WO2019163689A1 - Cooling device for secondary battery, and vehicle - Google Patents

Cooling device for secondary battery, and vehicle Download PDF

Info

Publication number
WO2019163689A1
WO2019163689A1 PCT/JP2019/005738 JP2019005738W WO2019163689A1 WO 2019163689 A1 WO2019163689 A1 WO 2019163689A1 JP 2019005738 W JP2019005738 W JP 2019005738W WO 2019163689 A1 WO2019163689 A1 WO 2019163689A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
secondary battery
downstream
heat
cooling device
Prior art date
Application number
PCT/JP2019/005738
Other languages
French (fr)
Japanese (ja)
Inventor
猛 前川
黒河 通広
浩二 久山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020501740A priority Critical patent/JPWO2019163689A1/en
Publication of WO2019163689A1 publication Critical patent/WO2019163689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a secondary battery cooling device and a vehicle in a vehicle in which a drive unit is driven by power supply from the secondary battery.
  • a conventional secondary battery cooling device includes a blower, a case, and a plurality of secondary batteries.
  • the case includes a battery chamber that houses a plurality of secondary batteries and a cooling chamber.
  • a plurality of radiating fins are formed at regular intervals in the cooling chamber.
  • the blower cools the secondary battery by sending an air flow to the cooling chamber.
  • Patent Document 1 is known as prior art document information related to the invention of this application.
  • the heat generated from the secondary battery is sufficiently dissipated near the upstream of the air flow because the temperature of the air flow itself is low.
  • the temperature of the secondary battery itself in the vicinity of the upstream of the air flow is greatly reduced.
  • the temperature of the air flow itself increases due to the thermal energy from the radiating fins.
  • the cooling effect of the radiating fins in the vicinity of the downstream becomes poor due to the increase in the temperature of the air flow itself. Therefore, the secondary battery in the downstream vicinity will be located in an environment with a poor cooling effect.
  • the temperature rise due to the heat generation of the secondary battery itself arranged in the vicinity of the downstream battery tends to be higher than the temperature increase due to the heat generation of the secondary battery itself arranged in the vicinity of the upstream area.
  • the present invention suppresses the temperature increase due to the heat generation of the secondary battery itself arranged in the vicinity of the downstream to a value similar to the temperature increase due to the heat generation of the secondary battery itself arranged in the vicinity of the upstream, compared with the prior art.
  • Another object of the present invention is to provide a cooling device for a secondary battery with enhanced cooling effect.
  • the secondary battery cooling device of the present invention includes a blower and a cooling unit.
  • the blower delivers an air flow.
  • the cooling unit has an air passage, a heat radiating unit, and a heat receiving unit.
  • An air flow is supplied to the air passage.
  • the heat radiating portion constitutes at least a part of the air passage wall of the air passage.
  • the heat receiving unit receives heat generated by two or more secondary batteries.
  • the heat radiating portion includes a pair of a first fin group and a second fin.
  • the first fin protrudes from the first surface opposite to the secondary battery side of the heat receiving portion.
  • the set of first fin groups includes a pair of first fins arranged adjacent to each other, and the pair of first fins are arranged in parallel in a substantially parallel manner.
  • the pair of first fins are arranged in parallel with a first distance along the air flow.
  • the second fin is located between the pair of first fins and substantially parallel to at least a portion of the first fin and air from an intermediate point from upstream to downstream of the air flow of the first fin group. They are arranged in the downstream direction of the flow.
  • the upstream side is wider than the interval from the intermediate point to the downstream side, and the temperature rise of the air flow at the intermediate point can be suppressed.
  • positioned downstream from an intermediate point can be thermally radiated favorably.
  • interval of a cooling device of a secondary battery, pressure loss, and battery maximum minimum temperature difference in embodiment of this invention The relationship between the average value of the temperature rise of the secondary battery and the difference between the maximum temperature and the minimum temperature of the secondary battery is shown with respect to the fin interval of the cooling device for the secondary battery in the embodiment of the present invention.
  • Characteristics chart Explanatory drawing which compares the pressure loss of the cooling device of the secondary battery in embodiment of this invention
  • Explanatory drawing which compares the temperature of the cooling device of the secondary battery in embodiment of this invention
  • the schematic perspective view which shows the modification of the cooling part of the cooling device of the secondary battery in embodiment of this invention.
  • the principal part side view which shows the modification of the cooling part of the cooling device of the secondary battery in embodiment of this invention
  • the conceptual diagram which shows the vehicle in embodiment of this invention
  • the vehicle includes a body, a drive unit, and a secondary battery.
  • the drive unit and the secondary battery are mounted on the body.
  • the drive unit drives the vehicle with electric power supplied from the secondary battery.
  • the drive unit includes at least a motor that operates with power supplied from the secondary battery and wheels that are driven by the motor.
  • the drive unit is not limited to the motor, and may include an engine. That is, the vehicle is not limited to a so-called electric vehicle, and may be a hybrid car.
  • Secondary batteries generate heat during charging or discharging. However, the lifetime of the secondary battery is shortened as the temperature increases. Therefore, it is necessary to keep the temperature of the secondary battery lower than a predetermined temperature. Therefore, the vehicle is equipped with a secondary battery cooling device in order to keep the secondary battery at a predetermined temperature or lower.
  • the secondary battery cooling device in the present embodiment can suppress the temperature increase of the secondary battery and increase the travelable distance of the vehicle without increasing the air volume of the blower.
  • FIG. 1 is a conceptual diagram of a secondary battery cooling device according to an embodiment of the present invention as viewed from the side.
  • FIG. 2 is a cross-sectional view of the secondary battery cooling device according to the embodiment of the present invention when the air passage is cut perpendicular to the air flow.
  • the battery module 11 includes a cooling device 21, a battery pack 31, and a storage case 51.
  • the battery pack 31 is stored in the storage case 51.
  • at least one of the storage cases 51 is open.
  • the storage case 51 has an open side surface on the side where the cooling device 21 is provided.
  • the battery pack 31 includes the secondary battery 401 to the secondary battery 420.
  • the number of secondary batteries is not limited to 20.
  • the secondary battery 311 (generic name for the secondary batteries 401 to 420) is stored in the storage case 51 so that the bottom surface is exposed from the opening.
  • the cooling device 21 includes a blower 211 and a cooling unit 221.
  • the blower 211 has blower blades (not shown) inside.
  • the blower 211 takes in external air into the blower 211 through an intake hole (not shown) provided in the blower 211 and rotates the air from the air supply hole 211a by the rotation operation of the blower blades.
  • the opening of the storage case 51 is closed by the cooling unit 221. That is, a part of the cooling unit 221 constitutes a part of the storage case 51.
  • the cooling unit 221 includes a heat radiating unit 231, a heat receiving unit 251, an air passage 271, and an air passage wall 291.
  • the air passage 271 is a portion surrounded by the heat radiating portion 231 and the air passage wall 291 and air flows therethrough. Therefore, the heat radiating portion 231 constitutes at least a part of the air passage 271.
  • the air flow path 271 is formed together with the air flow path wall 291 by being covered with the air flow path wall 291.
  • the air passage 271 has an inlet hole 271a and an exhaust hole 271b.
  • the air passage 271 connects the air supply hole 211a of the blower 211 and the air intake hole 271a. As a result, the airflow flows from the inlet hole 271a into the air passage 271 and passes through the air passage 271 and is discharged from the exhaust hole 271b to the outside of the cooling device 21.
  • the heat receiving unit 251 receives heat generated by two or more secondary batteries 311. Note that the heat receiving unit 251 illustrated in FIG. 1 receives heat generated by the twenty secondary batteries 311.
  • the heat dissipating part 231 includes a pair of first fin groups and second fins 233.
  • a set of first fin groups includes a plurality of first fins 232.
  • the pair of first fin groups includes at least one pair of first fins 232 arranged adjacent to each other.
  • the first fin 232 protrudes from the first surface 235 opposite to the heat receiving portion 251.
  • the pair of first fins 232 are arranged in a substantially parallel state with a first interval (L) along the air flow. Note that the intervals between the first fins 232 are all arranged at the first interval.
  • the second fin 233 is disposed between the pair of first fins 232.
  • the second fins 233 are arranged in a state substantially parallel to the first fins 232 adjacent to the second fins 233. Further, the second fin 233 extends from an intermediate point 234 of the first fin 232 toward the downstream side of the air flow.
  • first fins 232 and the second fins 233 are arranged along the air flow.
  • the first fins 232 constitute a substantially parallel plane.
  • the second fins 233 form a substantially parallel plane with each other.
  • Secondary batteries 401 to 420 are arranged in the same direction as the air flow direction.
  • the ten secondary batteries 401 to 410 are arranged on the upstream side of the intermediate point 234.
  • the remaining ten secondary batteries 411 to 420 are arranged downstream of the intermediate point 234.
  • Each secondary battery 311 is a rectangular parallelepiped, and is arranged side by side so that the side surface thereof faces the side surface of the adjacent secondary battery as shown in FIG. In this case, the side surfaces of the secondary battery 311 are preferably in contact with each other. With this configuration, the volume of the battery pack 31 can be reduced.
  • the exterior of the secondary battery 311 is made of metal.
  • the heat of the secondary battery 311 can be transmitted to the heat radiation portion 231 through the exterior to radiate heat. That is, when there is a temperature difference between the adjacent secondary batteries 311, heat is conducted from the exterior of the secondary battery 311 having a high temperature to the exterior of the secondary battery 311 having a low temperature. Therefore, the temperature difference between the adjacent secondary batteries 311 can be reduced. In particular, the temperature of the secondary battery 420 arranged on the most downstream side becomes the highest. Therefore, with this configuration, the heat of the secondary battery 420 can be transmitted to the heat receiving unit 251 through the exterior of the adjacent secondary battery.
  • the secondary battery 311 is not limited to a rectangular parallelepiped, and may have another shape such as a cylindrical shape. Also in this case, a plurality of secondary batteries 311 are arranged side by side.
  • the upstream side from the intermediate point 234 is wider than the interval from the intermediate point 234 to the downstream side, and the contact area with the air flow is reduced, thereby suppressing the temperature increase of the air flow at the intermediate point 234. Is possible. Therefore, the heat of the secondary battery 311 disposed downstream from the intermediate point 234 can be radiated well. In particular, the temperature increase of the most downstream secondary battery 420 can be greatly suppressed. As a result, the temperature difference between the secondary batteries 401 to 420 can be reduced.
  • the conventional secondary battery cooling device it is necessary to increase the air volume of the blower in order to suppress the temperature rise of the secondary battery disposed in the vicinity of the downstream.
  • the pressure loss of the air flow on the upstream side can be reduced by increasing the cross-sectional area of the air passage on the upstream side of the intermediate point 234. As a result, heat can be radiated well without increasing the air volume of the blower.
  • the 10 secondary batteries 401 to 410 which are half of the 20 secondary batteries 311, are arranged upstream of the intermediate point 234.
  • the present invention is not limited to this configuration, and the intermediate point 234 is a secondary battery.
  • the position is set such that the temperature difference between 401 and 420 is small.
  • the battery pack 31 includes a circuit board or wiring for connecting the secondary batteries 311. Furthermore, the battery pack 31 may include a power supply circuit and the like.
  • the secondary battery 311 mounted on the vehicle generally generates a very high voltage. Therefore, it is configured such that moisture, dust (for example, metal powder) or the like does not enter the storage case 51.
  • the storage case 51 preferably has a sealed structure.
  • the cooling unit 221 has an upstream cooling unit 221a and a downstream cooling unit 221b.
  • the upstream cooling unit 221 a is disposed on the upstream side of the intermediate point 234.
  • the downstream cooling unit 221 b is disposed on the downstream side of the intermediate point 234.
  • the secondary batteries 401 to 410 are preferably configured to be in contact with the heat receiving unit 251a of the upstream cooling unit 221a.
  • the secondary batteries 411 to 420 are preferably in contact with the heat receiving part 251b of the downstream cooling part 221b.
  • the heat of the secondary batteries 401 to 410 is mainly transmitted to the upstream cooling unit 221a, and is mainly radiated by the first fin 232a upstream of the intermediate point 234.
  • the heat of the secondary batteries 411 to 420 is mainly transmitted to the downstream cooling unit 221b, and is mainly radiated by the first fin 232b and the second fin 233 downstream from the intermediate point 234.
  • the upstream cooling part 221a and the downstream cooling part 221b are formed by separate members. That is, the upstream cooling unit 221a and the downstream cooling unit 221b are not integrated but formed separately.
  • a first fin 232a is provided in the upstream cooling unit 221a.
  • a first fin 232b and a second fin 233 are provided in the downstream cooling unit 221b.
  • the upstream cooling part 221a and the downstream cooling part 221b by separate members, the number of manufacturing steps can be reduced, and the cooling part 221 can be manufactured at low cost.
  • the downstream cooling part 221b can be shape
  • the 1st fin 232a, the 1st fin 232b, and the 2nd fin 233 are linear from upstream to downstream. With this configuration, the length of the plurality of air paths through which the airflow passes can be made constant. Therefore, the difference in the pressure loss of the airflow due to the air path can be reduced.
  • the air path is bent downstream of the exhaust hole 271b and the air is supplied in a desired direction.
  • the first fin 232 is not limited to a straight configuration, and may be bent or bent within a range that does not affect the pressure loss of the air flow or the temperature drop of the secondary battery 311.
  • 10 secondary batteries 411 to 420 which are half of the 20 secondary batteries 311, are in contact with the downstream cooling unit 221 b
  • the configuration is not limited thereto. That is, at least the mth (m is a natural number, m ⁇ 2) and the m + 1th two of the secondary batteries 401 to 420 are configured to be in contact with the downstream cooling unit 221b. In this case, at least one of the secondary batteries 401 to 420 is configured to be in contact with the upstream cooling unit 221a. Conversely, at least two of the secondary batteries 401 to 420 may be in contact with the upstream cooling unit 221a. In this case, at least one of the mth secondary batteries to 420 is in contact with the downstream cooling unit 221b.
  • a secondary battery having a relatively high temperature can transmit a larger amount of heat to the cooling unit 221 than other secondary batteries. it can. As a result, the temperature difference between the secondary batteries 311 in contact with the cooling unit 221 can be reduced.
  • the number of secondary batteries 311 among the secondary batteries 401 to 420 to be brought into contact with each of the upstream cooling unit 221a and the downstream cooling unit 221b has a desired temperature difference between the secondary batteries 401 to 420. What is necessary is just to set so that it may become smaller.
  • the heat radiation part 231 has a second surface 236 opposite to the first surface 235. Between the bottom surface of the secondary battery 311 and the second surface 236, a heat conducting member 237 having high heat conduction is provided.
  • a heat conducting member 237 for example, a sheet-like member such as a heat conductive rubber or a carbon sheet can be used.
  • the sheet-like heat conductive member 237 has a pasting surface 237a to be pasted and a heat receiving surface 237b.
  • An affixing surface 237 a is affixed to the second surface 236.
  • the third surface 312 which is the bottom surface of the secondary battery 311 is in contact with the heat receiving surface 237 b of the sheet-like heat conducting member 237.
  • the heat conducting member 237 forms a heat receiving portion 251.
  • the heat conducting member 237 preferably covers the opening of the storage case 51.
  • the second surface 236 also preferably closes the opening of the storage case 51.
  • a heat conducting member 237 is interposed between the opening side end of the storage case 51 and the second surface 236.
  • the heat conducting member 237 has elasticity.
  • heat conductive member 237 for example, heat conductive rubber can be used.
  • the secondary battery 311 is preferably pressed against and in contact with the heat conducting member 237. In this case, it is preferable that the secondary battery 311 and the heat receiving portion 251 are in contact with each other without a gap.
  • the third surface 312 (bottom surface) of the secondary battery 311 in contact with the heat receiving surface 237b is desirably flat. With these configurations, the area where the bottom surface of the secondary battery 311 and the heat conducting member 237 are in contact can be increased. Further, the thickness of the heat conducting member 237 is reduced by compression.
  • the distance between the bottom surface of the secondary battery 311 and the second surface 236 can be shortened.
  • thermal resistance between the heat radiating unit 231 and the secondary battery 311 is reduced, so that heat conduction from the secondary battery 311 to the heat radiating unit 231 is promoted.
  • the sheet-like heat conducting member 237 is provided from the upstream side to the downstream side of the intermediate point 234 of the cooling unit 221.
  • the heat conducting member 237 is not limited to a sheet shape, and grease or the like may be used.
  • the heat conducting member 237 may be provided in a gap formed between the upstream cooling unit 221a and the downstream cooling unit 221b.
  • the upstream cooling unit 221a and the downstream cooling unit 221b are configured by separate members, but are not limited to this configuration.
  • the upstream cooling unit 221a and the downstream cooling unit 221b may be configured integrally.
  • the first fin 232a and the first fin 232b can be integrally formed.
  • the cooling unit 221 can be easily formed integrally by die casting or the like.
  • the battery pack 31 since it is difficult to reduce the distance between the second fin 233 and the first fin 232, the battery pack 31 has a small number of secondary batteries 311, for example. This is suitable when the amount of heat generated is small or when the air volume of the blower 211 is large.
  • the second fin 233 is disposed at a substantially middle position between the pair of first fins 232.
  • the cross-sectional areas of the two air passages 271 formed by the second fin 233, the pair of first fins 232, and the air passage wall 291 can be made substantially equal. Uniformity is possible. As a result, an increase in pressure loss can be suppressed.
  • FIG. 4 is a characteristic diagram showing the relationship between the position of the secondary battery 311 of the secondary battery cooling device and the temperature rise of the secondary batteries 401 to 420 in the embodiment of the present invention.
  • the horizontal axis indicates the number (position) of the secondary battery 311.
  • No. 1 is located on the most upstream side of the air flow
  • No. 20 is located on the most downstream side.
  • the vertical axis represents the difference between the temperature of the secondary batteries 401 to 420 and the room temperature. That is, FIG. 4 shows a temperature rise curve with respect to the position of the battery pack 31.
  • the second fin 233 is not installed in the secondary battery cooling device 21 of the present embodiment, and the first fin 232 alone constitutes the heat radiating portion.
  • the fin interval L is 2.5 mm.
  • the fin interval L is 5 mm.
  • the fin interval L is 10 mm.
  • the fin interval L is 15 mm.
  • the comparative example 5 is different from the comparative example 2 in that one heat radiating portion is provided for each of the secondary batteries 311. In these comparative examples, 20 secondary batteries 401 to 420 are arranged side by side.
  • the average value of the temperature rise of the secondary battery 311 in each comparative example and the difference between the maximum temperature and the minimum temperature in the secondary batteries 401 to 420 (hereinafter referred to as the battery maximum / minimum temperature difference) were calculated. .
  • FIG. 5 is a characteristic diagram showing the relationship between the fin interval L and the pressure loss and the relationship between the battery maximum and minimum temperature difference of the cooling device for the secondary battery in the embodiment of the present invention.
  • the horizontal axis indicates the distance between the pair of first fins 232 in the comparative example.
  • the left vertical axis shows the pressure loss between the inlet hole 271a and the exhaust hole 271b.
  • the right vertical axis represents the difference between the highest temperature and the lowest temperature among the secondary batteries 401 to 420 arranged.
  • the fin interval L is between 5 mm and 15 mm, the smaller the fin interval L, the smaller the pressure loss and the smaller the temperature difference between the secondary batteries 401-420.
  • the fin interval L is narrowed to 2.5 mm, the pressure loss increases rapidly, and the temperature difference between the secondary batteries 401 to 420 increases.
  • the battery maximum and minimum temperature difference is also larger than in the case of the fin interval of 5.0 mm. From this, it can be seen that the fin interval L is preferably set to 5 mm or more. Therefore, it is preferable that the first fins 232 and the first fins 232 and the second fins 233 are both disposed so that the distance between them is 5 mm or more.
  • the maximum and minimum battery temperature difference increases as the fin interval L increases from 5 mm. Therefore, in terms of the pressure loss and the maximum / minimum battery temperature difference, the distance between the first fins 232 and the distance between the first fin 232 and the second fin 233 are both 5 mm or more and less than 15 mm. It is good to set within the dimension range.
  • FIG. 6 shows the relationship between the fin interval L of the secondary battery cooling device according to the embodiment of the present invention and the average temperature rise of the secondary batteries 401 to 420, and the maximum of the secondary batteries 401 to 420. It is a characteristic view which shows the relationship between temperature and the difference of minimum temperature.
  • the horizontal axis indicates the distance between the pair of first fins 232 in the comparative example.
  • the left vertical axis shows the average value of the temperature rise of the secondary batteries 401 to 420.
  • the right vertical axis indicates the difference between the maximum temperature and the minimum temperature of the secondary batteries 401 to 420.
  • FIG. 6 it can be seen that the average value of the temperature rise of the secondary battery 311 becomes smaller as the fin interval is narrowed.
  • the distance L between the first fins 232 and the distance between the first fins 232 and the second fins 233 are preferably set within a dimension range of 5 mm or more and less than 15 mm.
  • the distance between the first fin 232 and the second fin 233 is preferably 5 mm or more, and the distance L between the first fins 232 is preferably 15 mm or less.
  • the second fin 233 is preferably disposed in the middle of the first fin 232. That is, the interval between the first fin 232 and the second fin 233 is preferably half of the interval L between the first fins 232. In this case, the interval L between the first fins 232 is preferably 10 mm or more and less than 15 mm. That is, the distance between the first fin 232 and the second fin 233 is 5 mm or more and preferably less than 7.5 mm. Therefore, the pitch interval between the first fin 232 and the second fin 233 is preferably in the range of 5 mm or more and 7 mm or less. With these configurations, the average temperature of the secondary battery 311 can be lowered while suppressing a rapid increase in pressure loss.
  • the inventors set the interval between the first fins 232 to 10 mm, and the embodiment in which the interval between the first fin 232 and the second fin 233 is 5 mm.
  • the temperature increase value of the secondary batteries 401 to 420 was evaluated.
  • 20 secondary batteries 311 are arranged corresponding to the heat receiving portions 251 as in Comparative Examples 1 to 4.
  • Ten secondary batteries 311 of the secondary batteries 401 to 410 are in contact with the upstream cooling unit 221a.
  • the remaining ten secondary batteries 311 of the secondary batteries 411 to 420 are in contact with the downstream cooling unit 221b.
  • the evaluation results of the examples are shown in FIG. 4 together with the evaluation results of the comparative examples.
  • the temperature of the secondary battery 311 disposed on the downstream side of the air flow is higher than that of the secondary battery 311 disposed on the upstream side.
  • the secondary battery 311 on the upstream side of the intermediate point 234 is lower than the comparative example 3 having the fin interval of 10 mm.
  • the secondary batteries 311 (secondary batteries 411 to 420) on the downstream side of the intermediate point 234 have values similar to those of the comparative example 2.
  • FIG. 7 is an explanatory diagram for comparing the pressure loss of the cooling device for the secondary battery in the embodiment of the present invention.
  • the ratio of the pressure loss of each comparative example to the example when the pressure loss of the example is 1 is shown as a value.
  • the pressure loss of the cooling device 21 is smaller than that of the comparative example 2 in which the fin interval is 5 mm.
  • FIG. 8 is an explanatory diagram for comparing the temperature difference of the cooling device for the secondary battery in the embodiment of the present invention. This is expressed as the ratio of the temperature difference between the secondary battery of the example and the comparative example, where the temperature difference between the secondary batteries 401 to 420 of the example is 1. It can be seen that the cooling device 21 has a smaller temperature difference ratio of the secondary battery 311 than the comparative example. From the above evaluation results, it was confirmed that both the pressure loss and the battery maximum / minimum temperature could be made smaller in the example than in any of the comparative examples.
  • the secondary battery cooling device 21 of the present embodiment includes the blower 211 and the cooling unit 221.
  • the blower 211 sends an air flow.
  • the cooling unit 221 includes an air passage 271, a heat radiating unit 231, and a heat receiving unit 251.
  • An air flow is supplied to the air passage 271.
  • the heat radiating portion 231 constitutes at least a part of the air passage wall 291 of the air passage 271.
  • the heat receiving unit 251 receives heat generated by two or more secondary batteries.
  • the heat radiating portion 231 includes a pair of first fin group and second fin 233. The first fin 232 protrudes from the first surface 235 opposite to the heat receiving portion 251.
  • the pair of first fin groups includes a pair of first fins 232 arranged adjacent to each other, and the pair of first fins 232 are arranged in parallel in a substantially parallel manner.
  • the pair of first fins 232 are arranged in parallel with a first interval along the airflow.
  • the second fin 233 is located between the pair of first fins 232 and substantially parallel to at least a part of the first fin 232, and is located in the middle from the upstream to the downstream of the air flow of the first fin group. It is arranged in a line from the point toward the downstream of the air flow.
  • the upstream side is wider than the distance from the intermediate point to the downstream side, and the temperature rise of the air flow at the intermediate point can be suppressed.
  • positioned downstream from an intermediate point can be thermally radiated favorably.
  • the thermal radiation part 231 has the 2nd surface 236 opposite to the 1st surface 235, and the heat receiving part 251 contains the heat conductive member 237 which has the sheet-like elasticity stuck on the 2nd surface 236. .
  • the cooling unit 221 includes an upstream cooling unit 221a upstream of the intermediate point 234 and a downstream cooling unit 221b downstream of the intermediate point 234.
  • the upstream cooling unit 221a and the downstream cooling unit 221b are separate members from each other. It may be.
  • the heat conducting member 237 may be provided from the upstream cooling unit 221a to the downstream cooling unit 221b.
  • the distance between one first fin 232 and the second fin 233 of the pair of first fins 232 is the same as that of the other first fin 232 of the pair of first fins 232. It is preferable that the distance between the second fin 233 and the second fin 233 is substantially equal.
  • interval between one 1st fin 232 and the 2nd fin 233 is 5 mm or more and 7 mm or less.
  • two or more secondary batteries may be arranged in a heat conductive state in at least one of the upstream cooling unit 221a and the downstream cooling unit 221b.
  • FIG. 9 is a schematic perspective view showing a modification of cooling unit 222 of the cooling device for the secondary battery in the embodiment of the present invention.
  • FIG. 10 is a main part side view showing a modification of cooling unit 222 of the cooling device for the secondary battery in the embodiment of the present invention.
  • the cooling device 21 may have a cooling unit 222 instead of the cooling unit 221 shown in FIG.
  • the cooling unit 222 includes a heat dissipation unit 241 instead of the heat dissipation unit 231.
  • the heat dissipating part 241 is different from the heat dissipating part 231 in that the second fin 233 has a turbulent flow generating part 261.
  • the turbulent flow generation unit 261 is formed at the upstream end of the first fin 232b and the second fin 233 in the downstream cooling unit 221b.
  • the turbulent flow generation unit 261 is formed by a plurality of recesses extending from the upstream end portions of the first fin 232 and the second fin 233 toward the downstream direction.
  • the turbulent flow generation unit 261 does not reduce the width of the air path between the first fin 232 and the second fin 233, so that the first fin 232 and the second fin 233 in the turbulent flow generation unit 261. The pressure loss of the cooling air passing between and can be reduced.
  • the cooling performance per unit length in the air flow direction of the heat dissipation part 231 can be enhanced.
  • the length of the flow direction of the air flow of the thermal radiation part 231 can be shortened.
  • the weight and cost of the cooling unit 222 can be reduced.
  • the turbulent flow generation unit 261 is preferably provided on a surface in contact with the air flow in the first fin 232b and the second fin 233.
  • the turbulent flow generation unit 261 may be a separate member from the first fin 232 and the second fin 233. In this case, the turbulent flow generation unit 261 is provided between the upstream cooling unit 221a and the downstream cooling unit 221b. With this configuration, the turbulent flow generation unit 261 may not be formed simultaneously with the first fin 232 and the second fin 233. Therefore, the freedom degree of the position which installs the turbulent flow generation part 261 can be enlarged. Regardless of the shape of the turbulent flow generation unit 261, the upstream cooling unit 221a and the downstream cooling unit 221b can be easily manufactured by drawing or extrusion molding.
  • the turbulent flow generation unit 261 has a shape that protrudes into the air passage through which the air flow passes or is recessed from the side surface of the second fin 233.
  • the turbulent flow generation part 261 is not limited to the configuration formed in the downstream cooling part 221b, and may be formed in the upstream cooling part 221a. However, the turbulent flow generation unit 261 in this case is formed in the vicinity of the downstream end of the upstream cooling unit 221a.
  • the turbulent flow generation unit 261 is not limited to the configuration formed in the first fin 232 and the second fin 233, and may be formed in the first surface 235 or the air passage wall 291.
  • the heat dissipating unit 241 of this modification may include the turbulent flow generating unit 261 in the vicinity of the midpoint 234 of the air passage 271.
  • turbulent flow generation unit 261 may be disposed on the downstream side of the intermediate point 234.
  • the turbulent flow generation unit 261 may be a separate member from the first fin 232 and the second fin 233.
  • the embodiments have been described as examples of the technology in the present disclosure.
  • the technology in the present disclosure is not limited to the embodiment, and can be applied to an embodiment in which changes, substitutions, additions, omissions, and the like are appropriately performed.
  • FIG. 11 is a conceptual diagram showing a vehicle 1001 in the embodiment of the present invention.
  • the vehicle 1001 includes a body 1002, a drive unit 1003, and a battery module 11.
  • the drive unit 1003 and the battery module 11 are attached to the body 1002.
  • the drive unit 1003 includes a motor, wheels, and the like.
  • the vehicle 1001 travels by the operation of the drive unit 1003. Therefore, the electric power of the battery module 11 is supplied to the motor of the drive unit 1003, and the vehicle 1001 moves.
  • the vehicle 1001 further includes a steering unit (not shown) such as a steering wheel, a brake, and an accelerator, and a seat on which a passenger sits.
  • the drive unit 1003 may include not only a motor but also an engine.
  • the battery module 11 is stored in a narrow space such as under a seat.
  • the battery module 11 can be easily stored in a narrow space such as under a seat because of its small size.
  • the travelable distance of the vehicle 1001 can be extended.
  • the vehicle 1003 can be quickly accelerated by the power of the drive unit 1003.
  • the vehicle 1001 is equipped with the secondary battery cooling device 21 of the present embodiment. Thereby, the vehicle 1001 can store the cooling device 21 in a narrow space.
  • the cooling device for a secondary battery according to the present invention has an effect of reducing a temperature difference between a plurality of secondary batteries arranged side by side, and is particularly useful when used for a battery module or the like mounted on a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

This cooling device for a secondary battery includes an air blower and a cooling section. The air blower sends air. The cooling section includes an air duct, a heat dissipating section, and a heat receiving section. Air is sent in the air duct. The heat dissipating section constitutes at least a part of an air duct wall of the air duct. The heat receiving section receives heat generated from two or more secondary batteries. The heat dissipating section includes one first fin group, and a second fin. First fins are protruding from a first surface on the reverse side of the heat receiving section. The first fin group includes a pair of first fins disposed adjacent to each other, and the pair of first fins are disposed substantially parallel to each other. The pair of first fins are disposed parallel to each other, at a first interval, along the airflow. Between the pair of first fins, the second fin is positioned substantially parallel to at least a part of the first fins, and is disposed in parallel toward the downstream of the airflow from an intermediate point of the first fin group, said intermediate point being in the airflow directed toward the downstream from the upstream.

Description

二次電池の冷却装置、車両Secondary battery cooling device, vehicle
 本発明は、二次電池からの電力供給によって駆動部が駆動する車両における、二次電池の冷却装置、および車両に関する。 The present invention relates to a secondary battery cooling device and a vehicle in a vehicle in which a drive unit is driven by power supply from the secondary battery.
 以下、従来の二次電池の冷却装置について説明する。従来の二次電池の冷却装置は、送風機とケースと複数個の二次電池を含んでいる。ケースは、複数個の二次電池を収納する電池室と冷却室を含んでいる。冷却室内には、複数の放熱フィンが一定の間隔で形成されている。送風機が冷却室へと空気流を送気することによって、二次電池を冷却する。 Hereinafter, a conventional secondary battery cooling device will be described. A conventional secondary battery cooling device includes a blower, a case, and a plurality of secondary batteries. The case includes a battery chamber that houses a plurality of secondary batteries and a cooling chamber. A plurality of radiating fins are formed at regular intervals in the cooling chamber. The blower cools the secondary battery by sending an air flow to the cooling chamber.
 なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。 For example, Patent Document 1 is known as prior art document information related to the invention of this application.
 従来の二次電池の冷却装置の構成において、空気流の上流近傍は、空気流自体の温度が低い為に、二次電池からの発熱は十分に放熱される。これにより、空気流の上流近傍の二次電池自体の温度は大きく低下する。空気流が放熱フィンの間を通過するに従って、放熱フィンからの熱エネルギーによって、空気流自体の温度は、上昇する。したがって、下流近傍においては、空気流自体の温度と二次電池自体の温度との温度差は少なくなる。このため、空気流自体の温度の高まりによって、下流近傍における放熱フィンの冷却効果は、乏しいものとなる。したがって、下流近傍における二次電池は、冷却効果が乏しい環境に位置することとなる。その結果、上流近傍に配置された二次電池自体の発熱による温度上昇よりも、下流近傍に配置された二次電池自体の発熱による温度上昇の方が、高い値となる傾向が顕著である。 In the configuration of the conventional secondary battery cooling device, the heat generated from the secondary battery is sufficiently dissipated near the upstream of the air flow because the temperature of the air flow itself is low. As a result, the temperature of the secondary battery itself in the vicinity of the upstream of the air flow is greatly reduced. As the air flow passes between the radiating fins, the temperature of the air flow itself increases due to the thermal energy from the radiating fins. Accordingly, in the vicinity of the downstream, the temperature difference between the temperature of the air flow itself and the temperature of the secondary battery itself is reduced. For this reason, the cooling effect of the radiating fins in the vicinity of the downstream becomes poor due to the increase in the temperature of the air flow itself. Therefore, the secondary battery in the downstream vicinity will be located in an environment with a poor cooling effect. As a result, the temperature rise due to the heat generation of the secondary battery itself arranged in the vicinity of the downstream battery tends to be higher than the temperature increase due to the heat generation of the secondary battery itself arranged in the vicinity of the upstream area.
特開2007-12486号公報JP 2007-12486 A
 そこで本発明は、下流近傍に配置された二次電池自体の発熱による温度上昇を、上流近傍に配置された二次電池自体の発熱による温度上昇と、同程度の値に抑制し、従来技術よりも冷却効果を高めた二次電池の冷却装置を提供することを目的とする。 Therefore, the present invention suppresses the temperature increase due to the heat generation of the secondary battery itself arranged in the vicinity of the downstream to a value similar to the temperature increase due to the heat generation of the secondary battery itself arranged in the vicinity of the upstream, compared with the prior art. Another object of the present invention is to provide a cooling device for a secondary battery with enhanced cooling effect.
 この目的を達成するために、本発明の二次電池の冷却装置は、送風機と冷却部を含む。送風機は、空気流を送気する。冷却部は、風路と放熱部と受熱部を有している。風路は、空気流が送気される。放熱部は、風路の風路壁の少なくとも一部を構成する。受熱部は、2個以上の二次電池の発する熱を受熱する。放熱部は、一組の第一のフィングループと第二のフィンを含む。第一のフィンは、受熱部の二次電池側と反対の第一面から突出している。一組の第一のフィングループは、互いに隣り合って配置された一対の第一のフィンを含み、一対の第一のフィンが実質的に平行に列設される。一対の第一のフィンは、空気流に沿って第一の間隔を有して平行に列設される。第二のフィンは、一対の第一のフィンの間に第一のフィンの少なくとも一部と実質的に平行に位置し、第一のフィングループの空気流の上流から下流に向かう中間点から空気流の下流に向って列設される。 In order to achieve this object, the secondary battery cooling device of the present invention includes a blower and a cooling unit. The blower delivers an air flow. The cooling unit has an air passage, a heat radiating unit, and a heat receiving unit. An air flow is supplied to the air passage. The heat radiating portion constitutes at least a part of the air passage wall of the air passage. The heat receiving unit receives heat generated by two or more secondary batteries. The heat radiating portion includes a pair of a first fin group and a second fin. The first fin protrudes from the first surface opposite to the secondary battery side of the heat receiving portion. The set of first fin groups includes a pair of first fins arranged adjacent to each other, and the pair of first fins are arranged in parallel in a substantially parallel manner. The pair of first fins are arranged in parallel with a first distance along the air flow. The second fin is located between the pair of first fins and substantially parallel to at least a portion of the first fin and air from an intermediate point from upstream to downstream of the air flow of the first fin group. They are arranged in the downstream direction of the flow.
 本発明によれば、中間点から上流側の風路では、上流側が中間点から下流側の間隔よりも広く、中間点における空気流の温度上昇を抑制可能である。また、中間点から下流側に配置された二次電池の熱を良好に放熱可能である。その結果、上流近傍に配置された二次電池自体の発熱による温度上昇と、下流近傍に配置された二次電池自体の発熱による温度上昇とは、同程度の値に抑制可能である。よって、本発明は産業的価値の大いなるものである。 According to the present invention, in the air path upstream from the intermediate point, the upstream side is wider than the interval from the intermediate point to the downstream side, and the temperature rise of the air flow at the intermediate point can be suppressed. Moreover, the heat of the secondary battery arrange | positioned downstream from an intermediate point can be thermally radiated favorably. As a result, the temperature increase due to the heat generation of the secondary battery itself disposed in the vicinity of the upstream and the temperature increase due to heat generation of the secondary battery itself disposed in the vicinity of the downstream can be suppressed to the same level. Therefore, the present invention has great industrial value.
本発明の実施の形態における二次電池の冷却装置を側面方向から見た概念図The conceptual diagram which looked at the cooling device of the secondary battery in embodiment of this invention from the side surface direction 本発明の実施の形態における二次電池の冷却装置の風路を空気流に対して垂直に切った場合の断面図Sectional drawing at the time of cut | disconnecting the air path of the cooling device of the secondary battery in embodiment of this invention perpendicularly | vertically with respect to an air flow 本発明の実施の形態における二次電池の冷却装置の放熱部を下面側から描画する部分拡大図The elements on larger scale which draw the thermal radiation part of the cooling device of the secondary battery in embodiment of this invention from the lower surface side 本発明の実施の形態における二次電池の冷却装置の二次電池の位置と二次電池の温度上昇の関係を示す特性図The characteristic view which shows the relationship between the position of the secondary battery of the cooling device of the secondary battery in embodiment of this invention, and the temperature rise of a secondary battery 本発明の実施の形態における二次電池の冷却装置のフィン間隔と圧力損失および電池最大最小温度差との関係を示す特性図The characteristic view which shows the relationship between the fin space | interval of a cooling device of a secondary battery, pressure loss, and battery maximum minimum temperature difference in embodiment of this invention 本発明の実施の形態における二次電池の冷却装置のフィン間隔に対して、二次電池の温度上昇の平均値との関係、および二次電池の最大温度と最小温度の差との関係を示す特性図The relationship between the average value of the temperature rise of the secondary battery and the difference between the maximum temperature and the minimum temperature of the secondary battery is shown with respect to the fin interval of the cooling device for the secondary battery in the embodiment of the present invention. Characteristics chart 本発明の実施の形態における二次電池の冷却装置の圧力損失を比較する説明図Explanatory drawing which compares the pressure loss of the cooling device of the secondary battery in embodiment of this invention 本発明の実施の形態における二次電池の冷却装置の温度を比較する説明図Explanatory drawing which compares the temperature of the cooling device of the secondary battery in embodiment of this invention 本発明の実施の形態における二次電池の冷却装置の冷却部の変形例を示す概略斜視図The schematic perspective view which shows the modification of the cooling part of the cooling device of the secondary battery in embodiment of this invention. 本発明の実施の形態における二次電池の冷却装置の冷却部の変形例を示す要部側面図The principal part side view which shows the modification of the cooling part of the cooling device of the secondary battery in embodiment of this invention 本発明の実施の形態における車両を示す概念図The conceptual diagram which shows the vehicle in embodiment of this invention
 以下、本発明について、図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。 Hereinafter, the present invention will be described with reference to the drawings. Note that the present invention is not limited to the following embodiments.
 本実施の形態における二次電池の冷却装置について説明する前に、二次電池の冷却装置を搭載する車両について説明する。車両は、ボディと、駆動部と、二次電池とを含んでいる。駆動部と二次電池は、ボディ上に搭載されている。駆動部は、二次電池からの供給による電力によって、車両を駆動している。なお、駆動部は、少なくとも二次電池からの供給電力で動作するモータと、このモータによって駆動される車輪を含んでいる。なお、駆動部は、モータだけに限られず、エンジンを含んでいても良い。すなわち、車両は、いわゆる電気自動車に限られず、ハイブリッドカーであっても良い。 Before describing the secondary battery cooling device in the present embodiment, a vehicle equipped with the secondary battery cooling device will be described. The vehicle includes a body, a drive unit, and a secondary battery. The drive unit and the secondary battery are mounted on the body. The drive unit drives the vehicle with electric power supplied from the secondary battery. Note that the drive unit includes at least a motor that operates with power supplied from the secondary battery and wheels that are driven by the motor. The drive unit is not limited to the motor, and may include an engine. That is, the vehicle is not limited to a so-called electric vehicle, and may be a hybrid car.
 二次電池は、充電または放電の際に発熱する。ところが、二次電池は温度が高くなると寿命が短くなる。そこで、二次電池の温度を所定の温度よりも低く保つことが必要である。したがって、車両は、二次電池を所定の温度以下に保つ為に、二次電池の冷却装置を搭載している。 二 Secondary batteries generate heat during charging or discharging. However, the lifetime of the secondary battery is shortened as the temperature increases. Therefore, it is necessary to keep the temperature of the secondary battery lower than a predetermined temperature. Therefore, the vehicle is equipped with a secondary battery cooling device in order to keep the secondary battery at a predetermined temperature or lower.
 現時点で、ガソリンスタンドに比べて、電気自動車などへ電力を供給する給電ステーションの設置箇所は圧倒的に少ない。したがって、電気自動車の普及に関しては、電気自動車の走行可能距離を長くすることが求められる。すなわち、車両の走行可能距離を長くする為には、送風機を含めた各機器での消費電力を抑制すること、および、車両に搭載される機器の重量の増加を抑制することが要求される。ところが、従来の二次電池の冷却装置では、二次電池の温度上昇を抑制するに際しては、送風機の風量を大きくすることが必要となる。すると送風機の消費電力が大きくなること、および、送風機の重量が大きくなるという問題を有している。 現時 点 At present, there are far fewer installation stations for power supply stations that supply power to electric vehicles, etc., compared to gas stations. Therefore, regarding the spread of electric vehicles, it is required to increase the travelable distance of electric vehicles. That is, in order to increase the travelable distance of the vehicle, it is required to suppress power consumption in each device including the blower and to suppress an increase in the weight of the device mounted on the vehicle. However, in the conventional secondary battery cooling device, in order to suppress the temperature rise of the secondary battery, it is necessary to increase the air volume of the blower. Then, it has the problem that the power consumption of a fan becomes large and the weight of a fan becomes large.
 本実施の形態における二次電池の冷却装置は、送風機の風量を大きくせずに、二次電池の温度上昇を抑制し、車両の走行可能距離を長くすることを可能にしている。 The secondary battery cooling device in the present embodiment can suppress the temperature increase of the secondary battery and increase the travelable distance of the vehicle without increasing the air volume of the blower.
 以下、本実施の形態における二次電池の冷却装置について図面を参照しながら詳細に説明する。図1は、本発明の実施の形態における二次電池の冷却装置を側面方向から見た概念図である。図2は、本発明の実施の形態における二次電池の冷却装置の風路を空気流に対して垂直に切った場合の断面図である。 Hereinafter, the cooling device for the secondary battery in the present embodiment will be described in detail with reference to the drawings. FIG. 1 is a conceptual diagram of a secondary battery cooling device according to an embodiment of the present invention as viewed from the side. FIG. 2 is a cross-sectional view of the secondary battery cooling device according to the embodiment of the present invention when the air passage is cut perpendicular to the air flow.
 電池モジュール11は、冷却装置21と電池パック31と収納ケース51を有している。電池パック31は収納ケース51内に収納されている。なお、収納ケース51は、少なくとも一方が開口している。図1に示す電池モジュール11の場合、収納ケース51は冷却装置21が設けられた側の側面が開口している。 The battery module 11 includes a cooling device 21, a battery pack 31, and a storage case 51. The battery pack 31 is stored in the storage case 51. Note that at least one of the storage cases 51 is open. In the case of the battery module 11 shown in FIG. 1, the storage case 51 has an open side surface on the side where the cooling device 21 is provided.
 電池パック31は、二次電池401から二次電池420を含んでいる。なお、二次電池の個数は20個に限らない。二次電池311(二次電池401~420の総称)は、開口から底面が露出するようにして収納ケース51へ収納されている。冷却装置21は、送風機211と冷却部221を有している。送風機211は、内部に送風羽根(図示せず)を有している。送風機211は、この送風羽根の回転動作によって、送風機211が具備する吸気孔(図示せず)から外部の空気を送風機211内部へ取り込んで、送気孔211aから空気を送風する。なお、収納ケース51の開口は、冷却部221によって塞がれている。すなわち、冷却部221の一部は、収納ケース51の一部を構成している。 The battery pack 31 includes the secondary battery 401 to the secondary battery 420. The number of secondary batteries is not limited to 20. The secondary battery 311 (generic name for the secondary batteries 401 to 420) is stored in the storage case 51 so that the bottom surface is exposed from the opening. The cooling device 21 includes a blower 211 and a cooling unit 221. The blower 211 has blower blades (not shown) inside. The blower 211 takes in external air into the blower 211 through an intake hole (not shown) provided in the blower 211 and rotates the air from the air supply hole 211a by the rotation operation of the blower blades. Note that the opening of the storage case 51 is closed by the cooling unit 221. That is, a part of the cooling unit 221 constitutes a part of the storage case 51.
 以下、被冷却対象である20個の二次電池401~二次電池410~二次電池420によって構成された電池パック31を収納した冷却装置21を説明する。冷却部221は、放熱部231と受熱部251と風路271と風路壁291を有している。風路271は、放熱部231と風路壁291とに囲まれた箇所であり、空気が流れる。したがって、放熱部231は、風路271の少なくとも一部を構成している。なお、風路壁291によって覆われることで、風路壁291とともに空気流の風路271が形成される。風路271は、入気孔271aと、排気孔271bを有している。風路271は、送風機211の送気孔211aと、入気孔271aとを連結する。これにより、空気流は、入気孔271aから風路271へと流れ込み、風路271の中を通過して排気孔271bから冷却装置21の外部へと放出される。 Hereinafter, the cooling device 21 in which the battery pack 31 composed of the twenty secondary batteries 401 to the secondary batteries 410 to the secondary batteries 420 to be cooled will be described. The cooling unit 221 includes a heat radiating unit 231, a heat receiving unit 251, an air passage 271, and an air passage wall 291. The air passage 271 is a portion surrounded by the heat radiating portion 231 and the air passage wall 291 and air flows therethrough. Therefore, the heat radiating portion 231 constitutes at least a part of the air passage 271. In addition, the air flow path 271 is formed together with the air flow path wall 291 by being covered with the air flow path wall 291. The air passage 271 has an inlet hole 271a and an exhaust hole 271b. The air passage 271 connects the air supply hole 211a of the blower 211 and the air intake hole 271a. As a result, the airflow flows from the inlet hole 271a into the air passage 271 and passes through the air passage 271 and is discharged from the exhaust hole 271b to the outside of the cooling device 21.
 受熱部251は、2個以上の二次電池311の発する熱を受熱する。なお図1に示す受熱部251は、20個の二次電池311の発する熱を受熱している。図2に示すように、放熱部231は、一組の第一のフィングループと第二のフィン233を有している。なお、一組の第一のフィングループには、複数の第一のフィン232が含まれている。この場合、一組の第一のフィングループは、隣り合って配置された一対の第一のフィン232を少なくともひとつ以上含む。第一のフィン232は、受熱部251の反対の第一面235から突出している。さらに、一対の第一のフィン232は、空気流に沿って第一の間隔(L)を有して実質的に平行な状態に列設されている。なお、第一のフィン232同士の間隔は、全て第一の間隔で配置されている。 The heat receiving unit 251 receives heat generated by two or more secondary batteries 311. Note that the heat receiving unit 251 illustrated in FIG. 1 receives heat generated by the twenty secondary batteries 311. As shown in FIG. 2, the heat dissipating part 231 includes a pair of first fin groups and second fins 233. A set of first fin groups includes a plurality of first fins 232. In this case, the pair of first fin groups includes at least one pair of first fins 232 arranged adjacent to each other. The first fin 232 protrudes from the first surface 235 opposite to the heat receiving portion 251. Further, the pair of first fins 232 are arranged in a substantially parallel state with a first interval (L) along the air flow. Note that the intervals between the first fins 232 are all arranged at the first interval.
 第二のフィン233は、一対の第一のフィン232の間に配置されている。第二のフィン233は、第二のフィン233と隣り合う第一のフィン232に対して実質的に平行な状態に列設されている。さらに、第二のフィン233は、第一のフィン232の中間点234から空気流の下流に向って延設されている。 The second fin 233 is disposed between the pair of first fins 232. The second fins 233 are arranged in a state substantially parallel to the first fins 232 adjacent to the second fins 233. Further, the second fin 233 extends from an intermediate point 234 of the first fin 232 toward the downstream side of the air flow.
 更に、別の表現で記述すれば、各第一のフィン232および各第二のフィン233は、空気流に沿って列設される構成である。第一のフィン232同士は、互いに実質的な平行面を構成する。同じく、第二のフィン233同士は、互いに実質的な平行面を構成する。 Further, in other words, the first fins 232 and the second fins 233 are arranged along the air flow. The first fins 232 constitute a substantially parallel plane. Similarly, the second fins 233 form a substantially parallel plane with each other.
 二次電池401~420は、空気の流れる方向と同じ方向に並んでいる。10個の二次電池401~410は、中間点234よりも上流側に配置されている。残りの10個の二次電池411~420は、中間点234よりも下流側に配置されている。各二次電池311は直方体であり、図1に示すようにその側面が隣接する二次電池の側面と互いに向かい合うようにして並んで配置されている。この場合、二次電池311の側面同士は、接触していることが好ましい。この構成により、電池パック31の容積を小さくできる。一般的に、二次電池311の外装は金属製である。そこで、隣接した二次電池311の外装を接触させることによって、二次電池311の熱を、外装を介して放熱部231へ伝達して放熱することもできる。すなわち、隣り合う二次電池311の間に温度差がある場合、熱は温度の高い二次電池311の外装から温度の低い二次電池311の外装へと伝導する。従って、隣り合う二次電池311の温度差を小さくできる。特に、最も下流側に配置された二次電池420の温度が最も高くなる。そこで、この構成とすることにより、二次電池420の熱は隣の二次電池の外装を介して受熱部251へ伝達することができる。なお、二次電池311は、直方体に限られず、円筒状などの他の形状であっても良い。この場合も複数個の二次電池311が、並んで配置される。 Secondary batteries 401 to 420 are arranged in the same direction as the air flow direction. The ten secondary batteries 401 to 410 are arranged on the upstream side of the intermediate point 234. The remaining ten secondary batteries 411 to 420 are arranged downstream of the intermediate point 234. Each secondary battery 311 is a rectangular parallelepiped, and is arranged side by side so that the side surface thereof faces the side surface of the adjacent secondary battery as shown in FIG. In this case, the side surfaces of the secondary battery 311 are preferably in contact with each other. With this configuration, the volume of the battery pack 31 can be reduced. In general, the exterior of the secondary battery 311 is made of metal. Therefore, by contacting the exterior of the adjacent secondary battery 311, the heat of the secondary battery 311 can be transmitted to the heat radiation portion 231 through the exterior to radiate heat. That is, when there is a temperature difference between the adjacent secondary batteries 311, heat is conducted from the exterior of the secondary battery 311 having a high temperature to the exterior of the secondary battery 311 having a low temperature. Therefore, the temperature difference between the adjacent secondary batteries 311 can be reduced. In particular, the temperature of the secondary battery 420 arranged on the most downstream side becomes the highest. Therefore, with this configuration, the heat of the secondary battery 420 can be transmitted to the heat receiving unit 251 through the exterior of the adjacent secondary battery. Note that the secondary battery 311 is not limited to a rectangular parallelepiped, and may have another shape such as a cylindrical shape. Also in this case, a plurality of secondary batteries 311 are arranged side by side.
 以上のような構成により、中間点234から上流側は、中間点234から下流側の間隔よりも広く、空気流との接触面積が小さくなることによって、中間点234における空気流の温度上昇を抑制可能である。したがって、中間点234から下流側に配置された二次電池311の熱を良好に放熱できる。特に、最下流の二次電池420の温度上昇を大きく抑制可能である。その結果、二次電池401~420の間での温度差を小さくできる。 With the configuration as described above, the upstream side from the intermediate point 234 is wider than the interval from the intermediate point 234 to the downstream side, and the contact area with the air flow is reduced, thereby suppressing the temperature increase of the air flow at the intermediate point 234. Is possible. Therefore, the heat of the secondary battery 311 disposed downstream from the intermediate point 234 can be radiated well. In particular, the temperature increase of the most downstream secondary battery 420 can be greatly suppressed. As a result, the temperature difference between the secondary batteries 401 to 420 can be reduced.
 従来の二次電池の冷却装置において、下流近傍に配置された二次電池の温度上昇を抑制する為には、送風機の風量を大きくすることが必要となる。しかしながら、冷却装置21では、中間点234よりも上流側での風路の断面積を大きくできることによって、上流側での空気流の圧力損失も小さくできる。その結果、送風機の風量を大きくしなくても、良好に放熱できる。 In the conventional secondary battery cooling device, it is necessary to increase the air volume of the blower in order to suppress the temperature rise of the secondary battery disposed in the vicinity of the downstream. However, in the cooling device 21, the pressure loss of the air flow on the upstream side can be reduced by increasing the cross-sectional area of the air passage on the upstream side of the intermediate point 234. As a result, heat can be radiated well without increasing the air volume of the blower.
 なお、20個の二次電池311のうちの半分の10個の二次電池401~410を中間点234よりも上流側に配置したが、この構成に限られず、中間点234は、二次電池401~420の温度差が小さくなるような位置に設定される。 Note that the 10 secondary batteries 401 to 410, which are half of the 20 secondary batteries 311, are arranged upstream of the intermediate point 234. However, the present invention is not limited to this configuration, and the intermediate point 234 is a secondary battery. The position is set such that the temperature difference between 401 and 420 is small.
 以下、冷却装置21についてさらに詳しく説明する。電池パック31は、二次電池311以外に、二次電池311間を接続する為の回路基板または配線などを含んでいる。さらに電池パック31は、電源回路などを含んでも良い。車両に搭載される二次電池311は一般的に非常に高い電圧を発生する。したがって、水分やごみ(たとえば金属粉)などが収納ケース51内に侵入しないように構成されている。その為には、収納ケース51は、密閉構造であることが好ましい。 Hereinafter, the cooling device 21 will be described in more detail. In addition to the secondary battery 311, the battery pack 31 includes a circuit board or wiring for connecting the secondary batteries 311. Furthermore, the battery pack 31 may include a power supply circuit and the like. The secondary battery 311 mounted on the vehicle generally generates a very high voltage. Therefore, it is configured such that moisture, dust (for example, metal powder) or the like does not enter the storage case 51. For this purpose, the storage case 51 preferably has a sealed structure.
 冷却部221は、上流冷却部221aと、下流冷却部221bを有している。上流冷却部221aは、中間点234の上流側に配置されている。一方、下流冷却部221bは、中間点234の下流側に配置されている。この場合、二次電池401~410は、上流冷却部221aの受熱部251aと接触している構成であることが好ましい。一方、二次電池411~420は、下流冷却部221bの受熱部251bと接触している構成であることが好ましい。すなわち、二次電池401~410の熱は、主に、上流冷却部221aに伝わり、中間点234よりも上流側の第一のフィン232aによって主に放熱される。一方、二次電池411~420の熱は、主に下流冷却部221bに伝わり、中間点234よりも下流側の第一のフィン232bと第二のフィン233によって主に放熱される。 The cooling unit 221 has an upstream cooling unit 221a and a downstream cooling unit 221b. The upstream cooling unit 221 a is disposed on the upstream side of the intermediate point 234. On the other hand, the downstream cooling unit 221 b is disposed on the downstream side of the intermediate point 234. In this case, the secondary batteries 401 to 410 are preferably configured to be in contact with the heat receiving unit 251a of the upstream cooling unit 221a. On the other hand, the secondary batteries 411 to 420 are preferably in contact with the heat receiving part 251b of the downstream cooling part 221b. That is, the heat of the secondary batteries 401 to 410 is mainly transmitted to the upstream cooling unit 221a, and is mainly radiated by the first fin 232a upstream of the intermediate point 234. On the other hand, the heat of the secondary batteries 411 to 420 is mainly transmitted to the downstream cooling unit 221b, and is mainly radiated by the first fin 232b and the second fin 233 downstream from the intermediate point 234.
 この場合、上流冷却部221aと下流冷却部221bは、別部材によって形成されていることが好ましい。すなわち、上流冷却部221aと下流冷却部221bは、一体ではなく、別体に形成されている。この場合、上流冷却部221aには、第一のフィン232aが設けられている。一方、下流冷却部221bには、第一のフィン232bと第二のフィン233が設けられている。この構成により、上流冷却部221aと下流冷却部221bは、それぞれ引き抜きまたは押し出しなどで中間加工物を作成し、その中間加工物を切断することによって容易に製造できる。したがって上流冷却部221aと下流冷却部221bを別部材によって形成することで、その製造の工数も少なくでき、冷却部221を安価に製造できる。また、下流冷却部221bをこれらの加工方法で成形できる為に、第一のフィン232bと第二のフィン233の間の間隔を小さくすることもできる。なお、第一のフィン232a、第一のフィン232bおよび第二のフィン233は、上流から下流に向って一直線状であることが好ましい。この構成により、空気流が通過する複数の風路の長さを一定にできる。従って、風路による空気流の圧力損失の差を小さくできる。排気孔271bから送気される空気流の送気方向を変えたい場合、排気孔271bの下流で風路を曲げて、所望の方向へと送気する。なお、第一のフィン232は一直線である構成に限られず、空気流の圧力損失や二次電池311の温度低下に影響の及ぼさない範囲で湾曲したり、折れ曲がっていたりしても良い。 In this case, it is preferable that the upstream cooling part 221a and the downstream cooling part 221b are formed by separate members. That is, the upstream cooling unit 221a and the downstream cooling unit 221b are not integrated but formed separately. In this case, a first fin 232a is provided in the upstream cooling unit 221a. On the other hand, a first fin 232b and a second fin 233 are provided in the downstream cooling unit 221b. With this configuration, the upstream cooling unit 221a and the downstream cooling unit 221b can be easily manufactured by creating an intermediate workpiece by drawing or extruding, and cutting the intermediate workpiece. Therefore, by forming the upstream cooling part 221a and the downstream cooling part 221b by separate members, the number of manufacturing steps can be reduced, and the cooling part 221 can be manufactured at low cost. Moreover, since the downstream cooling part 221b can be shape | molded with these processing methods, the space | interval between the 1st fin 232b and the 2nd fin 233 can also be made small. In addition, it is preferable that the 1st fin 232a, the 1st fin 232b, and the 2nd fin 233 are linear from upstream to downstream. With this configuration, the length of the plurality of air paths through which the airflow passes can be made constant. Therefore, the difference in the pressure loss of the airflow due to the air path can be reduced. When it is desired to change the air supply direction of the air flow supplied from the exhaust hole 271b, the air path is bent downstream of the exhaust hole 271b and the air is supplied in a desired direction. Note that the first fin 232 is not limited to a straight configuration, and may be bent or bent within a range that does not affect the pressure loss of the air flow or the temperature drop of the secondary battery 311.
 また、20個の二次電池311のうちの半分の10個の二次電池411~420を下流冷却部221bと接する構成としているが、この構成に限られない。すなわち、二次電池401~420のうちの少なくともm番目(mは自然数、m≧2)とm+1番目の2個は、下流冷却部221bと接する構成とする。この場合、二次電池401~420のうちの少なくとも1個は、上流冷却部221aと接している構成とする。逆に、二次電池401~420のうちの少なくとも2個が、上流冷却部221aと接している構成としても良い。この場合、m番目の二次電池~420のうちの少なくとも1個は、下流冷却部221bと接している構成とする。この構成により、共通の冷却部と接している二次電池311の内で、比較的温度の高い二次電池は、その他の二次電池に比べて、多くの熱量を冷却部221に伝えることができる。その結果、冷却部221に接している二次電池311間の温度差を小さくできる。なお、二次電池401~420のうちの何個の二次電池311を上流冷却部221aと下流冷却部221bのそれぞれへ接触させるかについては、二次電池401~420の温度差が所望の値よりも小さくなるように設定すれば良い。 In addition, although 10 secondary batteries 411 to 420, which are half of the 20 secondary batteries 311, are in contact with the downstream cooling unit 221 b, the configuration is not limited thereto. That is, at least the mth (m is a natural number, m ≧ 2) and the m + 1th two of the secondary batteries 401 to 420 are configured to be in contact with the downstream cooling unit 221b. In this case, at least one of the secondary batteries 401 to 420 is configured to be in contact with the upstream cooling unit 221a. Conversely, at least two of the secondary batteries 401 to 420 may be in contact with the upstream cooling unit 221a. In this case, at least one of the mth secondary batteries to 420 is in contact with the downstream cooling unit 221b. With this configuration, among the secondary batteries 311 that are in contact with the common cooling unit, a secondary battery having a relatively high temperature can transmit a larger amount of heat to the cooling unit 221 than other secondary batteries. it can. As a result, the temperature difference between the secondary batteries 311 in contact with the cooling unit 221 can be reduced. Note that the number of secondary batteries 311 among the secondary batteries 401 to 420 to be brought into contact with each of the upstream cooling unit 221a and the downstream cooling unit 221b has a desired temperature difference between the secondary batteries 401 to 420. What is necessary is just to set so that it may become smaller.
 放熱部231は、第一面235の反対に第二面236を有している。二次電池311の底面と第二面236との間には、熱伝導の高い熱伝導部材237が設けられている。熱伝導部材237としては、たとえば熱伝導性ゴムまたはカーボンシートなどのようなシート状の部材を用いることができる。シート状の熱伝導部材237は、貼り付けられる貼り付け面237aと、受熱面237bを有している。貼り付け面237aが第二面236へ貼り付けられる。一方、シート状の熱伝導部材237の受熱面237bに、二次電池311の底面である第三面312が接触している。この場合、熱伝導部材237は、受熱部251を構成している。 The heat radiation part 231 has a second surface 236 opposite to the first surface 235. Between the bottom surface of the secondary battery 311 and the second surface 236, a heat conducting member 237 having high heat conduction is provided. As the heat conductive member 237, for example, a sheet-like member such as a heat conductive rubber or a carbon sheet can be used. The sheet-like heat conductive member 237 has a pasting surface 237a to be pasted and a heat receiving surface 237b. An affixing surface 237 a is affixed to the second surface 236. On the other hand, the third surface 312 which is the bottom surface of the secondary battery 311 is in contact with the heat receiving surface 237 b of the sheet-like heat conducting member 237. In this case, the heat conducting member 237 forms a heat receiving portion 251.
 なお、熱伝導部材237は、収納ケース51の開口を覆っていることが好ましい。第二面236もまた収納ケース51の開口を塞いでいることが好ましい。収納ケース51の開口側の端部と第二面236との間に熱伝導部材237が介在する構成とする。この構成により、二次電池311の発する熱は収納ケース51を介して放熱部231から放熱することができる。すなわち、電池パック31の底面以外の面からの熱も放熱部231によって放熱できる。その結果、電池パック31の表面温度を低下できる。さらに収納ケース51自体の温度も低くできる。 The heat conducting member 237 preferably covers the opening of the storage case 51. The second surface 236 also preferably closes the opening of the storage case 51. A heat conducting member 237 is interposed between the opening side end of the storage case 51 and the second surface 236. With this configuration, the heat generated by the secondary battery 311 can be radiated from the heat radiating unit 231 through the storage case 51. That is, heat from the surface other than the bottom surface of the battery pack 31 can also be radiated by the heat radiating unit 231. As a result, the surface temperature of the battery pack 31 can be lowered. Further, the temperature of the storage case 51 itself can be lowered.
 熱伝導部材237は、弾性を有していることが好ましい。この場合、熱伝導部材237としては、たとえば熱伝導性のゴムを用いることができる。なお、二次電池311は、熱伝導部材237へ押し付けられて接触していることが好ましい。この場合、二次電池311と受熱部251が隙間無く接していることが好ましい。受熱面237bと接している二次電池311の第三面312(底面)はフラットであることが望ましい。これらの構成により、二次電池311の底面と熱伝導部材237とが接触する面積を大きくできる。さらに、熱伝導部材237は、圧縮によって厚みが薄くなる。したがって、二次電池311の底面と第二面236との間の距離を短くできる。その結果、放熱部231と二次電池311との間の熱抵抗が小さくなることによって、二次電池311から放熱部231への熱伝導が促進される。 It is preferable that the heat conducting member 237 has elasticity. In this case, as the heat conductive member 237, for example, heat conductive rubber can be used. Note that the secondary battery 311 is preferably pressed against and in contact with the heat conducting member 237. In this case, it is preferable that the secondary battery 311 and the heat receiving portion 251 are in contact with each other without a gap. The third surface 312 (bottom surface) of the secondary battery 311 in contact with the heat receiving surface 237b is desirably flat. With these configurations, the area where the bottom surface of the secondary battery 311 and the heat conducting member 237 are in contact can be increased. Further, the thickness of the heat conducting member 237 is reduced by compression. Therefore, the distance between the bottom surface of the secondary battery 311 and the second surface 236 can be shortened. As a result, thermal resistance between the heat radiating unit 231 and the secondary battery 311 is reduced, so that heat conduction from the secondary battery 311 to the heat radiating unit 231 is promoted.
 また、シート状の熱伝導部材237は、冷却部221の中間点234の上流側から下流側へと渡設される。この構成により、上流冷却部221aと下流冷却部221bとの間に隙間を生じても、その隙間から空気流に含まれる水または塵などが入納ケース内に侵入することを抑制可能である。さらに、上流冷却部221aと下流冷却部221bとの間の熱抵抗が小さくなり、二次電池401~420の間での温度差を小さくすることが出来る。 Further, the sheet-like heat conducting member 237 is provided from the upstream side to the downstream side of the intermediate point 234 of the cooling unit 221. With this configuration, even if a gap is formed between the upstream cooling unit 221a and the downstream cooling unit 221b, it is possible to suppress water or dust contained in the airflow from entering the storage case through the gap. Furthermore, the thermal resistance between the upstream cooling unit 221a and the downstream cooling unit 221b is reduced, and the temperature difference between the secondary batteries 401 to 420 can be reduced.
 なお、熱伝導部材237としては、シート状に限られず、グリスなどを用いても良い。熱伝導部材237は、上流冷却部221aと下流冷却部221bとの間に形成された隙間に設けても良い。 The heat conducting member 237 is not limited to a sheet shape, and grease or the like may be used. The heat conducting member 237 may be provided in a gap formed between the upstream cooling unit 221a and the downstream cooling unit 221b.
 上流冷却部221aと下流冷却部221bは別部材によって構成したが、この構成に限られない。上流冷却部221aと下流冷却部221bは一体に構成しても良い。この場合、第一のフィン232aと第一のフィン232bとは一体に形成できる。この構成とすることにより、冷却部221は、ダイキャストなどによって簡単に一体に形成できる。ただし、ダイキャストの場合、第二のフィン233と第一のフィン232との間の間隔を小さくすることが困難である為に、たとえば二次電池311の個数が少ないなどのように電池パック31の発熱量が小さい場合、または、送風機211の風量が大きいような場合に適している。この構成により、上流冷却部221aと下流冷却部221bの間に隙間を生じない。したがって、水分またはごみなどが、収納ケース51内に侵入することを抑制可能である。また、中間点234よりも下流側の温度が上流側よりも高い場合、下流側の熱を上流冷却部221aでも放熱できる。逆に、中間点234よりも上流側の温度が下流側よりも高い場合、上流側の熱を下流冷却部221bでも放熱できる。 The upstream cooling unit 221a and the downstream cooling unit 221b are configured by separate members, but are not limited to this configuration. The upstream cooling unit 221a and the downstream cooling unit 221b may be configured integrally. In this case, the first fin 232a and the first fin 232b can be integrally formed. With this configuration, the cooling unit 221 can be easily formed integrally by die casting or the like. However, in the case of die casting, since it is difficult to reduce the distance between the second fin 233 and the first fin 232, the battery pack 31 has a small number of secondary batteries 311, for example. This is suitable when the amount of heat generated is small or when the air volume of the blower 211 is large. With this configuration, no gap is generated between the upstream cooling unit 221a and the downstream cooling unit 221b. Therefore, it is possible to prevent moisture or dust from entering the storage case 51. Further, when the temperature on the downstream side of the intermediate point 234 is higher than that on the upstream side, the heat on the downstream side can also be radiated by the upstream cooling unit 221a. Conversely, when the temperature upstream of the intermediate point 234 is higher than that of the downstream side, the heat on the upstream side can also be dissipated by the downstream cooling unit 221b.
 第二のフィン233は、一対の第一のフィン232の間隔の実質的に中間の箇所に配置することが好ましい。この構成により、第二のフィン233と一対の第一のフィン232および風路壁291によって構成する2つの風路271の断面積を実質的に等しくできる為に、空気流の流量について実質的な均一化が可能である。その結果、圧力損失の増大を抑制することが可能である。 It is preferable that the second fin 233 is disposed at a substantially middle position between the pair of first fins 232. With this configuration, the cross-sectional areas of the two air passages 271 formed by the second fin 233, the pair of first fins 232, and the air passage wall 291 can be made substantially equal. Uniformity is possible. As a result, an increase in pressure loss can be suppressed.
 図4は、本発明の実施の形態における二次電池の冷却装置の二次電池311の位置と二次電池401~420の温度上昇との関係を示す特性図である。横軸は二次電池311の番号(位置)を示している。図4における1番が空気流の最も上流に位置し、20番が最も下流に位置する。縦軸は二次電池401~420の温度と室温との差を示す。すなわち、図4は、電池パック31の位置に対しての温度上昇カーブを示している。 FIG. 4 is a characteristic diagram showing the relationship between the position of the secondary battery 311 of the secondary battery cooling device and the temperature rise of the secondary batteries 401 to 420 in the embodiment of the present invention. The horizontal axis indicates the number (position) of the secondary battery 311. In FIG. 4, No. 1 is located on the most upstream side of the air flow, and No. 20 is located on the most downstream side. The vertical axis represents the difference between the temperature of the secondary batteries 401 to 420 and the room temperature. That is, FIG. 4 shows a temperature rise curve with respect to the position of the battery pack 31.
 比較例は、本実施の形態の二次電池の冷却装置21に対し、第二のフィン233が設置されず、第一のフィン232のみで放熱部を構成している。なお比較例1ではフィン間隔Lが2.5mmである。比較例2ではフィン間隔Lが5mmである。比較例3ではフィン間隔Lが10mmである。比較例4ではフィン間隔Lが15mmである。比較例5は、比較例2に比べて、二次電池311のそれぞれに対し、1個の放熱部を設けた点が異なっている。なお、これらの比較例では、20個の二次電池401~420が並んで配置されている。それらのデータから、各比較例においての二次電池311の温度上昇の平均値と、二次電池401~420における最大温度と最小温度との差(以下、電池最大最小温度差という)を算出した。 In the comparative example, the second fin 233 is not installed in the secondary battery cooling device 21 of the present embodiment, and the first fin 232 alone constitutes the heat radiating portion. In Comparative Example 1, the fin interval L is 2.5 mm. In Comparative Example 2, the fin interval L is 5 mm. In Comparative Example 3, the fin interval L is 10 mm. In Comparative Example 4, the fin interval L is 15 mm. The comparative example 5 is different from the comparative example 2 in that one heat radiating portion is provided for each of the secondary batteries 311. In these comparative examples, 20 secondary batteries 401 to 420 are arranged side by side. From these data, the average value of the temperature rise of the secondary battery 311 in each comparative example and the difference between the maximum temperature and the minimum temperature in the secondary batteries 401 to 420 (hereinafter referred to as the battery maximum / minimum temperature difference) were calculated. .
 図5は、本発明の実施の形態における二次電池の冷却装置のフィン間隔Lと圧力損失の関係および電池最大最小温度差の関係を示す特性図である。横軸は比較例における一対の第一のフィン232の間隔を示す。左の縦軸は入気孔271aから排気孔271bまでの間の圧力損失を示す。右の縦軸は並べられた二次電池401~420のうちで最も高い温度と最も低い温度の差を示す。 FIG. 5 is a characteristic diagram showing the relationship between the fin interval L and the pressure loss and the relationship between the battery maximum and minimum temperature difference of the cooling device for the secondary battery in the embodiment of the present invention. The horizontal axis indicates the distance between the pair of first fins 232 in the comparative example. The left vertical axis shows the pressure loss between the inlet hole 271a and the exhaust hole 271b. The right vertical axis represents the difference between the highest temperature and the lowest temperature among the secondary batteries 401 to 420 arranged.
 図5に示すように、フィン間隔Lが5mmから15mmの間では、フィン間隔Lを狭くするほど圧力損失は小さくなり二次電池401~420の間での温度差は小さくなる。しかしフィン間隔Lを2.5mmの間隔にまで狭くすると、圧力損失が急増し、二次電池401~420の間での温度差は大きくなる。2.5mmのフィン間隔の場合、5.0mmのフィン間隔の場合に比べて電池最大最小温度差も大きい。このことから、フィン間隔Lは5mm以上に設定することが好ましいことが分かる。従って、第一のフィン232同士の間隔および第一のフィン232と第二のフィン233との間隔はともに5mm以上となるように配置することが好ましい。 As shown in FIG. 5, when the fin interval L is between 5 mm and 15 mm, the smaller the fin interval L, the smaller the pressure loss and the smaller the temperature difference between the secondary batteries 401-420. However, if the fin interval L is narrowed to 2.5 mm, the pressure loss increases rapidly, and the temperature difference between the secondary batteries 401 to 420 increases. In the case of the fin interval of 2.5 mm, the battery maximum and minimum temperature difference is also larger than in the case of the fin interval of 5.0 mm. From this, it can be seen that the fin interval L is preferably set to 5 mm or more. Therefore, it is preferable that the first fins 232 and the first fins 232 and the second fins 233 are both disposed so that the distance between them is 5 mm or more.
 なお、電池最大最小温度差はフィン間隔Lが5mmより大きくなるに従って大きくなる。従って、圧力損失と電池最大最小温度差の観点から言えば、第一のフィン232同士の間隔および第一のフィン232と第二のフィン233との間の間隔は、ともに5mm以上、15mm未満の寸法範囲内に設定すると良いこととなる。 Note that the maximum and minimum battery temperature difference increases as the fin interval L increases from 5 mm. Therefore, in terms of the pressure loss and the maximum / minimum battery temperature difference, the distance between the first fins 232 and the distance between the first fin 232 and the second fin 233 are both 5 mm or more and less than 15 mm. It is good to set within the dimension range.
 図6は、本発明の実施の形態における二次電池の冷却装置のフィン間隔Lに対して、二次電池401~420の温度上昇の平均値との関係、および二次電池401~420の最大温度と最小温度の差との関係を示す特性図である。横軸は比較例における一対の第一のフィン232の間隔を示す。左の縦軸は二次電池401~420の温度上昇の平均値を示す。右の縦軸は二次電池401~420の最大温度と最小温度の差を示す。図6に示すように、二次電池311の温度上昇の平均値は、フィン間隔を狭くするほど小さくなることが分かる。 FIG. 6 shows the relationship between the fin interval L of the secondary battery cooling device according to the embodiment of the present invention and the average temperature rise of the secondary batteries 401 to 420, and the maximum of the secondary batteries 401 to 420. It is a characteristic view which shows the relationship between temperature and the difference of minimum temperature. The horizontal axis indicates the distance between the pair of first fins 232 in the comparative example. The left vertical axis shows the average value of the temperature rise of the secondary batteries 401 to 420. The right vertical axis indicates the difference between the maximum temperature and the minimum temperature of the secondary batteries 401 to 420. As shown in FIG. 6, it can be seen that the average value of the temperature rise of the secondary battery 311 becomes smaller as the fin interval is narrowed.
 以上の考察の結果、第一のフィン232同士の間隔Lおよび第一のフィン232と第二のフィン233との間の間隔は、ともに5mm以上、15mm未満の寸法範囲内に設定すると良い。すなわち、この場合第一のフィン232と第二のフィン233との間の間隔は5mm以上であり、かつ第一のフィン232同士の間隔Lは15mm以下であることが好ましい。 As a result of the above considerations, the distance L between the first fins 232 and the distance between the first fins 232 and the second fins 233 are preferably set within a dimension range of 5 mm or more and less than 15 mm. In other words, in this case, the distance between the first fin 232 and the second fin 233 is preferably 5 mm or more, and the distance L between the first fins 232 is preferably 15 mm or less.
 なお、第二のフィン233は第一のフィン232の中間に配置することが好ましい。すなわち、第一のフィン232と第二のフィン233との間の間隔は、第一のフィン232同士の間隔Lの半分であることが好ましい。この場合、第一のフィン232同士の間隔Lは、10mm以上、15mm未満であることが好ましい。すなわち、第一のフィン232と第二のフィン233との間の間隔は5mm以上であり、7.5mm未満であることが好ましい。そこで、第一のフィン232と第二のフィン233との間のピッチ間隔は、5mm以上、7mm以下の範囲であることが、好ましい。これらの構成により、圧力損失の急増を抑えつつ二次電池311の平均温度を下げることが出来る。 Note that the second fin 233 is preferably disposed in the middle of the first fin 232. That is, the interval between the first fin 232 and the second fin 233 is preferably half of the interval L between the first fins 232. In this case, the interval L between the first fins 232 is preferably 10 mm or more and less than 15 mm. That is, the distance between the first fin 232 and the second fin 233 is 5 mm or more and preferably less than 7.5 mm. Therefore, the pitch interval between the first fin 232 and the second fin 233 is preferably in the range of 5 mm or more and 7 mm or less. With these configurations, the average temperature of the secondary battery 311 can be lowered while suppressing a rapid increase in pressure loss.
 発明者らは、以上の考察結果に基づき、第一のフィン232同士の間隔を10mmとし、第一のフィン232と第二のフィン233との間の間隔を5mmとした場合の実施例について、二次電池401~420の温度上昇の値を評価した。なお、実施例は、比較例1~4と同様に20個の二次電池311が、受熱部251に対応して配置されている。二次電池401~410の10個の二次電池311が、上流冷却部221aと接している。一方、二次電池411~420の残りの10個の二次電池311が、下流冷却部221bと接している。 Based on the above consideration results, the inventors set the interval between the first fins 232 to 10 mm, and the embodiment in which the interval between the first fin 232 and the second fin 233 is 5 mm. The temperature increase value of the secondary batteries 401 to 420 was evaluated. In the example, 20 secondary batteries 311 are arranged corresponding to the heat receiving portions 251 as in Comparative Examples 1 to 4. Ten secondary batteries 311 of the secondary batteries 401 to 410 are in contact with the upstream cooling unit 221a. On the other hand, the remaining ten secondary batteries 311 of the secondary batteries 411 to 420 are in contact with the downstream cooling unit 221b.
 実施例の評価結果を各比較例の評価結果とともに図4に示している。図4に示すように、比較例においては、空気流の下流側に配置された二次電池311の温度が上流側に配置された二次電池311よりも温度上昇が大きい。一方、実施例においては中間点234よりも上流側の二次電池311が、フィン間隔10mmの比較例3よりも低い。また、中間点234よりも下流側の二次電池311(二次電池411~420)は、比較例2と同程度の値となっている。 The evaluation results of the examples are shown in FIG. 4 together with the evaluation results of the comparative examples. As shown in FIG. 4, in the comparative example, the temperature of the secondary battery 311 disposed on the downstream side of the air flow is higher than that of the secondary battery 311 disposed on the upstream side. On the other hand, in the example, the secondary battery 311 on the upstream side of the intermediate point 234 is lower than the comparative example 3 having the fin interval of 10 mm. Further, the secondary batteries 311 (secondary batteries 411 to 420) on the downstream side of the intermediate point 234 have values similar to those of the comparative example 2.
 図7は、本発明の実施の形態における二次電池の冷却装置の圧力損失を比較する説明図である。実施例の圧力損失を1とした場合の、実施例に対する各比較例の圧力損失の比を値として表している。冷却装置21の圧力損失は、フィン間隔5mmの比較例2と比べて小さくなっている。 FIG. 7 is an explanatory diagram for comparing the pressure loss of the cooling device for the secondary battery in the embodiment of the present invention. The ratio of the pressure loss of each comparative example to the example when the pressure loss of the example is 1 is shown as a value. The pressure loss of the cooling device 21 is smaller than that of the comparative example 2 in which the fin interval is 5 mm.
 図8は、本発明の実施の形態における二次電池の冷却装置の温度差を比較する説明図である。実施例の二次電池401~420の間での温度差を1としたときの、実施例と比較例の二次電池の温度差の比で表している。冷却装置21は、比較例と比べて、二次電池311の温度差の比が小さくなっていることが分かる。そして以上の評価結果より、実施例は、いずれの比較例に比べても圧力損失、電池最高最小温度ともに小さくできることを確認できた。 FIG. 8 is an explanatory diagram for comparing the temperature difference of the cooling device for the secondary battery in the embodiment of the present invention. This is expressed as the ratio of the temperature difference between the secondary battery of the example and the comparative example, where the temperature difference between the secondary batteries 401 to 420 of the example is 1. It can be seen that the cooling device 21 has a smaller temperature difference ratio of the secondary battery 311 than the comparative example. From the above evaluation results, it was confirmed that both the pressure loss and the battery maximum / minimum temperature could be made smaller in the example than in any of the comparative examples.
 以上のように、本実施の形態の二次電池の冷却装置21は、送風機211と冷却部221を含む。送風機211は、空気流を送気する。冷却部221は、風路271と放熱部231と受熱部251を有している。風路271は、空気流が送気される。放熱部231は、風路271の風路壁291の少なくとも一部を構成する。受熱部251は、2個以上の二次電池の発する熱を受熱する。放熱部231は、一組の第一のフィングループと第二のフィン233を含む。第一のフィン232は、受熱部251の反対の第一面235から突出している。一組の第一のフィングループは、互いに隣り合って配置された一対の第一のフィン232を含み、一対の第一のフィン232が実質的に平行に列設される。一対の第一のフィン232は、空気流に沿って第一の間隔を有して平行に列設される。第二のフィン233は、一対の第一のフィン232の間に第一のフィン232の少なくとも一部と実質的に平行に位置し、第一のフィングループの空気流の上流から下流に向かう中間点から空気流の下流に向って列設される。 As described above, the secondary battery cooling device 21 of the present embodiment includes the blower 211 and the cooling unit 221. The blower 211 sends an air flow. The cooling unit 221 includes an air passage 271, a heat radiating unit 231, and a heat receiving unit 251. An air flow is supplied to the air passage 271. The heat radiating portion 231 constitutes at least a part of the air passage wall 291 of the air passage 271. The heat receiving unit 251 receives heat generated by two or more secondary batteries. The heat radiating portion 231 includes a pair of first fin group and second fin 233. The first fin 232 protrudes from the first surface 235 opposite to the heat receiving portion 251. The pair of first fin groups includes a pair of first fins 232 arranged adjacent to each other, and the pair of first fins 232 are arranged in parallel in a substantially parallel manner. The pair of first fins 232 are arranged in parallel with a first interval along the airflow. The second fin 233 is located between the pair of first fins 232 and substantially parallel to at least a part of the first fin 232, and is located in the middle from the upstream to the downstream of the air flow of the first fin group. It is arranged in a line from the point toward the downstream of the air flow.
 これにより、中間点から上流側の風路では、上流側が中間点から下流側の間隔よりも広く、中間点における空気流の温度上昇を抑制可能である。また、中間点から下流側に配置された二次電池の熱を良好に放熱可能である。その結果、上流近傍に配置された二次電池自体の発熱による温度上昇と、下流近傍に配置された二次電池自体の発熱による温度上昇とは、同程度の値に抑制可能である。 Thus, in the air path upstream from the intermediate point, the upstream side is wider than the distance from the intermediate point to the downstream side, and the temperature rise of the air flow at the intermediate point can be suppressed. Moreover, the heat of the secondary battery arrange | positioned downstream from an intermediate point can be thermally radiated favorably. As a result, the temperature increase due to the heat generation of the secondary battery itself disposed in the vicinity of the upstream and the temperature increase due to heat generation of the secondary battery itself disposed in the vicinity of the downstream can be suppressed to the same level.
 また、放熱部231は、第一面235の反対に第二面236を有し、受熱部251は、第二面236に貼付されるシート状の弾性を有する熱伝導部材237を含むことが好ましい。 Moreover, it is preferable that the thermal radiation part 231 has the 2nd surface 236 opposite to the 1st surface 235, and the heat receiving part 251 contains the heat conductive member 237 which has the sheet-like elasticity stuck on the 2nd surface 236. .
 また、冷却部221は、中間点234の上流側の上流冷却部221aと、中間点234の下流の下流冷却部221bとを有し、上流冷却部221aと下流冷却部221bとは、互いに別部材であってもよい。 The cooling unit 221 includes an upstream cooling unit 221a upstream of the intermediate point 234 and a downstream cooling unit 221b downstream of the intermediate point 234. The upstream cooling unit 221a and the downstream cooling unit 221b are separate members from each other. It may be.
 また、熱伝導部材237を、上流冷却部221aから下流冷却部221bへと渡設してもよい。 Further, the heat conducting member 237 may be provided from the upstream cooling unit 221a to the downstream cooling unit 221b.
 また、一対の第一のフィン232のうちの一方の第一のフィン232と第二のフィン233との間の間隔は、一対の第一のフィン232のうちの他方の第一のフィン232と第二のフィン233との間の間隔とほぼ等しいことが好ましい。 The distance between one first fin 232 and the second fin 233 of the pair of first fins 232 is the same as that of the other first fin 232 of the pair of first fins 232. It is preferable that the distance between the second fin 233 and the second fin 233 is substantially equal.
 また、一方の第一のフィン232と第二のフィン233との間の間隔は、5mm以上、7mm以下であることが好ましい。 Moreover, it is preferable that the space | interval between one 1st fin 232 and the 2nd fin 233 is 5 mm or more and 7 mm or less.
 また、上流冷却部221aと下流冷却部221bのうちの少なくともひとつには2個以上の二次電池が熱伝導状態で配置されてもよい。 Further, two or more secondary batteries may be arranged in a heat conductive state in at least one of the upstream cooling unit 221a and the downstream cooling unit 221b.
 (変形例)
 以下、冷却部221の変形例である冷却部222について、説明する。図9は、本発明の実施の形態における二次電池の冷却装置の冷却部222の変形例を示す概略斜視図である。図10は、本発明の実施の形態における二次電池の冷却装置の冷却部222の変形例を示す要部側面図である。
(Modification)
Hereinafter, a cooling unit 222 that is a modification of the cooling unit 221 will be described. FIG. 9 is a schematic perspective view showing a modification of cooling unit 222 of the cooling device for the secondary battery in the embodiment of the present invention. FIG. 10 is a main part side view showing a modification of cooling unit 222 of the cooling device for the secondary battery in the embodiment of the present invention.
 冷却装置21は、図1に示す冷却部221に代えて冷却部222を有しても良い。この場合、冷却部222は、放熱部231に代えて放熱部241を有する。放熱部241は、放熱部231に対し第二のフィン233に乱流発生部261を有している点が異なっている。乱流発生部261は、下流冷却部221bにおける第一のフィン232bおよび、第二のフィン233の上流側の端部に形成する。この場合、乱流発生部261は、第一のフィン232と第二のフィン233との上流側の端部から下流の方向へ向った複数の凹部によって形成されている。この構成により、空気流が乱流発生部261を通過する際に縦渦が生じ、縦渦により空気流がフィンから剥離する面積が小さくなる。また、縦渦によって風路271内で空気流の攪拌が生じる。この結果、伝熱が促進され、放熱部231の冷却性能を向上することが可能である。さらに、乱流発生部261によって、第一のフィン232と第二のフィン233との間の風路幅が狭くならないことによって、乱流発生部261において第一のフィン232と第二のフィン233との間と通過する冷却空気の圧力損失を小さくできる。 The cooling device 21 may have a cooling unit 222 instead of the cooling unit 221 shown in FIG. In this case, the cooling unit 222 includes a heat dissipation unit 241 instead of the heat dissipation unit 231. The heat dissipating part 241 is different from the heat dissipating part 231 in that the second fin 233 has a turbulent flow generating part 261. The turbulent flow generation unit 261 is formed at the upstream end of the first fin 232b and the second fin 233 in the downstream cooling unit 221b. In this case, the turbulent flow generation unit 261 is formed by a plurality of recesses extending from the upstream end portions of the first fin 232 and the second fin 233 toward the downstream direction. With this configuration, a vertical vortex is generated when the air flow passes through the turbulent flow generation unit 261, and an area where the air flow is separated from the fin by the vertical vortex is reduced. Further, the air flow is agitated in the air passage 271 by the vertical vortex. As a result, heat transfer is promoted and the cooling performance of the heat radiating part 231 can be improved. Furthermore, the turbulent flow generation unit 261 does not reduce the width of the air path between the first fin 232 and the second fin 233, so that the first fin 232 and the second fin 233 in the turbulent flow generation unit 261. The pressure loss of the cooling air passing between and can be reduced.
 乱流発生部261を設けることにより、放熱部231の空気流の流れ方向の単位長さあたりの冷却性能を高くできる。これにより、乱流発生部261を有していない構成に比べて、放熱部231の空気流の流れ方向の長さを短縮することが出来る。その結果、冷却部222の重量およびコストを削減することが出来る。 By providing the turbulent flow generation part 261, the cooling performance per unit length in the air flow direction of the heat dissipation part 231 can be enhanced. Thereby, compared with the structure which does not have the turbulent flow generation part 261, the length of the flow direction of the air flow of the thermal radiation part 231 can be shortened. As a result, the weight and cost of the cooling unit 222 can be reduced.
 乱流発生部261は、第一のフィン232bと第二のフィン233において、空気流と接する面に設けられることが好ましい。この構成により、上流冷却部221aで熱交換が行われ、温度が上昇した空気流を用いなければならない下流冷却部221bでの冷却性能が向上する。その結果、二次電池401~420の温度差を小さくすることが出来る。 The turbulent flow generation unit 261 is preferably provided on a surface in contact with the air flow in the first fin 232b and the second fin 233. With this configuration, heat exchange is performed in the upstream cooling unit 221a, and the cooling performance in the downstream cooling unit 221b in which the air flow whose temperature has increased must be used is improved. As a result, the temperature difference between the secondary batteries 401 to 420 can be reduced.
 また、乱流発生部261は、第一のフィン232および第二のフィン233とは別部材であってもよい。この場合、上流冷却部221aと下流冷却部221bの間に乱流発生部261が設けられる。この構成により、乱流発生部261は第一のフィン232および第二のフィン233と同時に成形しなくても良い。したがって、乱流発生部261を設置する位置の自由度を大きくできる。また、乱流発生部261の形状によらず、上流冷却部221aおよび下流冷却部221bは、引き抜きまたは押し出し成形によって容易に製造できる。これは、たとえば乱流発生部261が、空気流の通過する風路へ突出あるは第二のフィン233の側面から凹んだような形状である場合に有用である。風路へ突出した形状の乱流発生部261である場合、乱流発生部261は下流冷却部221bに形成した構成に限られず、上流冷却部221aに形成しても良い。ただし、この場合の乱流発生部261は、上流冷却部221aの下流側の端部近傍に形成する。 Further, the turbulent flow generation unit 261 may be a separate member from the first fin 232 and the second fin 233. In this case, the turbulent flow generation unit 261 is provided between the upstream cooling unit 221a and the downstream cooling unit 221b. With this configuration, the turbulent flow generation unit 261 may not be formed simultaneously with the first fin 232 and the second fin 233. Therefore, the freedom degree of the position which installs the turbulent flow generation part 261 can be enlarged. Regardless of the shape of the turbulent flow generation unit 261, the upstream cooling unit 221a and the downstream cooling unit 221b can be easily manufactured by drawing or extrusion molding. This is useful, for example, when the turbulent flow generation unit 261 has a shape that protrudes into the air passage through which the air flow passes or is recessed from the side surface of the second fin 233. In the case of the turbulent flow generation part 261 having a shape protruding to the air passage, the turbulent flow generation part 261 is not limited to the configuration formed in the downstream cooling part 221b, and may be formed in the upstream cooling part 221a. However, the turbulent flow generation unit 261 in this case is formed in the vicinity of the downstream end of the upstream cooling unit 221a.
 乱流発生部261は、第一のフィン232および第二のフィン233に形成した構成に限られず、第一面235あるいは風路壁291に形成しても良い。 The turbulent flow generation unit 261 is not limited to the configuration formed in the first fin 232 and the second fin 233, and may be formed in the first surface 235 or the air passage wall 291.
 以上のように、本変形例の放熱部241は、風路271の中間点234の近傍に乱流発生部261を有してもよい。 As described above, the heat dissipating unit 241 of this modification may include the turbulent flow generating unit 261 in the vicinity of the midpoint 234 of the air passage 271.
 また、乱流発生部261は、中間点234の下流側に配置されてもよい。 Further, the turbulent flow generation unit 261 may be disposed on the downstream side of the intermediate point 234.
 また、乱流発生部261は、第一のフィン232および第二のフィン233とは、別部材であってもよい。 Further, the turbulent flow generation unit 261 may be a separate member from the first fin 232 and the second fin 233.
 以上のように、本開示における技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、実施の形態に限定されず、適宜、変更、置換、付加、省略などを行った実施の形態にも適用可能である。また、実施の形態で説明する各構成要素を組み合わせて、新たな実施の形態とすることも可能である。 As described above, the embodiments have been described as examples of the technology in the present disclosure. However, the technology in the present disclosure is not limited to the embodiment, and can be applied to an embodiment in which changes, substitutions, additions, omissions, and the like are appropriately performed. In addition, it is possible to combine the components described in the embodiment to form a new embodiment.
 (車両)
 次に、電池モジュール11を搭載した車両1001について詳細に説明する。図11は、本発明の実施の形態における車両1001を示す概念図である。車両1001は、ボディ1002と、駆動部1003と、電池モジュール11を有している。駆動部1003と電池モジュール11は、ボディ1002に取り付けられている。なお、駆動部1003は、モータおよび車輪などを含む。車両1001は、駆動部1003の動作によって走行する。その為に、電池モジュール11の電力が、駆動部1003のモータへと供給されて、車両1001は移動する。車両1001は、さらにハンドル、ブレーキ、アクセルなどの操縦部(図示せず)、および、搭乗者の座る座席などを含む。駆動部1003は、モータだけでなく、エンジンを含んでも良い。
(vehicle)
Next, the vehicle 1001 equipped with the battery module 11 will be described in detail. FIG. 11 is a conceptual diagram showing a vehicle 1001 in the embodiment of the present invention. The vehicle 1001 includes a body 1002, a drive unit 1003, and a battery module 11. The drive unit 1003 and the battery module 11 are attached to the body 1002. The drive unit 1003 includes a motor, wheels, and the like. The vehicle 1001 travels by the operation of the drive unit 1003. Therefore, the electric power of the battery module 11 is supplied to the motor of the drive unit 1003, and the vehicle 1001 moves. The vehicle 1001 further includes a steering unit (not shown) such as a steering wheel, a brake, and an accelerator, and a seat on which a passenger sits. The drive unit 1003 may include not only a motor but also an engine.
 以上のような車両1001において、電池モジュール11はたとえば座席の下などの狭いスペースへ収納されている。電池モジュール11は、小型であることによって、座席の下などの狭いスペースへ容易に収納できる。電池モジュール11の重量を軽くできることによって、車両1001の走行可能距離を伸ばすことができる。さらに、駆動部1003の動力によって、素早く車両1003を加速することができる。 In the vehicle 1001 as described above, the battery module 11 is stored in a narrow space such as under a seat. The battery module 11 can be easily stored in a narrow space such as under a seat because of its small size. By reducing the weight of the battery module 11, the travelable distance of the vehicle 1001 can be extended. Furthermore, the vehicle 1003 can be quickly accelerated by the power of the drive unit 1003.
 以上のように、車両1001は、本実施の形態の二次電池の冷却装置21を搭載する。これにより、車両1001は、冷却装置21を狭いスペースに収納できる。 As described above, the vehicle 1001 is equipped with the secondary battery cooling device 21 of the present embodiment. Thereby, the vehicle 1001 can store the cooling device 21 in a narrow space.
 本発明にかかる二次電池の冷却装置は、並べて配置された複数の二次電池の間の温度差を小さくできるという効果を有し、特に車両に搭載する電池モジュール等に用いると有用である。 The cooling device for a secondary battery according to the present invention has an effect of reducing a temperature difference between a plurality of secondary batteries arranged side by side, and is particularly useful when used for a battery module or the like mounted on a vehicle.
 11 電池モジュール
 21 冷却装置
 211 送風機
 211a 送気孔
 221 冷却部
 221a 上流冷却部
 221b 下流冷却部
 222 冷却部
 231 放熱部
 232 第一のフィン
 232a 第一のフィン
 232b 第一のフィン
 233 第二のフィン
 234 中間点
 235 第一面
 236 第二面
 237 熱伝導部材
 237a 貼り付け面
 237b 受熱面
 241 放熱部
 251 受熱部
 251a 受熱部
 251b 受熱部
 261 乱流発生部
 271 風路
 271a 入気孔
 271b 排気孔
 291 風路壁
 31 電池パック
 311 二次電池
 312 第三面
 401 二次電池
 410 二次電池
 411 二次電池
 420 二次電池
 51 収納ケース
 1002 ボディ
DESCRIPTION OF SYMBOLS 11 Battery module 21 Cooling device 211 Blower 211a Air supply hole 221 Cooling part 221a Upstream cooling part 221b Downstream cooling part 222 Cooling part 231 Heat radiation part 232 First fin 232a First fin 232b First fin 233 Second fin 234 Middle Point 235 First surface 236 Second surface 237 Heat conducting member 237a Pasting surface 237b Heat receiving surface 241 Heat radiation portion 251 Heat receiving portion 251a Heat receiving portion 251b Heat receiving portion 261 Turbulent flow generating portion 271 Air passage 271a Air inlet 271b Air outlet wall 291 31 Battery pack 311 Secondary battery 312 Third surface 401 Secondary battery 410 Secondary battery 411 Secondary battery 420 Secondary battery 51 Storage case 1002 Body

Claims (11)

  1. 空気流を送気する送風機と、
      前記空気流が送気される風路と、
      前記風路の風路壁の少なくとも一部を構成する放熱部と、
      2個以上の二次電池から発する熱を受熱する受熱部と、を有する冷却部とを含み、
    前記放熱部は、
    前記受熱部の前記二次電池側と反対の第一面から突出し、前記空気流に沿って第一の間隔を有して平行に列設され、かつ互いに隣り合って列設する一対の第一のフィンを含み、前記一対の第一のフィンが実質的に平行に列設する一組の第一のフィングループと、
    前記一対の第一のフィンの間に前記第一のフィンの少なくとも一部と実質的に平行に位置し、かつ前記第一のフィングループの前記空気流の上流から下流に向かう中間点から前記空気流の下流に向って列設される第二のフィンと、を含む、
    二次電池の冷却装置。
    A blower for sending airflow;
    An air path through which the air flow is supplied;
    A heat dissipating part constituting at least a part of the air passage wall of the air passage;
    A heat receiving unit that receives heat generated from two or more secondary batteries, and a cooling unit having
    The heat dissipation part is
    A pair of first elements projecting from a first surface opposite to the secondary battery side of the heat receiving portion, arranged in parallel with a first interval along the air flow, and arranged adjacent to each other A pair of first fin groups, wherein the pair of first fins are arranged substantially in parallel,
    The air from an intermediate point located between the pair of first fins and substantially parallel to at least a portion of the first fins and from upstream to downstream of the air flow of the first fin group. A second fin lined up downstream of the flow,
    Secondary battery cooling device.
  2. 前記放熱部は、
    前記第一面の反対に第二面を有し、
    前記受熱部は、
    前記第二面に貼付されるシート状の弾性を有する熱伝導部材を含む、
    請求項1記載の二次電池の冷却装置。
    The heat dissipation part is
    Having a second surface opposite the first surface;
    The heat receiving part is
    Including a sheet-like elastic heat conduction member affixed to the second surface,
    The secondary battery cooling device according to claim 1.
  3. 前記冷却部は、
    前記中間点の上流側の上流冷却部と、前記中間点の下流の下流冷却部とを有し、
    前記上流冷却部と前記下流冷却部とは、互いに別部材である、
    請求項1記載の二次電池の冷却装置。
    The cooling part is
    An upstream cooling section upstream of the intermediate point, and a downstream cooling section downstream of the intermediate point,
    The upstream cooling unit and the downstream cooling unit are separate members from each other.
    The secondary battery cooling device according to claim 1.
  4. 前記第一面の反対の第二面に貼付するシート状の弾性を有する熱伝導部材を、
    前記中間点の上流側の上流冷却部から前記中間点の下流の前記下流冷却部へと渡設する、
    請求項1記載の二次電池の冷却装置。
    A heat conductive member having a sheet-like elasticity to be attached to the second surface opposite to the first surface,
    Passing from the upstream cooling section upstream of the intermediate point to the downstream cooling section downstream of the intermediate point;
    The secondary battery cooling device according to claim 1.
  5. 前記一対の第一のフィンのうちの一方の第一のフィンと前記第二のフィンとの間の間隔は、
    前記一対の第一のフィンのうちの他方の第一のフィンと前記第二のフィンとの間の間隔とほぼ等しい、
    請求項1記載の二次電池の冷却装置。
    The distance between one first fin of the pair of first fins and the second fin is:
    Approximately equal to the distance between the other first fin of the pair of first fins and the second fin;
    The secondary battery cooling device according to claim 1.
  6. 前記一方の第一のフィンと前記第二のフィンとの間の間隔は、5mm以上、7mm以下である、
    請求項5記載の二次電池の冷却装置。
    The distance between the one first fin and the second fin is not less than 5 mm and not more than 7 mm.
    The cooling device for a secondary battery according to claim 5.
  7. 前記放熱部は、
    前記風路の前記中間点の近傍に乱流発生部を有する、
    請求項1記載の二次電池の冷却装置。
    The heat dissipation part is
    A turbulent flow generating portion in the vicinity of the intermediate point of the air path;
    The secondary battery cooling device according to claim 1.
  8. 前記乱流発生部は、前記中間点の下流側に配置される、
    請求項7記載の二次電池の冷却装置。
    The turbulent flow generation unit is disposed downstream of the intermediate point.
    The secondary battery cooling device according to claim 7.
  9. 前記乱流発生部は、前記第一のフィンおよび前記第二のフィンとは、別部材である、
    請求項7記載の二次電池の冷却装置。
    The turbulent flow generation unit is a separate member from the first fin and the second fin.
    The secondary battery cooling device according to claim 7.
  10. 前記上流冷却部と前記下流冷却部のうちの少なくともひとつには2個以上の二次電池が熱伝導状態で配置される、
    請求項3記載の二次電池の冷却装置。
    At least one of the upstream cooling unit and the downstream cooling unit includes two or more secondary batteries disposed in a heat conductive state.
    The secondary battery cooling device according to claim 3.
  11. 請求項1記載の二次電池の冷却装置を搭載する車両。 A vehicle equipped with the secondary battery cooling device according to claim 1.
PCT/JP2019/005738 2018-02-22 2019-02-18 Cooling device for secondary battery, and vehicle WO2019163689A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501740A JPWO2019163689A1 (en) 2018-02-22 2019-02-18 Secondary battery cooling device, vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-029330 2018-02-22
JP2018029330 2018-02-22

Publications (1)

Publication Number Publication Date
WO2019163689A1 true WO2019163689A1 (en) 2019-08-29

Family

ID=67686921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005738 WO2019163689A1 (en) 2018-02-22 2019-02-18 Cooling device for secondary battery, and vehicle

Country Status (2)

Country Link
JP (1) JPWO2019163689A1 (en)
WO (1) WO2019163689A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213922A (en) * 2002-12-27 2004-07-29 Matsushita Electric Ind Co Ltd Square-shaped sealed type secondary battery, battery module and battery pack
JP2008159439A (en) * 2006-12-25 2008-07-10 Toyota Motor Corp Accumulation of electricity module
JP2011187275A (en) * 2010-03-08 2011-09-22 Hitachi Ltd Battery module, battery box housing the same, and rolling stock equipped with the same
JP2012134101A (en) * 2010-12-24 2012-07-12 Nissan Motor Co Ltd Battery module and battery pack
JP2012164456A (en) * 2011-02-04 2012-08-30 Kawasaki Heavy Ind Ltd Heat dissipation plate for secondary battery and method of manufacturing the same, and secondary battery module with heat dissipation plate
WO2015151869A1 (en) * 2014-03-31 2015-10-08 日本電気株式会社 Storage battery unit and storage battery device provided with same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213922A (en) * 2002-12-27 2004-07-29 Matsushita Electric Ind Co Ltd Square-shaped sealed type secondary battery, battery module and battery pack
JP2008159439A (en) * 2006-12-25 2008-07-10 Toyota Motor Corp Accumulation of electricity module
JP2011187275A (en) * 2010-03-08 2011-09-22 Hitachi Ltd Battery module, battery box housing the same, and rolling stock equipped with the same
JP2012134101A (en) * 2010-12-24 2012-07-12 Nissan Motor Co Ltd Battery module and battery pack
JP2012164456A (en) * 2011-02-04 2012-08-30 Kawasaki Heavy Ind Ltd Heat dissipation plate for secondary battery and method of manufacturing the same, and secondary battery module with heat dissipation plate
WO2015151869A1 (en) * 2014-03-31 2015-10-08 日本電気株式会社 Storage battery unit and storage battery device provided with same

Also Published As

Publication number Publication date
JPWO2019163689A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US8906530B2 (en) Battery unit with blower
US8053100B2 (en) Battery unit with cooling device
JP4961876B2 (en) Battery cooling structure
JP6384423B2 (en) Battery pack
JP5239759B2 (en) Battery cooling device
US20060093901A1 (en) Secondary battery module and cooling apparatus for secondary battery module
CN108886189B (en) Battery pack temperature control and power supply system
JP6405912B2 (en) Battery pack
JP2005349955A (en) Cooling structure for power storage mechanism
US10160308B2 (en) Structure of brake-cooling duct
JP6118355B2 (en) Automotive battery
JP2009211829A (en) Battery pack
WO2017026312A1 (en) Battery pack
JP2017097986A (en) Battery cooling structure
JP4742514B2 (en) Battery pack and its casing
JP2015072741A (en) Battery pack
JP6507920B2 (en) Battery pack
JP4086491B2 (en) Power supply module and power supply unit incorporating the power supply module
WO2019163689A1 (en) Cooling device for secondary battery, and vehicle
JP6794781B2 (en) Battery module
JP2014203622A (en) Battery cooler
US11205811B2 (en) Cooling structure for battery
JP2010097824A (en) Battery cooler
JP4742515B2 (en) Battery pack and its casing
JP6063342B2 (en) Assembled battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501740

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757359

Country of ref document: EP

Kind code of ref document: A1