WO2019163237A1 - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
WO2019163237A1
WO2019163237A1 PCT/JP2018/043764 JP2018043764W WO2019163237A1 WO 2019163237 A1 WO2019163237 A1 WO 2019163237A1 JP 2018043764 W JP2018043764 W JP 2018043764W WO 2019163237 A1 WO2019163237 A1 WO 2019163237A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover opening
gas refrigerant
cover
compression mechanism
discharged
Prior art date
Application number
PCT/JP2018/043764
Other languages
French (fr)
Japanese (ja)
Inventor
古谷 志保
啓 椎崎
秀幸 堀畑
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019163237A1 publication Critical patent/WO2019163237A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing

Definitions

  • the present invention relates to a hermetic compressor used for an outdoor unit or a refrigerator of an air conditioner.
  • a hermetic compressor used for an outdoor unit or a refrigerator of an air conditioner includes an electric motor unit and a compression mechanism unit in a hermetic container.
  • the electric motor part and the compression mechanism part are connected by a shaft, and the piston attached to the eccentric part of the shaft revolves by the rotation of the shaft.
  • the gas refrigerant compressed by the compression mechanism portion is discharged into a valve cover that covers the main bearing, and the gas refrigerant in the valve cover is discharged toward the electric motor portion.
  • the electric motor unit includes a stator that is fixed to the inner surface of the sealed container and a rotor that rotates within the stator.
  • the gas refrigerant passes through the motor part refrigerant passage provided in the rotor, the gap between the rotor and the stator, and the motor part refrigerant passage provided between the stator and the sealed container, and is discharged from the discharge pipe to the outside of the sealed container. Discharged.
  • the gas refrigerant discharged from the compression mechanism section includes oil that has lubricated the compression mechanism section.
  • Part of the oil contained in the gas refrigerant is separated from the gas refrigerant by passing through the electric motor section and reaching the discharge pipe, but the oil that is not separated is discharged from the discharge pipe together with the gas refrigerant to the outside of the sealed container.
  • the heat conduction in the condenser and the evaporator constituting the refrigeration cycle decreases and the efficiency of the refrigeration cycle decreases.
  • a reduction in the lubricating performance of the compression mechanism portion occurs due to a reduction in the amount of oil in the sealed container.
  • Patent Document 1 an opening is formed between the valve cover and the boss portion of the main bearing, and the opening is formed in a tapered shape extending in the direction of the electric motor portion, whereby the flow rate of the gas refrigerant discharged from the opening. The oil discharged from the discharge pipe is reduced.
  • Patent Document 1 when the compression volume in the compression mechanism portion increases, the amount of refrigerant discharged from the compression mechanism portion increases and the flow rate of the gas refrigerant increases. Therefore, in the configuration of Patent Document 1, the oil is not sufficiently separated. Further, in order to reduce the height dimension of the hermetic compressor, it is necessary to reduce the space above the motor unit. If the space above the motor unit is small, the oil is discharged from the discharge pipe without being sufficiently separated from the gas refrigerant. Further, as in Patent Document 1, when the refrigerant gas is caused to collide from directly below toward the bottom surface of the rotor of the electric motor unit, the rotor moves upward by the gas refrigerant when the flow rate of the gas refrigerant increases. Then, the shaft is lifted by the upward movement of the rotor, the thrust force of the shaft is not applied to the auxiliary bearing, and abnormal rotation occurs because the rotation in the electric motor unit and the compression mechanism unit is not stable.
  • an object of the present invention is to provide a hermetic compressor capable of reducing the flow rate of the gas refrigerant discharged from the valve cover and enhancing the oil separation function.
  • the hermetic compressor according to the first aspect of the present invention includes an electric motor part and a compression mechanism part in a hermetic container, the electric motor part is disposed above the compression mechanism part, and the electric motor part and the compression mechanism part are provided.
  • the shaft is supported by a main bearing and a sub-bearing, the compression mechanism portion is disposed between the main bearing and the sub-bearing, and the main bearing is connected to the compression mechanism portion and the
  • the main bearing is provided with a discharge port for discharging the gas refrigerant compressed by the compression mechanism unit, and the main bearing is provided with a predetermined space to form the discharge port.
  • valve cover is provided, and the valve cover is a hermetic compressor that forms a cover opening for discharging the gas refrigerant in the predetermined space in the valve cover, and the gas discharged from the cover opening.
  • the discharge direction of the refrigerant Characterized in that the axis of the different directions.
  • an upper regulating member for changing the discharge direction of the gas refrigerant discharged from the cover opening is provided above the cover opening. It is provided.
  • a lower regulating member for changing the discharge direction of the gas refrigerant discharged from the cover opening is provided below the cover opening. It is provided.
  • the upper restriction member and the lower restriction member are arranged on one side and the other side of the cover opening, and the upper restriction member is The gas refrigerant discharged from the cover opening is on the upstream side, and the lower regulating member is on the downstream side of the gas refrigerant discharged from the cover opening.
  • the upper restricting member and the lower restricting member have a semi-dome shape, and the gas refrigerant is discharged in a spiral shape from the cover opening. It is characterized by that.
  • the cover opening is formed on an upper surface of the valve cover, and the discharge is performed from the cover opening.
  • the discharge direction of the gas refrigerant is oriented in the central direction of the sealed container as a horizontal direction or an obliquely upward direction.
  • the cover opening is formed on an upper surface of the valve cover, and the discharge is performed from the cover opening. The discharge direction of the gas refrigerant is directed to the sealed container as a horizontal direction or an obliquely upward direction.
  • the present invention according to claim 8 is the hermetic compressor according to any one of claims 1 to 5, wherein the cover opening is formed on an upper surface of the valve cover, and the cover opening is A first cover opening and a second cover opening are provided, and the gas refrigerant discharged from the first cover opening and the gas refrigerant discharged from the second cover opening collide with each other.
  • the present invention according to claim 9 is the hermetic compressor according to any one of claims 1 to 5, wherein the cover opening is formed on an upper surface of the valve cover, and the cover opening is A first cover opening and a second cover opening; a first refrigerant discharge direction of the gas refrigerant discharged from the first cover opening; and a second of the gas refrigerant discharged from the second cover opening.
  • the compression mechanism section includes a first compression mechanism section and a second compression mechanism section.
  • the main bearing includes the discharge port that discharges the gas refrigerant compressed by the first compression mechanism portion, and the communication hole that discharges the gas refrigerant compressed by the second compression mechanism portion. It is characterized by that.
  • the present invention according to claim 11 is the hermetic compressor according to claim 8 or claim 9, further comprising a third cover opening and a fourth cover opening as the cover opening, and the third cover.
  • the cover opening includes a third cover opening and a fourth cover opening, and the third cover.
  • the third refrigerant discharge direction of the gas refrigerant discharged from the opening is opposed to the fourth refrigerant discharge direction of the gas refrigerant discharged from the fourth cover opening.
  • the speed of the gas refrigerant discharged from the compression mechanism can be reduced, the oil is easily separated. Furthermore, by reducing the movement of oil upward of the electric motor unit, the amount of oil discharged from the sealed container can be reduced, and abnormal noise in the compression mechanism unit can be prevented.
  • FIG. 1 is a cross-sectional view of a hermetic compressor according to an embodiment of the present invention.
  • the principal part perspective view and principal part top view of the hermetic compressor shown in FIG. A plan view and a sectional view of the valve cover shown in FIGS.
  • the perspective view, top view, and sectional drawing which show the valve cover used for the hermetic compressor by other examples of the present invention.
  • FIG. 7 is a perspective view, a plan view, and a cross-sectional view showing a valve cover used in a hermetic compressor according to still another embodiment of the present invention.
  • FIG. 7 is a perspective view, a plan view, and a cross-sectional view showing a valve cover used in a hermetic compressor according to still another embodiment of the present invention.
  • the hermetic compressor according to the first embodiment of the present invention is such that the discharge direction of the gas refrigerant discharged from the cover opening is different from the axis of the shaft. According to the present embodiment, it is possible to reduce the collision of the gas refrigerant discharged from the compression mechanism portion toward the electric motor portion disposed above the compression mechanism portion from directly below the electric motor portion. Accordingly, it is possible to reduce the movement of oil above the electric motor unit and reduce the amount of oil discharged from the sealed container. Further, since the speed of the gas refrigerant passing through the electric motor unit can be reduced, the oil is easily separated. Furthermore, it is possible to prevent abnormal noise generated by causing the refrigerant gas to collide from directly below the rotor toward the bottom surface of the rotor of the electric motor unit.
  • an upper regulating member that changes the discharge direction of the gas refrigerant discharged from the cover opening is provided above the cover opening. It is a thing. According to this Embodiment, the flow of the gas refrigerant which goes to an electric motor part can be controlled with an upper control member, and the discharge direction of a gas refrigerant can be made into the direction different from the axial center of a shaft.
  • a lower regulating member that changes the discharge direction of the gas refrigerant discharged from the cover opening is provided below the cover opening. It is a thing.
  • the flow of the gas refrigerant toward the electric motor unit can be further regulated by the lower regulating member, and the discharge direction of the gas refrigerant can be set to a direction different from the axis of the shaft.
  • the upper restriction member and the lower restriction member are arranged on one side and the other side of the cover opening, and the upper restriction member covers the cover.
  • the gas refrigerant discharged from the opening is on the upstream side
  • the lower regulating member is on the downstream side of the gas refrigerant discharged from the cover opening.
  • the upper restricting member and the lower restricting member have a semi-dome shape, and the gas refrigerant is discharged spirally from the cover opening. Is. According to this embodiment, the discharge direction of the gas refrigerant can be changed more smoothly.
  • a gas refrigerant is formed by forming a cover opening on the upper surface of the valve cover and discharging from the cover opening.
  • the discharge direction is directed in the horizontal direction or obliquely upward direction toward the center of the sealed container.
  • the speed of the gas refrigerant passing through the electric motor unit can be reduced, the oil is easily separated. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below the motor unit toward the rotor bottom surface of the motor unit.
  • the discharge direction is directed toward the sealed container as a horizontal direction or an obliquely upward direction.
  • a cover opening is formed on the upper surface of the valve cover, and the first cover is used as the cover opening.
  • An opening and a second cover opening are provided, and the gas refrigerant discharged from the first cover opening and the gas refrigerant discharged from the second cover opening collide with each other.
  • the gas refrigerant discharged from the first cover opening and the gas refrigerant discharged from the second cover opening collide with each other so that the gas refrigerant is directed toward the electric motor part from directly below the electric motor part. It is possible to reduce the collision.
  • a cover opening is formed on the upper surface of the valve cover, and the first cover is used as the cover opening.
  • An opening and a second cover opening are provided, and the first refrigerant discharge direction of the gas refrigerant discharged from the first cover opening and the second refrigerant discharge direction of the gas refrigerant discharged from the second cover opening are opposed to each other. It is a thing.
  • the speed of the gas refrigerant can be further reduced, the oil separation effect from the gas refrigerant is enhanced, and the noise prevention effect is achieved. It can be further increased.
  • a tenth embodiment of the present invention includes a first compression mechanism unit and a second compression mechanism unit as a compression mechanism unit in the hermetic compressor according to any one of the first to ninth embodiments,
  • the main bearing is provided with a discharge port for discharging the gas refrigerant compressed by the first compression mechanism section and a communication hole for discharging the gas refrigerant compressed by the second compression mechanism section.
  • the present embodiment can be applied to a two-cylinder hermetic compressor.
  • An eleventh embodiment of the present invention is the hermetic compressor according to the eighth or ninth embodiment, wherein the cover opening includes a third cover opening and a fourth cover opening, and the third cover The gas refrigerant discharged from the opening and the gas refrigerant discharged from the fourth cover opening collide with each other.
  • the gas refrigerant that is discharged from the third cover opening and the gas refrigerant that is discharged from the fourth cover opening are caused to collide with each other, so that the gas refrigerant is caused to collide directly below the motor part. Can be reduced. Accordingly, it is possible to reduce the movement of oil above the electric motor unit and reduce the amount of oil discharged from the sealed container.
  • the cover opening includes a third cover opening and a fourth cover opening, and the third cover
  • the third refrigerant discharge direction of the gas refrigerant discharged from the opening and the fourth refrigerant discharge direction of the gas refrigerant discharged from the fourth cover opening are opposed to each other. According to the present embodiment, since the gas refrigerant can be caused to collide more efficiently by causing the third refrigerant discharge direction and the fourth refrigerant discharge direction to face each other, the effect can be further enhanced.
  • FIG. 1 is a sectional view of a hermetic compressor according to this embodiment.
  • the hermetic compressor according to this embodiment includes an electric motor unit 20 and a compression mechanism unit 30 in the hermetic container 10.
  • the electric motor unit 20 is disposed above the compression mechanism unit 10.
  • the electric motor unit 20 and the compression mechanism unit 30 are connected by a shaft 40.
  • the sealed container 10 includes a cylindrical shell 10a that extends in the vertical direction, an upper shell 10b that closes an upper opening of the shell 10a, and a lower shell 10c that closes a lower opening of the shell 10a.
  • the electric motor unit 20 includes a stator 21 that is fixed to the inner surface of the sealed container 10 and a rotor 22 that rotates within the stator 21.
  • the hermetic compressor according to the present embodiment includes a first compression mechanism 30A and a second compression mechanism 30B as the compression mechanism 30.
  • the first compression mechanism 30A includes a first cylinder 31A, a first piston 32A disposed in the first cylinder 31A, and a vane (not shown) that partitions the first cylinder 31A.
  • the second compression mechanism 30B revolves in the first cylinder 31A to suck in and compress the low-pressure gas refrigerant.
  • the second compression mechanism 30B includes a second cylinder 31B, a second piston 32B disposed in the second cylinder 31B, and a vane that partitions the second cylinder 31B (not shown). 2), and the second piston 32B revolves in the second cylinder 31B to suck in and compress the low-pressure gas refrigerant.
  • a main bearing 51 is disposed on one surface of the first cylinder 31A, and an intermediate plate 52 is disposed on the other surface of the first cylinder 31A.
  • An intermediate plate 52 is disposed on one surface of the second cylinder 31B, and a sub-bearing 53 is disposed on the other surface of the second cylinder 31B. That is, the intermediate plate 52 partitions the first cylinder 31A and the second cylinder 31B.
  • the middle plate 52 has an opening larger than the diameter of the shaft 40.
  • the shaft 40 is supported by the main bearing 51 and the auxiliary bearing 44.
  • the shaft 40 includes a main shaft portion 41 to which the rotor 22 is attached and supported by the main bearing 51, a first eccentric portion 42 to which the first piston 32A is attached, a second eccentric portion 43 to which the second piston 32B is attached,
  • the auxiliary shaft portion 44 is supported by the auxiliary bearing 53.
  • the first eccentric part 42 and the second eccentric part 43 are formed with a phase difference of 180 degrees, and a connecting shaft part 45 is provided between the first eccentric part 42 and the second eccentric part 43. Forming.
  • the first compression chamber 34A is formed between the main bearing 51 and the intermediate plate 52 between the inner peripheral surface of the first cylinder 31A and the outer peripheral surface of the first piston 32A.
  • the second compression chamber 34B is formed between the inner peripheral surface of the second cylinder 31B and the outer peripheral surface of the second piston 32B between the intermediate plate 52 and the auxiliary bearing 53.
  • the first compression chamber 34A and the second compression chamber 34B have the same volume. That is, the inner diameter of the first cylinder 31A and the inner diameter of the second cylinder 31B are the same, and the outer diameter of the first piston 32A and the outer diameter of the second piston 32B are the same. Further, the inner circumferential height of the first cylinder 31A and the inner circumferential height of the second cylinder 31B are the same, and the first piston 32A height and the second piston 32B height are the same.
  • the compression mechanism unit 30 is disposed between the main bearing 51 and the auxiliary bearing 53, and the main bearing 51 is disposed between the compression mechanism unit 30 and the electric motor unit 20.
  • the main bearing 51 is provided with a valve cover 60A
  • the auxiliary bearing 53 is provided with a second valve cover 60X.
  • the gas refrigerant compressed by the first compression mechanism 30A is discharged into the valve cover 60A from the discharge hole 35 (see FIG. 2) formed in the main bearing 51.
  • the gas refrigerant compressed by the second compression mechanism portion 30B is discharged into the second valve cover 60X from a discharge hole (not shown) formed in the sub bearing 53.
  • the gas refrigerant passes from the second valve cover 60X, through the sub-bearing 53, the second cylinder 31B, the intermediate plate 52, the first cylinder 31A, and the communication hole 36 (see FIG. 2) formed in the main bearing 51. It is discharged into the valve cover 60A.
  • the gas refrigerant discharged into the valve cover 60A is discharged into the sealed container 10 from the cover opening 70A (see FIG. 2).
  • Discharge valves (not shown) are provided in the discharge holes 35 formed in the main bearing 51 and the discharge holes formed in the sub-bearing 53.
  • An oil sump 11 is formed at the bottom of the sealed container 10, and an oil pickup is provided at the lower end of the shaft 40.
  • an oil supply passage is formed in the shaft 40 in the axial direction, and a communication passage for supplying oil to the sliding surface of the compression mechanism unit 30 is formed in the oil supply passage.
  • Connected to the shell 10a are a first suction pipe 13A and a second suction pipe 13B for introducing a gas refrigerant into the compression mechanism section 30, and a terminal 50 for supplying power to the motor section 20.
  • a discharge pipe 14 for leading the gas refrigerant compressed by the compression mechanism is connected to the upper shell 10b.
  • the first suction pipe 13A is connected to the first compression chamber 34A, and the second suction pipe 13B is connected to the second compression chamber 34B.
  • An accumulator 15 is provided on the upstream side of the first suction pipe 13A and the second suction pipe 13B. The accumulator 15 separates the refrigerant returned from the refrigeration cycle into a liquid refrigerant and a gas refrigerant. Gas refrigerant flows through the first suction pipe 13A and the second suction pipe 13B.
  • the first piston 32A and the second piston 32B revolve in the first compression chamber 34A and the second compression chamber 34B.
  • the oil sucked from the oil reservoir 11 by the rotation of the shaft 40 is supplied to the compression mechanism unit 30 from the communication path, and lubricates the sliding surface of the compression mechanism unit 30.
  • the gas refrigerant is sucked into the first compression chamber 34A and the second compression chamber 34B from the first suction pipe 13A and the second suction pipe 13B by the revolving motion of the first piston 32A and the second piston 32B.
  • the gas refrigerant is compressed in the first compression chamber 34A and the second compression chamber 34B. Thereafter, the gas refrigerant is discharged into the sealed container 10 together with oil.
  • the gas refrigerant discharged into the hermetic container 10 passes through a gap between the rotor 22 and the stator 21 and an electric motor section refrigerant passage (not shown) provided between the stator 21 and the shell 10a.
  • an electric motor part refrigerant passage (not shown) is provided in the rotor 22
  • the gas refrigerant also flows through the electric motor part refrigerant passage provided in the rotor 22.
  • the gas refrigerant discharged into the hermetic container 10 separates a part of the oil while rising through the gap between the rotor 22 and the stator 21 and the motor part refrigerant passage.
  • the gas refrigerant that has passed through the electric motor unit 20 further separates part of the oil in the space above the electric motor unit 20. And from the discharge pipe 14, the gas refrigerant which fully isolate
  • FIG. 2 is a perspective view and a plan view of main parts of the hermetic compressor shown in FIG.
  • the main bearing 51 discharges the gas refrigerant compressed by the first compression mechanism 30A and the gas refrigerant compressed by the second compression mechanism 30B.
  • a communication hole 36 is formed.
  • the valve cover 60 ⁇ / b> A forms a predetermined space between the main bearing 51 and covers the discharge port 35 and the communication hole 36.
  • the valve cover 60A is formed with a cover opening 70A for discharging a gas refrigerant in a predetermined space in the valve cover 60A.
  • the cover opening 70A is formed on the upper surface of the valve cover 60A.
  • As the cover opening 70A a first cover opening 71A, a second cover opening 72A, a third cover opening 73A, and a fourth cover opening 74A are provided.
  • FIG. 3 is a plan view and a sectional view of the valve cover shown in FIGS. 3A is a plan view of the valve cover according to this embodiment
  • FIG. 3B is a cross-sectional view taken along the line BB ′ of FIG. 3A
  • FIG. 3C is a cross-sectional view of FIG.
  • FIG. 3D is a sectional view taken along the line DD ′ of FIG. 3A
  • FIG. 3E is a sectional view taken along the line EE ′ of FIG. 3A.
  • An upper regulating member 80A that changes the discharge direction of the gas refrigerant discharged from the cover opening 70A is provided above the cover opening 70A, and the gas refrigerant discharged from the cover opening 70A is provided below the cover opening 70A.
  • a lower regulating member 90A for changing the discharge direction is provided.
  • the upper regulating member 80A is disposed on one side of the cover opening 70A, and the lower regulating member 90A is disposed on the other side of the cover opening 70A.
  • the upper regulating member 80A is on the upstream side of the gas refrigerant discharged from the cover opening 70A, and the lower regulating member 90A is on the downstream side of the gas refrigerant discharged from the cover opening 70A.
  • the upper restricting member 80A and the lower restricting member 90A have a semi-dome shape, and the upper restricting member 80A is longer in the longitudinal direction than the lower restricting member 90A.
  • FIGS. 3B to 3E indicate the flow of the gas refrigerant.
  • an upper restricting member 81A is provided above one of the cover openings (first cover opening) 71A, and a lower restricting member 91A is provided below the other of the cover openings 71A.
  • an upper restricting member 82A is provided above one of the cover openings (second cover opening) 72A, and a lower restricting member 92A is provided below the other of the cover openings 72A. Yes.
  • FIG. 3B an upper restricting member 81A is provided above one of the cover openings (first cover opening) 71A, and a lower restricting member 91A is provided below the other of the cover openings 71A.
  • an upper restricting member 82A is provided above one of the cover openings (second cover opening) 72A
  • a lower restricting member 92A is provided below the other of the cover openings 72A.
  • an upper restricting member 83A is provided above one of the cover openings (third cover opening) 73A, and a lower restricting member 93A is provided below the other of the cover openings 73A. Yes.
  • an upper restricting member 84A is provided above one of the cover openings (fourth cover opening) 74A, and a lower restricting member 94A is provided below the other of the cover openings 74A. Yes.
  • the cover opening 71A is disposed in the vicinity of the discharge port 35.
  • the cover opening 71A is formed larger than the cover opening 72A, the cover opening 73A, and the cover opening 74A.
  • the cover opening 74A is formed larger than the cover opening 72A and the cover opening 73A.
  • the size of the portion 73A and the cover opening 74A is determined.
  • the gas refrigerant compressed by the second compression mechanism portion 30B is discharged into the valve cover 60A from the two communication holes 36, but the communication holes 36 are one or three or more. Also good.
  • FIG. 4 is a perspective view and a plan view for explaining the discharge direction of the refrigerant in the valve cover shown in FIGS. 1 to 3.
  • the discharge direction X of the gas refrigerant discharged from the cover opening 70 ⁇ / b> A is different from the axis Y of the shaft 40.
  • the gas refrigerant discharged from the compression mechanism unit 30 toward the electric motor unit 20 disposed above the compression mechanism unit 30 is supplied to the electric motor unit. It is possible to reduce the collision from directly below 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced.
  • an upper regulating member 80A for changing the discharge direction X of the gas refrigerant discharged from the cover opening 70A is provided above the cover opening 70A. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be restricted by the upper restricting member 80A, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
  • a lower regulating member 90A for changing the discharge direction X of the gas refrigerant discharged from the cover opening 70A is provided below the cover opening 70A.
  • the flow of the gas refrigerant toward the electric motor unit 20 can be further regulated by the lower regulating member 90 ⁇ / b> A, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
  • the upper regulating member 80A is on the upstream side of the gas refrigerant discharged from the cover opening 70A
  • the lower regulating member 90A is on the downstream side of the gas refrigerant discharged from the cover opening 70A, whereby the gas refrigerant toward the motor unit 20 is obtained.
  • the flow direction of gas refrigerant can be regulated, and the discharge direction X of the gas refrigerant can be changed smoothly.
  • the upper regulating member 80A and the lower regulating member 90A are formed in a semi-dome shape, and the gas refrigerant is discharged in a spiral shape from the cover opening 70A, so that the gas refrigerant discharge direction X can be changed more smoothly. it can.
  • the cover opening 70A is formed on the upper surface of the valve cover 60A.
  • the gas refrigerant is made to collide with the airtight container 10 by making the discharge direction X of the gas refrigerant discharged from the cover opening 70 ⁇ / b> A to the airtight container 10 as a horizontal direction or an obliquely upward direction.
  • the gas refrigerant discharged from the first cover opening 71A and the gas refrigerant discharged from the second cover opening 72A collide with each other, and the gas refrigerant discharged from the third cover opening 73A,
  • the gas refrigerant discharged from the four-cover opening 74A collides with it.
  • the gas refrigerant discharged from the first cover opening 71A and the gas refrigerant discharged from the second cover opening 72A collide with each other, and the gas refrigerant discharged from the third cover opening 73A and the fourth cover opening.
  • the first refrigerant discharge direction X1 of the gas refrigerant discharged from the first cover opening 71A and the second refrigerant discharge direction X2 of the gas refrigerant discharged from the second cover opening 72A are opposed to each other.
  • the third refrigerant discharge direction X3 of the gas refrigerant discharged from the third cover opening 73A is opposed to the fourth refrigerant discharge direction X4 of the gas refrigerant discharged from the fourth cover opening 74A.
  • first refrigerant discharge direction X1 and the second refrigerant discharge direction X2 are opposed to each other, and the third refrigerant discharge direction X3 and the fourth refrigerant discharge direction X4 are opposed to each other, so that the speed of the gas refrigerant can be further reduced.
  • the oil separation effect from the gas refrigerant can be enhanced and the noise prevention effect can be further enhanced.
  • FIG. 5 is a perspective view, a plan view, and a sectional view showing a valve cover used in a hermetic compressor according to another embodiment of the present invention. Since the configuration other than the valve cover is the same as that shown in FIGS. Also in the present embodiment, the valve cover 60B is formed with a cover opening 70B for discharging a gas refrigerant in a predetermined space in the valve cover 60B. An upper regulating member 80B for changing the discharge direction of the gas refrigerant discharged from the cover opening 70B is provided above the cover opening 70B, and the gas refrigerant discharged from the cover opening 70B is provided below the cover opening 70B. A lower regulating member 90B that changes the ejection direction is provided.
  • the upper regulating member 80B is disposed on one side of the cover opening 70B, and the lower regulating member 90B is disposed on the other side of the cover opening 70B.
  • the upper restriction member 80B is on the upstream side of the gas refrigerant discharged from the cover opening 70B, and the lower restriction member 90B is on the downstream side of the gas refrigerant discharged from the cover opening 70B.
  • the upper restricting member 80B and the lower restricting member 90B have a semi-dome shape, and the upper restricting member 80B and the lower restricting member 90B have the same length in the longitudinal direction.
  • an upper restricting member 81B is provided above one of the cover openings (first cover opening) 71B, and a lower restricting member 91B is provided below the other of the cover openings 71B.
  • the cover opening 72B, the cover opening 73B, and the cover opening 74B have the same configuration as the cover opening 71B.
  • the discharge direction X of the gas refrigerant discharged from the cover opening 70B is different from the axis Y of the shaft 40. By making the discharge direction X of the gas refrigerant different from the axis Y of the shaft 40, the gas refrigerant discharged from the compression mechanism unit 20 toward the electric motor unit 20 disposed above the compression mechanism unit 30 is supplied to the electric motor unit.
  • an upper regulating member 80B that changes the discharge direction X of the gas refrigerant discharged from the cover opening 70B is provided above the cover opening 70B. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be regulated by the upper regulating member 80B, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
  • a lower regulating member 90B that changes the discharge direction X of the gas refrigerant discharged from the cover opening 70B is provided below the cover opening 70B.
  • the flow of the gas refrigerant toward the electric motor unit 20 can be further regulated by the lower regulating member 90B, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
  • the upper regulating member 80B is on the upstream side of the gas refrigerant discharged from the cover opening 70B, and the lower regulating member 90B is on the downstream side of the gas refrigerant discharged from the cover opening 70B.
  • the flow direction of gas refrigerant can be regulated, and the discharge direction X of the gas refrigerant can be changed smoothly.
  • the upper regulating member 80B and the lower regulating member 90B are formed in a semi-dome shape, and the gas refrigerant is discharged in a spiral shape from the cover opening 70B, so that the gas refrigerant discharge direction X can be changed more smoothly. it can.
  • the cover opening 70B is formed on the upper surface of the valve cover 60B.
  • the gas refrigerant is made to collide with the airtight container 10 by directing the discharge direction X of the gas refrigerant discharged from the cover opening 70B to the airtight container 10 as a horizontal direction or an obliquely upward direction.
  • the discharge direction of the gas refrigerant discharged from is the same.
  • FIG. 6 is a perspective view, a plan view, and a cross-sectional view showing a valve cover used in a hermetic compressor according to still another embodiment of the present invention. Since the configuration other than the valve cover is the same as that shown in FIGS. Also in this embodiment, the valve cover 60C is formed with a cover opening 70C for discharging the gas refrigerant in a predetermined space in the valve cover 60C. An upper regulating member 80C for changing the discharge direction of the gas refrigerant discharged from the cover opening 70C is provided above the cover opening 70C, and the gas refrigerant discharged from the cover opening 70C is provided below the cover opening 70C. A lower regulating member 90C for changing the discharge direction is provided.
  • the upper regulating member 80C is disposed on one side of the cover opening 70C, and the lower regulating member 90C is disposed on the other side of the cover opening 70C.
  • the upper regulating member 80C is on the upstream side of the gas refrigerant discharged from the cover opening 70C, and the lower regulating member 90C is on the downstream side of the gas refrigerant discharged from the cover opening 70C.
  • the upper restricting member 80C and the lower restricting member 90C have a semi-dome shape, and the upper restricting member 80C and the lower restricting member 90C have the same length in the longitudinal direction.
  • an upper restricting member 81C is provided above one of the cover openings (first cover opening) 71C, and a lower restricting member 91C is provided below the other of the cover openings 71C.
  • the cover opening 72C, the cover opening 73C, and the cover opening 74C have the same configuration as the cover opening 71C.
  • the discharge direction X of the gas refrigerant discharged from the cover opening 70 ⁇ / b> C is different from the axis Y of the shaft 40.
  • the gas refrigerant discharged from the compression mechanism unit 20 toward the electric motor unit 20 disposed above the compression mechanism unit 30 is supplied to the electric motor unit. It is possible to reduce the collision from directly below 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of the gas refrigerant which passes the electric motor part 20 can be reduced, oil is easy to separate. Furthermore, it is possible to prevent abnormal noise generated by causing the refrigerant gas to collide from directly below the rotor 22 toward the bottom surface of the rotor 22 of the electric motor unit 20.
  • an upper regulating member 80C for changing the discharge direction X of the gas refrigerant discharged from the cover opening 70C is provided above the cover opening 70C. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be regulated by the upper regulating member 80 ⁇ / b> C, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
  • a lower regulating member 90C that changes the discharge direction X of the gas refrigerant discharged from the cover opening 70C is provided below the cover opening 70C.
  • the flow of the gas refrigerant toward the electric motor unit 20 can be further regulated by the lower regulating member 90 ⁇ / b> C, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
  • the upper regulating member 80C is on the upstream side of the gas refrigerant discharged from the cover opening 70C
  • the lower regulating member 90C is on the downstream side of the gas refrigerant discharged from the cover opening 70C, so that the gas refrigerant toward the electric motor unit 20 is obtained.
  • the flow direction of gas refrigerant can be regulated, and the discharge direction X of the gas refrigerant can be changed smoothly.
  • the upper regulating member 80C and the lower regulating member 90C are formed in a semi-dome shape, and the gas refrigerant is discharged in a spiral shape from the cover opening 70C, thereby changing the gas refrigerant discharge direction X more smoothly. it can.
  • the cover opening 70C is formed on the upper surface of the valve cover 60C.
  • the gas refrigerant is made to collide with the airtight container 10 by making the discharge direction X of the gas refrigerant discharged from the cover opening 70 ⁇ / b> C to the airtight container 10 with the horizontal direction or the obliquely upward direction.
  • the gas refrigerant discharged from the first cover opening 71C and the gas refrigerant discharged from the second cover opening 72C collide, and the gas refrigerant discharged from the third cover opening 73C and the fourth cover opening By colliding with the gas refrigerant discharged from the part 74C, it is possible to reduce the collision of the gas refrigerant from directly below the electric motor part 20 toward the electric motor part 20.
  • the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced.
  • coolant can be reduced by making gas refrigerants collide, oil is easy to isolate
  • the oil particles in the gas refrigerant collide with each other so that the oil particle size is increased and the oil is easily separated from the gas refrigerant.
  • FIG. 7 is a perspective view, a plan view, and a sectional view showing a valve cover used in a hermetic compressor according to still another embodiment of the present invention. Since the configuration other than the valve cover is the same as that shown in FIGS. Also in the present embodiment, the valve cover 60D is formed with a cover opening 70D for discharging a gas refrigerant in a predetermined space in the valve cover 60D. An upper regulating member 80D for changing the discharge direction of the gas refrigerant discharged from the cover opening 70D is provided above the cover opening 70D, and the gas refrigerant discharged from the cover opening 70D is provided below the cover opening 70D. A lower regulating member 90D for changing the discharge direction is provided.
  • the upper regulating member 80D is disposed on one side of the cover opening 70D, and the lower regulating member 90D is disposed on the other side of the cover opening 70D.
  • the upper regulating member 80D is on the upstream side of the gas refrigerant discharged from the cover opening 70D, and the lower regulating member 90D is on the downstream side of the gas refrigerant discharged from the cover opening 70D.
  • the upper restricting member 80D and the lower restricting member 90D have a semi-dome shape, and the upper restricting member 80D and the lower restricting member 90D have the same length in the longitudinal direction.
  • an upper restricting member 81D is provided above one of the cover openings (first cover opening) 71D, and a lower restricting member 91D is provided below the other of the cover openings 71D.
  • the cover opening 72D, the cover opening 73D, and the cover opening 74D have the same configuration as the cover opening 71D.
  • the discharge direction X of the gas refrigerant discharged from the cover opening 70 ⁇ / b> D is different from the axis Y of the shaft 40.
  • the gas refrigerant discharged from the compression mechanism unit 20 toward the electric motor unit 20 disposed above the compression mechanism unit 30 is supplied to the electric motor unit. It is possible to reduce the collision from directly below 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of the gas refrigerant which passes the electric motor part 20 can be reduced, oil is easy to separate. Furthermore, it is possible to prevent abnormal noise generated by causing the refrigerant gas to collide from directly below the rotor 22 toward the bottom surface of the rotor 22 of the electric motor unit 20.
  • an upper regulating member 80D that changes the discharge direction X of the gas refrigerant discharged from the cover opening 70D is provided above the cover opening 70D. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be regulated by the upper regulating member 80D, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
  • a lower regulating member 90D for changing the discharge direction X of the gas refrigerant discharged from the cover opening 70D is provided below the cover opening 70D.
  • the flow of the gas refrigerant toward the electric motor unit 20 can be further regulated by the lower regulating member 90D, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
  • the upper regulating member 80D is on the upstream side of the gas refrigerant discharged from the cover opening 70D
  • the lower regulating member 90D is on the downstream side of the gas refrigerant discharged from the cover opening 70D.
  • the flow direction of gas refrigerant can be regulated, and the discharge direction X of the gas refrigerant can be changed smoothly.
  • the upper restricting member 80D and the lower restricting member 90D are formed in a semi-dome shape, so that the discharge direction X of the gas refrigerant can be changed more smoothly.
  • the cover opening 70D is formed on the upper surface of the valve cover 60D. Then, the discharge direction X of the gas refrigerant discharged from the cover opening 70D is directed to the center direction of the sealed container 10 as a horizontal direction or an obliquely upward direction, so that the center direction of the sealed container 10, for example, the shaft 40 or the main bearing 51 A gas refrigerant can collide with the boss part. Further, it is possible to reduce the collision of the gas refrigerant from directly below the motor unit 20 toward the motor unit 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced.
  • the present invention is particularly suitable for a hermetic compressor having two cylinders and a large compression volume in the compression mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

This hermetic compressor is characterized in that: an electric motor section 20 and a compression mechanism section 30 are provided within a hermetic container 10; the electric motor section 20 and the compression mechanism section 30 are connected by a shaft 40; the shaft 40 is supported by a main bearing 51 and an auxiliary bearing 53; the main bearing 51 is disposed between the compression mechanism section 30 and the electric motor section 20; the main bearing 51 has formed therein a discharge opening 35 from which a gas refrigerant compressed by the compression mechanism section 30 is discharged; the main bearing 51 is provided with a valve cover 60A which forms a predetermined space and which covers the discharge opening 35; the valve cover 60A has formed therein a cover opening 70A from which a gas refrigerant in the predetermined space within the valve cover 60A is discharged; and the direction X of discharge of the gas refrigerant from the cover opening 70A is different from the direction of the axis Y of the shaft 40. In the provided hermetic compressor, the speed of flow of the gas refrigerant discharged from the valve cover 60A is reduced, and a function for separating oil is enhanced.

Description

密閉型圧縮機Hermetic compressor
 本発明は空気調和機の室外機や冷凍機に用いられる密閉型圧縮機に関するものである。 The present invention relates to a hermetic compressor used for an outdoor unit or a refrigerator of an air conditioner.
一般に、空気調和機の室外機や冷凍機に用いられる密閉型圧縮機は、密閉容器内に電動機部と圧縮機構部とを備える。電動機部と圧縮機構部とはシャフトによって連結し、シャフトの偏心部に取り付けたピストンは、シャフトの回転によって公転運動する。
 そして、電動機構部を圧縮機構部の上方に配置し、シャフトを鉛直方向に配置する密閉型圧縮機がある。その密閉型圧縮機では、圧縮機構部で圧縮されたガス冷媒は、主軸受を覆うバルブカバー内に吐出され、バルブカバー内のガス冷媒は、電動機部に向けて吐出される。
 電動機部は、密閉容器の内面に固定される固定子と、固定子内で回転する回転子とから構成されている。ガス冷媒は、回転子に設けた電動機部冷媒通路、回転子と固定子との隙間、及び固定子と密閉容器との間に設けた電動機部冷媒通路を通過し、吐出管から密閉容器外に吐出される。
 圧縮機構部から吐出されるガス冷媒には、圧縮機構部を潤滑したオイルが含まれている。
 ガス冷媒に含まれるオイルの一部は、電動機部を通過し吐出管に至るまでに、ガス冷媒から分離するが、分離されないオイルはガス冷媒とともに吐出管から密閉容器外に吐出される。
 密閉容器外に吐出されるオイル量が多くなると、冷凍サイクルを構成する凝縮器や蒸発器での熱伝導の低下や冷凍サイクルの効率の低下が生じる。また、密閉容器内のオイル量低下によって圧縮機構部の潤滑性能の低下が生じる。
 特許文献1は、バルブカバーと主軸受のボス部との間に開口部を形成し、この開口部を電動機部の方向に広がるテーパー状とすることで、開口部から吐出されるガス冷媒の流速を低下させ、吐出管から吐出されるオイルの低減を図っている。
Generally, a hermetic compressor used for an outdoor unit or a refrigerator of an air conditioner includes an electric motor unit and a compression mechanism unit in a hermetic container. The electric motor part and the compression mechanism part are connected by a shaft, and the piston attached to the eccentric part of the shaft revolves by the rotation of the shaft.
There is a hermetic compressor in which the electric mechanism unit is disposed above the compression mechanism unit and the shaft is disposed in the vertical direction. In the hermetic compressor, the gas refrigerant compressed by the compression mechanism portion is discharged into a valve cover that covers the main bearing, and the gas refrigerant in the valve cover is discharged toward the electric motor portion.
The electric motor unit includes a stator that is fixed to the inner surface of the sealed container and a rotor that rotates within the stator. The gas refrigerant passes through the motor part refrigerant passage provided in the rotor, the gap between the rotor and the stator, and the motor part refrigerant passage provided between the stator and the sealed container, and is discharged from the discharge pipe to the outside of the sealed container. Discharged.
The gas refrigerant discharged from the compression mechanism section includes oil that has lubricated the compression mechanism section.
Part of the oil contained in the gas refrigerant is separated from the gas refrigerant by passing through the electric motor section and reaching the discharge pipe, but the oil that is not separated is discharged from the discharge pipe together with the gas refrigerant to the outside of the sealed container.
When the amount of oil discharged outside the hermetic container increases, the heat conduction in the condenser and the evaporator constituting the refrigeration cycle decreases and the efficiency of the refrigeration cycle decreases. In addition, a reduction in the lubricating performance of the compression mechanism portion occurs due to a reduction in the amount of oil in the sealed container.
In Patent Document 1, an opening is formed between the valve cover and the boss portion of the main bearing, and the opening is formed in a tapered shape extending in the direction of the electric motor portion, whereby the flow rate of the gas refrigerant discharged from the opening. The oil discharged from the discharge pipe is reduced.
特開2012-112366号公報JP 2012-112366 A
 しかし、圧縮機構部での圧縮容積が大きくなると、圧縮機構部から吐出される冷媒量が多くなり、ガス冷媒の流速が大きくなる。そのため、特許文献1の構成ではオイルが十分に分離されない。
 また、密閉型圧縮機の高さ寸法を小さくするためには、電動機部の上方空間を小さくする必要がある。電動機部の上方空間が小さいと、オイルは、ガス冷媒から十分に分離されずに吐出管から吐出されてしまう。
 更に、特許文献1のように、電動機部の回転子底面に向かって冷媒ガスを直下より衝突させると、ガス冷媒の流速が大きくなった場合には、ガス冷媒によって回転子が上方に移動する。そして、回転子の上方への移動によってシャフトが持ち上げられ、副軸受に対してシャフトのスラスト力が加わらなくなり、電動機部及び圧縮機構部での回転が安定しないために異音が発生する。
However, when the compression volume in the compression mechanism portion increases, the amount of refrigerant discharged from the compression mechanism portion increases and the flow rate of the gas refrigerant increases. Therefore, in the configuration of Patent Document 1, the oil is not sufficiently separated.
Further, in order to reduce the height dimension of the hermetic compressor, it is necessary to reduce the space above the motor unit. If the space above the motor unit is small, the oil is discharged from the discharge pipe without being sufficiently separated from the gas refrigerant.
Further, as in Patent Document 1, when the refrigerant gas is caused to collide from directly below toward the bottom surface of the rotor of the electric motor unit, the rotor moves upward by the gas refrigerant when the flow rate of the gas refrigerant increases. Then, the shaft is lifted by the upward movement of the rotor, the thrust force of the shaft is not applied to the auxiliary bearing, and abnormal rotation occurs because the rotation in the electric motor unit and the compression mechanism unit is not stable.
 そこで本発明は、バルブカバーから吐出されるガス冷媒の流速を低下させるとともにオイルの分離機能を高めることができる密閉型圧縮機を提供することを目的とする。 Therefore, an object of the present invention is to provide a hermetic compressor capable of reducing the flow rate of the gas refrigerant discharged from the valve cover and enhancing the oil separation function.
 請求項1記載の本発明の密閉型圧縮機は、密閉容器内に電動機部と圧縮機構部とを備え、前記電動機部を前記圧縮機構部の上方に配置し、前記電動機部と前記圧縮機構部とをシャフトによって連結し、前記シャフトを、主軸受と副軸受とで支持し、前記主軸受と前記副軸受との間に前記圧縮機構部を配置し、前記主軸受を前記圧縮機構部と前記電動機部との間に配置し、前記主軸受には、前記圧縮機構部で圧縮されたガス冷媒を吐出する吐出口を形成し、前記主軸受には、所定空間を形成して前記吐出口を覆うバルブカバーを設け、前記バルブカバーには、前記バルブカバー内の前記所定空間の前記ガス冷媒を吐出させるカバー開口部を形成する密閉型圧縮機であって、前記カバー開口部から吐出する前記ガス冷媒の吐出方向を、前記シャフトの軸芯と異なる方向としたことを特徴とする。
 請求項2記載の本発明は、請求項1に記載の密閉型圧縮機において、前記カバー開口部の上方に、前記カバー開口部から吐出する前記ガス冷媒の前記吐出方向を変更する上方規制部材を設けたことを特徴とする。
 請求項3記載の本発明は、請求項2に記載の密閉型圧縮機において、前記カバー開口部の下方に、前記カバー開口部から吐出する前記ガス冷媒の前記吐出方向を変更する下方規制部材を設けたことを特徴とする。
 請求項4記載の本発明は、請求項3に記載の密閉型圧縮機において、前記上方規制部材と前記下方規制部材とを、前記カバー開口部の一方と他方に配置し、前記上方規制部材が前記カバー開口部から吐出する前記ガス冷媒の上流側となり、前記下方規制部材が前記カバー開口部から吐出する前記ガス冷媒の下流側となることを特徴とする。
 請求項5記載の本発明は、請求項4に記載の密閉型圧縮機において、前記上方規制部材及び前記下方規制部材を半ドーム形状とし、前記ガス冷媒が前記カバー開口部からスパイラル状に吐出されることを特徴とする。
 請求項6記載の本発明は、請求項1から請求項5のいずれか1項に記載の密閉型圧縮機において、前記バルブカバーの上面に前記カバー開口部を形成し、前記カバー開口部から吐出する前記ガス冷媒の前記吐出方向を、水平方向又は斜め上方向として前記密閉容器の中心方向に向けたことを特徴とする。
 請求項7記載の本発明は、請求項1から請求項5のいずれか1項に記載の密閉型圧縮機において、前記バルブカバーの上面に前記カバー開口部を形成し、前記カバー開口部から吐出する前記ガス冷媒の前記吐出方向を、水平方向又は斜め上方向として前記密閉容器に向けたことを特徴とする。
 請求項8記載の本発明は、請求項1から請求項5のいずれか1項に記載の密閉型圧縮機において、前記バルブカバーの上面に前記カバー開口部を形成し、前記カバー開口部として、第1カバー開口部と第2カバー開口部とを備え、前記第1カバー開口部から吐出する前記ガス冷媒と、前記第2カバー開口部から吐出する前記ガス冷媒とを衝突させることを特徴とする。
 請求項9記載の本発明は、請求項1から請求項5のいずれか1項に記載の密閉型圧縮機において、前記バルブカバーの上面に前記カバー開口部を形成し、前記カバー開口部として、第1カバー開口部と第2カバー開口部とを備え、前記第1カバー開口部から吐出する前記ガス冷媒の第1冷媒吐出方向と、前記第2カバー開口部から吐出する前記ガス冷媒の第2冷媒吐出方向とを対向させたことを特徴とする。
 請求項10記載の本発明は、請求項1から請求項9のいずれか1項に記載の密閉型圧縮機において、前記圧縮機構部として、第1圧縮機構部と第2圧縮機構部とを備え、前記主軸受には、前記第1圧縮機構部で圧縮された前記ガス冷媒を吐出する前記吐出口と、前記第2圧縮機構部で圧縮された前記ガス冷媒を吐出する連通孔とを備えたことを特徴とする。
 請求項11記載の本発明は、請求項8又は請求項9に記載の密閉型圧縮機において、前記カバー開口部として、第3カバー開口部と第4カバー開口部とを備え、前記第3カバー開口部から吐出する前記ガス冷媒と、前記第4カバー開口部から吐出する前記ガス冷媒とを衝突させることを特徴とする。
 請求項12記載の本発明は、請求項8又は請求項9に記載の密閉型圧縮機において、前記カバー開口部として、第3カバー開口部と第4カバー開口部とを備え、前記第3カバー開口部から吐出する前記ガス冷媒の第3冷媒吐出方向と、前記第4カバー開口部から吐出する前記ガス冷媒の第4冷媒吐出方向とを対向させたことを特徴とする。
The hermetic compressor according to the first aspect of the present invention includes an electric motor part and a compression mechanism part in a hermetic container, the electric motor part is disposed above the compression mechanism part, and the electric motor part and the compression mechanism part are provided. Are connected by a shaft, the shaft is supported by a main bearing and a sub-bearing, the compression mechanism portion is disposed between the main bearing and the sub-bearing, and the main bearing is connected to the compression mechanism portion and the The main bearing is provided with a discharge port for discharging the gas refrigerant compressed by the compression mechanism unit, and the main bearing is provided with a predetermined space to form the discharge port. A valve cover is provided, and the valve cover is a hermetic compressor that forms a cover opening for discharging the gas refrigerant in the predetermined space in the valve cover, and the gas discharged from the cover opening. The discharge direction of the refrigerant Characterized in that the axis of the different directions.
According to a second aspect of the present invention, in the hermetic compressor according to the first aspect, an upper regulating member for changing the discharge direction of the gas refrigerant discharged from the cover opening is provided above the cover opening. It is provided.
According to a third aspect of the present invention, in the hermetic compressor according to the second aspect, a lower regulating member for changing the discharge direction of the gas refrigerant discharged from the cover opening is provided below the cover opening. It is provided.
According to a fourth aspect of the present invention, in the hermetic compressor according to the third aspect, the upper restriction member and the lower restriction member are arranged on one side and the other side of the cover opening, and the upper restriction member is The gas refrigerant discharged from the cover opening is on the upstream side, and the lower regulating member is on the downstream side of the gas refrigerant discharged from the cover opening.
According to a fifth aspect of the present invention, in the hermetic compressor according to the fourth aspect, the upper restricting member and the lower restricting member have a semi-dome shape, and the gas refrigerant is discharged in a spiral shape from the cover opening. It is characterized by that.
According to a sixth aspect of the present invention, in the hermetic compressor according to any one of the first to fifth aspects, the cover opening is formed on an upper surface of the valve cover, and the discharge is performed from the cover opening. The discharge direction of the gas refrigerant is oriented in the central direction of the sealed container as a horizontal direction or an obliquely upward direction.
According to a seventh aspect of the present invention, in the hermetic compressor according to any one of the first to fifth aspects, the cover opening is formed on an upper surface of the valve cover, and the discharge is performed from the cover opening. The discharge direction of the gas refrigerant is directed to the sealed container as a horizontal direction or an obliquely upward direction.
The present invention according to claim 8 is the hermetic compressor according to any one of claims 1 to 5, wherein the cover opening is formed on an upper surface of the valve cover, and the cover opening is A first cover opening and a second cover opening are provided, and the gas refrigerant discharged from the first cover opening and the gas refrigerant discharged from the second cover opening collide with each other. .
The present invention according to claim 9 is the hermetic compressor according to any one of claims 1 to 5, wherein the cover opening is formed on an upper surface of the valve cover, and the cover opening is A first cover opening and a second cover opening; a first refrigerant discharge direction of the gas refrigerant discharged from the first cover opening; and a second of the gas refrigerant discharged from the second cover opening. It is characterized by facing the refrigerant discharge direction.
According to a tenth aspect of the present invention, in the hermetic compressor according to any one of the first to ninth aspects, the compression mechanism section includes a first compression mechanism section and a second compression mechanism section. The main bearing includes the discharge port that discharges the gas refrigerant compressed by the first compression mechanism portion, and the communication hole that discharges the gas refrigerant compressed by the second compression mechanism portion. It is characterized by that.
The present invention according to claim 11 is the hermetic compressor according to claim 8 or claim 9, further comprising a third cover opening and a fourth cover opening as the cover opening, and the third cover. The gas refrigerant discharged from the opening and the gas refrigerant discharged from the fourth cover opening are caused to collide with each other.
According to a twelfth aspect of the present invention, in the hermetic compressor according to the eighth or ninth aspect, the cover opening includes a third cover opening and a fourth cover opening, and the third cover. The third refrigerant discharge direction of the gas refrigerant discharged from the opening is opposed to the fourth refrigerant discharge direction of the gas refrigerant discharged from the fourth cover opening.
 本発明によれば、圧縮機構部から吐出されるガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に、電動機部上方へのオイルの移動を低減することで、密閉容器からのオイル吐出量を低減できるとともに、圧縮機構部での異音を防止することができる。 According to the present invention, since the speed of the gas refrigerant discharged from the compression mechanism can be reduced, the oil is easily separated. Furthermore, by reducing the movement of oil upward of the electric motor unit, the amount of oil discharged from the sealed container can be reduced, and abnormal noise in the compression mechanism unit can be prevented.
本発明の一実施例による密閉型圧縮機の断面図1 is a cross-sectional view of a hermetic compressor according to an embodiment of the present invention. 図1に示す密閉型圧縮機の要部斜視図及び要部平面図The principal part perspective view and principal part top view of the hermetic compressor shown in FIG. 図1及び図2に示すバルブカバーの平面図及び断面図A plan view and a sectional view of the valve cover shown in FIGS. 図1から図3に示すバルブカバーにおける冷媒の吐出方向を説明するための斜視図及び平面図The perspective view and top view for demonstrating the discharge direction of the refrigerant | coolant in the valve cover shown in FIGS. 1-3. 本発明の他の実施例による密閉型圧縮機に用いるバルブカバーを示す斜視図、平面図、及び断面図The perspective view, top view, and sectional drawing which show the valve cover used for the hermetic compressor by other examples of the present invention. 本発明の更に他の実施例による密閉型圧縮機に用いるバルブカバーを示す斜視図、平面図、及び断面図FIG. 7 is a perspective view, a plan view, and a cross-sectional view showing a valve cover used in a hermetic compressor according to still another embodiment of the present invention. 本発明の更に他の実施例による密閉型圧縮機に用いるバルブカバーを示す斜視図、平面図、及び断面図FIG. 7 is a perspective view, a plan view, and a cross-sectional view showing a valve cover used in a hermetic compressor according to still another embodiment of the present invention.
 本発明の第1の実施の形態による密閉型圧縮機は、カバー開口部から吐出するガス冷媒の吐出方向を、シャフトの軸芯と異なる方向としたものである。本実施の形態によれば、圧縮機構部の上方に配置した電動機部に向かって圧縮機構部から吐出されるガス冷媒を、電動機部の直下より衝突させることを少なくすることができる。従って、電動機部上方へのオイルの移動を低減し、密閉容器からのオイル吐出量を低減できる。また電動機部を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部の回転子底面に向かって冷媒ガスを回転子の直下より衝突させることにより発生する異音を防止することができる。 The hermetic compressor according to the first embodiment of the present invention is such that the discharge direction of the gas refrigerant discharged from the cover opening is different from the axis of the shaft. According to the present embodiment, it is possible to reduce the collision of the gas refrigerant discharged from the compression mechanism portion toward the electric motor portion disposed above the compression mechanism portion from directly below the electric motor portion. Accordingly, it is possible to reduce the movement of oil above the electric motor unit and reduce the amount of oil discharged from the sealed container. Further, since the speed of the gas refrigerant passing through the electric motor unit can be reduced, the oil is easily separated. Furthermore, it is possible to prevent abnormal noise generated by causing the refrigerant gas to collide from directly below the rotor toward the bottom surface of the rotor of the electric motor unit.
 本発明の第2の実施の形態は、第1の実施の形態による密閉型圧縮機において、カバー開口部の上方に、カバー開口部から吐出するガス冷媒の吐出方向を変更する上方規制部材を設けたものである。本実施の形態によれば、上方規制部材によって電動機部に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向を、シャフトの軸芯と異なる方向とすることができる。 According to a second embodiment of the present invention, in the hermetic compressor according to the first embodiment, an upper regulating member that changes the discharge direction of the gas refrigerant discharged from the cover opening is provided above the cover opening. It is a thing. According to this Embodiment, the flow of the gas refrigerant which goes to an electric motor part can be controlled with an upper control member, and the discharge direction of a gas refrigerant can be made into the direction different from the axial center of a shaft.
 本発明の第3の実施の形態は、第2の実施の形態による密閉型圧縮機において、カバー開口部の下方に、カバー開口部から吐出するガス冷媒の吐出方向を変更する下方規制部材を設けたものである。本実施の形態によれば、下方規制部材によって更に電動機部に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向を、シャフトの軸芯と異なる方向とすることができる。 According to a third embodiment of the present invention, in the hermetic compressor according to the second embodiment, a lower regulating member that changes the discharge direction of the gas refrigerant discharged from the cover opening is provided below the cover opening. It is a thing. According to the present embodiment, the flow of the gas refrigerant toward the electric motor unit can be further regulated by the lower regulating member, and the discharge direction of the gas refrigerant can be set to a direction different from the axis of the shaft.
 本発明の第4の実施の形態は、第3の実施の形態による密閉型圧縮機において、上方規制部材と下方規制部材とを、カバー開口部の一方と他方に配置し、上方規制部材がカバー開口部から吐出するガス冷媒の上流側となり、下方規制部材がカバー開口部から吐出するガス冷媒の下流側となるものである。本実施の形態によれば、電動機部に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向をスムーズに変更することができる。 According to a fourth embodiment of the present invention, in the hermetic compressor according to the third embodiment, the upper restriction member and the lower restriction member are arranged on one side and the other side of the cover opening, and the upper restriction member covers the cover. The gas refrigerant discharged from the opening is on the upstream side, and the lower regulating member is on the downstream side of the gas refrigerant discharged from the cover opening. According to the present embodiment, the flow of the gas refrigerant toward the electric motor unit can be regulated, and the discharge direction of the gas refrigerant can be changed smoothly.
 本発明の第5の実施の形態は、第4の実施の形態による密閉型圧縮機において、上方規制部材及び下方規制部材を半ドーム形状とし、ガス冷媒がカバー開口部からスパイラル状に吐出されるものである。本実施の形態によれば、ガス冷媒の吐出方向を更にスムーズに変更できる。 According to a fifth embodiment of the present invention, in the hermetic compressor according to the fourth embodiment, the upper restricting member and the lower restricting member have a semi-dome shape, and the gas refrigerant is discharged spirally from the cover opening. Is. According to this embodiment, the discharge direction of the gas refrigerant can be changed more smoothly.
 本発明の第6の実施の形態は、第1から第5のいずれかの実施の形態による密閉型圧縮機において、バルブカバーの上面にカバー開口部を形成し、カバー開口部から吐出するガス冷媒の吐出方向を、水平方向又は斜め上方向として密閉容器の中心方向に向けたものである。本実施の形態によれば、密閉容器の中心方向、例えばシャフト又は主軸受のボス部にガス冷媒を衝突させることで、電動機部に向かってガス冷媒を電動機部の直下より衝突させることを少なくできる。従って、電動機部上方へのオイルの移動を低減し、密閉容器からのオイル吐出量を低減できる。また電動機部を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部の回転子底面に向かって冷媒ガスを電動機部の直下より衝突させることにより発生する異音を防止することができる。 According to a sixth embodiment of the present invention, in the hermetic compressor according to any one of the first to fifth embodiments, a gas refrigerant is formed by forming a cover opening on the upper surface of the valve cover and discharging from the cover opening. The discharge direction is directed in the horizontal direction or obliquely upward direction toward the center of the sealed container. According to the present embodiment, by causing the gas refrigerant to collide with the central direction of the sealed container, for example, the shaft or the boss part of the main bearing, it is possible to reduce the collision of the gas refrigerant from directly below the electric motor part toward the electric motor part. . Accordingly, it is possible to reduce the movement of oil above the electric motor unit and reduce the amount of oil discharged from the sealed container. Further, since the speed of the gas refrigerant passing through the electric motor unit can be reduced, the oil is easily separated. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below the motor unit toward the rotor bottom surface of the motor unit.
 本発明の第7の実施の形態は、第1から第5のいずれかの実施の形態による密閉型圧縮機において、バルブカバーの上面にカバー開口部を形成し、カバー開口部から吐出するガス冷媒の吐出方向を、水平方向又は斜め上方向として密閉容器に向けたものである。本実施の形態によれば、密閉容器にガス冷媒を衝突させることで、電動機部に向かってガス冷媒を電動機部の直下より衝突させることを少なくできる。従って、電動機部上方へのオイルの移動を低減し、密閉容器からのオイル吐出量を低減できる。また電動機部を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部の回転子底面に向かって冷媒ガスを電動機部の直下より衝突させることにより発生する異音を防止することができる。 According to a seventh embodiment of the present invention, in the hermetic compressor according to any one of the first to fifth embodiments, a gas opening that forms a cover opening on the upper surface of the valve cover and is discharged from the cover opening The discharge direction is directed toward the sealed container as a horizontal direction or an obliquely upward direction. According to the present embodiment, by causing the gas refrigerant to collide with the sealed container, it is possible to reduce the collision of the gas refrigerant from directly below the electric motor part toward the electric motor part. Accordingly, it is possible to reduce the movement of oil above the electric motor unit and reduce the amount of oil discharged from the sealed container. Further, since the speed of the gas refrigerant passing through the electric motor unit can be reduced, the oil is easily separated. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below the motor unit toward the rotor bottom surface of the motor unit.
 本発明の第8の実施の形態は、第1から第5のいずれかの実施の形態による密閉型圧縮機において、バルブカバーの上面にカバー開口部を形成し、カバー開口部として、第1カバー開口部と第2カバー開口部とを備え、第1カバー開口部から吐出するガス冷媒と、第2カバー開口部から吐出するガス冷媒とを衝突させるものである。本実施の形態によれば、第1カバー開口部から吐出するガス冷媒と、第2カバー開口部から吐出するガス冷媒とを衝突させることで、電動機部に向かってガス冷媒を電動機部の直下より衝突させることを少なくできる。従って、電動機部上方へのオイルの移動を低減し、密閉容器からのオイル吐出量を低減できる。またガス冷媒同士を衝突させることで、ガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更にガス冷媒中のオイル同士も衝突させることで、オイルの粒子径が大きくなり、ガス冷媒からオイルが分離しやすくなる。更に電動機部の回転子底面に向かって冷媒ガスを電動機部の直下より衝突させることにより発生する異音を防止することができる。 According to an eighth embodiment of the present invention, in the hermetic compressor according to any one of the first to fifth embodiments, a cover opening is formed on the upper surface of the valve cover, and the first cover is used as the cover opening. An opening and a second cover opening are provided, and the gas refrigerant discharged from the first cover opening and the gas refrigerant discharged from the second cover opening collide with each other. According to the present embodiment, the gas refrigerant discharged from the first cover opening and the gas refrigerant discharged from the second cover opening collide with each other so that the gas refrigerant is directed toward the electric motor part from directly below the electric motor part. It is possible to reduce the collision. Accordingly, it is possible to reduce the movement of oil above the electric motor unit and reduce the amount of oil discharged from the sealed container. Moreover, since the speed of a gas refrigerant | coolant can be reduced by making gas refrigerants collide, oil is easy to isolate | separate. Furthermore, the oil particles in the gas refrigerant collide with each other, so that the oil particle size is increased and the oil is easily separated from the gas refrigerant. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below the motor unit toward the rotor bottom surface of the motor unit.
 本発明の第9の実施の形態は、第1から第5のいずれかの実施の形態による密閉型圧縮機において、バルブカバーの上面にカバー開口部を形成し、カバー開口部として、第1カバー開口部と第2カバー開口部とを備え、第1カバー開口部から吐出するガス冷媒の第1冷媒吐出方向と、第2カバー開口部から吐出するガス冷媒の第2冷媒吐出方向とを対向させたものである。本実施の形態によれば、第1冷媒吐出方向と第2冷媒吐出方向とを対向させることで、ガス冷媒の速度を更に低減でき、ガス冷媒からのオイル分離効果を高め、異音防止効果を更に高めることができる。 According to a ninth embodiment of the present invention, in the hermetic compressor according to any one of the first to fifth embodiments, a cover opening is formed on the upper surface of the valve cover, and the first cover is used as the cover opening. An opening and a second cover opening are provided, and the first refrigerant discharge direction of the gas refrigerant discharged from the first cover opening and the second refrigerant discharge direction of the gas refrigerant discharged from the second cover opening are opposed to each other. It is a thing. According to the present embodiment, by making the first refrigerant discharge direction and the second refrigerant discharge direction face each other, the speed of the gas refrigerant can be further reduced, the oil separation effect from the gas refrigerant is enhanced, and the noise prevention effect is achieved. It can be further increased.
 本発明の第10の実施の形態は、第1から第9のいずれかの実施の形態による密閉型圧縮機において、圧縮機構部として、第1圧縮機構部と第2圧縮機構部とを備え、主軸受には、第1圧縮機構部で圧縮されたガス冷媒を吐出する吐出口と、第2圧縮機構部で圧縮されたガス冷媒を吐出する連通孔とを備えたものである。本実施の形態によれば、2シリンダの密閉型圧縮機に適用できる。 A tenth embodiment of the present invention includes a first compression mechanism unit and a second compression mechanism unit as a compression mechanism unit in the hermetic compressor according to any one of the first to ninth embodiments, The main bearing is provided with a discharge port for discharging the gas refrigerant compressed by the first compression mechanism section and a communication hole for discharging the gas refrigerant compressed by the second compression mechanism section. The present embodiment can be applied to a two-cylinder hermetic compressor.
 本発明の第11の実施の形態は、第8又は第9の実施の形態による密閉型圧縮機において、カバー開口部として、第3カバー開口部と第4カバー開口部とを備え、第3カバー開口部から吐出するガス冷媒と、第4カバー開口部から吐出するガス冷媒とを衝突させるものである。本実施の形態によれば、第3カバー開口部から吐出するガス冷媒と、第4カバー開口部から吐出するガス冷媒とを衝突させることで、電動機部に向かってガス冷媒を直下より衝突させることを少なくできる。従って、電動機部上方へのオイルの移動を低減し、密閉容器からのオイル吐出量を低減できる。またガス冷媒同士を衝突させることで、ガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更にガス冷媒中のオイル同士も衝突させることで、オイルの粒子径が大きくなり、ガス冷媒からオイルが分離しやすくなる。更に電動機部の回転子底面に向かって冷媒ガスを直下より衝突させることにより発生する異音を防止することができる。 An eleventh embodiment of the present invention is the hermetic compressor according to the eighth or ninth embodiment, wherein the cover opening includes a third cover opening and a fourth cover opening, and the third cover The gas refrigerant discharged from the opening and the gas refrigerant discharged from the fourth cover opening collide with each other. According to the present embodiment, the gas refrigerant that is discharged from the third cover opening and the gas refrigerant that is discharged from the fourth cover opening are caused to collide with each other, so that the gas refrigerant is caused to collide directly below the motor part. Can be reduced. Accordingly, it is possible to reduce the movement of oil above the electric motor unit and reduce the amount of oil discharged from the sealed container. Moreover, since the speed of a gas refrigerant | coolant can be reduced by making gas refrigerants collide, oil is easy to isolate | separate. Furthermore, the oil particles in the gas refrigerant collide with each other, so that the oil particle size is increased and the oil is easily separated from the gas refrigerant. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below toward the rotor bottom surface of the electric motor unit.
 本発明の第12の実施の形態は、第8又は第9の実施の形態による密閉型圧縮機において、カバー開口部として、第3カバー開口部と第4カバー開口部とを備え、第3カバー開口部から吐出するガス冷媒の第3冷媒吐出方向と、第4カバー開口部から吐出するガス冷媒の第4冷媒吐出方向とを対向させたものである。本実施の形態によれば、第3冷媒吐出方向と第4冷媒吐出方向とを対向させることで、ガス冷媒同士を更に効率的に衝突させることができるので、その効果をより高めることができる。 In a twelfth embodiment of the present invention, in the hermetic compressor according to the eighth or ninth embodiment, the cover opening includes a third cover opening and a fourth cover opening, and the third cover The third refrigerant discharge direction of the gas refrigerant discharged from the opening and the fourth refrigerant discharge direction of the gas refrigerant discharged from the fourth cover opening are opposed to each other. According to the present embodiment, since the gas refrigerant can be caused to collide more efficiently by causing the third refrigerant discharge direction and the fourth refrigerant discharge direction to face each other, the effect can be further enhanced.
 以下、本発明の一実施例について図面を参照しながら説明する。
 図1は本実施例による密閉型圧縮機の断面図である。
 本実施例による密閉型圧縮機は、密閉容器10内に電動機部20と圧縮機構部30とを備えている。電動機部20は圧縮機構部10の上方に配置している。電動機部20と圧縮機構部30とはシャフト40によって連結されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view of a hermetic compressor according to this embodiment.
The hermetic compressor according to this embodiment includes an electric motor unit 20 and a compression mechanism unit 30 in the hermetic container 10. The electric motor unit 20 is disposed above the compression mechanism unit 10. The electric motor unit 20 and the compression mechanism unit 30 are connected by a shaft 40.
 密閉容器10は、上下方向に沿って延びる円筒状に形成された胴シェル10aと、胴シェル10aの上部開口を塞ぐ上シェル10bと、胴シェル10aの下部開口を塞ぐ下シェル10cとで構成されている。
 電動機部20は、密閉容器10内面に固定される固定子21と、固定子21内で回転する回転子22とから構成される。
 本実施例による密閉型圧縮機は、圧縮機構部30として、第1圧縮機構部30Aと第2圧縮機構部30Bとを有している。
 第1圧縮機構部30Aは、第1シリンダ31Aと、第1シリンダ31A内に配置される第1ピストン32Aと、第1シリンダ31A内を仕切るベーン(図示せず)とを有し、第1ピストン32Aが第1シリンダ31A内で公転運動することで、低圧のガス冷媒を吸入して圧縮する。
 第1圧縮機構部30Aと同様に、第2圧縮機構部30Bは、第2シリンダ31Bと、第2シリンダ31B内に配置される第2ピストン32Bと、第2シリンダ31B内を仕切るベーン(図示せず)とを有し、第2ピストン32Bが第2シリンダ31B内で公転運動することで、低圧のガス冷媒を吸入して圧縮する。
The sealed container 10 includes a cylindrical shell 10a that extends in the vertical direction, an upper shell 10b that closes an upper opening of the shell 10a, and a lower shell 10c that closes a lower opening of the shell 10a. ing.
The electric motor unit 20 includes a stator 21 that is fixed to the inner surface of the sealed container 10 and a rotor 22 that rotates within the stator 21.
The hermetic compressor according to the present embodiment includes a first compression mechanism 30A and a second compression mechanism 30B as the compression mechanism 30.
The first compression mechanism 30A includes a first cylinder 31A, a first piston 32A disposed in the first cylinder 31A, and a vane (not shown) that partitions the first cylinder 31A. 32A revolves in the first cylinder 31A to suck in and compress the low-pressure gas refrigerant.
Similar to the first compression mechanism 30A, the second compression mechanism 30B includes a second cylinder 31B, a second piston 32B disposed in the second cylinder 31B, and a vane that partitions the second cylinder 31B (not shown). 2), and the second piston 32B revolves in the second cylinder 31B to suck in and compress the low-pressure gas refrigerant.
 第1シリンダ31Aの一方の面には主軸受51を配置し、第1シリンダ31Aの他方の面には中板52を配置している。
 また、第2シリンダ31Bの一方の面には中板52を配置し、第2シリンダ31Bの他方の面には副軸受53を配置している。
 すなわち、中板52は、第1シリンダ31Aと第2シリンダ31Bとを仕切る。中板52は、シャフト40の径よりも大きな開口部を有する。
 シャフト40は、主軸受51と副軸受44とで支持される。
 シャフト40は、回転子22を取り付けて主軸受51で支持される主軸部41と、第1ピストン32Aを取り付ける第1偏芯部42と、第2ピストン32Bを取り付ける第2偏芯部43と、副軸受53で支持される副軸部44とで構成される。
 第1偏芯部42と第2偏芯部43とは180度の位相差を持って形成され、第1偏芯部42と第2偏芯部43との間には、連結軸部45を形成している。
A main bearing 51 is disposed on one surface of the first cylinder 31A, and an intermediate plate 52 is disposed on the other surface of the first cylinder 31A.
An intermediate plate 52 is disposed on one surface of the second cylinder 31B, and a sub-bearing 53 is disposed on the other surface of the second cylinder 31B.
That is, the intermediate plate 52 partitions the first cylinder 31A and the second cylinder 31B. The middle plate 52 has an opening larger than the diameter of the shaft 40.
The shaft 40 is supported by the main bearing 51 and the auxiliary bearing 44.
The shaft 40 includes a main shaft portion 41 to which the rotor 22 is attached and supported by the main bearing 51, a first eccentric portion 42 to which the first piston 32A is attached, a second eccentric portion 43 to which the second piston 32B is attached, The auxiliary shaft portion 44 is supported by the auxiliary bearing 53.
The first eccentric part 42 and the second eccentric part 43 are formed with a phase difference of 180 degrees, and a connecting shaft part 45 is provided between the first eccentric part 42 and the second eccentric part 43. Forming.
 第1圧縮室34Aは、主軸受51と中板52との間で、第1シリンダ31A内周面と第1ピストン32A外周面との間に形成される。また、第2圧縮室34Bは、中板52と副軸受53との間で、第2シリンダ31B内周面と第2ピストン32B外周面との間に形成される。
 第1圧縮室34Aと第2圧縮室34Bとの容積は同一である。すなわち、第1シリンダ31A内径と、第2シリンダ31B内径とは同一であり、第1ピストン32A外径と第2ピストン32B外径とは同一である。また、第1シリンダ31A内周高さと、第2シリンダ31B内周高さとは同一であり、第1ピストン32A高さと第2ピストン32B高さとは同一である。
The first compression chamber 34A is formed between the main bearing 51 and the intermediate plate 52 between the inner peripheral surface of the first cylinder 31A and the outer peripheral surface of the first piston 32A. The second compression chamber 34B is formed between the inner peripheral surface of the second cylinder 31B and the outer peripheral surface of the second piston 32B between the intermediate plate 52 and the auxiliary bearing 53.
The first compression chamber 34A and the second compression chamber 34B have the same volume. That is, the inner diameter of the first cylinder 31A and the inner diameter of the second cylinder 31B are the same, and the outer diameter of the first piston 32A and the outer diameter of the second piston 32B are the same. Further, the inner circumferential height of the first cylinder 31A and the inner circumferential height of the second cylinder 31B are the same, and the first piston 32A height and the second piston 32B height are the same.
 圧縮機構部30は、主軸受51と副軸受53との間に配置し、主軸受51は、圧縮機構部30と電動機部20との間に配置している。主軸受51にはバルブカバー60Aを設け、副軸受53には第2バルブカバー60Xを設けている。
 第1圧縮機構部30Aで圧縮されたガス冷媒は、主軸受51に形成している吐出孔35(図2参照)からバルブカバー60A内に吐出される。第2圧縮機構部30Bで圧縮されたガス冷媒は、副軸受53に形成している吐出孔(図示せず)から第2バルブカバー60X内に吐出される。そして、ガス冷媒は、第2バルブカバー60X内から、副軸受53、第2シリンダ31B、中板52、第1シリンダ31A、及び主軸受51に形成している連通穴36(図2参照)からバルブカバー60A内に吐出される。バルブカバー60A内に吐出されたガス冷媒は、カバー開口部70A(図2参照)から密閉容器10内に吐出される。主軸受51に形成している吐出孔35、及び副軸受53に形成している吐出孔には、吐出バルブ(図示せず)を設けている。
The compression mechanism unit 30 is disposed between the main bearing 51 and the auxiliary bearing 53, and the main bearing 51 is disposed between the compression mechanism unit 30 and the electric motor unit 20. The main bearing 51 is provided with a valve cover 60A, and the auxiliary bearing 53 is provided with a second valve cover 60X.
The gas refrigerant compressed by the first compression mechanism 30A is discharged into the valve cover 60A from the discharge hole 35 (see FIG. 2) formed in the main bearing 51. The gas refrigerant compressed by the second compression mechanism portion 30B is discharged into the second valve cover 60X from a discharge hole (not shown) formed in the sub bearing 53. The gas refrigerant passes from the second valve cover 60X, through the sub-bearing 53, the second cylinder 31B, the intermediate plate 52, the first cylinder 31A, and the communication hole 36 (see FIG. 2) formed in the main bearing 51. It is discharged into the valve cover 60A. The gas refrigerant discharged into the valve cover 60A is discharged into the sealed container 10 from the cover opening 70A (see FIG. 2). Discharge valves (not shown) are provided in the discharge holes 35 formed in the main bearing 51 and the discharge holes formed in the sub-bearing 53.
 密閉容器10内の底部にはオイル溜め11が形成され、シャフト40の下端部にはオイルピックアップを設けている。
 また、図示はしないが、シャフト40の内部には軸方向に給油路が形成され、給油路には、圧縮機構部30の摺動面にオイルを供給するための連通路が形成されている。
 胴シェル10aには、圧縮機構部30にガス冷媒を導入する第1吸入管13A及び第2吸入管13Bと、電動機部20に給電するターミナル50とが接続されている。上シェル10bには、圧縮機構部で圧縮されたガス冷媒を導出する吐出管14が接続されている。
 第1吸入管13Aは第1圧縮室34Aに接続され、第2吸入管13Bは第2圧縮室34Bに接続されている。第1吸入管13Aおよび第2吸入管13Bの上流側には、アキュムレータ15を設けている。アキュムレータ15は、冷凍サイクルから戻ってきた冷媒を、液冷媒とガス冷媒に分離する。第1吸入管13Aおよび第2吸入管13Bにはガス冷媒が流れる。
An oil sump 11 is formed at the bottom of the sealed container 10, and an oil pickup is provided at the lower end of the shaft 40.
Although not shown, an oil supply passage is formed in the shaft 40 in the axial direction, and a communication passage for supplying oil to the sliding surface of the compression mechanism unit 30 is formed in the oil supply passage.
Connected to the shell 10a are a first suction pipe 13A and a second suction pipe 13B for introducing a gas refrigerant into the compression mechanism section 30, and a terminal 50 for supplying power to the motor section 20. A discharge pipe 14 for leading the gas refrigerant compressed by the compression mechanism is connected to the upper shell 10b.
The first suction pipe 13A is connected to the first compression chamber 34A, and the second suction pipe 13B is connected to the second compression chamber 34B. An accumulator 15 is provided on the upstream side of the first suction pipe 13A and the second suction pipe 13B. The accumulator 15 separates the refrigerant returned from the refrigeration cycle into a liquid refrigerant and a gas refrigerant. Gas refrigerant flows through the first suction pipe 13A and the second suction pipe 13B.
 シャフト40の回転によって、第1ピストン32Aおよび第2ピストン32Bは、第1圧縮室34Aおよび第2圧縮室34B内で公転運動を行う。
 なお、シャフト40の回転によって、オイル溜め11から吸い上げたオイルは、連通路から圧縮機構部30に供給され、圧縮機構部30の摺動面の潤滑を行う。
 第1ピストン32Aおよび第2ピストン32Bの公転運動によって、ガス冷媒は、第1吸入管13Aおよび第2吸入管13Bから第1圧縮室34Aおよび第2圧縮室34Bに吸入される。そして、ガス冷媒は、第1圧縮室34Aおよび第2圧縮室34Bで圧縮される。その後、ガス冷媒は、オイルとともに密閉容器10内に吐出される。
Due to the rotation of the shaft 40, the first piston 32A and the second piston 32B revolve in the first compression chamber 34A and the second compression chamber 34B.
The oil sucked from the oil reservoir 11 by the rotation of the shaft 40 is supplied to the compression mechanism unit 30 from the communication path, and lubricates the sliding surface of the compression mechanism unit 30.
The gas refrigerant is sucked into the first compression chamber 34A and the second compression chamber 34B from the first suction pipe 13A and the second suction pipe 13B by the revolving motion of the first piston 32A and the second piston 32B. The gas refrigerant is compressed in the first compression chamber 34A and the second compression chamber 34B. Thereafter, the gas refrigerant is discharged into the sealed container 10 together with oil.
 密閉容器10内に吐出されたガス冷媒は、回転子22と固定子21との隙間、及び固定子21と胴シェル10aとの間に設けた電動機部冷媒通路(図示せず)を通過する。回転子22に電動機部冷媒通路(図示せず)を設けている場合には、ガス冷媒は、回転子22に設けている電動機部冷媒通路にも流れる。
 密閉容器10内に吐出されたガス冷媒は、回転子22と固定子21との隙間や電動機部冷媒通路を通過して上昇する間に一部のオイルを分離する。電動機部20を通過したガス冷媒は、電動機部20の上方空間で更に一部のオイルを分離する。
 そして、吐出管14からは、オイルを十分に分離したガス冷媒が密閉容器10外に吐出される。
The gas refrigerant discharged into the hermetic container 10 passes through a gap between the rotor 22 and the stator 21 and an electric motor section refrigerant passage (not shown) provided between the stator 21 and the shell 10a. In the case where an electric motor part refrigerant passage (not shown) is provided in the rotor 22, the gas refrigerant also flows through the electric motor part refrigerant passage provided in the rotor 22.
The gas refrigerant discharged into the hermetic container 10 separates a part of the oil while rising through the gap between the rotor 22 and the stator 21 and the motor part refrigerant passage. The gas refrigerant that has passed through the electric motor unit 20 further separates part of the oil in the space above the electric motor unit 20.
And from the discharge pipe 14, the gas refrigerant which fully isolate | separated oil is discharged out of the airtight container 10. FIG.
 図2は図1に示す密閉型圧縮機の要部斜視図及び要部平面図である。
 図2(b)に示すように、主軸受51には、第1圧縮機構部30Aで圧縮されたガス冷媒を吐出する吐出口35と、第2圧縮機構部30Bで圧縮されたガス冷媒を吐出する連通孔36を形成している。
 バルブカバー60Aは、主軸受51との間に所定空間を形成して吐出口35及び連通孔36を覆っている。
 バルブカバー60Aには、バルブカバー60A内の所定空間のガス冷媒を吐出させるカバー開口部70Aを形成している。
 本実施例では、カバー開口部70Aは、バルブカバー60Aの上面に形成する。カバー開口部70Aとして、第1カバー開口部71Aと第2カバー開口部72Aと第3カバー開口部73Aと第4カバー開口部74Aとを備えている。
FIG. 2 is a perspective view and a plan view of main parts of the hermetic compressor shown in FIG.
As shown in FIG. 2 (b), the main bearing 51 discharges the gas refrigerant compressed by the first compression mechanism 30A and the gas refrigerant compressed by the second compression mechanism 30B. A communication hole 36 is formed.
The valve cover 60 </ b> A forms a predetermined space between the main bearing 51 and covers the discharge port 35 and the communication hole 36.
The valve cover 60A is formed with a cover opening 70A for discharging a gas refrigerant in a predetermined space in the valve cover 60A.
In the present embodiment, the cover opening 70A is formed on the upper surface of the valve cover 60A. As the cover opening 70A, a first cover opening 71A, a second cover opening 72A, a third cover opening 73A, and a fourth cover opening 74A are provided.
 図3は図1及び図2に示すバルブカバーの平面図及び断面図である。図3(a)は本実施例によるバルブカバーの平面図、図3(b)は図3(a)のB-B’断面図、図3(c)は図3(a)のC-C’断面図、図3(d)は図3(a)のD-D’断面図、図3(e)は図3(a)のE-E’断面図である。
 カバー開口部70Aの上方には、カバー開口部70Aから吐出するガス冷媒の吐出方向を変更する上方規制部材80Aを設け、カバー開口部70Aの下方には、カバー開口部70Aから吐出するガス冷媒の吐出方向を変更する下方規制部材90Aを設けている。
 上方規制部材80Aはカバー開口部70Aの一方に配置し、下方規制部材90Aはカバー開口部70Aの他方に配置している。
 上方規制部材80Aは、カバー開口部70Aから吐出するガス冷媒の上流側となり、下方規制部材90Aは、カバー開口部70Aから吐出するガス冷媒の下流側となる。
 上方規制部材80A及び下方規制部材90Aは半ドーム形状とし、上方規制部材80Aは下方規制部材90Aよりも長手方向長さを長くしている。
FIG. 3 is a plan view and a sectional view of the valve cover shown in FIGS. 3A is a plan view of the valve cover according to this embodiment, FIG. 3B is a cross-sectional view taken along the line BB ′ of FIG. 3A, and FIG. 3C is a cross-sectional view of FIG. FIG. 3D is a sectional view taken along the line DD ′ of FIG. 3A, and FIG. 3E is a sectional view taken along the line EE ′ of FIG. 3A.
An upper regulating member 80A that changes the discharge direction of the gas refrigerant discharged from the cover opening 70A is provided above the cover opening 70A, and the gas refrigerant discharged from the cover opening 70A is provided below the cover opening 70A. A lower regulating member 90A for changing the discharge direction is provided.
The upper regulating member 80A is disposed on one side of the cover opening 70A, and the lower regulating member 90A is disposed on the other side of the cover opening 70A.
The upper regulating member 80A is on the upstream side of the gas refrigerant discharged from the cover opening 70A, and the lower regulating member 90A is on the downstream side of the gas refrigerant discharged from the cover opening 70A.
The upper restricting member 80A and the lower restricting member 90A have a semi-dome shape, and the upper restricting member 80A is longer in the longitudinal direction than the lower restricting member 90A.
 図3(b)~図3(e)に示す破線矢印は、ガス冷媒の流れを示している。
 図3(b)に示すように、カバー開口部(第1カバー開口部)71Aの一方の上方には上方規制部材81Aを、カバー開口部71Aの他方の下方には下方規制部材91Aを設けている。
 図3(c)に示すように、カバー開口部(第2カバー開口部)72Aの一方の上方には上方規制部材82Aを、カバー開口部72Aの他方の下方には下方規制部材92Aを設けている。
 図3(d)に示すように、カバー開口部(第3カバー開口部)73Aの一方の上方には上方規制部材83Aを、カバー開口部73Aの他方の下方には下方規制部材93Aを設けている。
 図3(e)に示すように、カバー開口部(第4カバー開口部)74Aの一方の上方には上方規制部材84Aを、カバー開口部74Aの他方の下方には下方規制部材94Aを設けている。
Broken line arrows shown in FIGS. 3B to 3E indicate the flow of the gas refrigerant.
As shown in FIG. 3B, an upper restricting member 81A is provided above one of the cover openings (first cover opening) 71A, and a lower restricting member 91A is provided below the other of the cover openings 71A. Yes.
As shown in FIG. 3C, an upper restricting member 82A is provided above one of the cover openings (second cover opening) 72A, and a lower restricting member 92A is provided below the other of the cover openings 72A. Yes.
As shown in FIG. 3D, an upper restricting member 83A is provided above one of the cover openings (third cover opening) 73A, and a lower restricting member 93A is provided below the other of the cover openings 73A. Yes.
As shown in FIG. 3E, an upper restricting member 84A is provided above one of the cover openings (fourth cover opening) 74A, and a lower restricting member 94A is provided below the other of the cover openings 74A. Yes.
 カバー開口部71Aは吐出口35の近傍に配置する。カバー開口部71Aは、カバー開口部72A、カバー開口部73A、及びカバー開口部74Aよりも大きく形成している。
 また、カバー開口部74Aは、カバー開口部72A及びカバー開口部73Aよりも大きく形成している。
 このように、吐出口35及び連通孔36から吐出される冷媒量、吐出口35及び連通孔36の位置、又はバルブカバー60Aの形状に応じて、カバー開口部71A、カバー開口部72A、カバー開口部73A、及びカバー開口部74Aの大きさを決定する。
 なお、本実施例では、第2圧縮機構部30Bで圧縮されたガス冷媒は、2つの連通孔36からバルブカバー60A内に吐出されるが、連通孔36は1つ又は3つ以上であってもよい。
The cover opening 71A is disposed in the vicinity of the discharge port 35. The cover opening 71A is formed larger than the cover opening 72A, the cover opening 73A, and the cover opening 74A.
Further, the cover opening 74A is formed larger than the cover opening 72A and the cover opening 73A.
Thus, the cover opening 71A, the cover opening 72A, and the cover opening depending on the amount of refrigerant discharged from the discharge port 35 and the communication hole 36, the positions of the discharge port 35 and the communication hole 36, or the shape of the valve cover 60A. The size of the portion 73A and the cover opening 74A is determined.
In the present embodiment, the gas refrigerant compressed by the second compression mechanism portion 30B is discharged into the valve cover 60A from the two communication holes 36, but the communication holes 36 are one or three or more. Also good.
 図4は図1から図3に示すバルブカバーにおける冷媒の吐出方向を説明するための斜視図及び平面図である。
 カバー開口部70Aから吐出するガス冷媒の吐出方向Xは、シャフト40の軸芯Yと異なる方向としている。
 ガス冷媒の吐出方向Xをシャフト40の軸芯Yと異なる方向とすることで、圧縮機構部30の上方に配置した電動機部20に向かって圧縮機構部30から吐出されるガス冷媒を、電動機部20の直下より衝突させることを少なくすることができる。従って、電動機部20上方へのオイルの移動を低減し、密閉容器10からのオイル吐出量を低減できる。また電動機部20を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部20の回転子22底面に向かって冷媒ガスを回転子22の直下より衝突させることにより発生する異音を防止することができる。
FIG. 4 is a perspective view and a plan view for explaining the discharge direction of the refrigerant in the valve cover shown in FIGS. 1 to 3.
The discharge direction X of the gas refrigerant discharged from the cover opening 70 </ b> A is different from the axis Y of the shaft 40.
By making the discharge direction X of the gas refrigerant different from the axis Y of the shaft 40, the gas refrigerant discharged from the compression mechanism unit 30 toward the electric motor unit 20 disposed above the compression mechanism unit 30 is supplied to the electric motor unit. It is possible to reduce the collision from directly below 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of the gas refrigerant which passes the electric motor part 20 can be reduced, oil is easy to separate. Furthermore, it is possible to prevent abnormal noise generated by causing the refrigerant gas to collide from directly below the rotor 22 toward the bottom surface of the rotor 22 of the electric motor unit 20.
 本実施例は、カバー開口部70Aの上方に、カバー開口部70Aから吐出するガス冷媒の吐出方向Xを変更する上方規制部材80Aを設けている。そのため、上方規制部材80Aによって電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xを、シャフト40の軸芯Yと異なる方向とすることができる。
 また、本実施例は、カバー開口部70Aの下方に、カバー開口部70Aから吐出するガス冷媒の吐出方向Xを変更する下方規制部材90Aを設けている。そのため、下方規制部材90Aによって更に電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xを、シャフト40の軸芯Yと異なる方向とすることができる。
 そして、上方規制部材80Aがカバー開口部70Aから吐出するガス冷媒の上流側となり、下方規制部材90Aがカバー開口部70Aから吐出するガス冷媒の下流側となることで、電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xをスムーズに変更することができる。
 更に、本実施例は、上方規制部材80A及び下方規制部材90Aを半ドーム形状とし、ガス冷媒がカバー開口部70Aからスパイラル状に吐出されることで、ガス冷媒の吐出方向Xを更にスムーズに変更できる。
In this embodiment, an upper regulating member 80A for changing the discharge direction X of the gas refrigerant discharged from the cover opening 70A is provided above the cover opening 70A. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be restricted by the upper restricting member 80A, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
In this embodiment, a lower regulating member 90A for changing the discharge direction X of the gas refrigerant discharged from the cover opening 70A is provided below the cover opening 70A. For this reason, the flow of the gas refrigerant toward the electric motor unit 20 can be further regulated by the lower regulating member 90 </ b> A, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
Then, the upper regulating member 80A is on the upstream side of the gas refrigerant discharged from the cover opening 70A, and the lower regulating member 90A is on the downstream side of the gas refrigerant discharged from the cover opening 70A, whereby the gas refrigerant toward the motor unit 20 is obtained. The flow direction of gas refrigerant can be regulated, and the discharge direction X of the gas refrigerant can be changed smoothly.
Further, in this embodiment, the upper regulating member 80A and the lower regulating member 90A are formed in a semi-dome shape, and the gas refrigerant is discharged in a spiral shape from the cover opening 70A, so that the gas refrigerant discharge direction X can be changed more smoothly. it can.
 また、本実施例は、カバー開口部70Aをバルブカバー60Aの上面に形成する。そして、カバー開口部70Aから吐出するガス冷媒の吐出方向Xを、水平方向又は斜め上方向として密閉容器10に向けることで、密閉容器10にガス冷媒を衝突させる。密閉容器10にガス冷媒を衝突させることで、電動機部20に向かってガス冷媒を電動機部20の直下より衝突させることを少なくできる。従って、電動機部20上方へのオイルの移動を低減し、密閉容器10からのオイル吐出量を低減できる。また電動機部20を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部20の回転子22底面に向かって冷媒ガスを電動機部20の直下より衝突させることにより発生する異音を防止することができる。 In this embodiment, the cover opening 70A is formed on the upper surface of the valve cover 60A. And the gas refrigerant is made to collide with the airtight container 10 by making the discharge direction X of the gas refrigerant discharged from the cover opening 70 </ b> A to the airtight container 10 as a horizontal direction or an obliquely upward direction. By causing the gas refrigerant to collide with the sealed container 10, it is possible to reduce the collision of the gas refrigerant from directly below the electric motor unit 20 toward the electric motor unit 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of the gas refrigerant which passes the electric motor part 20 can be reduced, oil is easy to separate. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below the motor unit 20 toward the bottom surface of the rotor 22 of the motor unit 20.
 また、本実施例は、第1カバー開口部71Aから吐出するガス冷媒と、第2カバー開口部72Aから吐出するガス冷媒とを衝突させ、第3カバー開口部73Aから吐出するガス冷媒と、第4カバー開口部74Aから吐出するガス冷媒とを衝突させている。
 このように、第1カバー開口部71Aから吐出するガス冷媒と、第2カバー開口部72Aから吐出するガス冷媒とを衝突させ、第3カバー開口部73Aから吐出するガス冷媒と、第4カバー開口部74Aから吐出するガス冷媒とを衝突させることで、電動機部20に向かってガス冷媒を電動機部20の直下より衝突させることを少なくできる。従って、電動機部20上方へのオイルの移動を低減し、密閉容器10からのオイル吐出量を低減できる。またガス冷媒同士を衝突させることで、ガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更にガス冷媒中のオイル同士も衝突させることで、オイルの粒子径が大きくなり、ガス冷媒からオイルが分離しやすくなる。更に電動機部20の回転子22底面に向かって冷媒ガスを電動機部20の直下より衝突させることにより発生する異音を防止することができる。
In the present embodiment, the gas refrigerant discharged from the first cover opening 71A and the gas refrigerant discharged from the second cover opening 72A collide with each other, and the gas refrigerant discharged from the third cover opening 73A, The gas refrigerant discharged from the four-cover opening 74A collides with it.
As described above, the gas refrigerant discharged from the first cover opening 71A and the gas refrigerant discharged from the second cover opening 72A collide with each other, and the gas refrigerant discharged from the third cover opening 73A and the fourth cover opening. By colliding with the gas refrigerant discharged from the part 74 </ b> A, it is possible to reduce the collision of the gas refrigerant from directly below the electric motor unit 20 toward the electric motor unit 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of a gas refrigerant | coolant can be reduced by making gas refrigerants collide, oil is easy to isolate | separate. Furthermore, the oil particles in the gas refrigerant collide with each other, so that the oil particle size is increased and the oil is easily separated from the gas refrigerant. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below the motor unit 20 toward the bottom surface of the rotor 22 of the motor unit 20.
 また、本実施例は、第1カバー開口部71Aから吐出するガス冷媒の第1冷媒吐出方向X1と、第2カバー開口部72Aから吐出するガス冷媒の第2冷媒吐出方向X2とを対向させ、第3カバー開口部73Aから吐出するガス冷媒の第3冷媒吐出方向X3と、第4カバー開口部74Aから吐出するガス冷媒の第4冷媒吐出方向X4とを対向させている。
 このように、第1冷媒吐出方向X1と第2冷媒吐出方向X2とを対向させ、第3冷媒吐出方向X3と第4冷媒吐出方向X4とを対向させることで、ガス冷媒の速度を更に低減でき、ガス冷媒からのオイル分離効果を高め、異音防止効果を更に高めることができる。
Further, in this embodiment, the first refrigerant discharge direction X1 of the gas refrigerant discharged from the first cover opening 71A and the second refrigerant discharge direction X2 of the gas refrigerant discharged from the second cover opening 72A are opposed to each other. The third refrigerant discharge direction X3 of the gas refrigerant discharged from the third cover opening 73A is opposed to the fourth refrigerant discharge direction X4 of the gas refrigerant discharged from the fourth cover opening 74A.
Thus, the first refrigerant discharge direction X1 and the second refrigerant discharge direction X2 are opposed to each other, and the third refrigerant discharge direction X3 and the fourth refrigerant discharge direction X4 are opposed to each other, so that the speed of the gas refrigerant can be further reduced. The oil separation effect from the gas refrigerant can be enhanced and the noise prevention effect can be further enhanced.
 図5は本発明の他の実施例による密閉型圧縮機に用いるバルブカバーを示す斜視図、平面図、及び断面図である。なお、バルブカバー以外の構成は図1及び図2と同一であるので説明を省略する。
 本実施例においても、バルブカバー60Bには、バルブカバー60B内の所定空間のガス冷媒を吐出させるカバー開口部70Bを形成している。
 カバー開口部70Bの上方には、カバー開口部70Bから吐出するガス冷媒の吐出方向を変更する上方規制部材80Bを設け、カバー開口部70Bの下方には、カバー開口部70Bから吐出するガス冷媒の吐出方向を変更する下方規制部材90Bを設けている。
 上方規制部材80Bはカバー開口部70Bの一方に配置し、下方規制部材90Bはカバー開口部70Bの他方に配置している。
 上方規制部材80Bは、カバー開口部70Bから吐出するガス冷媒の上流側となり、下方規制部材90Bは、カバー開口部70Bから吐出するガス冷媒の下流側となる。
 上方規制部材80B及び下方規制部材90Bは半ドーム形状とし、上方規制部材80Bと下方規制部材90Bとは長手方向長さを等しくしている。
FIG. 5 is a perspective view, a plan view, and a sectional view showing a valve cover used in a hermetic compressor according to another embodiment of the present invention. Since the configuration other than the valve cover is the same as that shown in FIGS.
Also in the present embodiment, the valve cover 60B is formed with a cover opening 70B for discharging a gas refrigerant in a predetermined space in the valve cover 60B.
An upper regulating member 80B for changing the discharge direction of the gas refrigerant discharged from the cover opening 70B is provided above the cover opening 70B, and the gas refrigerant discharged from the cover opening 70B is provided below the cover opening 70B. A lower regulating member 90B that changes the ejection direction is provided.
The upper regulating member 80B is disposed on one side of the cover opening 70B, and the lower regulating member 90B is disposed on the other side of the cover opening 70B.
The upper restriction member 80B is on the upstream side of the gas refrigerant discharged from the cover opening 70B, and the lower restriction member 90B is on the downstream side of the gas refrigerant discharged from the cover opening 70B.
The upper restricting member 80B and the lower restricting member 90B have a semi-dome shape, and the upper restricting member 80B and the lower restricting member 90B have the same length in the longitudinal direction.
 図5(c)に示すように、カバー開口部(第1カバー開口部)71Bの一方の上方には上方規制部材81Bを、カバー開口部71Bの他方の下方には下方規制部材91Bを設けている。なお、カバー開口部72B、カバー開口部73B、カバー開口部74Bについてもカバー開口部71Bと同一構成である。
 カバー開口部70Bから吐出するガス冷媒の吐出方向Xは、シャフト40の軸芯Yと異なる方向としている。
 ガス冷媒の吐出方向Xをシャフト40の軸芯Yと異なる方向とすることで、圧縮機構部30の上方に配置した電動機部20に向かって圧縮機構部20から吐出されるガス冷媒を、電動機部20の直下より衝突させることを少なくすることができる。従って、電動機部20上方へのオイルの移動を低減し、密閉容器10からのオイル吐出量を低減できる。また電動機部20を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部20の回転子22底面に向かって冷媒ガスを回転子22の直下より衝突させることにより発生する異音を防止することができる。
As shown in FIG. 5C, an upper restricting member 81B is provided above one of the cover openings (first cover opening) 71B, and a lower restricting member 91B is provided below the other of the cover openings 71B. Yes. The cover opening 72B, the cover opening 73B, and the cover opening 74B have the same configuration as the cover opening 71B.
The discharge direction X of the gas refrigerant discharged from the cover opening 70B is different from the axis Y of the shaft 40.
By making the discharge direction X of the gas refrigerant different from the axis Y of the shaft 40, the gas refrigerant discharged from the compression mechanism unit 20 toward the electric motor unit 20 disposed above the compression mechanism unit 30 is supplied to the electric motor unit. It is possible to reduce the collision from directly below 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of the gas refrigerant which passes the electric motor part 20 can be reduced, oil is easy to separate. Furthermore, it is possible to prevent abnormal noise generated by causing the refrigerant gas to collide from directly below the rotor 22 toward the bottom surface of the rotor 22 of the electric motor unit 20.
 本実施例は、カバー開口部70Bの上方に、カバー開口部70Bから吐出するガス冷媒の吐出方向Xを変更する上方規制部材80Bを設けている。そのため、上方規制部材80Bによって電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xを、シャフト40の軸芯Yと異なる方向とすることができる。
 また、本実施例は、カバー開口部70Bの下方に、カバー開口部70Bから吐出するガス冷媒の吐出方向Xを変更する下方規制部材90Bを設けている。そのため、下方規制部材90Bによって更に電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xを、シャフト40の軸芯Yと異なる方向とすることができる。
 そして、上方規制部材80Bがカバー開口部70Bから吐出するガス冷媒の上流側となり、下方規制部材90Bがカバー開口部70Bから吐出するガス冷媒の下流側となることで、電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xをスムーズに変更することができる。
 更に、本実施例は、上方規制部材80B及び下方規制部材90Bを半ドーム形状とし、ガス冷媒がカバー開口部70Bからスパイラル状に吐出されることで、ガス冷媒の吐出方向Xを更にスムーズに変更できる。
In the present embodiment, an upper regulating member 80B that changes the discharge direction X of the gas refrigerant discharged from the cover opening 70B is provided above the cover opening 70B. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be regulated by the upper regulating member 80B, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
In this embodiment, a lower regulating member 90B that changes the discharge direction X of the gas refrigerant discharged from the cover opening 70B is provided below the cover opening 70B. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be further regulated by the lower regulating member 90B, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
The upper regulating member 80B is on the upstream side of the gas refrigerant discharged from the cover opening 70B, and the lower regulating member 90B is on the downstream side of the gas refrigerant discharged from the cover opening 70B. The flow direction of gas refrigerant can be regulated, and the discharge direction X of the gas refrigerant can be changed smoothly.
Further, in this embodiment, the upper regulating member 80B and the lower regulating member 90B are formed in a semi-dome shape, and the gas refrigerant is discharged in a spiral shape from the cover opening 70B, so that the gas refrigerant discharge direction X can be changed more smoothly. it can.
 また、本実施例は、カバー開口部70Bをバルブカバー60Bの上面に形成する。そして、カバー開口部70Bから吐出するガス冷媒の吐出方向Xを、水平方向又は斜め上方向として密閉容器10に向けることで、密閉容器10にガス冷媒を衝突させる。密閉容器10にガス冷媒を衝突させることで、電動機部20に向かってガス冷媒を電動機部20の直下より衝突させることを少なくできる。従って、電動機部20上方へのオイルの移動を低減し、密閉容器10からのオイル吐出量を低減できる。また電動機部20を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部20の回転子22底面に向かって冷媒ガスを電動機部20の直下より衝突させることにより発生する異音を防止することができる。 In this embodiment, the cover opening 70B is formed on the upper surface of the valve cover 60B. And the gas refrigerant is made to collide with the airtight container 10 by directing the discharge direction X of the gas refrigerant discharged from the cover opening 70B to the airtight container 10 as a horizontal direction or an obliquely upward direction. By causing the gas refrigerant to collide with the sealed container 10, it is possible to reduce the collision of the gas refrigerant from directly below the electric motor unit 20 toward the electric motor unit 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of the gas refrigerant which passes the electric motor part 20 can be reduced, oil is easy to separate. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below the motor unit 20 toward the bottom surface of the rotor 22 of the motor unit 20.
 また、本実施例は、第1カバー開口部71Bから吐出するガス冷媒、第2カバー開口部72Bから吐出するガス冷媒、第3カバー開口部73Bから吐出するガス冷媒、及び第4カバー開口部74Bから吐出するガス冷媒の吐出方向は同一である。
 このように、各ガス冷媒の吐出方向を同一とすることで、旋回流を生じさせ、電動機部20にガス冷媒が衝突することを少なくでき、電動機部20を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。
Further, in this embodiment, the gas refrigerant discharged from the first cover opening 71B, the gas refrigerant discharged from the second cover opening 72B, the gas refrigerant discharged from the third cover opening 73B, and the fourth cover opening 74B. The discharge direction of the gas refrigerant discharged from is the same.
Thus, by making the discharge directions of the respective gas refrigerants the same, it is possible to reduce the speed of the gas refrigerant passing through the motor unit 20 by generating a swirling flow and reducing the collision of the gas refrigerant with the motor unit 20. Oil can be easily separated.
 図6は本発明の更に他の実施例による密閉型圧縮機に用いるバルブカバーを示す斜視図、平面図、及び断面図である。なお、バルブカバー以外の構成は図1及び図2と同一であるので説明を省略する。
 本実施例においても、バルブカバー60Cには、バルブカバー60C内の所定空間のガス冷媒を吐出させるカバー開口部70Cを形成している。
 カバー開口部70Cの上方には、カバー開口部70Cから吐出するガス冷媒の吐出方向を変更する上方規制部材80Cを設け、カバー開口部70Cの下方には、カバー開口部70Cから吐出するガス冷媒の吐出方向を変更する下方規制部材90Cを設けている。
 上方規制部材80Cはカバー開口部70Cの一方に配置し、下方規制部材90Cはカバー開口部70Cの他方に配置している。
 上方規制部材80Cは、カバー開口部70Cから吐出するガス冷媒の上流側となり、下方規制部材90Cは、カバー開口部70Cから吐出するガス冷媒の下流側となる。
 上方規制部材80C及び下方規制部材90Cは半ドーム形状とし、上方規制部材80Cと下方規制部材90Cとは長手方向長さを等しくしている。
FIG. 6 is a perspective view, a plan view, and a cross-sectional view showing a valve cover used in a hermetic compressor according to still another embodiment of the present invention. Since the configuration other than the valve cover is the same as that shown in FIGS.
Also in this embodiment, the valve cover 60C is formed with a cover opening 70C for discharging the gas refrigerant in a predetermined space in the valve cover 60C.
An upper regulating member 80C for changing the discharge direction of the gas refrigerant discharged from the cover opening 70C is provided above the cover opening 70C, and the gas refrigerant discharged from the cover opening 70C is provided below the cover opening 70C. A lower regulating member 90C for changing the discharge direction is provided.
The upper regulating member 80C is disposed on one side of the cover opening 70C, and the lower regulating member 90C is disposed on the other side of the cover opening 70C.
The upper regulating member 80C is on the upstream side of the gas refrigerant discharged from the cover opening 70C, and the lower regulating member 90C is on the downstream side of the gas refrigerant discharged from the cover opening 70C.
The upper restricting member 80C and the lower restricting member 90C have a semi-dome shape, and the upper restricting member 80C and the lower restricting member 90C have the same length in the longitudinal direction.
 図6(c)に示すように、カバー開口部(第1カバー開口部)71Cの一方の上方には上方規制部材81Cを、カバー開口部71Cの他方の下方には下方規制部材91Cを設けている。なお、カバー開口部72C、カバー開口部73C、カバー開口部74Cについてもカバー開口部71Cと同一構成である。
 カバー開口部70Cから吐出するガス冷媒の吐出方向Xは、シャフト40の軸芯Yと異なる方向としている。
 ガス冷媒の吐出方向Xをシャフト40の軸芯Yと異なる方向とすることで、圧縮機構部30の上方に配置した電動機部20に向かって圧縮機構部20から吐出されるガス冷媒を、電動機部20の直下より衝突させることを少なくすることができる。従って、電動機部20上方へのオイルの移動を低減し、密閉容器10からのオイル吐出量を低減できる。また電動機部20を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部20の回転子22底面に向かって冷媒ガスを回転子22の直下より衝突させることにより発生する異音を防止することができる。
As shown in FIG. 6C, an upper restricting member 81C is provided above one of the cover openings (first cover opening) 71C, and a lower restricting member 91C is provided below the other of the cover openings 71C. Yes. The cover opening 72C, the cover opening 73C, and the cover opening 74C have the same configuration as the cover opening 71C.
The discharge direction X of the gas refrigerant discharged from the cover opening 70 </ b> C is different from the axis Y of the shaft 40.
By making the discharge direction X of the gas refrigerant different from the axis Y of the shaft 40, the gas refrigerant discharged from the compression mechanism unit 20 toward the electric motor unit 20 disposed above the compression mechanism unit 30 is supplied to the electric motor unit. It is possible to reduce the collision from directly below 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of the gas refrigerant which passes the electric motor part 20 can be reduced, oil is easy to separate. Furthermore, it is possible to prevent abnormal noise generated by causing the refrigerant gas to collide from directly below the rotor 22 toward the bottom surface of the rotor 22 of the electric motor unit 20.
 本実施例は、カバー開口部70Cの上方に、カバー開口部70Cから吐出するガス冷媒の吐出方向Xを変更する上方規制部材80Cを設けている。そのため、上方規制部材80Cによって電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xを、シャフト40の軸芯Yと異なる方向とすることができる。
 また、本実施例は、カバー開口部70Cの下方に、カバー開口部70Cから吐出するガス冷媒の吐出方向Xを変更する下方規制部材90Cを設けている。そのため、下方規制部材90Cによって更に電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xを、シャフト40の軸芯Yと異なる方向とすることができる。
 そして、上方規制部材80Cがカバー開口部70Cから吐出するガス冷媒の上流側となり、下方規制部材90Cがカバー開口部70Cから吐出するガス冷媒の下流側となることで、電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xをスムーズに変更することができる。
 更に、本実施例は、上方規制部材80C及び下方規制部材90Cを半ドーム形状とし、ガス冷媒がカバー開口部70Cからスパイラル状に吐出されることで、ガス冷媒の吐出方向Xを更にスムーズに変更できる。
In the present embodiment, an upper regulating member 80C for changing the discharge direction X of the gas refrigerant discharged from the cover opening 70C is provided above the cover opening 70C. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be regulated by the upper regulating member 80 </ b> C, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
In this embodiment, a lower regulating member 90C that changes the discharge direction X of the gas refrigerant discharged from the cover opening 70C is provided below the cover opening 70C. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be further regulated by the lower regulating member 90 </ b> C, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
Then, the upper regulating member 80C is on the upstream side of the gas refrigerant discharged from the cover opening 70C, and the lower regulating member 90C is on the downstream side of the gas refrigerant discharged from the cover opening 70C, so that the gas refrigerant toward the electric motor unit 20 is obtained. The flow direction of gas refrigerant can be regulated, and the discharge direction X of the gas refrigerant can be changed smoothly.
Further, in this embodiment, the upper regulating member 80C and the lower regulating member 90C are formed in a semi-dome shape, and the gas refrigerant is discharged in a spiral shape from the cover opening 70C, thereby changing the gas refrigerant discharge direction X more smoothly. it can.
 また、本実施例は、カバー開口部70Cをバルブカバー60Cの上面に形成する。そして、カバー開口部70Cから吐出するガス冷媒の吐出方向Xを、水平方向又は斜め上方向として密閉容器10に向けることで、密閉容器10にガス冷媒を衝突させる。密閉容器10にガス冷媒を衝突させることで、電動機部20に向かってガス冷媒を電動機部20の直下より衝突させることを少なくできる。従って、電動機部20上方へのオイルの移動を低減し、密閉容器10からのオイル吐出量を低減できる。また電動機部20を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部20の回転子22底面に向かって冷媒ガスを電動機部20の直下より衝突させることにより発生する異音を防止することができる。 In this embodiment, the cover opening 70C is formed on the upper surface of the valve cover 60C. And the gas refrigerant is made to collide with the airtight container 10 by making the discharge direction X of the gas refrigerant discharged from the cover opening 70 </ b> C to the airtight container 10 with the horizontal direction or the obliquely upward direction. By causing the gas refrigerant to collide with the sealed container 10, it is possible to reduce the collision of the gas refrigerant from directly below the electric motor unit 20 toward the electric motor unit 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of the gas refrigerant which passes the electric motor part 20 can be reduced, oil is easy to separate. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below the motor unit 20 toward the bottom surface of the rotor 22 of the motor unit 20.
 また、本実施例は、第1カバー開口部71Cから吐出するガス冷媒と、第2カバー開口部72Cから吐出するガス冷媒とを衝突させ、第3カバー開口部73Cから吐出するガス冷媒と、第4カバー開口部74Cから吐出するガス冷媒とを衝突させている。
 このように、第1カバー開口部71Cから吐出するガス冷媒と、第2カバー開口部72Cから吐出するガス冷媒とを衝突させ、第3カバー開口部73Cから吐出するガス冷媒と、第4カバー開口部74Cから吐出するガス冷媒とを衝突させることで、電動機部20に向かってガス冷媒を電動機部20の直下より衝突させることを少なくできる。従って、電動機部20上方へのオイルの移動を低減し、密閉容器10からのオイル吐出量を低減できる。またガス冷媒同士を衝突させることで、ガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更にガス冷媒中のオイル同士も衝突させることで、オイルの粒子径が大きくなり、ガス冷媒からオイルが分離しやすくなる。更に電動機部20の回転子22底面に向かって冷媒ガスを電動機部20の直下より衝突させることにより発生する異音を防止することができる。
Further, in this embodiment, the gas refrigerant discharged from the first cover opening 71C and the gas refrigerant discharged from the second cover opening 72C collide, and the gas refrigerant discharged from the third cover opening 73C, The gas refrigerant discharged from the four-cover opening 74C collides with it.
Thus, the gas refrigerant discharged from the first cover opening 71C and the gas refrigerant discharged from the second cover opening 72C collide, and the gas refrigerant discharged from the third cover opening 73C and the fourth cover opening By colliding with the gas refrigerant discharged from the part 74C, it is possible to reduce the collision of the gas refrigerant from directly below the electric motor part 20 toward the electric motor part 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of a gas refrigerant | coolant can be reduced by making gas refrigerants collide, oil is easy to isolate | separate. Furthermore, the oil particles in the gas refrigerant collide with each other, so that the oil particle size is increased and the oil is easily separated from the gas refrigerant. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below the motor unit 20 toward the bottom surface of the rotor 22 of the motor unit 20.
 図7は本発明の更に他の実施例による密閉型圧縮機に用いるバルブカバーを示す斜視図、平面図、及び断面図である。なお、バルブカバー以外の構成は図1及び図2と同一であるので説明を省略する。
 本実施例においても、バルブカバー60Dには、バルブカバー60D内の所定空間のガス冷媒を吐出させるカバー開口部70Dを形成している。
 カバー開口部70Dの上方には、カバー開口部70Dから吐出するガス冷媒の吐出方向を変更する上方規制部材80Dを設け、カバー開口部70Dの下方には、カバー開口部70Dから吐出するガス冷媒の吐出方向を変更する下方規制部材90Dを設けている。
 上方規制部材80Dはカバー開口部70Dの一方に配置し、下方規制部材90Dはカバー開口部70Dの他方に配置している。
 上方規制部材80Dは、カバー開口部70Dから吐出するガス冷媒の上流側となり、下方規制部材90Dは、カバー開口部70Dから吐出するガス冷媒の下流側となる。
 上方規制部材80D及び下方規制部材90Dは半ドーム形状とし、上方規制部材80Dと下方規制部材90Dとは長手方向長さを等しくしている。
FIG. 7 is a perspective view, a plan view, and a sectional view showing a valve cover used in a hermetic compressor according to still another embodiment of the present invention. Since the configuration other than the valve cover is the same as that shown in FIGS.
Also in the present embodiment, the valve cover 60D is formed with a cover opening 70D for discharging a gas refrigerant in a predetermined space in the valve cover 60D.
An upper regulating member 80D for changing the discharge direction of the gas refrigerant discharged from the cover opening 70D is provided above the cover opening 70D, and the gas refrigerant discharged from the cover opening 70D is provided below the cover opening 70D. A lower regulating member 90D for changing the discharge direction is provided.
The upper regulating member 80D is disposed on one side of the cover opening 70D, and the lower regulating member 90D is disposed on the other side of the cover opening 70D.
The upper regulating member 80D is on the upstream side of the gas refrigerant discharged from the cover opening 70D, and the lower regulating member 90D is on the downstream side of the gas refrigerant discharged from the cover opening 70D.
The upper restricting member 80D and the lower restricting member 90D have a semi-dome shape, and the upper restricting member 80D and the lower restricting member 90D have the same length in the longitudinal direction.
 図7(c)に示すように、カバー開口部(第1カバー開口部)71Dの一方の上方には上方規制部材81Dを、カバー開口部71Dの他方の下方には下方規制部材91Dを設けている。なお、カバー開口部72D、カバー開口部73D、カバー開口部74Dについてもカバー開口部71Dと同一構成である。
 カバー開口部70Dから吐出するガス冷媒の吐出方向Xは、シャフト40の軸芯Yと異なる方向としている。
 ガス冷媒の吐出方向Xをシャフト40の軸芯Yと異なる方向とすることで、圧縮機構部30の上方に配置した電動機部20に向かって圧縮機構部20から吐出されるガス冷媒を、電動機部20の直下より衝突させることを少なくすることができる。従って、電動機部20上方へのオイルの移動を低減し、密閉容器10からのオイル吐出量を低減できる。また電動機部20を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部20の回転子22底面に向かって冷媒ガスを回転子22の直下より衝突させることにより発生する異音を防止することができる。
As shown in FIG. 7C, an upper restricting member 81D is provided above one of the cover openings (first cover opening) 71D, and a lower restricting member 91D is provided below the other of the cover openings 71D. Yes. The cover opening 72D, the cover opening 73D, and the cover opening 74D have the same configuration as the cover opening 71D.
The discharge direction X of the gas refrigerant discharged from the cover opening 70 </ b> D is different from the axis Y of the shaft 40.
By making the discharge direction X of the gas refrigerant different from the axis Y of the shaft 40, the gas refrigerant discharged from the compression mechanism unit 20 toward the electric motor unit 20 disposed above the compression mechanism unit 30 is supplied to the electric motor unit. It is possible to reduce the collision from directly below 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of the gas refrigerant which passes the electric motor part 20 can be reduced, oil is easy to separate. Furthermore, it is possible to prevent abnormal noise generated by causing the refrigerant gas to collide from directly below the rotor 22 toward the bottom surface of the rotor 22 of the electric motor unit 20.
 本実施例は、カバー開口部70Dの上方に、カバー開口部70Dから吐出するガス冷媒の吐出方向Xを変更する上方規制部材80Dを設けている。そのため、上方規制部材80Dによって電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xを、シャフト40の軸芯Yと異なる方向とすることができる。
 また、本実施例は、カバー開口部70Dの下方に、カバー開口部70Dから吐出するガス冷媒の吐出方向Xを変更する下方規制部材90Dを設けている。そのため、下方規制部材90Dによって更に電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xを、シャフト40の軸芯Yと異なる方向とすることができる。
 そして、上方規制部材80Dがカバー開口部70Dから吐出するガス冷媒の上流側となり、下方規制部材90Dがカバー開口部70Dから吐出するガス冷媒の下流側となることで、電動機部20に向かうガス冷媒の流れを規制でき、ガス冷媒の吐出方向Xをスムーズに変更することができる。
 更に、本実施例は、上方規制部材80D及び下方規制部材90Dを半ドーム形状とすることで、ガス冷媒の吐出方向Xを更にスムーズに変更できる。
In the present embodiment, an upper regulating member 80D that changes the discharge direction X of the gas refrigerant discharged from the cover opening 70D is provided above the cover opening 70D. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be regulated by the upper regulating member 80D, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
In the present embodiment, a lower regulating member 90D for changing the discharge direction X of the gas refrigerant discharged from the cover opening 70D is provided below the cover opening 70D. Therefore, the flow of the gas refrigerant toward the electric motor unit 20 can be further regulated by the lower regulating member 90D, and the discharge direction X of the gas refrigerant can be set to a direction different from the axis Y of the shaft 40.
The upper regulating member 80D is on the upstream side of the gas refrigerant discharged from the cover opening 70D, and the lower regulating member 90D is on the downstream side of the gas refrigerant discharged from the cover opening 70D. The flow direction of gas refrigerant can be regulated, and the discharge direction X of the gas refrigerant can be changed smoothly.
Further, in this embodiment, the upper restricting member 80D and the lower restricting member 90D are formed in a semi-dome shape, so that the discharge direction X of the gas refrigerant can be changed more smoothly.
 また、本実施例は、カバー開口部70Dをバルブカバー60Dの上面に形成する。そして、カバー開口部70Dから吐出するガス冷媒の吐出方向Xを、水平方向又は斜め上方向として密閉容器10の中心方向に向けることで、密閉容器10の中心方向、例えばシャフト40又は主軸受51のボス部にガス冷媒を衝突させることができる。また、電動機部20に向かってガス冷媒を電動機部20の直下より衝突させることを少なくできる。従って、電動機部20上方へのオイルの移動を低減し、密閉容器10からのオイル吐出量を低減できる。また電動機部20を通過するガス冷媒の速度を低下させることができるので、オイルが分離しやすい。更に電動機部20の回転子22底面に向かって冷媒ガスを電動機部20の直下より衝突させることにより発生する異音を防止することができる。 In this embodiment, the cover opening 70D is formed on the upper surface of the valve cover 60D. Then, the discharge direction X of the gas refrigerant discharged from the cover opening 70D is directed to the center direction of the sealed container 10 as a horizontal direction or an obliquely upward direction, so that the center direction of the sealed container 10, for example, the shaft 40 or the main bearing 51 A gas refrigerant can collide with the boss part. Further, it is possible to reduce the collision of the gas refrigerant from directly below the motor unit 20 toward the motor unit 20. Therefore, the movement of oil upward of the electric motor unit 20 can be reduced, and the amount of oil discharged from the sealed container 10 can be reduced. Moreover, since the speed of the gas refrigerant which passes the electric motor part 20 can be reduced, oil is easy to separate. Furthermore, it is possible to prevent noise generated by causing the refrigerant gas to collide from directly below the motor unit 20 toward the bottom surface of the rotor 22 of the motor unit 20.
 本発明は、特に2シリンダを備えて圧縮機構部での圧縮容積が大きい密閉型圧縮機に適している。 The present invention is particularly suitable for a hermetic compressor having two cylinders and a large compression volume in the compression mechanism.
 10 密閉容器
 10a 胴シェル
 10b 上シェル
 10c 下シェル
 11 オイル溜め
 12 オイルピックアップ
 13A 第1吸入管
 13B 第2吸入管
 14 吐出管
 15 アキュムレータ
 20 電動機部
 21 固定子
 22 回転子
 30 圧縮機構部
 31 シリンダ
 30A 第1圧縮機構部
 30B 第2圧縮機構部
 31A 第1シリンダ
 31B 第2シリンダ
 32A 第1ピストン
 32B 第2ピストン
 34A 第1圧縮室
 34B 第2圧縮室
 35 吐出口
 36 連通孔
 40 シャフト
 41 主軸部
 42 第1偏芯部
 43 第2偏芯部
 44 副軸部
 45 連結軸部
 50 ターミナル
 51 主軸受
 52 中板
 53 副軸受
 60A、60B、60C、60D バルブカバー
 60X 第2バルブカバー
 61 セパレータ本体
 61a 上端
 62 脚部
 63 セパレータ冷媒通路
 64 オイル孔
 70A、70B、70C、70D カバー開口部
 71A、71B、71C、71D 第1カバー開口部
 72A、72B、72C、72D 第2カバー開口部
 73A、73B、73C、73D 第3カバー開口部
 74A、74B、74C、74D 第4カバー開口部
 80A、80B、80C、80D、81A、82A、83A、84A 上方規制部材
 90A、90B、90C、90D、91A、92A、93A、94A 下方規制部材
 X 吐出方向
 Y 軸芯
DESCRIPTION OF SYMBOLS 10 Airtight container 10a Body shell 10b Upper shell 10c Lower shell 11 Oil sump 12 Oil pickup 13A 1st suction pipe 13B 2nd suction pipe 14 Discharge pipe 15 Accumulator 20 Electric motor part 21 Stator 22 Rotor 30 Compression mechanism part 31 Cylinder 30A 1st 1 compression mechanism section 30B second compression mechanism section 31A first cylinder 31B second cylinder 32A first piston 32B second piston 34A first compression chamber 34B second compression chamber 35 discharge port 36 communication hole 40 shaft 41 main shaft section 42 first Eccentric part 43 Second eccentric part 44 Secondary shaft part 45 Connection shaft part 50 Terminal 51 Main bearing 52 Middle plate 53 Secondary bearing 60A, 60B, 60C, 60D Valve cover 60X Second valve cover 61 Separator body 61a Upper end 62 Leg part 63 Separator refrigerant path 64 Oil hole 70A, 70B, 70C, 70D Cover opening 71A, 71B, 71C, 71D First cover opening 72A, 72B, 72C, 72D Second cover opening 73A, 73B, 73C, 73D Third cover opening 74A, 74B, 74C, 74D Fourth cover opening 80A, 80B, 80C, 80D, 81A, 82A, 83A, 84A Upper restriction member 90A, 90B, 90C, 90D, 91A, 92A, 93A, 94A Lower restriction member X Discharge direction Y Shaft core

Claims (12)

  1.  密閉容器内に電動機部と圧縮機構部とを備え、
    前記電動機部を前記圧縮機構部の上方に配置し、
    前記電動機部と前記圧縮機構部とをシャフトによって連結し、
    前記シャフトを、主軸受と副軸受とで支持し、
    前記主軸受と前記副軸受との間に前記圧縮機構部を配置し、
    前記主軸受を前記圧縮機構部と前記電動機部との間に配置し、
    前記主軸受には、前記圧縮機構部で圧縮されたガス冷媒を吐出する吐出口を形成し、
    前記主軸受には、所定空間を形成して前記吐出口を覆うバルブカバーを設け、
    前記バルブカバーには、前記バルブカバー内の前記所定空間の前記ガス冷媒を吐出させるカバー開口部を形成する密閉型圧縮機であって、
    前記カバー開口部から吐出する前記ガス冷媒の吐出方向を、前記シャフトの軸芯と異なる方向とした
    ことを特徴とする密閉型圧縮機。
    An electric motor part and a compression mechanism part are provided in the sealed container,
    The electric motor part is disposed above the compression mechanism part,
    The electric motor part and the compression mechanism part are connected by a shaft,
    The shaft is supported by a main bearing and a sub-bearing,
    Placing the compression mechanism between the main bearing and the sub-bearing;
    The main bearing is disposed between the compression mechanism portion and the electric motor portion,
    The main bearing has a discharge port for discharging the gas refrigerant compressed by the compression mechanism,
    The main bearing is provided with a valve cover that forms a predetermined space and covers the discharge port,
    The valve cover is a hermetic compressor that forms a cover opening for discharging the gas refrigerant in the predetermined space in the valve cover,
    A hermetic compressor, wherein a discharge direction of the gas refrigerant discharged from the cover opening is different from an axis of the shaft.
  2.  前記カバー開口部の上方に、前記カバー開口部から吐出する前記ガス冷媒の前記吐出方向を変更する上方規制部材を設けた
    ことを特徴とする請求項1に記載の密閉型圧縮機。
    2. The hermetic compressor according to claim 1, wherein an upper regulating member that changes the discharge direction of the gas refrigerant discharged from the cover opening is provided above the cover opening.
  3.  前記カバー開口部の下方に、前記カバー開口部から吐出する前記ガス冷媒の前記吐出方向を変更する下方規制部材を設けた
    ことを特徴とする請求項2に記載の密閉型圧縮機。
    The hermetic compressor according to claim 2, wherein a lower regulating member that changes the discharge direction of the gas refrigerant discharged from the cover opening is provided below the cover opening.
  4.  前記上方規制部材と前記下方規制部材とを、前記カバー開口部の一方と他方に配置し、
    前記上方規制部材が前記カバー開口部から吐出する前記ガス冷媒の上流側となり、
    前記下方規制部材が前記カバー開口部から吐出する前記ガス冷媒の下流側となる
    ことを特徴とする請求項3に記載の密閉型圧縮機。
    The upper restricting member and the lower restricting member are disposed on one and the other of the cover openings,
    The upper regulating member is on the upstream side of the gas refrigerant discharged from the cover opening,
    The hermetic compressor according to claim 3, wherein the lower regulating member is on the downstream side of the gas refrigerant discharged from the cover opening.
  5.  前記上方規制部材及び前記下方規制部材を半ドーム形状とし、
    前記ガス冷媒が前記カバー開口部からスパイラル状に吐出される
    ことを特徴とする請求項4に記載の密閉型圧縮機。
    The upper restricting member and the lower restricting member have a semi-dome shape,
    The hermetic compressor according to claim 4, wherein the gas refrigerant is discharged spirally from the cover opening.
  6.  前記バルブカバーの上面に前記カバー開口部を形成し、
    前記カバー開口部から吐出する前記ガス冷媒の前記吐出方向を、水平方向又は斜め上方向として前記密閉容器の中心方向に向けた
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の密閉型圧縮機。
    Forming the cover opening on the upper surface of the valve cover;
    The discharge direction of the gas refrigerant discharged from the cover opening is directed in the central direction of the sealed container as a horizontal direction or an obliquely upward direction. The hermetic compressor as described.
  7.  前記バルブカバーの上面に前記カバー開口部を形成し、
    前記カバー開口部から吐出する前記ガス冷媒の前記吐出方向を、水平方向又は斜め上方向として前記密閉容器に向けた
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の密閉型圧縮機。
    Forming the cover opening on the upper surface of the valve cover;
    The hermetic seal according to any one of claims 1 to 5, wherein the discharge direction of the gas refrigerant discharged from the cover opening is directed to the hermetic container as a horizontal direction or an obliquely upward direction. Mold compressor.
  8.  前記バルブカバーの上面に前記カバー開口部を形成し、
    前記カバー開口部として、第1カバー開口部と第2カバー開口部とを備え、
    前記第1カバー開口部から吐出する前記ガス冷媒と、前記第2カバー開口部から吐出する前記ガス冷媒とを衝突させる
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の密閉型圧縮機。
    Forming the cover opening on the upper surface of the valve cover;
    The cover opening includes a first cover opening and a second cover opening,
    The said gas refrigerant discharged from the said 1st cover opening part and the said gas refrigerant discharged from the said 2nd cover opening part are made to collide, The Claim 1 characterized by the above-mentioned. Hermetic compressor.
  9.  前記バルブカバーの上面に前記カバー開口部を形成し、
    前記カバー開口部として、第1カバー開口部と第2カバー開口部とを備え、
    前記第1カバー開口部から吐出する前記ガス冷媒の第1冷媒吐出方向と、前記第2カバー開口部から吐出する前記ガス冷媒の第2冷媒吐出方向とを対向させた
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の密閉型圧縮機。
    Forming the cover opening on the upper surface of the valve cover;
    The cover opening includes a first cover opening and a second cover opening,
    The first refrigerant discharge direction of the gas refrigerant discharged from the first cover opening and the second refrigerant discharge direction of the gas refrigerant discharged from the second cover opening are opposed to each other. The hermetic compressor according to any one of claims 1 to 5.
  10.  前記圧縮機構部として、第1圧縮機構部と第2圧縮機構部とを備え、
    前記主軸受には、前記第1圧縮機構部で圧縮された前記ガス冷媒を吐出する前記吐出口と、前記第2圧縮機構部で圧縮された前記ガス冷媒を吐出する連通孔とを備えた
    ことを特徴とする請求項1から請求項9のいずれか1項に記載の密閉型圧縮機。
    As the compression mechanism part, a first compression mechanism part and a second compression mechanism part are provided,
    The main bearing includes the discharge port that discharges the gas refrigerant compressed by the first compression mechanism, and the communication hole that discharges the gas refrigerant compressed by the second compression mechanism. The hermetic compressor according to any one of claims 1 to 9, wherein
  11.  前記カバー開口部として、第3カバー開口部と第4カバー開口部とを備え、
    前記第3カバー開口部から吐出する前記ガス冷媒と、前記第4カバー開口部から吐出する前記ガス冷媒とを衝突させる
    ことを特徴とする請求項8又は請求項9に記載の密閉型圧縮機。
    The cover opening includes a third cover opening and a fourth cover opening,
    The hermetic compressor according to claim 8 or 9, wherein the gas refrigerant discharged from the third cover opening and the gas refrigerant discharged from the fourth cover opening collide with each other.
  12.  前記カバー開口部として、第3カバー開口部と第4カバー開口部とを備え、
    前記第3カバー開口部から吐出する前記ガス冷媒の第3冷媒吐出方向と、前記第4カバー開口部から吐出する前記ガス冷媒の第4冷媒吐出方向とを対向させた
    ことを特徴とする請求項8又は請求項9に記載の密閉型圧縮機。
    The cover opening includes a third cover opening and a fourth cover opening,
    The third refrigerant discharge direction of the gas refrigerant discharged from the third cover opening and the fourth refrigerant discharge direction of the gas refrigerant discharged from the fourth cover opening are opposed to each other. The hermetic compressor according to claim 8 or 9.
PCT/JP2018/043764 2018-02-26 2018-11-28 Hermetic compressor WO2019163237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-031710 2018-02-26
JP2018031710A JP7478992B2 (en) 2018-02-26 2018-02-26 Hermetic Compressor

Publications (1)

Publication Number Publication Date
WO2019163237A1 true WO2019163237A1 (en) 2019-08-29

Family

ID=67686961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043764 WO2019163237A1 (en) 2018-02-26 2018-11-28 Hermetic compressor

Country Status (2)

Country Link
JP (1) JP7478992B2 (en)
WO (1) WO2019163237A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260910U (en) * 1975-10-30 1977-05-04
JPS58118289U (en) * 1982-02-04 1983-08-12 三洋電機株式会社 rotary compressor
JPS6030394U (en) * 1983-08-08 1985-03-01 株式会社ボッシュオートモーティブ システム Compressa
JPS6279983U (en) * 1985-11-11 1987-05-22
JP2000204922A (en) * 1999-01-14 2000-07-25 Samsung Electronics Co Ltd Delivery silencer of closed rotary compressor
JP2005509787A (en) * 2001-11-16 2005-04-14 エルジー エレクトロニクス インコーポレイティド Hermetic rotary compressor muffler
JP2007023985A (en) * 2005-07-21 2007-02-01 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2008106738A (en) * 2006-09-29 2008-05-08 Fujitsu General Ltd Rotary compressor and heat pump system
JP2011001932A (en) * 2009-06-22 2011-01-06 Daikin Industries Ltd Rotary compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6030394B2 (en) 2012-09-26 2016-11-24 住友電工プリントサーキット株式会社 Printed wiring board
JP6705317B2 (en) * 2016-07-12 2020-06-03 株式会社富士通ゼネラル Rotary compressor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260910U (en) * 1975-10-30 1977-05-04
JPS58118289U (en) * 1982-02-04 1983-08-12 三洋電機株式会社 rotary compressor
JPS6030394U (en) * 1983-08-08 1985-03-01 株式会社ボッシュオートモーティブ システム Compressa
JPS6279983U (en) * 1985-11-11 1987-05-22
JP2000204922A (en) * 1999-01-14 2000-07-25 Samsung Electronics Co Ltd Delivery silencer of closed rotary compressor
JP2005509787A (en) * 2001-11-16 2005-04-14 エルジー エレクトロニクス インコーポレイティド Hermetic rotary compressor muffler
JP2007023985A (en) * 2005-07-21 2007-02-01 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2008106738A (en) * 2006-09-29 2008-05-08 Fujitsu General Ltd Rotary compressor and heat pump system
JP2011001932A (en) * 2009-06-22 2011-01-06 Daikin Industries Ltd Rotary compressor

Also Published As

Publication number Publication date
JP7478992B2 (en) 2024-05-08
JP2019148175A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP5692177B2 (en) Compressor
US9651047B2 (en) Compressor having a partitioned discharge chamber
JP6664118B2 (en) 2-cylinder hermetic compressor
US8945265B2 (en) Compressor
AU2010261248B2 (en) Rotary compressor
JP5782296B2 (en) Scroll compressor
KR101850785B1 (en) Compressor
JP6302428B2 (en) Cylinder rotary compressor
WO2019163237A1 (en) Hermetic compressor
JP5421725B2 (en) Scroll type fluid device
JP6742499B2 (en) Electric compressor
JP5168191B2 (en) Scroll compressor
JP6708280B2 (en) Compressor
JP5781355B2 (en) Hermetic rotary compressor
JP2011038485A (en) Hermetic compressor
JP2017053221A (en) Electric compressor
JP2009127440A (en) Scroll compressor
JP2021080906A (en) Rotary compressor
WO2023090148A1 (en) Compressor
JP2019074045A (en) Displacement type compressor
JP7139718B2 (en) compressor
WO2023003015A1 (en) Horizontal rotary compressor
CN110761976B (en) Compressor
WO2023248559A1 (en) Hermetic compressor
WO2021039062A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907105

Country of ref document: EP

Kind code of ref document: A1