70, and is configured to prevent the condensed water from dripping onto the floor surface 94 and / or to receive and store the condensed water dropped.
  • the drain pan 88 is attached to the cryopanel housing portion 76 of the cryopump housing 70.
  • the drain pan 88 may be fastened together with the caster 90 in the cryopanel housing portion 76.
  • a heat insulating spacer 92 may be inserted between the drain pan 88 and the cryopanel accommodating portion 76.
  • the drain pan 88 may be attached to the cryopump housing 70 by other methods such as being suspended from the intake port flange 72.
  • the water absorption layer 80, the heat insulation layer 82, and / or the water absorption heat insulation sheet 84 are attached to the refrigerator housing portion 77.
  • the water absorption layer 80, the heat insulation layer 82, and / or the water absorption heat insulation sheet 84 may be attached to the cryopanel housing portion 76.
  • the drain pan 88 may be used in combination with the dew condensation suppressing structure according to the embodiment.
  • the vertical cryopump refers to a cryopump in which the refrigerator 16 is disposed along the cryopump central axis C of the cryopump 10.
  • the refrigerator housing portion 77 is installed not on the side surface of the cryopanel housing portion 76 but on the housing bottom surface 76a.
  • the internal configuration of the cryopump such as the arrangement, shape, and number of cryopanels, is not limited to the specific embodiment described above. Various known configurations can be employed as appropriate.
  • cryopump 10 cryopump, 70 cryopump housing, 80 water absorption layer, 82 heat insulation layer, 84 water absorption heat insulation sheet.
  • the present invention can be used in the field of cryopumps.

Abstract

A cryopump (10) is provided with: a cryopump housing (70); and a water-absorbing layer (80) attached to the exterior of the cryopump housing (70). The cryopump (10) may further be provided with a heat insulation layer (82) disposed between the cryopump housing (70) and the water-absorbing layer (80). The cryopump (10) may be provided with a water-absorbing heat insulation sheet (84) which includes the water-absorbing layer (80) on the outer side and the heat insulation layer (82) on the inner side.

Description

クライオポンプCryopump
 本発明は、クライオポンプに関する。 The present invention relates to a cryopump.
 クライオポンプは、極低温に冷却されたクライオパネルに気体分子を凝縮または吸着により捕捉して排気する真空ポンプである。クライオポンプは半導体回路製造プロセス等に要求される清浄な真空環境を実現するために一般に利用される。クライオポンプはいわゆる気体溜め込み式の真空ポンプであるから、捕捉した気体を外部に定期的に排出する再生を要する。 The cryopump is a vacuum pump that traps and exhausts gas molecules by condensation or adsorption on a cryopanel cooled to a cryogenic temperature. The cryopump is generally used to realize a clean vacuum environment required for a semiconductor circuit manufacturing process or the like. Since the cryopump is a so-called gas storage type vacuum pump, regeneration is required to periodically discharge the trapped gas to the outside.
特開昭60-71002号公報Japanese Unexamined Patent Publication No. 60-71002
 クライオポンプの再生が始まると、クライオパネルを収容するクライオポンプハウジングは、真空が解除される。溜め込まれたガスの再気化やパージガスの導入により、ハウジング内にガスが充満する。再生当初はクライオパネルがまだ極低温に冷えている。ガスの充満により真空断熱効果がなくなるので、ハウジングがクライオパネルによってガスを介して冷やされうる。ハウジングは周囲環境にさらされているので、場合によっては、その外表面に結露が生じうる。結露した水が滴下しうる。 When the regeneration of the cryopump begins, the cryopump housing that houses the cryopanel is released from the vacuum. The gas is filled in the housing by re-vaporizing the accumulated gas or introducing purge gas. At the beginning of the reproduction, the cryopanels are still very cold. Since the vacuum insulation effect is lost by filling the gas, the housing can be cooled by the cryopanel through the gas. Since the housing is exposed to the surrounding environment, in some cases, condensation can occur on its outer surface. Condensed water can be dripped.
 本発明のある態様の例示的な目的のひとつは、クライオポンプへの結露を抑制し、または結露した水の滴下を抑制することにある。 One of the exemplary purposes of an aspect of the present invention is to suppress condensation on the cryopump or to suppress dripping of condensed water.
 本発明のある態様によると、クライオポンプは、クライオポンプハウジングと、前記クライオポンプハウジングの外側に装着された吸水層と、を備える。 According to an aspect of the present invention, the cryopump includes a cryopump housing and a water absorption layer attached to the outside of the cryopump housing.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements and the constituent elements and expressions of the present invention that are mutually replaced between methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.
 本発明によれば、クライオポンプへの結露を抑制し、または結露した水の滴下を抑制することができる。 According to the present invention, condensation on the cryopump can be suppressed, or dripping of condensed water can be suppressed.
実施の形態に係るクライオポンプとその結露抑制構造を概略的に示す側断面図である。It is a sectional side view which shows roughly the cryopump which concerns on embodiment, and its dew condensation suppression structure. 図1に示すクライオポンプを概略的に示すA-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA schematically showing the cryopump shown in FIG. 実施の形態に係る結露抑制構造の他の例を示す概略図である。It is the schematic which shows the other example of the dew condensation suppression structure which concerns on embodiment. 実施の形態に係る結露抑制構造の他の例を示す概略図である。It is the schematic which shows the other example of the dew condensation suppression structure which concerns on embodiment. 実施の形態に係る結露抑制構造の他の例を示す概略図である。It is the schematic which shows the other example of the dew condensation suppression structure which concerns on embodiment.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent components, members, and processes are denoted by the same reference numerals, and redundant descriptions are omitted as appropriate. The scales and shapes of the respective parts shown in the drawings are set for convenience in order to facilitate explanation, and are not limitedly interpreted unless otherwise specified. The embodiments are illustrative and do not limit the scope of the present invention. All features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 図1は、実施の形態に係るクライオポンプ10を概略的に示す側断面図である。図2は、図1に示すクライオポンプ10を概略的に示すA-A線断面図である。図1は、一点鎖線で示すクライオポンプ中心軸Cを含む断面を示す。ただし、理解の容易のため、図1においてクライオポンプ10の低温クライオパネル部と冷凍機は断面ではなく側面を示している。 FIG. 1 is a side sectional view schematically showing a cryopump 10 according to an embodiment. FIG. 2 is a cross-sectional view taken along line AA schematically showing the cryopump 10 shown in FIG. FIG. 1 shows a cross section including a cryopump central axis C indicated by a one-dot chain line. However, for easy understanding, the low-temperature cryopanel portion and the refrigerator of the cryopump 10 shown in FIG.
 後述するように、クライオポンプ10は、結露抑制構造を有する。 As will be described later, the cryopump 10 has a dew condensation suppression structure.
 クライオポンプ10は、例えばイオン注入装置、スパッタリング装置、蒸着装置、またはその他の真空プロセス装置の真空チャンバに取り付けられて、真空チャンバ内部の真空度を所望の真空プロセスに要求されるレベルまで高めるために使用される。クライオポンプ10は、排気されるべき気体を真空チャンバから受け入れるための吸気口12を有する。吸気口12を通じて気体がクライオポンプ10の内部空間14に進入する。 The cryopump 10 is attached to a vacuum chamber of, for example, an ion implantation apparatus, a sputtering apparatus, a vapor deposition apparatus, or other vacuum process apparatus to increase the degree of vacuum inside the vacuum chamber to a level required for a desired vacuum process. used. The cryopump 10 has an inlet 12 for receiving a gas to be evacuated from a vacuum chamber. Gas enters the internal space 14 of the cryopump 10 through the air inlet 12.
 クライオポンプ10は、図示の向き、すなわち吸気口12を上方に向けた姿勢で真空チャンバに設置され使用されることが意図されていてもよい。ただし、クライオポンプ10の姿勢はそれに限定されず、クライオポンプ10は他の向きで真空チャンバに設置されてもよい。 The cryopump 10 may be intended to be installed and used in a vacuum chamber with the orientation shown in the drawing, that is, the posture with the intake port 12 facing upward. However, the posture of the cryopump 10 is not limited thereto, and the cryopump 10 may be installed in the vacuum chamber in another direction.
 なお以下では、クライオポンプ10の構成要素の位置関係をわかりやすく表すために、「軸方向」、「径方向」との用語を使用することがある。軸方向は吸気口12を通る方向(図1において、吸気口12の中心を通るクライオポンプ中心軸Cに沿う方向)を表し、径方向は吸気口12に沿う方向(中心軸Cに垂直な方向)を表す。便宜上、軸方向に関して吸気口12に相対的に近いことを「上」、相対的に遠いことを「下」と呼ぶことがある。つまり、クライオポンプ10の底部から相対的に遠いことを「上」、相対的に近いことを「下」と呼ぶことがある。径方向に関しては、吸気口12の中心(図1において中心軸C)に近いことを「内」、吸気口12の周縁に近いことを「外」と呼ぶことがある。なお、こうした表現はクライオポンプ10が真空チャンバに取り付けられたときの配置とは関係しない。例えば、クライオポンプ10は鉛直方向に吸気口12を下向きにして真空チャンバに取り付けられてもよい。 In the following description, the terms “axial direction” and “radial direction” are sometimes used to express the positional relationship of the components of the cryopump 10 in an easy-to-understand manner. The axial direction represents the direction passing through the air inlet 12 (in FIG. 1, the direction along the cryopump central axis C passing through the center of the air inlet 12), and the radial direction is the direction along the air inlet 12 (the direction perpendicular to the central axis C). ). For convenience, the fact that it is relatively close to the inlet 12 in the axial direction may be referred to as “up”, and that it is relatively distant may be called “down”. In other words, the distance from the bottom of the cryopump 10 may be referred to as “up” and the distance from the bottom of the cryopump 10 as “lower”. Regarding the radial direction, the vicinity of the center of the inlet 12 (center axis C in FIG. 1) may be referred to as “inside” and the vicinity of the periphery of the inlet 12 may be referred to as “outer”. Such an expression is not related to the arrangement when the cryopump 10 is attached to the vacuum chamber. For example, the cryopump 10 may be attached to the vacuum chamber with the inlet 12 facing downward in the vertical direction.
 また、軸方向を囲む方向を「周方向」と呼ぶことがある。周方向は、吸気口12に沿う第2の方向であり、径方向に直交する接線方向である。 Also, the direction surrounding the axial direction may be called “circumferential direction”. The circumferential direction is a second direction along the air inlet 12 and is a tangential direction orthogonal to the radial direction.
 クライオポンプ10は、冷凍機16、第1段クライオパネル18、第2段クライオパネルアセンブリ20、及び、クライオポンプハウジング70を備える。第1段クライオパネル18は、高温クライオパネル部または100K部とも称されうる。第2段クライオパネルアセンブリ20は、低温クライオパネル部または10K部とも称されうる。 The cryopump 10 includes a refrigerator 16, a first stage cryopanel 18, a second stage cryopanel assembly 20, and a cryopump housing 70. The first stage cryopanel 18 can also be referred to as a high temperature cryopanel section or a 100K section. The second stage cryopanel assembly 20 can also be referred to as a low temperature cryopanel section or a 10K section.
 冷凍機16は、例えばギフォード・マクマホン式冷凍機(いわゆるGM冷凍機)などの極低温冷凍機である。冷凍機16は、二段式の冷凍機である。そのため、冷凍機16は、第1冷却ステージ22及び第2冷却ステージ24を備える。冷凍機16は、第1冷却ステージ22を第1冷却温度に冷却し、第2冷却ステージ24を第2冷却温度に冷却するよう構成されている。第2冷却温度は第1冷却温度よりも低温である。例えば、第1冷却ステージ22は65K~120K程度、好ましくは80K~100Kに冷却され、第2冷却ステージ24は10K~20K程度に冷却される。 The refrigerator 16 is a cryogenic refrigerator such as a Gifford-McMahon refrigerator (so-called GM refrigerator). The refrigerator 16 is a two-stage refrigerator. Therefore, the refrigerator 16 includes a first cooling stage 22 and a second cooling stage 24. The refrigerator 16 is configured to cool the first cooling stage 22 to the first cooling temperature and to cool the second cooling stage 24 to the second cooling temperature. The second cooling temperature is lower than the first cooling temperature. For example, the first cooling stage 22 is cooled to about 65K to 120K, preferably 80K to 100K, and the second cooling stage 24 is cooled to about 10K to 20K.
 また、冷凍機16は、第2冷却ステージ24を第1冷却ステージ22に構造的に支持するとともに第1冷却ステージ22を冷凍機16の室温部26に構造的に支持する冷凍機構造部21を備える。そのため冷凍機構造部21は、径方向に沿って同軸に延在する第1シリンダ23及び第2シリンダ25を備える。第1シリンダ23は、冷凍機16の室温部26を第1冷却ステージ22に接続する。第2シリンダ25は、第1冷却ステージ22を第2冷却ステージ24に接続する。室温部26、第1シリンダ23、第1冷却ステージ22、第2シリンダ25、及び第2冷却ステージ24は、この順に直線状に一列に並ぶ。 The refrigerator 16 also includes a refrigerator structure portion 21 that structurally supports the second cooling stage 24 on the first cooling stage 22 and structurally supports the first cooling stage 22 on the room temperature portion 26 of the refrigerator 16. Prepare. Therefore, the refrigerator structure unit 21 includes a first cylinder 23 and a second cylinder 25 that extend coaxially along the radial direction. The first cylinder 23 connects the room temperature part 26 of the refrigerator 16 to the first cooling stage 22. The second cylinder 25 connects the first cooling stage 22 to the second cooling stage 24. The room temperature section 26, the first cylinder 23, the first cooling stage 22, the second cylinder 25, and the second cooling stage 24 are arranged in a straight line in this order.
 第1シリンダ23及び第2シリンダ25それぞれの内部には第1ディスプレーサ及び第2ディスプレーサ(図示せず)が往復動可能に配設されている。第1ディスプレーサ及び第2ディスプレーサにはそれぞれ第1蓄冷器及び第2蓄冷器(図示せず)が組み込まれている。また、室温部26は、第1ディスプレーサ及び第2ディスプレーサを往復動させるための駆動機構(図示せず)を有する。駆動機構は、冷凍機16の内部への作動気体(例えばヘリウム)の供給と排出を周期的に繰り返すよう作動気体の流路を切り替える流路切替機構を含む。 In each of the first cylinder 23 and the second cylinder 25, a first displacer and a second displacer (not shown) are disposed so as to be able to reciprocate. A first regenerator and a second regenerator (not shown) are incorporated in the first displacer and the second displacer, respectively. The room temperature section 26 has a drive mechanism (not shown) for reciprocating the first displacer and the second displacer. The drive mechanism includes a flow path switching mechanism that switches the flow path of the working gas so that the supply and discharge of the working gas (for example, helium) to the inside of the refrigerator 16 are periodically repeated.
 第1冷却ステージ22は、冷凍機16の第1段低温端に設置されている。第1冷却ステージ22は、室温部26と反対側で第1シリンダ23の端部を外包し、作動気体の第1膨張空間を取り囲む部材である。第1膨張空間は、第1シリンダ23の内部において第1シリンダ23と第1ディスプレーサとの間に形成され、第1ディスプレーサの往復動に伴って容積が変化する可変容積である。第1冷却ステージ22は、第1シリンダ23よりも高い熱伝導率をもつ金属材料で形成されている。例えば、第1冷却ステージ22は銅で形成され、第1シリンダ23はステンレス鋼で形成される。 The first cooling stage 22 is installed at the first stage low temperature end of the refrigerator 16. The first cooling stage 22 is a member that encloses the end of the first cylinder 23 on the side opposite to the room temperature portion 26 and surrounds the first expansion space of the working gas. The first expansion space is a variable volume that is formed between the first cylinder 23 and the first displacer inside the first cylinder 23 and whose volume changes with the reciprocation of the first displacer. The first cooling stage 22 is made of a metal material having a higher thermal conductivity than the first cylinder 23. For example, the first cooling stage 22 is made of copper, and the first cylinder 23 is made of stainless steel.
 第2冷却ステージ24は、冷凍機16の第2段低温端に設置されている。第2冷却ステージ24は、室温部26と反対側で第2シリンダ25の端部を外包し、作動気体の第2膨張空間を取り囲む部材である。第2膨張空間は、第2シリンダ25の内部において第2シリンダ25と第2ディスプレーサとの間に形成され、第2ディスプレーサの往復動に伴って容積が変化する可変容積である。第2冷却ステージ24は、第2シリンダ25よりも高い熱伝導率をもつ金属材料で形成されている。第2冷却ステージ24は銅で形成され、第2シリンダ25はステンレス鋼で形成される。図1には、第2冷却ステージ24と第2シリンダ25の境界24bが示されている。 The second cooling stage 24 is installed at the second stage low temperature end of the refrigerator 16. The second cooling stage 24 is a member that encloses the end portion of the second cylinder 25 on the side opposite to the room temperature portion 26 and surrounds the second expansion space of the working gas. The second expansion space is a variable volume that is formed between the second cylinder 25 and the second displacer inside the second cylinder 25 and has a volume that changes as the second displacer reciprocates. The second cooling stage 24 is made of a metal material having a higher thermal conductivity than the second cylinder 25. The second cooling stage 24 is made of copper, and the second cylinder 25 is made of stainless steel. In FIG. 1, a boundary 24b between the second cooling stage 24 and the second cylinder 25 is shown.
 冷凍機16は、作動気体の圧縮機(図示せず)に接続されている。冷凍機16は、圧縮機により加圧された作動気体を内部で膨張させて第1冷却ステージ22及び第2冷却ステージ24を冷却する。膨張した作動気体は圧縮機に回収され再び加圧される。冷凍機16は、作動気体の給排とこれに同期した第1ディスプレーサ及び第2ディスプレーサの往復動とを含む熱サイクルを繰り返すことによって寒冷を発生させる。 The refrigerator 16 is connected to a working gas compressor (not shown). The refrigerator 16 expands the working gas pressurized by the compressor to cool the first cooling stage 22 and the second cooling stage 24. The expanded working gas is collected in the compressor and pressurized again. The refrigerator 16 generates cold by repeating a heat cycle including supply and discharge of the working gas and reciprocation of the first displacer and the second displacer in synchronization therewith.
 図示されるクライオポンプ10は、いわゆる横型のクライオポンプである。横型のクライオポンプとは一般に、冷凍機16がクライオポンプ10の中心軸Cに交差する(通常は直交する)よう配設されているクライオポンプである。冷凍機16の第1冷却ステージ22及び第2冷却ステージ24は、クライオポンプ中心軸Cに垂直な方向(図1において水平方向であり、冷凍機16の中心軸Dの方向)に配列されている。 The illustrated cryopump 10 is a so-called horizontal cryopump. The horizontal type cryopump is generally a cryopump in which the refrigerator 16 is disposed so as to intersect (usually orthogonal) the central axis C of the cryopump 10. The first cooling stage 22 and the second cooling stage 24 of the refrigerator 16 are arranged in a direction perpendicular to the cryopump center axis C (the horizontal direction in FIG. 1 and the direction of the center axis D of the refrigerator 16). .
 第1段クライオパネル18は、放射シールド30と入口クライオパネル32とを備え、第2段クライオパネルアセンブリ20を包囲する。第1段クライオパネル18は、クライオポンプ10の外部またはクライオポンプハウジング70からの輻射熱から第2段クライオパネルアセンブリ20を保護するために設けられているクライオパネルである。第1段クライオパネル18は第1冷却ステージ22に熱的に結合されている。よって第1段クライオパネル18は第1冷却温度に冷却される。第1段クライオパネル18は第2段クライオパネルアセンブリ20との間に隙間を有しており、第1段クライオパネル18は第2段クライオパネルアセンブリ20と接触していない。 The first stage cryopanel 18 includes a radiation shield 30 and an entrance cryopanel 32 and surrounds the second stage cryopanel assembly 20. The first stage cryopanel 18 is a cryopanel provided to protect the second stage cryopanel assembly 20 from radiant heat from the outside of the cryopump 10 or from the cryopump housing 70. The first stage cryopanel 18 is thermally coupled to the first cooling stage 22. Therefore, the first stage cryopanel 18 is cooled to the first cooling temperature. The first stage cryopanel 18 has a gap with the second stage cryopanel assembly 20, and the first stage cryopanel 18 is not in contact with the second stage cryopanel assembly 20.
 放射シールド30は、クライオポンプハウジング70の輻射熱から第2段クライオパネルアセンブリ20を保護するために設けられている。放射シールド30は、クライオポンプハウジング70と第2段クライオパネルアセンブリ20との間にあり、第2段クライオパネルアセンブリ20を囲む。放射シールド30は、クライオポンプ10の外部から内部空間14に気体を受け入れるためのシールド主開口34を有する。シールド主開口34は、吸気口12に位置する。 The radiation shield 30 is provided to protect the second stage cryopanel assembly 20 from the radiant heat of the cryopump housing 70. The radiation shield 30 is located between the cryopump housing 70 and the second stage cryopanel assembly 20 and surrounds the second stage cryopanel assembly 20. The radiation shield 30 has a shield main opening 34 for receiving gas from the outside of the cryopump 10 into the internal space 14. The shield main opening 34 is located at the air inlet 12.
 放射シールド30は、シールド主開口34を定めるシールド前端36と、シールド主開口34と反対側に位置するシールド底部38と、シールド前端36をシールド底部38に接続するシールド側部40と、を備える。シールド前端36は、シールド側部40の一部をなす。シールド側部40は、軸方向にシールド前端36からシールド主開口34と反対側へと延在し、周方向に第2冷却ステージ24を包囲するよう延在する。放射シールド30は、シールド底部38が閉塞された筒形(例えば円筒)の形状を有し、カップ状に形成されている。シールド側部40と第2段クライオパネルアセンブリ20との間には、環状隙間42が形成されている。 The radiation shield 30 includes a shield front end 36 that defines the shield main opening 34, a shield bottom 38 that is located on the opposite side of the shield main opening 34, and a shield side 40 that connects the shield front end 36 to the shield bottom 38. The shield front end 36 forms a part of the shield side portion 40. The shield side portion 40 extends in the axial direction from the shield front end 36 to the side opposite to the shield main opening 34, and extends in the circumferential direction so as to surround the second cooling stage 24. The radiation shield 30 has a cylindrical shape (for example, a cylinder) in which the shield bottom 38 is closed, and is formed in a cup shape. An annular gap 42 is formed between the shield side portion 40 and the second stage cryopanel assembly 20.
 なお、シールド底部38は、シールド側部40とは別個の部材であってもよい。例えば、シールド底部38は、シールド側部40とほぼ同じ径をもつ平坦な円盤であってもよく、シールド主開口34と反対側でシールド側部40に取り付けられていてもよい。また、シールド底部38は、その少なくとも一部が開放されていてもよい。例えば、放射シールド30は、シールド底部38によって閉塞されていなくてもよい。すなわち、シールド側部40は、両端が開放されていてもよい。 The shield bottom portion 38 may be a separate member from the shield side portion 40. For example, the shield bottom portion 38 may be a flat disk having substantially the same diameter as the shield side portion 40, and may be attached to the shield side portion 40 on the side opposite to the shield main opening 34. Further, at least a part of the shield bottom 38 may be opened. For example, the radiation shield 30 may not be blocked by the shield bottom 38. That is, both ends of the shield side part 40 may be open.
 シールド側部40は、冷凍機構造部21が挿入されるシールド側部開口44を有する。シールド側部開口44を通じて放射シールド30の外から第2冷却ステージ24及び第2シリンダ25が放射シールド30の中に挿入される。シールド側部開口44は、シールド側部40に形成された取付穴であり、例えば円形である。第1冷却ステージ22は放射シールド30の外に配置されている。 The shield side part 40 has a shield side part opening 44 into which the refrigerator structure part 21 is inserted. The second cooling stage 24 and the second cylinder 25 are inserted into the radiation shield 30 from outside the radiation shield 30 through the shield side opening 44. The shield side part opening 44 is an attachment hole formed in the shield side part 40, and is circular, for example. The first cooling stage 22 is disposed outside the radiation shield 30.
 シールド側部40は、冷凍機16の取付座46を備える。取付座46は、第1冷却ステージ22を放射シールド30に取り付けるための平坦部分であり、放射シールド30の外から見てわずかに窪んでいる。取付座46は、シールド側部開口44の外周を形成する。取付座46は、軸方向においてはシールド前端36よりもシールド底部38に近い。第1冷却ステージ22が取付座46に取り付けられることによって、放射シールド30が第1冷却ステージ22に熱的に結合されている。 The shield side portion 40 includes a mounting seat 46 for the refrigerator 16. The mounting seat 46 is a flat portion for mounting the first cooling stage 22 to the radiation shield 30 and is slightly recessed when viewed from the outside of the radiation shield 30. The mounting seat 46 forms the outer periphery of the shield side opening 44. The mounting seat 46 is closer to the shield bottom 38 than the shield front end 36 in the axial direction. The radiation shield 30 is thermally coupled to the first cooling stage 22 by attaching the first cooling stage 22 to the mounting seat 46.
 入口クライオパネル32は、クライオポンプ10の外部の熱源からの輻射熱から第2段クライオパネルアセンブリ20を保護するためにシールド主開口34に設けられている。クライオポンプ10の外部の熱源は、例えば、クライオポンプ10が取り付けられる真空チャンバ内の熱源である。入口クライオパネル32は、輻射熱だけではなく気体分子の進入も制限することができる。入口クライオパネル32は、シールド主開口34を通じた内部空間14への気体流入を所望量に制限するようにシールド主開口34の開口面積の一部を占有する。入口クライオパネル32とシールド前端36との間には、環状の開放領域48が形成されている。 The inlet cryopanel 32 is provided in the shield main opening 34 in order to protect the second-stage cryopanel assembly 20 from radiant heat from a heat source outside the cryopump 10. The heat source outside the cryopump 10 is, for example, a heat source in a vacuum chamber to which the cryopump 10 is attached. The inlet cryopanel 32 can limit not only radiant heat but also the ingress of gas molecules. The inlet cryopanel 32 occupies a part of the opening area of the shield main opening 34 so as to limit the gas flow into the internal space 14 through the shield main opening 34 to a desired amount. An annular open region 48 is formed between the inlet cryopanel 32 and the shield front end 36.
 入口クライオパネル32は、適宜の取付部材によってシールド前端36に取り付けられ、放射シールド30に熱的に結合されている。入口クライオパネル32は、放射シールド30を介して第1冷却ステージ22に熱的に結合されている。入口クライオパネル32は、例えば、複数の環状または直線状の羽板を有する。あるいは、入口クライオパネル32は、一枚の板状部材であってもよい。 The inlet cryopanel 32 is attached to the shield front end 36 by an appropriate attachment member and is thermally coupled to the radiation shield 30. The inlet cryopanel 32 is thermally coupled to the first cooling stage 22 via the radiation shield 30. The entrance cryopanel 32 has, for example, a plurality of annular or linear slats. Alternatively, the inlet cryopanel 32 may be a single plate-like member.
 第2段クライオパネルアセンブリ20は、第2冷却ステージ24を囲むようにして第2冷却ステージ24に取り付けられている。よって、第2段クライオパネルアセンブリ20は、第2冷却ステージ24に熱的に結合されており、第2段クライオパネルアセンブリ20は第2冷却温度に冷却される。第2段クライオパネルアセンブリ20は、第2冷却ステージ24とともにシールド側部40に包囲されている。 The second stage cryopanel assembly 20 is attached to the second cooling stage 24 so as to surround the second cooling stage 24. Therefore, the second stage cryopanel assembly 20 is thermally coupled to the second cooling stage 24, and the second stage cryopanel assembly 20 is cooled to the second cooling temperature. The second stage cryopanel assembly 20 is surrounded by the shield side portion 40 together with the second cooling stage 24.
 第2段クライオパネルアセンブリ20は、シールド主開口34に対面するトップクライオパネル60と、複数(本例では2つ)のクライオパネル部材62と、クライオパネル取付部材64と、を備える。 The second-stage cryopanel assembly 20 includes a top cryopanel 60 facing the shield main opening 34, a plurality (two in this example) of cryopanel members 62, and a cryopanel mounting member 64.
 また、図1に示されるように、クライオポンプ10は、クライオパネル位置決め部材67を備える。第2段クライオパネルアセンブリ20を第2冷却ステージ24に熱的に結合する伝熱部は、クライオパネル取付部材64とクライオパネル位置決め部材67を含む。トップクライオパネル60およびクライオパネル部材62は、クライオパネル取付部材64とクライオパネル位置決め部材67を介して第2冷却ステージ24に取り付けられている。 Further, as shown in FIG. 1, the cryopump 10 includes a cryopanel positioning member 67. The heat transfer section that thermally couples the second stage cryopanel assembly 20 to the second cooling stage 24 includes a cryopanel mounting member 64 and a cryopanel positioning member 67. The top cryopanel 60 and the cryopanel member 62 are attached to the second cooling stage 24 via a cryopanel attachment member 64 and a cryopanel positioning member 67.
 トップクライオパネル60及びクライオパネル部材62とシールド側部40との間には環状隙間42が形成されているので、トップクライオパネル60及びクライオパネル部材62は両方とも放射シールド30に接触していない。クライオパネル部材62は、トップクライオパネル60によって覆われている。 Since the annular gap 42 is formed between the top cryopanel 60 and the cryopanel member 62 and the shield side portion 40, both the top cryopanel 60 and the cryopanel member 62 are not in contact with the radiation shield 30. The cryopanel member 62 is covered with a top cryopanel 60.
 トップクライオパネル60は、第2段クライオパネルアセンブリ20のうち入口クライオパネル32に最も近接する部分である。トップクライオパネル60は、軸方向においてシールド主開口34または入口クライオパネル32と冷凍機16との間に配置されている。トップクライオパネル60は、軸方向においてクライオポンプ10の内部空間14の中心部に位置する。そのため、トップクライオパネル60の前面と入口クライオパネル32との間に凝縮層の主収容空間65が広く形成されている。凝縮層の主収容空間65は、内部空間14の上半分を占めている。 The top cryopanel 60 is the portion of the second stage cryopanel assembly 20 that is closest to the inlet cryopanel 32. The top cryopanel 60 is disposed between the shield main opening 34 or the inlet cryopanel 32 and the refrigerator 16 in the axial direction. The top cryopanel 60 is located at the center of the internal space 14 of the cryopump 10 in the axial direction. Therefore, a main storage space 65 for the condensed layer is widely formed between the front surface of the top cryopanel 60 and the inlet cryopanel 32. The main storage space 65 of the condensed layer occupies the upper half of the internal space 14.
 トップクライオパネル60は、軸方向に垂直に配置された概ね平板のクライオパネルである。つまりトップクライオパネル60は、径方向及び周方向に延在する。図2に示されるように、トップクライオパネル60は、入口クライオパネル32より大きい寸法(例えば投影面積)を有する円板状パネルである。ただし、トップクライオパネル60と入口クライオパネル32の寸法の関係はこれに限定されず、トップクライオパネル60のほうが小さくてもよいし、両者がほぼ同じ寸法を有してもよい。 The top cryopanel 60 is a substantially flat cryopanel arranged perpendicular to the axial direction. That is, the top cryopanel 60 extends in the radial direction and the circumferential direction. As shown in FIG. 2, the top cryopanel 60 is a disk-like panel having a size (for example, a projected area) larger than the entrance cryopanel 32. However, the relationship between the dimensions of the top cryopanel 60 and the entrance cryopanel 32 is not limited to this, and the top cryopanel 60 may be smaller, or both may have substantially the same dimensions.
 トップクライオパネル60は、冷凍機構造部21との間に隙間領域66を形成するよう配置されている。隙間領域66は、トップクライオパネル60の裏面と第2シリンダ25との間で軸方向に形成された空所である。 The top cryopanel 60 is disposed so as to form a gap region 66 between the top cryopanel 60 and the refrigerator structure portion 21. The gap region 66 is a space formed in the axial direction between the back surface of the top cryopanel 60 and the second cylinder 25.
 クライオパネル部材62には活性炭等の吸着材74が設けられている。吸着材74は例えばクライオパネル部材62の裏面に接着されている。クライオパネル部材62の前面は凝縮面、裏面は吸着面として機能することが意図されている。クライオパネル部材62の前面に吸着材74が設けられていてもよい。同様に、トップクライオパネル60は、その前面及び/または裏面に吸着材74を有してもよい。あるいは、トップクライオパネル60は、吸着材74を備えなくてもよい。 The cryopanel member 62 is provided with an adsorbent 74 such as activated carbon. For example, the adsorbent 74 is bonded to the back surface of the cryopanel member 62. The front surface of the cryopanel member 62 is intended to function as a condensing surface and the back surface as an adsorption surface. An adsorbent 74 may be provided on the front surface of the cryopanel member 62. Similarly, the top cryopanel 60 may have an adsorbent 74 on the front surface and / or back surface thereof. Alternatively, the top cryopanel 60 may not include the adsorbent 74.
 2つのクライオパネル部材62は、クライオポンプ中心軸Cを挟んで第2冷却ステージ24の両側に配置されている。クライオパネル部材62は、クライオポンプ中心軸Cに垂直な平面に沿って配置されている。理解の容易のために、図2においてクライオパネル部材62及びクライオパネル取付部材64を破線で示す。 The two cryopanel members 62 are disposed on both sides of the second cooling stage 24 with the cryopump central axis C interposed therebetween. The cryopanel member 62 is disposed along a plane perpendicular to the center axis C of the cryopump. For ease of understanding, the cryopanel member 62 and the cryopanel mounting member 64 are shown by broken lines in FIG.
 2つのクライオパネル部材62は、クライオポンプ中心軸Cの方向における第2冷却ステージ24の上端と下端との間の高さ位置に配置されている。2つのクライオパネル部材62は、同じ高さに配置されている。第2冷却ステージ24は、クライオポンプ中心軸Cに垂直な方向(冷凍機16の中心軸Dの方向)における末端にフランジ部24aを備える。クライオポンプ中心軸Cの方向における第2冷却ステージ24の上端及び下端はフランジ部24aによって定められる。すなわち、2つのクライオパネル部材62は、クライオポンプ中心軸Cの方向における第2冷却ステージ24のフランジ部24aの上端と下端との間の高さ位置に配置されている。 The two cryopanel members 62 are arranged at a height position between the upper end and the lower end of the second cooling stage 24 in the direction of the cryopump central axis C. The two cryopanel members 62 are arranged at the same height. The second cooling stage 24 includes a flange portion 24a at the end in a direction perpendicular to the cryopump central axis C (the direction of the central axis D of the refrigerator 16). An upper end and a lower end of the second cooling stage 24 in the direction of the cryopump central axis C are defined by a flange portion 24a. That is, the two cryopanel members 62 are arranged at a height position between the upper end and the lower end of the flange portion 24a of the second cooling stage 24 in the direction of the cryopump central axis C.
 2つのクライオパネル部材62は、同一の部品として設計されている。2つのクライオパネル部材62は、同一の形状を有し、同一の材料で形成されている。クライオパネル部材62は、弓形状、半月状、または半円状の形状を有する。クライオパネル部材62は、例えば銅などの高熱伝導率の金属材料で形成され、例えばニッケルなどのめっき層で被覆されていてもよい。 The two cryopanel members 62 are designed as the same part. The two cryopanel members 62 have the same shape and are formed of the same material. The cryopanel member 62 has a bow shape, a semimoon shape, or a semicircular shape. The cryopanel member 62 is formed of a metal material having a high thermal conductivity such as copper, and may be covered with a plating layer such as nickel.
 図2に示されるように、クライオパネル部材62は、円弧部78及び弦79を有する。クライオポンプ中心軸Cの方向に見たとき、2つのクライオパネル部材62は、両者の中間線(冷凍機16の中心軸D)を対称軸として互いに対称に配置されている。2つのクライオパネル部材62の円弧部78は、クライオポンプ中心軸Cを中心とする同一の円周上にある。また、各クライオパネル部材62は、弦79の中点(またはクライオポンプ中心軸C)を通り弦79に垂直な線Eを対称軸として線対称の形状を有する。 As shown in FIG. 2, the cryopanel member 62 includes an arc portion 78 and a string 79. When viewed in the direction of the cryopump central axis C, the two cryopanel members 62 are arranged symmetrically with respect to an intermediate line between them (the central axis D of the refrigerator 16). The arc portions 78 of the two cryopanel members 62 are on the same circumference around the cryopump central axis C. Each cryopanel member 62 has a line-symmetric shape with a line E passing through the midpoint of the string 79 (or the cryopump central axis C) and perpendicular to the string 79 as an axis of symmetry.
 図1に示されるように、クライオパネル位置決め部材67は、第2冷却ステージ24のフランジ部24aに固定され、第2冷却ステージ24に支持されている。クライオパネル位置決め部材67は、上下反転した逆L字状に形成されている。クライオパネル位置決め部材67を用いることにより、中心軸Dの方向における冷凍機16の長さについての制約が緩和される。第2冷却ステージ24のフランジ部24aがクライオポンプ中心軸Cから冷凍機16の中心軸Dの方向に外れた位置にあったとしても、クライオパネル位置決め部材67の上辺部67aの長さを調整することによって、第2段クライオパネルアセンブリ20をクライオポンプ中心軸C上に位置決めすることができる。その結果、クライオポンプ10に専用に設計された冷凍機に代えて、既存の冷凍機を採用しうる。これは、クライオポンプ10の製造コストの低減に役立ちうる。 As shown in FIG. 1, the cryopanel positioning member 67 is fixed to the flange portion 24 a of the second cooling stage 24 and supported by the second cooling stage 24. The cryopanel positioning member 67 is formed in an inverted L shape that is inverted upside down. By using the cryopanel positioning member 67, restrictions on the length of the refrigerator 16 in the direction of the central axis D are relaxed. Even if the flange portion 24a of the second cooling stage 24 is at a position deviated from the cryopump center axis C in the direction of the center axis D of the refrigerator 16, the length of the upper side portion 67a of the cryopanel positioning member 67 is adjusted. Thus, the second stage cryopanel assembly 20 can be positioned on the cryopump central axis C. As a result, an existing refrigerator can be employed in place of the refrigerator designed exclusively for the cryopump 10. This can be useful for reducing the manufacturing cost of the cryopump 10.
 なお、クライオポンプ中心軸Cに対する第2段クライオパネルアセンブリ20の位置合わせのために、クライオパネル位置決め部材67の上辺部67aは、図1に示されるのとは逆に、第2冷却ステージ24のフランジ部24aから冷凍機16の中心軸Dの方向に第2シリンダ25から離れるように延びていてもよい。大口径の吸気口12をもつクライオポンプ10については、そのような形状をもつクライオパネル位置決め部材67が好適でありうる。 In order to align the second stage cryopanel assembly 20 with respect to the center axis C of the cryopump, the upper side portion 67a of the cryopanel positioning member 67 is opposite to that shown in FIG. You may extend so that it may leave | separate from the 2nd cylinder 25 in the direction of the central axis D of the refrigerator 16 from the flange part 24a. For the cryopump 10 having the large-diameter inlet 12, the cryopanel positioning member 67 having such a shape may be suitable.
 クライオポンプ10は、シールド主開口34から流入する気体の流れを冷凍機構造部21から偏向させるよう構成されている気体流れ調整部材50を備える。気体流れ調整部材50は、入口クライオパネル32または開放領域48を通じて主収容空間65に流入する気体流れを第2シリンダ25から偏向させるよう構成されている。気体流れ調整部材50は、冷凍機構造部21または第2シリンダ25の上方でそれに隣接して配置された気体流れ偏向部材または気体流れ反射部材であってもよい。気体流れ調整部材50は、周方向においてシールド側部開口44と同じ位置に局所的に設けられている。気体流れ調整部材50は、上から見て矩形状である。気体流れ調整部材50は、例えば一枚の平坦プレートであるが、湾曲していてもよい。 The cryopump 10 includes a gas flow adjusting member 50 configured to deflect the flow of gas flowing in from the shield main opening 34 from the refrigerator structure unit 21. The gas flow adjusting member 50 is configured to deflect the gas flow flowing into the main accommodating space 65 through the inlet cryopanel 32 or the open region 48 from the second cylinder 25. The gas flow adjusting member 50 may be a gas flow deflecting member or a gas flow reflecting member disposed adjacent to and above the refrigerator structure 21 or the second cylinder 25. The gas flow adjusting member 50 is locally provided at the same position as the shield side opening 44 in the circumferential direction. The gas flow adjusting member 50 has a rectangular shape when viewed from above. The gas flow adjusting member 50 is, for example, a single flat plate, but may be curved.
 気体流れ調整部材50は、シールド側部40から延出し、隙間領域66に挿入されている。ただし、気体流れ調整部材50は、トップクライオパネル60、第2シリンダ25、およびそのほか隙間領域66を囲む第2冷却温度の部位には接触していない。気体流れ調整部材50は、放射シールド30を介して第1冷却ステージ22に熱的に結合されている。したがって、気体流れ調整部材50は、第1冷却温度に冷却される。 The gas flow adjusting member 50 extends from the shield side 40 and is inserted into the gap region 66. However, the gas flow adjusting member 50 is not in contact with the portion of the second cooling temperature surrounding the top cryopanel 60, the second cylinder 25, and the gap region 66. The gas flow adjusting member 50 is thermally coupled to the first cooling stage 22 via the radiation shield 30. Therefore, the gas flow adjusting member 50 is cooled to the first cooling temperature.
 クライオポンプハウジング70は、第1段クライオパネル18、第2段クライオパネルアセンブリ20、及び冷凍機16を収容するクライオポンプ10の筐体であり、内部空間14の真空気密を保持するよう構成されている真空容器である。クライオポンプハウジング70は、第1段クライオパネル18及び冷凍機構造部21を非接触に包含する。クライオポンプハウジング70は、冷凍機16の室温部26に取り付けられている。 The cryopump housing 70 is a housing of the cryopump 10 that houses the first-stage cryopanel 18, the second-stage cryopanel assembly 20, and the refrigerator 16, and is configured to maintain the vacuum airtightness of the internal space 14. Vacuum container. The cryopump housing 70 includes the first stage cryopanel 18 and the refrigerator structure 21 in a non-contact manner. The cryopump housing 70 is attached to the room temperature portion 26 of the refrigerator 16.
 クライオポンプハウジング70の前端によって、吸気口12が画定されている。クライオポンプハウジング70は、その前端から径方向外側に向けて延びている吸気口フランジ72を備える。吸気口フランジ72は、クライオポンプハウジング70の全周にわたって設けられている。クライオポンプ10は、吸気口フランジ72を用いて真空排気対象の真空チャンバに取り付けられる。 The inlet 12 is defined by the front end of the cryopump housing 70. The cryopump housing 70 includes an inlet flange 72 that extends radially outward from its front end. The inlet flange 72 is provided over the entire circumference of the cryopump housing 70. The cryopump 10 is attached to a vacuum chamber to be evacuated using an intake port flange 72.
 クライオポンプハウジング70は、放射シールド30と非接触に放射シールド30を囲むクライオパネル収容部76と、冷凍機16の第1シリンダ23を囲む冷凍機収容部77とを備える。クライオパネル収容部76と冷凍機収容部77は一体的に形成されている。 The cryopump housing 70 includes a cryopanel housing portion 76 that surrounds the radiation shield 30 in a non-contact manner with the radiation shield 30, and a refrigerator housing portion 77 that surrounds the first cylinder 23 of the refrigerator 16. The cryopanel housing portion 76 and the refrigerator housing portion 77 are integrally formed.
 クライオパネル収容部76は、一端に吸気口フランジ72が形成され、他端がハウジング底面70aとして閉塞された円筒状またはドーム状の形状を有する。吸気口フランジ72をハウジング底面70aに接続するクライオパネル収容部76の側壁には、吸気口12とは別に、冷凍機16を挿通する開口が形成されている。冷凍機収容部77はこの開口から冷凍機16の室温部26へと延びる円筒状の形状を有する。冷凍機収容部77は、クライオパネル収容部76を冷凍機16の室温部26に接続する。 The cryopanel housing portion 76 has a cylindrical or dome shape in which an inlet flange 72 is formed at one end and the other end is closed as a housing bottom surface 70a. In addition to the air inlet 12, an opening through which the refrigerator 16 is inserted is formed on the side wall of the cryopanel housing portion 76 that connects the air inlet flange 72 to the housing bottom surface 70 a. The refrigerator accommodating portion 77 has a cylindrical shape extending from the opening to the room temperature portion 26 of the refrigerator 16. The refrigerator housing unit 77 connects the cryopanel housing unit 76 to the room temperature unit 26 of the refrigerator 16.
 クライオポンプ10は、クライオポンプハウジング70の外側に装着された吸水層80と、クライオポンプハウジング70と吸水層80の間に配置された断熱層82と、を備える。クライオポンプ10の結露抑制構造が吸水層80と断熱層82により形成されている。結露抑制構造は、吸水層80を外側に有し、断熱層82を内側に有する吸水断熱シート84を備える。吸水断熱シート84は、断熱層82の外側に吸水層80を貼り合わせたシートとして構成されている。 The cryopump 10 includes a water absorption layer 80 mounted on the outside of the cryopump housing 70, and a heat insulating layer 82 disposed between the cryopump housing 70 and the water absorption layer 80. A dew condensation suppressing structure of the cryopump 10 is formed by the water absorption layer 80 and the heat insulating layer 82. The dew condensation suppressing structure includes a water absorbing and heat insulating sheet 84 having a water absorbing layer 80 on the outside and a heat insulating layer 82 on the inside. The water absorbing heat insulating sheet 84 is configured as a sheet in which the water absorbing layer 80 is bonded to the outside of the heat insulating layer 82.
 吸水断熱シート84は、クライオポンプハウジング70の外面の少なくとも一部、例えば全面を覆う。吸水断熱シート84は、クライオパネル収容部76と冷凍機収容部77の両方に装着され、それらのほぼ全面を覆っている。吸水断熱シート84は、クライオパネル収容部76の側面に巻き付けられ、当該側面を覆っている。また吸水断熱シート84は、ハウジング底面76aにも取り付けられている。吸水断熱シート84は、冷凍機収容部77にも巻き付けられている。吸水断熱シート84は、適宜の接着方法を用いてクライオポンプハウジング70に装着されている。 The water-absorbing heat insulating sheet 84 covers at least a part of the outer surface of the cryopump housing 70, for example, the entire surface. The water-absorbing heat insulating sheet 84 is attached to both the cryopanel housing portion 76 and the refrigerator housing portion 77 and covers almost the entire surface thereof. The water-absorbing heat insulating sheet 84 is wound around the side surface of the cryopanel housing portion 76 and covers the side surface. Moreover, the water absorption heat insulation sheet 84 is also attached to the housing bottom face 76a. The water absorption heat insulating sheet 84 is also wound around the refrigerator housing portion 77. The water-absorbing heat insulating sheet 84 is attached to the cryopump housing 70 using an appropriate bonding method.
 ただし、吸気口フランジ72は、吸水断熱シート84に覆われていない。たいていの場合、吸気口フランジ72は露出されていても結露が生じないので、吸水層80及び/または断熱層82を吸気口フランジ72に装着する必要が無い。なお、必要とされる場合には、吸水層80及び/または断熱層82が吸気口フランジ72に装着されてもよい。 However, the intake port flange 72 is not covered with the water absorption heat insulating sheet 84. In most cases, condensation does not occur even if the inlet flange 72 is exposed, so that it is not necessary to attach the water absorbing layer 80 and / or the heat insulating layer 82 to the inlet flange 72. If necessary, the water absorption layer 80 and / or the heat insulation layer 82 may be attached to the intake port flange 72.
 吸水層80は、クライオポンプハウジング70の外面を形成する構造材料(例えば、SUS304などのステンレス鋼)に比べて、及び/または、断熱層82を形成する断熱材料に比べて、吸水性に優れる材料で形成されている。吸水層80は、例えば、吸水性樹脂、吸水性多孔質材料などの化学的及び/または物理的に水分を吸着する吸水材料、またはこうした吸水材料を含有する材料で形成されている。吸水層80は、吸水性樹脂、吸水ポリマー、吸水シートなどの一般名称で市販されている商品を適宜採用できる。あるいは、吸水層80は、フェルト、スポンジなどの少なくとも一時的に水分を保持する材料で形成されていてもよい。 The water absorbing layer 80 is a material that is superior in water absorption compared to a structural material (for example, stainless steel such as SUS304) that forms the outer surface of the cryopump housing 70 and / or a heat insulating material that forms the heat insulating layer 82. It is formed with. The water-absorbing layer 80 is formed of, for example, a water-absorbing material that adsorbs moisture chemically and / or physically such as a water-absorbing resin or a water-absorbing porous material, or a material containing such a water-absorbing material. The water absorption layer 80 can employ | adopt suitably the goods marketed by common names, such as a water absorbing resin, a water absorbing polymer, and a water absorbing sheet. Or the water absorption layer 80 may be formed with the material which hold | maintains water | moisture content at least temporarily, such as felt and sponge.
 断熱層82は、クライオポンプハウジング70の外面を形成する構造材料に比べて熱伝導率の小さい材料で形成されている。断熱層82は、例えば、発泡系断熱材及び/または繊維系断熱材など種々の公知の断熱材料で形成されていてもよい。 The heat insulating layer 82 is made of a material having a lower thermal conductivity than the structural material forming the outer surface of the cryopump housing 70. The heat insulating layer 82 may be formed of various known heat insulating materials such as a foam heat insulating material and / or a fiber heat insulating material.
 断熱層82の厚さ86は、吸水層80の温度がクライオポンプ10の再生中に0℃より高い温度に維持されるように定められている。断熱層82の厚さ86は、吸水層80の温度が5℃より高く、または10℃より高い温度に維持されるように定められてもよい。言い換えれば、断熱層82の厚さ86は、クライオポンプ10の再生中に断熱層82の外表面の温度が水の凝固点を下回らないように定められている。 The thickness 86 of the heat insulating layer 82 is determined so that the temperature of the water absorbing layer 80 is maintained at a temperature higher than 0 ° C. during the regeneration of the cryopump 10. The thickness 86 of the heat insulating layer 82 may be determined such that the temperature of the water absorbing layer 80 is maintained at a temperature higher than 5 ° C or higher than 10 ° C. In other words, the thickness 86 of the heat insulating layer 82 is determined so that the temperature of the outer surface of the heat insulating layer 82 does not fall below the freezing point of water during the regeneration of the cryopump 10.
 上記の構成のクライオポンプ10の動作を以下に説明する。クライオポンプ10の作動に際しては、まずその作動前に他の適当な粗引きポンプで真空チャンバ内部を1Pa程度にまで粗引きする。その後、クライオポンプ10を作動させる。冷凍機16の駆動により第1冷却ステージ22及び第2冷却ステージ24がそれぞれ第1冷却温度及び第2冷却温度に冷却される。よって、これらに熱的に結合されている第1段クライオパネル18、第2段クライオパネルアセンブリ20もそれぞれ第1冷却温度及び第2冷却温度に冷却される。 The operation of the cryopump 10 configured as described above will be described below. When the cryopump 10 is operated, the vacuum chamber is first roughed to about 1 Pa with another appropriate roughing pump before the operation. Thereafter, the cryopump 10 is operated. The first cooling stage 22 and the second cooling stage 24 are cooled to the first cooling temperature and the second cooling temperature, respectively, by driving the refrigerator 16. Therefore, the first-stage cryopanel 18 and the second-stage cryopanel assembly 20 that are thermally coupled to these are also cooled to the first cooling temperature and the second cooling temperature, respectively.
 入口クライオパネル32は、真空チャンバからクライオポンプ10に向かって飛来する気体を冷却する。入口クライオパネル32の表面には、第1冷却温度で蒸気圧が充分に低い(例えば10-8Pa以下の)気体が凝縮する。この気体は、第1種気体(タイプ1ガスとも言われる)と称されてもよい。第1種気体は例えば水蒸気である。こうして、入口クライオパネル32は、第1種気体を排気することができる。第1冷却温度で蒸気圧が充分に低くない気体の一部は、入口クライオパネル32または開放領域48を通過して、主収容空間65へと進入する。あるいは、気体の他の一部は、入口クライオパネル32で反射され、主収容空間65に進入しない。 The inlet cryopanel 32 cools the gas flying from the vacuum chamber toward the cryopump 10. A gas having a sufficiently low vapor pressure (for example, 10 −8 Pa or less) condenses on the surface of the inlet cryopanel 32 at the first cooling temperature. This gas may be referred to as a first type gas (also referred to as type 1 gas). The first type gas is, for example, water vapor. Thus, the inlet cryopanel 32 can exhaust the first type gas. A part of the gas whose vapor pressure is not sufficiently low at the first cooling temperature passes through the inlet cryopanel 32 or the open region 48 and enters the main accommodating space 65. Alternatively, the other part of the gas is reflected by the inlet cryopanel 32 and does not enter the main accommodating space 65.
 主収容空間65に進入した気体は、第2段クライオパネルアセンブリ20によって冷却される。第2段クライオパネルアセンブリ20の表面には、第2冷却温度で蒸気圧が充分に低い(例えば10-8Pa以下の)気体が凝縮する。この気体は、第2種気体(タイプ2ガスとも言われる)と称されてもよい。第2種気体は例えば窒素、アルゴンである。こうして、第2段クライオパネルアセンブリ20は、第2種気体を排気することができる。主収容空間65に直接面しているので、トップクライオパネル60の前面には、第2種気体の凝縮層が大きく成長しうる。なお第2種気体は、第1冷却温度では凝縮せず気体である。 The gas that has entered the main housing space 65 is cooled by the second-stage cryopanel assembly 20. A gas having a sufficiently low vapor pressure (for example, 10 −8 Pa or less) is condensed on the surface of the second stage cryopanel assembly 20 at the second cooling temperature. This gas may be referred to as a second type gas (also referred to as type 2 gas). The second type gas is, for example, nitrogen or argon. Thus, the second stage cryopanel assembly 20 can exhaust the second type gas. Since it faces the main housing space 65 directly, a condensed layer of the second type gas can grow greatly on the front surface of the top cryopanel 60. The second type gas is a gas that does not condense at the first cooling temperature.
 第2冷却温度で蒸気圧が充分に低くない気体は、第2段クライオパネルアセンブリ20の吸着材74に吸着される。この気体は、第3種気体(タイプ3ガスとも言われる)と称されてもよい。第3種気体は例えば水素である。こうして、第2段クライオパネルアセンブリ20は、第3種気体を排気することができる。したがって、クライオポンプ10は、種々の気体を凝縮または吸着により排気し、真空チャンバの真空度を所望のレベルに到達させることができる。 The gas whose vapor pressure is not sufficiently low at the second cooling temperature is adsorbed by the adsorbent 74 of the second stage cryopanel assembly 20. This gas may be referred to as a third type gas (also referred to as type 3 gas). The third type gas is, for example, hydrogen. Thus, the second stage cryopanel assembly 20 can exhaust the third type gas. Therefore, the cryopump 10 can exhaust various gases by condensation or adsorption, and can reach the desired vacuum level of the vacuum chamber.
 排気運転が継続されることによりクライオポンプ10には気体が蓄積されていく。蓄積した気体を外部に排出するために、クライオポンプ10の再生が行われる。再生が完了すれば、再び排気運転を始めることができる。 The gas is accumulated in the cryopump 10 by continuing the exhaust operation. In order to discharge the accumulated gas to the outside, the cryopump 10 is regenerated. When the regeneration is completed, the exhaust operation can be started again.
 クライオポンプ10の昇温を促進し再生時間を短縮するために一般に、再生開始とともにクライオポンプハウジング70内にパージガスが導入される。パージガスや溜め込まれたガスの再気化によりクライオポンプハウジング70内にはガスが充満し、そのため、排気運転中とは異なり真空断熱効果が失われる。ガスを介してクライオパネルとクライオポンプハウジング70の熱交換が促進される。再生開始直後はクライオパネルがまだ極低温に冷えているから、クライオポンプハウジング70が冷やされうる。 In order to accelerate the temperature rise of the cryopump 10 and shorten the regeneration time, generally, purge gas is introduced into the cryopump housing 70 at the start of regeneration. The cryopump housing 70 is filled with the gas due to the re-vaporization of the purge gas or the stored gas, so that the vacuum heat insulating effect is lost unlike during the exhaust operation. Heat exchange between the cryopanel and the cryopump housing 70 is promoted through the gas. Immediately after the start of reproduction, the cryopump housing 70 can be cooled because the cryopanel is still cooled to an extremely low temperature.
 また、クライオポンプ10は主収容空間65が広いので、多量の第2種ガスを溜め込むことができる。再生の比較的初期段階で第2種ガスは液体へと溶ける。上述のように第2種ガスは窒素やアルゴンなどであるから、この液化ガスは非常に冷たい。液化ガスは、放射シールド30またはクライオポンプハウジング70の底部へと流下し、クライオポンプハウジング70の内面に接触しうる。そうすると、クライオポンプハウジング70は顕著に冷却される。そのため、クライオポンプハウジング70の外面には周囲の空気中の水分が結露し、または霜が付着しうる。再生の間、クライオポンプ10は室温に向けて徐々に昇温されるので、霜はいずれ溶ける。もし多量の霜が付着していたとすると、これが溶けて多量の水となり、滴下しうる。クライオポンプ10周囲の他の装置や物品、または床面を濡らすことになるかもしれない。 Further, since the cryopump 10 has a large main accommodating space 65, a large amount of the second type gas can be stored. The second type gas dissolves into a liquid at a relatively early stage of regeneration. As described above, since the second type gas is nitrogen or argon, this liquefied gas is very cold. The liquefied gas can flow down to the bottom of the radiation shield 30 or the cryopump housing 70 and contact the inner surface of the cryopump housing 70. As a result, the cryopump housing 70 is significantly cooled. Therefore, moisture in the surrounding air may be condensed on the outer surface of the cryopump housing 70 or frost may be attached. During regeneration, the cryopump 10 is gradually heated to room temperature, so that frost will eventually melt. If a large amount of frost is attached, it melts into a large amount of water and can be dripped. Other devices and articles around the cryopump 10 or the floor may be wetted.
 実施の形態に係るクライオポンプ10は、クライオポンプハウジング70の外側に装着された吸水層80を備える。クライオポンプハウジング70の外面に付着しようとする水分は、吸水層80に吸収される。したがって、クライオポンプ10への結露を抑制することができる。結露が抑制されるので、クライオポンプ10の周囲や床面への水の滴下も抑制される。 The cryopump 10 according to the embodiment includes a water absorption layer 80 attached to the outside of the cryopump housing 70. Moisture that tends to adhere to the outer surface of the cryopump housing 70 is absorbed by the water absorption layer 80. Therefore, condensation on the cryopump 10 can be suppressed. Since condensation is suppressed, dripping of water around the cryopump 10 and the floor surface is also suppressed.
 また、断熱層82がクライオポンプハウジング70と吸水層80の間に配置されている。クライオポンプハウジング70の温度低下に比べて、断熱層82の外面の温度低下は小さい。断熱層82が無く吸水層80がクライオポンプハウジング70に直接装着されている場合に比べて、外気温と吸水層80との温度差を小さくすることができる。よって、クライオポンプ10への結露を抑制することができる。 Further, the heat insulating layer 82 is disposed between the cryopump housing 70 and the water absorbing layer 80. Compared with the temperature drop of the cryopump housing 70, the temperature drop of the outer surface of the heat insulation layer 82 is small. The temperature difference between the outside air temperature and the water absorbing layer 80 can be reduced as compared with the case where the water absorbing layer 80 is directly attached to the cryopump housing 70 without the heat insulating layer 82. Therefore, condensation on the cryopump 10 can be suppressed.
 断熱層82の外面温度が室温を下回れば結露が生じうる。吸水層80を設けずに断熱層82のみによって結露を防止するには、断熱層82の厚さ86を十分に厚くしなければならない。この場合、必要な断熱層82の厚さ86が、現実にクライオポンプハウジング70に装着するには困難なほど大きくなるかもしれない。 If the outer surface temperature of the heat insulating layer 82 is below room temperature, condensation may occur. In order to prevent dew condensation only by the heat insulating layer 82 without providing the water absorbing layer 80, the thickness 86 of the heat insulating layer 82 must be sufficiently thick. In this case, the required thickness 86 of the heat insulating layer 82 may become so large that it is difficult to actually mount the cryopump housing 70.
 しかし、実施の形態に係るクライオポンプ10は吸水層80を有するので、断熱層82の外面に結露しうる水分を吸収することができる。断熱層82の外面は室温からある程度冷えてもよいことになり、断熱層82を薄くすることができる。吸水層80自体はそれほどの厚さを必要としないと予想される。よって、吸水層80と断熱層82を組み合わせることによって、全体として厚みの小さい結露抑制構造を実現でき、クライオポンプ10への実装がより容易となる。 However, since the cryopump 10 according to the embodiment includes the water absorption layer 80, it can absorb moisture that can be condensed on the outer surface of the heat insulation layer 82. The outer surface of the heat insulating layer 82 may be cooled to some extent from room temperature, and the heat insulating layer 82 can be made thin. It is expected that the water absorption layer 80 itself does not need that much thickness. Therefore, by combining the water absorption layer 80 and the heat insulating layer 82, a dew condensation suppressing structure having a small thickness as a whole can be realized, and mounting on the cryopump 10 becomes easier.
 ある典型的な従来のクライオポンプは、結露抑制のために、バンドヒータなどの電気ヒータがハウジングに巻き付けられている。実施の形態に係るクライオポンプ10はこうした電気ヒータを要しないという利点もある(よって、実施の形態に係るクライオポンプ10は、クライオポンプハウジング70を加熱する電気ヒータを有しない)。 In some typical conventional cryopumps, an electric heater such as a band heater is wound around a housing in order to suppress condensation. The cryopump 10 according to the embodiment also has an advantage of not requiring such an electric heater (therefore, the cryopump 10 according to the embodiment does not have an electric heater for heating the cryopump housing 70).
 また、実施の形態に係るクライオポンプ10は、ドレンパンとも呼ばれる水受けトレイも不要となる。 Also, the cryopump 10 according to the embodiment does not require a water receiving tray called a drain pan.
 クライオポンプ10は、吸水層80を外側に有し、断熱層82を内側に有する吸水断熱シート84を備える。吸水層80と断熱層82が個別の層である場合には、まずクライオポンプハウジング70に断熱層82を装着し、断熱層82に吸水層80を装着するというように二段階の作業が必要になる。吸水断熱シート84の場合、吸水層80と断熱層82を一緒にクライオポンプハウジング70に装着することができるので、製造が容易になる。 The cryopump 10 includes a water absorbing and heat insulating sheet 84 having a water absorbing layer 80 on the outside and a heat insulating layer 82 on the inside. When the water absorbing layer 80 and the heat insulating layer 82 are separate layers, a two-step operation is required such that the heat insulating layer 82 is first attached to the cryopump housing 70 and the water absorbing layer 80 is attached to the heat insulating layer 82. Become. In the case of the water-absorbing heat insulating sheet 84, the water-absorbing layer 80 and the heat-insulating layer 82 can be mounted together on the cryopump housing 70, so that the manufacture becomes easy.
 仮に吸水層80の外面温度が0℃を下回る場合、結露する水分が吸水層80の外面上に氷結しうる。吸水層80の上に氷層が吸水層80から分離して付着する。クライオポンプ10の昇温により氷層が溶けるとき、水が滴下するかもしれない。ところが、実施の形態によれば、断熱層82の厚さ86は、吸水層80の温度がクライオポンプ10の再生中に0℃より高い温度に維持されるように定められている。したがって、吸水層80上への氷層形成は抑制され、水の滴下も抑制される。 If the outer surface temperature of the water-absorbing layer 80 is lower than 0 ° C., moisture that is condensed can freeze on the outer surface of the water-absorbing layer 80. An ice layer separates from the water absorption layer 80 and adheres onto the water absorption layer 80. When the ice layer melts due to the temperature rise of the cryopump 10, water may be dripped. However, according to the embodiment, the thickness 86 of the heat insulating layer 82 is determined such that the temperature of the water absorbing layer 80 is maintained at a temperature higher than 0 ° C. during the regeneration of the cryopump 10. Therefore, formation of an ice layer on the water absorption layer 80 is suppressed, and dripping of water is also suppressed.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the embodiments. It will be understood by those skilled in the art that the present invention is not limited to the above-described embodiment, and various design changes are possible, various modifications are possible, and such modifications are within the scope of the present invention. By the way.
 上述の実施の形態では、吸水断熱シート84がクライオパネル収容部76と冷凍機収容部77の両方に装着されているが、これは必須ではない。吸水層80、断熱層82、及び/または吸水断熱シート84は、クライオパネル収容部76と冷凍機収容部77のうちいずれか一方にのみ装着されていてもよい。 In the above-described embodiment, the water-absorbing and heat-insulating sheet 84 is attached to both the cryopanel housing portion 76 and the refrigerator housing portion 77, but this is not essential. The water absorption layer 80, the heat insulation layer 82, and / or the water absorption heat insulation sheet 84 may be attached to only one of the cryopanel accommodation portion 76 and the refrigerator accommodation portion 77.
 吸水層80、断熱層82、及び/または吸水断熱シート84は、クライオポンプハウジング70の外面の一部のみを覆うようにクライオポンプハウジング70に装着されてもよい。例えば、吸水断熱シート84は、クライオパネル収容部76の下部にのみ装着されてもよい。このようにすれば、クライオパネル収容部76の上部から流下する結露を吸水断熱シート84で吸収し、結露の滴下を抑制することができる。また、冷凍機収容部77にはバルブやセンサなど筒状部から外側に突き出した構成要素が備わっていることがある。こうした構成要素は、吸水断熱シート84で覆われていなくてもよい。 The water absorption layer 80, the heat insulation layer 82, and / or the water absorption heat insulation sheet 84 may be attached to the cryopump housing 70 so as to cover only a part of the outer surface of the cryopump housing 70. For example, the water-absorbing heat insulating sheet 84 may be attached only to the lower part of the cryopanel housing portion 76. If it does in this way, the dew condensation which flows down from the upper part of the cryopanel accommodating part 76 is absorbed with the water absorption heat insulation sheet | seat 84, and dripping of a dew condensation can be suppressed. Further, the refrigerator accommodating portion 77 may be provided with components such as valves and sensors that protrude outward from the cylindrical portion. Such a component does not need to be covered with the water absorption heat insulation sheet 84.
 吸水層80は、クライオポンプハウジング70と断熱層82の間に配置されてもよい。すなわち、吸水層80は、断熱層82の内側に配置されてもよい。例えば、図3に示されるように、クライオポンプハウジング70は、角部または湾曲部を有しうる。良好な断熱性を提供するために、断熱層82の厚さ86は比較的大きい。そのため、断熱層82が角部または湾曲部に密着しにくく、完全に覆い難い場合も想定される。そうした場合には、図示されるように、クライオポンプハウジング70の角部または湾曲部が吸水層80で覆われるようにしてもよい。 The water absorbing layer 80 may be disposed between the cryopump housing 70 and the heat insulating layer 82. That is, the water absorption layer 80 may be disposed inside the heat insulation layer 82. For example, as shown in FIG. 3, the cryopump housing 70 may have corners or curved portions. In order to provide good thermal insulation, the thickness 86 of the thermal insulation layer 82 is relatively large. Therefore, it is assumed that the heat insulating layer 82 is hardly adhered to the corner portion or the curved portion and is difficult to cover completely. In such a case, the corners or curved portions of the cryopump housing 70 may be covered with a water absorption layer 80 as shown in the drawing.
 また、図4に示されるように、断熱層82がクライオポンプハウジング70の角部または湾曲部を完全に覆い難い場合に、吸水層80は、断熱層82を外側から覆っていてもよい。この場合、クライオポンプハウジング70の角部または湾曲部には、断熱層82が設けられていないので、角部または湾曲部と吸水層80との間には隙間87が形成されていてもよい。 In addition, as shown in FIG. 4, when the heat insulating layer 82 is difficult to completely cover the corner portion or the curved portion of the cryopump housing 70, the water absorbing layer 80 may cover the heat insulating layer 82 from the outside. In this case, since the heat insulating layer 82 is not provided at the corner or the curved portion of the cryopump housing 70, a gap 87 may be formed between the corner or the curved portion and the water absorption layer 80.
 図5に示されるように、クライオポンプ10は、ドレンパン88を備えてもよい。ドレンパン88は、クライオポンプハウジング70の下方に配置された水受けトレイとして設けられ、床面94への結露水の滴下を妨げるように、及び/または、滴下する結露水を受けて貯めるように構成されている。ドレンパン88は、クライオポンプハウジング70のクライオパネル収容部76に取り付けられている。ドレンパン88は、クライオパネル収容部76にキャスター90と共締めされていてもよい。断熱スペーサ92がドレンパン88とクライオパネル収容部76の間に挿入されていてもよい。なお、ドレンパン88は、吸気口フランジ72から懸架される等、他の方法でクライオポンプハウジング70に取り付けられていてもよい。 As shown in FIG. 5, the cryopump 10 may include a drain pan 88. The drain pan 88 is provided as a water receiving tray disposed below the cryopump housing 70, and is configured to prevent the condensed water from dripping onto the floor surface 94 and / or to receive and store the condensed water dropped. Has been. The drain pan 88 is attached to the cryopanel housing portion 76 of the cryopump housing 70. The drain pan 88 may be fastened together with the caster 90 in the cryopanel housing portion 76. A heat insulating spacer 92 may be inserted between the drain pan 88 and the cryopanel accommodating portion 76. The drain pan 88 may be attached to the cryopump housing 70 by other methods such as being suspended from the intake port flange 72.
 吸水層80、断熱層82、及び/または吸水断熱シート84は、冷凍機収容部77に装着されている。吸水層80、断熱層82、及び/または吸水断熱シート84は、クライオパネル収容部76に装着されてもよい。こうして、実施の形態に係る結露抑制構造にドレンパン88が併用されてもよい。 The water absorption layer 80, the heat insulation layer 82, and / or the water absorption heat insulation sheet 84 are attached to the refrigerator housing portion 77. The water absorption layer 80, the heat insulation layer 82, and / or the water absorption heat insulation sheet 84 may be attached to the cryopanel housing portion 76. Thus, the drain pan 88 may be used in combination with the dew condensation suppressing structure according to the embodiment.
 上記の説明においては横型のクライオポンプを例示したが、本発明は、縦型その他のクライオポンプにも適用可能である。なお、縦型のクライオポンプとは、冷凍機16がクライオポンプ10のクライオポンプ中心軸Cに沿って配設されているクライオポンプをいう。その場合、冷凍機収容部77は、クライオパネル収容部76の側面ではなく、ハウジング底面76aに設置されることになる。また、クライオパネルの配置や形状、数などクライオポンプの内部構成は、上述の特定の実施形態には限られない。種々の公知の構成を適宜採用することができる。 In the above description, a horizontal cryopump is illustrated, but the present invention can also be applied to other vertical cryopumps. The vertical cryopump refers to a cryopump in which the refrigerator 16 is disposed along the cryopump central axis C of the cryopump 10. In that case, the refrigerator housing portion 77 is installed not on the side surface of the cryopanel housing portion 76 but on the housing bottom surface 76a. Further, the internal configuration of the cryopump, such as the arrangement, shape, and number of cryopanels, is not limited to the specific embodiment described above. Various known configurations can be employed as appropriate.
 10 クライオポンプ、 70 クライオポンプハウジング、 80 吸水層、 82 断熱層、 84 吸水断熱シート。 10 cryopump, 70 cryopump housing, 80 water absorption layer, 82 heat insulation layer, 84 water absorption heat insulation sheet.
 本発明は、クライオポンプの分野における利用が可能である。 The present invention can be used in the field of cryopumps.

Claims (4)

  1.  クライオポンプハウジングと、
     前記クライオポンプハウジングの外側に装着された吸水層と、を備えることを特徴とするクライオポンプ。
    A cryopump housing;
    A cryopump comprising: a water absorption layer mounted on the outside of the cryopump housing.
  2.  前記クライオポンプハウジングと前記吸水層の間に配置された断熱層をさらに備えることを特徴とする請求項1に記載のクライオポンプ。 The cryopump according to claim 1, further comprising a heat insulating layer disposed between the cryopump housing and the water absorption layer.
  3.  前記吸水層を外側に有し、前記断熱層を内側に有する吸水断熱シートを備えることを特徴とする請求項2に記載のクライオポンプ。 The cryopump according to claim 2, further comprising a water-absorbing and heat-insulating sheet having the water-absorbing layer on the outside and the heat-insulating layer on the inside.
  4.  前記断熱層の厚さは、前記吸水層の温度が前記クライオポンプの再生中に0℃より高い温度に維持されるように定められていることを特徴とする請求項2または3に記載のクライオポンプ。 4. The cryo of claim 2, wherein the thickness of the heat insulating layer is determined such that the temperature of the water absorbing layer is maintained at a temperature higher than 0 ° C. during regeneration of the cryopump. pump.
PCT/JP2019/006063 2018-02-21 2019-02-19 Cryopump WO2019163760A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980011629.7A CN111712640A (en) 2018-02-21 2019-02-19 Low-temperature pump
KR1020207021960A KR20200123100A (en) 2018-02-21 2019-02-19 Cryopump
US16/998,582 US20200378378A1 (en) 2018-02-21 2020-08-20 Cryopump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-028677 2018-02-21
JP2018028677A JP2019143537A (en) 2018-02-21 2018-02-21 Cryopump

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/998,582 Continuation US20200378378A1 (en) 2018-02-21 2020-08-20 Cryopump

Publications (1)

Publication Number Publication Date
WO2019163760A1 true WO2019163760A1 (en) 2019-08-29

Family

ID=67686882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006063 WO2019163760A1 (en) 2018-02-21 2019-02-19 Cryopump

Country Status (6)

Country Link
US (1) US20200378378A1 (en)
JP (1) JP2019143537A (en)
KR (1) KR20200123100A (en)
CN (1) CN111712640A (en)
TW (1) TWI697621B (en)
WO (1) WO2019163760A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022092331A (en) * 2020-12-10 2022-06-22 アルバック・クライオ株式会社 Cryopump and heat insulation structure for cryopump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154505A (en) * 1992-11-18 1994-06-03 Ulvac Kuraio Kk Method for regenerating cryopump
JP2000161214A (en) * 1998-11-24 2000-06-13 Applied Materials Inc Cryopump
JP2003121044A (en) * 2001-10-16 2003-04-23 Kanebo Ltd Condensate absorbing tray and freezing car having the same
JP2017178349A (en) * 2016-03-29 2017-10-05 株式会社トッパンTdkレーベル Water absorption heat insulation sheet and container with sheet

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2620880C2 (en) * 1976-05-11 1984-07-12 Leybold-Heraeus GmbH, 5000 Köln Cryopump
GB2190460B (en) * 1985-09-24 1989-05-04 Helix Tech Corp Cryopump with vibration isolation
JPH0744930Y2 (en) * 1990-07-28 1995-10-11 積水化成品工業株式会社 Cold container and cold bag
JPH0622827U (en) * 1992-08-28 1994-03-25 ダイキン工業株式会社 Ceiling embedded air conditioner
JPH07119632A (en) * 1993-10-22 1995-05-09 Nec Kansai Ltd Cryopump
JPH07272627A (en) * 1994-03-31 1995-10-20 Toshiba Corp Exposure device for forming phosphor screen of color cathode-ray tube
JP3375098B2 (en) * 1994-09-02 2003-02-10 東レペフ加工品株式会社 Insulation material for preventing condensation
JPH09174730A (en) * 1995-12-28 1997-07-08 Nippon Beroo Kk Antidewing material and tube covering structure using the material
JP2001501693A (en) * 1996-03-26 2001-02-06 セース ピュア ガス インコーポレイティッド Cryopump / getter pump combination pump and its regeneration method
JPH1026427A (en) * 1996-07-12 1998-01-27 Hitachi Ltd Cooler
DE19632123A1 (en) * 1996-08-09 1998-02-12 Leybold Vakuum Gmbh Cryopump
TW406162B (en) * 1997-03-25 2000-09-21 Saes Pure Gas Inc Combination cryopump/getter pump and method for regenerating same, and method for manufacturing integrated circuits using same
JP2002070737A (en) * 2000-08-31 2002-03-08 Ulvac Kuraio Kk Regenerating method of cryopump
US20030150220A1 (en) * 2001-12-10 2003-08-14 Christopher Foster Continuous cryopump with a device to chip and remove ice from the cryopump chamber
JP4045325B2 (en) * 2005-07-12 2008-02-13 株式会社昭和真空 Apparatus and method for reducing power consumption of oil diffusion pump
JP4967594B2 (en) * 2006-10-20 2012-07-04 凸版印刷株式会社 Cryopump and vacuum apparatus using the same
TW200905076A (en) * 2007-07-25 2009-02-01 Sumitomo Heavy Industries Cryopump
US20090038319A1 (en) * 2007-08-08 2009-02-12 Sumitomo Heavy Industries, Ltd. Cryopanel and Cryopump Using the Cryopanel
CN106704145B (en) * 2016-11-30 2019-02-19 上海华力微电子有限公司 A kind of cryogenic pump system with regeneration function
CN107524579A (en) * 2017-09-26 2017-12-29 安徽万瑞冷电科技有限公司 A kind of cryogenic pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154505A (en) * 1992-11-18 1994-06-03 Ulvac Kuraio Kk Method for regenerating cryopump
JP2000161214A (en) * 1998-11-24 2000-06-13 Applied Materials Inc Cryopump
JP2003121044A (en) * 2001-10-16 2003-04-23 Kanebo Ltd Condensate absorbing tray and freezing car having the same
JP2017178349A (en) * 2016-03-29 2017-10-05 株式会社トッパンTdkレーベル Water absorption heat insulation sheet and container with sheet

Also Published As

Publication number Publication date
JP2019143537A (en) 2019-08-29
KR20200123100A (en) 2020-10-28
US20200378378A1 (en) 2020-12-03
TWI697621B (en) 2020-07-01
CN111712640A (en) 2020-09-25
TW201937061A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
TWI624594B (en) Cryopump
JP5184995B2 (en) Cryopump
KR101047398B1 (en) Cryopump and vacuum exhaust method
JP5527110B2 (en) Cryopump
JP6338403B2 (en) Cryopump and vacuum exhaust method
US6092373A (en) Cryopump
WO2019163760A1 (en) Cryopump
TWI688710B (en) Cryopump
TWI666383B (en) Cryopump
JP5123103B2 (en) Cryopump
JP7339950B2 (en) cryopump
JPH0214554B2 (en)
TWI614406B (en) Cryopump
KR102208109B1 (en) Cryopump
WO2019168014A1 (en) Cryopump
WO2018164011A1 (en) Cryopump
CN114623065A (en) Cryopump and heat insulating structure for cryopump
TW202332832A (en) cryopump
JP2009281363A (en) Cryopump
JPH0658257A (en) Vacuum cryopump
JP2014156832A (en) Cryopump and cryopump attaching structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757609

Country of ref document: EP

Kind code of ref document: A1