WO2019163662A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2019163662A1
WO2019163662A1 PCT/JP2019/005522 JP2019005522W WO2019163662A1 WO 2019163662 A1 WO2019163662 A1 WO 2019163662A1 JP 2019005522 W JP2019005522 W JP 2019005522W WO 2019163662 A1 WO2019163662 A1 WO 2019163662A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
boiling point
temperature
capacitor
circuit
Prior art date
Application number
PCT/JP2019/005522
Other languages
French (fr)
Japanese (ja)
Inventor
峻 豊岡
小林 晋
Original Assignee
Phcホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phcホールディングス株式会社 filed Critical Phcホールディングス株式会社
Publication of WO2019163662A1 publication Critical patent/WO2019163662A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration apparatus that circulates refrigerant between a compressor, a condenser, a throttle device, and an evaporator.
  • R245fa One of the refrigerants for the refrigeration apparatus is R245fa.
  • R245fa has an ozone layer depletion coefficient of zero.
  • the refrigeration apparatus can exhibit necessary and sufficient performance. Therefore, R245fa can be considered as one of ideal refrigerants, and has been widely used in the past as described in Patent Document 1, for example.
  • R245fa has a relatively high global warming potential (hereinafter referred to as GWP) of 1030.
  • This invention is made
  • a refrigeration apparatus includes a compressor, a condenser, a throttling device, and an evaporator constituting a refrigerant circuit in which a non-azeotropic mixed refrigerant circulates, and the non-azeotropic mixed refrigerant has a carbon double structure in a molecular structure.
  • the refrigerant circuit of the freezing apparatus which concerns on one Embodiment.
  • FIG. 1 shows an example of a refrigerant circuit provided in the refrigeration apparatus according to the present invention.
  • the refrigerant circuit 1 is provided in a refrigeration apparatus such as an ultra-low temperature freezer in which the internal temperature of the storage is ⁇ 80 ° C. or lower, for example.
  • the refrigerant circuit 1 includes a first refrigerant circuit 10 and a second refrigerant circuit 20 in which refrigerant circulates independently of each other. Both the first refrigerant circuit 10 and the second refrigerant circuit 20 can be operated simultaneously. Moreover, it is also possible to operate only one of the first refrigerant circuit 10 and the second refrigerant circuit 20 for the purpose of energy saving and maintenance.
  • the first refrigerant circuit 10 includes a first compressor 11, a first pre-condenser 12a and a first capacitor 12b, a first flow divider 13 that separates gas and liquid, a first auxiliary pressure reducer 14, and a first cascade capacitor 15.
  • the first decompressor 16 and the first evaporator tube 17 are provided.
  • the above devices are connected by a predetermined pipe (first pipe) so that the refrigerant discharged from the first compressor 11 returns to the first compressor 11 again.
  • the first refrigerant circuit 10 includes a non-azeotropic refrigerant mixture (hereinafter simply referred to as “refrigerant”) including a first refrigerant having a relatively high boiling point and a second refrigerant having a relatively low boiling point, such as a lubricant. Enclosed with additives. The refrigerant will be described in detail later.
  • refrigerant a non-azeotropic refrigerant mixture
  • the first refrigerant circuit 10 includes the first oil cooler 11a in the oil reservoir in the first compressor 11, and includes the first annular pipe 18 between the first pre-condenser 12a and the first oil cooler 11a.
  • the first compressor 11 compresses the sucked refrigerant and discharges it to the first pre-condenser 12a.
  • the first pre-capacitor 12a is a meandering pipe made of, for example, copper or aluminum for dissipating heat from the refrigerant discharged from the first compressor 11.
  • the first capacitor 12b is formed by meandering a pipe made of, for example, copper or aluminum for further dissipating the refrigerant output from the first pre-capacitor 12a.
  • the first pre-capacitor 12a and the first capacitor 12b are integrally formed on the same tube plate, for example.
  • a first shared fan 19 is arranged in the vicinity of the first pre-capacitor 12a and the first capacitor 12b so that air can be simultaneously blown to the first pre-capacitor 12a and the first capacitor 12b.
  • the first flow divider 13 diverts the refrigerant output from the first capacitor 12b into a liquid-phase refrigerant and a gas-phase refrigerant. After the diversion, the liquid-phase refrigerant is decompressed by the first auxiliary decompressor 14 (for example, capillary tube) and then evaporated by the first outer tube 15 a of the first cascade capacitor 15.
  • the first auxiliary decompressor 14 for example, capillary tube
  • the first cascade capacitor 15 is a double pipe made of, for example, copper or aluminum having a first outer pipe 15a and a first inner pipe 15b.
  • the gas phase refrigerant from the first flow divider 13 flows through the first inner pipe 15b.
  • the liquid-phase refrigerant evaporates and cools the gas-phase refrigerant flowing through the first inner pipe 15b.
  • the first decompressor 16 decompresses the refrigerant that has been cooled by the first inner tube 15 b of the first cascade condenser 15 and turned into a liquid phase, and outputs it to the first evaporator tube 17.
  • the first evaporator tube 17 is a tube made of, for example, copper or aluminum for evaporating the refrigerant decompressed by the first decompressor 16, and is an inner box (not shown) that forms a cooling chamber in which an object to be cooled is disposed. ) So as to be in thermal contact with the outer surface excluding the opening.
  • the cooling chamber is cooled by the cooling action when the refrigerant evaporates (vaporizes) in the first evaporator tube 17.
  • the refrigerant that has evaporated in the first evaporator pipe 17 into the vapor phase joins the previously evaporated refrigerant in the first cascade condenser 15 and is sucked into the first compressor 11 together.
  • the second refrigerant circuit 20 has the same configuration as the first refrigerant circuit 10. That is, the second compressor 21, the second pre-condenser 22a and the second capacitor 22b, the second shunt 23 that separates the gas and liquid, the second auxiliary decompressor 24, the second cascade capacitor 25, and the second decompressor. 26 and a second evaporator tube 27.
  • the above devices are connected by a predetermined pipe (second pipe) so that the refrigerant discharged from the second compressor 21 returns to the second compressor 21 again.
  • the second refrigerant circuit 20 is filled with the same refrigerant as the first refrigerant circuit 10. Note that a refrigerant different from the refrigerant sealed in the first refrigerant circuit 10 may be sealed in the second refrigerant circuit 20 as necessary.
  • the second refrigerant circuit 20 includes a second oil cooler 21 a and a second annular pipe 28, similarly to the first refrigerant circuit 10.
  • the second cascade capacitor 25 has a second outer tube 25a and a second inner tube 25b.
  • condenser 22b are comprised integrally in the same tube board, for example.
  • a second shared fan 29 is arranged in the vicinity of the second pre-capacitor 22a and the second capacitor 22b so that air can be simultaneously blown to the second pre-capacitor 22a and the second capacitor 22b.
  • Each of the first refrigerant circuit 10 and the second refrigerant circuit 20 may have an auxiliary machine (not shown) such as an oil separator.
  • the first decompressor 16 and the second decompressor 26 may be disposed inside the first cascade capacitor 15 and the second cascade capacitor 25, respectively. In this case, the refrigerant flowing in the first cascade condenser 15 and the second cascade condenser 25 is cooled by the refrigerant flowing in the first outer pipe 15a and the second outer pipe 25a, respectively.
  • the refrigerant circulates while changing the temperature as follows.
  • the arrow in FIG. 1 shows the circulation direction of a refrigerant
  • the gaseous refrigerant is sucked into the first compressor 11 and compressed. At this time, the temperature of the refrigerant rises.
  • the refrigerant discharged from the first compressor 11 is cooled by the first pre-condenser 12a and partly condensed.
  • the refrigerant that has passed through the first pre-capacitor 12a passes through the first annular pipe 18 and then passes through the first oil cooler 11a in the first compressor 11, and at this time, the lubricating oil in the first compressor 11 and Exchange heat.
  • the refrigerant whose temperature has increased due to this heat exchange flows into the first capacitor 12b and is cooled by the first capacitor 12b. At this time, the first refrigerant having a relatively high boiling point is condensed, and the second refrigerant having a relatively low boiling point is cooled in a gaseous state.
  • the refrigerant flows into the first flow divider 13 and is gas-liquid separated. That is, the first refrigerant that is liquid and the second refrigerant that is gas are separated from each other.
  • the first refrigerant flows into the first auxiliary decompressor 14 and adiabatically expands. At this time, the temperature of the first refrigerant is reduced, and a part thereof is vaporized. Subsequently, the first refrigerant flows into the first outer pipe 15a.
  • the second refrigerant flows into the first inner pipe 15b.
  • the second refrigerant in the first inner tube 15b exchanges heat with the first refrigerant in the first outer tube 15a and outside the first inner tube 15b, and is cooled. At this time, the first refrigerant is vaporized and the second refrigerant is liquefied.
  • the second refrigerant flows into the first decompressor 16 and adiabatically expands. At this time, the temperature of the second refrigerant decreases and a part thereof is vaporized. Subsequently, the second refrigerant flows into the first evaporator tube 17 and exchanges heat with the cooling chamber adjacent to the first evaporator tube 17. That is, the second refrigerant is vaporized and the cooling chamber is cooled.
  • the second refrigerant that has passed through the first evaporator pipe 17 flows into the first outer pipe 15a, merges with the first refrigerant, and cools the second refrigerant in the first inner pipe 15b.
  • the refrigerant that has exited the first outer tube 15a is again sucked into the first compressor 11 and compressed.
  • the refrigerant circulates while changing the temperature as in the first refrigerant circuit 10.
  • the requirements required for the refrigerant used in the refrigerant circuit in which the non-azeotropic refrigerant mixture circulates as in the refrigerant circuit 1 are as follows. That is, the evaporation temperature of the second refrigerant is lower than the final target temperature, for example, ⁇ 80 ° C., which is the temperature of the cooling chamber, and the first refrigerant can cool such a second refrigerant. Is needed. Of course, the smaller the GWP of the refrigerant, the better.
  • the inventor has obtained a non-azeotropic refrigerant mixture including a first refrigerant having a carbon double bond in a molecular structure and a second refrigerant having a boiling point lower than that of the first refrigerant.
  • the present inventors have found that such a refrigerant is suitable.
  • a chlorine atom is bonded to one carbon atom constituting the carbon double bond.
  • the presence of such chlorine atoms improves the affinity with oil, which is a lubricant encapsulated with the refrigerant.
  • the first refrigerant preferably has a molecular structure having 2 to 4 carbon atoms, and more preferably 3 or 4 carbon atoms.
  • the number of carbon atoms is 4, it preferably has a molecular structure having a linear structure.
  • the non-azeotropic refrigerant mixture may further include one or more third refrigerants having a boiling point lower than that of the first refrigerant and higher than that of the second refrigerant.
  • the third refrigerant can be cooled by the first refrigerant, and the second refrigerant can be cooled by the third refrigerant. Therefore, it is possible to cool the second refrigerant below the target temperature more reliably.
  • the first refrigerant circuit 10 has one or more additional cascade capacitors and one or more additional pressure reducers connected in series to the first cascade capacitor 15 and the first pressure reducer 16. May be. The same applies to the second refrigerant circuit 20.
  • Examples of the first refrigerant include 1,2-dichloroethylene, R1233zd (E) (trans-1-chloro-3,3,3-trifluoropropene), R1224yd (Z) ((Z) -1-chloro-2 , 3,3,3-tetrafluoropropene), R1336mzz (Z) ((Z) -1,1,1,4,4,4-hexafluoro-2-butene), R1234yf (2,3,3,3) -Tetrafluoro-1-propene) and R1234ze (E) ((E) -1,3,3,3-tetrafluoropropene) can be used.
  • the first refrigerant may be a mixture of the plurality of refrigerants listed above (for example, 1,2-dichloroethylene and R1336mzz (Z)).
  • the boiling point and GWP of R1233zd (E) are 19 ° C. and 4.5, respectively.
  • the boiling point and GWP of R1224yd (Z) are 15 ° C. and 1, respectively.
  • the boiling point and GWP of R1336mzz (Z) are 33 ° C. and 9, respectively.
  • the boiling point and GWP of R1234yf are ⁇ 29 ° C. and 4, respectively.
  • the boiling point and GWP of R1234ze (E) are -18.95 ° C. and 7, respectively.
  • Examples of the second refrigerant include R600 (normal butane), R290 (propane), R32 (difluoromethane), R125 (pentafluoroethane), R23 (trifluoromethane), R508A (39% by mass of trifluoromethane and hexafluoroethane 61). Azeotropic mixture), R508B (mixture of 46% by mass of trifluoromethane and 54% by mass of hexafluoroethane), R170 (ethane), R744 (carbon dioxide), R14 (carbon tetrafluoride), R50 (Methane) and argon can be used. Further, as the second refrigerant, a substance having a double bond in the structure such as R1270 (propylene) or R1150 (ethylene) may be used.
  • the boiling point and GWP of R600 are ⁇ 0.55 ° C. and 4, respectively.
  • the boiling point and GWP of R290 are ⁇ 42.09 ° C. and 3, respectively.
  • the boiling point and GWP of R32 are ⁇ 51.651 ° C. and 675, respectively.
  • the boiling point and GWP of R1270 are ⁇ 47.69 ° C. and 2, respectively.
  • the boiling point and GWP of R125 are ⁇ 48.09 ° C. and 3500, respectively.
  • the boiling point and GWP of R23 are ⁇ 82.1 ° C. and 14800, respectively.
  • the boiling point and GWP of R508A are ⁇ 87.377 ° C. and 13214, respectively.
  • the boiling point and GWP of R508B are ⁇ 87.344 ° C. and 13396, respectively.
  • the boiling point and GWP of R170 are ⁇ 88.598 ° C. and 6, respectively.
  • the boiling point and GWP of R744 are ⁇ 78.4 ° C. and 1, respectively.
  • the boiling point and GWP of R14 are ⁇ 128.05 ° C. and 7390, respectively.
  • the boiling point and GWP of R1150 are ⁇ 104 ° C. and 4, respectively.
  • the boiling point and GWP of R50 are ⁇ 161.48 ° C. and 25, respectively.
  • the boiling point and GWP of argon are ⁇ 185.85 ° C. and 0, respectively.
  • the non-azeotropic refrigerant mixture may include a plurality of types of refrigerants listed above as the second refrigerant.
  • the refrigerant having the lower boiling point is the second refrigerant
  • the refrigerant having the higher boiling point is the third refrigerant.
  • R23, R508A, R508B, R170, R744, R14, R1150, or R50 can be the second refrigerant
  • R600, R290, R32, R1270, or R125 can be the third refrigerant.
  • a plurality of types of the second refrigerant and the third refrigerant may be included.
  • the non-azeotropic refrigerant mixture may include a plurality of types of refrigerants listed above as the first refrigerant.
  • the refrigerant having the higher boiling point is the first refrigerant
  • the refrigerant having the lower boiling point is the second refrigerant.
  • 1,2-dichloroethylene, R1233zd (E), R1224yd (Z), or R1336mzz (Z) can be the first refrigerant
  • R1234yf or R1234ze (E) can be the second refrigerant.
  • the non-azeotropic refrigerant mixture may include a total of three or more types of refrigerants listed above as the first refrigerant and those listed as the second refrigerant above.
  • the refrigerant having the higher boiling point is the first refrigerant
  • the refrigerant having the lower boiling point is the second refrigerant
  • the refrigerant having the intermediate boiling point is the third refrigerant.
  • 1,2-dichloroethylene, R1233zd (E), R1224yd (Z) or R1336mzz (Z) is the first refrigerant
  • R23, R508A, R508B, R170, R744, R14, R1150, R50, R600, R290, R32, R1270 or R125 can be the second refrigerant
  • R1234yf or R1234ze (E) can be the third refrigerant.
  • coolant 1 is a control
  • the refrigerant 1 (control) in Table 1 was always used regardless of the refrigerant sealed in the first refrigerant circuit 10.
  • the temperature at the inlet and outlet of the first evaporator tube 17 was measured.
  • the measurement results are also shown in Table 1.
  • the temperature around the ultra-low temperature freezer at the time of the experiment was 30 ° C.
  • the inlet temperature and the outlet temperature of the first evaporator pipe 17 are the same as when the refrigerant 1 is used. It became almost the same value. That is, the temperature in the cooling chamber was sufficiently low.
  • the inlet temperature and the outlet temperature of the first evaporator pipe 17 are used. Were slightly higher than when the refrigerant 1 was used. However, both temperatures were well below -80 ° C. That is, the temperature in the cooling chamber was sufficiently low.
  • the refrigerant 1 is used as the inlet temperature and the outlet temperature of the first evaporator tube 17. Compared with the case where it was, each became slightly high. However, both temperatures were well below -80 ° C. That is, the temperature in the cooling chamber was sufficiently low.
  • the refrigerant 6 when the refrigerant 6 different from the refrigerant 2 in that it includes R290 instead of R600, the inlet temperature and the outlet temperature of the first evaporator pipe 17 are lower than when the refrigerant 1 is used. . That is, the refrigerant 6 is a refrigerant having a higher refrigeration capacity than the refrigerant 1. And since all the refrigerant
  • the inlet temperature and the outlet temperature of the first evaporator pipe 17 are compared with those when the refrigerant 1 is used. And each increased slightly. However, both temperatures were well below -80 ° C. That is, the temperature in the cooling chamber was sufficiently low. And since all the refrigerant
  • the refrigerant 8 is a refrigerant having a higher refrigeration capacity than the refrigerant 1.
  • coolant 8 is excellent also from a viewpoint that an environmental load is small.
  • the refrigeration apparatus is not limited to the ultra-low temperature freezer, and may be a refrigeration apparatus such as a biomedical freezer, a showcase, a freezer / refrigerated warehouse, a cold storage car, or an ice maker.
  • the obtained cooling temperature may be higher than ⁇ 80 ° C., for example, ⁇ 40 ° C., or may be an extremely low temperature of ⁇ 150 ° C. or lower of ⁇ 80 ° C. or lower.
  • the refrigerant circuit included in the refrigeration apparatus according to the present invention is not limited to the refrigerant circuit 1 shown in FIG. 1, and may include only the first refrigerant circuit 10, for example.
  • the refrigeration apparatus may include a binary refrigerant circuit.
  • the binary refrigerant circuit two types of refrigerants having different boiling points are circulated in independent refrigerant circuits, and these two types of refrigerants are subjected to heat exchange via a cascade heat exchanger, for example, at ⁇ 150 ° C. It is a refrigerant circuit for obtaining the following cryogenic temperature.
  • one or both of the refrigerant circuits constituting the binary refrigerant circuit may have the same configuration as the first refrigerant circuit 10 shown in FIG.
  • the present invention is suitably used as a refrigeration apparatus capable of obtaining extremely low temperatures.

Abstract

This refrigeration device is provided with a compressor, a condenser, a throttle device and an evaporator, which constitute a coolant circuit where a non-azeotropic mixed coolant is circulated; and the non-azeotropic mixed coolant contains a first coolant which has a carbon double bond in the molecular structure and a second coolant which has a boiling point that is lower than the boiling point of the first coolant.

Description

冷凍装置Refrigeration equipment
 本発明は、圧縮機、凝縮器、絞り装置及び蒸発器の間で冷媒を循環させる冷凍装置に関する。 The present invention relates to a refrigeration apparatus that circulates refrigerant between a compressor, a condenser, a throttle device, and an evaporator.
 冷凍装置用の冷媒の1つにR245faがある。R245faは、オゾン層破壊係数が0である。また、R245faを用いることで、冷凍装置は必要十分な性能を発揮することができる。よって、R245faは、理想的な冷媒の1つと考えることができ、例えば特許文献1に記載されているように、従来広く用いられている。 One of the refrigerants for the refrigeration apparatus is R245fa. R245fa has an ozone layer depletion coefficient of zero. In addition, by using R245fa, the refrigeration apparatus can exhibit necessary and sufficient performance. Therefore, R245fa can be considered as one of ideal refrigerants, and has been widely used in the past as described in Patent Document 1, for example.
特開2013-213592号公報JP 2013-213592 A
 しかしながら、R245faは、地球温暖化係数(以下、GWPと記載)が1030と比較的高い。 However, R245fa has a relatively high global warming potential (hereinafter referred to as GWP) of 1030.
 本発明は、このような状況に鑑みなされたものであり、環境負荷がより低く高性能な冷媒を用いた冷凍装置を提供することを課題とする。 This invention is made | formed in view of such a situation, and makes it a subject to provide the freezing apparatus using a high performance refrigerant | coolant with a lower environmental load.
 本発明に係る冷凍装置は、非共沸混合冷媒が循環する冷媒回路を構成する圧縮機、凝縮器、絞り装置及び蒸発器を備え、前記非共沸混合冷媒は、分子構造中に炭素二重結合を有する第1冷媒と、前記第1冷媒の沸点よりも低い沸点を有する第2冷媒とを含む。 A refrigeration apparatus according to the present invention includes a compressor, a condenser, a throttling device, and an evaporator constituting a refrigerant circuit in which a non-azeotropic mixed refrigerant circulates, and the non-azeotropic mixed refrigerant has a carbon double structure in a molecular structure. A first refrigerant having a bond, and a second refrigerant having a boiling point lower than that of the first refrigerant.
 本発明によれば、環境負荷がより低く高性能な冷媒を用いた冷凍装置を提供することができる。 According to the present invention, it is possible to provide a refrigeration apparatus using a high-performance refrigerant with a lower environmental load.
一実施形態に係る冷凍装置の冷媒回路。The refrigerant circuit of the freezing apparatus which concerns on one Embodiment.
 以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。なお、以下に説明する実施形態は一例であり、本発明はこの実施形態により限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, embodiment described below is an example and this invention is not limited by this embodiment.
 図1は、本発明に係る冷凍装置が備える冷媒回路の一例を示している。冷媒回路1は、例えば、収納庫の内部温度が-80℃以下となる超低温フリーザのような冷凍装置に備え付けられている。 FIG. 1 shows an example of a refrigerant circuit provided in the refrigeration apparatus according to the present invention. The refrigerant circuit 1 is provided in a refrigeration apparatus such as an ultra-low temperature freezer in which the internal temperature of the storage is −80 ° C. or lower, for example.
 冷媒回路1は、互いに独立して冷媒が循環する第1冷媒回路10及び第2冷媒回路20を有する。第1冷媒回路10と第2冷媒回路20は、両方を同時に作動させることができる。また、省エネやメンテナンスを目的として、第1冷媒回路10と第2冷媒回路20の何れか一方のみを作動させることも可能である。 The refrigerant circuit 1 includes a first refrigerant circuit 10 and a second refrigerant circuit 20 in which refrigerant circulates independently of each other. Both the first refrigerant circuit 10 and the second refrigerant circuit 20 can be operated simultaneously. Moreover, it is also possible to operate only one of the first refrigerant circuit 10 and the second refrigerant circuit 20 for the purpose of energy saving and maintenance.
 第1冷媒回路10は、第1圧縮機11と、第1プレコンデンサ12a及び第1コンデンサ12bと、気液を分ける第1分流器13と、第1補助減圧器14及び第1カスケードコンデンサ15と、第1減圧器16及び第1蒸発器管17とを備える。第1圧縮機11から吐出された冷媒が再び第1圧縮機11に戻るように上記各機器が所定の配管(第1配管)で接続されている。 The first refrigerant circuit 10 includes a first compressor 11, a first pre-condenser 12a and a first capacitor 12b, a first flow divider 13 that separates gas and liquid, a first auxiliary pressure reducer 14, and a first cascade capacitor 15. The first decompressor 16 and the first evaporator tube 17 are provided. The above devices are connected by a predetermined pipe (first pipe) so that the refrigerant discharged from the first compressor 11 returns to the first compressor 11 again.
 第1冷媒回路10には、沸点が比較的高い第1冷媒と、沸点が比較的低い第2冷媒とを含む非共沸混合冷媒(以下、単に「冷媒」と称する)が、潤滑剤等の添加剤とともに封入されている。冷媒については後に詳細に説明する。 The first refrigerant circuit 10 includes a non-azeotropic refrigerant mixture (hereinafter simply referred to as “refrigerant”) including a first refrigerant having a relatively high boiling point and a second refrigerant having a relatively low boiling point, such as a lubricant. Enclosed with additives. The refrigerant will be described in detail later.
 また、第1冷媒回路10は、第1オイルクーラ11aを第1圧縮機11内のオイル溜りに備え、第1環状配管18を第1プレコンデンサ12a及び第1オイルクーラ11aの間に備える。 Further, the first refrigerant circuit 10 includes the first oil cooler 11a in the oil reservoir in the first compressor 11, and includes the first annular pipe 18 between the first pre-condenser 12a and the first oil cooler 11a.
 第1圧縮機11は、吸込んだ冷媒を圧縮して第1プレコンデンサ12aに吐出する。 The first compressor 11 compresses the sucked refrigerant and discharges it to the first pre-condenser 12a.
 第1プレコンデンサ12aは、第1圧縮機11から吐出される冷媒を放熱させるための例えば銅又はアルミニウム製の管を蛇行させたものである。 The first pre-capacitor 12a is a meandering pipe made of, for example, copper or aluminum for dissipating heat from the refrigerant discharged from the first compressor 11.
 第1コンデンサ12bは、第1プレコンデンサ12aから出力される冷媒を更に放熱させるための例えば銅又はアルミニウム製の管を蛇行させたものである。 The first capacitor 12b is formed by meandering a pipe made of, for example, copper or aluminum for further dissipating the refrigerant output from the first pre-capacitor 12a.
 これら第1プレコンデンサ12a及び第1コンデンサ12bは、例えば同じ管板に一体に構成されている。なお、第1プレコンデンサ12a及び第1コンデンサ12b近傍には、第1プレコンデンサ12a及び第1コンデンサ12bに同時に送風を行うことができるように、第1共用ファン19が配置されている。 The first pre-capacitor 12a and the first capacitor 12b are integrally formed on the same tube plate, for example. A first shared fan 19 is arranged in the vicinity of the first pre-capacitor 12a and the first capacitor 12b so that air can be simultaneously blown to the first pre-capacitor 12a and the first capacitor 12b.
 第1分流器13は、第1コンデンサ12bから出力される冷媒を、液相の冷媒と、気相の冷媒とに分流する。分流後、液相の冷媒は第1補助減圧器14(例えばキャピラリチューブ)にて減圧された後、第1カスケードコンデンサ15の第1外側管15aで蒸発する。 The first flow divider 13 diverts the refrigerant output from the first capacitor 12b into a liquid-phase refrigerant and a gas-phase refrigerant. After the diversion, the liquid-phase refrigerant is decompressed by the first auxiliary decompressor 14 (for example, capillary tube) and then evaporated by the first outer tube 15 a of the first cascade capacitor 15.
 第1カスケードコンデンサ15は、第1外側管15a及び第1内側管15bを有する例えば銅又はアルミニウム製の2重管である。第1内側管15bには第1分流器13からの気相冷媒が流れる。第1外側管15aでは液相冷媒が蒸発して第1内側管15bを流れる気相冷媒を冷却する。 The first cascade capacitor 15 is a double pipe made of, for example, copper or aluminum having a first outer pipe 15a and a first inner pipe 15b. The gas phase refrigerant from the first flow divider 13 flows through the first inner pipe 15b. In the first outer pipe 15a, the liquid-phase refrigerant evaporates and cools the gas-phase refrigerant flowing through the first inner pipe 15b.
 第1減圧器16(例えばキャピラリチューブ)は、第1カスケードコンデンサ15の第1内側管15bで冷却され液相となった冷媒を減圧し、第1蒸発器管17に出力する。 The first decompressor 16 (for example, a capillary tube) decompresses the refrigerant that has been cooled by the first inner tube 15 b of the first cascade condenser 15 and turned into a liquid phase, and outputs it to the first evaporator tube 17.
 第1蒸発器管17は、第1減圧器16によって減圧された冷媒を蒸発させるための例えば銅又はアルミニウム製の管であり、被冷却物が配置される冷却室を形成する内箱(不図示)の開口を除く外面に熱的に接触するように貼付されている。 The first evaporator tube 17 is a tube made of, for example, copper or aluminum for evaporating the refrigerant decompressed by the first decompressor 16, and is an inner box (not shown) that forms a cooling chamber in which an object to be cooled is disposed. ) So as to be in thermal contact with the outer surface excluding the opening.
 冷媒が第1蒸発器管17で蒸発(気化)する際の冷却作用によって冷却室が冷却される。第1蒸発器管17で蒸発して気相となった冷媒は、第1カスケードコンデンサ15にて先の蒸発した冷媒と合流し、共に第1圧縮機11に吸い込まれる。 The cooling chamber is cooled by the cooling action when the refrigerant evaporates (vaporizes) in the first evaporator tube 17. The refrigerant that has evaporated in the first evaporator pipe 17 into the vapor phase joins the previously evaporated refrigerant in the first cascade condenser 15 and is sucked into the first compressor 11 together.
 第2冷媒回路20は、第1冷媒回路10と同様の構成を有している。すなわち、第2圧縮機21と、第2プレコンデンサ22a及び第2コンデンサ22bと、気液を分ける第2分流器23と、第2補助減圧器24及び第2カスケードコンデンサ25と、第2減圧器26及び第2蒸発器管27とを備える。第2圧縮機21から吐出された冷媒が再び第2圧縮機21に戻るように上記各機器が所定の配管(第2配管)で接続されている。第2冷媒回路20には第1冷媒回路10と同様の冷媒が封入されている。なお、必要に応じて、第2冷媒回路20に第1冷媒回路10に封入される冷媒とは異なる冷媒が封入されても良い。 The second refrigerant circuit 20 has the same configuration as the first refrigerant circuit 10. That is, the second compressor 21, the second pre-condenser 22a and the second capacitor 22b, the second shunt 23 that separates the gas and liquid, the second auxiliary decompressor 24, the second cascade capacitor 25, and the second decompressor. 26 and a second evaporator tube 27. The above devices are connected by a predetermined pipe (second pipe) so that the refrigerant discharged from the second compressor 21 returns to the second compressor 21 again. The second refrigerant circuit 20 is filled with the same refrigerant as the first refrigerant circuit 10. Note that a refrigerant different from the refrigerant sealed in the first refrigerant circuit 10 may be sealed in the second refrigerant circuit 20 as necessary.
 また、第2冷媒回路20は、第1冷媒回路10と同様に、第2オイルクーラ21aと、第2環状配管28とを備える。第2カスケードコンデンサ25は、第2外側管25a及び第2内側管25bを有する。 Further, the second refrigerant circuit 20 includes a second oil cooler 21 a and a second annular pipe 28, similarly to the first refrigerant circuit 10. The second cascade capacitor 25 has a second outer tube 25a and a second inner tube 25b.
 なお、第2プレコンデンサ22a及び第2コンデンサ22bは、例えば同じ管板に一体に構成されている。なお、第2プレコンデンサ22a及び第2コンデンサ22b近傍には、第2プレコンデンサ22a及び第2コンデンサ22bに同時に送風を行うことができるように、第2共用ファン29が配置されている。 In addition, the 2nd pre capacitor | condenser 22a and the 2nd capacitor | condenser 22b are comprised integrally in the same tube board, for example. A second shared fan 29 is arranged in the vicinity of the second pre-capacitor 22a and the second capacitor 22b so that air can be simultaneously blown to the second pre-capacitor 22a and the second capacitor 22b.
 第1冷媒回路10及び第2冷媒回路20は、それぞれ、例えばオイルセパレータのような、図示されていない補機を有していても良い。また、第1減圧器16及び第2減圧器26は、それぞれ、第1カスケードコンデンサ15及び第2カスケードコンデンサ25の内部に配置されていてもよい。この場合、第1カスケードコンデンサ15内及び第2カスケードコンデンサ25内を流れる冷媒が、それぞれ、第1外側管15a内及び第2外側管25a内を流れる冷媒によって冷却されることとなる。 Each of the first refrigerant circuit 10 and the second refrigerant circuit 20 may have an auxiliary machine (not shown) such as an oil separator. The first decompressor 16 and the second decompressor 26 may be disposed inside the first cascade capacitor 15 and the second cascade capacitor 25, respectively. In this case, the refrigerant flowing in the first cascade condenser 15 and the second cascade condenser 25 is cooled by the refrigerant flowing in the first outer pipe 15a and the second outer pipe 25a, respectively.
 第1冷媒回路10において、冷媒は次のように温度変化しながら循環する。なお、図1中の矢印は、冷媒の循環方向を示す。 In the first refrigerant circuit 10, the refrigerant circulates while changing the temperature as follows. In addition, the arrow in FIG. 1 shows the circulation direction of a refrigerant | coolant.
 まず、ガス状の冷媒は、第1圧縮機11に吸い込まれ、圧縮される。このとき、冷媒の温度は上昇する。第1圧縮機11から吐出された冷媒は、第1プレコンデンサ12aで冷却され、一部が凝縮する。第1プレコンデンサ12aを通過した冷媒は、第1環状配管18を通過した後、第1圧縮機11内の第1オイルクーラ11aを通過し、このとき、第1圧縮機11内の潤滑油と熱交換する。この熱交換によって温度が上昇した冷媒は、第1コンデンサ12bに流入し、第1コンデンサ12bで冷却される。この際、沸点が比較的高い第1冷媒は凝縮し、沸点が比較的低い第2冷媒はガス状のまま冷却される。 First, the gaseous refrigerant is sucked into the first compressor 11 and compressed. At this time, the temperature of the refrigerant rises. The refrigerant discharged from the first compressor 11 is cooled by the first pre-condenser 12a and partly condensed. The refrigerant that has passed through the first pre-capacitor 12a passes through the first annular pipe 18 and then passes through the first oil cooler 11a in the first compressor 11, and at this time, the lubricating oil in the first compressor 11 and Exchange heat. The refrigerant whose temperature has increased due to this heat exchange flows into the first capacitor 12b and is cooled by the first capacitor 12b. At this time, the first refrigerant having a relatively high boiling point is condensed, and the second refrigerant having a relatively low boiling point is cooled in a gaseous state.
 続いて、冷媒は第1分流器13に流入し、気液分離される。すなわち、液体である第1冷媒とガスである第2冷媒とが、互いに分離される。 Subsequently, the refrigerant flows into the first flow divider 13 and is gas-liquid separated. That is, the first refrigerant that is liquid and the second refrigerant that is gas are separated from each other.
 第1冷媒は、第1補助減圧器14に流入し、断熱膨張する。このとき、第1冷媒の温度は低下し、その一部が気化する。続いて、第1冷媒は、第1外側管15aに流入する。 The first refrigerant flows into the first auxiliary decompressor 14 and adiabatically expands. At this time, the temperature of the first refrigerant is reduced, and a part thereof is vaporized. Subsequently, the first refrigerant flows into the first outer pipe 15a.
 また、第2冷媒は、第1内側管15bに流入する。第1内側管15b内の第2冷媒は、第1外側管15a内かつ第1内側管15b外の第1冷媒と熱交換し、冷却される。このとき、第1冷媒は気化し、第2冷媒は液化する。 Further, the second refrigerant flows into the first inner pipe 15b. The second refrigerant in the first inner tube 15b exchanges heat with the first refrigerant in the first outer tube 15a and outside the first inner tube 15b, and is cooled. At this time, the first refrigerant is vaporized and the second refrigerant is liquefied.
 第2冷媒は、第1減圧器16に流入し、断熱膨張する。このとき、第2冷媒の温度は低下し、その一部が気化する。続いて、第2冷媒は、第1蒸発器管17に流入し、第1蒸発器管17に隣接する冷却室との間で熱交換する。すなわち、第2冷媒は気化し、冷却室は冷却される。 The second refrigerant flows into the first decompressor 16 and adiabatically expands. At this time, the temperature of the second refrigerant decreases and a part thereof is vaporized. Subsequently, the second refrigerant flows into the first evaporator tube 17 and exchanges heat with the cooling chamber adjacent to the first evaporator tube 17. That is, the second refrigerant is vaporized and the cooling chamber is cooled.
 第1蒸発器管17を通過した第2冷媒は、第1外側管15aに流入し、第1冷媒と合流し、第1内側管15b内の第2冷媒を冷却する。第1外側管15aを出た冷媒は、再び第1圧縮機11に吸い込まれ、圧縮される。 The second refrigerant that has passed through the first evaporator pipe 17 flows into the first outer pipe 15a, merges with the first refrigerant, and cools the second refrigerant in the first inner pipe 15b. The refrigerant that has exited the first outer tube 15a is again sucked into the first compressor 11 and compressed.
 第2冷媒回路20においても、第1冷媒回路10における場合と同様に温度変化しながら、冷媒は循環する。 In the second refrigerant circuit 20 as well, the refrigerant circulates while changing the temperature as in the first refrigerant circuit 10.
 冷媒回路1のように、非共沸混合冷媒が循環する冷媒回路に用いられる冷媒に求められる要件は、次のようなものである。すなわち、第2冷媒の蒸発温度が、最終的な目標温度、例えば、冷却室の温度である-80℃よりも低く、第1冷媒が、そのような第2冷媒を冷却することが可能であることが必要とされる。また、当然ながら、冷媒のGWPは小さければ小さいほどよい。 The requirements required for the refrigerant used in the refrigerant circuit in which the non-azeotropic refrigerant mixture circulates as in the refrigerant circuit 1 are as follows. That is, the evaporation temperature of the second refrigerant is lower than the final target temperature, for example, −80 ° C., which is the temperature of the cooling chamber, and the first refrigerant can cool such a second refrigerant. Is needed. Of course, the smaller the GWP of the refrigerant, the better.
 本発明者は、試行錯誤を繰り返した結果、分子構造中に炭素二重結合を有する第1冷媒と、第1冷媒の沸点よりも低い沸点を有する第2冷媒とを含む非共沸混合冷媒が、そのような冷媒として好適であることを見出した。 As a result of repeating trial and error, the inventor has obtained a non-azeotropic refrigerant mixture including a first refrigerant having a carbon double bond in a molecular structure and a second refrigerant having a boiling point lower than that of the first refrigerant. The present inventors have found that such a refrigerant is suitable.
 また、炭素二重結合を構成する一方の炭素原子には塩素原子が結合されていることがより好ましい。このような塩素原子が存在することにより、冷媒とともに封入される潤滑剤である油との親和性が向上する。 Further, it is more preferable that a chlorine atom is bonded to one carbon atom constituting the carbon double bond. The presence of such chlorine atoms improves the affinity with oil, which is a lubricant encapsulated with the refrigerant.
 また、第1冷媒の直鎖構造の炭素数が大きくなりすぎると、第1冷媒の沸点が高くなりすぎてしまう。その場合、第1冷媒の沸点と第2冷媒の沸点との差が大きくなってしまい、第1冷媒は、目標温度が例えば-80℃である冷媒回路に用いるには適さない冷媒となる。よって、第1冷媒は、炭素数が2~4である分子構造を有することがより好ましく、炭素数が3又は4であることが更に好ましい。また、炭素数が4である場合は、直鎖構造を有する分子構造を有することが好ましい。 Also, if the carbon number of the linear structure of the first refrigerant becomes too large, the boiling point of the first refrigerant will become too high. In this case, the difference between the boiling point of the first refrigerant and the boiling point of the second refrigerant becomes large, and the first refrigerant becomes a refrigerant that is not suitable for use in a refrigerant circuit whose target temperature is, for example, −80 ° C. Therefore, the first refrigerant preferably has a molecular structure having 2 to 4 carbon atoms, and more preferably 3 or 4 carbon atoms. In addition, when the number of carbon atoms is 4, it preferably has a molecular structure having a linear structure.
 また、非共沸混合冷媒は、第1冷媒の沸点よりも低く、第2冷媒の沸点よりも高い沸点を有する第3冷媒を更に1種類以上含んでも良い。この場合、第1冷媒で第3冷媒を冷却し、第3冷媒で第2冷媒を冷却することができる。よって、より確実に、第2冷媒を目標温度以下に冷却することができる。なお、この場合、第1冷媒回路10は、第1カスケードコンデンサ15及び第1減圧器16に直列的に接続される1つ以上の追加のカスケードコンデンサ及び1つ以上の追加の減圧器を有しても良い。第2冷媒回路20も同様である。 Further, the non-azeotropic refrigerant mixture may further include one or more third refrigerants having a boiling point lower than that of the first refrigerant and higher than that of the second refrigerant. In this case, the third refrigerant can be cooled by the first refrigerant, and the second refrigerant can be cooled by the third refrigerant. Therefore, it is possible to cool the second refrigerant below the target temperature more reliably. In this case, the first refrigerant circuit 10 has one or more additional cascade capacitors and one or more additional pressure reducers connected in series to the first cascade capacitor 15 and the first pressure reducer 16. May be. The same applies to the second refrigerant circuit 20.
 第1冷媒としては、例えば、1,2-ジクロロエチレン、R1233zd(E)(トランス-1-クロロ-3,3,3-トリフルオロプロペン)、R1224yd(Z)((Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン)、R1336mzz(Z)((Z)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)、R1234yf(2,3,3,3-テトラフルオロ-1-プロペン)及びR1234ze(E)((E)-1,3,3,3-テトラフルオロプロペン)を用いることができる。炭素二重結合を構成する一方の炭素原子には塩素原子が結合されているので、R1233zd(E)及びR1224yd(Z)といった種類の冷媒が特に好ましい。なお、第1冷媒は、上に挙げた複数の冷媒(例えば、1,2-ジクロロエチレンとR1336mzz(Z))の混合物であってもよい。 Examples of the first refrigerant include 1,2-dichloroethylene, R1233zd (E) (trans-1-chloro-3,3,3-trifluoropropene), R1224yd (Z) ((Z) -1-chloro-2 , 3,3,3-tetrafluoropropene), R1336mzz (Z) ((Z) -1,1,1,4,4,4-hexafluoro-2-butene), R1234yf (2,3,3,3) -Tetrafluoro-1-propene) and R1234ze (E) ((E) -1,3,3,3-tetrafluoropropene) can be used. Since a chlorine atom is bonded to one carbon atom constituting the carbon double bond, a type of refrigerant such as R1233zd (E) and R1224yd (Z) is particularly preferable. The first refrigerant may be a mixture of the plurality of refrigerants listed above (for example, 1,2-dichloroethylene and R1336mzz (Z)).
 なお、R1233zd(E)の沸点及びGWPは、それぞれ、19℃及び4.5である。R1224yd(Z)の沸点及びGWPは、それぞれ、15℃及び1である。R1336mzz(Z)の沸点及びGWPは、それぞれ、33℃及び9である。R1234yfの沸点及びGWPは、それぞれ、-29℃及び4である。R1234ze(E)の沸点及びGWPは、それぞれ、-18.95℃及び7である。 Note that the boiling point and GWP of R1233zd (E) are 19 ° C. and 4.5, respectively. The boiling point and GWP of R1224yd (Z) are 15 ° C. and 1, respectively. The boiling point and GWP of R1336mzz (Z) are 33 ° C. and 9, respectively. The boiling point and GWP of R1234yf are −29 ° C. and 4, respectively. The boiling point and GWP of R1234ze (E) are -18.95 ° C. and 7, respectively.
 第2冷媒としては、例えば、R600(ノルマルブタン)、R290(プロパン)、R32(ジフルオロメタン)、R125(ペンタフルオロエタン)、R23(トリフルオロメタン)、R508A(トリフルオロメタン39質量%とヘキサフルオロエタン61質量%を混合した共沸混合物)、R508B(トリフルオロメタン46質量%とヘキサフルオロエタン54質量%を混合した混合物)、R170(エタン)、R744(二酸化炭素)、R14(四フッ化炭素)、R50(メタン)及びアルゴンを用いることができる。また、第2冷媒としては、R1270(プロピレン)、R1150(エチレン)といった二重結合を構造中に有する物質を用いても良い。 Examples of the second refrigerant include R600 (normal butane), R290 (propane), R32 (difluoromethane), R125 (pentafluoroethane), R23 (trifluoromethane), R508A (39% by mass of trifluoromethane and hexafluoroethane 61). Azeotropic mixture), R508B (mixture of 46% by mass of trifluoromethane and 54% by mass of hexafluoroethane), R170 (ethane), R744 (carbon dioxide), R14 (carbon tetrafluoride), R50 (Methane) and argon can be used. Further, as the second refrigerant, a substance having a double bond in the structure such as R1270 (propylene) or R1150 (ethylene) may be used.
 なお、R600の沸点及びGWPは、それぞれ、-0.55℃及び4である。R290の沸点及びGWPは、それぞれ、-42.09℃及び3である。R32の沸点及びGWPは、それぞれ、-51.651℃及び675である。R1270の沸点及びGWPは、それぞれ、-47.69℃及び2である。R125の沸点及びGWPは、それぞれ、-48.09℃及び3500である。R23の沸点及びGWPは、それぞれ、-82.1℃及び14800である。R508Aの沸点及びGWPは、それぞれ、-87.377℃及び13214である。R508Bの沸点及びGWPは、それぞれ、-87.344℃及び13396である。R170の沸点及びGWPは、それぞれ、-88.598℃及び6である。R744の沸点及びGWPは、それぞれ、-78.4℃及び1である。R14の沸点及びGWPは、それぞれ、-128.05℃及び7390である。R1150の沸点及びGWPは、それぞれ、-104℃及び4である。R50の沸点及びGWPは、それぞれ、-161.48℃及び25である。アルゴンの沸点及びGWPは、それぞれ、-185.85℃及び0である。 Note that the boiling point and GWP of R600 are −0.55 ° C. and 4, respectively. The boiling point and GWP of R290 are −42.09 ° C. and 3, respectively. The boiling point and GWP of R32 are −51.651 ° C. and 675, respectively. The boiling point and GWP of R1270 are −47.69 ° C. and 2, respectively. The boiling point and GWP of R125 are −48.09 ° C. and 3500, respectively. The boiling point and GWP of R23 are −82.1 ° C. and 14800, respectively. The boiling point and GWP of R508A are −87.377 ° C. and 13214, respectively. The boiling point and GWP of R508B are −87.344 ° C. and 13396, respectively. The boiling point and GWP of R170 are −88.598 ° C. and 6, respectively. The boiling point and GWP of R744 are −78.4 ° C. and 1, respectively. The boiling point and GWP of R14 are −128.05 ° C. and 7390, respectively. The boiling point and GWP of R1150 are −104 ° C. and 4, respectively. The boiling point and GWP of R50 are −161.48 ° C. and 25, respectively. The boiling point and GWP of argon are −185.85 ° C. and 0, respectively.
 また、非共沸混合冷媒は、上に第2冷媒として挙げた冷媒を複数種類含んでも良い。その場合、沸点が低い方の冷媒が第2冷媒であり、沸点が高い方の冷媒が第3冷媒となる。例えば、R23、R508A、R508B、R170、R744、R14、R1150又はR50を第2冷媒とし、R600、R290、R32、R1270又はR125を第3冷媒とすることができる。第2冷媒及び第3冷媒がそれぞれ複数種類含まれていても良いことは勿論である。 Further, the non-azeotropic refrigerant mixture may include a plurality of types of refrigerants listed above as the second refrigerant. In that case, the refrigerant having the lower boiling point is the second refrigerant, and the refrigerant having the higher boiling point is the third refrigerant. For example, R23, R508A, R508B, R170, R744, R14, R1150, or R50 can be the second refrigerant, and R600, R290, R32, R1270, or R125 can be the third refrigerant. Of course, a plurality of types of the second refrigerant and the third refrigerant may be included.
 また、非共沸混合冷媒は、上に第1冷媒として挙げた冷媒を複数種類含んでも良い。その場合、沸点が高い方の冷媒が第1冷媒であり、沸点が低い方の冷媒が第2冷媒となる。例えば、1,2-ジクロロエチレン、R1233zd(E)、R1224yd(Z)又はR1336mzz(Z)を第1冷媒とし、R1234yf又はR1234ze(E)を第2冷媒とすることができる。 Further, the non-azeotropic refrigerant mixture may include a plurality of types of refrigerants listed above as the first refrigerant. In that case, the refrigerant having the higher boiling point is the first refrigerant, and the refrigerant having the lower boiling point is the second refrigerant. For example, 1,2-dichloroethylene, R1233zd (E), R1224yd (Z), or R1336mzz (Z) can be the first refrigerant, and R1234yf or R1234ze (E) can be the second refrigerant.
 また、非共沸混合冷媒は、上に第1冷媒として挙げた冷媒及び上に第2冷媒として挙げた冷媒を合計3種類以上含んでも良い。その場合、沸点が高い方の冷媒が第1冷媒であり、沸点が低い方の冷媒が第2冷媒であり、沸点が中間にある冷媒が第3冷媒となる。例えば、1,2-ジクロロエチレン、R1233zd(E)、R1224yd(Z)又はR1336mzz(Z)を第1冷媒とし、R23、R508A、R508B、R170、R744、R14、R1150、R50、R600、R290、R32、R1270又はR125を第2冷媒とし、R1234yf又はR1234ze(E)を第3冷媒とすることができる。 Further, the non-azeotropic refrigerant mixture may include a total of three or more types of refrigerants listed above as the first refrigerant and those listed as the second refrigerant above. In that case, the refrigerant having the higher boiling point is the first refrigerant, the refrigerant having the lower boiling point is the second refrigerant, and the refrigerant having the intermediate boiling point is the third refrigerant. For example, 1,2-dichloroethylene, R1233zd (E), R1224yd (Z) or R1336mzz (Z) is the first refrigerant, and R23, R508A, R508B, R170, R744, R14, R1150, R50, R600, R290, R32, R1270 or R125 can be the second refrigerant, and R1234yf or R1234ze (E) can be the third refrigerant.
 続いて、冷媒回路1を備える超低温フリーザを用いて行われた実験について説明する。実験では、第1冷媒回路10に封入される冷媒として、表1に示される種々の冷媒を用いた。なお、冷媒1は、対照であり、従来用いられているR245faを第1冷媒として含む冷媒である。 Subsequently, an experiment performed using an ultra-low temperature freezer equipped with the refrigerant circuit 1 will be described. In the experiment, various refrigerants shown in Table 1 were used as the refrigerant sealed in the first refrigerant circuit 10. In addition, the refrigerant | coolant 1 is a control | contrast and is a refrigerant | coolant which contains R245fa used conventionally as a 1st refrigerant | coolant.
 また、第2冷媒回路20に封入される冷媒として、第1冷媒回路10に封入される冷媒に関わらず、常に、表1中の冷媒1(対照)を用いた。 Further, as the refrigerant sealed in the second refrigerant circuit 20, the refrigerant 1 (control) in Table 1 was always used regardless of the refrigerant sealed in the first refrigerant circuit 10.
 実験では、第1蒸発器管17の入口及び出口における温度を計測した。計測結果を、併せて表1に示す。なお、実験時における超低温フリーザ周囲の気温は、30℃であった。 In the experiment, the temperature at the inlet and outlet of the first evaporator tube 17 was measured. The measurement results are also shown in Table 1. The temperature around the ultra-low temperature freezer at the time of the experiment was 30 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、従来用いられているR245faを含む冷媒1(対照)を用いた場合、第1蒸発器管17の入口温度及び出口温度は、いずれも-80℃よりも低くなった。すなわち、冷却室内の温度は十分に低くなった。 As shown in Table 1, when the conventionally used refrigerant 1 containing R245fa (control) was used, both the inlet temperature and the outlet temperature of the first evaporator tube 17 were lower than -80 ° C. . That is, the temperature in the cooling chamber was sufficiently low.
 また、冷媒1と比較して、R245faに代えてR1233zd(E)を含む点で異なる冷媒2を用いた場合、第1蒸発器管17の入口温度及び出口温度は、冷媒1を用いた場合とほぼ同等の値となった。すなわち、冷却室内の温度は十分に低くなった。 Further, when the refrigerant 2 is different from that of the refrigerant 1 in that it includes R1233zd (E) instead of R245fa, the inlet temperature and the outlet temperature of the first evaporator pipe 17 are the same as when the refrigerant 1 is used. It became almost the same value. That is, the temperature in the cooling chamber was sufficiently low.
 また、冷媒2と比較して、R1233zd(E)の含有比が高くなり、R600の含有比が低くなった点で異なる冷媒3を用いた場合、第1蒸発器管17の入口温度及び出口温度は、冷媒1を用いた場合と比較して、それぞれ若干高くなった。しかしながら、何れの温度も、-80℃を十分に下回った。すなわち、冷却室内の温度は十分に低くなった。 In addition, when the refrigerant 3 is different from the refrigerant 2 in that the content ratio of R1233zd (E) is high and the content ratio of R600 is low, the inlet temperature and the outlet temperature of the first evaporator pipe 17 are used. Were slightly higher than when the refrigerant 1 was used. However, both temperatures were well below -80 ° C. That is, the temperature in the cooling chamber was sufficiently low.
 また、冷媒2及び冷媒3と比較して、R600を含まず、その分R1233zd(E)を多く含む点で異なる冷媒4を用いた場合、第1蒸発器管17の入口温度及び出口温度は、冷媒1を用いた場合と比較して、それぞれ若干高くなった。しかしながら、何れの温度も、-80℃を十分に下回った。すなわち、冷却室内の温度は十分に低くなった。 In addition, in comparison with the refrigerant 2 and the refrigerant 3, when the refrigerant 4 which does not include R600 and is different in that it includes a lot of R1233zd (E), the inlet temperature and the outlet temperature of the first evaporator pipe 17 are Compared with the case where the refrigerant | coolant 1 was used, each became a little high. However, both temperatures were well below -80 ° C. That is, the temperature in the cooling chamber was sufficiently low.
 また、冷媒4と比較して、R1233zd(E)に代えてR1234ze(E)を含む点で異なる冷媒5を用いた場合、第1蒸発器管17の入口温度及び出口温度は、冷媒1を用いた場合と比較して、それぞれ若干高くなった。しかしながら、何れの温度も、-80℃を十分に下回った。すなわち、冷却室内の温度は十分に低くなった。 In addition, when the refrigerant 5 is different from the refrigerant 4 in that it includes R1234ze (E) instead of R1233zd (E), the refrigerant 1 is used as the inlet temperature and the outlet temperature of the first evaporator tube 17. Compared with the case where it was, each became slightly high. However, both temperatures were well below -80 ° C. That is, the temperature in the cooling chamber was sufficiently low.
 また、冷媒2と比較して、R600に代えてR290を含む点で異なる冷媒6を用いた場合、第1蒸発器管17の入口温度及び出口温度は、冷媒1を用いた場合よりも下がった。すなわち、冷媒6は冷媒1よりも冷凍能力が高い冷媒である。しかも、冷媒6に含まれる冷媒はいずれもGWPが小さいので、冷媒6は環境負荷が小さいという観点でも優れている。 In addition, when the refrigerant 6 different from the refrigerant 2 in that it includes R290 instead of R600, the inlet temperature and the outlet temperature of the first evaporator pipe 17 are lower than when the refrigerant 1 is used. . That is, the refrigerant 6 is a refrigerant having a higher refrigeration capacity than the refrigerant 1. And since all the refrigerant | coolants contained in the refrigerant | coolant 6 have small GWP, the refrigerant | coolant 6 is excellent also from a viewpoint that an environmental load is small.
 また、冷媒2と比較して、R23及びR14に代えてR170を含む点で異なる冷媒7を用いた場合、第1蒸発器管17の入口温度及び出口温度は、冷媒1を用いた場合と比較して、それぞれ若干高くなった。しかしながら、何れの温度も、-80℃を十分に下回った。すなわち、冷却室内の温度は十分に低くなった。しかも、冷媒7に含まれる冷媒はいずれもGWPが小さいので、冷媒7は環境負荷が小さいという観点でも優れている。 In addition, when the refrigerant 7 is different from that of the refrigerant 2 in that it includes R170 instead of R23 and R14, the inlet temperature and the outlet temperature of the first evaporator pipe 17 are compared with those when the refrigerant 1 is used. And each increased slightly. However, both temperatures were well below -80 ° C. That is, the temperature in the cooling chamber was sufficiently low. And since all the refrigerant | coolants contained in the refrigerant | coolant 7 have small GWP, the refrigerant | coolant 7 is excellent also from a viewpoint that an environmental load is small.
 また、冷媒7と比較して、R50を更に含む点で異なる冷媒8を用いた場合、第1蒸発器管17の入口温度は、冷媒1を用いた場合よりも下がった。すなわち、冷媒8は冷媒1よりも冷凍能力が高い冷媒である。しかも、冷媒8に含まれる冷媒はいずれもGWPが小さいので、冷媒8は環境負荷が小さいという観点でも優れている。 Also, compared to the refrigerant 7, when the refrigerant 8 different in further including R50 was used, the inlet temperature of the first evaporator tube 17 was lower than when the refrigerant 1 was used. That is, the refrigerant 8 is a refrigerant having a higher refrigeration capacity than the refrigerant 1. And since all the refrigerant | coolants contained in the refrigerant | coolant 8 have small GWP, the refrigerant | coolant 8 is excellent also from a viewpoint that an environmental load is small.
 なお、本発明が、先に説明された実施形態には限定されず、その要旨を逸脱しない範囲で種々の変形や応用が可能であることは言うまでもない。 In addition, it cannot be overemphasized that a various deformation | transformation and application are possible for this invention in the range which is not limited to embodiment described previously and does not deviate from the summary.
 例えば、本発明に係る冷凍装置は、超低温フリーザには限られず、バイオメディカルフリーザ、ショーケース、冷凍冷蔵倉庫、保冷車又は製氷機等の冷凍装置であってもよい。また、得られる冷却温度は、例えば-40℃のように-80℃よりも高くても良いし、-80℃以下のうち、-150℃以下という極低温であってもよい。 For example, the refrigeration apparatus according to the present invention is not limited to the ultra-low temperature freezer, and may be a refrigeration apparatus such as a biomedical freezer, a showcase, a freezer / refrigerated warehouse, a cold storage car, or an ice maker. Further, the obtained cooling temperature may be higher than −80 ° C., for example, −40 ° C., or may be an extremely low temperature of −150 ° C. or lower of −80 ° C. or lower.
 また、本発明に係る冷凍装置が備える冷媒回路は、図1に示される冷媒回路1には限られず、例えば、第1冷媒回路10のみを備えていても良い。 Further, the refrigerant circuit included in the refrigeration apparatus according to the present invention is not limited to the refrigerant circuit 1 shown in FIG. 1, and may include only the first refrigerant circuit 10, for example.
 また、本発明に係る冷凍装置は、二元冷媒回路を備えていてもよい。二元冷媒回路とは、互いに沸点が異なる2種類の冷媒を、それぞれ独立した冷媒回路で循環させるとともに、これら2種類の冷媒をカスケード熱交換器を介して熱交換することによって、例えば-150℃以下の極低温を得る冷媒回路である。 Further, the refrigeration apparatus according to the present invention may include a binary refrigerant circuit. In the binary refrigerant circuit, two types of refrigerants having different boiling points are circulated in independent refrigerant circuits, and these two types of refrigerants are subjected to heat exchange via a cascade heat exchanger, for example, at −150 ° C. It is a refrigerant circuit for obtaining the following cryogenic temperature.
 二元冷媒回路を構成する冷媒回路の一方又は両方が、図1に示される第1冷媒回路10と同様の構成を有しても良いことは勿論である。 Of course, one or both of the refrigerant circuits constituting the binary refrigerant circuit may have the same configuration as the first refrigerant circuit 10 shown in FIG.
 2018年2月20日出願の特願2018-028240の日本出願に含まれる明細書、特許請求の範囲、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, claims, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2018-028240 filed on February 20, 2018 is incorporated herein by reference.
 本発明は、極低温が得られる冷凍装置として好適に利用される。 The present invention is suitably used as a refrigeration apparatus capable of obtaining extremely low temperatures.
 1 冷媒回路
 10 第1冷媒回路
 11 第1圧縮機
 11a 第1オイルクーラ
 12a 第1プレコンデンサ
 12b 第1コンデンサ
 13 第1分流器
 14 第1補助減圧器
 15 第1カスケードコンデンサ
 15a 第1外側管
 15b 第1内側管
 16 第1減圧器
 17 第1蒸発器管
 18 第1環状配管
 19 第1共用ファン
 20 第2冷媒回路
 21 第2圧縮機
 21a 第2オイルクーラ
 22a 第2プレコンデンサ
 22b 第2コンデンサ
 23 第2分流器
 24 第2補助減圧器
 25 第2カスケードコンデンサ
 25a 第2外側管
 25b 第2内側管
 26 第2減圧器
 27 第2蒸発器管
 28 第2環状配管
 29 第2共用ファン
 
DESCRIPTION OF SYMBOLS 1 Refrigerant circuit 10 1st refrigerant circuit 11 1st compressor 11a 1st oil cooler 12a 1st precondenser 12b 1st capacitor | condenser 13 1st shunt 14 14 1st auxiliary pressure reducer 15 1st cascade condenser 15a 1st outer tube 15b 1st 1 inner pipe 16 first decompressor 17 first evaporator pipe 18 first annular pipe 19 first shared fan 20 second refrigerant circuit 21 second compressor 21a second oil cooler 22a second pre-condenser 22b second condenser 23 second 2 shunt 24 Second auxiliary pressure reducer 25 Second cascade condenser 25a Second outer pipe 25b Second inner pipe 26 Second pressure reducer 27 Second evaporator pipe 28 Second annular pipe 29 Second shared fan

Claims (5)

  1.  非共沸混合冷媒が循環する冷媒回路を構成する圧縮機、凝縮器、絞り装置及び蒸発器を備え、
     前記非共沸混合冷媒は、分子構造中に炭素二重結合を有する第1冷媒と、前記第1冷媒の沸点よりも低い沸点を有する第2冷媒とを含む、
     冷凍装置。
    A compressor, a condenser, a throttling device and an evaporator constituting a refrigerant circuit in which a non-azeotropic refrigerant mixture circulates;
    The non-azeotropic refrigerant mixture includes a first refrigerant having a carbon double bond in a molecular structure, and a second refrigerant having a boiling point lower than that of the first refrigerant.
    Refrigeration equipment.
  2.  前記炭素二重結合を構成する一方の炭素原子には塩素原子が結合されている、
     請求項1に記載の冷凍装置。
    A chlorine atom is bonded to one carbon atom constituting the carbon double bond,
    The refrigeration apparatus according to claim 1.
  3.  前記分子構造は、炭素数3~4の直鎖構造を有する、
     請求項1または2に記載の冷凍装置。
    The molecular structure has a linear structure having 3 to 4 carbon atoms,
    The refrigeration apparatus according to claim 1 or 2.
  4.  前記第2冷媒の沸点は、-80℃以下である、
     請求項1から3の何れかに記載の冷凍装置。
    The boiling point of the second refrigerant is −80 ° C. or lower.
    The refrigeration apparatus according to any one of claims 1 to 3.
  5.  前記非共沸混合冷媒は、前記第1冷媒の沸点よりも低く、前記第2冷媒の沸点よりも高い沸点を有する第3冷媒を更に含む、
     請求項1から4の何れかに記載の冷凍装置。
    The non-azeotropic refrigerant mixture further includes a third refrigerant having a boiling point lower than the boiling point of the first refrigerant and higher than the boiling point of the second refrigerant.
    The refrigeration apparatus according to any one of claims 1 to 4.
PCT/JP2019/005522 2018-02-20 2019-02-15 Refrigeration device WO2019163662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028240 2018-02-20
JP2018-028240 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163662A1 true WO2019163662A1 (en) 2019-08-29

Family

ID=67687971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005522 WO2019163662A1 (en) 2018-02-20 2019-02-15 Refrigeration device

Country Status (1)

Country Link
WO (1) WO2019163662A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098778A1 (en) * 2021-12-03 2023-06-08 青岛海尔特种电冰柜有限公司 Dual-element mixed refrigerant, dual-element mixed working medium refrigeration system, and refrigeration apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171264A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system
JP2017141998A (en) * 2016-02-08 2017-08-17 日立ジョンソンコントロールズ空調株式会社 Unit mechanism for air conditioner and air conditioner including the same
CN107365568A (en) * 2017-07-04 2017-11-21 中国科学院理化技术研究所 Suitable for the non-combustible mix refrigerant of 60~100 DEG C of warm areas
WO2018052088A1 (en) * 2016-09-15 2018-03-22 Jxtgエネルギー株式会社 Refrigerator oil and refrigerator working fluid composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171264A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system
JP2017141998A (en) * 2016-02-08 2017-08-17 日立ジョンソンコントロールズ空調株式会社 Unit mechanism for air conditioner and air conditioner including the same
WO2018052088A1 (en) * 2016-09-15 2018-03-22 Jxtgエネルギー株式会社 Refrigerator oil and refrigerator working fluid composition
CN107365568A (en) * 2017-07-04 2017-11-21 中国科学院理化技术研究所 Suitable for the non-combustible mix refrigerant of 60~100 DEG C of warm areas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098778A1 (en) * 2021-12-03 2023-06-08 青岛海尔特种电冰柜有限公司 Dual-element mixed refrigerant, dual-element mixed working medium refrigeration system, and refrigeration apparatus

Similar Documents

Publication Publication Date Title
JP3208151B2 (en) Refrigeration equipment
US7624585B2 (en) Freezer unit
WO2014156190A1 (en) Dual refrigeration device
JP7292367B2 (en) Low GWP cascade cooling system
US20170369754A1 (en) Working medium for heat cycle
JP2011112351A (en) Refrigerating device
WO2019163663A1 (en) Cold storage device
JP2024020428A (en) Non-flammable refrigerant with low GWP and systems and methods for providing refrigeration
WO2019163662A1 (en) Refrigeration device
JP2016070571A (en) Refrigeration device
WO2017145244A1 (en) Refrigeration cycle device
US20180045434A1 (en) Refrigeration device
JP4651255B2 (en) Refrigerant composition and refrigeration circuit using the same
JP2005180866A (en) Binary refrigerating device
JP5506638B2 (en) Refrigeration equipment
US20040124394A1 (en) Non-HCFC refrigerant mixture for an ultra-low temperature refrigeration system
JP6181401B2 (en) Dual refrigeration equipment
JP2007169331A (en) Non-azeotropic mixture coolant for super low temperature and single unit type freezing circuit for super low temperature
JP3863831B2 (en) Refrigerant composition and refrigeration circuit using the refrigerant composition
JPH09250821A (en) Freezer
JP2019086256A (en) Freezer device
JP3448377B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JP2014196869A (en) Cascade refrigeration system
JP3327705B2 (en) Refrigerant composition and refrigeration apparatus using the same
JP2010043752A (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757151

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP