WO2019163425A1 - Aerobic biological treatment device - Google Patents

Aerobic biological treatment device Download PDF

Info

Publication number
WO2019163425A1
WO2019163425A1 PCT/JP2019/002699 JP2019002699W WO2019163425A1 WO 2019163425 A1 WO2019163425 A1 WO 2019163425A1 JP 2019002699 W JP2019002699 W JP 2019002699W WO 2019163425 A1 WO2019163425 A1 WO 2019163425A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
zone
biological treatment
reaction tank
aerobic biological
Prior art date
Application number
PCT/JP2019/002699
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 深瀬
小林 秀樹
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2019163425A1 publication Critical patent/WO2019163425A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an aerobic biological treatment apparatus for organic wastewater.
  • the aerobic biological treatment method is widely used as a treatment method for organic wastewater because it is inexpensive. In this method, it is necessary to dissolve oxygen in the water to be treated, and aeration with a diffuser is usually performed.
  • Aeration with a diffuser has a low dissolution efficiency of about 5-20%.
  • more than 2/3 of the power cost in aerobic biological treatment is used for oxygen dissolution.
  • MABR Membrane aeration bioreactor
  • An object of the present invention is to provide an aerobic biological treatment apparatus capable of performing sufficient treatment even when the organic matter concentration of raw water is high.
  • the aerobic biological treatment apparatus of the present invention includes a reaction vessel, an oxygen-dissolving membrane module installed in the reaction vessel, an oxygen-containing gas supply means for supplying an oxygen-containing gas to the oxygen-dissolving membrane module, and a reaction vessel And a circulating means for circulating the carrier up and down in the reaction tank.
  • the circulation means has a first partition that divides the reaction tank into an ascending zone and a descending zone, and the oxygen-dissolving membrane module is located in the ascending zone and / or the descending zone.
  • the raw water supply means which is arrange
  • the raw water supply means has a raw water inlet provided at the bottom of the reaction tank to allow the raw water to flow upward.
  • the bottom of the reaction tank is an inclined structure having a lower horizontal cross-sectional area as it goes downward, and the raw water inlet is provided at the lowermost part of the inclined structure.
  • the upper portion of the reaction tank is a widened portion having a larger horizontal cross-sectional area than the lower side, and a second zone that divides the widened portion into a first zone and a second zone.
  • a partition wall is provided, an upper end portion of the first partition wall enters the first zone, and a treated water take-out portion is provided in the second zone.
  • the oxygen-dissolving membrane module includes a non-porous oxygen-dissolving membrane.
  • the oxygen-dissolving film is hydrophobic.
  • raw water can be flowed at a high LV, and raw water can be treated in a completely mixed state.
  • dissolved oxygen (DO) is present in almost the entire region of the reaction vessel, and adhesion of the biofilm to the oxygen-dissolved film surface can be prevented without locally increasing the undecomposed TOC. Therefore, even raw water having a high organic matter concentration (for example, 100 mg / L or more, particularly 500 mg / L or more) can be efficiently and stably treated.
  • A) is the perspective view from the lower part which shows the upper header of an oxygen melt
  • (b) is the BB sectional drawing of (a). It is a perspective view of an oxygen dissolution membrane module. It is a perspective view of the coupling body of an oxygen dissolution membrane module.
  • FIG. 1 is a longitudinal sectional view of an aerobic biological treatment apparatus 1 according to an embodiment.
  • the aerobic biological treatment apparatus 1 includes a reaction tank (tank body) 2, a raw water inlet 3 that opens upward at the lowermost end of the reaction tank 2 so that raw water flows upward, and a reaction tank 2.
  • the first partition 4 and the second partition 5 installed in the vertical direction, the fluidized bed F formed by filling a bioadhesive carrier such as granular activated carbon, and the oxygen disposed between the first partitions 4 and 4. It has a dissolved membrane module 6 and an air diffuser 9 installed below between the first partition walls 4 and 4. Air is supplied to the air diffuser 9 from a compressor (or blower), and the inside of the tank is backwashed.
  • the bottom of the reaction tank 2 is an inclined structure portion 2C whose horizontal cross-sectional area becomes smaller as it goes downward, and the inflow port 3 is provided at the lowermost portion of the inclined structure portion 2C.
  • the horizontal cross section of the reaction vessel 2 is rectangular, and the partition walls 4 and 5 are flat plates extending in the long side direction (perpendicular to the paper surface in FIG. 1) of the rectangle.
  • each of the partition walls 4 and 5 may be a pair of flat plates or a rectangular tube shape. In the case of a substantially circular shape, the partition walls 4 and 5 may be substantially cylindrical.
  • the upper part of the reaction tank 2 is a widened part 2W having a larger horizontal cross-sectional area than the lower narrow part 2S. Between the widened portion 2W and the small width portion 2S, there is an inclined portion 2T in which the horizontal cross-sectional area increases toward the top.
  • the trough 10 and the outflow port 11 for making treated water flow out are provided in the upper part of the widening part 2W.
  • the trough 10 forms an annular flow path along the inner wall of the tank.
  • the first partition 4 is installed from the narrow part 2S to the lower part of the wide part 2W.
  • the lower end of the first partition 4 is located higher than the inclined structure portion 2C.
  • the space between the first partition 4 and the inner wall surface of the narrow portion 2S is a descending zone of the carrier.
  • the space between the first partition walls 4 and 4 is a rising zone of the carrier, and the oxygen-dissolving membrane module 6 is installed in the rising zone between the first partition walls 4 and 4.
  • 2nd partition 5 is installed in wide part 2W.
  • a space between the second partition walls 5 and 5 is a first zone, and a space between the second partition wall 5 and the inner wall surface of the widened portion 2W is a second zone.
  • the lower end of the second partition 5 is located near the boundary between the inclined portion 2T and the widened portion 2W.
  • the distance between the second partition walls 5 and 5 is larger than the distance between the first partition walls 4 and 4, and the upper end of the first partition wall 4 enters the lower part in the first zone between the second partition walls 5 and 5.
  • FIG. 1 shows that the reaction vessel is filled with a fluidized bed carrier, and the biofilm adheres to the surface of the oxygen-dissolved membrane by the shearing force caused by the flow of the carrier so that most of the biofilm adheres to the fluidized bed carrier.
  • the oxygen-dissolved film is used only for the purpose of supplying oxygen.
  • a non-porous oxygen-dissolving film is used as the oxygen-dissolving film, and an oxygen-containing gas is vented from the outside of the tank to the primary side of the oxygen-dissolving film through the pipe, and the exhaust is discharged outside the tank through the pipe. It is configured to do. Therefore, an oxygen-containing gas is passed through the oxygen-dissolved film at a low pressure, passes oxygen as oxygen molecules between constituent atoms of the oxygen-dissolved film (dissolves in the film), and is brought into contact with the water to be treated as oxygen molecules. Since oxygen is dissolved directly in water, no bubbles are generated.
  • This method uses a molecular diffusion mechanism based on a concentration gradient, and does not require aeration using a diffuser tube as in the prior art.
  • hydrophobic material it is preferable to use a hydrophobic material as the material for the oxygen-dissolving film because it is difficult to be immersed in the film. A trace amount of water vapor enters even a hydrophobic film.
  • the raw water is supplied from the bottom, but the raw water can be supplied from the inner wall of the tank or the upper part of the tank with the bottom as a plane. In either case, it is necessary to supply raw water in the direction of the circulating flow in order to generate the circulating flow in the tank.
  • a rectifying member having a cone shape may be provided at the center of the bottom of the tank so that no carrier or SS is deposited at the center of the bottom of the tank.
  • the tank center side is the rising zone and the tank side wall side is the falling zone, but the first partition is a single flat plate and is fixed so that the tank center is partitioned left and right, and one of the partitioned walls is lifted
  • a zone and the other is a descending zone.
  • the widened portion and the trough are provided only in the upper part of the rising zone in the upper part of the tank.
  • the second partition 5 partitions the first zone of the reaction region and the second zone of the clarification region. Not.
  • the clarified region It can also function as a carrier precipitation region). It can also be divided into a reaction region and a clarification region by GSS (gas-solid-liquid separation member).
  • the horizontal sectional area of the cylinder of the first partition in order to reduce the water flow resistance of the circulating flow, the horizontal sectional area of the cylinder of the first partition, the horizontal sectional area of the portion sandwiched between the inner wall of the tank and the first partition, the first The area of the boundary surface between the lower end of the partition wall and the bottom surface of the tank (for example, a circular peripheral wall if a circular reaction tank, a rectangular reaction tank and a rectangle if the first partition wall is a single flat plate) is similar (for example, It is desirable that one is about 80 to 120% of the other).
  • FIG. 2 shows the arrangement of the hollow fiber membrane units
  • FIG. 3 is a cross-sectional perspective view of the upper header of each hollow fiber membrane unit
  • FIG. 4 shows an example of the oxygen-dissolving membrane module 6.
  • the oxygen-dissolving membrane module 6 uses a non-porous hollow fiber membrane strand 22 (a plurality of hollow fiber membranes arranged together) as an oxygen-dissolving membrane.
  • the hollow fiber membrane strands 22 are arranged in the vertical direction, and the upper end of each hollow fiber membrane strand 22 is connected to the upper header 20 and the lower end is connected to the lower header 21.
  • the inside of the hollow fiber membrane strand 22 communicates with the upper header 20 and the lower header 21, respectively.
  • Each header 20, 21 is a hollow tube made of a potting material.
  • each unit is connected and integrated by a frame (not shown).
  • each upper header 20 is connected to the upper manifold 23, and each lower header 21 is connected to the lower manifold 24.
  • each of the headers 20 and 21 has a rectangular outer shape in a cross section perpendicular to the longitudinal direction.
  • the upper header 20 is provided with an air circulation hole 20a on the upper side, and the lower surface portion is thick.
  • the upper end portion of the hollow fiber membrane strand 22 is embedded in this thick portion, and the upper end surface is open toward the air circulation hole 20a.
  • the lower header 21 has a vertically symmetrical structure with the upper header 20, an air circulation hole is provided on the lower side, and the upper surface portion is thick.
  • the lower end portion of the hollow fiber membrane strand 22 is embedded in this thick portion, and the lower end surface is open toward the air circulation hole of the lower header 21.
  • hollow fiber membrane strands 22 are arranged in parallel in two rows on one upper header 20 and lower header 21 in the header longitudinal direction.
  • the interval a (FIG. 3 (b)) between the rows of the hollow fiber membrane strands 22 is at least several times the average particle diameter of the activated carbon that is the fluidized bed carrier.
  • interval b of the header longitudinal direction of hollow fiber membrane strands 22 may closely_contact
  • the interval c between the adjacent headers 20 and 20 and between the headers 21 and 21 is not particularly limited.
  • the oxygen-containing gas is supplied to the upper part of the oxygen-dissolving membrane module 6 and discharged from the lower part of the oxygen-dissolving membrane module 6.
  • An oxygen-containing gas such as air flows from the upper header 20 through the hollow fiber membrane strand 22 to the lower header 21, during which oxygen passes through the hollow fiber membrane strand 22 and dissolves in the water in the reaction vessel 2.
  • a plurality of oxygen-dissolving membrane modules 6 may be arranged in a line, and the manifolds 23 and 24 of each module may be connected to a common upper communication pipe 41 and lower communication pipe 42, respectively.
  • the oxygen-dissolving membrane module 6 is installed in two upper and lower stages, and air is supplied to the upper portion of the upper oxygen-dissolving membrane module 6 via the blower 26 and the air supply pipe 27, and the upper oxygen-dissolving membrane module 6 is supplied.
  • the air that flows out from the lower part of the dissolved membrane module 6 is supplied to the lower oxygen-dissolved membrane module 6 through the connecting pipe 28, and the exhaust air is discharged from the lower part of the lower oxygen-dissolved membrane module 6 through the exhaust gas pipe 29.
  • An oxygen-containing gas such as air flows from the upper header 20 through the hollow fiber membrane strand 22 to the lower header 21, during which oxygen passes through the hollow fiber membrane and dissolves in the water in the reaction vessel 2.
  • Each header 20, 21 and each manifold 23, 24 may be provided so as to have a running water gradient.
  • the oxygen-dissolving membrane module 6 may be installed in one stage or in three or more stages.
  • the raw water inlet 3 flows upward into the reaction tank 2, rises in the ascending zone in the cylinder of the first partition wall 4, and the granular activated carbon adhered to the biofilm In the fluidized bed F, water is flowed upward in a transient manner to perform a biological reaction.
  • the activated carbon and the water in the tank go around the upper end of the first partition 4. This activated carbon descends the descending zone between the first partition 4 and the inner wall surface of the reaction tank 2 to reach the bottom of the reaction tank 2, wraps around the lower end of the first partition 4, and the cylinder of the first partition 4 again. Ascend the rising zone.
  • a part of the biologically treated water that has circulated around the upper end of the first partition 4 wraps around the lower end of the second partition 5 and ascends the second zone between the second partition 5 and the widened portion 2W, and performs this increase.
  • Activated charcoal is settled and separated between them, and then taken out as treated water through the trough 10 and the outlet 11.
  • the flow rate of the fluidized bed F increases due to high LV water flow, and the interface of the fluidized bed F rises to the first zone between the second partition walls 5 and 5. Since the interval between the second partition walls 5 and 5 is larger than the interval between the first partition walls 4 and 4, the rising flow velocity between the second partition walls 5 and 5 becomes small, and the distance between the second partition walls 5 and 5 is reduced. A clear zone is formed at the top of the first zone.
  • the raw water may be circulated in the reaction tank 2 at a higher LV than the LV during normal processing. Thereby, the sludge which peeled and existed in the reaction tank 2 flows out from the outflow port 11.
  • the discharged water at this time is not treated but treated separately as washing wastewater or sent to the raw water tank. In this way, sticking of the carriers can be suppressed, and drift and blockage in the reaction tank 2 can be prevented.
  • This aeration also has the effect that the inside of the reaction tank 2 is decarboxylated, the pH is increased, and the carbonic acid accumulated between the carriers (activated carbon) is decarboxylated.
  • a non-porous oxygen-dissolving membrane is installed in a fluidized bed of a biological carrier such as activated carbon to increase the amount of oxygen supplied, there is no upper limit to the organic wastewater concentration of the target raw water.
  • the biological carrier is operated in a fluidized bed, a large amount of microorganisms can be stably maintained and the load can be increased.
  • the dissolution power of oxygen is small compared to preaeration and direct aeration.
  • the pH in the reaction tank 2 is maintained in the vicinity of neutrality with little or no use of a neutralizing agent, and organic wastewater from a low concentration to a high concentration is heavily loaded. In addition, it is possible to stably process at a low cost.
  • ⁇ Biological carrier As the biological carrier, activated carbon is suitable, but gel-like substances other than activated carbon, porous materials, non-porous materials, and the like can be used under the same conditions. For example, polyvinyl alcohol gel, polyacrylamide gel, polyurethane foam, calcium alginate gel, zeolite, plastic and the like can also be used. However, when activated carbon is used as the carrier, it is possible to remove a wide range of pollutants by the interaction between the activated carbon adsorption and biodegradation.
  • the average particle diameter of the activated carbon is preferably 0.2 to 1.2 mm, particularly preferably about 0.3 to 0.6 mm.
  • the average particle size is large, it is possible to increase the LV, and when a part of the treated water is circulated to the reaction tank, the amount of circulation can be increased, so that a high load is possible.
  • the specific surface area is small, the biomass is reduced. If the average particle size is small, the pump power can be reduced because it can flow at a low LV. And since the specific surface area is large, the amount of attached organisms increases.
  • the oxygen-containing gas may be a gas containing oxygen, such as air, oxygen-enriched air, or pure oxygen. It is desirable that the gas to be vented passes through a filter to remove fine particles in advance.
  • the aeration rate is preferably about twice the amount of oxygen required for biological reactions. If it is less than this, BOD and ammonia will remain in the treated water due to insufficient oxygen, and if it is greater, the air flow will be unnecessarily increased and the pressure loss will be increased, so the economy will be impaired.
  • the aeration pressure is slightly higher than the pressure loss of the hollow fiber generated at a predetermined aeration amount.
  • the blower 26 is sufficient if the discharge wind pressure is equal to or lower than the water pressure coming from the water depth. However, it is necessary to be more than the pressure loss of piping. Usually, the pipe resistance is about 1 to 2 kPa.
  • a general-purpose blower having a pressure of 0.5 MPa or less can be used even at a water depth of 5 m or more, and a low-pressure blower of 0.1 MPa or less is preferably used.
  • the supply pressure of the oxygen-containing gas is higher than the pressure loss of the hollow fiber membrane, and the membrane must not be crushed by water pressure. Since the pressure loss of the flat membrane and the spiral membrane is negligible compared to the water pressure, the pressure is extremely low, about 5 kPa or more, water depth pressure or less, desirably 20 kPa or less.
  • the pressure loss varies depending on the inner diameter and length. Since the amount of air vent is a membrane 1 m 2 per 50 ⁇ 200 mL / day, film air quantity when the doubled length is doubled, the air quantity even Maku ⁇ becomes doubled only doubles Don't be. Therefore, the pressure loss of the membrane is directly proportional to the membrane length and inversely proportional to the diameter.
  • the value of pressure loss is about 3 to 20 kPa for hollow fibers having an inner diameter of 50 ⁇ m and a length of 2 m.
  • air is allowed to flow downward through the oxygen-dissolving membrane module 6, but it may be allowed to flow upward.

Abstract

Provided is an aerobic biological treatment device 1 comprising: a reaction tank (tank body) 2; an untreated-water inlet 3 which is disposed at the lowest part of the reaction tank 2 and opens upward so that the untreated water flows upward; first partition walls 4 and second partition walls 5 provided in the reaction tank 2; a fluidized bed F formed by filling an organism-adhering carrier such as a granular activated charcoal; an oxygen-dissolving membrane module 6 arranged between the first partition walls 4,4; the untreated-water inlet 3 disposed beneath the portion between the first partition walls 4,4; an aeration pipe 9, and the like.

Description

好気性生物処理装置Aerobic biological treatment equipment
 本発明は、有機性排水の好気性生物処理装置に関する。 The present invention relates to an aerobic biological treatment apparatus for organic wastewater.
 好気性生物処理方法は安価であるため有機性廃水の処理法として多用されている。本方法では、被処理水への酸素の溶解が必要であり、通常は散気管による曝気が行われている。 The aerobic biological treatment method is widely used as a treatment method for organic wastewater because it is inexpensive. In this method, it is necessary to dissolve oxygen in the water to be treated, and aeration with a diffuser is usually performed.
 散気管による曝気は溶解効率が5~20%程度と低い。また、散気管の設置される水深にかかる水圧以上の圧力で曝気することが必要であり、高圧で多量の空気を送風するため、ブロワの電力費が高い。通常は、好気性生物処理における電力費の2/3以上が酸素溶解のために使用されている。 Aeration with a diffuser has a low dissolution efficiency of about 5-20%. In addition, it is necessary to aerate at a pressure higher than the water pressure applied to the water depth where the diffuser pipe is installed, and a large amount of air is blown at a high pressure, so the power cost of the blower is high. Usually, more than 2/3 of the power cost in aerobic biological treatment is used for oxygen dissolution.
 中空糸膜を用いたメンブレンエアレーションバイオリアクター(MABR)は、気泡の発生なしで酸素溶解できる。MABRでは、水深にかかる水圧よりも低い圧力の空気を通気すればよいため、ブロワの必要圧力が低く、また、酸素の溶解効率が高い。 Membrane aeration bioreactor (MABR) using hollow fiber membrane can dissolve oxygen without generating bubbles. In MABR, it is only necessary to ventilate air having a pressure lower than the water pressure applied to the water depth, so that the required pressure of the blower is low and the oxygen dissolution efficiency is high.
特開2006-87310号公報JP 2006-87310 A
 本発明は、原水の有機物濃度が高い場合でも十分に処理を行うことができる好気性生物処理装置を提供することを目的とする。 An object of the present invention is to provide an aerobic biological treatment apparatus capable of performing sufficient treatment even when the organic matter concentration of raw water is high.
 本発明の好気性生物処理装置は、反応槽と、該反応槽内に設置された酸素溶解膜モジュールと、該酸素溶解膜モジュールに酸素含有ガスを供給する酸素含有ガス供給手段と、反応槽内に形成された担体の流動床と、該反応槽内に担体を上下に循環させる循環手段とを備えてなる。 The aerobic biological treatment apparatus of the present invention includes a reaction vessel, an oxygen-dissolving membrane module installed in the reaction vessel, an oxygen-containing gas supply means for supplying an oxygen-containing gas to the oxygen-dissolving membrane module, and a reaction vessel And a circulating means for circulating the carrier up and down in the reaction tank.
 本発明の一態様では、前記循環手段は、該反応槽内を上昇ゾーンと下降ゾーンとに区画する第1隔壁を有しており、該上昇ゾーンおよび/または下降ゾーンに前記酸素溶解膜モジュールが配置されており、原水を循環流れ方向となるように供給する原水供給手段が設けられている。 In one aspect of the present invention, the circulation means has a first partition that divides the reaction tank into an ascending zone and a descending zone, and the oxygen-dissolving membrane module is located in the ascending zone and / or the descending zone. The raw water supply means which is arrange | positioned and supplies raw water so that it may become a circulation flow direction is provided.
 本発明の一態様では、前記原水供給手段は、前記反応槽の底部に設けられた、原水を上向きに流出させる原水流入口を有する。 In one aspect of the present invention, the raw water supply means has a raw water inlet provided at the bottom of the reaction tank to allow the raw water to flow upward.
 本発明の一態様では、前記反応槽の底部は、下方ほど水平断面積が小さくなる傾斜構造部であり、前記原水流入口は、該傾斜構造部の最下部に設けられている。 In one aspect of the present invention, the bottom of the reaction tank is an inclined structure having a lower horizontal cross-sectional area as it goes downward, and the raw water inlet is provided at the lowermost part of the inclined structure.
 本発明の一態様では、前記反応槽の上部は、それよりも下側よりも水平断面積が大きい拡幅部となっており、該拡幅部内を第1ゾーンと第2ゾーンとに区画する第2隔壁が設けられており、前記第1隔壁の上端部が該第1ゾーン内に入り込んでおり、前記第2ゾーンに処理水の取出部が設けられている。 In one aspect of the present invention, the upper portion of the reaction tank is a widened portion having a larger horizontal cross-sectional area than the lower side, and a second zone that divides the widened portion into a first zone and a second zone. A partition wall is provided, an upper end portion of the first partition wall enters the first zone, and a treated water take-out portion is provided in the second zone.
 本発明の一態様では、酸素溶解膜モジュールは非多孔質の酸素溶解膜を備えている。 In one embodiment of the present invention, the oxygen-dissolving membrane module includes a non-porous oxygen-dissolving membrane.
 本発明の一態様では、酸素溶解膜が疎水性である。 In one embodiment of the present invention, the oxygen-dissolving film is hydrophobic.
 本発明の好気性生物処理装置では、担体が上下に循環するので、高LVにて原水を流し、完全混合状態にて原水を処理することができる。このため、反応槽内のほぼ全域で溶存酸素(DO)が存在するようになり、また未分解TOCが局所的に高濃度になることなく酸素溶解膜表面への生物膜の付着を防止できる。そのため、有機物濃度の高い原水であっても(例えば100mg/L以上特に500mg/L以上)、効率よく安定して処理することができる。 In the aerobic biological treatment apparatus of the present invention, since the carrier circulates up and down, raw water can be flowed at a high LV, and raw water can be treated in a completely mixed state. For this reason, dissolved oxygen (DO) is present in almost the entire region of the reaction vessel, and adhesion of the biofilm to the oxygen-dissolved film surface can be prevented without locally increasing the undecomposed TOC. Therefore, even raw water having a high organic matter concentration (for example, 100 mg / L or more, particularly 500 mg / L or more) can be efficiently and stably treated.
実施の形態に係る生物処理装置の縦断面図である。It is a longitudinal cross-sectional view of the biological treatment apparatus which concerns on embodiment. 酸素溶解膜モジュールの中空糸膜ユニットの配列を示す斜視図である。It is a perspective view which shows the arrangement | sequence of the hollow fiber membrane unit of an oxygen melt | dissolution membrane module. (a)は酸素溶解膜モジュールの上部ヘッダーを示す下方からの斜視図、(b)は(a)のB-B線断面図である。(A) is the perspective view from the lower part which shows the upper header of an oxygen melt | dissolution membrane module, (b) is the BB sectional drawing of (a). 酸素溶解膜モジュールの斜視図である。It is a perspective view of an oxygen dissolution membrane module. 酸素溶解膜モジュールの連結体の斜視図である。It is a perspective view of the coupling body of an oxygen dissolution membrane module.
 以下、図面を参照して本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.
 図1は実施の形態に係る好気性生物処理装置1の縦断面図である。この好気性生物処理装置1は、反応槽(槽体)2と、該反応槽2の最下端部に、原水を上向きに流すように上向きに開口した原水流入口3と、反応槽2内に上下方向に設置された第1隔壁4及び第2隔壁5と、粉粒状活性炭等の生物付着担体の充填により形成された流動床Fと、第1隔壁4,4同士の間に配置された酸素溶解膜モジュール6と、第1隔壁4,4間の下方に設置された散気管9等を有する。この散気管9にはコンプレッサ(又はブロワ)から空気が供給され槽内が逆洗される。反応槽2の底部は、下方ほど水平断面積が小さくなる傾斜構造部2Cとなっており、この傾斜構造部2Cの最下部に前記流入口3が設けられている。 FIG. 1 is a longitudinal sectional view of an aerobic biological treatment apparatus 1 according to an embodiment. The aerobic biological treatment apparatus 1 includes a reaction tank (tank body) 2, a raw water inlet 3 that opens upward at the lowermost end of the reaction tank 2 so that raw water flows upward, and a reaction tank 2. The first partition 4 and the second partition 5 installed in the vertical direction, the fluidized bed F formed by filling a bioadhesive carrier such as granular activated carbon, and the oxygen disposed between the first partitions 4 and 4. It has a dissolved membrane module 6 and an air diffuser 9 installed below between the first partition walls 4 and 4. Air is supplied to the air diffuser 9 from a compressor (or blower), and the inside of the tank is backwashed. The bottom of the reaction tank 2 is an inclined structure portion 2C whose horizontal cross-sectional area becomes smaller as it goes downward, and the inflow port 3 is provided at the lowermost portion of the inclined structure portion 2C.
 この実施の形態では、反応槽2の水平断面は長方形であり、隔壁4,5はそれぞれ該長方形の長辺方向(図1において紙面と垂直方向)に延在する平板となっている。 In this embodiment, the horizontal cross section of the reaction vessel 2 is rectangular, and the partition walls 4 and 5 are flat plates extending in the long side direction (perpendicular to the paper surface in FIG. 1) of the rectangle.
 なお、反応槽2の水平断面は、略正方形、略円形などのいずれでもよい。水平断面が略正方形の場合、隔壁4,5はそれぞれ1対の平板であってもよく、角筒形であってもよい。略円形の場合、隔壁4,5は略円筒形であってもよい。 Note that the horizontal cross section of the reaction tank 2 may be either substantially square or substantially circular. When the horizontal cross section is substantially square, each of the partition walls 4 and 5 may be a pair of flat plates or a rectangular tube shape. In the case of a substantially circular shape, the partition walls 4 and 5 may be substantially cylindrical.
 反応槽2の上部は、下部の小幅部2Sよりも水平断面積が大きい拡幅部2Wとなっている。拡幅部2Wと小幅部2Sとの間は、上方ほど水平断面積が大きくなる傾斜部2Tとなっている。 The upper part of the reaction tank 2 is a widened part 2W having a larger horizontal cross-sectional area than the lower narrow part 2S. Between the widened portion 2W and the small width portion 2S, there is an inclined portion 2T in which the horizontal cross-sectional area increases toward the top.
 拡幅部2Wの上部には、処理水を流出させるためのトラフ10及び流出口11が設けられている。トラフ10は槽内壁に沿って環状流路を形成している。 The trough 10 and the outflow port 11 for making treated water flow out are provided in the upper part of the widening part 2W. The trough 10 forms an annular flow path along the inner wall of the tank.
 小幅部2Sから拡幅部2Wの下部にかけて、前記第1隔壁4が設置されている。第1隔壁4の下端は、傾斜構造部2Cよりも上位に位置している。第1隔壁4と小幅部2Sの槽内壁面との間が担体の下降ゾーンとなっている。第1隔壁4,4間が担体の上昇ゾーンとなっており、該第1隔壁4,4間の上昇ゾーンに酸素溶解膜モジュール6が設置されている。 The first partition 4 is installed from the narrow part 2S to the lower part of the wide part 2W. The lower end of the first partition 4 is located higher than the inclined structure portion 2C. The space between the first partition 4 and the inner wall surface of the narrow portion 2S is a descending zone of the carrier. The space between the first partition walls 4 and 4 is a rising zone of the carrier, and the oxygen-dissolving membrane module 6 is installed in the rising zone between the first partition walls 4 and 4.
 拡幅部2W内に、第2隔壁5が設置されている。第2隔壁5,5間が第1ゾーンであり、第2隔壁5と拡幅部2Wの槽内壁面との間が第2ゾーンである。第2隔壁5の下端は、傾斜部2Tと拡幅部2Wとの境界付近に位置している。第2隔壁5,5間の距離は第1隔壁4,4間の距離よりも大きく、第1隔壁4の上端が第2隔壁5,5間の第1ゾーン内の下部内に入り込んでいる。 2nd partition 5 is installed in wide part 2W. A space between the second partition walls 5 and 5 is a first zone, and a space between the second partition wall 5 and the inner wall surface of the widened portion 2W is a second zone. The lower end of the second partition 5 is located near the boundary between the inclined portion 2T and the widened portion 2W. The distance between the second partition walls 5 and 5 is larger than the distance between the first partition walls 4 and 4, and the upper end of the first partition wall 4 enters the lower part in the first zone between the second partition walls 5 and 5.
 図1は、反応槽に流動床担体を充填して、酸素溶解膜の表面への生物膜の付着を担体の流動による剪断力によって抑制して生物膜の大部分が流動床担体に付着するようにしたものであり、酸素溶解膜は酸素供給の目的のみに用いられる。 FIG. 1 shows that the reaction vessel is filled with a fluidized bed carrier, and the biofilm adheres to the surface of the oxygen-dissolved membrane by the shearing force caused by the flow of the carrier so that most of the biofilm adheres to the fluidized bed carrier. The oxygen-dissolved film is used only for the purpose of supplying oxygen.
 図1では、酸素溶解膜として非多孔質(ノンポーラス)の酸素溶解膜を用い、酸素含有気体を槽外から配管を通じて酸素溶解膜の一次側に通気して、排気は配管を通じて槽外に排出するように構成している。そのため、酸素含有気体を、低圧で酸素溶解膜に通気し、酸素を酸素分子として酸素溶解膜の構成原子の間を通過し(膜に溶解し)、酸素分子として被処理水と接触させる。酸素を水に直接溶解させるので気泡が生じない。この方法は、濃度勾配による分子拡散のメカニズムを用いており、従来のように散気管などによる散気が不要となる。 In FIG. 1, a non-porous oxygen-dissolving film is used as the oxygen-dissolving film, and an oxygen-containing gas is vented from the outside of the tank to the primary side of the oxygen-dissolving film through the pipe, and the exhaust is discharged outside the tank through the pipe. It is configured to do. Therefore, an oxygen-containing gas is passed through the oxygen-dissolved film at a low pressure, passes oxygen as oxygen molecules between constituent atoms of the oxygen-dissolved film (dissolves in the film), and is brought into contact with the water to be treated as oxygen molecules. Since oxygen is dissolved directly in water, no bubbles are generated. This method uses a molecular diffusion mechanism based on a concentration gradient, and does not require aeration using a diffuser tube as in the prior art.
 酸素溶解膜の素材として疎水性の素材を用いると膜中に浸水しづらいので好ましい。疎水性の膜であっても微量の水蒸気は浸入する。 It is preferable to use a hydrophobic material as the material for the oxygen-dissolving film because it is difficult to be immersed in the film. A trace amount of water vapor enters even a hydrophobic film.
 図1においては、原水を底部から供給しているが底部を平面として槽内壁や槽上部から原水を供給することもできる。いずれの場合も槽内に循環流を発生させるために循環流の方向に原水を供給する必要がある。槽底部の槽内壁との隅に担体やSSが堆積しない構造とするために、槽内壁と底面との交差隅角部に軸心方向に下り勾配に傾斜するように傾斜板を設けることが好ましい。槽底部中央に担体やSSが堆積しないよう槽底部中央に錐体形状の上の整流部材を備えることもできる。 In FIG. 1, the raw water is supplied from the bottom, but the raw water can be supplied from the inner wall of the tank or the upper part of the tank with the bottom as a plane. In either case, it is necessary to supply raw water in the direction of the circulating flow in order to generate the circulating flow in the tank. In order to prevent the carrier and SS from depositing at the corner of the tank bottom with the tank inner wall, it is preferable to provide an inclined plate so as to incline downward in the axial direction at the intersection corner between the tank inner wall and the bottom. . A rectifying member having a cone shape may be provided at the center of the bottom of the tank so that no carrier or SS is deposited at the center of the bottom of the tank.
 図1においては、槽中央側を上昇ゾーンとし、槽側壁側を下降ゾーンとしているが、第1隔壁を1枚の平板として槽中央を左右に区画するように固定し、区画された片方を上昇ゾーン、他方を下降ゾーンとすることも可能である。この場合は槽上部のうち上昇ゾーンの上部にのみ拡幅部とトラフを設ける。一方、槽中央側を下降ゾーンとし、槽側壁側を上昇ゾーンとすることも原理上は可能である。 In FIG. 1, the tank center side is the rising zone and the tank side wall side is the falling zone, but the first partition is a single flat plate and is fixed so that the tank center is partitioned left and right, and one of the partitioned walls is lifted It is also possible to use a zone and the other as a descending zone. In this case, the widened portion and the trough are provided only in the upper part of the rising zone in the upper part of the tank. On the other hand, it is also possible in principle to set the tank center side as a descending zone and the tank side wall as an ascending zone.
 図1においては、槽上部に拡幅部2Wを設けて担体流出を防止するために第2隔壁5により反応領域の第1ゾーンと清澄領域の第2ゾーンとに区画しているが、これに限定されない。槽体高さを高くし、第1隔壁4の上端と水面との距離が長くなる位置に第1隔壁4を設けることにより、拡幅部2Wや第2隔壁5を設けることなく槽上部を清澄領域(担体沈殿領域)として機能させることもできる。GSS(気固液分離部材)により反応領域と清澄領域とに区画することもできる。 In FIG. 1, in order to prevent the carrier outflow by providing the widened portion 2W in the upper part of the tank, the second partition 5 partitions the first zone of the reaction region and the second zone of the clarification region. Not. By raising the tank body height and providing the first partition wall 4 at a position where the distance between the upper end of the first partition wall 4 and the water surface becomes longer, the clarified region ( It can also function as a carrier precipitation region). It can also be divided into a reaction region and a clarification region by GSS (gas-solid-liquid separation member).
 上記のいずれの実施態様の場合も、循環流の通水抵抗を小さくするために、第1隔壁の円筒の水平断面積、槽内壁と第1隔壁に挟まれた部分の水平断面積、第1隔壁の下端と槽底面との境界面(例えば円型反応槽であれば円筒の周壁面、角型反応槽かつ第1隔壁が1枚の平板であれば長方形)の面積が類似である(例えば一方が他方に対して80~120%程度)ことが望ましい。 In any of the above embodiments, in order to reduce the water flow resistance of the circulating flow, the horizontal sectional area of the cylinder of the first partition, the horizontal sectional area of the portion sandwiched between the inner wall of the tank and the first partition, the first The area of the boundary surface between the lower end of the partition wall and the bottom surface of the tank (for example, a circular peripheral wall if a circular reaction tank, a rectangular reaction tank and a rectangle if the first partition wall is a single flat plate) is similar (for example, It is desirable that one is about 80 to 120% of the other).
 図2は、中空糸膜ユニットの配列を示し、図3は各中空糸膜ユニットの上部ヘッダーの断面斜視図であり、図4は酸素溶解膜モジュール6の一例を示している。この酸素溶解膜モジュール6は酸素溶解膜として非多孔質の中空糸膜ストランド22(中空糸膜の単糸を複数本引き揃えたもの)を用いたものである。この実施の形態では、中空糸膜ストランド22は上下方向に配列されており、各中空糸膜ストランド22の上端は上部ヘッダー20に連なり、下端は下部ヘッダー21に連なっている。中空糸膜ストランド22の内部は、それぞれ上部ヘッダー20及び下部ヘッダー21内に連通している。各ヘッダー20,21はポッティング材よりなる中空管状である。 2 shows the arrangement of the hollow fiber membrane units, FIG. 3 is a cross-sectional perspective view of the upper header of each hollow fiber membrane unit, and FIG. 4 shows an example of the oxygen-dissolving membrane module 6. The oxygen-dissolving membrane module 6 uses a non-porous hollow fiber membrane strand 22 (a plurality of hollow fiber membranes arranged together) as an oxygen-dissolving membrane. In this embodiment, the hollow fiber membrane strands 22 are arranged in the vertical direction, and the upper end of each hollow fiber membrane strand 22 is connected to the upper header 20 and the lower end is connected to the lower header 21. The inside of the hollow fiber membrane strand 22 communicates with the upper header 20 and the lower header 21, respectively. Each header 20, 21 is a hollow tube made of a potting material.
 図2の通り、1対のヘッダー20,21と中空糸膜ストランド22とからなる中空糸膜ユニットが複数個平行に配列されている。各ユニットがフレーム(図示略)によって連結されて一体化されている。図4の通り、各上部ヘッダー20が上側マニホルド23に連結され、各下部ヘッダー21が下側マニホルド24に連結されている。 As shown in FIG. 2, a plurality of hollow fiber membrane units each composed of a pair of headers 20 and 21 and hollow fiber membrane strands 22 are arranged in parallel. Each unit is connected and integrated by a frame (not shown). As shown in FIG. 4, each upper header 20 is connected to the upper manifold 23, and each lower header 21 is connected to the lower manifold 24.
 図3の通り、この実施の形態では、各ヘッダー20,21は長手方向と垂直な断面の外形が長方形状である。上部ヘッダー20には上側に空気流通孔20aが設けられ、下面部が肉厚となっている。中空糸膜ストランド22の上端部はこの肉厚部分に埋設され、上端面が空気流通孔20a間に向って開放している。下部ヘッダー21は、上部ヘッダー20と上下対称の構造を有しており、下側に空気流通孔が設けられ、上面部が肉厚となっている。中空糸膜ストランド22の下端部はこの肉厚部分に埋設され、下端面が下部ヘッダー21の空気流通孔内に向って開放している。 As shown in FIG. 3, in this embodiment, each of the headers 20 and 21 has a rectangular outer shape in a cross section perpendicular to the longitudinal direction. The upper header 20 is provided with an air circulation hole 20a on the upper side, and the lower surface portion is thick. The upper end portion of the hollow fiber membrane strand 22 is embedded in this thick portion, and the upper end surface is open toward the air circulation hole 20a. The lower header 21 has a vertically symmetrical structure with the upper header 20, an air circulation hole is provided on the lower side, and the upper surface portion is thick. The lower end portion of the hollow fiber membrane strand 22 is embedded in this thick portion, and the lower end surface is open toward the air circulation hole of the lower header 21.
 図3の通り、1本の上部ヘッダー20及び下部ヘッダー21に、中空糸膜ストランド22が2列に並列してヘッダー長手方向に配列されている。中空糸膜ストランド22の列同士の間隔a(図3(b))は、流動床担体である活性炭の平均粒径の数倍以上である。また、中空糸膜ストランド22同士のヘッダー長手方向の間隔bは密着していても間隔を空けてもよい。 As shown in FIG. 3, hollow fiber membrane strands 22 are arranged in parallel in two rows on one upper header 20 and lower header 21 in the header longitudinal direction. The interval a (FIG. 3 (b)) between the rows of the hollow fiber membrane strands 22 is at least several times the average particle diameter of the activated carbon that is the fluidized bed carrier. Moreover, the space | interval b of the header longitudinal direction of hollow fiber membrane strands 22 may closely_contact | adhere, or may leave a space | interval.
 隣接するヘッダー20,20同士及びヘッダー21,21同士の間隔cは、特に限定されない。 The interval c between the adjacent headers 20 and 20 and between the headers 21 and 21 is not particularly limited.
 酸素溶解膜モジュール6の上部に酸素含有ガスを供給し、酸素溶解膜モジュール6の下部から排出する。空気等の酸素含有ガスは上部ヘッダー20から中空糸膜ストランド22を通って下部ヘッダー21へ流れ、この間に酸素が中空糸膜ストランド22を透過して反応槽2内の水に溶解する。 The oxygen-containing gas is supplied to the upper part of the oxygen-dissolving membrane module 6 and discharged from the lower part of the oxygen-dissolving membrane module 6. An oxygen-containing gas such as air flows from the upper header 20 through the hollow fiber membrane strand 22 to the lower header 21, during which oxygen passes through the hollow fiber membrane strand 22 and dissolves in the water in the reaction vessel 2.
 図5の通り、複数の酸素溶解膜モジュール6が一列に配列され、各モジュールのマニホルド23,24がそれぞれ共通の上部連絡配管41、下部連絡配管42に連結されてもよい。 As shown in FIG. 5, a plurality of oxygen-dissolving membrane modules 6 may be arranged in a line, and the manifolds 23 and 24 of each module may be connected to a common upper communication pipe 41 and lower communication pipe 42, respectively.
 この実施の形態では、酸素溶解膜モジュール6は上下2段に設置されており、上側の酸素溶解膜モジュール6の上部にブロワ26及び給気配管27を介して空気を供給し、該上側の酸素溶解膜モジュール6の下部から流出した空気を連絡配管28によって下側の酸素溶解膜モジュール6に供給し、下側の酸素溶解膜モジュール6の下部から排空気を排ガス配管29によって排出する。空気等の酸素含有ガスは上部ヘッダー20から中空糸膜ストランド22を通って下部ヘッダー21へ流れ、この間に酸素が中空糸膜を透過して反応槽2内の水に溶解する。 In this embodiment, the oxygen-dissolving membrane module 6 is installed in two upper and lower stages, and air is supplied to the upper portion of the upper oxygen-dissolving membrane module 6 via the blower 26 and the air supply pipe 27, and the upper oxygen-dissolving membrane module 6 is supplied. The air that flows out from the lower part of the dissolved membrane module 6 is supplied to the lower oxygen-dissolved membrane module 6 through the connecting pipe 28, and the exhaust air is discharged from the lower part of the lower oxygen-dissolved membrane module 6 through the exhaust gas pipe 29. An oxygen-containing gas such as air flows from the upper header 20 through the hollow fiber membrane strand 22 to the lower header 21, during which oxygen passes through the hollow fiber membrane and dissolves in the water in the reaction vessel 2.
 各ヘッダー20,21及び各マニホルド23,24は流水勾配を有するように設けられていてもよい。酸素溶解膜モジュール6は1段に設置されてもよく、3段以上に設置されてもよい。 Each header 20, 21 and each manifold 23, 24 may be provided so as to have a running water gradient. The oxygen-dissolving membrane module 6 may be installed in one stage or in three or more stages.
 このように構成された好気性生物処理装置1において、原水流入口3から反応槽2内に上向きに流入し、第1隔壁4の円筒内の上昇ゾーンを上昇し、生物膜付着の粉粒状活性炭の流動床Fにおいて、一過式で上向流通水され生物反応を行う。活性炭及び槽内水は、第1隔壁4の上端を回り込む。この活性炭は、第1隔壁4と反応槽2の槽内壁面との間の下降ゾーンを下降して反応槽2の底部に至り、第1隔壁4の下端を回り込み、再び第1隔壁4の円筒内の上昇ゾーンを上昇する。 In the aerobic biological treatment apparatus 1 configured in this manner, the raw water inlet 3 flows upward into the reaction tank 2, rises in the ascending zone in the cylinder of the first partition wall 4, and the granular activated carbon adhered to the biofilm In the fluidized bed F, water is flowed upward in a transient manner to perform a biological reaction. The activated carbon and the water in the tank go around the upper end of the first partition 4. This activated carbon descends the descending zone between the first partition 4 and the inner wall surface of the reaction tank 2 to reach the bottom of the reaction tank 2, wraps around the lower end of the first partition 4, and the cylinder of the first partition 4 again. Ascend the rising zone.
 第1隔壁4の上端を回り込んだ生物処理水の一部は、第2隔壁5の下端を回り込み、第2隔壁5と拡幅部2Wとの間の第2ゾーンを上昇し、この上昇を行う間に活性炭が沈降分離され、その後、トラフ10と流出口11を通じて処理水として取り出される。 A part of the biologically treated water that has circulated around the upper end of the first partition 4 wraps around the lower end of the second partition 5 and ascends the second zone between the second partition 5 and the widened portion 2W, and performs this increase. Activated charcoal is settled and separated between them, and then taken out as treated water through the trough 10 and the outlet 11.
 この実施の形態では、流入口3からの原水供給量を多くすることにより、第1隔壁4,4間の上昇流速LVを大きくし、流動床Fを完全混合状態とする。これにより、反応槽2内のほぼ全体においてDOが存在するようになり、有機物濃度の高い原水であっても、十分に処理される。 In this embodiment, by increasing the amount of raw water supplied from the inlet 3, the rising flow velocity LV between the first partition walls 4 and 4 is increased and the fluidized bed F is brought into a completely mixed state. Thereby, DO exists in almost the entire reaction tank 2, and even raw water having a high organic matter concentration is sufficiently treated.
 なお、高LV通水することにより、流動床Fの展開率が大きくなり、流動床Fの界面は第2隔壁5,5間の第1ゾーンにまで上昇する。この第2隔壁5,5同士の間隔は、第1隔壁4,4間の間隔よりも大きいので、第2隔壁5,5同士の間での上昇流速は小さくなり、第2隔壁5,5間の第1ゾーンの上部に清澄域が形成される。 It should be noted that the flow rate of the fluidized bed F increases due to high LV water flow, and the interface of the fluidized bed F rises to the first zone between the second partition walls 5 and 5. Since the interval between the second partition walls 5 and 5 is larger than the interval between the first partition walls 4 and 4, the rising flow velocity between the second partition walls 5 and 5 becomes small, and the distance between the second partition walls 5 and 5 is reduced. A clear zone is formed at the top of the first zone.
 生物処理運転を継続すると、担体表面の生物膜が次第に厚くなってくる。この生物膜が過度に厚くなると、担体が流出したり、生物処理効率が低下する。(生物膜の深部すなわち担体に近い側では、酸素が行き届かないために好気性生物処理が行われない。)また、成長した生物膜を介して担体同士が固着し、担体が流出したり生物処理効率が低下したりする。 When the biological treatment operation is continued, the biological film on the surface of the carrier becomes gradually thicker. When this biofilm becomes excessively thick, the carrier flows out and the biological treatment efficiency decreases. (The aerobic biological treatment is not performed in the deep part of the biofilm, that is, on the side close to the carrier, because oxygen does not reach.) Processing efficiency may decrease.
 そこで、定期的に、又は反応槽2内の流動状況の観察結果に基づいて、散気管9から空気を流出させ、反応槽2内を曝気する。この曝気により、担体表面の余剰汚泥が水流の剪断力で剥離する。 Therefore, air is discharged from the diffuser tube 9 periodically or based on the observation result of the flow state in the reaction tank 2 to aerate the reaction tank 2. By this aeration, the excess sludge on the surface of the carrier is peeled off by the shearing force of the water flow.
 この空気曝気を行った後、反応槽2内に原水を通常の処理時のLVよりも高LVにて上向流通水してもよい。これにより、剥離して反応槽2内に存在していた汚泥が流出口11から流出する。この際の排出水は、処理水ではなく、洗浄排水として別途処理されるか、原水槽に送水される。このようにして、担体同士の固着を抑制し、反応槽2内の偏流や閉塞を防止することができる。なお、この曝気により、反応槽2内が脱炭酸され、pHが上昇したり、担体(活性炭)間に蓄積した炭酸が脱炭酸されるという効果も奏される。 After performing this air aeration, the raw water may be circulated in the reaction tank 2 at a higher LV than the LV during normal processing. Thereby, the sludge which peeled and existed in the reaction tank 2 flows out from the outflow port 11. The discharged water at this time is not treated but treated separately as washing wastewater or sent to the raw water tank. In this way, sticking of the carriers can be suppressed, and drift and blockage in the reaction tank 2 can be prevented. This aeration also has the effect that the inside of the reaction tank 2 is decarboxylated, the pH is increased, and the carbonic acid accumulated between the carriers (activated carbon) is decarboxylated.
 本発明では、活性炭等の生物担体の流動床に非多孔性の酸素溶解膜を設置することで、供給酸素量が多くなるため、対象とする原水の有機性排水濃度に上限が無い。 In the present invention, since a non-porous oxygen-dissolving membrane is installed in a fluidized bed of a biological carrier such as activated carbon to increase the amount of oxygen supplied, there is no upper limit to the organic wastewater concentration of the target raw water.
 また、生物担体を流動床で運転するため、多量の微生物を安定して維持でき、負荷を高くとることができる。 In addition, since the biological carrier is operated in a fluidized bed, a large amount of microorganisms can be stably maintained and the load can be increased.
 また、本発明では酸素溶解膜を使用するため、プリエアレーション、直接曝気と比較すると、酸素の溶解動力が小さい。 In addition, since an oxygen-dissolving film is used in the present invention, the dissolution power of oxygen is small compared to preaeration and direct aeration.
 これらのことから、本発明によると、中和剤を全く又は殆ど使用することなく、反応槽2内のpHを、中性付近に維持し、低濃度から高濃度までの有機性排水を高負荷で、かつ安価に安定して処理することが可能となる。 From these facts, according to the present invention, the pH in the reaction tank 2 is maintained in the vicinity of neutrality with little or no use of a neutralizing agent, and organic wastewater from a low concentration to a high concentration is heavily loaded. In addition, it is possible to stably process at a low cost.
<生物担体>
 生物担体としては、活性炭が好適であるが、活性炭以外のゲル状物質、多孔質材、非多孔質材等も同様の条件で使用できる。例えば、ポリビニルアルコールゲル、ポリアクリルアミドゲル、ポリウレタンフォーム、アルギン酸カルシウムゲル、ゼオライト、プラスチック等も用いることができる。ただし、担体として活性炭を用いると、活性炭の吸着作用と生物分解作用による相互作用により、広範囲な汚濁物質の除去を行うことが可能である。
<Biological carrier>
As the biological carrier, activated carbon is suitable, but gel-like substances other than activated carbon, porous materials, non-porous materials, and the like can be used under the same conditions. For example, polyvinyl alcohol gel, polyacrylamide gel, polyurethane foam, calcium alginate gel, zeolite, plastic and the like can also be used. However, when activated carbon is used as the carrier, it is possible to remove a wide range of pollutants by the interaction between the activated carbon adsorption and biodegradation.
 活性炭の平均粒径は0.2~1.2mm、特に0.3~0.6mm程度が好ましい。平均粒径が大きいと高LVとすることが可能であり、処理水の一部を反応槽に循環する場合は循環量を増やせるため高負荷が可能となる。しかし、比表面積が小さくなるため、生物量が少なくなる。平均粒径が小さいと、低LVで流動できるため、ポンプ動力が安価となる。かつ、比表面積が大きいため、付着生物量が増える。 The average particle diameter of the activated carbon is preferably 0.2 to 1.2 mm, particularly preferably about 0.3 to 0.6 mm. When the average particle size is large, it is possible to increase the LV, and when a part of the treated water is circulated to the reaction tank, the amount of circulation can be increased, so that a high load is possible. However, since the specific surface area is small, the biomass is reduced. If the average particle size is small, the pump power can be reduced because it can flow at a low LV. And since the specific surface area is large, the amount of attached organisms increases.
<酸素含有ガス>
 酸素含有ガスは空気、酸素富化空気、純酸素等、酸素を含む気体であればよい。通気する気体はフィルターを通過させて微細粒子を予め除去することが望ましい。
<Oxygen-containing gas>
The oxygen-containing gas may be a gas containing oxygen, such as air, oxygen-enriched air, or pure oxygen. It is desirable that the gas to be vented passes through a filter to remove fine particles in advance.
 通気量は生物反応に必要な酸素量の等量から2倍程度が望ましい。これよりも少ないと酸素不足で処理水中にBODやアンモニアが残存し、多いと通気量が不必要に多くなることに加えて圧力損失が高くなるため、経済性が損なわれる。 The aeration rate is preferably about twice the amount of oxygen required for biological reactions. If it is less than this, BOD and ammonia will remain in the treated water due to insufficient oxygen, and if it is greater, the air flow will be unnecessarily increased and the pressure loss will be increased, so the economy will be impaired.
 通気圧力は所定の通気量で生ずる中空糸の圧力損失よりもわずかに高い程度が望ましい。 It is desirable that the aeration pressure is slightly higher than the pressure loss of the hollow fiber generated at a predetermined aeration amount.
<ブロワ>
 ブロワ26は、吐出風圧が水深からくる水圧以下のもので十分である。但し、配管等の圧損以上であることは必要である。通常、配管抵抗は1~2kPa程度である。
<Blower>
The blower 26 is sufficient if the discharge wind pressure is equal to or lower than the water pressure coming from the water depth. However, it is necessary to be more than the pressure loss of piping. Usually, the pipe resistance is about 1 to 2 kPa.
 5mの水深の場合、通常は0.55MPa程度までの出力の汎用ブロワが用いられ、それ以上の水深では高圧ブロワが用いられてきている。 In the case of a water depth of 5 m, a general-purpose blower with an output of up to about 0.55 MPa is usually used, and a high-pressure blower has been used at a depth higher than that.
 本発明では、5m以上の水深であっても0.5MPa以下の圧力の汎用ブロワを用いることができ、0.1MPa以下の低圧ブロワを用いることが好ましい。 In the present invention, a general-purpose blower having a pressure of 0.5 MPa or less can be used even at a water depth of 5 m or more, and a low-pressure blower of 0.1 MPa or less is preferably used.
 酸素含有ガスの供給圧は、中空糸膜の圧力損失より高く、さらに膜が水圧でつぶれないこと、が条件となる。平膜、スパイラル膜は膜の圧損が水圧と比較すると無視できるため、極めて低い圧力、5kPa程度以上、水深圧力以下、望ましくは20kPa以下である。 The supply pressure of the oxygen-containing gas is higher than the pressure loss of the hollow fiber membrane, and the membrane must not be crushed by water pressure. Since the pressure loss of the flat membrane and the spiral membrane is negligible compared to the water pressure, the pressure is extremely low, about 5 kPa or more, water depth pressure or less, desirably 20 kPa or less.
 中空糸膜の場合、内径と長さによって圧力損失は変化する。通気する空気量は膜1mあたり50~200mL/dayであるから、膜長さが2倍になると空気量は2倍になり、膜径が2倍になっても空気量は2倍にしかならない。したがって、膜の圧力損失は膜長さに正比例し、直径に反比例する。 In the case of a hollow fiber membrane, the pressure loss varies depending on the inner diameter and length. Since the amount of air vent is a membrane 1 m 2 per 50 ~ 200 mL / day, film air quantity when the doubled length is doubled, the air quantity even Maku径becomes doubled only doubles Don't be. Therefore, the pressure loss of the membrane is directly proportional to the membrane length and inversely proportional to the diameter.
 圧力損失の値は、内径50μm、長さ2mの中空糸で3~20kPa程度である。 The value of pressure loss is about 3 to 20 kPa for hollow fibers having an inner diameter of 50 μm and a length of 2 m.
 上記実施の形態では、酸素溶解膜モジュール6に空気を下向きに流すようにしているが、上向きに流すようにしてもよい。 In the above embodiment, air is allowed to flow downward through the oxygen-dissolving membrane module 6, but it may be allowed to flow upward.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年2月20日付で出願された日本特許出願2018-028196に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2018-028196 filed on Feb. 20, 2018, which is incorporated by reference in its entirety.
 1 好気性生物処理装置
 2 反応槽
 6 酸素溶解膜モジュール
 9 散気管
 20,21 ヘッダー
 22 中空糸膜
 27 給気配管
 29 排ガス配管
DESCRIPTION OF SYMBOLS 1 Aerobic biological treatment apparatus 2 Reaction tank 6 Oxygen melt | dissolution membrane module 9 Air diffuser pipe 20,21 Header 22 Hollow fiber membrane 27 Air supply piping 29 Exhaust gas piping

Claims (7)

  1.  反応槽と、
     該反応槽内に設置された酸素溶解膜モジュールと、
     該酸素溶解膜モジュールに酸素含有ガスを供給する酸素含有ガス供給手段と、
     反応槽内に形成された担体の流動床と、
     該反応槽内に担体を上下に循環させる循環手段と
    を備えてなる好気性生物処理装置。
    A reaction vessel;
    An oxygen-dissolving membrane module installed in the reaction vessel;
    Oxygen-containing gas supply means for supplying an oxygen-containing gas to the oxygen-dissolving membrane module;
    A fluidized bed of support formed in the reaction vessel;
    An aerobic biological treatment apparatus comprising circulation means for circulating the carrier up and down in the reaction tank.
  2.  前記循環手段は、該反応槽内を上昇ゾーンと下降ゾーンとに区画する第1隔壁を有しており、
     該上昇ゾーンおよび/または下降ゾーンに前記酸素溶解膜モジュールが配置されており、
     原水を循環流れ方向となるように供給する原水供給手段が設けられている請求項1の好気性生物処理装置。
    The circulating means has a first partition that partitions the inside of the reaction tank into an ascending zone and a descending zone,
    The oxygen-dissolving membrane module is disposed in the ascending zone and / or descending zone;
    The aerobic biological treatment apparatus according to claim 1, further comprising raw water supply means for supplying the raw water in a circulating flow direction.
  3.  前記原水供給手段は、前記反応槽の底部に設けられた、原水を上向きに流出させる原水流入口を有する請求項2の好気性生物処理装置。 The aerobic biological treatment apparatus according to claim 2, wherein the raw water supply means has a raw water inlet provided at the bottom of the reaction tank to allow the raw water to flow upward.
  4.  前記反応槽の底部は、下方ほど水平断面積が小さくなる傾斜構造部であり、
     前記原水流入口は、該傾斜構造部の最下部に設けられている請求項3の好気性生物処理装置。
    The bottom of the reaction tank is an inclined structure part with a lower horizontal cross-section as it goes down,
    The aerobic biological treatment apparatus according to claim 3, wherein the raw water inlet is provided at a lowermost portion of the inclined structure portion.
  5.  前記反応槽の上部は、それよりも下側よりも水平断面積が大きい拡幅部となっており、
     該拡幅部内を第1ゾーンと第2ゾーンとに区画する第2隔壁が設けられており、
     前記第1隔壁の上端部が該第1ゾーン内に入り込んでおり、
     前記第2ゾーンに処理水の取出部が設けられている請求項1~4のいずれかの好気性生物処理装置。
    The upper part of the reaction tank is a widened part having a larger horizontal cross-sectional area than the lower side,
    A second partition that divides the widened portion into a first zone and a second zone is provided;
    An upper end portion of the first partition wall enters the first zone;
    The aerobic biological treatment apparatus according to any one of claims 1 to 4, wherein a treatment water take-out part is provided in the second zone.
  6.  酸素溶解膜モジュールは非多孔質の酸素溶解膜を備えている請求項1~5のいずれかの好気性生物処理装置。 6. The aerobic biological treatment apparatus according to claim 1, wherein the oxygen-dissolving membrane module includes a non-porous oxygen-dissolving membrane.
  7.  酸素溶解膜が疎水性である請求項6の好気性生物処理装置。 The aerobic biological treatment apparatus according to claim 6, wherein the oxygen-dissolving membrane is hydrophobic.
PCT/JP2019/002699 2018-02-20 2019-01-28 Aerobic biological treatment device WO2019163425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028196A JP6652147B2 (en) 2018-02-20 2018-02-20 Aerobic biological treatment equipment
JP2018-028196 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163425A1 true WO2019163425A1 (en) 2019-08-29

Family

ID=67686795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002699 WO2019163425A1 (en) 2018-02-20 2019-01-28 Aerobic biological treatment device

Country Status (3)

Country Link
JP (1) JP6652147B2 (en)
TW (1) TW201936520A (en)
WO (1) WO2019163425A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147492A (en) * 1980-03-27 1981-11-16 Ibm Hall effect device assembly
JPS6490093A (en) * 1987-10-01 1989-04-05 Komatsu Mfg Co Ltd Apparatus for treating waste water
JPH0568996A (en) * 1991-05-17 1993-03-23 Nippon Plant:Kk Generation of dissolved gas and sewage treatment apparatus using dissolved gas
JPH06198298A (en) * 1993-01-04 1994-07-19 Toshiba Corp Treatment of waste water
JPH06507335A (en) * 1989-10-02 1994-08-25 メンブラン・コーポレーション Bubble-free gas conveying device and method
JPH1076288A (en) * 1996-09-04 1998-03-24 Maruyama Mfg Co Ltd Method and apparatus for treating microorganism utilization liquid
JP2006087310A (en) * 2004-09-21 2006-04-06 Japan Organo Co Ltd Membrane-type bioreactor and liquid treatment method using the same
JP2006101805A (en) * 2004-10-07 2006-04-20 Japan Organo Co Ltd Hollow fiber membrane type bioreactor and liquid treatment method using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147492A (en) * 1981-03-06 1982-09-11 Ebara Infilco Co Ltd Biological treatment of organic waste water
DE3544383A1 (en) * 1985-07-17 1987-01-29 Ivan Sekoulov METHOD FOR BIOLOGICALLY AND / OR PHYSICAL ELIMINATION OF UNWANTED WATER INGREDIENTS FROM WATER BY MEANS OF FLOODED BIOFILM REACTORS AND SYSTEM FOR IMPLEMENTING THE PROCESS

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147492A (en) * 1980-03-27 1981-11-16 Ibm Hall effect device assembly
JPS6490093A (en) * 1987-10-01 1989-04-05 Komatsu Mfg Co Ltd Apparatus for treating waste water
JPH06507335A (en) * 1989-10-02 1994-08-25 メンブラン・コーポレーション Bubble-free gas conveying device and method
JPH0568996A (en) * 1991-05-17 1993-03-23 Nippon Plant:Kk Generation of dissolved gas and sewage treatment apparatus using dissolved gas
JPH06198298A (en) * 1993-01-04 1994-07-19 Toshiba Corp Treatment of waste water
JPH1076288A (en) * 1996-09-04 1998-03-24 Maruyama Mfg Co Ltd Method and apparatus for treating microorganism utilization liquid
JP2006087310A (en) * 2004-09-21 2006-04-06 Japan Organo Co Ltd Membrane-type bioreactor and liquid treatment method using the same
JP2006101805A (en) * 2004-10-07 2006-04-20 Japan Organo Co Ltd Hollow fiber membrane type bioreactor and liquid treatment method using the same

Also Published As

Publication number Publication date
JP6652147B2 (en) 2020-02-19
JP2019141782A (en) 2019-08-29
TW201936520A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
JP2008246357A (en) Membrane separation method and apparatus
JP6702344B2 (en) Aerobic biological treatment equipment
WO2018100841A1 (en) Biologically activated carbon processing device
JP6547866B1 (en) Aerobic treatment equipment
WO2019163425A1 (en) Aerobic biological treatment device
JP6938876B2 (en) Biological processing equipment
JP6938875B2 (en) Biological processing equipment
WO2019163424A1 (en) Aerobic biological treatment device and method for operating same
WO2019163422A1 (en) Method for operating aerobic biological treatment device
JP6601517B2 (en) Operating method of aerobic biological treatment equipment
JP6858146B2 (en) Aerobic biological treatment equipment and its operation method
JP6558455B1 (en) Aerobic biological treatment equipment
JP6610688B2 (en) Aerobic biological treatment equipment
JP2018075538A (en) Biological treatment device
JP2018047405A (en) Biological treatment device
JP2019005757A (en) Biological activated carbon treatment device
JP2019025483A (en) Biological activated carbon treatment device
JP2019005756A (en) Biological activated carbon treatment device
JP2019005755A (en) Biological activated carbon treatment device
JP2020037111A (en) Aerobic biological treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757699

Country of ref document: EP

Kind code of ref document: A1