WO2019163485A1 - Display device, method for driving display device, and electronic equipment - Google Patents

Display device, method for driving display device, and electronic equipment Download PDF

Info

Publication number
WO2019163485A1
WO2019163485A1 PCT/JP2019/003667 JP2019003667W WO2019163485A1 WO 2019163485 A1 WO2019163485 A1 WO 2019163485A1 JP 2019003667 W JP2019003667 W JP 2019003667W WO 2019163485 A1 WO2019163485 A1 WO 2019163485A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
correction amount
image quality
pixel
unit
Prior art date
Application number
PCT/JP2019/003667
Other languages
French (fr)
Japanese (ja)
Inventor
山田 泰弘
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN201980013365.9A priority Critical patent/CN111727471B/en
Publication of WO2019163485A1 publication Critical patent/WO2019163485A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present disclosure relates to a display device, a display device driving method, and an electronic device.
  • a so-called lateral electric field is generated at a signal boundary portion where a potential difference occurs between video signals supplied to each pixel, that is, between two adjacent pixels. Due to this lateral electric field, the electric field applied to the electrodes of each pixel is disturbed, and an image quality defect occurs due to the influence of the disturbance of the electric field. As a feature of this phenomenon of image quality failure, the density of the two pixels varies depending on the difference (voltage difference) in the drive voltage based on the video signal between the two pixels.
  • the correction amount of the drive voltage of the correction target pixel is set as a fixed value assuming the state of the display device after a certain change with time. For this reason, in the initial state where there is no change over time, the image quality deteriorates due to overcorrection, or in the state where the change over time progresses more than the assumed state, the image quality of the output image deteriorates due to insufficient correction.
  • the present disclosure relates to a display device and a display device driving method capable of improving the image quality of an output image by correcting the drive voltage of a correction target pixel without being affected by changes over time, and the display An object is to provide an electronic apparatus having the device.
  • a difference detection unit for detecting a difference in driving voltage between two adjacent pixels;
  • a correction amount calculation unit that calculates a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to a difference in drive voltage detected by the difference detection unit;
  • a correction amount adjusting unit that adjusts the correction amount calculated by the correction amount calculating unit according to the image quality of the output image;
  • a drive voltage correction unit is provided that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit.
  • a driving method of the display device of the present disclosure for achieving the above-described object is as follows.
  • Each process of the drive voltage correction step for correcting the drive voltage of the correction target pixel is executed based on the correction amount adjusted in the correction amount adjustment step.
  • an electronic device of the present disclosure for achieving the above object is A difference detection unit for detecting a difference in driving voltage between two adjacent pixels; A correction amount calculation unit that calculates a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to a difference in drive voltage detected by the difference detection unit; A correction amount adjusting unit that adjusts the correction amount calculated by the correction amount calculating unit according to the image quality of the output image; and A drive voltage correction unit that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit; A display device;
  • FIG. 1 is a block diagram illustrating an outline of a system configuration of a liquid crystal display device to which the technology of the present disclosure is applied.
  • 2A is a block diagram illustrating an example of a configuration of an active matrix liquid crystal panel
  • FIG. 2B is an equivalent circuit diagram illustrating an example of a circuit configuration of a pixel.
  • FIG. 3A is an exploded perspective view showing an example of the structure of the liquid crystal panel
  • FIG. 3B is an enlarged view of a main part of FIG. 3A.
  • FIG. 4A is a diagram showing the moisture state of the liquid crystal layer in the initial state of the liquid crystal panel
  • FIG. 4B is a diagram showing an example of the pixel potential in the initial state
  • FIG. 4C is the video signal V sig in the initial state.
  • FIG. 5A is a diagram showing the moisture state of the liquid crystal layer in the moisture absorption state of the liquid crystal panel
  • FIG. 5B is a diagram showing an example of the pixel potential in the moisture absorption state
  • FIG. 5C is the video signal V sig in the moisture absorption state.
  • -Is a diagram showing the characteristics of transmittance T.
  • FIG. 6 is a block diagram illustrating an example of a configuration of a digital signal processing unit according to an embodiment of the present disclosure.
  • FIG. 7 is a block diagram illustrating an example of a configuration of a voltage difference calculation unit between adjacent pixels in the digital signal processing unit.
  • FIG. 8 is a block diagram illustrating an example of the configuration of the correction amount calculation unit in the digital signal processing unit.
  • FIG. 9 is a diagram showing drive voltage levels for a display image based on an input video signal and an image of the center line thereof.
  • FIG. 10A is a diagram showing a display image after image quality failure occurs
  • FIG. 10B is a diagram showing a voltage difference signal obtained by taking a voltage difference between the own pixel and the N + 1th pixel
  • FIG. It is a figure which shows the voltage difference signal which took the voltage difference with the N-1 pixel.
  • FIG. 11 is a diagram illustrating an example of the correction setting information referred to when the correction amount is calculated.
  • FIG. 12 is a diagram illustrating an example in which the image quality state of the output image is directly detected by the imaging unit arranged in the projector.
  • FIG. 13 is a flowchart illustrating a flow of processing for correction amount adjustment in the correction amount adjustment unit according to the first embodiment.
  • FIG. 14 is a diagram illustrating an example of the relationship between the usage time of the liquid crystal panel, the state of the output image quality, and the correction coefficient ⁇ .
  • FIG. 15 is an explanatory diagram of the threshold value and the image quality setting range for determining whether or not the drive voltage of the correction target pixel needs to be corrected.
  • FIG. 16 is a diagram illustrating an example of correction setting information after feedback of the correction coefficient ⁇ .
  • FIG. 17 is a flowchart illustrating a flow of a process for adjusting the correction amount in the correction amount adjusting unit according to the second embodiment.
  • FIG. 18 is a diagram illustrating an example of the relationship between the usage time of the liquid crystal panel, the state of the output image quality, and the correction setting table.
  • FIG. 19 is a diagram illustrating an example of numerical values in the correction setting table A and the correction setting table B.
  • FIG. 20 is a flowchart illustrating a flow of processing for adjusting the correction amount in the correction amount adjusting unit according to the third embodiment.
  • FIG. 21 is a configuration diagram illustrating an outline of an optical system of a three-plate projection type liquid crystal display device (projector) which is an example of the electronic apparatus of the present disclosure.
  • projector three-plate projection type liquid crystal display device
  • Embodiment of the present disclosure (digital signal processing unit) 3-1. Adjacent pixel voltage difference calculation unit 3-2. Correction amount calculation unit 3-3. Correction amount adding unit 3-3-1.
  • Example 1 (Example of detecting the state of image quality from the imaging result of an output image) 3-3-2.
  • Example 2 (Modification of Example 1) 3-3-3.
  • Example 3 (Example of detecting the state of image quality from the usage time of a liquid crystal panel) 4).
  • Modification 5 Electronic device of the present disclosure (example of projection type liquid crystal display device) 6). Configurations that can be taken by the present disclosure
  • the correction amount adjustment unit captures an adjustment image for adjusting the correction amount, and the captured image data is used for the image quality of the output image. It can be set as the structure used as a parameter which detects a state.
  • the image quality data is digitized based on the captured image data obtained by capturing the adjustment image for the correction amount adjustment unit.
  • a correction coefficient is set based on the image quality data, corrected image quality data that reflects the correction coefficient is calculated, and the drive voltage of the correction target pixel needs to be corrected based on the corrected image quality data obtained by this calculation. It can be set as the structure which judges NO. At this time, it is preferable to determine whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data.
  • the correction amount adjustment unit outputs the image quality data based on the captured image data obtained by capturing the adjusted image. It is digitized, a correction coefficient is set based on the image quality data, and the adjustment image is corrected and output using the correction coefficient. Then, the image quality data is digitized based on the captured image data obtained by capturing the corrected adjustment image, and the necessity of correcting the drive voltage of the correction target pixel is determined based on the digitized image quality data of the corrected adjustment image. It can be set as the structure to judge. At this time, it is preferable to determine whether or not correction is necessary by comparing the digitized image quality data of the adjusted image with the reference image quality data.
  • the usage time of the display panel in which the pixels are arranged is counted for the correction amount adjustment unit.
  • the count value can be used as a parameter for detecting the image quality state of the output image.
  • the correction amount adjustment unit has a plurality of correction setting tables corresponding to the usage time of the display panel, and selects one of the plurality of correction setting tables based on the count value of the usage time of the display panel. It can be configured.
  • the corrected image quality data that reflects the selected correction setting table is calculated for the correction amount adjustment unit.
  • the correction amount adjustment unit is configured to have a temperature, humidity, or temperature under the usage environment of the display panel. It can be configured to use humidity as one of the parameters.
  • the display panel chromaticity measured using a chromaticity meter or the luminance of the display panel measured using a luminance meter can be used as one of the parameters.
  • ⁇ Display device to which the technology of the present disclosure is applied First, a display device to which the technology of the present disclosure is applied will be described using a liquid crystal display device as an example.
  • Liquid crystal display devices are classified into a transmission type, a reflection type, and a semi-transmission type for display methods.
  • amorphous silicon amorphous semiconductor
  • polysilicon polycrystalline semiconductor
  • TFT Thin Film Transistor
  • single crystal silicon is often used.
  • Polysilicon is high-temperature polysilicon (HTPS: High-Temperature-Poly-Silicon) that forms a thin film in a high-temperature environment of 1000 degrees Celsius or higher, and low-temperature polysilicon that forms a thin film in a low-temperature environment of 600 degrees Celsius or lower.
  • LTPS Low Temperature Poly-Silicon
  • a substrate such as a quartz substrate, a glass substrate, or a silicon substrate is used as a substrate on which pixels are formed.
  • glass substrates are used for amorphous silicon-transmissive liquid crystal panels and low-temperature polysilicon-transmissive liquid crystal panels
  • quartz substrates are used for high-temperature polysilicon-transmissive liquid crystal panels.
  • Single-crystal silicon-reflective liquid crystal panels Then, a silicon substrate is used.
  • Liquid crystal materials mainly used for product manufacture include TN mode, VA mode, and IPS mode, and TFT processes include high temperature polysilicon, low temperature polysilicon, and amorphous silicon (a-Si).
  • a VA mode is selected as a liquid crystal material
  • HTPS high temperature polysilicon
  • TFT process is often selected as a TFT process
  • LTPS low temperature polysilicon
  • VA mode or IPS mode is often selected as the liquid crystal material
  • amorphous silicon is often selected as the TFT process (so-called aSi-liquid crystal panel).
  • the technology of the present disclosure described below that is, the technology of the liquid crystal display device according to the embodiment of the present disclosure can be applied to a transmissive liquid crystal display device or a reflective liquid crystal display device. .
  • FIG. 1 is a block diagram illustrating an outline of a system configuration of a liquid crystal display device to which the technology of the present disclosure is applied.
  • the liquid crystal display device 1 according to this application example includes a liquid crystal panel 10 and a video signal processing circuit 20. Details of the configuration of the liquid crystal panel 10 will be described later.
  • the video signal processing circuit 20 includes an A / D (Analog / Digital) / PLL (Phase Locked Loop) unit 21, a video signal conversion unit 22, a digital signal processing unit 23, a sample hold unit 24, an image memory 25, and a control unit. 26, and performs signal processing to convert the input video signal into a signal format suitable for display on the liquid crystal panel 10.
  • a / D Analog / Digital
  • PLL Phase Locked Loop
  • the A / D / PLL unit 21 performs processing for converting the input video signal into digital pixel data and processing for realizing phase synchronization when the input video signal is an analog signal.
  • the input video signal is a digital signal
  • a configuration in which a digital interface unit is provided instead of the A / D / PLL unit 21 is adopted.
  • the digital interface unit is a processing device that converts an input video signal by a data transmission technique such as DVI (Digital Visual Interface) method or HDMI (registered trademark) (HDMI: High-Definition Multimedia Interface) format into a digital format. is there.
  • the video signal conversion unit 22 performs processing for converting the pixel data output from the A / D / PLL unit 21 into pixel data (primary color data) adapted to the number of pixels of the liquid crystal panel 10 and the clock frequency.
  • the video signal conversion unit 22 converts a composite signal or the like into an RGB separate signal suitable for driving the color liquid crystal panel, and outputs the converted signal to the digital signal processing unit 23 together with the video signal. To do.
  • the digital signal processing unit 23 performs processing such as contrast adjustment and crosstalk correction on the pixel data (primary color data) output from the video signal conversion unit 22.
  • the technique of the present disclosure is applied to the digital signal processing unit 23. Specific examples thereof will be described later.
  • the sample and hold unit 24 performs sample and hold processing on the pixel data (primary color data) processed by the digital signal processing unit 23 for driving the liquid crystal panel 10.
  • the function of the sample hold unit 24 may be included in the digital signal processing unit 23.
  • the image memory 25 temporarily stores (buffers) the pixel data (primary color data) output from the sample and hold unit 24, and supplies the pixel data to the liquid crystal panel 10, more specifically, to the horizontal driving unit 13 in the liquid crystal panel 10. Output at the timing.
  • the control unit 26 includes, for example, a processor such as an MPU (Micro Processing Unit), and the entire liquid crystal display device 1, specifically, the control unit 26 includes a video signal conversion unit 22, a digital signal processing unit 23, and a sample The hold unit 24 and the like are controlled.
  • the control unit 26 controls the driving of the vertical driving unit 12 and the horizontal driving unit 13 in the liquid crystal panel 10 at a predetermined timing according to the RGB separate signal.
  • the pixel driving method may be a passive matrix method or an active matrix method.
  • the active matrix method will be described as an example.
  • An example of the configuration of the active matrix liquid crystal panel 10 is shown in FIG. 2A.
  • a liquid crystal panel 10 includes a pixel array unit 11 in which a plurality of pixels 2 including liquid crystal elements are two-dimensionally arranged in a matrix, and a peripheral circuit arranged around the pixel array unit 11. It has the composition which has a part.
  • the peripheral circuit unit includes a vertical driving unit 12, a horizontal driving unit 13, and the like.
  • the peripheral circuit unit is integrated on the same substrate as the pixel array unit 11, and drives each pixel 2 of the pixel array unit 11.
  • the liquid crystal panel 10 includes a terminal portion (not shown) for inputting a signal from the outside and outputting a signal to the outside.
  • an external substrate (not shown) is connected to the terminal portion via a flexible substrate, and the video signal processing circuit 20 is mounted on the external substrate.
  • the scanning lines 31 1 to 31 m (hereinafter sometimes collectively referred to as “scanning lines 31”) are arranged along the row direction for each pixel row with respect to the matrix-like pixel arrangement. Wired.
  • signal lines 32 1 to 32 n (hereinafter sometimes collectively referred to as “signal lines 32”) are wired along the column direction for each pixel column.
  • the scanning lines 31 1 to 31 m and the signal lines 32 1 to 32 n are wired in a matrix, and the pixels 2 are formed at the intersections.
  • the vertical drive section 12 is provided connected to the ends of the scanning lines 31 1 to 31 m .
  • the vertical driving unit 12 is configured by a shift register or the like, and outputs a scanning signal for driving when writing a video signal to the pixel 2 to the scanning lines 31 1 to 31 m .
  • the horizontal drive unit 13 is connected to the ends of the signal lines 32 1 to 32 n .
  • the horizontal drive unit 13 takes in a video signal to be written to each pixel 2 of the pixel row (selected row) selected by the vertical drive unit 12 from the external video signal processing circuit 20 and applies it to the signal lines 32 1 to 32 n . Output.
  • the driving method for writing the video signal to the pixel 2 may be dot-sequential driving in which the video signal is written to each pixel 2 in the selected row in units of pixels, or the video signal may be sent to each pixel 2 in the selected row.
  • Line-sequential driving for writing in units of pixel rows may be used.
  • FIG. 2B An example of the circuit configuration of the pixel 2 is shown in FIG. 2B.
  • the pixel 2 includes a liquid crystal element LC, a capacitor element C, and a pixel transistor Tr.
  • One electrode of the liquid crystal element LC is an independent electrode (pixel electrode described later) for each pixel 2, and is connected to one electrode (source / drain electrode) of the pixel transistor Tr and one end of the capacitor element C. Yes.
  • the other electrode of the liquid crystal element LC is an electrode common to all the pixels 2 (a counter electrode described later), and is grounded, for example.
  • the capacitive element C is an element for stabilizing the accumulated charge of the liquid crystal element LC.
  • One end of the capacitive element C is connected to one electrode of the liquid crystal element LC and one electrode of the pixel transistor Tr.
  • the other end of the capacitive element C is connected to the capacitive line 33.
  • the pixel transistor Tr is a switching element for writing a video signal to the liquid crystal element LC, and includes a thin film transistor (TFT).
  • the pixel transistor Tr has a gate electrode connected to the scanning line 31, one electrode connected to one electrode of the liquid crystal element LC and one end of the capacitor C, and the other electrode (drain / source electrode) connected to the signal line 32. It is connected.
  • FIG. 3A shows an exploded perspective view of an example of the structure of the liquid crystal panel 10
  • FIG. 3B shows an enlarged view of the main part of FIG. 3A.
  • a first substrate 41 and a second substrate 42 made of transparent substrates, for example, glass substrates are arranged to face each other at a predetermined interval, and a liquid crystal material is placed between the first substrate 41 and the second substrate 42.
  • a panel structure is formed in which the liquid crystal layer 43 is formed.
  • the liquid crystal panel 10 includes a polarizing plate 44 and a polarizing plate 45 that face each other with the first substrate 41 and the second substrate 42 interposed therebetween.
  • the polarizing plate 44 and the polarizing plate 45 are disposed so that the polarizing plate axes 44a and 45a are orthogonal to each other.
  • a transparent conductive film 46 is formed on the first substrate 41.
  • a counter electrode (not shown) is formed in common for all the pixels 2 in the pixel array unit 11.
  • the first substrate 41 may be called a counter substrate.
  • the counter electrode is the other electrode of the liquid crystal element LC shown in FIG. 2B.
  • a transparent conductive film 47 is formed on the second substrate 42.
  • pixel electrodes 48 are formed independently for each pixel 2.
  • the pixel electrode 48 is one electrode of the liquid crystal element LC shown in FIG. 2B.
  • a pixel transistor Tr made of a thin film transistor (TFT) is formed on the second substrate 42.
  • the second substrate 42 may be called a TFT substrate.
  • the gate electrode of the pixel transistor Tr is connected to the second substrate 42 for each pixel row, and one electrode (source / drain electrode) of the pixel transistor Tr is connected to each pixel column.
  • the signal line 32 is wired.
  • the i-th scanning line 31 i and the (i + 1) -th scanning line 31 i + 1 , and the J-th column signal line 32 j and the j + 1-th scanning line 31 j + 1 are illustrated.
  • the horizontal electric field is an electric field generated between the pixel electrodes 48 (or between the signal lines 32) of the two adjacent pixels as shown in FIG. 3B due to the potential difference between the video signals supplied to the two adjacent pixels. It is.
  • liquid crystal panels are classified into a completely vertical alignment type and a tilt alignment type.
  • the complete vertical alignment type is called a so-called VA (Vertical Alignment) type, and the alignment layer (not shown) allows the liquid crystal molecules of the liquid crystal layer 43 to be placed on the substrate (the first substrate 41 and the first substrate 41) without applying a voltage to the electrode corresponding to the pixel.
  • Two substrates 42) are oriented perpendicular to each other. That is, the tilt angle ⁇ of the liquid crystal molecules 43a and 43b with respect to the substrate is 90 degrees. In this state, when a voltage is applied to the electrode corresponding to the pixel, the direction in which the liquid crystal molecules fall (alignment direction) is free, so the alignment direction is not aligned.
  • the tilt alignment type uses an alignment film (not shown) to align the liquid crystal molecules of the liquid crystal layer 43 so as to be inclined with respect to the normal direction of the substrate without applying a voltage to the electrode corresponding to the pixel.
  • the orientation is almost horizontal to the substrate. That is, as shown in FIG. 3B, the tilt angle (pretilt angle) ⁇ of the liquid crystal molecules 43a and 43b with respect to the substrate is ⁇ ⁇ 90 °.
  • the pretilt angle is set, the liquid crystal panel 10 is inclined in a predetermined direction when viewed from the front (substrate normal direction). In this state, when a voltage is applied to the electrode corresponding to the pixel, the tilt direction (orientation direction) is determined by the pretilt. Since the orientation direction of the liquid crystal molecules is determined in one direction, the transmitted light in the pixel becomes uniform, and a good image display can be performed.
  • FIG. 4A shows the moisture state of the liquid crystal layer 43 in the initial state of the liquid crystal panel 10
  • FIG. 4B shows an example of the pixel potential in the initial state
  • FIG. 4C shows the video signal V sig in the initial state ⁇ transmittance T
  • the transmittance T of the pixel pix3 is 0%
  • the transmittances T of the pixels pix1, pix2, pix4, and pix5 are about 60%, for example.
  • FIG. 5A shows the moisture state of the liquid crystal layer 43 in the moisture absorption state of the liquid crystal panel 10 (that is, the state where moisture has entered the liquid crystal layer 43)
  • FIG. 5B shows an example of the pixel potential in the moisture absorption state
  • FIG. The characteristics of the video signal V sig -transmittance T in the moisture absorption state are shown below.
  • FIG. 5A when moisture enters the liquid crystal layer 43 in a high-temperature and high-humidity environment, a leak path is formed between the pixels and a leak current flows as shown in FIG. 5B.
  • the potential of the middle pixel pix3 that was 0V in the initial state is 1V
  • the potentials of the pixels pix2 and pix4 that were 3V in the initial state are 2.5V
  • the pixel pix1 Each potential of pix5 is 2.9V. That is, the potential difference between the pixel pix3 that was 3V in the initial state and the adjacent pixels pix2 and pix4 becomes a potential difference of 1.5V in the moisture absorption state.
  • the transmittances T of the pixels pix2 and pix4 are about 25%, for example, and the transmittances T of the pixels pix1 and pix5 are about 55%, for example.
  • the difference in transmittance T is reduced. Therefore, when the character is displayed, the character looks sharp and the sharpness is reduced. The image quality changes with time.
  • leaks between pixels occur due to changes in domains (disturbed alignment of liquid crystal molecules), gaps (distance between two adjacent pixels), liquid crystal composition changes, pretilt angles (tilt angles of liquid crystal molecules with respect to the substrate), etc.
  • the potential difference between the pixels is small.
  • the digital signal processing unit 23 illustrated in FIG. 1 detects a difference in drive voltage between two adjacent pixels, and a correction target that causes a luminance change due to the difference in the drive voltage.
  • a correction amount for correcting the driving voltage of the pixel is calculated.
  • the calculated correction amount is adjusted according to the image quality of the output image, and the drive voltage of the correction target pixel is corrected based on the adjusted correction amount.
  • FIG. 6 is a block diagram illustrating an example of a configuration of the digital signal processing unit 23 according to the embodiment of the present disclosure.
  • the digital signal processing unit 23 is a correction processing unit that performs correction processing on a video signal, and includes a voltage difference calculation unit 231 between adjacent pixels, a correction amount calculation unit 232, a correction amount adjustment unit 233, and a correction.
  • the amount adding unit 234 is included.
  • a processor such as an MPU interprets and executes a program that realizes each function. Therefore, it can be configured to be executed by software.
  • the configuration is not limited to being executed by software, and each functional unit may be configured as a hardware configuration.
  • the voltage difference calculation unit 231 between the adjacent pixels, the correction amount calculation unit 232, the correction amount adjustment unit 233, and the correction amount addition unit 234 are changed to a difference.
  • a detection step, a correction amount calculation step, a correction amount adjustment step, and a drive voltage correction step can be used.
  • the adjacent pixel voltage difference calculation unit 231 is a difference detection unit that detects a difference in drive voltage between two adjacent pixels.
  • a voltage difference calculation unit 231 between adjacent pixels based on the video signal input from the video signal conversion unit 22 in FIG. 1, a drive voltage supplied to the own pixel that performs correction (hereinafter referred to as “correction target pixel”), Then, a process of calculating a difference from a drive voltage supplied to a pixel adjacent to the correction target pixel (hereinafter referred to as “adjacent pixel”), that is, a voltage difference between adjacent pixels is performed.
  • the correction amount calculation unit 232 acquires the voltage difference between adjacent pixels calculated by the voltage difference calculation unit 231 between adjacent pixels and the video signal data (drive voltage information) for the correction target pixel. Correction setting information is also input to the correction amount calculation unit 232. Details of the correction setting information will be described later.
  • the correction amount calculation unit 232 refers to the correction setting information based on the acquired information, and performs a process of calculating the correction amount of the drive voltage supplied to the correction target pixel.
  • the correction amount adjustment unit 233 performs a process of adjusting the correction amount calculated by the correction amount calculation unit 232 according to the image quality of the output image.
  • the correction amount adjustment unit 233 is a functional unit that characterizes the present embodiment, and a specific example of the processing will be described later.
  • the correction amount addition unit 234 adds the correction amount reflecting the image quality of the output image to the video signal data (drive voltage information) supplied to the correction target pixel by adjusting the correction amount in the correction amount adjustment unit 233, The addition result is output as an output video signal to the sample hold unit 24 in FIG. That is, the correction amount addition unit 234 is a drive voltage correction unit that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit 233.
  • FIG. 7 is a block diagram illustrating an example of the configuration of the voltage difference calculation unit 231 between adjacent pixels.
  • the digital signal processing unit 23 targets correction not only in the horizontal scanning direction but also in the vertical scanning direction, the digital signal processing unit 23 is configured to be capable of delay control of the input video signal. That is, the digital signal processing unit 23 includes a synchronization separation unit 235 and a delay control unit 236 in addition to the adjacent pixel voltage difference calculation unit 231 and the like.
  • the sync separator 235 performs a process of separating the sync signal from the video signal.
  • the input video signal is a monochrome (monochrome) video signal
  • the signal after the synchronization signal is separated from the video signal is a luminance signal.
  • the signal after the synchronization signal is separated from the video signal includes luminance information and color information. Examples of color video signals include RGB signals.
  • the delay control unit 236 delays the synchronization signal separated from the input video signal by the synchronization separation unit 235, outputs the delayed synchronization signal to the adjacent pixel voltage difference calculation unit 231, and also outputs the sample of FIG. 1 as an output synchronization signal. Output to the hold unit 24.
  • the adjacent pixel voltage difference calculation unit 231 includes a memory control unit 2311, a horizontal voltage difference calculation unit 2312, and a vertical voltage difference calculation unit 2313. It has a configuration.
  • the memory control unit 2311 includes a line memory 2314, and performs a process of delaying the input video signal for each line (one scanning line) at a time (timing) based on the delay synchronization signal supplied from the delay control unit 236.
  • a line memory 2314 for example, a RAM (Random Access Memory) can be used.
  • a video signal delayed for each line from the memory control unit 2311 is described as a line video signal.
  • the horizontal voltage difference calculation unit 2312 performs a process of detecting a voltage difference between the drive voltages supplied to the own pixel and the adjacent pixels in the horizontal scanning direction based on the line video signal supplied from the memory control unit 2311. Do. That is, the horizontal direction voltage difference calculation unit 2312 regards the N-th pixel (self-line) of the same line when the N-th pixel (N is an arbitrary natural number) of a certain line is set as its own pixel in time series regarding horizontal processing. The difference (voltage difference) between the drive voltage supplied to the pixel) and the drive voltage supplied to the adjacent N ⁇ 1 pixel is calculated.
  • the horizontal voltage difference calculation unit 2312 calculates a difference (voltage difference) between the drive voltage supplied to the Nth pixel (own pixel) on the same line and the drive voltage supplied to the adjacent N + 1 pixel. To do.
  • the voltage difference between the own pixel and each of the (N ⁇ 1) th pixel and the (N + 1) th pixel calculated by the horizontal voltage difference calculation unit 2312 is supplied to the correction amount calculation unit 232 of FIG. 6 together with the line video signal. .
  • the vertical direction voltage difference calculation unit 2313 performs processing for detecting a voltage difference between the own pixel and the adjacent pixel in the vertical scanning direction based on the line video signal supplied from the memory control unit 2311. In other words, the vertical voltage difference calculation unit 2313 regards the M-th line pixel (own pixel) when the M-th line (M is an arbitrary natural number) pixel is set as the own pixel in time series regarding vertical processing. The difference (voltage difference) between the drive voltage supplied to the drive voltage and the drive voltage supplied to the adjacent pixels on the (M ⁇ 1) th line is calculated.
  • the vertical direction voltage difference calculation unit 2313 calculates the difference (voltage difference) between the drive voltage supplied to the pixel on the M-th line (own pixel) and the drive voltage supplied to the adjacent pixel on the M + 1-th line. calculate.
  • the voltage difference between the pixel (own pixel) of the own line (M line) calculated by the vertical direction voltage difference calculation unit 2313 and each adjacent pixel of the (M ⁇ 1) -th line and the (M + 1) -th line is the correction amount calculation of FIG. Supplied to the unit 232.
  • the adjacent pixel voltage difference calculation unit 231 includes difference information of two systems of the Nth pixel (own pixel), the (N ⁇ 1) th pixel, and the (N + 1) th pixel, and the Mth line's own pixel and the M ⁇ 1th line.
  • the difference information of the two systems from the adjacent pixels on the first and (M + 1) th lines is calculated for each of the RGB sub-pixels.
  • FIG. 8 is a block diagram illustrating an example of the configuration of the correction amount calculation unit 232.
  • the correction amount calculation unit 232 includes a horizontal direction selection unit 2321, a vertical direction selection unit 2322, a correction amount calculation unit 2323, and a correction amount interpolation unit 2324.
  • the image quality failure phenomenon to be processed by the digital signal processing unit 23 is a property that the image quality failure occurrence direction on the liquid crystal panel 10 does not change in the inversion / non-inversion of the video signal (inversion / non-inversion of the scanning direction). have. That is, the direction in which the image quality failure phenomenon occurs is constant between pixels where a voltage difference occurs. For this reason, it is necessary to perform a correction process in the same direction regardless of the horizontal / vertical scanning direction.
  • the right evaporation liquid crystal display device when a picture quality defect occurs in the left pixel of a black level pixel, if there is a voltage difference between the black level pixel and the left pixel where the video signal is inverted, the left side An image quality defect occurs in the pixel.
  • a projection type liquid crystal display system projector system
  • a liquid crystal panel as a light modulation means (light valve)
  • inversion / non-inversion is caused by a projection method or the like. For this reason, in order to correctly display the output image, it is necessary to set inversion / non-inversion (scanning direction).
  • the correction amount calculation unit 232 selects a voltage difference information to be used from a plurality of voltage difference information calculated by the horizontal voltage difference calculation unit 2312 and the vertical voltage difference calculation unit 2313 in FIG. 2321 and a vertical direction selection unit 2322 are provided.
  • the correction amount calculation unit 232 further includes a correction amount calculation unit 2323 and a correction amount interpolation unit 2324.
  • the horizontal direction selection unit 2321 obtains, from the horizontal direction voltage difference calculation unit 2312, voltage difference information between its own pixel and adjacent pixels in the horizontal scanning direction, and a horizontal scanning line signal supplied from the control unit 26 in FIG. .
  • the voltage difference information between the own pixel and the adjacent pixel in the horizontal scanning direction is the difference between the drive voltage supplied to the Nth pixel (own pixel) on the same line and the drive voltage supplied to the adjacent N ⁇ 1 pixel.
  • the difference is the difference between the drive voltage supplied to the Nth pixel (own pixel) on the same line and the drive voltage supplied to the adjacent N + 1 pixel.
  • the horizontal scanning line signal is information on the horizontal scanning direction for the pixel array unit 11 (see FIG. 2A) in which the pixels 2 are two-dimensionally arranged in a matrix, that is, the horizontal scanning direction is from left to right, or conversely, Contains information indicating whether it is from right to left.
  • information in the horizontal scanning direction may be obtained by analyzing the horizontal scanning line signal itself.
  • the horizontal direction selection unit 2321 selects a pixel (correction target pixel) whose drive signal is to be corrected based on the horizontal direction voltage difference information and the horizontal scanning line signal, and supplies the selection information to the correction amount calculation unit 2323. To do.
  • the vertical direction selection unit 2322 obtains, from the vertical direction voltage difference calculation unit 2313, voltage difference information between its own pixel and adjacent pixels in the vertical scanning direction, and a vertical scanning line signal supplied from the control unit 26.
  • the voltage difference information between the own pixel and the adjacent pixel in the vertical scanning direction includes the drive voltage supplied to the pixel on the M line (the own pixel), and the drive voltage supplied to the adjacent pixel on the M ⁇ 1 line. And the difference between the drive voltage supplied to the pixel (own pixel) on the M line and the drive voltage supplied to the adjacent pixel on the M + 1 line.
  • the vertical scanning line signal includes information in the vertical scanning direction with respect to the pixel array unit 11, that is, information indicating whether the vertical scanning direction is from the top to the bottom or, conversely, from the bottom to the top.
  • information in the vertical scanning direction may be obtained by analyzing the vertical scanning line signal itself.
  • the vertical direction selection unit 2322 selects a pixel (correction target pixel) whose drive signal is to be corrected based on the vertical direction voltage difference information and the vertical scanning line signal, and supplies the selection information to the correction amount calculation unit 2323. To do.
  • FIG. 9 is a diagram showing drive voltage levels for a display image 140 and an image 140A of the center line of the input video signal.
  • FIG. 10A shows a display image 141 after image quality failure
  • FIG. 10B shows a voltage difference signal obtained by taking a voltage difference between the own pixel and the (N + 1) th pixel
  • FIG. 10C shows the own pixel and N ⁇ 1. The voltage difference signal which took the voltage difference with a pixel is shown.
  • the image 140A of the center line of the display image 140 is composed of 8 pixels. Of these eight pixels, the central four pixels are at the black level, and the surrounding four pixels are at the gray level. The leftmost pixel 141b of the four black level pixels is adjacent to the gray level pixel 141a, and the rightmost pixel 141c of the four black level pixels is adjacent to the gray level pixel 141d.
  • FIG. 10A showing the display image 141 after the image quality failure occurs
  • the image 141A in the center line of the display image 141 seems to have white blurring in the pixel 141a adjacent to the leftmost pixel 141b of the black level of four pixels. Is displayed.
  • the voltage difference signal shown in FIGS. 10B and 10C is output from the horizontal voltage difference calculation unit 2312 based on the input video signal.
  • FIG. 10B shows a voltage difference signal obtained by taking a voltage difference between the own pixel and the (N + 1) th pixel, that is, a voltage level difference obtained by subtracting the drive voltage level of the own pixel from the drive voltage level of the pixel adjacent to the right side of the own pixel.
  • the voltage difference between the pixel 141a and the pixel 141b (the difference between the black potential and the gray potential) is positive
  • the voltage difference between the pixel 141c and the pixel 141d (the difference between the gray potential and the black potential) is negative. It is.
  • FIG. 10C shows a voltage difference signal obtained by taking a voltage difference between the own pixel and the (N ⁇ 1) th pixel, that is, a voltage level obtained by subtracting the drive voltage level of the pixel adjacent to the own pixel from the drive voltage level of the own pixel. Showing the difference.
  • the voltage difference difference between gray potential and black potential
  • the voltage difference between pixel 141a and the pixel 141b is negative
  • the voltage difference between pixel 141c and pixel 141d difference between the black potential and gray potential
  • a candidate for a correction target position can be detected from the waveform of the voltage level difference.
  • the voltage difference signal obtained by taking the voltage difference between the own pixel and the (N + 1) th pixel and the voltage difference signal taking the voltage difference between the own pixel and the (N ⁇ 1) th pixel are shown as signal waveforms. Is completely different.
  • the front pixel is set as a correction target pixel in time series, It is possible to select whether the pixel is a correction target pixel.
  • This selection signal may be defined and specified by the user.
  • a pixel in which an image quality defect occurs depends on a difference in structure between liquid crystal display devices such as a TN type and a VA type, an evaporation direction (a direction of pretilt), and the like, so that the horizontal direction selection unit 2321 and the vertical direction selection unit 2322 Information indicating the structure of the display device, vapor deposition direction information, and the like may be acquired and reflected in the selection signal.
  • the correction amount calculation unit 2323 is supplied from the horizontal direction selection information supplied from the horizontal direction selection unit 2321, the vertical direction selection information supplied from the vertical direction selection unit 2322, and the horizontal voltage difference calculation unit 2312 in FIG. Input line video signal. Then, the correction amount calculation unit 2323 calculates a drive voltage correction amount for the correction target pixel based on the horizontal direction selection information, the vertical direction selection information, and the line video signal.
  • the horizontal direction selection information supplied from the horizontal direction selection unit 2321 includes the voltage difference between the own pixel and the (N ⁇ 1) th pixel on the same line and the voltage difference between the own pixel and the (N + 1) th pixel in accordance with the horizontal scanning line signal. Any information is included.
  • the vertical direction selection information supplied from the vertical direction selection unit 2322 includes the voltage difference between the M-th line's own pixel and the adjacent pixel on the M ⁇ 1th line according to the vertical scanning line signal, Information on any of the voltage differences between the own pixel and the adjacent pixel on the M + 1th line is included.
  • the line video signal supplied from the horizontal direction voltage difference calculation unit 2312 includes drive voltage information for each pixel including the own pixel and the correction target pixel.
  • the correction amount calculation unit 2323 uses the driving voltage information for the correction target pixel included in the horizontal direction selection information, the vertical direction selection information, and the line video signal as parameters, and calculates the correction amount of the driving voltage for the correction target pixel. calculate.
  • the correction amount calculation unit 2323 is a two-dimensional or three-dimensional lookup table (hereinafter, referred to when calculating the drive voltage correction amount based on the horizontal direction selection information, the vertical direction selection information, and the drive voltage information). , Described as “LUT”) 2325.
  • the LUT 2325 should be added to the correction target pixel corresponding to the difference between the voltage level of the input video signal of the own pixel and the set voltage level of the pixel adjacent to the own pixel, that is, the voltage level between the own pixel and the adjacent pixel.
  • the correction setting information for setting the correction amount is stored.
  • the correction amount is such that the average luminance of the correction target pixel after correcting the driving voltage for the correction target pixel is the same as that when the driving voltage based on the input video signal before correction is supplied to the correction target pixel. Is set to By doing so, the display pattern of the display image before correction is the same as the display pattern of the display image after correction.
  • FIG. 11 shows the relationship between the correction amount of the drive voltage, the drive voltage of the own pixel, and the voltage difference with the adjacent pixel.
  • the hollow column in FIG. 11 is not corrected.
  • the numerical value shown in FIG. 11 is an example, Comprising: It is not restricted to these numerical values.
  • the 1.2V shown is the correction amount of the own pixel (correction target pixel), and the drive voltage of the own pixel is corrected from 0V to 1.2V.
  • correction target points determined by the relationship between the voltage level of the input video signal of the own pixel and the voltage level difference between the two pixels of the own pixel and the adjacent pixel are set discretely.
  • the voltage level difference between the own pixel and the adjacent pixel is small, the generated horizontal electric field is weak and image quality is less likely to occur. Accordingly, a threshold for the difference in voltage level between the own pixel and the adjacent pixel is set, and when this threshold is exceeded, the drive voltage is corrected for the correction target pixel. By doing so, it is possible to efficiently perform correction only for pixels that are highly effective in improving image quality defects when corrected without correcting all the pixels 2 of the liquid crystal panel 10.
  • the correction amount may also be defined and specified by the user.
  • the environmental information of the liquid crystal panel 10 includes, for example, a horizontal / vertical scanning direction, a pretilt direction, and a distance (gap) between two adjacent pixels. Therefore, when the horizontal scanning direction is from left (right) to right (left), the table is referred to in relation to the own pixel and the left (right) side adjacent pixel, and the vertical scanning direction is from top (bottom) to bottom (top). In this case, a table is prepared for reference in relation to the own pixel and the upper (lower) adjacent pixel.
  • a table to be referred to when the pretilt direction is left (right) with respect to the front of the liquid crystal panel 10 is prepared. Furthermore, since the strength of the generated lateral electric field changes depending on the distance (gap) between two adjacent pixels, even if the drive voltage applied to the two adjacent pixels is the same or the voltage difference between the two pixels is the same, The set value of the correction amount of the drive voltage for the correction target pixel is changed in consideration of the gap between the two pixels. Thus, the contents and correction amount are set in the LUT 2325 so as to correspond to various environment information or combinations thereof.
  • the correction amount interpolation unit 2324 interpolates and outputs the correction amount calculated by the correction amount calculation unit 2323 with reference to the LUT 2325. For example, since the correction target points are set discretely in the LUT 2325, there may be no correction target points that directly correspond to the voltage level of the input video signal of the own pixel. In this case, the correction amount interpolation unit 2324 selects, for example, two correction target points closest to the voltage level of the input video signal. Similarly, when there is no correction target point that directly corresponds to the voltage level difference between the two pixels of the own pixel and the adjacent pixel, the correction amount interpolation unit 2324, for example, uses the two correction targets closest to the voltage level difference between the two pixels. Select a point. Then, the correction amount interpolation unit 2324 performs interpolation processing such as linear interpolation on these four correction target points for the correction amount, and outputs the processing result to the correction amount adjustment unit 233 in FIG.
  • interpolation processing such as linear interpolation on these four correction target points for
  • the correction amount calculation unit 232 refers to the correction setting information based on the voltage difference between adjacent pixels and the video signal data (drive voltage information) for the correction target pixel and supplies the correction setting information to the correction target pixel.
  • the correction amount of the drive voltage is calculated.
  • the correction amount calculated by the correction amount calculation unit 232 is referred to as a correction amount X.
  • the correction amount calculation unit 232 sets the correction amount X of the drive voltage of the correction target pixel as a fixed value, assuming the state of the liquid crystal panel 10 after a certain amount of time has elapsed.
  • the liquid crystal panel 10 in the initial state that has not changed with time may be overcorrected, and conversely, the liquid crystal panel 10 that has changed with time more than previously assumed. Then, there is a case where the correction is insufficient. In either case, the image quality of the output image is degraded. Further, the image quality of the output image becomes worse as the change with time (deterioration with time) of the liquid crystal panel 10 progresses.
  • a configuration in which a correction amount adjustment unit 233 that adjusts the correction amount X calculated by the correction amount calculation unit 232 in accordance with the image quality of the output image is provided at the subsequent stage of the correction amount calculation unit 232.
  • the correction amount adjustment unit 233 adjusts the correction amount X for correcting the driving voltage of the correction target pixel according to the image quality of the output image, so that the state of the image quality of the output image according to the degree of change with time is corrected. This is reflected in the correction amount X of the driving voltage of the pixel.
  • the drive voltage of the correction target pixel can be corrected without being affected by the change over time of the liquid crystal panel 10, and the image quality of the output image can be improved.
  • the correction amount adjustment unit 233 needs to detect (understand) the state of the image quality of the output image in adjusting the correction amount X of the drive voltage of the correction target pixel.
  • various methods listed below can be exemplified.
  • the first detection method is a method in which the usage time of the liquid crystal panel 10 is measured by a counter and the image quality state of the output image is detected using the counter result (count value) as a parameter.
  • the image quality of the output image is also affected by the usage environment of the liquid crystal panel 10, particularly the temperature and humidity. Therefore, by measuring the temperature and humidity under the usage environment of the liquid crystal panel 10, and adding the measurement result as one of the parameters to the usage time of the liquid crystal panel 10, the detection accuracy of the image quality of the output image can be improved. it can. At this time, it is conceivable to add temperature alone, humidity alone, or both temperature and humidity as parameters. That is, the second detection method is a method of detecting the state of the image quality of the output image using the temperature, humidity, or temperature and humidity under the usage environment of the liquid crystal panel 10 as parameters in addition to the usage time of the liquid crystal panel 10. It is.
  • the third detection method uses an imaging unit (imaging device) to capture an output image, and directly determines the degree of temporal change in image quality of the output image (image quality state) from the imaging result.
  • This is a detection method.
  • a projection type liquid crystal display system projector system
  • the liquid crystal panel 10 as a light modulation means (light valve)
  • the vicinity of a projection lens 114 described later of the projector 51.
  • the imaging unit 52 is disposed in the area. And by imaging the output image 54 projected on the screen 53 with the imaging part 52, the state of the image quality of the output image 54 can be directly detected from the imaging result.
  • the method for detecting the state of the image quality of the output image is not limited to the above-described first detection method, second detection method, or third detection method.
  • the chromaticity of the liquid crystal panel 10 is measured using a chromaticity meter, and the measurement result is used as one of parameters, or a luminance meter is used. It is also possible to measure the luminance of the liquid crystal panel 10 and use the measurement result as one of the parameters.
  • the degree of moisture absorption of the liquid crystal panel 10 is detected under the measurement of chromaticity.
  • the display of white stripes and black stripes is repeated in pixel row units (or pixel column units), that is, when the potential difference between two adjacent pixels is the largest, inter-pixel leakage is likely to occur. Therefore, in a projection type liquid crystal display system, the luminance when only white stripes are displayed is measured as illuminance A, the luminance when only black stripes are displayed is measured as illuminance B, and white stripes and black stripes are alternately displayed. The brightness when displayed on the screen is measured as illuminance C.
  • a moisture absorption index (degree of moisture absorption) is obtained from illuminance C / (average of illuminance A and illuminance B), and the moisture absorption index is used as one of the parameters for detecting the state of the image quality of the output image. it can.
  • Example 1 specific examples of the correction amount adjustment unit 233 when adjusting the correction amount based on the acquisition result of the output image acquired using the third detection method will be described as Example 1 and Example 2.
  • Example 2 specific examples of the correction amount adjustment unit 233 when adjusting the correction amount based on the usage time acquired using the first detection method will be described as a second embodiment.
  • the correction amount adjustment unit 233 detects the state of the image quality of the output image from the imaging result of the adjusted image (output image), and reflects the image quality information on the correction amount X, that is, the output image
  • the above-described third detection method is applied to the detection of the image quality state.
  • the above-described moisture absorption index is used as a parameter for determining whether or not the driving voltage of the correction target pixel needs to be corrected.
  • FIG. 13 shows a flow of processing for correction amount adjustment in the correction amount adjustment unit 233 according to the first embodiment.
  • a series of processes for adjusting the correction amount described below is executed by software under the control of a processor such as an MPU configuring the digital signal processing unit 23 of FIG.
  • a processor such as an MPU configuring the digital signal processing unit 23 of FIG.
  • the present invention is not limited to a configuration that is executed by software, and each functional unit that executes processing for adjusting the correction amount may have a hardware configuration. The same applies to the embodiments described later.
  • the processor supplies an adjustment image video signal for adjusting the correction amount to the projector 51 of FIG. 12 to output the adjustment image (step S ⁇ b> 11), and then the adjustment projected on the screen 53.
  • Image data obtained by imaging an image, that is, an output image using the imaging unit 52 is acquired (step S12).
  • the processor digitizes the image quality data of the adjusted image (output image) based on the acquired image data (step S13), and then according to the image quality state of the output image based on the digitized image quality data
  • a correction coefficient ⁇ is set (step S14).
  • the image quality of the output image deteriorates (deteriorates) as the liquid crystal panel 10 changes with time.
  • An example of the relationship between the usage time of the liquid crystal panel 10, the state of the image quality of the output image, and the correction coefficient ⁇ is shown in FIG.
  • the initial state of the liquid crystal panel 10 one year later, three years later, and so on, etc.
  • the image quality of the output image is deteriorated according to the usage time of the liquid crystal panel 10. Therefore, in step S14, a value corresponding to the image quality state of the output image is set as the correction coefficient ⁇ .
  • the processor obtains the image quality data after reflecting the correction coefficient ⁇ set in step S14, that is, the corrected image quality data by calculation (step S15), and then compares the image quality data with the reference image quality data to perform correction. It is determined whether or not it is necessary to correct the drive voltage of the target pixel (step S16).
  • step S16 it is determined that correction is necessary when the image quality falls below the image quality setting range. If the processor determines that correction is necessary (YES in S16), the correction coefficient ⁇ set in step S14 is set to the correction amount X of the drive voltage of the correction target pixel calculated by the correction amount calculation unit 232. Is reflected (step S17), and then a series of processing for adjusting the correction amount is completed.
  • step S17 specifically, (Correction amount X based on voltage difference between two pixels) ⁇ (correction coefficient ⁇ according to the image quality of the output image)
  • the arithmetic processing is performed.
  • the calculation result is a correction amount ⁇ X that reflects (feeds back) the correction coefficient ⁇ corresponding to the image quality of the output image to the correction amount X based on the voltage difference between the two pixels.
  • FIG. 16 shows an example of correction setting information after feedback of the correction coefficient ⁇ .
  • FIG. 16 shows the relationship between the correction amount of the drive voltage, the drive voltage of the own pixel, and the voltage difference with the adjacent pixel.
  • the hollow column in FIG. 16 is not corrected.
  • the numerical value shown in FIG. 16 is an example, Comprising: It is not restricted to these numerical values.
  • the processor determines that the correction is unnecessary (NO in S16)
  • the correction coefficient ⁇ does not need to be reflected in the correction amount X based on the voltage difference between the two pixels.
  • the correction amount X is used as it is (step S18), and a series of processes for adjusting the correction amount is terminated.
  • the output image is captured by the imaging unit 52, and the state of the image quality of the output image is grasped from the imaging result. It is possible to detect the state of the image quality of the output image accompanying a change with time. Then, the correction coefficient ⁇ is set based on the state of the image quality of the output image and fed back to the correction amount X of the drive voltage of the correction target pixel, so that the drive voltage can be adjusted without being affected by the change over time of the liquid crystal panel 10. Since correction can be performed, the image quality of the output image can be improved.
  • the second embodiment is a modification of the first embodiment.
  • the correction coefficient ⁇ corresponding to the state of the image quality of the output image is set, the image quality data (corrected image quality data) after the correction coefficient ⁇ is reflected is calculated, and compared with the reference image quality data.
  • the necessity of correction is determined.
  • the adjusted image after the correction coefficient ⁇ is reflected is output, the corrected image quality data is digitized based on the image data acquired again, and compared with the reference image quality data. Determine whether correction is necessary.
  • FIG. 17 shows a flow of processing for correction amount adjustment in the correction amount adjustment unit 233 according to the second embodiment.
  • the processor outputs an adjustment image for adjusting the correction amount from the projector 51 (step S ⁇ b> 21), and then an image obtained by imaging the output image on the screen 53 using the imaging unit 52. Data is acquired (step S22).
  • the processor digitizes the image quality data of the output image based on the acquired image data (step S23), and then calculates a correction coefficient ⁇ according to the state of the image quality of the output image based on the digitized image quality data.
  • Set step S24.
  • the correction coefficient ⁇ is the same as in the first embodiment.
  • the processor corrects the adjusted image using the correction coefficient ⁇ , causes the adjusted image to be output from the projector 51 (step S25), and then uses the imaging unit 52 to output the output image on the screen 53.
  • the image data for the adjusted image after correction obtained by imaging is acquired (step S26).
  • the processor digitizes the image quality data of the adjusted image after correction based on the acquired image data (step S27), and then compares the digitized image quality data of the adjusted image after correction with reference image quality data. Thus, it is determined whether or not it is necessary to correct the drive voltage of the correction target pixel (step S28).
  • the reference image quality data is the same as in the first embodiment.
  • step S28 If the processor determines that correction is necessary (YES in S28), the correction coefficient ⁇ set in step S24 is reflected in the correction amount X of the drive voltage of the correction target pixel (step S29). Thereafter, a series of processes for adjusting the correction amount is completed. If the processor determines that no correction is necessary (NO in S28), the correction coefficient ⁇ need not be reflected in the correction amount X based on the voltage difference between the two pixels. The calculation for multiplying the coefficient ⁇ is not performed, the correction amount X is used as it is (step S30), and a series of processes for adjusting the correction amount is completed.
  • the correction amount adjustment in the correction amount adjustment unit 233 it is possible to obtain the same operations and effects as in the first embodiment.
  • the adjusted image after the correction coefficient ⁇ is reflected is output, the corrected image quality data is digitized based on the image data acquired again, and the necessity of correction is determined. Therefore, the necessity of correction can be determined more reliably.
  • the correction amount adjustment unit 233 detects the image quality state of the output image from the usage time of the liquid crystal panel 10 and reflects the image quality information in the correction amount X, that is, the image quality state of the output image. This is an example in which the first detection method described above is applied to the detection of.
  • a plurality of correction setting tables corresponding to the usage time of the liquid crystal panel 10 are prepared in advance in a LUT (lookup table) as correction setting information, and the table is selected based on the image quality information. .
  • the LUTs of the plurality of correction setting tables are stored in a frame memory (not shown) built in the correction amount adjustment unit 233, for example.
  • FIG. 18 is a diagram illustrating an example of the relationship between the usage time of the liquid crystal panel, the quality of the output image, and the correction setting table.
  • the plurality of correction setting tables for example, the correction setting table A corresponding to the period from the initial state of the liquid crystal panel 10 to the usage time of about one year, and the usage time of about one year to about two years.
  • the case of using two of the correction setting tables B corresponding to the period until the elapse is illustrated.
  • the correction setting table is not limited to two, and may be three or more.
  • FIG. 19 shows an example of numerical values of the correction setting table A and the correction setting table B.
  • Each table in FIG. 19 shows the relationship between the correction amount of the drive voltage, the drive voltage of the own pixel, and the voltage difference with the adjacent pixel.
  • the hollow column in FIG. 19 is not corrected. Note that the numerical values shown in FIG. 19 are examples, and are not limited to these numerical values.
  • FIG. 20 is a flowchart illustrating a flow of processing for correction amount adjustment in the correction amount adjustment unit 233 according to the third embodiment.
  • the processor first acquires a count value of a counter (not shown) that counts the usage time of the liquid crystal panel 10 (step S31).
  • a counter not shown
  • the output image is calculated from the count value (measurement time) by counting the usage time of the liquid crystal panel 10.
  • the degree of change in image quality over time can be indirectly detected. That is, by acquiring the count value of the usage time of the liquid crystal panel 10, it is possible to grasp the degree of temporal change in the image quality of the output image.
  • the processor selects one of a plurality of correction setting tables from the LUT, that is, the correction setting table A or the correction setting table B, based on the acquired count value of usage time (step S32).
  • the correction amount X calculated by the correction amount calculation unit 232 is used as it is as the correction amount of the drive voltage of the correction target pixel.
  • the correction setting table A is selected.
  • the correction setting table B is selected. To do.
  • the processor corrects the correction amount X calculated by the correction amount calculation unit 232 based on the selected correction setting table A or correction setting table B, calculates post-correction image quality data (step S33), and then Then, by comparing with the reference image quality data, it is determined whether or not it is necessary to correct the drive voltage of the pixel to be corrected (step S34).
  • the reference image quality data to be compared with the corrected image quality data is the same as in the first embodiment.
  • the processor determines that correction is necessary (YES in S34)
  • the correction setting table A or the correction setting table B selected in step S32 is reflected in the correction amount X of the drive voltage of the correction target pixel.
  • the correction amount of the drive voltage of the correction target pixel is set (step S35), and then a series of processes for adjusting the correction amount is finished.
  • step S34 If the processor determines that the correction is unnecessary (NO in S34), it is not necessary to reflect the correction setting table A / correction setting table B in the correction amount X based on the voltage difference between the two pixels.
  • the correction amount X calculated by the correction amount calculation unit 232 is used as it is (step S36), and a series of processes for adjusting the correction amount is completed.
  • the usage time of the liquid crystal panel 10 is counted, and the state of the image quality of the output image is grasped from the count result, so that the liquid crystal panel 10 It is possible to detect the state of the image quality of the output image accompanying a change with time. Then, based on the state of the image quality of the output image, one of a plurality of correction setting tables prepared in advance is selected and reflected in the correction amount X of the drive voltage of the pixel to be corrected, so that the liquid crystal panel 10 changes over time. Since the drive voltage can be corrected without being affected by the change, the image quality of the output image can be improved.
  • the first detection method using the usage time of the liquid crystal panel 10 is applied to the detection of the image quality state of the output image.
  • the second detection method may be used in combination. That is, the temperature and humidity in the usage environment of the liquid crystal panel 10 are measured, the temperature alone, the humidity alone, or both the temperature and humidity as one of the parameters, in addition to the usage time of the liquid crystal panel 10, the output image The image quality state may be detected.
  • the combined use of the first detection method and the second detection method can further improve the detection accuracy of the image quality of the output image.
  • the technique of this indication was demonstrated based on preferable embodiment, the technique of this indication is not limited to the said embodiment.
  • the configuration and structure of the display device described in the above embodiment are examples, and can be changed as appropriate.
  • the technology of the present disclosure has been described by taking a liquid crystal display device (liquid crystal panel) as an example.
  • the image quality defect due to the horizontal electric field is a phenomenon that occurs in a display device in which pixels are two-dimensionally arranged in a matrix and display driving is performed by applying a voltage to the scanning lines and signal lines.
  • a lateral electric field disturbs the movement of electrons and holes in the organic EL element, resulting in poor image quality.
  • the horizontal electric field affects the generation of plasma in the pixel, resulting in poor image quality. Therefore, the technology of the present disclosure can be applied to all display devices of the above method.
  • the display device of the present disclosure described above is a display unit (display device) of an electronic device in any field that displays a video signal input to the electronic device or a video signal generated in the electronic device as an image or a video.
  • the electronic device include a projection type liquid crystal display device, a television set, a notebook personal computer, a digital still camera, and a mobile terminal device such as a mobile phone.
  • a projection type liquid crystal display device a television set
  • a notebook personal computer a digital still camera
  • a mobile terminal device such as a mobile phone.
  • the display device of the present disclosure also includes a module-shaped one with a sealed configuration.
  • the display module may be provided with a circuit unit for inputting / outputting signals from the outside to the pixel array unit, a flexible printed circuit (FPC), and the like.
  • FPC flexible printed circuit
  • a projection type liquid crystal display device will be exemplified as a specific example of an electronic apparatus using the display device of the present disclosure.
  • the specific example illustrated here is only an example, and is not limited to this projection type liquid crystal display device.
  • Projection type liquid crystal display Projection type liquid crystal display devices (so-called projectors) perform color display with additive color mixing, and use liquid crystal panels for the three primary colors of light, that is, red (R), green (G), and blue (B).
  • a three-plate system is used in which images of primary colors are created with a single liquid crystal panel and then the images are combined with a prism.
  • a liquid crystal panel used in a projection type liquid crystal display device is generally a panel having a size of about 1.0 inch.
  • FIG. 21 schematically illustrates an optical system of a three-plate projection liquid crystal display device (projector) that is an example of the electronic apparatus of the present disclosure.
  • white light emitted from a light source 101 such as a white lamp is converted from P-polarized light to S-polarized light by the polarization conversion element 102, and then the illumination is made uniform by the fly-eye lens 103 to be applied to the dichroic mirror 104.
  • a specific color component for example, an R (red) light component is transmitted through the dichroic mirror 104, and the remaining color light components are reflected by the dichroic mirror 104.
  • the R light component transmitted through the dichroic mirror 104 is changed in optical path by the mirror 105 and then enters the R liquid crystal panel 107R through the lens 106R.
  • the G (green) light component is reflected by the dichroic mirror 108, and the B (blue) light component is transmitted through the dichroic mirror 108.
  • the G light component reflected by the dichroic mirror 108 enters the G liquid crystal panel 107G through the lens 106G.
  • the B light component transmitted through the dichroic mirror 108 passes through the lens 109 and is then changed in the optical path by the mirror 110. Further, after passing through the lens 111, the optical path is changed by the mirror 112, and enters the B liquid crystal panel 107B through the lens 106B. .
  • polarizing plates are arranged on the incident side and the emission side of the liquid crystal panels 107R, 107G, and 107B, respectively.
  • a normally white mode can be set by installing a pair of polarizing plates on the incident side and the outgoing side so that the polarization directions are perpendicular to each other (crossed Nicols), and the polarization directions are parallel to each other (parallel Nicols). You can set the normally black mode.
  • the R, G, and B light components that have passed through the liquid crystal panels 107R, 107G, and 107B are incident on the cross prism 113 and are combined in the cross prism 113. Then, the light synthesized by the cross prism 113 enters the projection lens 114 and is projected on the screen (not shown) by the projection lens 114.
  • the display device (liquid crystal panel) according to the above-described embodiment can be used as the liquid crystal panels 107R, 107G, and 107B as light modulation means (light valves). Since the display device according to the above-described embodiment can correct the drive voltage of the correction target pixel without being affected by the change over time, the image quality of the output image can be improved. Therefore, by using the display device according to the above-described embodiment as the light modulation means of the projection type liquid crystal display device, it is possible to contribute to improving the display quality of the projection type liquid crystal display device.
  • a difference detection unit that detects a difference in drive voltage between two adjacent pixels;
  • a correction amount calculation unit that calculates a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to a difference in drive voltage detected by the difference detection unit;
  • a correction amount adjusting unit that adjusts the correction amount calculated by the correction amount calculating unit according to the image quality of the output image; and
  • a drive voltage correction unit that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit;
  • the correction amount adjusting unit captures an adjustment image for adjusting the correction amount, and uses the captured image data as a parameter for detecting the state of the image quality of the output image.
  • the correction amount adjustment unit digitizes the image quality data based on the captured image data obtained by capturing the adjusted image, sets a correction coefficient based on the image quality data, and corrects the image quality after the correction coefficient is reflected. Calculate the data, based on the post-correction image quality data obtained by this calculation, determine whether or not it is necessary to correct the drive voltage of the correction target pixel, The display device according to [A-2] above. [A-4] The correction amount adjustment unit determines whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data. The display device according to [A-3] above.
  • the correction amount adjustment unit digitizes the image quality data based on the captured image data obtained by capturing the adjusted image, sets a correction coefficient based on the image quality data, and corrects the adjustment image using the correction coefficient.
  • the image quality data is digitized based on the captured image data obtained by capturing the corrected adjusted image, and the drive voltage of the correction target pixel is corrected based on the digitized image quality data of the corrected adjusted image. Judgment is necessary, The display device according to [A-2] above.
  • the correction amount adjustment unit determines the necessity of correction by comparing the digitized image quality data of the adjusted image with the reference image quality data.
  • the correction amount adjustment unit counts the usage time of the display panel in which the pixels are arranged, and uses the count value as a parameter for detecting the state of the image quality of the output image.
  • the correction amount adjustment unit has a plurality of correction setting tables corresponding to the usage time of the display panel.
  • the correction amount adjustment unit selects one of a plurality of correction setting tables based on the count value of the usage time of the display panel.
  • the correction amount adjustment unit calculates post-correction image quality data reflecting the selected correction setting table, and corrects the drive voltage of the correction target pixel based on the post-correction image quality data obtained by this calculation. Judgment is necessary, The display device according to [A-9] above. [A-11] The correction amount adjustment unit determines whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data. The display device according to [A-10] above. [A-12] The correction amount adjustment unit uses temperature and humidity under the usage environment of the display panel, or temperature and humidity as one of the parameters. The display device according to any one of [A-7] to [A-11].
  • the correction amount adjustment unit uses, as one of the parameters, the chromaticity of the display panel measured using a chromaticity meter or the luminance of the display panel measured using a luminance meter.
  • the display device according to any one of [A-7] to [A-11].
  • a driving method of a display device A driving method of a display device.
  • [B-2] In the correction amount adjustment step, an adjustment image for adjusting the correction amount is captured, and the captured image data is used as a parameter for detecting the image quality state of the output image.
  • [B-3] In the correction amount adjustment step, the image quality data is digitized based on the captured image data obtained by capturing the adjusted image, the correction coefficient is set based on the image quality data, and the corrected image quality reflecting the correction coefficient Calculate the data, based on the post-correction image quality data obtained by this calculation, determine whether or not it is necessary to correct the drive voltage of the correction target pixel, The method for driving the display device according to [B-2] above.
  • the correction amount adjustment step it is determined whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data.
  • the correction amount adjustment step the image quality data is digitized based on the captured image data obtained by capturing the adjusted image, a correction coefficient is set based on the image quality data, and the adjustment image is corrected using the correction coefficient.
  • the image quality data is digitized based on the captured image data obtained by capturing the corrected adjusted image, and the drive voltage of the correction target pixel is corrected based on the digitized image quality data of the corrected adjusted image. Judgment is necessary, The method for driving the display device according to [B-2] above.
  • [B-6] In the correction amount adjustment step, it is determined whether or not correction is necessary by comparing the digitized image quality data of the adjusted image with the reference image quality data.
  • [B-7] In the correction amount adjustment step, the usage time of the display panel in which the pixels are arranged is counted, and the count value is used as a parameter for detecting the state of the image quality of the output image.
  • the correction amount adjustment step includes a plurality of correction setting tables corresponding to the usage time of the display panel. The method for driving the display device according to [B-7] above.
  • [B-9] In the correction amount adjustment step, one of a plurality of correction setting tables is selected based on the count value of the usage time of the display panel. The method for driving the display device according to [B-8].
  • [B-10] In the correction amount adjustment step, the post-correction image quality data reflecting the selected correction setting table is calculated, and based on the post-correction image quality data obtained by this calculation, the correction of the drive voltage of the correction target pixel is performed. Judgment is necessary, The method for driving the display device according to [B-9].
  • [B-11] In the correction amount adjustment step, whether or not correction is necessary is determined by comparing the corrected image quality data obtained by calculation with the reference image quality data. The method for driving a display device according to [B-10] above.
  • [C-1] A difference detection unit that detects a difference in drive voltage between two adjacent pixels; A correction amount calculation unit that calculates a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to a difference in drive voltage detected by the difference detection unit; A correction amount adjusting unit that adjusts the correction amount calculated by the correction amount calculating unit according to the image quality of the output image; and A drive voltage correction unit that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit; An electronic device having a display device. [C-2] The correction amount adjustment unit captures an adjustment image for adjusting the correction amount, and uses the captured image data as a parameter for detecting the state of the image quality of the output image.
  • the correction amount adjusting unit digitizes the image quality data based on the captured image data obtained by capturing the adjusted image, sets a correction coefficient based on the image quality data, and corrects the image quality after the correction coefficient is reflected. Calculate the data, based on the post-correction image quality data obtained by this calculation, determine whether or not it is necessary to correct the drive voltage of the correction target pixel, The electronic device according to [C-2] above. [C-4] The correction amount adjustment unit determines whether or not correction is necessary by comparing the corrected image quality data obtained by the calculation with the reference image quality data. The electronic device according to [C-3] above.
  • the correction amount adjustment unit digitizes the image quality data based on the captured image data obtained by capturing the adjusted image, sets a correction coefficient based on the image quality data, and corrects the adjusted image using the correction coefficient.
  • the image quality data is digitized based on the captured image data obtained by capturing the corrected adjusted image, and the drive voltage of the correction target pixel is corrected based on the digitized image quality data of the corrected adjusted image. Judgment is necessary, The electronic device according to [C-2] above.
  • the correction amount adjustment unit determines whether or not correction is necessary by comparing the image quality data of the adjusted image after correction with the reference image quality data.
  • the correction amount adjustment unit counts the usage time of the display panel in which the pixels are arranged, and uses the count value as a parameter for detecting the image quality state of the output image.
  • the correction amount adjustment unit has a plurality of correction setting tables corresponding to the usage time of the display panel.
  • [C-9] The correction amount adjustment unit selects one of a plurality of correction setting tables based on the count value of the usage time of the display panel.
  • the correction amount adjustment unit calculates post-correction image quality data reflecting the selected correction setting table, and corrects the drive voltage of the correction target pixel based on the post-correction image quality data obtained by the calculation. Judgment is necessary, The electronic device according to [C-9] above. [C-11] The correction amount adjustment unit determines whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data. The electronic device according to [C-10] above. [C-12] The correction amount adjustment unit uses temperature and humidity under the usage environment of the display panel, or temperature and humidity as one of the parameters. The electronic device according to any one of [C-7] to [C-11].
  • the correction amount adjustment unit uses, as one of the parameters, the chromaticity of the display panel measured using a chromaticity meter or the luminance of the display panel measured using a luminance meter.
  • the electronic device according to any one of [C-7] to [C-11].
  • SYMBOLS 1 Liquid crystal display device, 2 ... Pixel, 10 ... Liquid crystal panel, 20 ... Video signal processing circuit, 21 ... A / D * PLL part, 22 ... Video signal conversion part, 23 ... Digital signal processing unit, 24 ... Sample hold unit, 25 ... Image memory, 26 ... Control unit, 231 ... Adjacent pixel voltage difference calculation unit, 232 ... Correction amount calculation , 233... Correction amount adjustment unit, 234... Correction amount addition unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display device according to the present invention comprises: a difference detection unit for detecting a difference in driving voltage between two adjacent pixels; a correction amount calculation unit for calculating a correction amount for correcting a driving voltage applied to a pixel to be corrected that generates a luminance change due to the difference in driving voltage detected by the difference detection unit; a correction amount adjustment unit for adjusting the correction amount calculated by the correction amount calculation unit in accordance with the quality of an output image; and a driving voltage correction unit for correcting the driving voltage applied to the pixel to be corrected on the basis of the correction amount adjusted by the correction amount adjustment unit.

Description

表示装置及び表示装置の駆動方法、並びに、電子機器Display device, display device driving method, and electronic apparatus
 本開示は、表示装置及び表示装置の駆動方法、並びに、電子機器に関する。 The present disclosure relates to a display device, a display device driving method, and an electronic device.
 液晶表示装置などの表示装置において、各画素に供給される映像信号間に電位差が生じる信号境界部分、即ち、隣接する2つの画素間に、所謂、横電界が発生する。この横電界により、各画素の電極にかかる電界が乱れ、その電界の乱れの影響によって画質不良が発生する。この画質不良の現象の特徴として、2つの画素間での映像信号に基づく駆動電圧の差分(電圧差)によって2つの画素間で濃淡が異なる。 In a display device such as a liquid crystal display device, a so-called lateral electric field is generated at a signal boundary portion where a potential difference occurs between video signals supplied to each pixel, that is, between two adjacent pixels. Due to this lateral electric field, the electric field applied to the electrodes of each pixel is disturbed, and an image quality defect occurs due to the influence of the disturbance of the electric field. As a feature of this phenomenon of image quality failure, the density of the two pixels varies depending on the difference (voltage difference) in the drive voltage based on the video signal between the two pixels.
 この隣接する2つの画素間での横電界に起因する画質不良に対し、従来は、隣接する2つの画素間の駆動電圧の差分を検出し、その差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出し、当該補正量に基づいて、補正対象画素の駆動電圧を補正していた(例えば、特許文献1参照)。 Conventionally, with respect to the image quality defect caused by the horizontal electric field between two adjacent pixels, conventionally, a correction target pixel that detects a difference in driving voltage between two adjacent pixels and causes a luminance change due to the difference. A correction amount for correcting the driving voltage is calculated, and the driving voltage of the correction target pixel is corrected based on the correction amount (see, for example, Patent Document 1).
特開2009-237366号公報JP 2009-237366 A
 特許文献1に記載の従来技術では、ある程度経時変化した後の表示装置の状態を想定して、補正対象画素の駆動電圧の補正量を固定値として設定している。そのため、経時変化していない初期状態では過補正による画質の低下、あるいは、想定した状態よりも経時変化が進んだ状態では補正不足による出力画像の画質の低下が発生する。 In the prior art described in Patent Document 1, the correction amount of the drive voltage of the correction target pixel is set as a fixed value assuming the state of the display device after a certain change with time. For this reason, in the initial state where there is no change over time, the image quality deteriorates due to overcorrection, or in the state where the change over time progresses more than the assumed state, the image quality of the output image deteriorates due to insufficient correction.
 本開示は、経時変化の影響を受けることなく、補正対象画素の駆動電圧の補正を行うことで、出力画像の画質の向上を図ることができる表示装置及び表示装置の駆動方法、並びに、当該表示装置を有する電子機器を提供することを目的とする。 The present disclosure relates to a display device and a display device driving method capable of improving the image quality of an output image by correcting the drive voltage of a correction target pixel without being affected by changes over time, and the display An object is to provide an electronic apparatus having the device.
 上記の目的を達成するための本開示の表示装置は、
 隣接する2つの画素間の駆動電圧の差分を検出する差分検出部、
 差分検出部で検出された駆動電圧の差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出する補正量演算部、
 補正量演算部で算出された補正量を、出力画像の画質に応じて調整する補正量調整部、及び、
 補正量調整部で調整された補正量に基づいて、補正対象画素の駆動電圧を補正する駆動電圧補正部を備える。
In order to achieve the above object, a display device of the present disclosure is provided.
A difference detection unit for detecting a difference in driving voltage between two adjacent pixels;
A correction amount calculation unit that calculates a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to a difference in drive voltage detected by the difference detection unit;
A correction amount adjusting unit that adjusts the correction amount calculated by the correction amount calculating unit according to the image quality of the output image; and
A drive voltage correction unit is provided that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit.
 また、上記の目的を達成するための本開示の表示装置の駆動方法は、
 隣接する2つの画素間の駆動電圧の差分を検出する差分検出ステップ、
 差分検出ステップで検出した駆動電圧の差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出する補正量演算ステップ、
 補正量演算ステップで算出した補正量を、出力画像の画質に応じて調整する補正量調整ステップ、及び、
 補正量調整ステップで調整した補正量に基づいて、補正対象画素の駆動電圧を補正する駆動電圧補正ステップの各処理を実行する。
Further, a driving method of the display device of the present disclosure for achieving the above-described object is as follows.
A difference detection step of detecting a difference in drive voltage between two adjacent pixels;
A correction amount calculation step for calculating a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to the difference in the drive voltage detected in the difference detection step;
A correction amount adjusting step for adjusting the correction amount calculated in the correction amount calculating step according to the image quality of the output image; and
Each process of the drive voltage correction step for correcting the drive voltage of the correction target pixel is executed based on the correction amount adjusted in the correction amount adjustment step.
 また、上記の目的を達成するための本開示の電子機器は、
 隣接する2つの画素間の駆動電圧の差分を検出する差分検出部、
 差分検出部で検出された駆動電圧の差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出する補正量演算部、
 補正量演算部で算出された補正量を、出力画像の画質に応じて調整する補正量調整部、及び、
 補正量調整部で調整された補正量に基づいて、補正対象画素の駆動電圧を補正する駆動電圧補正部を備える、
 表示装置を有する。
In addition, an electronic device of the present disclosure for achieving the above object is
A difference detection unit for detecting a difference in driving voltage between two adjacent pixels;
A correction amount calculation unit that calculates a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to a difference in drive voltage detected by the difference detection unit;
A correction amount adjusting unit that adjusts the correction amount calculated by the correction amount calculating unit according to the image quality of the output image; and
A drive voltage correction unit that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit;
A display device;
図1は、本開示の技術が適用される液晶表示装置のシステム構成の概略を示すブロック図である。FIG. 1 is a block diagram illustrating an outline of a system configuration of a liquid crystal display device to which the technology of the present disclosure is applied. 図2Aは、アクティブマトリクス方式の液晶パネルの構成の一例を示すブロック図であり、図2Bは、画素の回路構成の一例を示す等価回路図である。2A is a block diagram illustrating an example of a configuration of an active matrix liquid crystal panel, and FIG. 2B is an equivalent circuit diagram illustrating an example of a circuit configuration of a pixel. 図3Aは、液晶パネルの構造の一例を示す分解斜視図であり、図3Bは、図3Aの要部の拡大図である。FIG. 3A is an exploded perspective view showing an example of the structure of the liquid crystal panel, and FIG. 3B is an enlarged view of a main part of FIG. 3A. 図4Aは、液晶パネルの初期状態における液晶層の水分の状態を示す図であり、図4Bは、初期状態における画素電位の一例を示す図であり、図4Cは、初期状態における映像信号Vsig-透過率Tの特性を示す図である。FIG. 4A is a diagram showing the moisture state of the liquid crystal layer in the initial state of the liquid crystal panel, FIG. 4B is a diagram showing an example of the pixel potential in the initial state, and FIG. 4C is the video signal V sig in the initial state. -Is a diagram showing the characteristics of transmittance T. 図5Aは、液晶パネルの吸湿状態における液晶層の水分の状態を示す図であり、図5Bは、吸湿状態における画素電位の一例を示す図であり、図5Cは、吸湿状態における映像信号Vsig-透過率Tの特性を示す図である。FIG. 5A is a diagram showing the moisture state of the liquid crystal layer in the moisture absorption state of the liquid crystal panel, FIG. 5B is a diagram showing an example of the pixel potential in the moisture absorption state, and FIG. 5C is the video signal V sig in the moisture absorption state. -Is a diagram showing the characteristics of transmittance T. 図6は、本開示の実施形態に係るデジタル信号処理部の構成の一例を示すブロック図である。FIG. 6 is a block diagram illustrating an example of a configuration of a digital signal processing unit according to an embodiment of the present disclosure. 図7は、デジタル信号処理部における隣接画素間電圧差算出部の構成の一例を示すブロック図である。FIG. 7 is a block diagram illustrating an example of a configuration of a voltage difference calculation unit between adjacent pixels in the digital signal processing unit. 図8は、デジタル信号処理部における補正量演算部の構成の一例を示すブロック図である。FIG. 8 is a block diagram illustrating an example of the configuration of the correction amount calculation unit in the digital signal processing unit. 図9は、入力映像信号による表示画像とその中央ラインの画像についての駆動電圧レベルを示す図である。FIG. 9 is a diagram showing drive voltage levels for a display image based on an input video signal and an image of the center line thereof. 図10Aは、画質不良発生後の表示画像を示す図であり、図10Bは、自画素とN+1画素目との電圧差をとった電圧差信号を示す図であり、図10Cは、自画素とN-1画素目との電圧差をとった電圧差信号を示す図である。FIG. 10A is a diagram showing a display image after image quality failure occurs, FIG. 10B is a diagram showing a voltage difference signal obtained by taking a voltage difference between the own pixel and the N + 1th pixel, and FIG. It is a figure which shows the voltage difference signal which took the voltage difference with the N-1 pixel. 図11は、補正量の算出の際に参照する補正設定情報の一例を示す図である。FIG. 11 is a diagram illustrating an example of the correction setting information referred to when the correction amount is calculated. 図12は、プロジェクタに配置した撮像部によって出力画像の画質の状態を直接的に検出する例を示す図である。FIG. 12 is a diagram illustrating an example in which the image quality state of the output image is directly detected by the imaging unit arranged in the projector. 図13は、実施例1に係る補正量調整部における補正量調整のための処理の流れを示すフローチャートである。FIG. 13 is a flowchart illustrating a flow of processing for correction amount adjustment in the correction amount adjustment unit according to the first embodiment. 図14は、液晶パネルの使用時間、出力画像の画質の状態、及び、補正係数αの関係の一例を示す図である。FIG. 14 is a diagram illustrating an example of the relationship between the usage time of the liquid crystal panel, the state of the output image quality, and the correction coefficient α. 図15は、補正対象画素の駆動電圧の補正の要否を判断基準の閾値及び画質設定範囲についての説明図である。FIG. 15 is an explanatory diagram of the threshold value and the image quality setting range for determining whether or not the drive voltage of the correction target pixel needs to be corrected. 図16は、補正係数αをフィードバック後の補正設定情報の一例を示す図である。FIG. 16 is a diagram illustrating an example of correction setting information after feedback of the correction coefficient α. 図17は、実施例2に係る補正量調整部における補正量調整のための処理の流れを示すフローチャートである。FIG. 17 is a flowchart illustrating a flow of a process for adjusting the correction amount in the correction amount adjusting unit according to the second embodiment. 図18は、液晶パネルの使用時間、出力画像の画質の状態、及び、補正設定テーブルの関係の一例を示す図である。FIG. 18 is a diagram illustrating an example of the relationship between the usage time of the liquid crystal panel, the state of the output image quality, and the correction setting table. 図19は、補正設定テーブルA及び補正設定テーブルBの数値についての一例を示す図である。FIG. 19 is a diagram illustrating an example of numerical values in the correction setting table A and the correction setting table B. 図20は、実施例3に係る補正量調整部における補正量調整のための処理の流れを示すフローチャートである。FIG. 20 is a flowchart illustrating a flow of processing for adjusting the correction amount in the correction amount adjusting unit according to the third embodiment. 図21は、本開示の電子機器の一例である3板式投射型液晶表示装置(プロジェクタ)の光学系の概略を示す構成図である。FIG. 21 is a configuration diagram illustrating an outline of an optical system of a three-plate projection type liquid crystal display device (projector) which is an example of the electronic apparatus of the present disclosure.
 以下、本開示の技術を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。本開示の技術は実施形態に限定されるものではなく、実施形態における種々の数値などは例示である。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
1.本開示の表示装置及び表示装置の駆動方法、並びに、電子機器、全般に関する説明
2.本開示の技術が適用される表示装置
 2-1.システム構成例
 2-2.液晶パネルの構成例
 2-3.画素の回路例
 2-4.液晶パネルの構造例
 2-5.画素間リークによる画質の経時変化について
3.本開示の実施形態(デジタル信号処理部)
 3-1.隣接画素間電圧差算出部
 3-2.補正量演算部
 3-3.補正量加算部
  3-3-1.実施例1(出力画像の撮像結果から画質の状態を検出する例)
  3-3-2.実施例2(実施例1の変形例)
  3-3-3.実施例3(液晶パネルの使用時間から画質の状態を検出する例)
4.変形例
5.本開示の電子機器(投射型液晶表示装置の例)
6.本開示がとることができる構成
Hereinafter, modes for carrying out the technology of the present disclosure (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings. The technology of the present disclosure is not limited to the embodiments, and various numerical values in the embodiments are examples. In the following description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted. The description will be given in the following order.
1. 1. Description of display device and display device driving method of the present disclosure, and electronic device in general 2. Display device to which technology of present disclosure is applied 2-1. System configuration example 2-2. Configuration example of liquid crystal panel 2-3. Pixel circuit example 2-4. Structure example of liquid crystal panel 2-5. 2. Change in image quality over time due to leak between pixels Embodiment of the present disclosure (digital signal processing unit)
3-1. Adjacent pixel voltage difference calculation unit 3-2. Correction amount calculation unit 3-3. Correction amount adding unit 3-3-1. Example 1 (Example of detecting the state of image quality from the imaging result of an output image)
3-3-2. Example 2 (Modification of Example 1)
3-3-3. Example 3 (Example of detecting the state of image quality from the usage time of a liquid crystal panel)
4). Modification 5 Electronic device of the present disclosure (example of projection type liquid crystal display device)
6). Configurations that can be taken by the present disclosure
<本開示の表示装置及び表示装置の駆動方法、並びに、電子機器、全般に関する説明>
 本開示の表示装置及び表示装置の駆動方法、並びに、電子機器にあっては、補正量調整部について、補正量調整のための調整画像を撮像し、その撮像画像データを、出力画像の画質の状態を検出するパラメータとして用いる構成とすることができる。
<Description of Display Device of the Present Disclosure, Display Device Driving Method, and Electronic Device>
In the display device, the display device driving method, and the electronic apparatus according to the present disclosure, the correction amount adjustment unit captures an adjustment image for adjusting the correction amount, and the captured image data is used for the image quality of the output image. It can be set as the structure used as a parameter which detects a state.
 上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、補正量調整部について、調整画像を撮像した撮像画像データを基に画質データを数値化し、当該画質データに基づいて補正係数を設定し、当該補正係数を反映させた補正後画質データを演算し、この演算で求めた補正後画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する構成とすることができる。このとき、演算で求めた補正後画質データを、基準の画質データと比較することによって補正の要否を判断することが好ましい。 In the display device, the display device driving method, and the electronic apparatus of the present disclosure including the above-described preferable configuration, the image quality data is digitized based on the captured image data obtained by capturing the adjustment image for the correction amount adjustment unit. A correction coefficient is set based on the image quality data, corrected image quality data that reflects the correction coefficient is calculated, and the drive voltage of the correction target pixel needs to be corrected based on the corrected image quality data obtained by this calculation. It can be set as the structure which judges NO. At this time, it is preferable to determine whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data.
 あるいは又、上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、補正量調整部は、調整画像を撮像した撮像画像データを基に画質データを数値化し、当該画質データに基づいて補正係数を設定し、当該補正係数を用いて調整画像を補正して出力させる。そして、この補正後の調整画像を撮像した撮像画像データを基に画質データを数値化し、この数値化した補正後調整画像の画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する構成とすることができる。このとき、数値化した補正後調整画像の画質データを、基準の画質データと比較することによって補正の要否を判断することが好ましい。 Alternatively, in the display device, the display device driving method, and the electronic apparatus including the preferred configuration described above, the correction amount adjustment unit outputs the image quality data based on the captured image data obtained by capturing the adjusted image. It is digitized, a correction coefficient is set based on the image quality data, and the adjustment image is corrected and output using the correction coefficient. Then, the image quality data is digitized based on the captured image data obtained by capturing the corrected adjustment image, and the necessity of correcting the drive voltage of the correction target pixel is determined based on the digitized image quality data of the corrected adjustment image. It can be set as the structure to judge. At this time, it is preferable to determine whether or not correction is necessary by comparing the digitized image quality data of the adjusted image with the reference image quality data.
 あるいは又、上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、補正量調整部について、画素が配置されて成る表示パネルの使用時間をカウントし、そのカウント値を、出力画像の画質の状態を検出するパラメータとして用いる構成とすることができる。更に、補正量調整部について、表示パネルの使用時間に対応した複数の補正設定テーブルを有し、表示パネルの使用時間のカウント値を基に、複数の補正設定テーブルのうちの一つを選択する構成とすることができる。 Alternatively, in the display device, the display device driving method, and the electronic apparatus including the preferred configuration described above, the usage time of the display panel in which the pixels are arranged is counted for the correction amount adjustment unit. The count value can be used as a parameter for detecting the image quality state of the output image. Further, the correction amount adjustment unit has a plurality of correction setting tables corresponding to the usage time of the display panel, and selects one of the plurality of correction setting tables based on the count value of the usage time of the display panel. It can be configured.
 更に、上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、補正量調整部について、選択した補正設定テーブルを反映させた補正後画質データを演算し、この演算で求めた補正後画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する構成とすることができる。このとき、演算で求めた補正後画質データを、基準の画質データと比較することによって補正の要否を判断することが好ましい。 Further, in the display device, the display device driving method, and the electronic apparatus including the preferred configuration described above, the corrected image quality data that reflects the selected correction setting table is calculated for the correction amount adjustment unit. In addition, it is possible to determine whether or not it is necessary to correct the drive voltage of the correction target pixel based on the corrected image quality data obtained by this calculation. At this time, it is preferable to determine whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data.
 更に、上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、補正量調整部について、表示パネルの使用環境下の温度、湿度、又は、温度及び湿度をパラメータの一つとして用いる構成とすることができる。あるいは又、色彩色度計を用いて測定した表示パネルの色度、あるいは、輝度計を用いて測定した表示パネルの輝度をパラメータの一つとして用いる構成とすることができる。 Furthermore, in the display device, the display device driving method, and the electronic apparatus of the present disclosure including the above-described preferable configuration, the correction amount adjustment unit is configured to have a temperature, humidity, or temperature under the usage environment of the display panel. It can be configured to use humidity as one of the parameters. Alternatively, the display panel chromaticity measured using a chromaticity meter or the luminance of the display panel measured using a luminance meter can be used as one of the parameters.
<本開示の技術が適用される表示装置>
 先ず、本開示の技術が適用される表示装置について、液晶表示装置を例に挙げて説明する。
<Display device to which the technology of the present disclosure is applied>
First, a display device to which the technology of the present disclosure is applied will be described using a liquid crystal display device as an example.
 液晶表示装置は、表示方式について、透過型、反射型、及び、半透過型に分類される。そして、画素に用いられる薄膜トランジスタ(TFT:Thin Film Transistor)に使われるシリコン材料として、透過型液晶表示装置では、アモルファスシリコン(非結晶半導体)やポリシリコン(多結晶半導体)が用いられることが多い。反射型液晶表示装置では、単結晶シリコンが用いられることが多い。尚、ポリシリコンは、摂氏1000度以上の高温環境下で薄膜を形成する高温ポリシリコン(HTPS:High Temperature Poly-Silicon)、及び、摂氏600度以下の低温環境下で薄膜を形成する低温ポリシリコン(LTPS:Low Temperature Poly-Silicon)に分類される。 Liquid crystal display devices are classified into a transmission type, a reflection type, and a semi-transmission type for display methods. In a transmissive liquid crystal display device, amorphous silicon (amorphous semiconductor) or polysilicon (polycrystalline semiconductor) is often used as a silicon material used for a thin film transistor (TFT: Thin Film Transistor) used in a pixel. In reflective liquid crystal display devices, single crystal silicon is often used. Polysilicon is high-temperature polysilicon (HTPS: High-Temperature-Poly-Silicon) that forms a thin film in a high-temperature environment of 1000 degrees Celsius or higher, and low-temperature polysilicon that forms a thin film in a low-temperature environment of 600 degrees Celsius or lower. (LTPS: Low Temperature Poly-Silicon).
 液晶パネル(表示パネル)では、画素を形成する基板に、石英基板、ガラス基板、シリコン基板などの基板が用いられる。一般的に、アモルファスシリコン-透過型液晶パネルや、低温ポリシリコン-透過型では、ガラス基板が用いられ、高温ポリシリコン-透過型液晶パネルでは、石英基板が用いられ、単結晶シリコン-反射液晶パネルでは、シリコン基板が用いられる。 In a liquid crystal panel (display panel), a substrate such as a quartz substrate, a glass substrate, or a silicon substrate is used as a substrate on which pixels are formed. In general, glass substrates are used for amorphous silicon-transmissive liquid crystal panels and low-temperature polysilicon-transmissive liquid crystal panels, and quartz substrates are used for high-temperature polysilicon-transmissive liquid crystal panels. Single-crystal silicon-reflective liquid crystal panels Then, a silicon substrate is used.
 製品製造に主に使われている液晶材料には、TNモード、VAモード、IPSモードがあり、TFTプロセスには、高温ポリシリコン、低温ポリシリコン、アモルファスシリコン(a-Si)がある。投射型液晶表示装置(プロジェクタ)向けの液晶パネルでは、液晶材料にVAモードが選択され、TFTプロセスにHTPS(高温ポリシリコン)が選択されることが多い(所謂、HTPS-液晶パネル)。スマートフォンなどの3インチ~10インチ程度の中小型直視の液晶パネルでは、液晶材料にVAモード又はIPSモードが選択され、TFTプロセスにLTPS(低温ポリシリコン)が選択されることが多い(所謂、LTPS-液晶パネル)。テレビジョンやパーソナルコンピュータなどの10インチ以上の大型直視の液晶パネルでは、液晶材料にVAモード又はIPSモードが選択され、TFTプロセスにアモルファスシリコンが選択されることが多い(所謂、aSi-液晶パネル)。 Liquid crystal materials mainly used for product manufacture include TN mode, VA mode, and IPS mode, and TFT processes include high temperature polysilicon, low temperature polysilicon, and amorphous silicon (a-Si). In a liquid crystal panel for a projection type liquid crystal display device (projector), a VA mode is selected as a liquid crystal material, and HTPS (high temperature polysilicon) is often selected as a TFT process (so-called HTPS-liquid crystal panel). In small and medium-sized direct-view liquid crystal panels of about 3 to 10 inches such as smartphones, VA mode or IPS mode is often selected as the liquid crystal material, and LTPS (low temperature polysilicon) is often selected as the TFT process (so-called LTPS). -LCD panel). In large direct-view liquid crystal panels of 10 inches or more such as televisions and personal computers, VA mode or IPS mode is often selected as the liquid crystal material, and amorphous silicon is often selected as the TFT process (so-called aSi-liquid crystal panel). .
 以下に説明する本開示の技術、即ち、本開示の実施形態に係る液晶表示装置の技術については、透過型液晶表示装置に適用することもできるし、反射型液晶表示装置に適用することもできる。 The technology of the present disclosure described below, that is, the technology of the liquid crystal display device according to the embodiment of the present disclosure can be applied to a transmissive liquid crystal display device or a reflective liquid crystal display device. .
[システム構成例]
 先ず、本開示の技術が適用され液晶表示装置のシステム構成について、図1を用いて説明する。図1は、本開示の技術が適用される液晶表示装置のシステム構成の概略を示すブロック図である。本適用例に係る液晶表示装置1は、液晶パネル10及び映像信号処理回路20を備えている。液晶パネル10の構成の詳細については後述する。
[System configuration example]
First, a system configuration of a liquid crystal display device to which the technology of the present disclosure is applied will be described with reference to FIG. FIG. 1 is a block diagram illustrating an outline of a system configuration of a liquid crystal display device to which the technology of the present disclosure is applied. The liquid crystal display device 1 according to this application example includes a liquid crystal panel 10 and a video signal processing circuit 20. Details of the configuration of the liquid crystal panel 10 will be described later.
 映像信号処理回路20は、A/D(Analog/Digital)・PLL(Phase Locked Loop)部21、映像信号変換部22、デジタル信号処理部23、サンプルホールド部24、画像メモリ25、及び、制御部26を有し、入力される映像信号を液晶パネル10の表示に適した信号形式にする信号処理を行う。 The video signal processing circuit 20 includes an A / D (Analog / Digital) / PLL (Phase Locked Loop) unit 21, a video signal conversion unit 22, a digital signal processing unit 23, a sample hold unit 24, an image memory 25, and a control unit. 26, and performs signal processing to convert the input video signal into a signal format suitable for display on the liquid crystal panel 10.
 この映像信号処理回路20において、A/D・PLL部21は、入力される映像信号がアナログ信号の場合にこれをデジタル形式の画素データに変換する処理、及び、位相同期を実現する処理を行う。尚、入力映像信号がデジタル信号である場合、A/D・PLL部21に代えてデジタル・インタフェース部を設ける構成を採ることになる。デジタル・インタフェース部は、DVI(Digital Visual Interface)方式やHDMI(登録商標)(HDMI:High-Definition Multimedia Interface)形式をはじめとするデータ伝送技術による入力映像信号を、デジタル形式に変換する処理デバイスである。 In this video signal processing circuit 20, the A / D / PLL unit 21 performs processing for converting the input video signal into digital pixel data and processing for realizing phase synchronization when the input video signal is an analog signal. . When the input video signal is a digital signal, a configuration in which a digital interface unit is provided instead of the A / D / PLL unit 21 is adopted. The digital interface unit is a processing device that converts an input video signal by a data transmission technique such as DVI (Digital Visual Interface) method or HDMI (registered trademark) (HDMI: High-Definition Multimedia Interface) format into a digital format. is there.
 映像信号変換部22は、A/D・PLL部21から出力される画素データを、液晶パネル10の画素数やクロック周波数に適応した画素データ(原色データ)に変換する処理を行う。例えば、映像信号変換部22は、液晶パネル10がカラー液晶パネルである場合、コンポジット信号などからカラー液晶パネルの駆動に適したRGBセパレート信号に変換して、映像信号と共にデジタル信号処理部23へ出力する。 The video signal conversion unit 22 performs processing for converting the pixel data output from the A / D / PLL unit 21 into pixel data (primary color data) adapted to the number of pixels of the liquid crystal panel 10 and the clock frequency. For example, when the liquid crystal panel 10 is a color liquid crystal panel, the video signal conversion unit 22 converts a composite signal or the like into an RGB separate signal suitable for driving the color liquid crystal panel, and outputs the converted signal to the digital signal processing unit 23 together with the video signal. To do.
 デジタル信号処理部23は、映像信号変換部22から出力される画素データ(原色データ)について、コントラスト調整やクロストーク補正等の処理を実行する。このデジタル信号処理部23に対して、本開示の技術が適用されることになる。その具体的な実施例については後述する。 The digital signal processing unit 23 performs processing such as contrast adjustment and crosstalk correction on the pixel data (primary color data) output from the video signal conversion unit 22. The technique of the present disclosure is applied to the digital signal processing unit 23. Specific examples thereof will be described later.
 サンプルホールド部24は、デジタル信号処理部23で信号処理された画素データ(原色データ)を、液晶パネル10の駆動用にサンプルホールド処理する。このサンプルホールド部24の機能については、デジタル信号処理部23が含むようにしてもよい。 The sample and hold unit 24 performs sample and hold processing on the pixel data (primary color data) processed by the digital signal processing unit 23 for driving the liquid crystal panel 10. The function of the sample hold unit 24 may be included in the digital signal processing unit 23.
 画像メモリ25は、サンプルホールド部24から出力される画素データ(原色データ)を一時的に記憶(バッファ)し、液晶パネル10、より具体的には、液晶パネル10内の水平駆動部13へ所定のタイミングで出力する。 The image memory 25 temporarily stores (buffers) the pixel data (primary color data) output from the sample and hold unit 24, and supplies the pixel data to the liquid crystal panel 10, more specifically, to the horizontal driving unit 13 in the liquid crystal panel 10. Output at the timing.
 制御部26は、例えば、MPU(Micro Processing Unit)等のプロセッサから成り、液晶表示装置1全体、具体的には、制御部26は、映像信号変換部22、デジタル信号処理部23、及び、サンプルホールド部24等を制御する。また、制御部26は、上記RGBセパレート信号に応じた所定のタイミングで、液晶パネル10内の垂直駆動部12及び水平駆動部13の駆動を制御する。 The control unit 26 includes, for example, a processor such as an MPU (Micro Processing Unit), and the entire liquid crystal display device 1, specifically, the control unit 26 includes a video signal conversion unit 22, a digital signal processing unit 23, and a sample The hold unit 24 and the like are controlled. The control unit 26 controls the driving of the vertical driving unit 12 and the horizontal driving unit 13 in the liquid crystal panel 10 at a predetermined timing according to the RGB separate signal.
[液晶パネルの構成例]
 次に、液晶パネル10の構成の一例について説明する。画素駆動方式としては、パッシブマトリクス方式であってもよいし、アクティブマトリクス方式であってもよい。以下では、アクティブマトリクス方式を例に挙げて説明する。アクティブマトリクス方式の液晶パネル10の構成の一例を図2Aに示す。
[Configuration example of LCD panel]
Next, an example of the configuration of the liquid crystal panel 10 will be described. The pixel driving method may be a passive matrix method or an active matrix method. Hereinafter, the active matrix method will be described as an example. An example of the configuration of the active matrix liquid crystal panel 10 is shown in FIG. 2A.
 図2Aに示すように、液晶パネル10は、液晶素子を含む複数の画素2が行列状に2次元配列されてなる画素アレイ部11、及び、当該画素アレイ部11の周辺に配置された周辺回路部を有する構成となっている。周辺回路部は、垂直駆動部12、水平駆動部13などから成り、画素アレイ部11と同じ基板上に集積され、画素アレイ部11の各画素2を駆動する。また、液晶パネル10は、外部から信号を入力したり、外部へ信号を出力したりするための端子部(図示せず)を備えている。この端子部には、例えばフレキシブル基板を介して外部基板(図示せず)が接続され、当該外部基板に映像信号処理回路20が搭載される。 As shown in FIG. 2A, a liquid crystal panel 10 includes a pixel array unit 11 in which a plurality of pixels 2 including liquid crystal elements are two-dimensionally arranged in a matrix, and a peripheral circuit arranged around the pixel array unit 11. It has the composition which has a part. The peripheral circuit unit includes a vertical driving unit 12, a horizontal driving unit 13, and the like. The peripheral circuit unit is integrated on the same substrate as the pixel array unit 11, and drives each pixel 2 of the pixel array unit 11. The liquid crystal panel 10 includes a terminal portion (not shown) for inputting a signal from the outside and outputting a signal to the outside. For example, an external substrate (not shown) is connected to the terminal portion via a flexible substrate, and the video signal processing circuit 20 is mounted on the external substrate.
 画素アレイ部11において、行列状の画素配列に対して、画素行毎に走査線311~31m(以下、総称して「走査線31」と記述する場合がある)が行方向に沿って配線されている。また、画素列毎に信号線321~32n(以下、総称して「信号線32」と記述する場合がある)が列方向に沿って配線されている。換言すれば、走査線311~31mと信号線321~32nとがマトリクス状に配線され、その交差部に画素2が形成されている。 In the pixel array unit 11, the scanning lines 31 1 to 31 m (hereinafter sometimes collectively referred to as “scanning lines 31”) are arranged along the row direction for each pixel row with respect to the matrix-like pixel arrangement. Wired. In addition, signal lines 32 1 to 32 n (hereinafter sometimes collectively referred to as “signal lines 32”) are wired along the column direction for each pixel column. In other words, the scanning lines 31 1 to 31 m and the signal lines 32 1 to 32 n are wired in a matrix, and the pixels 2 are formed at the intersections.
 周辺回路部において、垂直駆動部12は、走査線311~31mの端部に接続されて設けられている。垂直駆動部12は、シフトレジスタなどによって構成され、画素2に映像信号を書き込む際の駆動を行うための走査信号を走査線311~31mに出力する。 In the peripheral circuit section, the vertical drive section 12 is provided connected to the ends of the scanning lines 31 1 to 31 m . The vertical driving unit 12 is configured by a shift register or the like, and outputs a scanning signal for driving when writing a video signal to the pixel 2 to the scanning lines 31 1 to 31 m .
 水平駆動部13は、信号線321~32nの端部に接続されて設けられている。水平駆動部13は、垂直駆動部12によって選択された画素行(選択行)の各画素2に書き込むための映像信号を、外部の映像信号処理回路20から取り込み、信号線321~32nに出力する。 The horizontal drive unit 13 is connected to the ends of the signal lines 32 1 to 32 n . The horizontal drive unit 13 takes in a video signal to be written to each pixel 2 of the pixel row (selected row) selected by the vertical drive unit 12 from the external video signal processing circuit 20 and applies it to the signal lines 32 1 to 32 n . Output.
 画素2に映像信号を書き込む駆動方式としては、選択行の各画素2に対して映像信号を画素単位で書き込む点順次駆動であってもよいし、選択行の各画素2に対して映像信号を画素行単位で書き込む線順次駆動であってもよい。 The driving method for writing the video signal to the pixel 2 may be dot-sequential driving in which the video signal is written to each pixel 2 in the selected row in units of pixels, or the video signal may be sent to each pixel 2 in the selected row. Line-sequential driving for writing in units of pixel rows may be used.
[画素の回路例]
 次に、画素2の回路例について説明する。画素2の回路構成の一例を図2Bに示す。図2の等価回路図に示すように、画素2は、液晶素子LC、容量素子C、及び、画素トランジスタTrを有する構成となっている。
[Pixel circuit example]
Next, a circuit example of the pixel 2 will be described. An example of the circuit configuration of the pixel 2 is shown in FIG. 2B. As shown in the equivalent circuit diagram of FIG. 2, the pixel 2 includes a liquid crystal element LC, a capacitor element C, and a pixel transistor Tr.
 液晶素子LCの一方の電極は、画素2毎に独立した電極(後述する画素電極)であり、画素トランジスタTrの一方の電極(ソース/ドレイン電極)、及び、容量素子Cの一端に接続されている。液晶素子LCの他方の電極は、全画素2に共通の電極(後述する対向電極)であり、例えば接地されている。 One electrode of the liquid crystal element LC is an independent electrode (pixel electrode described later) for each pixel 2, and is connected to one electrode (source / drain electrode) of the pixel transistor Tr and one end of the capacitor element C. Yes. The other electrode of the liquid crystal element LC is an electrode common to all the pixels 2 (a counter electrode described later), and is grounded, for example.
 容量素子Cは、液晶素子LCの蓄積電荷を安定化させるための素子である。容量素子Cの一端は、液晶素子LCの一方の電極、及び、画素トランジスタTrの一方の電極に接続されている。容量素子Cの他端は、容量線33に接続されている。 The capacitive element C is an element for stabilizing the accumulated charge of the liquid crystal element LC. One end of the capacitive element C is connected to one electrode of the liquid crystal element LC and one electrode of the pixel transistor Tr. The other end of the capacitive element C is connected to the capacitive line 33.
 画素トランジスタTrは、液晶素子LCに映像信号を書き込むためのスイッチング素子であり、薄膜トランジスタ(TFT)から成る。画素トランジスタTrは、ゲート電極が走査線31に接続され、一方の電極が液晶素子LCの一方の電極及び容量素子Cの一端に接続され、他方の電極(ドレイン/ソース電極)が信号線32に接続されている。 The pixel transistor Tr is a switching element for writing a video signal to the liquid crystal element LC, and includes a thin film transistor (TFT). The pixel transistor Tr has a gate electrode connected to the scanning line 31, one electrode connected to one electrode of the liquid crystal element LC and one end of the capacitor C, and the other electrode (drain / source electrode) connected to the signal line 32. It is connected.
[液晶パネルの構造例]
 続いて、液晶パネル10の構造の一例について説明する。図3Aに、液晶パネル10の構造の一例の分解斜視図を示し、図3Bに、図3Aの要部の拡大図を示す。
[Structure example of LCD panel]
Next, an example of the structure of the liquid crystal panel 10 will be described. FIG. 3A shows an exploded perspective view of an example of the structure of the liquid crystal panel 10, and FIG. 3B shows an enlarged view of the main part of FIG. 3A.
 液晶パネル10は、透明な基板、例えばガラス基板から成る第1基板41及び第2基板42が所定の間隔をもって対向して配置され、第1基板41と第2基板42との間に液晶材料が封入されて液晶層43を形成したパネル構造となっている。また、液晶パネル10は、第1基板41及び第2基板42を挟んで対向する偏光板44及び偏光板45を備えている。偏光板44及び偏光板45は、それぞれの偏光板軸44a,45aが互いに直交するように配置される。 In the liquid crystal panel 10, a first substrate 41 and a second substrate 42 made of transparent substrates, for example, glass substrates are arranged to face each other at a predetermined interval, and a liquid crystal material is placed between the first substrate 41 and the second substrate 42. A panel structure is formed in which the liquid crystal layer 43 is formed. In addition, the liquid crystal panel 10 includes a polarizing plate 44 and a polarizing plate 45 that face each other with the first substrate 41 and the second substrate 42 interposed therebetween. The polarizing plate 44 and the polarizing plate 45 are disposed so that the polarizing plate axes 44a and 45a are orthogonal to each other.
 第1基板41には、透明導電膜46が成膜されている。この透明導電膜46には、対向電極(図示せず)が、画素アレイ部11の全画素2に共通に形成されている。これにより、第1基板41は、対向基板と呼ばれる場合がある。対向電極は、図2Bに示す液晶素子LCの他方の電極である。また、第2基板42には、透明導電膜47が成膜されている。この透明導電膜47には、画素電極48が画素2毎に独立して形成されている。画素電極48は、図2Bに示す液晶素子LCの一方の電極である。 A transparent conductive film 46 is formed on the first substrate 41. In the transparent conductive film 46, a counter electrode (not shown) is formed in common for all the pixels 2 in the pixel array unit 11. Thereby, the first substrate 41 may be called a counter substrate. The counter electrode is the other electrode of the liquid crystal element LC shown in FIG. 2B. A transparent conductive film 47 is formed on the second substrate 42. On the transparent conductive film 47, pixel electrodes 48 are formed independently for each pixel 2. The pixel electrode 48 is one electrode of the liquid crystal element LC shown in FIG. 2B.
 第2基板42には、薄膜トランジスタ(TFT)から成る画素トランジスタTrが形成されている。これにより、第2基板42は、TFT基板と呼ばれる場合がある。第2基板42には更に、画素トランジスタTrのゲート電極が、画素行毎に接続される走査線31、及び、画素トランジスタTrの一方の電極(ソース/ドレイン電極)が、画素列毎に接続される信号線32が配線されている。ここでは、i行目の走査線31i及びi+1行目の走査線31i+1、並びに、J列目の信号線32j及びj+1行目の走査線31j+1を図示している。 A pixel transistor Tr made of a thin film transistor (TFT) is formed on the second substrate 42. Thereby, the second substrate 42 may be called a TFT substrate. Further, the gate electrode of the pixel transistor Tr is connected to the second substrate 42 for each pixel row, and one electrode (source / drain electrode) of the pixel transistor Tr is connected to each pixel column. The signal line 32 is wired. Here, the i-th scanning line 31 i and the (i + 1) -th scanning line 31 i + 1 , and the J-th column signal line 32 j and the j + 1-th scanning line 31 j + 1 are illustrated.
 上記の構造の液晶パネル10において、液晶層43の液晶分子のうち画素電極及び対向電極の両電極間に挟まれた領域の液晶分子43a,43bのみが、画素電極と対向電極との間の横電界の影響を受けて配列を変え、1画素分の液晶シャッターとして機能する。ここで、横電界とは、隣接する2画素に供給される映像信号の電位差によって、図3Bに示すように、隣接する2画素の画素電極48間(もしくは、信号線32間)に発生する電界である。 In the liquid crystal panel 10 having the above structure, only the liquid crystal molecules 43a and 43b in the region sandwiched between both the pixel electrode and the counter electrode among the liquid crystal molecules of the liquid crystal layer 43 are laterally arranged between the pixel electrode and the counter electrode. It changes its arrangement under the influence of an electric field and functions as a liquid crystal shutter for one pixel. Here, the horizontal electric field is an electric field generated between the pixel electrodes 48 (or between the signal lines 32) of the two adjacent pixels as shown in FIG. 3B due to the potential difference between the video signals supplied to the two adjacent pixels. It is.
 ところで、液晶パネル(液晶表示装置)には、完全垂直配向型とチルト配向型がある。完全垂直配向型は、所謂VA(Vertical Alignment)型と呼ばれ、図示しない配向膜により、画素に対応する電極に電圧を印加しない状態で液晶層43の液晶分子を基板(第1基板41及び第2基板42)に垂直になるように配向するものである。つまり、基板に対する液晶分子43a,43bの傾斜角θが90度である。この状態において、画素に対応する電極に電圧を印加すると、液晶分子の倒れる方向(配向方位)が自由であるので配向方位が揃わない。 By the way, liquid crystal panels (liquid crystal display devices) are classified into a completely vertical alignment type and a tilt alignment type. The complete vertical alignment type is called a so-called VA (Vertical Alignment) type, and the alignment layer (not shown) allows the liquid crystal molecules of the liquid crystal layer 43 to be placed on the substrate (the first substrate 41 and the first substrate 41) without applying a voltage to the electrode corresponding to the pixel. Two substrates 42) are oriented perpendicular to each other. That is, the tilt angle θ of the liquid crystal molecules 43a and 43b with respect to the substrate is 90 degrees. In this state, when a voltage is applied to the electrode corresponding to the pixel, the direction in which the liquid crystal molecules fall (alignment direction) is free, so the alignment direction is not aligned.
 一方、チルト配向型は、図示しない配向膜により、画素に対応する電極に電圧を印加しない状態で液晶層43の液晶分子を基板法線方向に対し傾くように配向し、電圧を印加した状態では基板に対しほぼ水平な配向方位となるようにするものである。つまり、図3Bに示すように、基板に対する液晶分子43a,43bの傾斜角(プレチルト角度)θが、θ<90°である。プレチルト角度がついている場合、液晶パネル10を正面(基板法線方向)から見ると所定の方向に傾いている。この状態において、画素に対応する電極に電圧を印加すると、倒れる方向(配向方位)がプレチルトによって決まる。液晶分子の配向方位が一方向に決まるので、画素内の透過光が均一となり、良好な画表示を行うことができる。 On the other hand, the tilt alignment type uses an alignment film (not shown) to align the liquid crystal molecules of the liquid crystal layer 43 so as to be inclined with respect to the normal direction of the substrate without applying a voltage to the electrode corresponding to the pixel. The orientation is almost horizontal to the substrate. That is, as shown in FIG. 3B, the tilt angle (pretilt angle) θ of the liquid crystal molecules 43a and 43b with respect to the substrate is θ <90 °. When the pretilt angle is set, the liquid crystal panel 10 is inclined in a predetermined direction when viewed from the front (substrate normal direction). In this state, when a voltage is applied to the electrode corresponding to the pixel, the tilt direction (orientation direction) is determined by the pretilt. Since the orientation direction of the liquid crystal molecules is determined in one direction, the transmitted light in the pixel becomes uniform, and a good image display can be performed.
[画素間リークによる画質の経時変化について]
 ところで、液晶パネル10では、高温多湿等の環境下において、第1基板41と第2基板42との間に液晶材料を封止するシール部分から液晶層43に水分が浸入すると、隣接する2つの画素間でリーク電流が流れる、所謂画素間リークが発生する。そして、画素間リークが発生すると、隣接画素間の電位差が小さくなるため、文字が太く見えるなど、出力画像の画質に経時変化が生じる。
[Change in image quality with time due to leak between pixels]
By the way, in the liquid crystal panel 10, when moisture enters the liquid crystal layer 43 from the seal portion that seals the liquid crystal material between the first substrate 41 and the second substrate 42 in an environment such as high temperature and high humidity, two adjacent A so-called inter-pixel leak occurs in which a leak current flows between pixels. When an inter-pixel leak occurs, the potential difference between adjacent pixels becomes small, so that the image quality of the output image changes with time, such as characters appearing thick.
 図4Aに、液晶パネル10の初期状態における液晶層43の水分の状態を示し、図4Bに、初期状態における画素電位の一例を示し、図4Cに、初期状態における映像信号Vsig-透過率Tの特性を示す。ここでは、ノーマリブラックの場合を例示している。図4Bでは、隣接する5つの画素pix1~pix5において、真ん中の画素pix3の電位が0V、他の4つの画素pix1,pix2,pix4,pix5の各電位が3Vの場合を例示している。初期状態では、画素間リークは発生しない。従って、図4Cに示すように、画素pix3の透過率Tが0%となり、画素pix1,pix2,pix4,pix5の各透過率Tが例えば約60%程度となる。 FIG. 4A shows the moisture state of the liquid crystal layer 43 in the initial state of the liquid crystal panel 10, FIG. 4B shows an example of the pixel potential in the initial state, and FIG. 4C shows the video signal V sig in the initial state−transmittance T The characteristics are shown. Here, the case of normally black is illustrated. FIG. 4B illustrates a case where, in the adjacent five pixels pix1 to pix5, the potential of the middle pixel pix3 is 0V, and the potentials of the other four pixels pix1, pix2, pix4, and pix5 are 3V. In the initial state, no leak between pixels occurs. Therefore, as shown in FIG. 4C, the transmittance T of the pixel pix3 is 0%, and the transmittances T of the pixels pix1, pix2, pix4, and pix5 are about 60%, for example.
 図5Aに、液晶パネル10の吸湿状態(即ち、液晶層43に水分が浸入した状態)における液晶層43の水分の状態を示し、図5Bに、吸湿状態における画素電位の一例を示し、図5Cに、吸湿状態における映像信号Vsig-透過率Tの特性を示す。図5Aに示すように、高温多湿環境下で液晶層43に水分が浸入すると、図5Bに示すように、画素間にリークパスが形成され、リーク電流が流れる。 FIG. 5A shows the moisture state of the liquid crystal layer 43 in the moisture absorption state of the liquid crystal panel 10 (that is, the state where moisture has entered the liquid crystal layer 43), FIG. 5B shows an example of the pixel potential in the moisture absorption state, and FIG. The characteristics of the video signal V sig -transmittance T in the moisture absorption state are shown below. As shown in FIG. 5A, when moisture enters the liquid crystal layer 43 in a high-temperature and high-humidity environment, a leak path is formed between the pixels and a leak current flows as shown in FIG. 5B.
 そして、画素間リークの発生により、一例として、初期状態で0Vであった真ん中の画素pix3の電位が1V、初期状態で3Vであった画素pix2,pix4の各電位が2.5V、画素pix1,pix5の各電位が2.9Vとなる。すなわち、初期状態で3Vであった画素pix3と、両隣の画素pix2,pix4との間の電位差が、吸湿状態では1.5Vの電位差となる。 Due to the occurrence of inter-pixel leakage, as an example, the potential of the middle pixel pix3 that was 0V in the initial state is 1V, the potentials of the pixels pix2 and pix4 that were 3V in the initial state are 2.5V, the pixel pix1, Each potential of pix5 is 2.9V. That is, the potential difference between the pixel pix3 that was 3V in the initial state and the adjacent pixels pix2 and pix4 becomes a potential difference of 1.5V in the moisture absorption state.
 これにより、図5Cに示すように、画素pix2,pix4の各透過率Tが例えば約25%程度となり、画素pix1,pix5の各透過率Tが例えば約55%程度となる。すなわち、画素間リークに起因して隣接画素間の電位差が小さくなると、透過率Tの差が小さくなるため、文字などを表示した際に、文字が太く見えるなど文字の鮮鋭度が低下し、出力画像の画質に経時変化が生じる。 As a result, as shown in FIG. 5C, the transmittances T of the pixels pix2 and pix4 are about 25%, for example, and the transmittances T of the pixels pix1 and pix5 are about 55%, for example. In other words, when the potential difference between adjacent pixels is reduced due to inter-pixel leakage, the difference in transmittance T is reduced. Therefore, when the character is displayed, the character looks sharp and the sharpness is reduced. The image quality changes with time.
 以上では、水分によって画素間リークが発生した場合を例に挙げて、隣接画素間の電位差が小さくなり、出力画像の画質に経時変化が生じることについて説明したが、画素間リークの発生は、水分による場合に限られるものではない。例えば、ドメイン(液晶分子の配向の乱れ)、ギャップ(隣り合う2画素間の距離)、液晶組成変化、プレチルト角(基板に対する液晶分子の傾斜角)等の変化によって画素間リークが発生し、隣接画素間の電位差が小さくなる場合もある。 In the above, taking the case where leakage between pixels occurs due to moisture as an example, it has been explained that the potential difference between adjacent pixels becomes small and the image quality of the output image changes with time. It is not limited to the case. For example, leaks between pixels occur due to changes in domains (disturbed alignment of liquid crystal molecules), gaps (distance between two adjacent pixels), liquid crystal composition changes, pretilt angles (tilt angles of liquid crystal molecules with respect to the substrate), etc. In some cases, the potential difference between the pixels is small.
<本開示の実施形態>
 そこで、本開示の実施形態では、図1に示すデジタル信号処理部23において、隣接する2つの画素間の駆動電圧の差分を検出し、当該駆動電圧の差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出する。そして、算出した補正量を、出力画像の画質に応じて調整し、その調整した補正量に基づいて、補正対象画素の駆動電圧を補正するようにする。
<Embodiment of the Present Disclosure>
Therefore, in the embodiment of the present disclosure, the digital signal processing unit 23 illustrated in FIG. 1 detects a difference in drive voltage between two adjacent pixels, and a correction target that causes a luminance change due to the difference in the drive voltage. A correction amount for correcting the driving voltage of the pixel is calculated. Then, the calculated correction amount is adjusted according to the image quality of the output image, and the drive voltage of the correction target pixel is corrected based on the adjusted correction amount.
 図6は、本開示の実施形態に係るデジタル信号処理部23の構成の一例を示すブロック図である。 FIG. 6 is a block diagram illustrating an example of a configuration of the digital signal processing unit 23 according to the embodiment of the present disclosure.
 本実施形態に係るデジタル信号処理部23は、映像信号に対して補正処理を行う補正処理部として、隣接画素間電圧差算出部231、補正量演算部232、補正量調整部233、及び、補正量加算部234を有する構成となっている。 The digital signal processing unit 23 according to the present embodiment is a correction processing unit that performs correction processing on a video signal, and includes a voltage difference calculation unit 231 between adjacent pixels, a correction amount calculation unit 232, a correction amount adjustment unit 233, and a correction. The amount adding unit 234 is included.
 隣接画素間電圧差算出部231、補正量演算部232、補正量調整部233、及び、補正量加算部234については、MPU等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することにより、ソフトウェアで実行する構成とすることができる。但し、ソフトウェアで実行する構成に限られるものではなく、各機能部をハードウェア構成とすることも可能である。 Regarding the adjacent pixel voltage difference calculation unit 231, the correction amount calculation unit 232, the correction amount adjustment unit 233, and the correction amount addition unit 234, a processor such as an MPU interprets and executes a program that realizes each function. Therefore, it can be configured to be executed by software. However, the configuration is not limited to being executed by software, and each functional unit may be configured as a hardware configuration.
 すなわち、本実施形態に係る駆動方法(信号処理方法)にあっては、隣接画素間電圧差算出部231、補正量演算部232、補正量調整部233、及び、補正量加算部234を、差分検出ステップ、補正量演算ステップ、補正量調整ステップ、及び、駆動電圧補正ステップとすることができる。 That is, in the driving method (signal processing method) according to the present embodiment, the voltage difference calculation unit 231 between the adjacent pixels, the correction amount calculation unit 232, the correction amount adjustment unit 233, and the correction amount addition unit 234 are changed to a difference. A detection step, a correction amount calculation step, a correction amount adjustment step, and a drive voltage correction step can be used.
 隣接画素間電圧差算出部231は、隣接する2つの画素間の駆動電圧の差分を検出する差分検出部である。隣接画素間電圧差算出部231は、図1の映像信号変換部22より入力される映像信号から、補正を行う自画素(以下、「補正対象画素」と記述する)に供給される駆動電圧と、当該補正対象画素に隣接する画素(以下、「隣接画素」と記述する)に供給される駆動電圧との差分、即ち隣接画素間電圧差を算出する処理を行う。 The adjacent pixel voltage difference calculation unit 231 is a difference detection unit that detects a difference in drive voltage between two adjacent pixels. A voltage difference calculation unit 231 between adjacent pixels, based on the video signal input from the video signal conversion unit 22 in FIG. 1, a drive voltage supplied to the own pixel that performs correction (hereinafter referred to as “correction target pixel”), Then, a process of calculating a difference from a drive voltage supplied to a pixel adjacent to the correction target pixel (hereinafter referred to as “adjacent pixel”), that is, a voltage difference between adjacent pixels is performed.
 補正量演算部232は、隣接画素間電圧差算出部231で算出された隣接画素間電圧差、及び、補正対象画素に対する映像信号データ(駆動電圧情報)を取得する。補正量演算部232には補正設定情報も入力される。補正設定情報の詳細については後述する。補正量演算部232は、取得した情報に基づいて補正設定情報を参照し、補正対象画素に供給される駆動電圧の補正量を算出する処理を行う。 The correction amount calculation unit 232 acquires the voltage difference between adjacent pixels calculated by the voltage difference calculation unit 231 between adjacent pixels and the video signal data (drive voltage information) for the correction target pixel. Correction setting information is also input to the correction amount calculation unit 232. Details of the correction setting information will be described later. The correction amount calculation unit 232 refers to the correction setting information based on the acquired information, and performs a process of calculating the correction amount of the drive voltage supplied to the correction target pixel.
 補正量調整部233は、補正量演算部232で算出された補正量を、出力画像の画質に応じて調整する処理を行う。この補正量調整部233は、本実施形態の特徴とする機能部であり、その処理の具体的な実施例については後述する。 The correction amount adjustment unit 233 performs a process of adjusting the correction amount calculated by the correction amount calculation unit 232 according to the image quality of the output image. The correction amount adjustment unit 233 is a functional unit that characterizes the present embodiment, and a specific example of the processing will be described later.
 補正量加算部234は、補正量調整部233での補正量調整で、出力画像の画質が反映された補正量を、補正対象画素に供給される映像信号データ(駆動電圧情報)に加算し、その加算結果を出力映像信号として図1のサンプルホールド部24に出力する。すなわち、補正量加算部234は、補正量調整部233で調整された補正量に基づいて、補正対象画素の駆動電圧を補正する駆動電圧補正部である。 The correction amount addition unit 234 adds the correction amount reflecting the image quality of the output image to the video signal data (drive voltage information) supplied to the correction target pixel by adjusting the correction amount in the correction amount adjustment unit 233, The addition result is output as an output video signal to the sample hold unit 24 in FIG. That is, the correction amount addition unit 234 is a drive voltage correction unit that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit 233.
[隣接画素間電圧差算出部]
 続いて、デジタル信号処理部23における隣接画素間電圧差算出部231の具体的な構成について、図7を用いて説明する。図7は、隣接画素間電圧差算出部231の構成の一例を示すブロック図である。
[Adjacent pixel voltage difference calculation unit]
Next, a specific configuration of the voltage difference calculation unit 231 between adjacent pixels in the digital signal processing unit 23 will be described with reference to FIG. FIG. 7 is a block diagram illustrating an example of the configuration of the voltage difference calculation unit 231 between adjacent pixels.
 デジタル信号処理部23は、水平走査方向だけでなく垂直走査方向における補正も対象とするため、入力映像信号の遅延制御が可能となるように構成される。すなわち、デジタル信号処理部23は、隣接画素間電圧差算出部231等の他に、同期分離部235及び遅延制御部236を有している。 Since the digital signal processing unit 23 targets correction not only in the horizontal scanning direction but also in the vertical scanning direction, the digital signal processing unit 23 is configured to be capable of delay control of the input video signal. That is, the digital signal processing unit 23 includes a synchronization separation unit 235 and a delay control unit 236 in addition to the adjacent pixel voltage difference calculation unit 231 and the like.
 同期分離部235は、映像信号から同期信号を分離する処理を行う。入力される映像信号がモノクロ(白黒)映像信号の場合、映像信号から同期信号を分離した後の信号は輝度信号である。また、入力される映像信号がカラー映像信号の場合、映像信号から同期信号を分離した後の信号は、輝度情報及び色情報を含んでいる。カラー映像信号としては、例えばRGB信号などを挙げることができる。 The sync separator 235 performs a process of separating the sync signal from the video signal. When the input video signal is a monochrome (monochrome) video signal, the signal after the synchronization signal is separated from the video signal is a luminance signal. When the input video signal is a color video signal, the signal after the synchronization signal is separated from the video signal includes luminance information and color information. Examples of color video signals include RGB signals.
 遅延制御部236は、同期分離部235で入力映像信号から分離された同期信号を遅延し、その遅延同期信号を隣接画素間電圧差算出部231に出力するとともに、出力同期信号として図1のサンプルホールド部24に出力する。 The delay control unit 236 delays the synchronization signal separated from the input video signal by the synchronization separation unit 235, outputs the delayed synchronization signal to the adjacent pixel voltage difference calculation unit 231, and also outputs the sample of FIG. 1 as an output synchronization signal. Output to the hold unit 24.
 入力映像信号の遅延制御が可能なデジタル信号処理部23において、隣接画素間電圧差算出部231は、メモリ制御部2311、水平方向電圧差算出部2312、及び、垂直方向電圧差算出部2313から成る構成となっている。 In the digital signal processing unit 23 capable of delay control of the input video signal, the adjacent pixel voltage difference calculation unit 231 includes a memory control unit 2311, a horizontal voltage difference calculation unit 2312, and a vertical voltage difference calculation unit 2313. It has a configuration.
 メモリ制御部2311は、ラインメモリ2314を備え、遅延制御部236から供給される遅延同期信号に基づく時間(タイミング)で、入力映像信号を1ライン(1走査線)毎に遅延させる処理を行う。ラインメモリ2314には、例えばRAM(Random Access Memory)を用いることができる。以降の説明において、メモリ制御部2311から1ライン毎に遅延された映像信号をライン映像信号と記述する。 The memory control unit 2311 includes a line memory 2314, and performs a process of delaying the input video signal for each line (one scanning line) at a time (timing) based on the delay synchronization signal supplied from the delay control unit 236. For the line memory 2314, for example, a RAM (Random Access Memory) can be used. In the following description, a video signal delayed for each line from the memory control unit 2311 is described as a line video signal.
 水平方向電圧差算出部2312は、メモリ制御部2311から供給されるライン映像信号を基に、水平走査方向において、自画素及び隣接画素の各々に供給される駆動電圧の電圧差を検出する処理を行う。すなわち、水平方向電圧差算出部2312は、水平方向の処理に関して、時系列的に、あるラインのN画素目(Nは任意の自然数)を自画素とした場合、同一ラインのN画素目(自画素)に供給される駆動電圧と、隣接するN-1画素目に供給される駆動電圧との差分(電圧差)を算出する。同様に、水平方向電圧差算出部2312は、同一ラインのN画素目(自画素)に供給される駆動電圧と、隣接するN+1画素目に供給される駆動電圧との差分(電圧差)を算出する。水平方向電圧差算出部2312で算出された、自画素とN-1画素目、N+1画素目の各画素との電圧差は、ライン映像信号と共に、図6の補正量演算部232に供給される。 The horizontal voltage difference calculation unit 2312 performs a process of detecting a voltage difference between the drive voltages supplied to the own pixel and the adjacent pixels in the horizontal scanning direction based on the line video signal supplied from the memory control unit 2311. Do. That is, the horizontal direction voltage difference calculation unit 2312 regards the N-th pixel (self-line) of the same line when the N-th pixel (N is an arbitrary natural number) of a certain line is set as its own pixel in time series regarding horizontal processing. The difference (voltage difference) between the drive voltage supplied to the pixel) and the drive voltage supplied to the adjacent N−1 pixel is calculated. Similarly, the horizontal voltage difference calculation unit 2312 calculates a difference (voltage difference) between the drive voltage supplied to the Nth pixel (own pixel) on the same line and the drive voltage supplied to the adjacent N + 1 pixel. To do. The voltage difference between the own pixel and each of the (N−1) th pixel and the (N + 1) th pixel calculated by the horizontal voltage difference calculation unit 2312 is supplied to the correction amount calculation unit 232 of FIG. 6 together with the line video signal. .
 垂直方向電圧差算出部2313は、メモリ制御部2311から供給されるライン映像信号を基に、垂直走査方向において、自画素と隣接画素との電圧差を検出する処理を行う。すなわち、垂直方向電圧差算出部2313は、垂直方向の処理に関して、時系列的に、Mライン目(Mは任意の自然数)の画素を自画素とした場合、Mライン目の画素(自画素)に供給される駆動電圧と、M-1ライン目の隣接する画素に供給される駆動電圧との差分(電圧差)を算出する。同様に、垂直方向電圧差算出部2313は、Mライン目の画素(自画素)に供給される駆動電圧と、M+1ライン目の隣接する画素に供給される駆動電圧との差分(電圧差)を算出する。垂直方向電圧差算出部2313で算出された、自ライン(Mライン)の画素(自画素)とM-1ライン目、M+1ライン目の各隣接画素との電圧差は、図6の補正量演算部232に供給される。 The vertical direction voltage difference calculation unit 2313 performs processing for detecting a voltage difference between the own pixel and the adjacent pixel in the vertical scanning direction based on the line video signal supplied from the memory control unit 2311. In other words, the vertical voltage difference calculation unit 2313 regards the M-th line pixel (own pixel) when the M-th line (M is an arbitrary natural number) pixel is set as the own pixel in time series regarding vertical processing. The difference (voltage difference) between the drive voltage supplied to the drive voltage and the drive voltage supplied to the adjacent pixels on the (M−1) th line is calculated. Similarly, the vertical direction voltage difference calculation unit 2313 calculates the difference (voltage difference) between the drive voltage supplied to the pixel on the M-th line (own pixel) and the drive voltage supplied to the adjacent pixel on the M + 1-th line. calculate. The voltage difference between the pixel (own pixel) of the own line (M line) calculated by the vertical direction voltage difference calculation unit 2313 and each adjacent pixel of the (M−1) -th line and the (M + 1) -th line is the correction amount calculation of FIG. Supplied to the unit 232.
 カラー表示の表示装置であって、カラー画像を形成する単位となる1画素(主画素)が例えばRGBの3原色の副画素(サブ画素)からなる場合、上述した水平方向及び垂直方向の電圧差の算出は、RGBの副画素それぞれについて行われる。すなわち、隣接画素間電圧差算出部231は、N画素目(自画素)とN-1画素目及びN+1画素目との2系統の差分情報、並びに、Mライン目の自画素とM-1ライン目、M+1ライン目の各隣接画素との2系統の差分情報を、RGBの副画素それぞれについて算出する。 In a color display device, when one pixel (main pixel), which is a unit for forming a color image, is composed of, for example, RGB subpixels (subpixels), the above-described voltage difference between the horizontal direction and the vertical direction Is calculated for each of the RGB sub-pixels. That is, the adjacent pixel voltage difference calculation unit 231 includes difference information of two systems of the Nth pixel (own pixel), the (N−1) th pixel, and the (N + 1) th pixel, and the Mth line's own pixel and the M−1th line. The difference information of the two systems from the adjacent pixels on the first and (M + 1) th lines is calculated for each of the RGB sub-pixels.
[補正量演算部]
 次に、デジタル信号処理部23における補正量演算部232の具体的な構成について、図8を用いて説明する。図8は、補正量演算部232の構成の一例を示すブロック図である。補正量演算部232は、水平方向選択部2321、垂直方向選択部2322、補正量算出部2323、及び、補正量補間部2324から成る構成となっている。
[Correction amount calculator]
Next, a specific configuration of the correction amount calculation unit 232 in the digital signal processing unit 23 will be described with reference to FIG. FIG. 8 is a block diagram illustrating an example of the configuration of the correction amount calculation unit 232. The correction amount calculation unit 232 includes a horizontal direction selection unit 2321, a vertical direction selection unit 2322, a correction amount calculation unit 2323, and a correction amount interpolation unit 2324.
 本実施形態に係るデジタル信号処理部23で処理対象とする画質不良現象は、映像信号の反転・非反転(走査方向の反転・非反転)において液晶パネル10上の画質不良発生方向が変化しない性質を持つ。つまり、電圧差の生じる画素間において、画質不良現象が発生する方向が一定である。このため、水平/垂直走査方向にかかわらず、同方向に補正を行う処理が必要となる。 The image quality failure phenomenon to be processed by the digital signal processing unit 23 according to the present embodiment is a property that the image quality failure occurrence direction on the liquid crystal panel 10 does not change in the inversion / non-inversion of the video signal (inversion / non-inversion of the scanning direction). have. That is, the direction in which the image quality failure phenomenon occurs is constant between pixels where a voltage difference occurs. For this reason, it is necessary to perform a correction process in the same direction regardless of the horizontal / vertical scanning direction.
 例えば、右蒸着液晶表示装置において、黒レベルの画素の左側画素に画質不良が発生していた場合、その映像信号を反転した先の黒レベルの画素と左側画素に電圧差があれば、その左側画素に画質不良が発生する。一例として、光変調手段(ライトバルブ)として液晶パネルを用いる投射型液晶表示システム(プロジェクタシステム)であれば、反転・非反転が投射方法などに起因する。このようなことから、出力画像を正しく表示するためには、反転・非反転(走査方向)を設定することが必要である。 For example, in the right evaporation liquid crystal display device, when a picture quality defect occurs in the left pixel of a black level pixel, if there is a voltage difference between the black level pixel and the left pixel where the video signal is inverted, the left side An image quality defect occurs in the pixel. As an example, in the case of a projection type liquid crystal display system (projector system) using a liquid crystal panel as a light modulation means (light valve), inversion / non-inversion is caused by a projection method or the like. For this reason, in order to correctly display the output image, it is necessary to set inversion / non-inversion (scanning direction).
 補正量演算部232は、図7の水平方向電圧差算出部2312及び垂直方向電圧差算出部2313で算出した複数の電圧差情報から、使用する電圧差情報を選択するために、水平方向選択部2321及び垂直方向選択部2322を備えている。補正量演算部232は更に、補正量算出部2323及び補正量補間部2324を備えている。 The correction amount calculation unit 232 selects a voltage difference information to be used from a plurality of voltage difference information calculated by the horizontal voltage difference calculation unit 2312 and the vertical voltage difference calculation unit 2313 in FIG. 2321 and a vertical direction selection unit 2322 are provided. The correction amount calculation unit 232 further includes a correction amount calculation unit 2323 and a correction amount interpolation unit 2324.
 水平方向選択部2321は、水平方向電圧差算出部2312から、水平走査方向における自画素と隣接画素との電圧差情報、及び、図1の制御部26から供給される水平走査線信号を取得する。水平走査方向における自画素と隣接画素との電圧差情報とは、同一ラインのN画素目(自画素)に供給される駆動電圧と、隣接するN-1画素目に供給される駆動電圧との差分、及び、同一ラインのN画素目(自画素)に供給される駆動電圧と、隣接するN+1画素目に供給される駆動電圧との差分である。 The horizontal direction selection unit 2321 obtains, from the horizontal direction voltage difference calculation unit 2312, voltage difference information between its own pixel and adjacent pixels in the horizontal scanning direction, and a horizontal scanning line signal supplied from the control unit 26 in FIG. . The voltage difference information between the own pixel and the adjacent pixel in the horizontal scanning direction is the difference between the drive voltage supplied to the Nth pixel (own pixel) on the same line and the drive voltage supplied to the adjacent N−1 pixel. The difference is the difference between the drive voltage supplied to the Nth pixel (own pixel) on the same line and the drive voltage supplied to the adjacent N + 1 pixel.
 水平走査線信号は、画素2が行列状に2次元配置されて成る画素アレイ部11(図2A参照)に対する水平走査方向の情報、即ち、水平走査方向が左から右であるか、逆に、右から左であるかを示す情報を含んでいる。あるいは、水平走査線信号そのものを解析することで、水平走査方向の情報を得るようにしてもよい。そして、水平方向選択部2321は、水平方向電圧差情報及び水平走査線信号に基づいて、駆動信号を補正すべき画素(補正対象画素)を選択し、その選択情報を補正量算出部2323へ供給する。 The horizontal scanning line signal is information on the horizontal scanning direction for the pixel array unit 11 (see FIG. 2A) in which the pixels 2 are two-dimensionally arranged in a matrix, that is, the horizontal scanning direction is from left to right, or conversely, Contains information indicating whether it is from right to left. Alternatively, information in the horizontal scanning direction may be obtained by analyzing the horizontal scanning line signal itself. Then, the horizontal direction selection unit 2321 selects a pixel (correction target pixel) whose drive signal is to be corrected based on the horizontal direction voltage difference information and the horizontal scanning line signal, and supplies the selection information to the correction amount calculation unit 2323. To do.
 垂直方向選択部2322は、垂直方向電圧差算出部2313から、垂直走査方向における自画素と隣接画素との電圧差情報、及び、制御部26から供給される垂直走査線信号を取得する。垂直走査方向における自画素と隣接画素との電圧差情報とは、Mライン目の画素(自画素)に供給される駆動電圧と、M-1ライン目の隣接する画素に供給される駆動電圧との差分、及び、Mライン目の画素(自画素)に供給される駆動電圧と、M+1ライン目の隣接する画素に供給される駆動電圧との差分である。 The vertical direction selection unit 2322 obtains, from the vertical direction voltage difference calculation unit 2313, voltage difference information between its own pixel and adjacent pixels in the vertical scanning direction, and a vertical scanning line signal supplied from the control unit 26. The voltage difference information between the own pixel and the adjacent pixel in the vertical scanning direction includes the drive voltage supplied to the pixel on the M line (the own pixel), and the drive voltage supplied to the adjacent pixel on the M−1 line. And the difference between the drive voltage supplied to the pixel (own pixel) on the M line and the drive voltage supplied to the adjacent pixel on the M + 1 line.
 垂直走査線信号は、画素アレイ部11に対する垂直走査方向の情報、即ち、垂直走査方向が上から下であるか、逆に、下から上であるかを示す情報を含んでいる。あるいは、垂直走査線信号そのものを解析することで垂直走査方向の情報を得るようにしてもよい。そして、垂直方向選択部2322は、垂直方向電圧差情報及び垂直走査線信号に基づいて、駆動信号を補正すべき画素(補正対象画素)を選択し、その選択情報を補正量算出部2323へ供給する。 The vertical scanning line signal includes information in the vertical scanning direction with respect to the pixel array unit 11, that is, information indicating whether the vertical scanning direction is from the top to the bottom or, conversely, from the bottom to the top. Alternatively, information in the vertical scanning direction may be obtained by analyzing the vertical scanning line signal itself. Then, the vertical direction selection unit 2322 selects a pixel (correction target pixel) whose drive signal is to be corrected based on the vertical direction voltage difference information and the vertical scanning line signal, and supplies the selection information to the correction amount calculation unit 2323. To do.
 ここで、隣接画素間電圧差算出部231から入力される電圧差信号(電圧差情報)について水平方向電圧差を例に挙げて説明する。図9は、入力映像信号による表示画像140とその中央ラインの画像140Aについての駆動電圧レベルを示す図である。また、図10Aに、画質不良発生後の表示画像141を示し、図10Bに、自画素とN+1画素目との電圧差をとった電圧差信号を示し、図10Cに、自画素とN-1画素目との電圧差をとった電圧差信号を示す。 Here, the voltage difference signal (voltage difference information) input from the voltage difference calculation unit 231 between adjacent pixels will be described by taking a horizontal voltage difference as an example. FIG. 9 is a diagram showing drive voltage levels for a display image 140 and an image 140A of the center line of the input video signal. FIG. 10A shows a display image 141 after image quality failure, FIG. 10B shows a voltage difference signal obtained by taking a voltage difference between the own pixel and the (N + 1) th pixel, and FIG. 10C shows the own pixel and N−1. The voltage difference signal which took the voltage difference with a pixel is shown.
 図9において、表示画像140の中央ラインの画像140Aは8画素から構成されている。そして、この8画素のうち、中央の4画素が黒レベル、その周辺4画素がグレーレベルである。黒レベルの4画素の最も左側の画素141bとはグレーレベルの画素141aが隣接し、黒レベルの4画素の最も右側の画素141cとはグレーレベルの画素141dが隣接している。 In FIG. 9, the image 140A of the center line of the display image 140 is composed of 8 pixels. Of these eight pixels, the central four pixels are at the black level, and the surrounding four pixels are at the gray level. The leftmost pixel 141b of the four black level pixels is adjacent to the gray level pixel 141a, and the rightmost pixel 141c of the four black level pixels is adjacent to the gray level pixel 141d.
 ここで、画質不良発生後の表示画像141を示す図10Aでは、表示画像141の中央ラインの画像141Aは、4画素の黒レベルの最も左側の画素141bと隣接する画素141aに白が滲んだような表示になっている。このような状況下において、水平方向電圧差算出部2312からは、入力映像信号に基づいてそれぞれ図10B、図10Cに示す電圧差信号が出力される。 Here, in FIG. 10A showing the display image 141 after the image quality failure occurs, the image 141A in the center line of the display image 141 seems to have white blurring in the pixel 141a adjacent to the leftmost pixel 141b of the black level of four pixels. Is displayed. Under such circumstances, the voltage difference signal shown in FIGS. 10B and 10C is output from the horizontal voltage difference calculation unit 2312 based on the input video signal.
 図10Bは、自画素とN+1画素目との電圧差をとった電圧差信号、即ち、自画素の右隣の画素の駆動電圧レベルから自画素の駆動電圧レベルを減算した電圧レベル差を示している。図10Bにおいては、画素141aと画素141bとの電圧差(黒電位-グレー電位との差分)が正極性、画素141cと画素141dとの電圧差(グレー電位-黒電位との差分)が負極性である。 FIG. 10B shows a voltage difference signal obtained by taking a voltage difference between the own pixel and the (N + 1) th pixel, that is, a voltage level difference obtained by subtracting the drive voltage level of the own pixel from the drive voltage level of the pixel adjacent to the right side of the own pixel. Yes. In FIG. 10B, the voltage difference between the pixel 141a and the pixel 141b (the difference between the black potential and the gray potential) is positive, and the voltage difference between the pixel 141c and the pixel 141d (the difference between the gray potential and the black potential) is negative. It is.
 また、図10Cは、自画素とN-1画素目との電圧差をとった電圧差信号、即ち、自画素の駆動電圧レベルから自画素の右隣の画素の駆動電圧レベルを減算した電圧レベル差を示している。図10Cにおいては、画素141aと画素141bとの電圧差(グレー電位-黒電位との差分)が負極性、画素141cと画素141dとの電圧差(黒電位-グレー電位との差分)が正極性である。この電圧レベル差の波形から補正対象位置の候補を検出することができる。 FIG. 10C shows a voltage difference signal obtained by taking a voltage difference between the own pixel and the (N−1) th pixel, that is, a voltage level obtained by subtracting the drive voltage level of the pixel adjacent to the own pixel from the drive voltage level of the own pixel. Showing the difference. In FIG. 10C, the voltage difference (difference between gray potential and black potential) between the pixel 141a and the pixel 141b is negative, and the voltage difference between pixel 141c and pixel 141d (difference between the black potential and gray potential) is positive. It is. A candidate for a correction target position can be detected from the waveform of the voltage level difference.
 このように、走査方向によって、自画素とN+1画素目との電圧差をとった電圧差信号と、自画素とN-1画素目との電圧差をとった電圧差信号とでは、信号の波形が全く異なる。垂直走査方向においても同様である。このようなとき、水平方向選択部2321及び垂直方向選択部2322により、例えば隣接する2画素間で電圧差が生じた場合、時系列的に、前方の画素を補正対象画素とするか、後方の画素を補正対象画素とするかの選択が可能となる。この選択信号はユーザが定義して指定可能としてもよい。あるいは、TN型とVA型のような液晶表示装置の構造の違いや蒸着方向(プレチルトの向き)等によって画質不良の生じる画素が変わるので、水平方向選択部2321及び垂直方向選択部2322は、液晶表示装置の構造を示す情報や蒸着方向情報等を取得して選択信号に反映するようにしてもよい。 In this way, depending on the scanning direction, the voltage difference signal obtained by taking the voltage difference between the own pixel and the (N + 1) th pixel and the voltage difference signal taking the voltage difference between the own pixel and the (N−1) th pixel are shown as signal waveforms. Is completely different. The same applies to the vertical scanning direction. In such a case, when a voltage difference occurs between two adjacent pixels by the horizontal direction selection unit 2321 and the vertical direction selection unit 2322, for example, the front pixel is set as a correction target pixel in time series, It is possible to select whether the pixel is a correction target pixel. This selection signal may be defined and specified by the user. Alternatively, a pixel in which an image quality defect occurs depends on a difference in structure between liquid crystal display devices such as a TN type and a VA type, an evaporation direction (a direction of pretilt), and the like, so that the horizontal direction selection unit 2321 and the vertical direction selection unit 2322 Information indicating the structure of the display device, vapor deposition direction information, and the like may be acquired and reflected in the selection signal.
 補正量算出部2323は、水平方向選択部2321から供給される水平方向選択情報、垂直方向選択部2322から供給される垂直方向選択情報、及び、図7の水平方向電圧差算出部2312から供給されるライン映像信号を入力とする。そして、補正量算出部2323は、水平方向選択情報、垂直方向選択情報、及び、ライン映像信号に基づいて、補正対象画素に対する駆動電圧の補正量を算出する。 The correction amount calculation unit 2323 is supplied from the horizontal direction selection information supplied from the horizontal direction selection unit 2321, the vertical direction selection information supplied from the vertical direction selection unit 2322, and the horizontal voltage difference calculation unit 2312 in FIG. Input line video signal. Then, the correction amount calculation unit 2323 calculates a drive voltage correction amount for the correction target pixel based on the horizontal direction selection information, the vertical direction selection information, and the line video signal.
 水平方向選択部2321から供給される水平方向選択情報には、水平走査線信号に応じて同一ラインにおける自画素とN-1画素目との電圧差、自画素とN+1画素目との電圧差のいずれかの情報が含まれている。同様に、垂直方向選択部2322から供給される垂直方向選択情報には、垂直走査線信号に応じてMライン目の自画素とM-1ライン目の隣接画素との電圧差、Mライン目の自画素とM+1ライン目の隣接画素との電圧差のいずれかの情報が含まれる。また、水平方向電圧差算出部2312から供給されるライン映像信号には、自画素及び補正対象画素を始めとして各画素に対する駆動電圧情報が含まれている。 The horizontal direction selection information supplied from the horizontal direction selection unit 2321 includes the voltage difference between the own pixel and the (N−1) th pixel on the same line and the voltage difference between the own pixel and the (N + 1) th pixel in accordance with the horizontal scanning line signal. Any information is included. Similarly, the vertical direction selection information supplied from the vertical direction selection unit 2322 includes the voltage difference between the M-th line's own pixel and the adjacent pixel on the M−1th line according to the vertical scanning line signal, Information on any of the voltage differences between the own pixel and the adjacent pixel on the M + 1th line is included. Further, the line video signal supplied from the horizontal direction voltage difference calculation unit 2312 includes drive voltage information for each pixel including the own pixel and the correction target pixel.
 補正量算出部2323は、これら水平方向選択情報、垂直方向選択情報、及び、ライン映像信号に含まれる、補正対象画素に対する駆動電圧の情報をパラメータとし、当該補正対象画素に対する駆動電圧の補正量を算出する。補正量算出部2323は、水平方向選択情報、垂直方向選択情報、及び、駆動電圧の情報を基に、駆動電圧の補正量を算出する際に参照する2次元又は3次元のルックアップテーブル(以下、「LUT」と記述する)2325を備えている。 The correction amount calculation unit 2323 uses the driving voltage information for the correction target pixel included in the horizontal direction selection information, the vertical direction selection information, and the line video signal as parameters, and calculates the correction amount of the driving voltage for the correction target pixel. calculate. The correction amount calculation unit 2323 is a two-dimensional or three-dimensional lookup table (hereinafter, referred to when calculating the drive voltage correction amount based on the horizontal direction selection information, the vertical direction selection information, and the drive voltage information). , Described as “LUT”) 2325.
 LUT2325には、自画素の入力映像信号の電圧レベルと、自画素と隣接する画素の設定電圧レベル、即ち、自画素と隣接画素との電圧レベルの差分に対応して、補正対象画素に加えるべき補正量を設定するための補正設定情報が格納されている。補正量は、補正対象画素に対する駆動電圧を補正した後の当該補正対象画素の平均輝度が、当該補正対象画素に補正前の入力映像信号に基づく駆動電圧を供給した場合と同様の輝度となるように設定されている。このようにすることにより、補正前の表示画像の表示パターンと、補正後の表示画像の表示パターンとが同じものになる。 The LUT 2325 should be added to the correction target pixel corresponding to the difference between the voltage level of the input video signal of the own pixel and the set voltage level of the pixel adjacent to the own pixel, that is, the voltage level between the own pixel and the adjacent pixel. The correction setting information for setting the correction amount is stored. The correction amount is such that the average luminance of the correction target pixel after correcting the driving voltage for the correction target pixel is the same as that when the driving voltage based on the input video signal before correction is supplied to the correction target pixel. Is set to By doing so, the display pattern of the display image before correction is the same as the display pattern of the display image after correction.
 ここで、駆動電圧の補正量を算出するために参照する補正設定情報について説明する。補正量の算出の際に参照する補正設定情報の一例を図11に示す。図11には、駆動電圧の補正量、自画素の駆動電圧、及び、隣接画素との電圧差の関係を示している。図11中空欄は補正なしとする。尚、図11に示した数値は一例であって、これらの数値に限られるものではない。ここで、自画素の駆動電圧が0V、隣接画素の駆動電圧が3.975Vのとき、隣接画素との電圧差が3.975Vであることから、図11に示す補正設定情報において、網掛けで示す1.2Vが、自画素(補正対象画素)の補正量となり、自画素の駆動電圧が0Vから1.2Vに補正されることになる。 Here, correction setting information referred to in order to calculate the drive voltage correction amount will be described. An example of correction setting information to be referred to when calculating the correction amount is shown in FIG. FIG. 11 shows the relationship between the correction amount of the drive voltage, the drive voltage of the own pixel, and the voltage difference with the adjacent pixel. The hollow column in FIG. 11 is not corrected. In addition, the numerical value shown in FIG. 11 is an example, Comprising: It is not restricted to these numerical values. Here, when the driving voltage of the own pixel is 0 V and the driving voltage of the adjacent pixel is 3.975 V, the voltage difference from the adjacent pixel is 3.975 V. Therefore, in the correction setting information shown in FIG. The 1.2V shown is the correction amount of the own pixel (correction target pixel), and the drive voltage of the own pixel is corrected from 0V to 1.2V.
 LUT2325には、自画素の入力映像信号の電圧レベルと、自画素及び隣接画素の2画素間の電圧レベル差との関係によって決定される補正対象点が離散的に設定されている。尚、自画素と隣接画素との電圧レベルの差が少ないときは、発生する横電界が弱く画質不良の発生が少ない。従って、自画素と隣接画素との電圧レベルの差に対する閾値を設定し、この閾値を超えた場合に補正対象画素に対する駆動電圧の補正を実施する。このようにすることにより、液晶パネル10の全画素2に対して補正をすることなく、補正をした場合の画質不良改善の効果が高い画素に対してのみ効率よく補正を実施できる。尚、補正量についても、ユーザが定義して指定できるようにしてもよい。 In the LUT 2325, correction target points determined by the relationship between the voltage level of the input video signal of the own pixel and the voltage level difference between the two pixels of the own pixel and the adjacent pixel are set discretely. When the voltage level difference between the own pixel and the adjacent pixel is small, the generated horizontal electric field is weak and image quality is less likely to occur. Accordingly, a threshold for the difference in voltage level between the own pixel and the adjacent pixel is set, and when this threshold is exceeded, the drive voltage is corrected for the correction target pixel. By doing so, it is possible to efficiently perform correction only for pixels that are highly effective in improving image quality defects when corrected without correcting all the pixels 2 of the liquid crystal panel 10. Note that the correction amount may also be defined and specified by the user.
 また、LUT2325には、図1の制御部26から供給される液晶パネル10の環境情報に対応して複数のテーブルが存在する。液晶パネル10の環境情報としては、例えば、水平/垂直走査方向、プレチルトの向き、隣り合う2画素間の距離(ギャップ)などがある。そこで、水平走査方向が左(右)から右(左)の場合に自画素と左(右)側の隣接画素との関係で参照するテーブル、垂直走査方向が上(下)から下(上)の場合に自画素と上(下)側の隣接画素との関係で参照するテーブルを用意する。 In the LUT 2325, there are a plurality of tables corresponding to the environmental information of the liquid crystal panel 10 supplied from the control unit 26 of FIG. The environmental information of the liquid crystal panel 10 includes, for example, a horizontal / vertical scanning direction, a pretilt direction, and a distance (gap) between two adjacent pixels. Therefore, when the horizontal scanning direction is from left (right) to right (left), the table is referred to in relation to the own pixel and the left (right) side adjacent pixel, and the vertical scanning direction is from top (bottom) to bottom (top). In this case, a table is prepared for reference in relation to the own pixel and the upper (lower) adjacent pixel.
 また、プレチルトの向きが液晶パネル10の正面に対し左(右)向きの場合に参照するテーブルを用意する。更に、隣り合う2画素間の距離(ギャップ)により、発生する横電界の強さが変わるので、仮に隣り合う2画素に印加する駆動電圧が同じ、もしくは、2画素間の電圧差が同じでも、2画素間のギャップを考慮して補正対象画素に対する駆動電圧の補正量の設定値を変える。このように、LUT2325には、種々の環境情報又はそれらの組み合わせに対応できるように内容及び補正量が設定されている。 Also, a table to be referred to when the pretilt direction is left (right) with respect to the front of the liquid crystal panel 10 is prepared. Furthermore, since the strength of the generated lateral electric field changes depending on the distance (gap) between two adjacent pixels, even if the drive voltage applied to the two adjacent pixels is the same or the voltage difference between the two pixels is the same, The set value of the correction amount of the drive voltage for the correction target pixel is changed in consideration of the gap between the two pixels. Thus, the contents and correction amount are set in the LUT 2325 so as to correspond to various environment information or combinations thereof.
 補正量補間部2324は、補正量算出部2323がLUT2325を参照して算出した補正量を補間して出力する。例えば、LUT2325には、補正対象点が離散的に設定されているので、自画素の入力映像信号の電圧レベルに直接対応する補正対象点が存在しないことがある。この場合、補正量補間部2324は、例えば入力映像信号の電圧レベルに最も近い2つの補正対象点を選択する。同様に、自画素と隣接画素の2画素間の電圧レベル差に直接対応する補正対象点が存在しない場合、補正量補間部2324は、例えば2画素間の電圧レベル差に最も近い2つの補正対象点を選択する。そして、補正量補間部2324は、補正量に対するこれら4つの補正対象点について、線形補間等の補間処理を実施し、処理結果を図6の補正量調整部233へ出力する。 The correction amount interpolation unit 2324 interpolates and outputs the correction amount calculated by the correction amount calculation unit 2323 with reference to the LUT 2325. For example, since the correction target points are set discretely in the LUT 2325, there may be no correction target points that directly correspond to the voltage level of the input video signal of the own pixel. In this case, the correction amount interpolation unit 2324 selects, for example, two correction target points closest to the voltage level of the input video signal. Similarly, when there is no correction target point that directly corresponds to the voltage level difference between the two pixels of the own pixel and the adjacent pixel, the correction amount interpolation unit 2324, for example, uses the two correction targets closest to the voltage level difference between the two pixels. Select a point. Then, the correction amount interpolation unit 2324 performs interpolation processing such as linear interpolation on these four correction target points for the correction amount, and outputs the processing result to the correction amount adjustment unit 233 in FIG.
[補正量調整部]
 次に、本実施形態の特徴とする機能部である、デジタル信号処理部23における補正量調整部233について説明する。
[Correction amount adjustment unit]
Next, the correction amount adjustment unit 233 in the digital signal processing unit 23, which is a functional unit characteristic of the present embodiment, will be described.
 上述したように、補正量演算部232において、隣接画素間電圧差、及び、補正対象画素に対する映像信号データ(駆動電圧情報)を基に、補正設定情報を参照し、補正対象画素に供給される駆動電圧の補正量の算出が行われる。以下、補正量演算部232で算出される補正量を補正量Xと記述する。 As described above, the correction amount calculation unit 232 refers to the correction setting information based on the voltage difference between adjacent pixels and the video signal data (drive voltage information) for the correction target pixel and supplies the correction setting information to the correction target pixel. The correction amount of the drive voltage is calculated. Hereinafter, the correction amount calculated by the correction amount calculation unit 232 is referred to as a correction amount X.
 補正量演算部232では、ある程度経時変化した後の液晶パネル10の状態を想定し、補正対象画素の駆動電圧の補正量Xを固定値として設定している。固定値の補正量Xをそのまま用いる補正処理では、経時変化していない初期状態の液晶パネル10では過補正となる場合があり、逆に、あらかじめ想定した状態よりも経時変化が進んだ液晶パネル10では補正不足となる場合がある。いずれのも場合にも、出力画像の画質が低下する。また、出力画像の画質は、液晶パネル10の経時変化(経時劣化)が進むほど悪化する。 The correction amount calculation unit 232 sets the correction amount X of the drive voltage of the correction target pixel as a fixed value, assuming the state of the liquid crystal panel 10 after a certain amount of time has elapsed. In the correction process using the correction value X of the fixed value as it is, the liquid crystal panel 10 in the initial state that has not changed with time may be overcorrected, and conversely, the liquid crystal panel 10 that has changed with time more than previously assumed. Then, there is a case where the correction is insufficient. In either case, the image quality of the output image is degraded. Further, the image quality of the output image becomes worse as the change with time (deterioration with time) of the liquid crystal panel 10 progresses.
 そこで、本実施形態では、補正量演算部232の後段に、当該補正量演算部232で算出された補正量Xを、出力画像の画質に応じて調整する補正量調整部233を設けた構成を採っている。補正量調整部233において、補正対象画素の駆動電圧を補正する補正量Xを、出力画像の画質に応じて調整することで、経時変化の度合いに応じた出力画像の画質の状態が、補正対象画素の駆動電圧の補正量Xに反映されることになる。これにより、液晶パネル10の経時変化の影響を受けることなく、補正対象画素の駆動電圧の補正を行うことができるため、出力画像の画質の向上を図ることができる。 Therefore, in the present embodiment, a configuration in which a correction amount adjustment unit 233 that adjusts the correction amount X calculated by the correction amount calculation unit 232 in accordance with the image quality of the output image is provided at the subsequent stage of the correction amount calculation unit 232. Adopted. The correction amount adjustment unit 233 adjusts the correction amount X for correcting the driving voltage of the correction target pixel according to the image quality of the output image, so that the state of the image quality of the output image according to the degree of change with time is corrected. This is reflected in the correction amount X of the driving voltage of the pixel. As a result, the drive voltage of the correction target pixel can be corrected without being affected by the change over time of the liquid crystal panel 10, and the image quality of the output image can be improved.
 補正量調整部233では、補正対象画素の駆動電圧の補正量Xを調整するにあって、出力画像の画質の状態を検出する(把握する)必要がある。出力画像の画質の状態を検出する手法については、以下に挙げる様々な手法を例示することができる。 The correction amount adjustment unit 233 needs to detect (understand) the state of the image quality of the output image in adjusting the correction amount X of the drive voltage of the correction target pixel. As a method for detecting the state of the image quality of the output image, various methods listed below can be exemplified.
・第1の検出手法
 出力画像の画質は、水分の浸入などに起因して経時変化する。従って、液晶パネル10の使用時間を計測することで、当該計測時間から出力画像の画質の経時変化の度合い(画質の状態)を間接的に検出することができる。すなわち、第1の検出手法は、液晶パネル10の使用時間をカウンタで計測し、そのカウンタ結果(カウント値)をパラメータとして、出力画像の画質の状態を検出する手法である。
First Detection Method The image quality of the output image changes over time due to moisture intrusion and the like. Therefore, by measuring the usage time of the liquid crystal panel 10, it is possible to indirectly detect the degree of change over time in the image quality of the output image (image quality state) from the measurement time. In other words, the first detection method is a method in which the usage time of the liquid crystal panel 10 is measured by a counter and the image quality state of the output image is detected using the counter result (count value) as a parameter.
・第2の検出手法
 出力画像の画質は、液晶パネル10の使用環境、特に温度や湿度によっても影響を受ける。従って、液晶パネル10の使用環境下での温度や湿度を計測し、その計測結果をパラメータの一つとして、液晶パネル10の使用時間に加えることで、出力画像の画質の検出精度を上げることができる。このとき、温度単独、湿度単独、あるいは、温度及び湿度の両方をパラメータとして加えることが考えられる。すなわち、第2の検出手法は、液晶パネル10の使用時間に加えて、液晶パネル10の使用環境下の温度、湿度、又は、温度及び湿度をパラメータとして、出力画像の画質の状態を検出する手法である。
Second Detection Method The image quality of the output image is also affected by the usage environment of the liquid crystal panel 10, particularly the temperature and humidity. Therefore, by measuring the temperature and humidity under the usage environment of the liquid crystal panel 10, and adding the measurement result as one of the parameters to the usage time of the liquid crystal panel 10, the detection accuracy of the image quality of the output image can be improved. it can. At this time, it is conceivable to add temperature alone, humidity alone, or both temperature and humidity as parameters. That is, the second detection method is a method of detecting the state of the image quality of the output image using the temperature, humidity, or temperature and humidity under the usage environment of the liquid crystal panel 10 as parameters in addition to the usage time of the liquid crystal panel 10. It is.
・第3の検出手法
 第3の検出手法は、撮像部(撮像装置)を用いて出力画像を撮像し、その撮像結果から出力画像の画質の経時変化の度合い(画質の状態)を直接的に検出する手法である。一例として、液晶パネル10を光変調手段(ライトバルブ)として用いる投射型液晶表示システム(プロジェクタシステム)の場合、図12に示すように、プロジェクタ51の後述する投射レンズ114(図21参照)の近傍に撮像部52を配置する。そして、スクリーン53に投射される出力画像54を撮像部52で撮像することで、その撮像結果から出力画像54の画質の状態を直接的に検出することができる。
Third detection method The third detection method uses an imaging unit (imaging device) to capture an output image, and directly determines the degree of temporal change in image quality of the output image (image quality state) from the imaging result. This is a detection method. As an example, in the case of a projection type liquid crystal display system (projector system) using the liquid crystal panel 10 as a light modulation means (light valve), as shown in FIG. 12, the vicinity of a projection lens 114 (see FIG. 21) described later of the projector 51. The imaging unit 52 is disposed in the area. And by imaging the output image 54 projected on the screen 53 with the imaging part 52, the state of the image quality of the output image 54 can be directly detected from the imaging result.
 尚、出力画像の画質の状態を検出する手法としては、上述した第1の検出手法、第2の検出手法、あるいは、第3の検出手法に限られるものではない。例えば、色度で液晶パネル10の吸湿の度合いを検出できることから、色彩色度計を用いて液晶パネル10の色度を測定し、その測定結果をパラメータの一つとして用いたり、輝度計を用いて液晶パネル10の輝度を測定し、その測定結果をパラメータの一つとして用いたりすることも可能である。 Note that the method for detecting the state of the image quality of the output image is not limited to the above-described first detection method, second detection method, or third detection method. For example, since the degree of moisture absorption of the liquid crystal panel 10 can be detected by chromaticity, the chromaticity of the liquid crystal panel 10 is measured using a chromaticity meter, and the measurement result is used as one of parameters, or a luminance meter is used. It is also possible to measure the luminance of the liquid crystal panel 10 and use the measurement result as one of the parameters.
 ここで、一例として、色度の測定の下に、液晶パネル10の吸湿の度合いを検出する場合について説明する。白ストライプ、黒ストライプの表示を画素行単位(又は、画素列単位)で繰り返したとき、即ち、隣接する2つの画素間の電位差が最も大きいときに画素間リークが起こり易い。そこで、投射型液晶表示システムにおいて、白ストライプだけを表示したときの輝度を測定して照度Aとし、黒ストライプだけを表示したときの輝度を測定して照度Bとし、白ストライプ及び黒ストライプを交互に表示したときの輝度を測定して照度Cとする。そして、照度C/(照度A及び照度Bの平均)から吸湿指標(吸湿の度合い)を求め、当該吸湿指標を、出力画像の画質の状態を検出するパラメータの一つとして用いるようにすることができる。 Here, as an example, a case where the degree of moisture absorption of the liquid crystal panel 10 is detected under the measurement of chromaticity will be described. When the display of white stripes and black stripes is repeated in pixel row units (or pixel column units), that is, when the potential difference between two adjacent pixels is the largest, inter-pixel leakage is likely to occur. Therefore, in a projection type liquid crystal display system, the luminance when only white stripes are displayed is measured as illuminance A, the luminance when only black stripes are displayed is measured as illuminance B, and white stripes and black stripes are alternately displayed. The brightness when displayed on the screen is measured as illuminance C. Then, a moisture absorption index (degree of moisture absorption) is obtained from illuminance C / (average of illuminance A and illuminance B), and the moisture absorption index is used as one of the parameters for detecting the state of the image quality of the output image. it can.
 以下に、第3の検出手法を用いて取得した出力画像の取得結果に基づいて、補正量の調整を行う場合の補正量調整部233の具体的な実施例を実施例1及び実施例2として説明する。また、第1の検出手法を用いて取得した使用時間に基づいて、補正量の調整を行う場合の補正量調整部233の具体的な実施例を実施例2として説明する。 Hereinafter, specific examples of the correction amount adjustment unit 233 when adjusting the correction amount based on the acquisition result of the output image acquired using the third detection method will be described as Example 1 and Example 2. explain. A specific example of the correction amount adjustment unit 233 when adjusting the correction amount based on the usage time acquired using the first detection method will be described as a second embodiment.
(実施例1)
 実施例1は、補正量調整部233において、調整画像(出力画像)の撮像結果から、出力画像の画質の状態を検出し、その画質情報を補正量Xに反映させる例、即ち、出力画像の画質の状態の検出に、先述した第3の検出手法を適用する例である。実施例1では、上述した吸湿指標を、補正対象画素の駆動電圧について補正の要否を判断するパラメータとして用いることとする。以下の実施例においても同様である。実施例1に係る補正量調整部233における補正量調整のための処理の流れを図13に示す。
Example 1
In the first embodiment, the correction amount adjustment unit 233 detects the state of the image quality of the output image from the imaging result of the adjusted image (output image), and reflects the image quality information on the correction amount X, that is, the output image In this example, the above-described third detection method is applied to the detection of the image quality state. In the first embodiment, the above-described moisture absorption index is used as a parameter for determining whether or not the driving voltage of the correction target pixel needs to be corrected. The same applies to the following embodiments. FIG. 13 shows a flow of processing for correction amount adjustment in the correction amount adjustment unit 233 according to the first embodiment.
 以下に説明する補正量調整のための一連の処理は、例えば、図6のデジタル信号処理部23を構成するMPU等のプロセッサによる制御の下に、ソフトウェアによって実行される。但し、ソフトウェアによって実行する構成に限られるものではなく、補正量調整のための処理を実行する各機能部をハードウェア構成とすることも可能である。後述する実施例においても同様である。 A series of processes for adjusting the correction amount described below is executed by software under the control of a processor such as an MPU configuring the digital signal processing unit 23 of FIG. However, the present invention is not limited to a configuration that is executed by software, and each functional unit that executes processing for adjusting the correction amount may have a hardware configuration. The same applies to the embodiments described later.
 図13のフローチャートにおいて、プロセッサは、補正量調整のための調整画像の映像信号を、図12のプロジェクタ51に供給し、調整画像を出力させ(ステップS11)、次いで、スクリーン53に投影された調整画像、即ち出力画像を、撮像部52を用いて撮像して得た画像データを取得する(ステップS12)。次に、プロセッサは、取得した画像データを基に調整画像(出力画像)の画質データを数値化し(ステップS13)、次いで、数値化した画質データに基づいて、出力画像の画質の状態に応じた補正係数αを設定する(ステップS14)。 In the flowchart of FIG. 13, the processor supplies an adjustment image video signal for adjusting the correction amount to the projector 51 of FIG. 12 to output the adjustment image (step S <b> 11), and then the adjustment projected on the screen 53. Image data obtained by imaging an image, that is, an output image using the imaging unit 52 is acquired (step S12). Next, the processor digitizes the image quality data of the adjusted image (output image) based on the acquired image data (step S13), and then according to the image quality state of the output image based on the digitized image quality data A correction coefficient α is set (step S14).
 出力画像の画質の状態は、液晶パネル10の経時変化が進むほど悪化(劣化)する。液晶パネル10の使用時間、出力画像の画質の状態、及び、補正係数αの関係の一例を図14に示す。図14に示すように、液晶パネル10の初期状態、1年経過後、3年経過後、・・・という具合に、液晶パネル10の使用時間に応じて、出力画像の画質が悪化する。従って、ステップS14では、補正係数αとして、出力画像の画質の状態に応じた値が設定されることになる。 The image quality of the output image deteriorates (deteriorates) as the liquid crystal panel 10 changes with time. An example of the relationship between the usage time of the liquid crystal panel 10, the state of the image quality of the output image, and the correction coefficient α is shown in FIG. As shown in FIG. 14, the initial state of the liquid crystal panel 10, one year later, three years later, and so on, etc., the image quality of the output image is deteriorated according to the usage time of the liquid crystal panel 10. Therefore, in step S14, a value corresponding to the image quality state of the output image is set as the correction coefficient α.
 次に、プロセッサは、ステップS14で設定した補正係数αを反映させた後の画質データ、即ち補正後画質データを演算で求め(ステップS15)、次いで、基準の画質データと比較することによって、補正対象画素の駆動電圧の補正について要否を判断する(ステップS16)。 Next, the processor obtains the image quality data after reflecting the correction coefficient α set in step S14, that is, the corrected image quality data by calculation (step S15), and then compares the image quality data with the reference image quality data to perform correction. It is determined whether or not it is necessary to correct the drive voltage of the target pixel (step S16).
 ここで、補正後画質データの比較対象の基準の画質データについては、初期値(初期状態の画質データ)とすることもできるし、当該初期値を基準とする所定の画質設定範囲の値とすることもできる。例えば、先述した吸湿指標(吸湿の度合い)の変化から、図15に示すように、初期値(吸湿指標=50%)を基準に、例えば±5%の画質設定範囲を、補正対象画素の駆動電圧について補正の要否を判断する閾値とする。 Here, the reference image quality data to be compared with the corrected image quality data may be an initial value (image quality data in the initial state), or a value in a predetermined image quality setting range with the initial value as a reference. You can also. For example, based on the change in the moisture absorption index (the degree of moisture absorption) described above, as shown in FIG. 15, the image quality setting range of, for example, ± 5% is driven based on the initial value (moisture absorption index = 50%). The threshold is used to determine whether or not the voltage needs to be corrected.
 ステップS16の補正の要否の判断処理では、画質設定範囲を下回った画質になった場合に、補正が必要であると判断する。そして、プロセッサは、補正が必要であると判断した場合は(S16のYES)、補正量演算部232で算出された補正対象画素の駆動電圧の補正量Xに、ステップS14で設定した補正係数αを反映させ(ステップS17)、しかる後、補正量調整のための一連の処理を終了する。 In the determination process of necessity of correction in step S16, it is determined that correction is necessary when the image quality falls below the image quality setting range. If the processor determines that correction is necessary (YES in S16), the correction coefficient α set in step S14 is set to the correction amount X of the drive voltage of the correction target pixel calculated by the correction amount calculation unit 232. Is reflected (step S17), and then a series of processing for adjusting the correction amount is completed.
 ステップS17では、具体的には、
 (2画素間の電圧差に基づく補正量X)×(出力画像の画質に応じた補正係数α)
の演算処理が行われる。この演算結果が、2画素間の電圧差に基づく補正量Xに、出力画像の画質に応じた補正係数αを反映させた(フィードバックした)補正量αXとなる。
In step S17, specifically,
(Correction amount X based on voltage difference between two pixels) × (correction coefficient α according to the image quality of the output image)
The arithmetic processing is performed. The calculation result is a correction amount αX that reflects (feeds back) the correction coefficient α corresponding to the image quality of the output image to the correction amount X based on the voltage difference between the two pixels.
 この補正係数αのフィードバックは、図11に示した補正設定情報に対して行われる。図16に、補正係数αをフィードバック後の補正設定情報の一例を示す。図16には、駆動電圧の補正量、自画素の駆動電圧、及び、隣接画素との電圧差の関係を示している。図16中空欄は補正なしとする。尚、図16に示した数値は一例であって、これらの数値に限られるものではない。 The feedback of the correction coefficient α is performed on the correction setting information shown in FIG. FIG. 16 shows an example of correction setting information after feedback of the correction coefficient α. FIG. 16 shows the relationship between the correction amount of the drive voltage, the drive voltage of the own pixel, and the voltage difference with the adjacent pixel. The hollow column in FIG. 16 is not corrected. In addition, the numerical value shown in FIG. 16 is an example, Comprising: It is not restricted to these numerical values.
 プロセッサは、補正が不要であると判断した場合は(S16のNO)、2画素間の電圧差に基づく補正量Xに補正係数αを反映させる必要がないことから、補正量Xに補正係数αをかける演算を行わず、補正量Xをそのまま用い(ステップS18)、補正量調整のための一連の処理を終了する。 When the processor determines that the correction is unnecessary (NO in S16), the correction coefficient α does not need to be reflected in the correction amount X based on the voltage difference between the two pixels. The correction amount X is used as it is (step S18), and a series of processes for adjusting the correction amount is terminated.
 上述した実施例1に係る補正量調整部233における補正量調整によれば、出力画像を撮像部52で撮像し、その撮像結果から出力画像の画質の状態を把握することで、液晶パネル10の経時変化に伴う出力画像の画質の状態を検出することができる。そして、出力画像の画質の状態を基に補正係数αを設定し、補正対象画素の駆動電圧の補正量Xにフィードバックすることで、液晶パネル10の経時変化の影響を受けることなく、駆動電圧の補正を行うことができるため、出力画像の画質の向上を図ることができる。 According to the correction amount adjustment in the correction amount adjustment unit 233 according to the first embodiment described above, the output image is captured by the imaging unit 52, and the state of the image quality of the output image is grasped from the imaging result. It is possible to detect the state of the image quality of the output image accompanying a change with time. Then, the correction coefficient α is set based on the state of the image quality of the output image and fed back to the correction amount X of the drive voltage of the correction target pixel, so that the drive voltage can be adjusted without being affected by the change over time of the liquid crystal panel 10. Since correction can be performed, the image quality of the output image can be improved.
(実施例2)
 実施例2は、実施例1の変形例である。実施例1では、出力画像の画質の状態に応じた補正係数αを設定し、当該補正係数αを反映させた後の画質データ(補正後画質データ)を演算し、基準の画質データと比較することによって補正の要否を判断するようにしている。これに対し、実施例2では、補正係数αを反映させた後の調整画像を出力し、再度取得した画像データを基に補正後の画質データを数値化し、基準の画質データと比較することによって補正の要否を判断する。
(Example 2)
The second embodiment is a modification of the first embodiment. In the first embodiment, the correction coefficient α corresponding to the state of the image quality of the output image is set, the image quality data (corrected image quality data) after the correction coefficient α is reflected is calculated, and compared with the reference image quality data. Thus, the necessity of correction is determined. On the other hand, in the second embodiment, the adjusted image after the correction coefficient α is reflected is output, the corrected image quality data is digitized based on the image data acquired again, and compared with the reference image quality data. Determine whether correction is necessary.
 実施例2に係る補正量調整部233における補正量調整のための処理の流れを図17に示す。図17のフローチャートにおいて、プロセッサは、補正量調整のための調整画像をプロジェクタ51から出力させ(ステップS21)、次いで、スクリーン53上の出力画像を、撮像部52を用いて撮像して得た画像データを取得する(ステップS22)。 FIG. 17 shows a flow of processing for correction amount adjustment in the correction amount adjustment unit 233 according to the second embodiment. In the flowchart of FIG. 17, the processor outputs an adjustment image for adjusting the correction amount from the projector 51 (step S <b> 21), and then an image obtained by imaging the output image on the screen 53 using the imaging unit 52. Data is acquired (step S22).
 次に、プロセッサは、取得した画像データを基に出力画像の画質データを数値化し(ステップS23)、次いで、数値化した画質データに基づいて、出力画像の画質の状態に応じた補正係数αを設定する(ステップS24)。補正係数αについては、実施例1の場合と同様である。 Next, the processor digitizes the image quality data of the output image based on the acquired image data (step S23), and then calculates a correction coefficient α according to the state of the image quality of the output image based on the digitized image quality data. Set (step S24). The correction coefficient α is the same as in the first embodiment.
 次に、プロセッサは、補正係数αを用いて調整画像を補正し、この補正後の調整画像をプロジェクタ51から出力させ(ステップS25)、次いで、スクリーン53上の出力画像を、撮像部52を用いて撮像して得た補正後調整画像についての画像データを取得する(ステップS26)。 Next, the processor corrects the adjusted image using the correction coefficient α, causes the adjusted image to be output from the projector 51 (step S25), and then uses the imaging unit 52 to output the output image on the screen 53. The image data for the adjusted image after correction obtained by imaging is acquired (step S26).
 次に、プロセッサは、取得した画像データを基に補正後調整画像の画質データを数値化し(ステップS27)、次いで、数値化した補正後調整画像の画質データを、基準の画質データと比較することによって、補正対象画素の駆動電圧の補正について要否を判断する(ステップS28)。基準の画質データについては、実施例1の場合と同様である。 Next, the processor digitizes the image quality data of the adjusted image after correction based on the acquired image data (step S27), and then compares the digitized image quality data of the adjusted image after correction with reference image quality data. Thus, it is determined whether or not it is necessary to correct the drive voltage of the correction target pixel (step S28). The reference image quality data is the same as in the first embodiment.
 そして、プロセッサは、補正が必要であると判断した場合は(S28のYES)、補正対象画素の駆動電圧の補正量Xに、ステップS24で設定した補正係数αを反映させ(ステップS29)、しかる後、補正量調整のための一連の処理を終了する。また、プロセッサは、補正が不要であると判断した場合は(S28のNO)、2画素間の電圧差に基づく補正量Xに補正係数αを反映させる必要がないことから、補正量Xに補正係数αをかける演算を行わず、補正量Xをそのまま用い(ステップS30)、補正量調整のための一連の処理を終了する。 If the processor determines that correction is necessary (YES in S28), the correction coefficient α set in step S24 is reflected in the correction amount X of the drive voltage of the correction target pixel (step S29). Thereafter, a series of processes for adjusting the correction amount is completed. If the processor determines that no correction is necessary (NO in S28), the correction coefficient α need not be reflected in the correction amount X based on the voltage difference between the two pixels. The calculation for multiplying the coefficient α is not performed, the correction amount X is used as it is (step S30), and a series of processes for adjusting the correction amount is completed.
 上述した実施例2に係る補正量調整部233における補正量調整によれば、実施例1の場合と同様の作用、効果を得ることができる。加えて、実施例1では、補正係数αを反映させた後の調整画像を出力し、再度取得した画像データを基に補正後の画質データを数値化し、補正の要否を判断するようにしているため、補正の要否の判断をより確実に行うことができる。 According to the correction amount adjustment in the correction amount adjustment unit 233 according to the second embodiment described above, it is possible to obtain the same operations and effects as in the first embodiment. In addition, in the first embodiment, the adjusted image after the correction coefficient α is reflected is output, the corrected image quality data is digitized based on the image data acquired again, and the necessity of correction is determined. Therefore, the necessity of correction can be determined more reliably.
(実施例3)
 実施例3は、補正量調整部233において、液晶パネル10の使用時間から、出力画像の画質の状態を検出し、その画質情報を補正量Xに反映させる例、即ち、出力画像の画質の状態の検出に、先述した第1の検出手法を適用する例である。また、実施例3では、液晶パネル10の使用時間に対応した複数の補正設定テーブルを、補正設定情報としてLUT(ルックアップテーブル)にあらかじめ準備し、画質情報に基づいてテーブルを選択する構成を採る。複数の補正設定テーブルのLUTは、例えば補正量調整部233に内蔵のフレームメモリ(図示せず)に格納される。
(Example 3)
In the third embodiment, the correction amount adjustment unit 233 detects the image quality state of the output image from the usage time of the liquid crystal panel 10 and reflects the image quality information in the correction amount X, that is, the image quality state of the output image. This is an example in which the first detection method described above is applied to the detection of. In the third embodiment, a plurality of correction setting tables corresponding to the usage time of the liquid crystal panel 10 are prepared in advance in a LUT (lookup table) as correction setting information, and the table is selected based on the image quality information. . The LUTs of the plurality of correction setting tables are stored in a frame memory (not shown) built in the correction amount adjustment unit 233, for example.
 図18は、液晶パネルの使用時間、出力画像の画質の状態、及び、補正設定テーブルの関係の一例を示す図である。ここでは、複数の補正設定テーブルとして、例えば、液晶パネル10の初期状態から使用時間が1年程度経過までの期間に対応する補正設定テーブルA、及び、使用時間が1年程度経過から2年程度経過までの期間に対応する補正設定テーブルBの2つを用いる場合を例示している。但し、補正設定テーブルは、2つに限られるものではなく、3つ以上であってもよい。 FIG. 18 is a diagram illustrating an example of the relationship between the usage time of the liquid crystal panel, the quality of the output image, and the correction setting table. Here, as the plurality of correction setting tables, for example, the correction setting table A corresponding to the period from the initial state of the liquid crystal panel 10 to the usage time of about one year, and the usage time of about one year to about two years. The case of using two of the correction setting tables B corresponding to the period until the elapse is illustrated. However, the correction setting table is not limited to two, and may be three or more.
 また、図19に、補正設定テーブルA及び補正設定テーブルBの数値の一例を示す。図19の各テーブルには、駆動電圧の補正量、自画素の駆動電圧、及び、隣接画素との電圧差の関係を示している。図19中空欄は補正なしとする。尚、図19に示した数値は一例であって、これらの数値に限られるものではない。 FIG. 19 shows an example of numerical values of the correction setting table A and the correction setting table B. Each table in FIG. 19 shows the relationship between the correction amount of the drive voltage, the drive voltage of the own pixel, and the voltage difference with the adjacent pixel. The hollow column in FIG. 19 is not corrected. Note that the numerical values shown in FIG. 19 are examples, and are not limited to these numerical values.
 実施例3に係る補正量調整部233における補正量調整のための一連の処理について、図20を用いて説明する。図20は、実施例3に係る補正量調整部233における補正量調整のための処理の流れを示すフローチャートである。 A series of processing for correction amount adjustment in the correction amount adjustment unit 233 according to the third embodiment will be described with reference to FIG. FIG. 20 is a flowchart illustrating a flow of processing for correction amount adjustment in the correction amount adjustment unit 233 according to the third embodiment.
 図20のフローチャートにおいて、プロセッサは、先ず、液晶パネル10の使用時間をカウントするカウンタ(図示せず)のカウント値を取得する(ステップS31)。前にも述べたように、出力画像の画質は、水分の浸入などに起因して経時変化することから、液晶パネル10の使用時間をカウンタすることにより、そのカウント値(計測時間)から出力画像の画質の経時変化の度合い(画質の状態)を間接的に検出することができる。すなわち、液晶パネル10の使用時間のカウント値を取得することで、出力画像の画質の経時変化の度合いを把握することができる。 20, the processor first acquires a count value of a counter (not shown) that counts the usage time of the liquid crystal panel 10 (step S31). As described above, since the image quality of the output image changes with time due to the ingress of moisture, the output image is calculated from the count value (measurement time) by counting the usage time of the liquid crystal panel 10. The degree of change in image quality over time (image quality state) can be indirectly detected. That is, by acquiring the count value of the usage time of the liquid crystal panel 10, it is possible to grasp the degree of temporal change in the image quality of the output image.
 次に、プロセッサは、取得した使用時間のカウント値を基に、LUTから複数の補正設定テーブルのうちの一つ、即ち、補正設定テーブルA又は補正設定テーブルBを選択する(ステップS32)。一例として、液晶パネル10の使用時間が初期の状態であれば、補正量演算部232で算出された補正量Xをそのまま、補正対象画素の駆動電圧の補正量として用いる。初期状態から使用時間が1年程度経過までの期間であれば、補正設定テーブルAを選択し、使用時間が1年程度経過から2年程度経過までの期間であれば、補正設定テーブルBを選択する。 Next, the processor selects one of a plurality of correction setting tables from the LUT, that is, the correction setting table A or the correction setting table B, based on the acquired count value of usage time (step S32). As an example, if the usage time of the liquid crystal panel 10 is in an initial state, the correction amount X calculated by the correction amount calculation unit 232 is used as it is as the correction amount of the drive voltage of the correction target pixel. If the period from the initial state to the usage time of about one year has passed, the correction setting table A is selected. If the usage time has passed from about one year to the passage of about two years, the correction setting table B is selected. To do.
 次に、プロセッサは、選択した補正設定テーブルA又は補正設定テーブルBを基に、補正量演算部232で算出された補正量Xを補正し、補正後画質データを算出し(ステップS33)、次いで、基準の画質データと比較することによって、補正対象画素の駆動電圧の補正について要否を判断する(ステップS34)。ここで、補正後画質データの比較対象の基準の画質データについては、実施例1の場合と同様である。 Next, the processor corrects the correction amount X calculated by the correction amount calculation unit 232 based on the selected correction setting table A or correction setting table B, calculates post-correction image quality data (step S33), and then Then, by comparing with the reference image quality data, it is determined whether or not it is necessary to correct the drive voltage of the pixel to be corrected (step S34). Here, the reference image quality data to be compared with the corrected image quality data is the same as in the first embodiment.
 そして、プロセッサは、補正が必要であると判断した場合は(S34のYES)、補正対象画素の駆動電圧の補正量Xに、ステップS32で選択した補正設定テーブルA又は補正設定テーブルBを反映させることで、補正対象画素の駆動電圧の補正量とし(ステップS35)、しかる後、補正量調整のための一連の処理を終了する。 If the processor determines that correction is necessary (YES in S34), the correction setting table A or the correction setting table B selected in step S32 is reflected in the correction amount X of the drive voltage of the correction target pixel. Thus, the correction amount of the drive voltage of the correction target pixel is set (step S35), and then a series of processes for adjusting the correction amount is finished.
 また、プロセッサは、補正が不要であると判断した場合は(S34のNO)、2画素間の電圧差に基づく補正量Xに補正設定テーブルA/補正設定テーブルBを反映させる必要がないことから、補正量演算部232で算出された補正量Xをそのまま用い(ステップS36)、補正量調整のための一連の処理を終了する。 If the processor determines that the correction is unnecessary (NO in S34), it is not necessary to reflect the correction setting table A / correction setting table B in the correction amount X based on the voltage difference between the two pixels. The correction amount X calculated by the correction amount calculation unit 232 is used as it is (step S36), and a series of processes for adjusting the correction amount is completed.
 上述した実施例3に係る補正量調整部233における補正量調整によれば、液晶パネル10の使用時間をカウントし、そのカウント結果から出力画像の画質の状態を把握することで、液晶パネル10の経時変化に伴う出力画像の画質の状態を検出することができる。そして、出力画像の画質の状態を基に、あらかじめ用意した複数の補正設定テーブルのうちの一つを選択し、補正対象画素の駆動電圧の補正量Xに反映することで、液晶パネル10の経時変化の影響を受けることなく、駆動電圧の補正を行うことができるため、出力画像の画質の向上を図ることができる。 According to the correction amount adjustment in the correction amount adjustment unit 233 according to the third embodiment described above, the usage time of the liquid crystal panel 10 is counted, and the state of the image quality of the output image is grasped from the count result, so that the liquid crystal panel 10 It is possible to detect the state of the image quality of the output image accompanying a change with time. Then, based on the state of the image quality of the output image, one of a plurality of correction setting tables prepared in advance is selected and reflected in the correction amount X of the drive voltage of the pixel to be corrected, so that the liquid crystal panel 10 changes over time. Since the drive voltage can be corrected without being affected by the change, the image quality of the output image can be improved.
 尚、実施例3では、出力画像の画質の状態の検出に、液晶パネル10の使用時間を用いる第1の検出手法を適用するとしたが、第2の検出手法を併用するようにしてもよい。すなわち、液晶パネル10の使用環境下での温度や湿度を計測し、温度単独、湿度単独、あるいは、温度及び湿度の両方をパラメータの一つとして、液晶パネル10の使用時間に加えて、出力画像の画質の状態を検出するようにしてもよい。第1の検出手法及び第2の検出手法の併用により、出力画像の画質の検出精度をより向上できる。 In the third embodiment, the first detection method using the usage time of the liquid crystal panel 10 is applied to the detection of the image quality state of the output image. However, the second detection method may be used in combination. That is, the temperature and humidity in the usage environment of the liquid crystal panel 10 are measured, the temperature alone, the humidity alone, or both the temperature and humidity as one of the parameters, in addition to the usage time of the liquid crystal panel 10, the output image The image quality state may be detected. The combined use of the first detection method and the second detection method can further improve the detection accuracy of the image quality of the output image.
<変形例>
 以上、本開示の技術について、好ましい実施形態に基づき説明したが、本開示の技術は当該実施形態に限定されるものではない。上記の実施形態において説明した表示装置の構成、構造は例示であり、適宜、変更することができる。例えば、上記の実施形態では、液晶表示装置(液晶パネル)を例に挙げて本開示の技術を説明したが、横電界による画質不良現象の発生は液晶表示装置に限られない。
<Modification>
As mentioned above, although the technique of this indication was demonstrated based on preferable embodiment, the technique of this indication is not limited to the said embodiment. The configuration and structure of the display device described in the above embodiment are examples, and can be changed as appropriate. For example, in the above-described embodiment, the technology of the present disclosure has been described by taking a liquid crystal display device (liquid crystal panel) as an example.
 すなわち、横電界による画質不良は、画素が行列状に2次元配置されて成り、走査線及び信号線に電圧を印加して表示駆動を行う方式の表示装置において発生する現象である。例えば、有機EL(Electro Luminescence)表示装置においては、横電界により、有機EL素子内の電子及び正孔の動きに乱れが生じて画質不良が発生する。また、プラズマ表示装置においては、横電界により、画素内のプラズマの生成に影響が生じて画質不良が発生する。従って、本開示の技術は、上記の方式の表示装置全般に対して適用することができる。 That is, the image quality defect due to the horizontal electric field is a phenomenon that occurs in a display device in which pixels are two-dimensionally arranged in a matrix and display driving is performed by applying a voltage to the scanning lines and signal lines. For example, in an organic EL (Electro-Luminescence) display device, a lateral electric field disturbs the movement of electrons and holes in the organic EL element, resulting in poor image quality. In the plasma display device, the horizontal electric field affects the generation of plasma in the pixel, resulting in poor image quality. Therefore, the technology of the present disclosure can be applied to all display devices of the above method.
 以上説明した本開示の表示装置は、電子機器に入力された映像信号、若しくは、電子機器内で生成した映像信号を、画像若しくは映像として表示する、あらゆる分野の電子機器の表示部(表示装置)として用いることができる。電子機器としては、投射型液晶表示装置、テレビジョンセット、ノート型パーソナルコンピュータ、デジタルスチルカメラ、携帯電話機等の携帯端末装置等を例示することができる。但し、これらに限られるものではない。 The display device of the present disclosure described above is a display unit (display device) of an electronic device in any field that displays a video signal input to the electronic device or a video signal generated in the electronic device as an image or a video. Can be used as Examples of the electronic device include a projection type liquid crystal display device, a television set, a notebook personal computer, a digital still camera, and a mobile terminal device such as a mobile phone. However, it is not restricted to these.
 本開示の表示装置は、封止された構成のモジュール形状のものをも含む。尚、表示モジュールには、外部から画素アレイ部への信号等を入出力するための回路部やフレキシブルプリントサーキット(FPC)などが設けられていてもよい。以下に、本開示の表示装置を用いる電子機器の具体例として、投射型液晶表示装置を例示する。但し、ここで例示する具体例は一例に過ぎず、この投射型液晶表示装置に限られるものではない。 The display device of the present disclosure also includes a module-shaped one with a sealed configuration. Note that the display module may be provided with a circuit unit for inputting / outputting signals from the outside to the pixel array unit, a flexible printed circuit (FPC), and the like. Hereinafter, a projection type liquid crystal display device will be exemplified as a specific example of an electronic apparatus using the display device of the present disclosure. However, the specific example illustrated here is only an example, and is not limited to this projection type liquid crystal display device.
[投射型液晶表示装置]
 投射型液晶表示装置(所謂、プロジェクタ)は、加法混色でカラー表示を行っており、光の三原色、即ち、赤色(R)、緑色(G)、青色(B)それぞれに液晶パネルを用い、3枚の液晶パネルで各原色の画像を作成し、その後プリズムで画像を合成する3板方式が一般的である。投射型液晶表示装置に用いる液晶パネルは、1.0インチ前後のサイズのパネルが一般的である。図21に、本開示の電子機器の一例である3板式投射型液晶表示装置(プロジェクタ)の光学系の概略を示す。
[Projection type liquid crystal display]
Projection type liquid crystal display devices (so-called projectors) perform color display with additive color mixing, and use liquid crystal panels for the three primary colors of light, that is, red (R), green (G), and blue (B). In general, a three-plate system is used in which images of primary colors are created with a single liquid crystal panel and then the images are combined with a prism. A liquid crystal panel used in a projection type liquid crystal display device is generally a panel having a size of about 1.0 inch. FIG. 21 schematically illustrates an optical system of a three-plate projection liquid crystal display device (projector) that is an example of the electronic apparatus of the present disclosure.
 図21において、白色ランプ等の光源101から発せられる白色光は、偏光変換素子102でP偏光からS偏光に変換された後、フライアイレンズ103で照明の均一化が図られてダイクロイックミラー104に入射する。そして、特定の色成分、例えばR(赤色)の光成分のみがダイクロイックミラー104を透過し、残りの色の光成分はダイクロイックミラー104で反射される。ダイクロイックミラー104を透過したRの光成分は、ミラー105で光路変更された後、レンズ106Rを通してRの液晶パネル107Rに入射する。 In FIG. 21, white light emitted from a light source 101 such as a white lamp is converted from P-polarized light to S-polarized light by the polarization conversion element 102, and then the illumination is made uniform by the fly-eye lens 103 to be applied to the dichroic mirror 104. Incident. Then, only a specific color component, for example, an R (red) light component is transmitted through the dichroic mirror 104, and the remaining color light components are reflected by the dichroic mirror 104. The R light component transmitted through the dichroic mirror 104 is changed in optical path by the mirror 105 and then enters the R liquid crystal panel 107R through the lens 106R.
 ダイクロイックミラー104で反射された光成分については、例えばG(緑色)の光成分がダイクロイックミラー108で反射されるとともに、B(青色)の光成分が当該ダイクロイックミラー108を透過する。ダイクロイックミラー108で反射されたGの光成分は、レンズ106Gを通してGの液晶パネル107Gに入射する。ダイクロイックミラー108を透過したBの光成分は、レンズ109を通過した後ミラー110で光路変更され、更にレンズ111を通過した後ミラー112で光路変更され、レンズ106Bを通してBの液晶パネル107Bに入射する。 Regarding the light component reflected by the dichroic mirror 104, for example, the G (green) light component is reflected by the dichroic mirror 108, and the B (blue) light component is transmitted through the dichroic mirror 108. The G light component reflected by the dichroic mirror 108 enters the G liquid crystal panel 107G through the lens 106G. The B light component transmitted through the dichroic mirror 108 passes through the lens 109 and is then changed in the optical path by the mirror 110. Further, after passing through the lens 111, the optical path is changed by the mirror 112, and enters the B liquid crystal panel 107B through the lens 106B. .
 尚、図21には示していないが、液晶パネル107R,107G,107Bの入射側及び出射側にはそれぞれ偏光板が配置される。周知の通り、入射側及び出射側の一対の偏光板を、偏光方向が互いに垂直(クロスニコル)になるように設置することでノーマリホワイトモードを設定でき、偏光方向が互いに平行(パラレルニコル)になるように設置することでノーマリブラックモードを設定できる。 Although not shown in FIG. 21, polarizing plates are arranged on the incident side and the emission side of the liquid crystal panels 107R, 107G, and 107B, respectively. As is well known, a normally white mode can be set by installing a pair of polarizing plates on the incident side and the outgoing side so that the polarization directions are perpendicular to each other (crossed Nicols), and the polarization directions are parallel to each other (parallel Nicols). You can set the normally black mode.
 液晶パネル107R,107G,107Bをそれぞれ通過したR,G,Bの各光成分は、クロスプリズム113に入射し、当該クロスプリズム113において合成される。そして、このクロスプリズム113で合成された光は、投射レンズ114に入射し、当該投射レンズ114によってスクリーン(図示せず)上に投射される。 The R, G, and B light components that have passed through the liquid crystal panels 107R, 107G, and 107B are incident on the cross prism 113 and are combined in the cross prism 113. Then, the light synthesized by the cross prism 113 enters the projection lens 114 and is projected on the screen (not shown) by the projection lens 114.
 上記の構成の3板式投射型液晶表示装置において、光変調手段(ライトバルブ)としての液晶パネル107R,107G,107Bとして、先述した実施形態に係る表示装置(液晶パネル)を用いることができる。先述した実施形態に係る表示装置は、経時変化の影響を受けることなく、補正対象画素の駆動電圧の補正を行うことができるため、出力画像の画質の向上を図ることができる。従って、投射型液晶表示装置の光変調手段として、先述した実施形態に係る表示装置を用いることで、投射型液晶表示装置の表示品位の向上に寄与できる。 In the three-plate projection type liquid crystal display device having the above-described configuration, the display device (liquid crystal panel) according to the above-described embodiment can be used as the liquid crystal panels 107R, 107G, and 107B as light modulation means (light valves). Since the display device according to the above-described embodiment can correct the drive voltage of the correction target pixel without being affected by the change over time, the image quality of the output image can be improved. Therefore, by using the display device according to the above-described embodiment as the light modulation means of the projection type liquid crystal display device, it is possible to contribute to improving the display quality of the projection type liquid crystal display device.
<本開示がとることができる構成>
 本開示は、以下のような構成をとることもできる。
<Configuration that the present disclosure can take>
This indication can also take the following composition.
≪A.表示装置≫
[A-1]隣接する2つの画素間の駆動電圧の差分を検出する差分検出部、
 差分検出部で検出された駆動電圧の差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出する補正量演算部、
 補正量演算部で算出された補正量を、出力画像の画質に応じて調整する補正量調整部、及び、
 補正量調整部で調整された補正量に基づいて、補正対象画素の駆動電圧を補正する駆動電圧補正部を備える、
 表示装置。
[A-2]補正量調整部は、補正量調整のための調整画像を撮像し、その撮像画像データを、出力画像の画質の状態を検出するパラメータとして用いる、
 上記[A-1]に記載の表示装置。
[A-3]補正量調整部は、調整画像を撮像した撮像画像データを基に画質データを数値化し、当該画質データに基づいて補正係数を設定し、当該補正係数を反映させた補正後画質データを演算し、この演算で求めた補正後画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
 上記[A-2]に記載の表示装置。
[A-4]補正量調整部は、演算で求めた補正後画質データを、基準の画質データと比較することによって補正の要否を判断する、
 上記[A-3]に記載の表示装置。
[A-5]補正量調整部は、調整画像を撮像した撮像画像データを基に画質データを数値化し、当該画質データに基づいて補正係数を設定し、当該補正係数を用いて調整画像を補正して出力させ、この補正後の調整画像を撮像した撮像画像データを基に画質データを数値化し、この数値化した補正後調整画像の画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
 上記[A-2]に記載の表示装置。
[A-6]補正量調整部は、数値化した補正後調整画像の画質データを、基準の画質データと比較することによって補正の要否を判断する、
 上記[A-5]に記載の表示装置。
[A-7]補正量調整部は、画素が配置されて成る表示パネルの使用時間をカウントし、そのカウント値を、出力画像の画質の状態を検出するパラメータとして用いる、
 上記[A-1]に記載の表示装置。
[A-8]補正量調整部は、表示パネルの使用時間に対応した複数の補正設定テーブルを有する、
 上記[A-7]に記載の表示装置。
[A-9]補正量調整部は、表示パネルの使用時間のカウント値を基に、複数の補正設定テーブルのうちの一つを選択する、
 上記[A-8]に記載の表示装置。
[A-10]補正量調整部は、選択した補正設定テーブルを反映させた補正後画質データを演算し、この演算で求めた補正後画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
 上記[A-9]に記載の表示装置。
[A-11]補正量調整部は、演算で求めた補正後画質データを、基準の画質データと比較することによって補正の要否を判断する、
 上記[A-10]に記載の表示装置。
[A-12]補正量調整部は、表示パネルの使用環境下の温度、湿度、又は、温度及び湿度をパラメータの一つとして用いる、
 上記[A-7]乃至上記[A-11]のいずれかに記載の表示装置。
[A-13]補正量調整部は、色彩色度計を用いて測定した表示パネルの色度、あるいは、輝度計を用いて測定した表示パネルの輝度をパラメータの一つとして用いる、
 上記[A-7]乃至上記[A-11]のいずれかに記載の表示装置。
≪A. Display device >>
[A-1] A difference detection unit that detects a difference in drive voltage between two adjacent pixels;
A correction amount calculation unit that calculates a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to a difference in drive voltage detected by the difference detection unit;
A correction amount adjusting unit that adjusts the correction amount calculated by the correction amount calculating unit according to the image quality of the output image; and
A drive voltage correction unit that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit;
Display device.
[A-2] The correction amount adjusting unit captures an adjustment image for adjusting the correction amount, and uses the captured image data as a parameter for detecting the state of the image quality of the output image.
The display device according to [A-1].
[A-3] The correction amount adjustment unit digitizes the image quality data based on the captured image data obtained by capturing the adjusted image, sets a correction coefficient based on the image quality data, and corrects the image quality after the correction coefficient is reflected. Calculate the data, based on the post-correction image quality data obtained by this calculation, determine whether or not it is necessary to correct the drive voltage of the correction target pixel,
The display device according to [A-2] above.
[A-4] The correction amount adjustment unit determines whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data.
The display device according to [A-3] above.
[A-5] The correction amount adjustment unit digitizes the image quality data based on the captured image data obtained by capturing the adjusted image, sets a correction coefficient based on the image quality data, and corrects the adjustment image using the correction coefficient. The image quality data is digitized based on the captured image data obtained by capturing the corrected adjusted image, and the drive voltage of the correction target pixel is corrected based on the digitized image quality data of the corrected adjusted image. Judgment is necessary,
The display device according to [A-2] above.
[A-6] The correction amount adjustment unit determines the necessity of correction by comparing the digitized image quality data of the adjusted image with the reference image quality data.
The display device according to [A-5] above.
[A-7] The correction amount adjustment unit counts the usage time of the display panel in which the pixels are arranged, and uses the count value as a parameter for detecting the state of the image quality of the output image.
The display device according to [A-1].
[A-8] The correction amount adjustment unit has a plurality of correction setting tables corresponding to the usage time of the display panel.
The display device according to [A-7] above.
[A-9] The correction amount adjustment unit selects one of a plurality of correction setting tables based on the count value of the usage time of the display panel.
The display device according to [A-8] above.
[A-10] The correction amount adjustment unit calculates post-correction image quality data reflecting the selected correction setting table, and corrects the drive voltage of the correction target pixel based on the post-correction image quality data obtained by this calculation. Judgment is necessary,
The display device according to [A-9] above.
[A-11] The correction amount adjustment unit determines whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data.
The display device according to [A-10] above.
[A-12] The correction amount adjustment unit uses temperature and humidity under the usage environment of the display panel, or temperature and humidity as one of the parameters.
The display device according to any one of [A-7] to [A-11].
[A-13] The correction amount adjustment unit uses, as one of the parameters, the chromaticity of the display panel measured using a chromaticity meter or the luminance of the display panel measured using a luminance meter.
The display device according to any one of [A-7] to [A-11].
≪B.表示装置の駆動方法≫
[B-1]隣接する2つの画素間の駆動電圧の差分を検出する差分検出ステップ、
 差分検出ステップで検出した駆動電圧の差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出する補正量演算ステップ、
 補正量演算ステップで算出した補正量を、出力画像の画質に応じて調整する補正量調整ステップ、及び、
 補正量調整ステップで調整した補正量に基づいて、補正対象画素の駆動電圧を補正する駆動電圧補正ステップの各処理を実行する、
 表示装置の駆動方法。
[B-2]補正量調整ステップでは、補正量調整のための調整画像を撮像し、その撮像画像データを、出力画像の画質の状態を検出するパラメータとして用いる、
 上記[B-1]に記載の表示装置の駆動方法。
[B-3]補正量調整ステップでは、調整画像を撮像した撮像画像データを基に画質データを数値化し、当該画質データに基づいて補正係数を設定し、当該補正係数を反映させた補正後画質データを演算し、この演算で求めた補正後画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
 上記[B-2]に記載の表示装置の駆動方法。
[B-4]補正量調整ステップでは、演算で求めた補正後画質データを、基準の画質データと比較することによって補正の要否を判断する、
 上記[B-3]に記載の表示装置の駆動方法。
[B-5]補正量調整ステップでは、調整画像を撮像した撮像画像データを基に画質データを数値化し、当該画質データに基づいて補正係数を設定し、当該補正係数を用いて調整画像を補正して出力させ、この補正後の調整画像を撮像した撮像画像データを基に画質データを数値化し、この数値化した補正後調整画像の画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
 上記[B-2]に記載の表示装置の駆動方法。
[B-6]補正量調整ステップでは、数値化した補正後調整画像の画質データを、基準の画質データと比較することによって補正の要否を判断する、
 上記[B-5]に記載の表示装置の駆動方法。
[B-7]補正量調整ステップでは、画素が配置されて成る表示パネルの使用時間をカウントし、そのカウント値を、出力画像の画質の状態を検出するパラメータとして用いる、
 上記[B-1]に記載の表示装置の駆動方法。
[B-8]補正量調整ステップでは、表示パネルの使用時間に対応した複数の補正設定テーブルを有する、
 上記[B-7]に記載の表示装置の駆動方法。
[B-9]補正量調整ステップでは、表示パネルの使用時間のカウント値を基に、複数の補正設定テーブルのうちの一つを選択する、
 上記[B-8]に記載の表示装置の駆動方法。
[B-10]補正量調整ステップでは、選択した補正設定テーブルを反映させた補正後画質データを演算し、この演算で求めた補正後画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
 上記[B-9]に記載の表示装置の駆動方法。
[B-11]補正量調整ステップでは、演算で求めた補正後画質データを、基準の画質データと比較することによって補正の要否を判断する、
 上記[B-10]に記載の表示装置の駆動方法。
[B-12]補正量調整ステップでは、表示パネルの使用環境下の温度、湿度、又は、温度及び湿度をパラメータの一つとして用いる、
 上記[B-7]乃至上記[B-11]のいずれかに記載の表示装置の駆動方法。
[B-13]補正量調整ステップでは、色彩色度計を用いて測定した表示パネルの色度、あるいは、輝度計を用いて測定した表示パネルの輝度をパラメータの一つとして用いる、
 上記[B-7]乃至上記[B-11]のいずれかに記載の表示装置の駆動方法。
≪B. Driving method of display device >>
[B-1] A difference detection step for detecting a difference in drive voltage between two adjacent pixels;
A correction amount calculation step for calculating a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to the difference in the drive voltage detected in the difference detection step;
A correction amount adjusting step for adjusting the correction amount calculated in the correction amount calculating step according to the image quality of the output image; and
Based on the correction amount adjusted in the correction amount adjustment step, each process of the drive voltage correction step for correcting the drive voltage of the correction target pixel is executed.
A driving method of a display device.
[B-2] In the correction amount adjustment step, an adjustment image for adjusting the correction amount is captured, and the captured image data is used as a parameter for detecting the image quality state of the output image.
The method for driving the display device according to [B-1].
[B-3] In the correction amount adjustment step, the image quality data is digitized based on the captured image data obtained by capturing the adjusted image, the correction coefficient is set based on the image quality data, and the corrected image quality reflecting the correction coefficient Calculate the data, based on the post-correction image quality data obtained by this calculation, determine whether or not it is necessary to correct the drive voltage of the correction target pixel,
The method for driving the display device according to [B-2] above.
[B-4] In the correction amount adjustment step, it is determined whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data.
The method for driving the display device according to [B-3] above.
[B-5] In the correction amount adjustment step, the image quality data is digitized based on the captured image data obtained by capturing the adjusted image, a correction coefficient is set based on the image quality data, and the adjustment image is corrected using the correction coefficient. The image quality data is digitized based on the captured image data obtained by capturing the corrected adjusted image, and the drive voltage of the correction target pixel is corrected based on the digitized image quality data of the corrected adjusted image. Judgment is necessary,
The method for driving the display device according to [B-2] above.
[B-6] In the correction amount adjustment step, it is determined whether or not correction is necessary by comparing the digitized image quality data of the adjusted image with the reference image quality data.
The method for driving the display device according to [B-5] above.
[B-7] In the correction amount adjustment step, the usage time of the display panel in which the pixels are arranged is counted, and the count value is used as a parameter for detecting the state of the image quality of the output image.
The method for driving the display device according to [B-1].
[B-8] The correction amount adjustment step includes a plurality of correction setting tables corresponding to the usage time of the display panel.
The method for driving the display device according to [B-7] above.
[B-9] In the correction amount adjustment step, one of a plurality of correction setting tables is selected based on the count value of the usage time of the display panel.
The method for driving the display device according to [B-8].
[B-10] In the correction amount adjustment step, the post-correction image quality data reflecting the selected correction setting table is calculated, and based on the post-correction image quality data obtained by this calculation, the correction of the drive voltage of the correction target pixel is performed. Judgment is necessary,
The method for driving the display device according to [B-9].
[B-11] In the correction amount adjustment step, whether or not correction is necessary is determined by comparing the corrected image quality data obtained by calculation with the reference image quality data.
The method for driving a display device according to [B-10] above.
[B-12] In the correction amount adjustment step, temperature and humidity under the use environment of the display panel, or temperature and humidity are used as one of the parameters.
The method for driving a display device according to any one of [B-7] to [B-11].
[B-13] In the correction amount adjustment step, the chromaticity of the display panel measured using a chromaticity meter or the luminance of the display panel measured using a luminance meter is used as one of the parameters.
The method for driving a display device according to any one of [B-7] to [B-11].
≪C.電子機器≫
[C-1]隣接する2つの画素間の駆動電圧の差分を検出する差分検出部、
 差分検出部で検出された駆動電圧の差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出する補正量演算部、
 補正量演算部で算出された補正量を、出力画像の画質に応じて調整する補正量調整部、及び、
 補正量調整部で調整された補正量に基づいて、補正対象画素の駆動電圧を補正する駆動電圧補正部を備える、
 表示装置を有する電子機器。
[C-2]補正量調整部は、補正量調整のための調整画像を撮像し、その撮像画像データを、出力画像の画質の状態を検出するパラメータとして用いる、
 上記[C-1]に記載の電子機器。
[C-3]補正量調整部は、調整画像を撮像した撮像画像データを基に画質データを数値化し、当該画質データに基づいて補正係数を設定し、当該補正係数を反映させた補正後画質データを演算し、この演算で求めた補正後画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
 上記[C-2]に記載の電子機器。
[C-4]補正量調整部は、演算で求めた補正後画質データを、基準の画質データと比較することによって補正の要否を判断する、
 上記[C-3]に記載の電子機器。
[C-5]補正量調整部は、調整画像を撮像した撮像画像データを基に画質データを数値化し、当該画質データに基づいて補正係数を設定し、当該補正係数を用いて調整画像を補正して出力させ、この補正後の調整画像を撮像した撮像画像データを基に画質データを数値化し、この数値化した補正後調整画像の画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
 上記[C-2]に記載の電子機器。
[C-6]補正量調整部は、数値化した補正後調整画像の画質データを、基準の画質データと比較することによって補正の要否を判断する、
 上記[C-5]に記載の電子機器。
[C-7]補正量調整部は、画素が配置されて成る表示パネルの使用時間をカウントし、そのカウント値を、出力画像の画質の状態を検出するパラメータとして用いる、
 上記[C-1]に記載の電子機器。
[C-8]補正量調整部は、表示パネルの使用時間に対応した複数の補正設定テーブルを有する、
 上記[C-7]に記載の電子機器。
[C-9]補正量調整部は、表示パネルの使用時間のカウント値を基に、複数の補正設定テーブルのうちの一つを選択する、
 上記[C-8]に記載の電子機器。
[C-10]補正量調整部は、選択した補正設定テーブルを反映させた補正後画質データを演算し、この演算で求めた補正後画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
 上記[C-9]に記載の電子機器。
[C-11]補正量調整部は、演算で求めた補正後画質データを、基準の画質データと比較することによって補正の要否を判断する、
 上記[C-10]に記載の電子機器。
[C-12]補正量調整部は、表示パネルの使用環境下の温度、湿度、又は、温度及び湿度をパラメータの一つとして用いる、
 上記[C-7]乃至上記[C-11]のいずれかに記載の電子機器。
[C-13]補正量調整部は、色彩色度計を用いて測定した表示パネルの色度、あるいは、輝度計を用いて測定した表示パネルの輝度をパラメータの一つとして用いる、
 上記[C-7]乃至上記[C-11]のいずれかに記載の電子機器。
≪C. Electronic equipment >>
[C-1] A difference detection unit that detects a difference in drive voltage between two adjacent pixels;
A correction amount calculation unit that calculates a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to a difference in drive voltage detected by the difference detection unit;
A correction amount adjusting unit that adjusts the correction amount calculated by the correction amount calculating unit according to the image quality of the output image; and
A drive voltage correction unit that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit;
An electronic device having a display device.
[C-2] The correction amount adjustment unit captures an adjustment image for adjusting the correction amount, and uses the captured image data as a parameter for detecting the state of the image quality of the output image.
The electronic device according to [C-1] above.
[C-3] The correction amount adjusting unit digitizes the image quality data based on the captured image data obtained by capturing the adjusted image, sets a correction coefficient based on the image quality data, and corrects the image quality after the correction coefficient is reflected. Calculate the data, based on the post-correction image quality data obtained by this calculation, determine whether or not it is necessary to correct the drive voltage of the correction target pixel,
The electronic device according to [C-2] above.
[C-4] The correction amount adjustment unit determines whether or not correction is necessary by comparing the corrected image quality data obtained by the calculation with the reference image quality data.
The electronic device according to [C-3] above.
[C-5] The correction amount adjustment unit digitizes the image quality data based on the captured image data obtained by capturing the adjusted image, sets a correction coefficient based on the image quality data, and corrects the adjusted image using the correction coefficient. The image quality data is digitized based on the captured image data obtained by capturing the corrected adjusted image, and the drive voltage of the correction target pixel is corrected based on the digitized image quality data of the corrected adjusted image. Judgment is necessary,
The electronic device according to [C-2] above.
[C-6] The correction amount adjustment unit determines whether or not correction is necessary by comparing the image quality data of the adjusted image after correction with the reference image quality data.
The electronic device according to [C-5] above.
[C-7] The correction amount adjustment unit counts the usage time of the display panel in which the pixels are arranged, and uses the count value as a parameter for detecting the image quality state of the output image.
The electronic device according to [C-1] above.
[C-8] The correction amount adjustment unit has a plurality of correction setting tables corresponding to the usage time of the display panel.
The electronic device according to [C-7] above.
[C-9] The correction amount adjustment unit selects one of a plurality of correction setting tables based on the count value of the usage time of the display panel.
The electronic device according to [C-8] above.
[C-10] The correction amount adjustment unit calculates post-correction image quality data reflecting the selected correction setting table, and corrects the drive voltage of the correction target pixel based on the post-correction image quality data obtained by the calculation. Judgment is necessary,
The electronic device according to [C-9] above.
[C-11] The correction amount adjustment unit determines whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with the reference image quality data.
The electronic device according to [C-10] above.
[C-12] The correction amount adjustment unit uses temperature and humidity under the usage environment of the display panel, or temperature and humidity as one of the parameters.
The electronic device according to any one of [C-7] to [C-11].
[C-13] The correction amount adjustment unit uses, as one of the parameters, the chromaticity of the display panel measured using a chromaticity meter or the luminance of the display panel measured using a luminance meter.
The electronic device according to any one of [C-7] to [C-11].
 1・・・液晶表示装置、2・・・画素、10・・・液晶パネル、20・・・映像信号処理回路、21・・・A/D・PLL部、22・・・映像信号変換部、23・・・デジタル信号処理部、24・・・サンプルホールド部、25・・・画像メモリ、26・・・制御部、231・・・隣接画素間電圧差算出部、232・・・補正量演算部、233・・・補正量調整部、234・・・補正量加算部 DESCRIPTION OF SYMBOLS 1 ... Liquid crystal display device, 2 ... Pixel, 10 ... Liquid crystal panel, 20 ... Video signal processing circuit, 21 ... A / D * PLL part, 22 ... Video signal conversion part, 23 ... Digital signal processing unit, 24 ... Sample hold unit, 25 ... Image memory, 26 ... Control unit, 231 ... Adjacent pixel voltage difference calculation unit, 232 ... Correction amount calculation , 233... Correction amount adjustment unit, 234... Correction amount addition unit

Claims (15)

  1.  隣接する2つの画素間の駆動電圧の差分を検出する差分検出部、
     差分検出部で検出された駆動電圧の差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出する補正量演算部、
     補正量演算部で算出された補正量を、出力画像の画質に応じて調整する補正量調整部、及び、
     補正量調整部で調整された補正量に基づいて、補正対象画素の駆動電圧を補正する駆動電圧補正部を備える、
     表示装置。
    A difference detection unit for detecting a difference in driving voltage between two adjacent pixels;
    A correction amount calculation unit that calculates a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to a difference in drive voltage detected by the difference detection unit;
    A correction amount adjusting unit that adjusts the correction amount calculated by the correction amount calculating unit according to the image quality of the output image; and
    A drive voltage correction unit that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit;
    Display device.
  2.  補正量調整部は、補正量調整のための調整画像を撮像し、その撮像画像データを、出力画像の画質の状態を検出するパラメータとして用いる、
     請求項1に記載の表示装置。
    The correction amount adjustment unit captures an adjustment image for adjusting the correction amount, and uses the captured image data as a parameter for detecting the state of the image quality of the output image.
    The display device according to claim 1.
  3.  補正量調整部は、調整画像を撮像した撮像画像データを基に画質データを数値化し、当該画質データに基づいて補正係数を設定し、当該補正係数を反映させた補正後画質データを演算し、この演算で求めた補正後画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
     請求項2に記載の表示装置。
    The correction amount adjustment unit digitizes the image quality data based on the captured image data obtained by capturing the adjusted image, sets a correction coefficient based on the image quality data, calculates post-correction image quality data reflecting the correction coefficient, Based on the post-correction image quality data obtained by this calculation, it is determined whether or not it is necessary to correct the drive voltage of the correction target pixel.
    The display device according to claim 2.
  4.  補正量調整部は、演算で求めた補正後画質データを、基準の画質データと比較することによって補正の要否を判断する、
     請求項3に記載の表示装置。
    The correction amount adjustment unit determines whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with reference image quality data.
    The display device according to claim 3.
  5.  補正量調整部は、調整画像を撮像した撮像画像データを基に画質データを数値化し、当該画質データに基づいて補正係数を設定し、当該補正係数を用いて調整画像を補正して出力させ、この補正後の調整画像を撮像した撮像画像データを基に画質データを数値化し、この数値化した補正後調整画像の画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
     請求項2に記載の表示装置。
    The correction amount adjustment unit digitizes the image quality data based on the captured image data obtained by capturing the adjustment image, sets a correction coefficient based on the image quality data, corrects and outputs the adjustment image using the correction coefficient, The image quality data is digitized based on the captured image data obtained by capturing the adjusted image after correction, and the necessity of correcting the drive voltage of the correction target pixel is determined based on the digitized image quality data of the adjusted image after correction. ,
    The display device according to claim 2.
  6.  補正量調整部は、数値化した補正後調整画像の画質データを、基準の画質データと比較することによって補正の要否を判断する、
     請求項5に記載の表示装置。
    The correction amount adjustment unit determines whether or not correction is necessary by comparing the digitized image quality data of the corrected image with reference image quality data.
    The display device according to claim 5.
  7.  補正量調整部は、画素が配置されて成る表示パネルの使用時間をカウントし、そのカウント値を、出力画像の画質の状態を検出するパラメータとして用いる、
     請求項1に記載の表示装置。
    The correction amount adjustment unit counts the usage time of the display panel in which pixels are arranged, and uses the count value as a parameter for detecting the state of the image quality of the output image.
    The display device according to claim 1.
  8.  補正量調整部は、表示パネルの使用時間に対応した複数の補正設定テーブルを有する、
     請求項7に記載の表示装置。
    The correction amount adjustment unit has a plurality of correction setting tables corresponding to the usage time of the display panel.
    The display device according to claim 7.
  9.  補正量調整部は、表示パネルの使用時間のカウント値を基に、複数の補正設定テーブルのうちの一つを選択する、
     請求項8に記載の表示装置。
    The correction amount adjustment unit selects one of a plurality of correction setting tables based on the count value of the usage time of the display panel.
    The display device according to claim 8.
  10.  補正量調整部は、選択した補正設定テーブルを反映させた補正後画質データを演算し、この演算で求めた補正後画質データに基づいて、補正対象画素の駆動電圧の補正の要否を判断する、
     請求項9に記載の表示装置。
    The correction amount adjustment unit calculates post-correction image quality data reflecting the selected correction setting table, and determines whether or not the drive voltage of the correction target pixel needs to be corrected based on the post-correction image quality data obtained by the calculation. ,
    The display device according to claim 9.
  11.  補正量調整部は、演算で求めた補正後画質データを、基準の画質データと比較することによって補正の要否を判断する、
     請求項10に記載の表示装置。
    The correction amount adjustment unit determines whether or not correction is necessary by comparing the corrected image quality data obtained by calculation with reference image quality data.
    The display device according to claim 10.
  12.  補正量調整部は、表示パネルの使用環境下の温度、湿度、又は、温度及び湿度をパラメータの一つとして用いる、
     請求項7に記載の表示装置。
    The correction amount adjustment unit uses temperature and humidity under the usage environment of the display panel, or temperature and humidity as one of the parameters.
    The display device according to claim 7.
  13.  補正量調整部は、色彩色度計を用いて測定した表示パネルの色度、あるいは、輝度計を用いて測定した表示パネルの輝度をパラメータの一つとして用いる、
     請求項7に記載の表示装置。
    The correction amount adjustment unit uses, as one of the parameters, the chromaticity of the display panel measured using a color chromaticity meter, or the luminance of the display panel measured using a luminance meter.
    The display device according to claim 7.
  14.  隣接する2つの画素間の駆動電圧の差分を検出する差分検出ステップ、
     差分検出ステップで検出した駆動電圧の差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出する補正量演算ステップ、
     補正量演算ステップで算出した補正量を、出力画像の画質に応じて調整する補正量調整ステップ、及び、
     補正量調整ステップで調整した補正量に基づいて、補正対象画素の駆動電圧を補正する駆動電圧補正ステップの各処理を実行する、
     表示装置の駆動方法。
    A difference detection step of detecting a difference in drive voltage between two adjacent pixels;
    A correction amount calculation step for calculating a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to the difference in the drive voltage detected in the difference detection step;
    A correction amount adjusting step for adjusting the correction amount calculated in the correction amount calculating step according to the image quality of the output image; and
    Based on the correction amount adjusted in the correction amount adjustment step, each process of the drive voltage correction step for correcting the drive voltage of the correction target pixel is executed.
    A driving method of a display device.
  15.  隣接する2つの画素間の駆動電圧の差分を検出する差分検出部、
     差分検出部で検出された駆動電圧の差分に起因して輝度変化を生じる補正対象画素の駆動電圧を補正する補正量を算出する補正量演算部、
     補正量演算部で算出された補正量を、出力画像の画質に応じて調整する補正量調整部、及び、
     補正量調整部で調整された補正量に基づいて、補正対象画素の駆動電圧を補正する駆動電圧補正部を備える、
     表示装置を有する電子機器。
    A difference detection unit for detecting a difference in driving voltage between two adjacent pixels;
    A correction amount calculation unit that calculates a correction amount for correcting the drive voltage of the correction target pixel that causes a luminance change due to a difference in drive voltage detected by the difference detection unit;
    A correction amount adjusting unit that adjusts the correction amount calculated by the correction amount calculating unit according to the image quality of the output image; and
    A drive voltage correction unit that corrects the drive voltage of the correction target pixel based on the correction amount adjusted by the correction amount adjustment unit;
    An electronic device having a display device.
PCT/JP2019/003667 2018-02-23 2019-02-01 Display device, method for driving display device, and electronic equipment WO2019163485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980013365.9A CN111727471B (en) 2018-02-23 2019-02-01 Display device, driving method of display device, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-030328 2018-02-23
JP2018030328 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163485A1 true WO2019163485A1 (en) 2019-08-29

Family

ID=67687065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003667 WO2019163485A1 (en) 2018-02-23 2019-02-01 Display device, method for driving display device, and electronic equipment

Country Status (2)

Country Link
CN (1) CN111727471B (en)
WO (1) WO2019163485A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046186A (en) * 2006-08-11 2008-02-28 Seiko Epson Corp Image signal processing circuit and method, electro-optical device, and electronic device
JP2009237366A (en) * 2008-03-27 2009-10-15 Sony Corp Video signal processing circuit, display apparatus, liquid crystal display apparatus, projection type display apparatus, and video signal processing method
JP2017053972A (en) * 2015-09-08 2017-03-16 キヤノン株式会社 Liquid crystal driving device, image display device, and liquid crystal driving program

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561341B2 (en) * 2004-12-03 2010-10-13 セイコーエプソン株式会社 Image display device, image signal conversion device, image signal conversion method, image signal conversion program, and storage medium storing the program
CN101499250A (en) * 2008-02-01 2009-08-05 爱普生映像元器件有限公司 Liquid crystal display device controlling method, liquid crystal display device, and electronic apparatus
CN101751894B (en) * 2008-12-18 2013-07-03 索尼株式会社 Image processing device and image display system
CN102857696A (en) * 2009-08-18 2013-01-02 夏普株式会社 Display device, correction system, forming device, determining device and method
CN103141107A (en) * 2010-12-24 2013-06-05 三菱电机株式会社 Liquid crystal display device and vehicle-mounted information device
JP5707973B2 (en) * 2011-01-27 2015-04-30 セイコーエプソン株式会社 Video processing method, video processing circuit, liquid crystal display device, and electronic apparatus
CN102231016B (en) * 2011-06-28 2013-03-20 青岛海信电器股份有限公司 Method, device and system for compensating brightness of liquid crystal module
JP5935284B2 (en) * 2011-10-18 2016-06-15 ソニー株式会社 Imaging apparatus and imaging display system
CN102768816B (en) * 2012-07-30 2015-09-23 西安诺瓦电子科技有限公司 LED display automated correction method
JP5910543B2 (en) * 2013-03-06 2016-04-27 ソニー株式会社 Display device, display drive circuit, display drive method, and electronic apparatus
CN103489405B (en) * 2013-09-30 2015-09-16 京东方科技集团股份有限公司 A kind of display compensation method, device and display bucking-out system
CN104021755B (en) * 2014-05-22 2016-09-07 京东方科技集团股份有限公司 A kind of image element circuit, its driving method and display device
JP6578686B2 (en) * 2015-03-18 2019-09-25 セイコーエプソン株式会社 Video processing circuit, electronic device, and video processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046186A (en) * 2006-08-11 2008-02-28 Seiko Epson Corp Image signal processing circuit and method, electro-optical device, and electronic device
JP2009237366A (en) * 2008-03-27 2009-10-15 Sony Corp Video signal processing circuit, display apparatus, liquid crystal display apparatus, projection type display apparatus, and video signal processing method
JP2017053972A (en) * 2015-09-08 2017-03-16 キヤノン株式会社 Liquid crystal driving device, image display device, and liquid crystal driving program

Also Published As

Publication number Publication date
CN111727471B (en) 2022-06-03
CN111727471A (en) 2020-09-29

Similar Documents

Publication Publication Date Title
US9959802B1 (en) System and method for image processing and display device
TWI393945B (en) Video signal processing circuit, display apparatus, liquid crystal display apparatus, projection type display apparatus, and video signal processing method
US9812051B2 (en) Video processing circuit, processing method thereof, liquid crystal display apparatus and electronics device
KR101627870B1 (en) Video processing circuit, video processing method, liquid crystal display apparatus, and electronic apparatus
US8552924B2 (en) Stacked LCD unit
US20050259092A1 (en) Image-correction-amount detecting device, circuit for driving electro-optical device, electro-optical device, and electronic apparatus
US9241092B2 (en) Signal processing device, liquid crystal apparatus, electronic equipment, and signal processing method
WO2018120435A1 (en) Liquid crystal display device and drive method therefor
US9607563B2 (en) Liquid crystal display device, method for driving liquid crystal display device, and electronic apparatus
US9514708B2 (en) Image processing apparatus, projector and image processing method
US10121400B2 (en) Video processing circuit, electro-optical device, electronic apparatus, and video processing method
CN103366698A (en) Signal processing device, liquid crystal apparatus, electronic equipment and signal processing method
US10444574B2 (en) Liquid crystal display and electronic equipment
US20130169706A1 (en) Methods for Measurement of Microdisplay Panel Optical Performance Parameters
US10109254B2 (en) Video processing circuit, video processing method, electro-optical device, and electronic apparatus
KR20060082873A (en) Image signal correcting method, correcting circuit, electrooptic apparatus and electronic device
CN103226932A (en) Video processing circuit, video processing method, liquid crystal display device, and electronic apparatus
WO2019163485A1 (en) Display device, method for driving display device, and electronic equipment
US20210076015A1 (en) Liquid crystal projector
JP6578686B2 (en) Video processing circuit, electronic device, and video processing method
JP2012208292A (en) Liquid crystal display device, electronic apparatus and data signal generating method
JP7036090B2 (en) Liquid crystal display and electronic devices
JP2014137383A (en) Image signal process circuit, display device, electronic device and image process circuit control method
JP2015075698A (en) Electro-optic device and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP