WO2019163105A1 - Ozone solution generation apparatus and ozone solution generation method - Google Patents

Ozone solution generation apparatus and ozone solution generation method Download PDF

Info

Publication number
WO2019163105A1
WO2019163105A1 PCT/JP2018/006781 JP2018006781W WO2019163105A1 WO 2019163105 A1 WO2019163105 A1 WO 2019163105A1 JP 2018006781 W JP2018006781 W JP 2018006781W WO 2019163105 A1 WO2019163105 A1 WO 2019163105A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
gas
separation tank
liquid
liquid separation
Prior art date
Application number
PCT/JP2018/006781
Other languages
French (fr)
Japanese (ja)
Inventor
正昭 長倉
正始 長倉
淳一郎 齋藤
Original Assignee
エコデザイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エコデザイン株式会社 filed Critical エコデザイン株式会社
Priority to PCT/JP2018/006781 priority Critical patent/WO2019163105A1/en
Priority to JP2018510903A priority patent/JP6954645B2/en
Priority to TW108105911A priority patent/TWI844527B/en
Publication of WO2019163105A1 publication Critical patent/WO2019163105A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the present invention relates to an ozone solution generator for dissolving ozone gas in water or the like as a solvent to generate an ozone solution.
  • Ozone water production equipment is roughly divided into electrolytic and discharge types depending on the ozone generation method.
  • electrolytic method ozone is generated by electrolysis using a special electrode in water and dissolved in water.
  • the discharge type generates ozone water by generating discharges such as silent discharge and creeping discharge in an oxygen-containing gas to generate ozone-containing gas (ozone gas) and dissolving it in water. Since the electrolytic method can generate high-concentration ozone water with a relatively simple apparatus, it has been used early in the semiconductor cleaning process.
  • a discharge type ozone water generator there are bubbling, a fine bubble generator, an ozone dissolving film, an ejector, a gas-liquid mixing pump, a packed tower, etc. as a method for dissolving ozone gas in water.
  • bubbling a porous bubble generator is disposed at the bottom of the ozone dissolution tank, and bubbles of ozone gas are generated from the bubble generator to raise the water.
  • the ozone dissolution efficiency that is, the ratio of the amount of ozone dissolved to the amount of ozone generated is low, and it is not often used for the production of high-concentration ozone water.
  • the fine bubble generator generates ozone gas bubbles having a diameter that is small enough (for example, in units of microns) so as not to cause a problem during use, and dissolves them in water.
  • ozone dissolution efficiency is high, the process of turning a large amount of ozone gas into fine bubbles is complicated and is not suitable for increasing the capacity.
  • the ozone-dissolving membrane allows water to flow into a small-diameter hollow fiber formed by a fluororesin membrane that does not transmit water but transmits ozone gas, introduces ozone gas around the hollow fiber, and dissolves ozone gas in water. And is most commonly used in the semiconductor industry. However, when the capacity is increased, a large amount of ozone permeable membrane (hollow fiber) proportional to the capacity is required, and it is difficult to make the apparatus compact.
  • the packed tower lowers water from the upper part of a column packed with a packing such as Raschig ring, raises ozone gas from the lower part, and makes ozone gas and water contact with each other in a gas-liquid countercurrent manner in the packed part.
  • Dissolve in. Dissolution efficiency is high, and it is possible to generate high-concentration ozone water. Since this method cannot increase the flow rate of the descending water to a certain level or more, it requires a flow passage area proportional to the amount of ozone water produced, and it is difficult to make it compact when the capacity is large.
  • An ejector or a gas-liquid mixing pump is a so-called gas-liquid mixer, and is a method of generating ozone water by forcibly mixing ozone gas bubbles and water to generate a gas-liquid two-phase flow.
  • the ejector is provided with a bottleneck in a part of the water flow path, and by drawing the ozone gas using Bernoulli's theorem and using the induced power generated in the bottleneck, it generates a gas-liquid two-phase flow that mixes ozone gas bubbles and water. Use ozone water.
  • the ejector has the advantage that it does not become too large as the flow rate increases. For example, if the flow velocity in the part of the bottleneck is about 15 (m / s) and the flow velocity before and after that is about 3 (m / s), the gas-liquid mixing effect is produced by the ejector.
  • the cross-sectional area of the bottleneck is 1 (cm2) (about 12 (mm) when converted into a circular tube diameter)
  • a cross-sectional area of 5 (cm2) about 25 (mm) when converted into a circular tube diameter
  • the gas-liquid separation tank is generally cylindrical, with a gas-liquid two-phase flow inlet at the top and an ozone water discharge pipe at the bottom.
  • the surplus ozone bubbles rise by buoyancy and are separated from the gas-liquid two-phase flow until the gas-liquid two-phase flow supplied from the upper part falls and reaches the ozone water drain pipe.
  • what is discharged from the ozone water drain pipe is ozone water from which excess ozone bubbles are separated.
  • the dissolution of ozone progresses with the passage of time during which the gas-liquid two-phase flow stays.
  • the concentration of ozone water becomes higher as it moves downward.
  • the conventional gas-liquid separation tank has the following problems.
  • the present invention has been made in view of solving any of the above (Problem 1) to (Problem 2) individually or simultaneously.
  • the present invention that achieves the above object is an ozone solution generating apparatus that generates an ozone solution by dissolving ozone gas generated by an ozone gas generating apparatus in a solvent, wherein the ozone gas and the solvent are mixed to produce an ozone gas mixed solution.
  • a gas-liquid mixer to be generated a gas-liquid separation tank for storing the ozone gas mixture generated by the gas-liquid mixer, and a swirl flow generation for generating a swirl flow in the ozone gas mixture in the gas-liquid separation tank
  • an ozone solution derivation unit that guides the ozone solution generated by the ozone gas mixture that has passed through the swirling flow to the outside of the gas-liquid separation tank.
  • the ozone solution outlet has an ozone solution outlet for leading the ozone solution to the outside of the gas-liquid separation tank, and the ozone solution outlet is It is located in the place which remove
  • the swirl flow generation unit sets the range of the direction in which the solvent or the ozone gas mixture is introduced into the gas-liquid separation tank as a range including the tangential direction of the swirl flow. It has the tangential direction introduction part which produces a swirl flow by this.
  • the swirl flow generation unit includes a range of a direction in which the solvent, the ozone gas mixed solution or the ozone solution is derived from the gas-liquid separation tank, and includes a tangential direction of the swirl flow. It is characterized by having a tangential direction deriving section that creates a swirl flow by setting the range.
  • the swirling flow generating section includes a rotating body that generates the swirling flow by rotating in the ozone gas mixture.
  • the ozone gas mixed liquid in the gas-liquid separation tank is led out to be used as a circulating liquid, and the circulating liquid is returned to the gas-liquid separation tank.
  • the circulation side gas-liquid mixer for mixing the ozone gas supplied from the ozone gas generator and the circulating liquid is arranged.
  • the ozone solution mixed liquid in the gas-liquid separation tank is led out to be used as a circulating liquid, and a circulating path for returning the circulating liquid to the gas-liquid separating tank is provided downstream of the circulating path.
  • the circulating fluid introduction port located at the end has a tangential direction introduction section that creates a swirl flow by setting a range of the introduction direction of the ozone gas mixture into the gas-liquid separation tank as a range including a tangential direction of the swirl flow It is also characterized by serving.
  • the ozone solution mixture in the gas-liquid separation tank is led out to be a circulation liquid, and a circulation path for returning the circulation liquid to the gas-liquid separation tank is provided, upstream of the circulation path.
  • the circulating fluid outlet located at the end includes a tangential direction deriving unit that creates a swirling flow by setting a range of a direction in which the ozone gas mixture is derived from the gas-liquid separation tank to a range including a tangential direction of the swirling flow. It is also characterized by serving.
  • a circulating liquid inlet that is located at the downstream end of the circulation path and introduces the circulation into the gas-liquid separation tank is configured to supply the ozone mixed solution in the ozone solution outlet unit. Compared with the ozone solution outlet leading out to the outside of the gas-liquid separation tank, it is arranged above.
  • the gas-liquid mixer for mixing the solvent and the ozone gas is disposed,
  • the gas-liquid mixer is supplied with the ozone gas separated and recovered from the ozone gas mixture in the gas-liquid separation tank.
  • At least a solvent introduction port located at a downstream end of a solvent guide path for guiding the solvent to the gas-liquid separation tank is provided in a direction in which the solvent is introduced into the gas-liquid separation tank.
  • water containing an organic substance that causes a chemical reaction with ozone is used as the solvent, and the solvent is used for treating the organic substance in the water.
  • water containing at least one of a virus, bacteria, fungi, and microorganism is used as the solvent, and the solvent is used for treating the substance in the water. To do.
  • the ozone solution generator has a standby space for temporarily retaining the ozone solution derived from the ozone solution deriving unit.
  • the present invention that achieves the above object is an ozone solution generation method for generating an ozone solution by dissolving ozone gas generated by an ozone gas generation device in a solvent, wherein the ozone gas and the solvent are mixed to form an ozone gas mixture.
  • the generated gas-liquid mixing step, and the ozone gas mixture generated by the gas-liquid mixing step is stored in a gas-liquid separation tank, and a swirl flow is generated in the gas-liquid separation tank to generate a swirl flow in the ozone gas mixture
  • An ozone solution generation method comprising: a step; and an ozone solution deriving step of guiding the ozone solution generated by the ozone gas mixed solution having passed through the swirl flow to the outside of the gas-liquid separation tank. .
  • FIG. 1 It is a figure showing the whole ozone solution generating device composition concerning a first embodiment of the present invention.
  • (A) is a side view showing a gas-liquid separation tank of the ozone solution generating apparatus
  • (B) is a cross-sectional view taken along the line BB of (A)
  • (C) is a CC line of (A). It is arrow sectional drawing,
  • (D) is DD sectional view taken on the line of (A), (E) And (F) is sectional drawing which shows the internal structure of an ejector.
  • (A) is a figure which shows the internal structure of the control apparatus of the same ozone solution production
  • (B) is a block diagram which shows the control structure of the same control apparatus.
  • (A) is a schematic diagram explaining the flow of the ozone gas liquid mixture in the gas-liquid separation tank of the same ozone solution production
  • (B) is a top view which shows the turning state of an ozone gas liquid mixture. It is a perspective view explaining the flow of the ozone gas liquid mixture in the gas-liquid separation tank of the same ozone solution production
  • (A) is a graph which shows the time change state of the derived
  • (B) is a graph which shows the time change state of ozone concentration of ozone water on the same conditions as (A). It is.
  • (A) is a figure which shows the whole structure about the ozone solution production
  • (B) and (C) are sectional drawings of a gas-liquid separation tank.
  • (A) is a figure which shows the whole structure about the ozone solution production
  • (B) and (C) are sectional drawings of a gas-liquid separation tank.
  • (A) is a figure which shows the whole structure about the ozone solution production
  • or (D) are sectional drawings of a gas-liquid separation tank.
  • (A) is a figure which shows the whole structure about the ozone solution production
  • (A) is a figure which shows the whole structure, (B) thru
  • (A) is a figure which shows the whole structure about the ozone solution production
  • (A) is a figure which shows the whole structure, (B) thru
  • FIG. 1 shows an ozone solution generating apparatus 1 according to the first embodiment of the present invention.
  • water or pure water
  • dissolves ozone is not limited to water.
  • the ozone solution generation apparatus 1 includes an ozone gas generation unit 10 that generates ozone gas, a gas-liquid separation tank 30 that stores an ozone gas mixed liquid that is mixed with ozone gas and water to form a gas-liquid two-phase flow, and a gas-liquid separation tank 30.
  • a solvent guide path 70 for supplying at least water as a solvent, an ozone solution outlet 80 for guiding (discharging) ozone water from the gas-liquid separation tank 30 to the outside, and an ozone gas mixture in the gas-liquid separation tank 30
  • a swirling flow generating unit 50 for generating a swirling flow, and a circulation path for deriving the ozone gas mixed liquid in the gas-liquid separation tank 30 to be temporarily used as a circulating liquid and guiding the circulating liquid to the gas-liquid separating tank 30 again.
  • 60 and an ozone gas mixing unit 20 for mixing ozone gas and water (solvent) or ozone gas and circulating liquid.
  • the ozone gas generation unit 10 generates ozone gas by, for example, passing an oxygen gas 6 as a raw material between discharge gaps of a silent discharge tube (ozonizer).
  • generated ozone gas is adjusted with the adjustment gas 8, such as a carbon dioxide gas. You may adjust with nitrogen gas etc. with low reactivity besides carbon dioxide.
  • the ozone gas discharged from the ozone gas generation unit 10 is supplied to the ozone gas mixing unit 20 via a valve mechanism 9 that serves as a check valve or a flow rate adjustment valve that prevents a back flow of liquid.
  • the gas-liquid separation tank 30 is, for example, a bottomed cylindrical container with a bottom.
  • the axial direction of the central axis of the cylindrical shape is set to be vertical, the present invention is not limited to this, and the gas-liquid separation tank may be installed with the central axis inclined with respect to the vertical.
  • the solvent guide path 70 is a flow path that connects the water / liquid separation tank 30 to the water supply unit 72 to which water as a raw material of the solvent is supplied.
  • a flow rate adjustment valve 74 is disposed in the middle of the solvent guide path 70.
  • the flow rate adjustment valve 74 is a pneumatic valve such as a pneumatic flow rate adjustment valve.
  • a solvent introduction port 76 for introducing (discharging) at least water is formed in the gas-liquid separation tank 30.
  • the solvent introduction port 76 introduces water in a direction including a tangential component of the swirl flow S generated in the ozone gas mixture. Therefore, the solvent introduction port 76 also serves as a tangential direction introduction unit that generates a swirl flow by the flow of introducing the fluid in the swirl flow generation unit 50 described later.
  • the solvent inlet 76 opens directly to the cylindrical inner peripheral wall of the gas-liquid separation tank 30.
  • the direction in which the raw material water is guided in the solvent guide path 70 immediately before the solvent introduction port 76 includes a circumferential component (tangential component) of the inner peripheral wall, and in this embodiment, in particular, substantially matches the tangential direction of the inner peripheral wall.
  • the guide direction of the solvent guide path 70 immediately before the solvent introduction port 76 is substantially horizontal (perpendicular to the vertical central axis of the gas-liquid separation tank 30).
  • the flow of the raw water (ozone gas mixture) introduced from the solvent introduction port 76 via the solvent guide path 70 is a swirl flow along the inner peripheral wall of the gas-liquid separation tank 30 as indicated by an arrow FB. Become.
  • the solvent introduction port 76 is disposed near the center of the gas-liquid separation tank 30 in the vertical direction or above it.
  • a circulating fluid outlet 62 is formed at the upstream end of the circulation path 60.
  • This circulating fluid outlet 62 serves as an opening for leading out (sucking) the ozone gas mixture in the gas-liquid separation tank 30.
  • the circulating fluid outlet 62 guides the ozone gas mixture in a direction including the tangential component of the swirl flow S generated in the ozone gas mixture. Therefore, the circulating fluid outlet 62 also serves as a tangential direction deriving unit that generates a swirling flow by a flow of deriving a fluid in the swirling flow generating unit 50 described later.
  • the circulating fluid outlet 62 is directly open to the cylindrical inner peripheral wall of the gas-liquid separation tank 30.
  • the guiding direction of the circulating fluid by the circulation path 60 immediately after the circulating fluid outlet 62 includes a circumferential component (tangential component) of the inner peripheral wall, and in this embodiment, in particular, substantially matches the tangential direction of the inner peripheral wall. .
  • the direction in which the circulating fluid is guided by the circulation path 60 immediately after the circulating fluid outlet 62 is substantially horizontal (perpendicular to the central axis in the vertical direction of the gas-liquid separation tank 30).
  • the turning direction coincides with the turning direction generated by the solvent introduction port 76, and here, the turning direction is counterclockwise as viewed from above.
  • the circulating fluid outlet 62 is disposed below the solvent inlet 76 and the circulating fluid inlet 64 in the vertical direction. More specifically, the gas-liquid separation tank 30 is disposed below the center in the vertical direction and in the vicinity of the bottom surface thereof.
  • a circulating fluid inlet 64 is formed at the downstream end of the circulation path 60.
  • the circulating fluid inlet 64 serves as an opening for introducing the circulating fluid (ozone gas mixture) guided by the circulation path 60.
  • the circulating fluid inlet 64 introduces the circulating fluid in a direction including a tangential component of the swirl flow S generated in the ozone gas mixture. Therefore, the circulating fluid introduction port 64 also serves as a tangential direction introduction unit that generates a swirl flow by a flow of introducing a fluid in a swirl flow generation unit 50 described later.
  • the annular liquid inlet 64 is opened in the cylindrical inner peripheral wall of the gas-liquid separation tank 30.
  • the guide direction of the circulation path 60 immediately before the circulating fluid inlet 64 includes a circumferential component (tangential component) of the inner peripheral wall, and in this embodiment, in particular, substantially matches the tangential direction of the inner peripheral wall.
  • the guide direction of the circulation path 60 immediately before the circulating fluid inlet 64 is substantially horizontal (perpendicular to the vertical central axis of the gas-liquid separation tank 30).
  • the flow of the circulating fluid introduced from the circulating fluid inlet 64 becomes a swirl flow along the inner peripheral wall of the gas-liquid separation tank 30 as indicated by the arrow FC.
  • the swirl direction coincides with the swirl direction generated by the solvent introduction port 76, and here is counterclockwise as viewed from above.
  • the circulating fluid inlet 64 is disposed between the solvent inlet 76 and the circulating fluid outlet 62 in the vertical direction. More specifically, the gas-liquid separation tank 30 is disposed below the center in the vertical direction and above the circulating fluid outlet 62.
  • a circulation pump 66 is disposed in the middle of the circulation path 60.
  • the circulation pump 66 plays a role of promoting the flow of the circulating fluid.
  • a flow rate adjustment valve 68 for adjusting the flow rate of the circulating fluid is disposed on the downstream side of the circulation pump 66 in the circulation path 60.
  • the flow rate adjusting valve 68 is a pneumatic valve such as a pneumatic flow rate adjusting valve.
  • the ozone solution deriving unit 80 is configured to derive the ozone water generated by the gas-liquid separation tank 30 to the use point U, and a flow rate that is provided in the middle of the deriving path 82 and adjusts the amount of ozone water derived.
  • An adjustment valve 84 is provided.
  • the upstream side of the outlet path 82 also serves as the circulation path 60, and the ozone solution outlet 86 formed at the upstream end of the outlet path 82 also coincides with the circulating liquid outlet 62. Therefore, as shown in FIG. 2 (D), the ozone solution outlet 86 guides the ozone gas mixture in the direction including the tangential component of the swirl flow S generated in the ozone gas mixture.
  • the ozone solution outlet 86 also serves as a tangential direction derivation unit that generates a swirl flow by a flow for deriving a fluid in the swirl flow generation unit 50 described later.
  • the ozone solution outlet 86 is disposed at a location radially away from the central axis C of the swirling flow of the ozone mixture in the gas-liquid separation tank 30. Since the surplus ozone bubbles move to the central axis C side as a reaction of the centrifugal force of the swirling flow, the surplus ozone bubbles are difficult to enter the ozone solution outlet 86, and ozone water with few bubbles can be discharged.
  • the swirl flow generation unit 50 introduces water or an ozone gas mixture in a direction including a tangential component of the swirl flow of the ozone gas mixture stored in the gas-liquid separation tank 30 to generate a swirl flow. It has a tangential direction introduction part 50A to be produced.
  • the solvent introduction port 76 and the circulating fluid introduction port 64 also serve as the tangential direction introduction unit 50A.
  • the swirl flow generation unit 50 has a tangential direction deriving unit 50B that generates a swirl flow by deriving the ozone gas mixture stored in the gas-liquid separation tank 30 in a direction including the tangential component of the swirl flow.
  • the circulating fluid outlet 62 (or the ozone solution outlet 86) also serves as the tangential direction outlet 50B.
  • the ozone solution generation apparatus 1 includes, as the ozone gas mixing unit 20, a solvent side gas / liquid mixer 22 disposed in the middle of the solvent guide path 70 and a circulation side gas / liquid mixture disposed in the middle of the circulation path 60.
  • the solvent-side gas-liquid mixer 22 is disposed on the downstream side (gas-liquid separation tank 30 side) with respect to the flow rate adjustment valve 74, and mixes raw water and excess ozone gas generated in the gas-liquid separation tank 30. Accordingly, an ozone gas circulation path 26 that guides the surplus ozone gas remaining above the ozone gas mixture to the solvent-side gas-liquid mixer 22 is connected above the gas-liquid separation tank 30.
  • the circulation side gas-liquid mixer 24 is disposed downstream of the flow rate adjustment valve 68 (gas-liquid separation tank 30 side) in the circulation path 60, and mixes the circulation liquid and the ozone gas supplied from the ozone generator 10. To do.
  • the ozone gas mixing unit 20 (solvent side gas-liquid mixer 22, circulation side gas-liquid mixer 24) is a so-called ejector 28 as shown in FIG.
  • Ozone gas is drawn from the negative pressure space 28 ⁇ / b> B formed around it by introducing it at a high speed from 28 ⁇ / b> A.
  • a diffuser 28C having a narrow portion is provided in the middle, and the ozone gas mixed solution is mixed together until reaching the narrow portion, and further passes through the narrow portion, the flow velocity further decreases, At the same time as returning to the original flow velocity, the pressure of the ozone gas mixture also returns according to Bernoulli's theorem.
  • ozone gas may be directly drawn into the narrow portion of the diffuser 28C.
  • an ejector is exemplified as a method of mixing a solvent such as water and ozone gas.
  • the present invention is not limited to this, and a mixing pump, a microchannel, or the like may be used.
  • the gas-liquid separation tank 30 is provided with a liquid level sensor 36 for detecting the liquid level of the ozone gas mixed liquid and an ozone concentration sensor 38 for detecting the concentration of ozone dissolved in the ozone gas mixed liquid. It is done.
  • the ozone concentration sensor 38 may be provided in the derivation path 82 or the circulation path 60, but it is preferable that a value close to the ozone concentration derived from the ozone solution derivation unit 80 can be detected as much as possible. Therefore, in the case of the gas-liquid separation tank 30, it is preferable to arrange it near the bottom surface.
  • An open path 40 is formed above the gas-liquid separation tank 30, and in the middle of the release path 40, a back pressure adjustment valve 42 that keeps the pressure in the gas-liquid separation tank 30 constant, and a release path 40.
  • the exhaust ozone decomposer 44 which decomposes
  • the ozone solution generator 1 includes a controller 46.
  • the control device 46 is controlled by a central processing unit CPU that processes a program developed in the memory M, a storage medium H that stores various information and control programs, and an external device.
  • An interface I for outputting a signal and receiving a detection signal from an external device is provided, and these are connected to each other by a bus or the like.
  • the control device 46 includes a solvent supply control unit 46A, a circulation flow rate control unit 46B, an ozone gas control unit 46C, and a derived amount control unit 46D as control blocks (functional configuration realized by a program). , A liquid level detection unit 46E, and an ozone concentration detection unit 46F.
  • the liquid level detection unit 46E detects the liquid level of the ozone gas mixture using the liquid level sensor 36.
  • the ozone concentration detector 46F uses the ozone concentration sensor 38 to detect the ozone concentration of the ozone gas mixture.
  • the solvent supply control unit 46A controls the flow rate adjustment valve 74 based on the liquid level of the ozone gas mixed solution, and controls the flow rate of the newly supplied raw material water. The flow rate may be controlled so that the liquid level is always constant, and the supply is started when the preset lower limit liquid level is reached, and the supply is stopped when the preset upper limit liquid level is reached. You may control to such a pulse wave shape.
  • the water amount may be controlled by switching between full open and full close, and the throttle amount of the flow rate adjustment valve 74 may be finely controlled.
  • the raw water is fully opened to increase the flow rate when the raw water is supplied. It is also desirable to control.
  • the circulation flow rate control unit 46B controls the flow rate of the circulating fluid by controlling the circulation pump 66 and / or the flow rate adjustment valve 68.
  • the flow rate of the circulating fluid may be constant, but may be controlled based on, for example, the ozone concentration of the ozone gas mixture. If the ozone concentration is lower than the target value, the circulating flow rate is increased and When the concentration is high, the circulation flow rate may be decreased.
  • the flow rate of the circulating liquid is always set larger than the amount of water controlled by the solvent supply control unit 46A, for example, supply by the solvent supply control unit 46
  • the amount is 20 (L / min)
  • the flow rate of the circulating fluid is set to a value larger than 20 (L / min), for example, 40 (L / min).
  • the ozone gas control unit 46C controls the concentration of ozone gas generated by the ozone gas generation unit 10 based on the ozone concentration of the ozone gas mixture and / or the circulation flow rate controlled by the circulation flow rate control unit 46B.
  • the derived amount control unit 46D controls the flow rate adjustment valve 84 to control the flow rate of the ozone water discharged to the use point U.
  • the raw water of the water supply unit 72 is guided and stored in the gas-liquid separation tank 30 via the solvent guide path 70.
  • Ozone gas is generated by the ozone gas generation unit 10, and ozone gas is supplied to the gas-liquid separation tank 30 via the circulation side gas-liquid mixer 24.
  • Extra ozone gas stored in the gas-liquid separation tank 30 is supplied to the solvent-side gas-liquid mixer 22 via the ozone gas circulation path 26.
  • the raw water supplied from the solvent guide path 70 becomes an ozone gas mixture.
  • the circulation pump 66 When the liquid level of water or the ozone gas mixture becomes high in the gas-liquid separation tank 30, the circulation pump 66 is activated to circulate the ozone gas mixture in the circulation path 60.
  • the circulating liquid is mixed with high-concentration ozone gas from the ozone gas generator 10 in the circulation-side gas-liquid mixer 24.
  • the flow rate adjustment valve 84 After the ozone concentration of the ozone gas mixture reaches the target value, the flow rate adjustment valve 84 is opened and the generated ozone water is led out to the use point U.
  • the supply of the raw material water by the water supply unit 72 is adjusted to the flow rate of ozone water guided to the use point U by the ozone solution deriving unit 80.
  • the circulation flow rate of the circulation path 60 can always be controlled at a constant flow rate without depending on these.
  • FIG. 4 the state of the gas-liquid separation tank 30 in the middle of the ozone solution production
  • a space from the solvent introduction port 76 to the circulating fluid introduction port 64 is defined as a primary space 30A
  • a space from the circulating fluid introduction port 64 to the circulating fluid outlet 62 is defined as a secondary space 30B.
  • the respective heights of the primary space 30A and the secondary space 30B are defined as L 1 and L 2 (m).
  • the flow rate of the ozone gas mixture (or raw material water) introduced from the solvent introduction port 76 is defined as Q 1 (L / min), and the flow rate discharged from the lead-out path 82 of the ozone solution lead-out unit 80 is defined as Q 3 (L / min)), the flow rates of each other will coincide if they are equalized.
  • the flow rate of the circulating fluid passing through the flow rate adjusting valve 68 of the circulation path 60 is Q 4 (L / min)
  • the flow rate Q 2 (L / min) of the ozone mixed solution descending the secondary space 30B is Q 1. + the Q 4.
  • the circulating fluid flow rate Q 4 (L / min) is set so that the introduction flow rate of the solvent introduction port 76 is larger than Q 1 (L / min). Accordingly, the flow rate Q 2 of the ozone mixture to lower the secondary space 30B, it is preferable that the flow rate Q 1 (L / min) twice or more.
  • the ideal piston flow downward flow that is, the flow velocity depending on the location in the circular cross section perpendicular to the axis.
  • the flow velocity V 1 (m / s) of the downward flow is defined by the following equation 1.
  • the diameter of the surplus ozone gas bubbles (hereinafter referred to as bubbles) to be separated is D p (m)
  • the ozone gas mixture The density is ⁇ (kg / m 3 ) (here, the density of water is approximated by 1000 (kg / m 3 )), and the viscosity coefficient of the ozone gas mixture is ⁇ (Pa ⁇ s) (here 0.001 (Pa ⁇ s))
  • the bubble rising speed Z 1 (m / s) in the still liquid is approximately obtained by the Stokes equation (2).
  • the diameter D p (m) of the bubbles to be separated is preferably set to 0.0001 (m), that is, 100 ⁇ m or more, which may cause problems in practical use. Therefore, if this value is substituted, the ascending speed Z 1 is 5.44 ⁇ 10 ⁇ 3 (m / s).
  • Equation 3 is established.
  • the diameter D p (m) of the bubbles to be separated is 0.0001 (m)
  • the amount of ozone water generated from the lead-out path 82 is 90 (L / min)
  • the diameter d (m) of the gas-liquid separation tank 30 is calculated to be 0.59 (m) or more from the above equations 1 to 3. Therefore, as in the conventional case, when only a simple piston flow downward flow is used, it means that 100 ⁇ m bubbles cannot be separated unless the inner diameter of the gas-liquid separation tank 30 is increased to about 0.6 (m) or more.
  • the gas-liquid separation tank 30 reduced in size by this embodiment is assumed.
  • the turning radius r 2 of the swirling flow is 0.075 (m) of d / 2
  • a 2 is calculated as 120 (m / s 2 ) from Equation 4.
  • the 100 ⁇ m bubble K located on the inner peripheral wall can move to at least the central axis C while descending while turning from the circulating fluid inlet 64 to the circulating fluid outlet 62.
  • the circulating fluid outlet 62 ozone solution outlet 86
  • the bubbles K do not have to be discharged together with the ozone water.
  • the circulating liquid flow rate U 2 that are introduced from the circulating fluid inlet 64 it is assumed that not attenuated until the end.
  • the distance r 2d (m) that the bubble K moves toward the central axis C is 0.28 (m), which is 0.075 (m), which is the radius (d / 2) of the gas-liquid separation tank 30. Is also significantly larger. Therefore, even if the flow velocity U 2 is somewhat attenuated no problem.
  • Equation 6 The result of Equation 6 is 1.53 (m / s). That is, if the flow rate U 2 of the circulating fluid to be introduced from the circulating fluid inlet 64 was 3 (m / s), Even if decayed to about half 1.53 (m / s), is no problem I understand that there is no. Further, even if the bubble K does not reach the central axis C, it is sufficient if it is separated from the inner peripheral wall to some extent inside, so that further attenuation is allowed.
  • FIG. 5 shows a visual state when the bubble K rises in the secondary space 30B.
  • the bubble K tends to move to the center in the radial direction by the swirling flow, accompanied by both the descending by the descending flow and the rising by the buoyancy.
  • the bubbles merge to increase the particle size and buoyancy. At this time, it rises along the spiral ascending path N formed in the swirling flow.
  • the bubbles K are always present at a position radially inward from the inner peripheral wall of the gas-liquid separation tank 30, so that efficient gas-liquid separation is realized.
  • the distance r 2d (m) moved in the direction of the central axis C by the swirl flow S is not less than the radius (d / 2) (m) of the gas-liquid separation tank 30.
  • the following equation 7 can be derived.
  • Equation 7 R 2d in Equation 7 can be expanded into the following Equation 8.
  • the inner diameter (diameter) d (m) of the gas-liquid separation tank 30 is less than 0.6 (m), desirably 0.5 (m) or less, and more desirably. Can be set to 0.3 (m) or less.
  • Ozone solution generating apparatus 1 of the present embodiment is preferably controlled to satisfy the flow rate Q 2.
  • Ozone solution generating apparatus 1 of the present embodiment is preferably controlled to satisfy the velocity U 2.
  • the dissolution of ozone gas in water involves a process in which ozone molecules diffuse in bubbles (mixed gas) and a process in which ozone molecules that have moved from the bubbles to the water side at the gas-liquid boundary diffuse into water. It is done in two processes. Since the diffusion rate of ozone molecules in the bubbles is extremely higher than the diffusion rate of ozone molecules in water, the rate limiting of the actual dissolution rate of ozone gas in water is the diffusion rate of ozone molecules in water.
  • the diffusion rate of ozone molecules in water depends on the concentration gradient of ozone molecules from the bubble to the water side at the gas-liquid boundary (change in concentration per unit distance), but the concentration of ozone molecules in the surface water near the boundary is high Then, ozone tends to be in an equilibrium state at the boundary, and the moving speed of ozone molecules from the bubbles toward the water side decreases.
  • the relative movement speed of the bubbles and water so that the bubbles having a high ozone concentration are brought into contact with the surface water having a low ozone concentration.
  • the relative speed between the bubbles and the water coincides with the rising speed of the bubbles.
  • the speed at which the bubbles move in the direction of the central axis C is also added due to the centrifugal force of the swirling flow, so the relative speed between the bubbles and water is larger than the conventional one,
  • the ozone concentration of the ozone water can be increased, and the control response can be increased.
  • a gas-liquid two-phase flow that rotates about the cylindrical axis of the tank is generated inside the gas-liquid separation tank 30.
  • swirl flow S a gas-liquid two-phase flow that rotates about the cylindrical axis of the tank is generated inside the gas-liquid separation tank 30.
  • bubbles of excess ozone gas move to the central axis side due to the reaction of centrifugal force during turning.
  • the ozone solution outlet 86 circulating fluid outlet 62
  • bubbles are less likely to be mixed into the discharged ozone water. Therefore, even if the discharge flow rate is increased, the gas-liquid separation tank 30 can be constructed in a compact manner.
  • the swirl flow increases the relative movement speed of the water serving as the solvent and the ozone gas bubbles, so that it is possible to generate ozone water with high dissolution efficiency.
  • tangential direction introduction that introduces a swirl flow by introducing water or an ozone gas mixture in a direction including a tangential component of the swirl flow in the horizontal plane, such as the solvent introduction port 76 and the circulating fluid introduction port 64. Since it has the part 50A, a swirl flow can be created efficiently. In particular, it becomes possible to create a stable and powerful swirl flow by using a circulating liquid that does not depend on the consumption of ozone water, and the secondary space 30B allows the separation of excess ozone gas using centrifugal force and the ozone gas. Can be dissolved in water. Further, the flow velocity of the swirling flow can be arbitrarily controlled by the circulating fluid.
  • a tangential direction deriving unit 50B that generates a swirl flow by deriving the ozone gas mixture stored in the gas-liquid separation tank 30 in a direction including a tangential component of the swirl flow in the horizontal plane. Therefore, it is possible to create a swirl flow more efficiently. In particular, it is difficult for excessive ozone gas bubbles to enter the tangential direction deriving portion 50B. By using this as the ozone solution outlet 86, it is possible to derive only ozone water with few bubbles. At the time of derivation, the flow of the swirling flow is hardly disturbed, and the swirling flow can be stably maintained. Incidentally, if ozone water is derived in a direction that does not coincide with the swirling flow, an individual small swirling flow is generated in the vicinity of the outlet, and bubbles of excess ozone gas may be sucked up.
  • generation part 10 is mixed in the circulation side gas-liquid mixer 24 arrange
  • the concentration of the ozone water mixed here can be controlled with high accuracy and high response.
  • the time constant of the concentration control of the ozone water is the ratio between the amount of the ozone gas mixture stored in the gas-liquid separation tank 30 and the amount of circulating fluid circulated by the circulation pump 66. By setting this ratio small, the response speed of the ozone concentration control can be increased.
  • the surplus ozone gas separated from the ozone gas mixture is reused and mixed to the pure water side by the solvent-side gas-liquid mixer 22, it is possible to greatly increase the use efficiency of the ozone gas. .
  • the surplus ozone gas separation efficiency by the swirling flow using the circulating liquid is high, the utilization efficiency of the ozone gas can be further increased by reusing it.
  • the pressure of the gas-liquid separation tank 30 is set to 0.17 (MPa)
  • the height of the solvent inlet 76 from the bottom of the gas-liquid separation tank 30 is 0.6 (m)
  • the height of the circulating liquid inlet 64 is 0.3 (m).
  • the water level was made to coincide with the height of the solvent inlet 76.
  • the concentration of ozone gas generated by the ozone gas generation unit 10 is 160 (g / m 3 ) or more, preferably 170 (g / m 3 ), using the present ozone solution generation apparatus 1. and above, further, the ozone gas flow rate 10 (L / min) or more, preferably a 15 (L / min) or more and further, the circulation flow rate Q 4 by the circulating pump 66 20 (L / min) or more, preferably Even if it is 40 (L / min) or higher, more preferably 60 (L / min) or higher, the ozone water discharge is 15 (L / min) or higher, preferably 20 (L / min) or higher. Ozone water of 90 (ppm) or more is obtained.
  • FIG. 7 shows an ozone solution generation apparatus 101 according to the second embodiment.
  • the downstream side of the circulation path 60 is merged with the solvent guide path 70, so that the solvent introduction port 76 and the circulation liquid introduction port 64 serve as both, and the solvent side gas-liquid mixer 22 and the circulation are provided. It also serves as the side gas-liquid mixer 24.
  • the solvent introduction port 76 and the circulating fluid introduction port 64 also serve as the tangential direction introduction unit 50A.
  • the ozone solution outlet 86 or the circulating fluid outlet 62 disposed in the gas-liquid separation tank 30 supplies ozone water radially outward with respect to the gas-liquid separation tank 30.
  • ozone gas circulation path 26 like 2nd embodiment was illustrated. May be supplied to the ozone gas generator 10 via the dehumidifier 27.
  • generation part 10 the utilization efficiency of ozone gas can be improved by producing
  • the solvent introduction port 76 and the circulating fluid introduction port 64 are also used as the tangential direction introduction unit 50A, but the present invention is not limited to this.
  • the solvent introduction port 76 and the circulating fluid introduction port are made so that the ozone solution outlet 86 and the circulating fluid outlet 62 also serve as the tangential direction outlet 50B. 64 may be introduced so as not to include the tangential component of the swirl flow S.
  • the circulating fluid inlet 64 serves as the tangential direction inlet 50A, and the solvent inlet 76 and the ozone solution outlet 86 (circulating fluid outlet 86). 62) may have a structure that does not create a swirling flow. Further, the ozone gas mixing unit 20 may omit the solvent side gas-liquid mixer as the circulation side gas-liquid mixer 24 only.
  • the ozone gas mixing unit 20 may be the solvent side gas / liquid mixer 22 only, and the circulation side gas / liquid mixer may be omitted.
  • the solvent-side gas-liquid mixer 22 may mix ozone gas supplied from the ozone generator 10.
  • the outlet path 82 and the ozone solution outlet 86 serve as the circulation path 60 and the circulating fluid outlet 62
  • the present invention is not limited to this.
  • the outlet path 82 and the ozone solution outlet 86 are arranged independently of the circulation path 60 and the circulating liquid outlet 62. Also good.
  • the flow rate Q 3 (L / min) of the downward flow in the tertiary space 30C is smaller than the flow rate Q 2 (L / min) of the secondary space 30B, and is matched with Q 1 (L / min) of the primary space 30A. since it is, compared to the secondary space 30B, it can be reduced down velocity V 3 of the tertiary space 30C. Result, even increased the circulation flow rate of the secondary space 30B, so lowering the flow velocity V 3 of the tertiary space 30C is kept small, more air bubbles in the ozone solution outlet 86 is in a state not easily enter. As shown in FIG.
  • the flow immediately before the ozone gas mixture led to the lead-out path 82 via the ozone solution lead-out port 86 is the flow of the gas-liquid separation tank 30 as indicated by the arrow FE. It becomes a swirl flow along the inner peripheral wall.
  • the swirling flow generating unit 50 may have a rotating body 56 that generates a swirling flow by rotating in the ozone gas mixture.
  • the rotating body 56 has rotating blades 56A as shown in FIGS. 12B to 12D, and the rotating shaft extending in the vertical direction rotates on the upper surface and / or the bottom surface of the gas-liquid separation tank 30. It is held freely and is forcibly rotated by a motor MT or the like.
  • the structure of the rotating body 56 is not limited to the wing type.
  • a swirling flow S may be generated. It is also preferable to arrange a plurality of rotating bodies 56 in the vertical direction.
  • the present invention is not limited to this.
  • the ozone water generating device can be used as a water treatment device that utilizes the decomposition of organic matter using ozone and the sterilization characteristics of ozone.
  • a liquid (water) containing an organic substance that chemically reacts with ozone or a liquid (water) containing at least one of a virus, a bacterium, a fungus, and a microorganism can be used as the solvent.
  • the present invention is not limited to the case where organic substances and viruses are treated in the gas-liquid separation tank, but includes the case where ozone contained in the ozone solution derived from the gas-liquid separation tank treats organic substances and viruses over time.
  • the organic matter, virus, bacteria, fungi, microorganisms, and the like to be treated vary greatly in the product of ozone concentration and time required for treatment in the ozone solution depending on the type. Therefore, the ozone concentration may be controlled according to the type, and the residence time (circulation time) in the gas-liquid separation tank may be controlled.
  • a standby space such as a storage tank or piping is prepared on the downstream side of the ozone solution outlet, and the ozone solution derived from the gas-liquid separation tank is temporarily retained in the standby space, so that the ozone treatment is performed. Time may be secured. Note that this standby space can also be used as a place to additionally deaerate bubbles such as ozone that have remained in the ozone solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Accessories For Mixers (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

An ozone solution generation apparatus generates an ozone solution by dissolving ozone gas generated by an ozone gas generation device in a solvent. The ozone solution generation apparatus is provided with: a gas-liquid separation tank for storing an ozone gas-mixed liquid in which ozone gas and a solvent have been mixed by a gas-liquid mixer; a swirling flow generation unit for generating a swirling flow in the ozone gas-mixed liquid in the gas-liquid separation tank; and an ozone solution outlet for guiding the ozone solution generated by the ozone gas mixed liquid that has been subjected to the swirling flow to the outside of the gas-liquid separation tank. Provided thereby is an ozone solution generation apparatus that is compact and has a high ozone dissolution efficiency.

Description

オゾン溶液生成装置及びオゾン溶液生成方法Ozone solution generating apparatus and ozone solution generating method
 本発明は、オゾンガスを溶媒である水等に溶かしてオゾン溶液を生成する為のオゾン溶液生成装置等に関する。 The present invention relates to an ozone solution generator for dissolving ozone gas in water or the like as a solvent to generate an ozone solution.
 従来、半導体洗浄工程、レジスト剥離工程の分野では、大量の化学薬品を使用し製造されてきたが、半導体生産等の大規模化によってその化学薬品の排出が環境規制に抵触する可能性が出てきており、それらの化学薬品に代わって、環境への負荷が小さく、環境規制に抵触しないオゾン水の利用が進展している。 Conventionally, in the field of semiconductor cleaning process and resist stripping process, it has been manufactured using a large amount of chemicals, but due to the large scale of semiconductor production etc., there is a possibility that the emission of chemicals may conflict with environmental regulations. In place of these chemicals, the use of ozone water that has a low impact on the environment and does not conflict with environmental regulations is progressing.
 オゾン水製造装置は、オゾン発生手法によって電解式と放電式に大別される。電解式は、水中で特殊な電極を用いて電気分解を行うことでオゾンを生成し、水に溶解させる。放電式は、無声放電、沿面放電等の放電を酸素含有気体中で発生させてオゾン含有気体(オゾンガス)を生成し、それを水に溶解させることによって、オゾン水を生成する。電解式は比較的単純な装置で高濃度のオゾン水が生成できるため、半導体洗浄工程には早期に使用されてきた。 Ozone water production equipment is roughly divided into electrolytic and discharge types depending on the ozone generation method. In the electrolytic method, ozone is generated by electrolysis using a special electrode in water and dissolved in water. The discharge type generates ozone water by generating discharges such as silent discharge and creeping discharge in an oxygen-containing gas to generate ozone-containing gas (ozone gas) and dissolving it in water. Since the electrolytic method can generate high-concentration ozone water with a relatively simple apparatus, it has been used early in the semiconductor cleaning process.
 放電式のオゾン水生成装置を用いる場合、オゾンガスを水に溶解させる手法として、バブリング、微細気泡発生器、オゾン溶解膜、エジェクター、気液ミキシングポンプ、充填塔等が存在する。バブリングは、オゾン溶解槽の下部に多孔性の気泡発生器を配置し、この気泡発生器からオゾンガスの気泡を発生させて水中を上昇させる。なお、装置は単純であるが、オゾンの溶解効率、すなわちオゾンの発生量に対するオゾン溶解量の比率が低く、高濃度オゾン水の生成にはあまり用いられない。 In the case of using a discharge type ozone water generator, there are bubbling, a fine bubble generator, an ozone dissolving film, an ejector, a gas-liquid mixing pump, a packed tower, etc. as a method for dissolving ozone gas in water. In bubbling, a porous bubble generator is disposed at the bottom of the ozone dissolution tank, and bubbles of ozone gas are generated from the bubble generator to raise the water. Although the apparatus is simple, the ozone dissolution efficiency, that is, the ratio of the amount of ozone dissolved to the amount of ozone generated is low, and it is not often used for the production of high-concentration ozone water.
 微細気泡発生器は、使用時に問題とならない程に直径の小さい(例えばミクロン単位の)オゾンガス気泡を発生させて、これを水に溶解させるものである。なお、オゾン溶解効率は高いが、大量のオゾンガスを微細気泡にする行程が複雑であり、大容量化には向いていない。 The fine bubble generator generates ozone gas bubbles having a diameter that is small enough (for example, in units of microns) so as not to cause a problem during use, and dissolves them in water. Although the ozone dissolution efficiency is high, the process of turning a large amount of ozone gas into fine bubbles is complicated and is not suitable for increasing the capacity.
 オゾン溶解膜は、水を透過しないがオゾンガスを透過するフッ素樹脂膜によって形成される細径の中空ファイバー内に水を流し、その中空ファイバーの周辺にオゾンガスを導入して、オゾンガスを水に溶かしこむもので、半導体業界に最も良く用いられている。しかし大容量化に際しては、その容量に比例した大量のオゾン透過膜(中空ファイバー)が必要となり、コンパクト化が困難となる。 The ozone-dissolving membrane allows water to flow into a small-diameter hollow fiber formed by a fluororesin membrane that does not transmit water but transmits ozone gas, introduces ozone gas around the hollow fiber, and dissolves ozone gas in water. And is most commonly used in the semiconductor industry. However, when the capacity is increased, a large amount of ozone permeable membrane (hollow fiber) proportional to the capacity is required, and it is difficult to make the apparatus compact.
 充填塔は、ラシヒリング等の充填剤を充填したカラムの上部から水を下降させ、下部からオゾンガスを上昇させて、充填部で、気液向流式にオゾンガスと水を接触させて、オゾンガスを水に溶解させる。溶解効率が高く、高濃度のオゾン水を生成することが可能である。この方法は、下降する水の流速を一定程度以上に速くすることができないため、オゾン水の生成量に比例した流路面積を必要とし、大容量の際にコンパクト化が難しい。 The packed tower lowers water from the upper part of a column packed with a packing such as Raschig ring, raises ozone gas from the lower part, and makes ozone gas and water contact with each other in a gas-liquid countercurrent manner in the packed part. Dissolve in. Dissolution efficiency is high, and it is possible to generate high-concentration ozone water. Since this method cannot increase the flow rate of the descending water to a certain level or more, it requires a flow passage area proportional to the amount of ozone water produced, and it is difficult to make it compact when the capacity is large.
 エジェクターや気液ミキシングポンプは、いわゆる気液混合器であり、オゾンガスの気泡と水を強制的に混合して気液二相流を生成せしめ、オゾン水を生成する手法である。 An ejector or a gas-liquid mixing pump is a so-called gas-liquid mixer, and is a method of generating ozone water by forcibly mixing ozone gas bubbles and water to generate a gas-liquid two-phase flow.
 エジェクターは、水の流路の一部に隘路を設け、ベルヌーイの定理によりその隘路において生じる導出力を利用してオゾンガスを引き込み、オゾンガス気泡と水を混合した気液二相流を生成することでオゾン水とする。エジェクターは、流量が増えてもあまり大きくはならない利点がある。例えば、隘路の部分の流速を15(m/s)程度、その前後の流速を3(m/s)程度にすると、エジェクターによって気液混合効果が生じる。例えば、半導体洗浄分野において大容量と言える90(L/min)のオゾン水を生成する場合、隘路の断面積が1(cm2)(円管直径に換算すると12(mm)程度)、その前後の断面積が5(cm2)(円管直径に換算すると25(mm)程度)で足りるという利点がある。一方で、下流側において、気液分離タンクを利用し、気液二相流となるオゾン混合液から、余剰オゾンガスの気泡を分離して、オゾン気泡を殆ど混入しないオゾン水を生成する必要がある(特許文献1参照)。 The ejector is provided with a bottleneck in a part of the water flow path, and by drawing the ozone gas using Bernoulli's theorem and using the induced power generated in the bottleneck, it generates a gas-liquid two-phase flow that mixes ozone gas bubbles and water. Use ozone water. The ejector has the advantage that it does not become too large as the flow rate increases. For example, if the flow velocity in the part of the bottleneck is about 15 (m / s) and the flow velocity before and after that is about 3 (m / s), the gas-liquid mixing effect is produced by the ejector. For example, when producing 90 (L / min) ozone water, which can be said to have a large capacity in the field of semiconductor cleaning, the cross-sectional area of the bottleneck is 1 (cm2) (about 12 (mm) when converted into a circular tube diameter) There is an advantage that a cross-sectional area of 5 (cm2) (about 25 (mm) when converted into a circular tube diameter) is sufficient. On the other hand, on the downstream side, it is necessary to separate the excess ozone gas bubbles from the ozone liquid mixture that becomes a gas-liquid two-phase flow using a gas-liquid separation tank to generate ozone water that hardly contains ozone bubbles. (See Patent Document 1).
 気液分離タンクは一般的に円筒型であり、上部に気液二相流導入口が配置され、下部にオゾン水排出管が配置される。この気液分離タンクでは、上部から供給される気液二相流が下降して、オゾン水排水管に達するまでに、余剰オゾン気泡が浮力によって上昇して気液二相流から分離される。結果、オゾン水排水管から排出されるのは、余剰オゾン気泡が分離されたオゾン水となる。なお、気液分離タンクでは、気液二相流が滞留する時間経過によってオゾンの溶解も進展する。その結果、気液分離タンク内では、下側に移動するほど、高濃度のオゾン水となる。 The gas-liquid separation tank is generally cylindrical, with a gas-liquid two-phase flow inlet at the top and an ozone water discharge pipe at the bottom. In this gas-liquid separation tank, the surplus ozone bubbles rise by buoyancy and are separated from the gas-liquid two-phase flow until the gas-liquid two-phase flow supplied from the upper part falls and reaches the ozone water drain pipe. As a result, what is discharged from the ozone water drain pipe is ozone water from which excess ozone bubbles are separated. In the gas-liquid separation tank, the dissolution of ozone progresses with the passage of time during which the gas-liquid two-phase flow stays. As a result, in the gas-liquid separation tank, the concentration of ozone water becomes higher as it moves downward.
特許第4977376号Japanese Patent No. 4977376
 従来の気液分離タンクでは、以下の課題が存在する。 The conventional gas-liquid separation tank has the following problems.
 (課題1)気液分離タンク内の下降流によってオゾン気泡を分離する必要があることから、オゾン水の使用量(排出量)を増大させようとすると、下降流の流速が増大し、オゾン気泡の分離が不十分と成りやすい。特に、比較的大きなオゾン気泡(直径1(mm)以上)は、浮力が大きいために分離が容易であるが、小さな気泡(直径0.1(mm)程度)を除去することが難しくなる。この課題を解決するためには、気液分離タンクの内径を大きくして下降流の流速を低下させる必要があり、気液分離タンクが大型化してしまう。 (Problem 1) Since it is necessary to separate the ozone bubbles by the downward flow in the gas-liquid separation tank, when trying to increase the amount of ozone water used (discharged), the flow velocity of the downward flow increases and the ozone bubbles Insufficient separation is likely to occur. In particular, relatively large ozone bubbles (diameter 1 (mm) or more) are easily separated because of their large buoyancy, but it is difficult to remove small bubbles (approximately 0.1 mm in diameter). In order to solve this problem, it is necessary to increase the inner diameter of the gas-liquid separation tank to reduce the flow velocity of the downward flow, and the gas-liquid separation tank becomes larger.
 (課題2)気液分離タンク内では、気液分離工程と同時に、時間変化によってオゾンが水に溶解する。貯留される気液二相流は、上方から下方に移動するにつれてオゾン濃度が高くなる。従って、オゾン水のオゾン濃度を高めようとすると、気液分離タンクの高さを大きくして、気液二相流の滞留時間を余分に大きく確保する必要があり、気液分離タンクが大型化してしまう。 (Problem 2) In the gas-liquid separation tank, ozone dissolves in water as the time changes simultaneously with the gas-liquid separation process. The stored gas-liquid two-phase flow has a higher ozone concentration as it moves downward from above. Therefore, when trying to increase the ozone concentration of ozone water, it is necessary to increase the height of the gas-liquid separation tank and ensure an extra large residence time for the gas-liquid two-phase flow. End up.
 本発明は、上記(課題1)~(課題2)のいずれかを個別に、又は、これらを同時に解決することに鑑みてなされたものである。 The present invention has been made in view of solving any of the above (Problem 1) to (Problem 2) individually or simultaneously.
 上記目的を達成する本発明は、オゾンガス生成装置によって生成されるオゾンガスを溶媒に溶かしてしてオゾン溶液を生成するオゾン溶液生成装置であって、前記オゾンガスと前記溶媒を混合してオゾンガス混合液を生成する気液混合器と、前記気液混合器によって生成された前記オゾンガス混合液を貯留する気液分離タンクと、前記気液分離タンク内において前記オゾンガス混合液に旋回流を生じさせる旋回流生成部と、前記旋回流を経た前記オゾンガス混合液によって生成される前記オゾン溶液を、前記気液分離タンクの外部に案内するオゾン溶液導出部と、を備えることを特徴とするオゾン溶液生成装置である。 The present invention that achieves the above object is an ozone solution generating apparatus that generates an ozone solution by dissolving ozone gas generated by an ozone gas generating apparatus in a solvent, wherein the ozone gas and the solvent are mixed to produce an ozone gas mixed solution. A gas-liquid mixer to be generated, a gas-liquid separation tank for storing the ozone gas mixture generated by the gas-liquid mixer, and a swirl flow generation for generating a swirl flow in the ozone gas mixture in the gas-liquid separation tank And an ozone solution derivation unit that guides the ozone solution generated by the ozone gas mixture that has passed through the swirling flow to the outside of the gas-liquid separation tank. .
 上記オゾン溶液生成装置に関連して、前記オゾン溶液導出部は、前記オゾン溶液を前記気液分離タンクの外部に導出する為のオゾン溶液導出口を有しており、前記オゾン溶液導出口は、前記オゾン混合液における前記旋回流の中心軸から径方向外側に外れた場所に位置することを特徴とする。 In relation to the ozone solution generation device, the ozone solution outlet has an ozone solution outlet for leading the ozone solution to the outside of the gas-liquid separation tank, and the ozone solution outlet is It is located in the place which remove | deviated to the radial direction outer side from the central axis of the said swirl | vortex flow in the said ozone liquid mixture.
 上記オゾン溶液生成装置に関連して、前記旋回流生成部は、前記溶媒又は前記オゾンガス混合液の前記気液分離タンク内への導入方向の範囲を、前記旋回流の接線方向を含む範囲とすることによって旋回流を作り出す接線方向導入部を有することを特徴とする。 In relation to the ozone solution generating device, the swirl flow generation unit sets the range of the direction in which the solvent or the ozone gas mixture is introduced into the gas-liquid separation tank as a range including the tangential direction of the swirl flow. It has the tangential direction introduction part which produces a swirl flow by this.
 上記オゾン溶液生成装置に関連して、前記旋回流生成部は、前記溶媒、前記オゾンガス混合液又は前記オゾン溶液の前記気液分離タンクからの導出方向の範囲を、前記旋回流の接線方向を含む範囲とすることによって旋回流を作り出す接線方向導出部を有することを特徴とする。 In relation to the ozone solution generation device, the swirl flow generation unit includes a range of a direction in which the solvent, the ozone gas mixed solution or the ozone solution is derived from the gas-liquid separation tank, and includes a tangential direction of the swirl flow. It is characterized by having a tangential direction deriving section that creates a swirl flow by setting the range.
 上記オゾン溶液生成装置に関連して、前記旋回流生成部は、前記オゾンガス混合液内で回転することで、該旋回流を生み出す回転体を有することを特徴とする。 In relation to the ozone solution generating device, the swirling flow generating section includes a rotating body that generates the swirling flow by rotating in the ozone gas mixture.
 上記オゾン溶液生成装置に関連して、前記気液分離タンクの前記オゾンガス混合液を導出して循環液とし、該循環液を前記気液分離タンクに戻す循環路を有し、前記循環路の途中には、前記オゾンガス生成装置から供給される前記オゾンガスと前記循環液を混合する前記循環側気液混合器が配置されること特徴とする。 In connection with the ozone solution generating device, the ozone gas mixed liquid in the gas-liquid separation tank is led out to be used as a circulating liquid, and the circulating liquid is returned to the gas-liquid separation tank. Is characterized in that the circulation side gas-liquid mixer for mixing the ozone gas supplied from the ozone gas generator and the circulating liquid is arranged.
 上記オゾン溶液生成装置に関連して、前記気液分離タンクの前記オゾンガス混合液を導出して循環液とし、該循環液を前記気液分離タンクに戻す循環路を有し、前記循環路の下流端に位置する循環液導入口は、前記オゾンガス混合液の前記気液分離タンク内への導入方向の範囲を、前記旋回流の接線方向を含む範囲とすることによって旋回流を作り出す接線方向導入部を兼ねることを特徴とする。 In connection with the ozone solution generating apparatus, the ozone solution mixed liquid in the gas-liquid separation tank is led out to be used as a circulating liquid, and a circulating path for returning the circulating liquid to the gas-liquid separating tank is provided downstream of the circulating path. The circulating fluid introduction port located at the end has a tangential direction introduction section that creates a swirl flow by setting a range of the introduction direction of the ozone gas mixture into the gas-liquid separation tank as a range including a tangential direction of the swirl flow It is also characterized by serving.
 上記オゾン溶液生成装置に関連して、前記気液分離タンクの前記オゾンガス混合液を導出して循環液とし、該循環液を前記気液分離タンクに戻す循環路を有し、前記循環路の上流端に位置する循環液導出口は、前記オゾンガス混合液の前記気液分離タンクからの導出方向の範囲を、前記旋回流の接線方向を含む範囲とすることによって旋回流を作り出す接線方向導出部を兼ねることを特徴とする。 In connection with the ozone solution generation device, the ozone solution mixture in the gas-liquid separation tank is led out to be a circulation liquid, and a circulation path for returning the circulation liquid to the gas-liquid separation tank is provided, upstream of the circulation path. The circulating fluid outlet located at the end includes a tangential direction deriving unit that creates a swirling flow by setting a range of a direction in which the ozone gas mixture is derived from the gas-liquid separation tank to a range including a tangential direction of the swirling flow. It is also characterized by serving.
 上記オゾン溶液生成装置に関連して、前記循環路の下流端に位置して前記気液分離タンク内に前記循環を導入する循環液導入口は、前記オゾン溶液導出部において前記オゾン混合液を前記気液分離タンクの外部に導出するオゾン溶液導出口と比較して、上方に配置されることを特徴とする。 In connection with the ozone solution generating apparatus, a circulating liquid inlet that is located at the downstream end of the circulation path and introduces the circulation into the gas-liquid separation tank is configured to supply the ozone mixed solution in the ozone solution outlet unit. Compared with the ozone solution outlet leading out to the outside of the gas-liquid separation tank, it is arranged above.
 上記オゾン溶液生成装置に関連して、少なくとも前記溶媒を前記気液分離タンクまで案内する溶媒案内路の途中には、前記溶媒と前記オゾンガスを混合する前記気液混合器が配置されており、前記気液混合器には、前記気液分離タンクにおいて前記オゾンガス混合液から分離回収された前記オゾンガスが供給されることを特徴とする。 In relation to the ozone solution generation device, at least in the middle of the solvent guide path for guiding the solvent to the gas-liquid separation tank, the gas-liquid mixer for mixing the solvent and the ozone gas is disposed, The gas-liquid mixer is supplied with the ozone gas separated and recovered from the ozone gas mixture in the gas-liquid separation tank.
 上記オゾン溶液生成装置に関連して、少なくとも前記溶媒を前記気液分離タンクまで案内する溶媒案内路の下流端に位置する溶媒導入口は、前記溶媒の前記気液分離タンク内への導入方向の範囲を、前記旋回流の接線方向を含む範囲とすることによって旋回流を作り出す接線方向導入部を兼ねることを特徴とする。 In relation to the ozone solution generation apparatus, at least a solvent introduction port located at a downstream end of a solvent guide path for guiding the solvent to the gas-liquid separation tank is provided in a direction in which the solvent is introduced into the gas-liquid separation tank. By making the range a range that includes the tangential direction of the swirl flow, it also serves as a tangential direction introduction section that creates a swirl flow.
 上記オゾン溶液生成装置に関連して、前記溶媒として、前記オゾンと化学反応を生じる有機物を含有する水を用い、前記水における前記有機物の処理用途として使用されることを特徴とする。 In connection with the ozone solution generator, water containing an organic substance that causes a chemical reaction with ozone is used as the solvent, and the solvent is used for treating the organic substance in the water.
 上記オゾン溶液生成装置に関連して、前記溶媒として、ウイルス、細菌、菌類及び微生物の少なくともいずれかの物質を含有する水を用い、前記水における前記物質の処理用途として使用されることを特徴とする。 In relation to the ozone solution generating apparatus, water containing at least one of a virus, bacteria, fungi, and microorganism is used as the solvent, and the solvent is used for treating the substance in the water. To do.
 上記オゾン溶液生成装置に関連して、前記オゾン溶液導出部から導出される前記オゾン溶液を一時的に滞留させる待機空間を有することを特徴とする。 In relation to the ozone solution generator, the ozone solution generator has a standby space for temporarily retaining the ozone solution derived from the ozone solution deriving unit.
 上記目的を達成する本発明は、オゾンガス生成装置によって生成されるオゾンガスを溶媒に溶かしてしてオゾン溶液を生成するオゾン溶液生成方法であって、前記オゾンガスと前記溶媒を混合してオゾンガス混合液を生成する気液混合工程と、前記気液混合工程によって生成された前記オゾンガス混合液を気液分離タンクに貯留し、前記気液分離タンク内において前記オゾンガス混合液に旋回流を生じさせる旋回流生成工程と、前記旋回流を経た前記オゾンガス混合液によって生成される前記オゾン溶液を、前記気液分離タンクの外部に案内するオゾン溶液導出工程と、を備えることを特徴とするオゾン溶液生成方法である。 The present invention that achieves the above object is an ozone solution generation method for generating an ozone solution by dissolving ozone gas generated by an ozone gas generation device in a solvent, wherein the ozone gas and the solvent are mixed to form an ozone gas mixture. The generated gas-liquid mixing step, and the ozone gas mixture generated by the gas-liquid mixing step is stored in a gas-liquid separation tank, and a swirl flow is generated in the gas-liquid separation tank to generate a swirl flow in the ozone gas mixture An ozone solution generation method comprising: a step; and an ozone solution deriving step of guiding the ozone solution generated by the ozone gas mixed solution having passed through the swirl flow to the outside of the gas-liquid separation tank. .
 本発明によれば、コンパクトでかつ溶解効率の高いオゾン溶液生成装置等を提供するという優れた効果を奏し得る。 According to the present invention, it is possible to achieve an excellent effect of providing an ozone solution generating apparatus that is compact and has high dissolution efficiency.
本発明の第一実施形態に係るオゾン溶液生成装置の全体構成を示す図である。It is a figure showing the whole ozone solution generating device composition concerning a first embodiment of the present invention. (A)は同オゾン溶液生成装置の気液分離タンクを示す側面図であり、(B)は(A)のB-B矢視断面図であり、(C)は(A)のC-C矢視断面図であり、(D)は(A)のD-D矢視断面図であり、(E)及び(F)はエジェクターの内部構造を示す断面図である。(A) is a side view showing a gas-liquid separation tank of the ozone solution generating apparatus, (B) is a cross-sectional view taken along the line BB of (A), and (C) is a CC line of (A). It is arrow sectional drawing, (D) is DD sectional view taken on the line of (A), (E) And (F) is sectional drawing which shows the internal structure of an ejector. (A)は同オゾン溶液生成装置の制御装置の内部構成を示す図であり、(B)は同制御装置の制御構成を示すブロック図である。(A) is a figure which shows the internal structure of the control apparatus of the same ozone solution production | generation apparatus, (B) is a block diagram which shows the control structure of the same control apparatus. (A)は同オゾン溶液生成装置の気液分離タンクの中のオゾンガス混合液の流れを説明する模式図であり、(B)はオゾンガス混合液の旋回状態を示す平面図である。(A) is a schematic diagram explaining the flow of the ozone gas liquid mixture in the gas-liquid separation tank of the same ozone solution production | generation apparatus, (B) is a top view which shows the turning state of an ozone gas liquid mixture. 同オゾン溶液生成装置の気液分離タンクの中のオゾンガス混合液の流れを説明する斜視図である。It is a perspective view explaining the flow of the ozone gas liquid mixture in the gas-liquid separation tank of the same ozone solution production | generation apparatus. (A)は同オゾン溶液生成装置において、オゾン水の導出量の時間変化状態を示すグラフであり、(B)は(A)と同条件において、オゾン水のオゾン濃度の時間変化状態を示すグラフである。(A) is a graph which shows the time change state of the derived | led-out amount of ozone water in the same ozone solution production | generation apparatus, (B) is a graph which shows the time change state of ozone concentration of ozone water on the same conditions as (A). It is. 本発明の第二実施形態に係るオゾン溶液生成装置について、(A)は全体構成を示す図であり、(B)及び(C)は気液分離タンクの断面図である。(A) is a figure which shows the whole structure about the ozone solution production | generation apparatus which concerns on 2nd embodiment of this invention, (B) and (C) are sectional drawings of a gas-liquid separation tank. 本発明の第三実施形態に係るオゾン溶液生成装置について、(A)は全体構成を示す図であり、(B)及び(C)は気液分離タンクの断面図である(A) is a figure which shows the whole structure about the ozone solution production | generation apparatus which concerns on 3rd embodiment of this invention, (B) and (C) are sectional drawings of a gas-liquid separation tank. 本発明の第四実施形態に係るオゾン溶液生成装置について、(A)は全体構成を示す図であり、(B)乃至(D)は気液分離タンクの断面図である。(A) is a figure which shows the whole structure about the ozone solution production | generation apparatus which concerns on 4th embodiment of this invention, (B) thru | or (D) are sectional drawings of a gas-liquid separation tank. 本発明の第五実施形態に係るオゾン溶液生成装置について、(A)は全体構成を示す図であり、(B)乃至(D)は気液分離タンクの断面図である。(A) is a figure which shows the whole structure about the ozone solution production | generation apparatus which concerns on 5th embodiment of this invention, (B) thru | or (D) are sectional drawings of a gas-liquid separation tank. 本発明の第六実施形態に係るオゾン溶液生成装置について、(A)は全体構成を示す図であり、(B)乃至(E)は気液分離タンクの断面図である。About the ozone solution production | generation apparatus which concerns on 6th embodiment of this invention, (A) is a figure which shows the whole structure, (B) thru | or (E) are sectional drawings of a gas-liquid separation tank. 本発明の第七実施形態に係るオゾン溶液生成装置について、(A)は全体構成を示す図であり、(B)乃至(D)は気液分離タンクの断面図である。(A) is a figure which shows the whole structure about the ozone solution production | generation apparatus which concerns on 7th embodiment of this invention, (B) thru | or (D) are sectional drawings of a gas-liquid separation tank. 本発明の第八実施形態に係るオゾン溶液生成装置について、(A)は全体構成を示す図であり、(B)乃至(D)は気液分離タンクの断面図である。About the ozone solution production | generation apparatus which concerns on 8th embodiment of this invention, (A) is a figure which shows the whole structure, (B) thru | or (D) are sectional drawings of a gas-liquid separation tank.
 以下、図面を参照して、本発明の実施の形態の例について詳細に説明する。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
 図1に、本発明の第一実施形態に係るオゾン溶液生成装置1を示す。なお、ここでは、オゾンを溶かす溶媒として水(又は純水)を採用し、オゾン溶液としてオゾン水を生成する場合を例示するが、オゾンを溶かす溶媒の種類は水に限定されない。 FIG. 1 shows an ozone solution generating apparatus 1 according to the first embodiment of the present invention. In addition, although the case where water (or pure water) is employ | adopted as a solvent which melt | dissolves ozone and ozone water is produced | generated as an ozone solution is illustrated here, the kind of solvent which melt | dissolves ozone is not limited to water.
 <装置構成>
オゾン溶液生成装置1は、オゾンガスを生成するオゾンガス生成部10と、オゾンガスと水が混合されて気液二相流となるオゾンガス混合液が貯留される気液分離タンク30と、気液分離タンク30に、溶媒となる水を少なくとも供給する溶媒案内路70と、気液分離タンク30からオゾン水を外部に案内(排出)するオゾン溶液導出部80と、気液分離タンク30内のオゾンガス混合液に旋回流を生じさせる旋回流生成部50と、気液分離タンク30のオゾンガス混合液を導出して一時的に循環液とし、この循環液を再度、気液分離タンク30に案内するための循環路60と、オゾンガスと水(溶媒)又はオゾンガスと循環液を混合するオゾンガス混合部20を備える。
<Device configuration>
The ozone solution generation apparatus 1 includes an ozone gas generation unit 10 that generates ozone gas, a gas-liquid separation tank 30 that stores an ozone gas mixed liquid that is mixed with ozone gas and water to form a gas-liquid two-phase flow, and a gas-liquid separation tank 30. In addition, a solvent guide path 70 for supplying at least water as a solvent, an ozone solution outlet 80 for guiding (discharging) ozone water from the gas-liquid separation tank 30 to the outside, and an ozone gas mixture in the gas-liquid separation tank 30 A swirling flow generating unit 50 for generating a swirling flow, and a circulation path for deriving the ozone gas mixed liquid in the gas-liquid separation tank 30 to be temporarily used as a circulating liquid and guiding the circulating liquid to the gas-liquid separating tank 30 again. 60 and an ozone gas mixing unit 20 for mixing ozone gas and water (solvent) or ozone gas and circulating liquid.
 オゾンガス生成部10は、例えば、原料となる酸素ガス6を、無声放電管(オゾナイザ)の放電ギャップ間を通過させることでオゾンガスを生成する。なお、生成されるオゾンガスの濃度は、二酸化炭素ガス等の調整ガス8によって調整される。二酸化炭素以外にも、反応性の低い窒素ガス等で調整しても良い。オゾンガス生成部10から排出されるオゾンガスは、液体の逆流を防止する逆止弁又は流量調整弁となる弁機構9を介して、オゾンガス混合部20に供給される。なお、オゾンガス生成部10において、オゾンガスの供給量を増やすには、複数のオゾナイザを並列接続して同時並行的にオゾンガスを生成することが好ましい。 The ozone gas generation unit 10 generates ozone gas by, for example, passing an oxygen gas 6 as a raw material between discharge gaps of a silent discharge tube (ozonizer). In addition, the density | concentration of the produced | generated ozone gas is adjusted with the adjustment gas 8, such as a carbon dioxide gas. You may adjust with nitrogen gas etc. with low reactivity besides carbon dioxide. The ozone gas discharged from the ozone gas generation unit 10 is supplied to the ozone gas mixing unit 20 via a valve mechanism 9 that serves as a check valve or a flow rate adjustment valve that prevents a back flow of liquid. In order to increase the supply amount of ozone gas in the ozone gas generation unit 10, it is preferable to connect a plurality of ozonizers in parallel and generate ozone gas in parallel.
 気液分離タンク30は、例えば、有底の正円筒形状の容器となる。円筒形状の中心軸の軸方向は鉛直となるように設定されるが、本発明はこれに限定されず、気液分離タンクの中心軸が鉛直に対して傾斜した状態で設置しても良い。 The gas-liquid separation tank 30 is, for example, a bottomed cylindrical container with a bottom. Although the axial direction of the central axis of the cylindrical shape is set to be vertical, the present invention is not limited to this, and the gas-liquid separation tank may be installed with the central axis inclined with respect to the vertical.
 溶媒案内路70は、溶媒の原材料となる水が供給される水供給部72から、気液分離タンク30までを繋ぐ流路となる。溶媒案内路70の途中には、流量調整弁74が配置される。この流量調整弁74は、例えば空気圧式流量調整弁等のような、気圧式バルブとなる。 The solvent guide path 70 is a flow path that connects the water / liquid separation tank 30 to the water supply unit 72 to which water as a raw material of the solvent is supplied. A flow rate adjustment valve 74 is disposed in the middle of the solvent guide path 70. The flow rate adjustment valve 74 is a pneumatic valve such as a pneumatic flow rate adjustment valve.
 溶媒案内路70の下流端には、気液分離タンク30内に、少なくとも水(実際にはオゾンガス混合液)を導入(吐出)する溶媒導入口76が形成される。図2(B)に示されるように、溶媒導入口76は、オゾンガス混合液に生じさせる旋回流Sの接線方向成分を含む方向に水を導入する。従って、この溶媒導入口76は、後述する旋回流生成部50における、流体を導入する流れによって旋回流を生み出す接線方向導入部を兼ねる。 At the downstream end of the solvent guide path 70, a solvent introduction port 76 for introducing (discharging) at least water (actually an ozone gas mixed solution) is formed in the gas-liquid separation tank 30. As shown in FIG. 2B, the solvent introduction port 76 introduces water in a direction including a tangential component of the swirl flow S generated in the ozone gas mixture. Therefore, the solvent introduction port 76 also serves as a tangential direction introduction unit that generates a swirl flow by the flow of introducing the fluid in the swirl flow generation unit 50 described later.
 更に具体的に、溶媒導入口76は、気液分離タンク30の円筒状の内周壁に直接開口している。溶媒導入口76の直前の溶媒案内路70の原料水の案内方向は、内周壁の周方向成分(接線方向成分)を含み、特に本実施形態では内周壁の接線方向と略一致させている。溶媒導入口76の直前の溶媒案内路70の案内方向は、略水平方向(気液分離タンク30の鉛直方向の中心軸に対して直角方向)となっている。以上の結果、溶媒案内路70を経て溶媒導入口76から導入される原料水(オゾンガス混合液)の流れは、矢印FBに示されるように、気液分離タンク30の内周壁に沿う旋回流となる。 More specifically, the solvent inlet 76 opens directly to the cylindrical inner peripheral wall of the gas-liquid separation tank 30. The direction in which the raw material water is guided in the solvent guide path 70 immediately before the solvent introduction port 76 includes a circumferential component (tangential component) of the inner peripheral wall, and in this embodiment, in particular, substantially matches the tangential direction of the inner peripheral wall. The guide direction of the solvent guide path 70 immediately before the solvent introduction port 76 is substantially horizontal (perpendicular to the vertical central axis of the gas-liquid separation tank 30). As a result, the flow of the raw water (ozone gas mixture) introduced from the solvent introduction port 76 via the solvent guide path 70 is a swirl flow along the inner peripheral wall of the gas-liquid separation tank 30 as indicated by an arrow FB. Become.
 図2(A)に示すように、溶媒導入口76は、気液分離タンク30の上下方向の中央近傍又はそれよりも上方に配置されている。 As shown in FIG. 2 (A), the solvent introduction port 76 is disposed near the center of the gas-liquid separation tank 30 in the vertical direction or above it.
 図2(D)に示すように、循環路60の上流端には循環液導出口62が形成される。この循環液導出口62は、気液分離タンク30内のオゾンガス混合液を導出(吸引)する開口となる。循環液導出口62は、オゾンガス混合液に生じさせる旋回流Sの接線方向成分を含む方向に、このオゾンガス混合液を導出する。従って、循環液導出口62は、後述する旋回流生成部50における、流体を導出する流れによって旋回流を生み出す接線方向導出部を兼ねる。 As shown in FIG. 2D, a circulating fluid outlet 62 is formed at the upstream end of the circulation path 60. This circulating fluid outlet 62 serves as an opening for leading out (sucking) the ozone gas mixture in the gas-liquid separation tank 30. The circulating fluid outlet 62 guides the ozone gas mixture in a direction including the tangential component of the swirl flow S generated in the ozone gas mixture. Therefore, the circulating fluid outlet 62 also serves as a tangential direction deriving unit that generates a swirling flow by a flow of deriving a fluid in the swirling flow generating unit 50 described later.
 更に循環液導出口62は、気液分離タンク30の円筒状の内周壁に直接開口している。循環液導出口62の直後の循環路60による循環液の案内方向は、内周壁の周方向成分(接線方向成分)を含み、特に本実施形態では、内周壁の接線方向と略一致させている。循環液導出口62の直後の循環路60による循環液の案内方向は、略水平方向(気液分離タンク30の鉛直方向の中心軸に対して直角方向)となる。結果、循環液導出口62を介して循環路60に導出されるオゾンガス混合液の直前の流れは、矢印FDに示されるように、気液分離タンク30の内周壁に沿う旋回流となる。旋回方向は、溶媒導入口76によって生成される旋回方向と一致しており、ここでは、上方から視て左回りとなっている。 Further, the circulating fluid outlet 62 is directly open to the cylindrical inner peripheral wall of the gas-liquid separation tank 30. The guiding direction of the circulating fluid by the circulation path 60 immediately after the circulating fluid outlet 62 includes a circumferential component (tangential component) of the inner peripheral wall, and in this embodiment, in particular, substantially matches the tangential direction of the inner peripheral wall. . The direction in which the circulating fluid is guided by the circulation path 60 immediately after the circulating fluid outlet 62 is substantially horizontal (perpendicular to the central axis in the vertical direction of the gas-liquid separation tank 30). As a result, the flow immediately before the ozone gas mixed liquid led out to the circulation path 60 via the circulating liquid lead-out port 62 becomes a swirl flow along the inner peripheral wall of the gas-liquid separation tank 30 as indicated by an arrow FD. The turning direction coincides with the turning direction generated by the solvent introduction port 76, and here, the turning direction is counterclockwise as viewed from above.
 図2(A)に示すように、循環液導出口62は、溶媒導入口76や循環液導入口64よりも鉛直方向下側に配置される。より詳細には、気液分離タンク30の上下方向の中央よりも下側であって、その底面近傍に配置される。 As shown in FIG. 2 (A), the circulating fluid outlet 62 is disposed below the solvent inlet 76 and the circulating fluid inlet 64 in the vertical direction. More specifically, the gas-liquid separation tank 30 is disposed below the center in the vertical direction and in the vicinity of the bottom surface thereof.
 図2(C)に示すように、循環路60の下流端には循環液導入口64が形成される。この循環液導入口64は、循環路60によって案内される循環液(オゾンガス混合液)を導入するための開口となる。循環液導入口64は、オゾンガス混合液に生じさせる旋回流Sの接線方向成分を含む方向に循環液を導入する。従って、循環液導入口64は、後述する旋回流生成部50における、流体を導入する流れによって旋回流を生み出す接線方向導入部を兼ねる。 As shown in FIG. 2 (C), a circulating fluid inlet 64 is formed at the downstream end of the circulation path 60. The circulating fluid inlet 64 serves as an opening for introducing the circulating fluid (ozone gas mixture) guided by the circulation path 60. The circulating fluid inlet 64 introduces the circulating fluid in a direction including a tangential component of the swirl flow S generated in the ozone gas mixture. Therefore, the circulating fluid introduction port 64 also serves as a tangential direction introduction unit that generates a swirl flow by a flow of introducing a fluid in a swirl flow generation unit 50 described later.
 更に環液導入口64は、気液分離タンク30の円筒状の内周壁に開口している。循環液導入口64の直前の循環路60の案内方向は、内周壁の周方向成分(接線方向成分)を含み、特に本実施形態では、内周壁の接線方向と略一致させている。循環液導入口64の直前の循環路60の案内方向は、略水平方向(気液分離タンク30の鉛直方向の中心軸に対して直角方向)となっている。結果、循環液導入口64から導入される循環液の流れは、矢印FCに示されるように、気液分離タンク30の内周壁に沿う旋回流となる。旋回方向は、溶媒導入口76によって生成される旋回方向と一致しており、ここでは上方から視て左回りとなっている。 Further, the annular liquid inlet 64 is opened in the cylindrical inner peripheral wall of the gas-liquid separation tank 30. The guide direction of the circulation path 60 immediately before the circulating fluid inlet 64 includes a circumferential component (tangential component) of the inner peripheral wall, and in this embodiment, in particular, substantially matches the tangential direction of the inner peripheral wall. The guide direction of the circulation path 60 immediately before the circulating fluid inlet 64 is substantially horizontal (perpendicular to the vertical central axis of the gas-liquid separation tank 30). As a result, the flow of the circulating fluid introduced from the circulating fluid inlet 64 becomes a swirl flow along the inner peripheral wall of the gas-liquid separation tank 30 as indicated by the arrow FC. The swirl direction coincides with the swirl direction generated by the solvent introduction port 76, and here is counterclockwise as viewed from above.
 図2(A)に示すように、循環液導入口64は、鉛直方向において、溶媒導入口76と循環液導出口62の間に配置される。より具体的に気液分離タンク30の上下方向の中央よりも下側であって、循環液導出口62よりも上方側に配置される。 As shown in FIG. 2 (A), the circulating fluid inlet 64 is disposed between the solvent inlet 76 and the circulating fluid outlet 62 in the vertical direction. More specifically, the gas-liquid separation tank 30 is disposed below the center in the vertical direction and above the circulating fluid outlet 62.
 図1に戻って、循環路60の途中には循環ポンプ66が配置される。この循環ポンプ66は、循環液の流れを推進させる役割を担う。循環路60における循環ポンプ66の下流側には、循環液の流量を調整する流量調整弁68が配置される。この流量調整弁68は、例えば空気圧式流量調整弁等のような気圧式バルブとなる。 Referring back to FIG. 1, a circulation pump 66 is disposed in the middle of the circulation path 60. The circulation pump 66 plays a role of promoting the flow of the circulating fluid. A flow rate adjustment valve 68 for adjusting the flow rate of the circulating fluid is disposed on the downstream side of the circulation pump 66 in the circulation path 60. The flow rate adjusting valve 68 is a pneumatic valve such as a pneumatic flow rate adjusting valve.
 オゾン溶液導出部80は、気液分離タンク30によって生成されたオゾン水を、ユースポイントUまで導出する導出路82と、導出路82の途中に設けられて、オゾン水の導出量を調整する流量調整弁84を備える。導出路82の上流側は循環路60を兼ねており、導出路82の上流端に形成されるオゾン溶液導出口86も、循環液導出口62と一致する。従って、図2(D)に示すように、オゾン溶液導出口86は、オゾンガス混合液に生じさせる旋回流Sの接線方向成分を含む方向に、このオゾンガス混合液を導出する。オゾン溶液導出口86は、後述する旋回流生成部50における、流体を導出する流れによって旋回流を生み出す接線方向導出部を兼ねる。 The ozone solution deriving unit 80 is configured to derive the ozone water generated by the gas-liquid separation tank 30 to the use point U, and a flow rate that is provided in the middle of the deriving path 82 and adjusts the amount of ozone water derived. An adjustment valve 84 is provided. The upstream side of the outlet path 82 also serves as the circulation path 60, and the ozone solution outlet 86 formed at the upstream end of the outlet path 82 also coincides with the circulating liquid outlet 62. Therefore, as shown in FIG. 2 (D), the ozone solution outlet 86 guides the ozone gas mixture in the direction including the tangential component of the swirl flow S generated in the ozone gas mixture. The ozone solution outlet 86 also serves as a tangential direction derivation unit that generates a swirl flow by a flow for deriving a fluid in the swirl flow generation unit 50 described later.
 より具体的に、オゾン溶液導出口86は、気液分離タンク30におけるオゾン混合液の旋回流の中心軸Cから径方向に離れた場所に配置される。余剰オゾン気泡は、旋回流の遠心力の反作用として中心軸C側に移動するので、オゾン溶液導出口86に、余剰オゾン気泡が進入しにくくなり、気泡の少ないオゾン水を排出可能となる。 More specifically, the ozone solution outlet 86 is disposed at a location radially away from the central axis C of the swirling flow of the ozone mixture in the gas-liquid separation tank 30. Since the surplus ozone bubbles move to the central axis C side as a reaction of the centrifugal force of the swirling flow, the surplus ozone bubbles are difficult to enter the ozone solution outlet 86, and ozone water with few bubbles can be discharged.
 次に、旋回流生成部50について説明する。図1に示すように、旋回流生成部50は、気液分離タンク30に貯留されるオゾンガス混合液の旋回流の接線方向成分を含む方向に、水又はオゾンガス混合液を導入して旋回流を生み出す接線方向導入部50Aを有する。本実施形態では、既に述べたように、溶媒導入口76及び循環液導入口64が、この接線方向導入部50Aを兼ねている。旋回流生成部50は、旋回流の接線方向成分を含む方向に、気液分離タンク30に貯留されるオゾンガス混合液を導出して旋回流を生み出す接線方向導出部50Bを有する。本実施形態では、既に述べたように、循環液導出口62(又はオゾン溶液導出口86)がこの接線方向導出部50Bを兼ねている。 Next, the swirl flow generator 50 will be described. As shown in FIG. 1, the swirl flow generation unit 50 introduces water or an ozone gas mixture in a direction including a tangential component of the swirl flow of the ozone gas mixture stored in the gas-liquid separation tank 30 to generate a swirl flow. It has a tangential direction introduction part 50A to be produced. In the present embodiment, as already described, the solvent introduction port 76 and the circulating fluid introduction port 64 also serve as the tangential direction introduction unit 50A. The swirl flow generation unit 50 has a tangential direction deriving unit 50B that generates a swirl flow by deriving the ozone gas mixture stored in the gas-liquid separation tank 30 in a direction including the tangential component of the swirl flow. In the present embodiment, as already described, the circulating fluid outlet 62 (or the ozone solution outlet 86) also serves as the tangential direction outlet 50B.
 次に、オゾンガス混合部20について説明する。本実施形態のオゾン溶液生成装置1は、オゾンガス混合部20として、溶媒案内路70の途中に配置される溶媒側気液混合器22と、循環路60の途中に配置される循環側気液混合器24を有する。溶媒側気液混合器22は、流量調整弁74よりも下流側(気液分離タンク30側)に配置されており、原料水と、気液分離タンク30で生じた余剰のオゾンガスを混合する。従って、気液分離タンク30の上方には、オゾンガス混合液の上方に滞留する余剰オゾンガスを、溶媒側気液混合器22まで案内するオゾンガス循環路26が接続される。 Next, the ozone gas mixing unit 20 will be described. The ozone solution generation apparatus 1 according to the present embodiment includes, as the ozone gas mixing unit 20, a solvent side gas / liquid mixer 22 disposed in the middle of the solvent guide path 70 and a circulation side gas / liquid mixture disposed in the middle of the circulation path 60. A container 24. The solvent-side gas-liquid mixer 22 is disposed on the downstream side (gas-liquid separation tank 30 side) with respect to the flow rate adjustment valve 74, and mixes raw water and excess ozone gas generated in the gas-liquid separation tank 30. Accordingly, an ozone gas circulation path 26 that guides the surplus ozone gas remaining above the ozone gas mixture to the solvent-side gas-liquid mixer 22 is connected above the gas-liquid separation tank 30.
 循環側気液混合器24は、循環路60において流量調整弁68よりも下流側(気液分離タンク30側)に配置されており、循環液と、オゾン発生装置10から供給されるオゾンガスを混合する。 The circulation side gas-liquid mixer 24 is disposed downstream of the flow rate adjustment valve 68 (gas-liquid separation tank 30 side) in the circulation path 60, and mixes the circulation liquid and the ozone gas supplied from the ozone generator 10. To do.
 オゾンガス混合部20(溶媒側気液混合器22、循環側気液混合器24)は、図2(E)に示すように、いわゆるエジェクター28となっており、水等の溶媒となる液体をノズル28Aから高速流で導入することで、その周囲に形成される負圧空間28Bからオゾンガスを引き込む。ノズル28Aの下流側には、途中に狭隘部を有するデフューザ28Cが設けられており、オゾンガス混合液は、狭隘部に至るまでに同伴混合され、更に狭隘部を通過すると流速が更に低下して、本来の流速に復帰すると同時に、ベルヌーイの定理に沿ってオゾンガス混合液の圧力も復帰する。図2(F)に示すエジェクター28のように、デフューザ28Cの狭隘部に、直接、オゾンガスを引き込むようにしても良い。ここでは、水等の溶媒とオゾンガスを混合する方法としてエジェクターを例示したが、本発明はこれに限定されず、ミキシングポンプを用いたり、マイクロチャンネル等を用いたりしても良い。 The ozone gas mixing unit 20 (solvent side gas-liquid mixer 22, circulation side gas-liquid mixer 24) is a so-called ejector 28 as shown in FIG. Ozone gas is drawn from the negative pressure space 28 </ b> B formed around it by introducing it at a high speed from 28 </ b> A. On the downstream side of the nozzle 28A, a diffuser 28C having a narrow portion is provided in the middle, and the ozone gas mixed solution is mixed together until reaching the narrow portion, and further passes through the narrow portion, the flow velocity further decreases, At the same time as returning to the original flow velocity, the pressure of the ozone gas mixture also returns according to Bernoulli's theorem. Like the ejector 28 shown in FIG. 2 (F), ozone gas may be directly drawn into the narrow portion of the diffuser 28C. Here, an ejector is exemplified as a method of mixing a solvent such as water and ozone gas. However, the present invention is not limited to this, and a mixing pump, a microchannel, or the like may be used.
 図1に戻って、気液分離タンク30内には、オゾンガス混合液の液位を検出する液位センサ36と、オゾンガス混合液に溶解しているオゾンの濃度を検出するオゾン濃度センサ38が設けられる。オゾン濃度センサ38は、導出路82や循環路60に設けても良いが、できる限り、オゾン溶液導出部80から導出されるオゾン濃度の近い値を検知できることが好ましい。従って、気液分離タンク30内の場合は、底面近傍に配置することが好ましい。 Returning to FIG. 1, the gas-liquid separation tank 30 is provided with a liquid level sensor 36 for detecting the liquid level of the ozone gas mixed liquid and an ozone concentration sensor 38 for detecting the concentration of ozone dissolved in the ozone gas mixed liquid. It is done. The ozone concentration sensor 38 may be provided in the derivation path 82 or the circulation path 60, but it is preferable that a value close to the ozone concentration derived from the ozone solution derivation unit 80 can be detected as much as possible. Therefore, in the case of the gas-liquid separation tank 30, it is preferable to arrange it near the bottom surface.
 気液分離タンク30の上方には開放路40が形成されており、この解放路40の途中には、気液分離タンク30内の圧力を一定に保つ背圧調整弁42、及び、解放路40を通過する余剰オゾンガスを分解する排オゾン分解器44を備える。 An open path 40 is formed above the gas-liquid separation tank 30, and in the middle of the release path 40, a back pressure adjustment valve 42 that keeps the pressure in the gas-liquid separation tank 30 constant, and a release path 40. The exhaust ozone decomposer 44 which decomposes | disassembles the surplus ozone gas which passes through is provided.
 オゾン溶液生成装置1は制御装置46を備える。この制御装置46は、例えば図3(A)に示すように、メモリMに展開されるプログラムが処理される中央演算装置CPU、各種情報や制御プログラムが保存される記憶媒体H、外部機器に制御信号を出したり外部機器から検知信号を受信したりするインタフェースI等を備えており、これらはバス等によって互いに接続される。 The ozone solution generator 1 includes a controller 46. For example, as shown in FIG. 3A, the control device 46 is controlled by a central processing unit CPU that processes a program developed in the memory M, a storage medium H that stores various information and control programs, and an external device. An interface I for outputting a signal and receiving a detection signal from an external device is provided, and these are connected to each other by a bus or the like.
 図3(B)に示すように、制御装置46は、制御ブロック(プログラムによって実現される機能構成)として、溶媒供給制御部46A、循環流量制御部46B、オゾンガス制御部46C、導出量制御部46D、液位検出部46E、オゾン濃度検出部46Fを有する。 As shown in FIG. 3B, the control device 46 includes a solvent supply control unit 46A, a circulation flow rate control unit 46B, an ozone gas control unit 46C, and a derived amount control unit 46D as control blocks (functional configuration realized by a program). , A liquid level detection unit 46E, and an ozone concentration detection unit 46F.
 液位検出部46Eは、液位センサ36を利用してオゾンガス混合液の液位を検出する。オゾン濃度検出部46Fは、オゾン濃度センサ38を利用して、オゾンガス混合液のオゾン濃度を検出する。溶媒供給制御部46Aは、オゾンガス混合液の液位に基づいて流量調整弁74を制御し、新たに供給する原料水の流量を制御する。こ流量は、液位が常に一定となる様に制御しても良く、また、予め設定される下限液位となったら供給を開始して、予め設定される上限液位に達したら供給を止めるようなパルス波形状に制御して良い。また、流量調整弁74の制御方法として、全開と全閉を切り替えて水量を制御してもよく、流量調整弁74の絞り量を細かく制御しても良い。一方で、溶媒側気液混合器22の気液混合作用を効果的に得るためには、原料水供給時は、流速が大きくなるように全開であることが望ましいため、全開と全閉を切り替えて制御することも望ましい。 The liquid level detection unit 46E detects the liquid level of the ozone gas mixture using the liquid level sensor 36. The ozone concentration detector 46F uses the ozone concentration sensor 38 to detect the ozone concentration of the ozone gas mixture. The solvent supply control unit 46A controls the flow rate adjustment valve 74 based on the liquid level of the ozone gas mixed solution, and controls the flow rate of the newly supplied raw material water. The flow rate may be controlled so that the liquid level is always constant, and the supply is started when the preset lower limit liquid level is reached, and the supply is stopped when the preset upper limit liquid level is reached. You may control to such a pulse wave shape. Further, as a control method of the flow rate adjustment valve 74, the water amount may be controlled by switching between full open and full close, and the throttle amount of the flow rate adjustment valve 74 may be finely controlled. On the other hand, in order to effectively obtain the gas-liquid mixing action of the solvent-side gas-liquid mixer 22, it is desirable that the raw water is fully opened to increase the flow rate when the raw water is supplied. It is also desirable to control.
 循環流量制御部46Bは、循環ポンプ66及び/又は流量調整弁68を制御することで、循環液の流量を制御する。循環液の流量は一定でも良いが、例えば、オゾンガス混合液のオゾン濃度に基づいて制御しても良く、目標値に対してオゾン濃度が低い場合は循環流量を増大させ、目標値に対してオゾン濃度が高い場合は循環流量を減少させても良い。一方、オゾン水の濃度を安定させるためには、循環液の流量は、常に、溶媒供給制御部46Aによって制御される水量より、大きく設定されることが好ましく、例えば、溶媒供給制御部46による供給量が20(L/min)の場合、循環液の流量は20(L/min)よりも大きい値、例えば40(L/min)に設定される。 The circulation flow rate control unit 46B controls the flow rate of the circulating fluid by controlling the circulation pump 66 and / or the flow rate adjustment valve 68. The flow rate of the circulating fluid may be constant, but may be controlled based on, for example, the ozone concentration of the ozone gas mixture. If the ozone concentration is lower than the target value, the circulating flow rate is increased and When the concentration is high, the circulation flow rate may be decreased. On the other hand, in order to stabilize the concentration of ozone water, it is preferable that the flow rate of the circulating liquid is always set larger than the amount of water controlled by the solvent supply control unit 46A, for example, supply by the solvent supply control unit 46 When the amount is 20 (L / min), the flow rate of the circulating fluid is set to a value larger than 20 (L / min), for example, 40 (L / min).
 オゾンガス制御部46Cは、オゾンガス混合液のオゾン濃度及び/又は循環流量制御部46Bで制御される循環流量に基づいて、オゾンガス生成部10によって生成されるオゾンガスの濃度を制御する。導出量制御部46Dは、流量調整弁84を制御して、ユースポイントUに排出するオゾン水の流量を制御する。 The ozone gas control unit 46C controls the concentration of ozone gas generated by the ozone gas generation unit 10 based on the ozone concentration of the ozone gas mixture and / or the circulation flow rate controlled by the circulation flow rate control unit 46B. The derived amount control unit 46D controls the flow rate adjustment valve 84 to control the flow rate of the ozone water discharged to the use point U.
 <基本動作>
次に、図1を参照して、オゾン溶液生成装置1の動作について説明する。水供給部72の原料水を、溶媒案内路70を介して気液分離タンク30に案内して貯留する。オゾンガス生成部10によってオゾンガスを生成して、循環側気液混合器24を介して気液分離タンク30にオゾンガスを供給する。気液分離タンク30内において、余分に貯まるオゾンガスは、オゾンガス循環路26を経て、溶媒側気液混合器22に供給される。結果、溶媒案内路70から供給される原料水は、オゾンガス混合液となる。気液分離タンク30内において、水又はオゾンガス混合液の液位が高くなったら、循環ポンプ66を起動させて、オゾンガス混合液を循環路60に循環させる。循環液には、循環側気液混合器24において、オゾンガス生成部10からの高濃度のオゾンガスが混合される。オゾンガス混合液のオゾン濃度が目標値となってから、流量調整弁84を開放して、生成されるオゾン水をユースポイントUまで導出する。水供給部72による原料水の供給は、オゾン溶液導出部80によってユースポイントUまで案内されるオゾン水の導出流量に合わせられる。一方で、循環路60の循環流量は、これらに依存することなく、常に一定の流量で制御可能となっている。
<Basic operation>
Next, the operation of the ozone solution generator 1 will be described with reference to FIG. The raw water of the water supply unit 72 is guided and stored in the gas-liquid separation tank 30 via the solvent guide path 70. Ozone gas is generated by the ozone gas generation unit 10, and ozone gas is supplied to the gas-liquid separation tank 30 via the circulation side gas-liquid mixer 24. Extra ozone gas stored in the gas-liquid separation tank 30 is supplied to the solvent-side gas-liquid mixer 22 via the ozone gas circulation path 26. As a result, the raw water supplied from the solvent guide path 70 becomes an ozone gas mixture. When the liquid level of water or the ozone gas mixture becomes high in the gas-liquid separation tank 30, the circulation pump 66 is activated to circulate the ozone gas mixture in the circulation path 60. The circulating liquid is mixed with high-concentration ozone gas from the ozone gas generator 10 in the circulation-side gas-liquid mixer 24. After the ozone concentration of the ozone gas mixture reaches the target value, the flow rate adjustment valve 84 is opened and the generated ozone water is led out to the use point U. The supply of the raw material water by the water supply unit 72 is adjusted to the flow rate of ozone water guided to the use point U by the ozone solution deriving unit 80. On the other hand, the circulation flow rate of the circulation path 60 can always be controlled at a constant flow rate without depending on these.
 図4に、オゾン溶液生成装置1が稼働している最中の気液分離タンク30の状態を模式的に示す。ここではオゾンガス混合液の液位を、溶媒導入口76と略一致している場合を示すが、本発明はこれに限定されない。説明の便宜上、気液分離タンク30において、溶媒導入口76から循環液導入口64までの空間を一次空間30A、循環液導入口64から循環液導出口62までの空間を二次空間30Bと定義し、一次空間30A及び二次空間30Bの各高さをL,L(m)と定義する。 In FIG. 4, the state of the gas-liquid separation tank 30 in the middle of the ozone solution production | generation apparatus 1 is operating is shown typically. Here, a case where the liquid level of the ozone gas mixed solution is substantially coincident with the solvent introduction port 76 is shown, but the present invention is not limited to this. For convenience of explanation, in the gas-liquid separation tank 30, a space from the solvent introduction port 76 to the circulating fluid introduction port 64 is defined as a primary space 30A, and a space from the circulating fluid introduction port 64 to the circulating fluid outlet 62 is defined as a secondary space 30B. The respective heights of the primary space 30A and the secondary space 30B are defined as L 1 and L 2 (m).
 溶媒導入口76から導入されるオゾンガス混合液(又は原料水)の流量をQ(L/min)と定義し、オゾン溶液導出部80の導出路82から排出される流量をQ(L/min)と定義すると、平準化すれば互いの流量は一致する。一次空間30Aを下降するオゾン混合液の流量もQ=Q(L/min)となる。また、循環路60の流量調整弁68を通過する循環液の流量をQ(L/min)とすると、二次空間30Bを下降するオゾン混合液の流量Q(L/min)はQ+Qとなる。既に述べたように、循環液の流量Q(L/min)は、溶媒導入口76の導入流量をQ(L/min)よりも大きく設定される。従って、二次空間30Bを下降するオゾン混合液の流量Qは、流量をQ(L/min)の二倍以上となることが好ましい。 The flow rate of the ozone gas mixture (or raw material water) introduced from the solvent introduction port 76 is defined as Q 1 (L / min), and the flow rate discharged from the lead-out path 82 of the ozone solution lead-out unit 80 is defined as Q 3 (L / min)), the flow rates of each other will coincide if they are equalized. The flow rate of the ozone liquid mixture descending the primary space 30A is also Q 1 = Q 3 (L / min). Further, when the flow rate of the circulating fluid passing through the flow rate adjusting valve 68 of the circulation path 60 is Q 4 (L / min), the flow rate Q 2 (L / min) of the ozone mixed solution descending the secondary space 30B is Q 1. + the Q 4. As already described, the circulating fluid flow rate Q 4 (L / min) is set so that the introduction flow rate of the solvent introduction port 76 is larger than Q 1 (L / min). Accordingly, the flow rate Q 2 of the ozone mixture to lower the secondary space 30B, it is preferable that the flow rate Q 1 (L / min) twice or more.
 気液分離タンク30の直径をd(m)と定義した場合、気液分離タンク30の一次空間30Aにおいて、理想的なピストンフローの下降流、即ち、軸直角方向の円形断面において、場所による流速の相異が無い一様な垂線下向きの流れを仮定すると、その下降流の流速V(m/s)は、以下の式1によって定義される。 When the diameter of the gas-liquid separation tank 30 is defined as d (m), in the primary space 30A of the gas-liquid separation tank 30, the ideal piston flow downward flow, that is, the flow velocity depending on the location in the circular cross section perpendicular to the axis. Assuming a uniform downward downward flow, the flow velocity V 1 (m / s) of the downward flow is defined by the following equation 1.
  式1:V=Q/6000×(4/πd)=2.12×105×Q/πd Equation 1: V 1 = Q 1/ 6000 × (4 / πd 2) = 2.12 × 10 5 × Q 1 / πd 2
 次に、分離対象とする余剰オゾンガス気泡(以下気泡)の直径をD(m)、重力加速度をg(m/s2)(=9.8(m/s2))、オゾンガス混合液の密度をρ(kg/m3)(ここでは水の密度として1000(kg/m3)で近似する)、オゾンガス混合液の粘性係数をη(Pa・s)(ここでは0.001(Pa・s)で近似する)と定義すると、静止液中における気泡の上昇速度Z(m/s)は、近似的に式2のストークス式で求められる。 Next, the diameter of the surplus ozone gas bubbles (hereinafter referred to as bubbles) to be separated is D p (m), the gravitational acceleration is g (m / s 2 ) (= 9.8 (m / s 2 )), and the ozone gas mixture The density is ρ (kg / m 3 ) (here, the density of water is approximated by 1000 (kg / m 3 )), and the viscosity coefficient of the ozone gas mixture is η (Pa · s) (here 0.001 (Pa · s)) The bubble rising speed Z 1 (m / s) in the still liquid is approximately obtained by the Stokes equation (2).
 式2:Z=D ×ρ×g/(18η) Formula 2: Z 1 = D p 2 × ρ × g / (18η)
 分離対象の気泡の直径D(m)は、実用上において、その混入が問題となり得る0.0001(m)、つまり100μm以上と設定することが好ましい。従って、この値を代入すれば、上昇速度Zは5.44×10-3(m/s)となる。 The diameter D p (m) of the bubbles to be separated is preferably set to 0.0001 (m), that is, 100 μm or more, which may cause problems in practical use. Therefore, if this value is substituted, the ascending speed Z 1 is 5.44 × 10 −3 (m / s).
 導出路82から排出されるオゾン水に気泡が混入しないためには、下降流によって気泡が底面まで引き込まれないことが求められる。結果、式3が成立する。 In order to prevent bubbles from being mixed into the ozone water discharged from the outlet path 82, it is required that the bubbles are not drawn to the bottom surface due to the downward flow. As a result, Equation 3 is established.
 式3:V≦Z Formula 3: V 1 ≦ Z 1
 既に述べたように、分離する気泡の直径D(m)を0.0001(m)とし、導出路82から排出するオゾン水生成量を、導体洗浄分野で比較的大容量の範疇に属する90(L/min)とする場合、上記式1~式3から、気液分離タンク30の直径d(m)は0.59(m)以上と算出される。このことから、従来のように、単純なピストンフロー下降流のみの場合、気液分離タンク30の内径を約0.6(m)以上に大型化しない限り、100μmの気泡を分離できないことを意味する。 As already described, the diameter D p (m) of the bubbles to be separated is 0.0001 (m), and the amount of ozone water generated from the lead-out path 82 is 90 (L / min), the diameter d (m) of the gas-liquid separation tank 30 is calculated to be 0.59 (m) or more from the above equations 1 to 3. Therefore, as in the conventional case, when only a simple piston flow downward flow is used, it means that 100 μm bubbles cannot be separated unless the inner diameter of the gas-liquid separation tank 30 is increased to about 0.6 (m) or more.
 次に、図4を参照して、本実施形態のオゾン溶液生成装置1における旋回流生成部50による作用を説明する。ここでは旋回流が主として循環路60の循環液によって生み出されることを想定する。 Next, with reference to FIG. 4, the effect | action by the swirling flow production | generation part 50 in the ozone solution production | generation apparatus 1 of this embodiment is demonstrated. Here, it is assumed that the swirling flow is mainly generated by the circulating fluid in the circulation path 60.
 図4(B)に示すように、旋回流Sによる遠心力の反作用として、気泡Kは、気液分離タンク30の中心軸Cの方向に移動する。二次空間30Bにおいて、気泡Kが中心軸方向に移動する際の加速度(遠心力加速度)をA(m/s2)と定義し、旋回流Sの周方向の流速をU(m/s)、旋回流の回転半径をr(m)と定義すると、この遠心力加速度Aは、式4となる。 As shown in FIG. 4B, as a reaction of the centrifugal force due to the swirl flow S, the bubbles K move in the direction of the central axis C of the gas-liquid separation tank 30. In the secondary space 30B, the acceleration (centrifugal force acceleration) when the bubble K moves in the central axis direction is defined as A 2 (m / s 2 ), and the circumferential flow velocity of the swirling flow S is U 2 (m / s). s) When the rotational radius of the swirling flow is defined as r 2 (m), this centrifugal force acceleration A 2 is expressed by Equation 4.
 式4:A= U /r Formula 4: A 2 = U 2 2 / r 2
 仮に、本実施形態によってコンパクト化される気液分離タンク30を想定する。気液分離タンク30の内径(直径)d(m)を0.15(m)、二次空間30Bの垂直方向距離Hを0.5(m)と仮定し、循環液導入口64から導入される旋回流の流速Uを3(m/s)と定義する。旋回流の回転半径rはd/2の0.075(m)となり、式4からAは120(m/s2)と算出される。つまり、遠心力加速度Aは、鉛直方向の重力加速度g(=9.8)の12倍以上となる。 Temporarily, the gas-liquid separation tank 30 reduced in size by this embodiment is assumed. The inner diameter of the gas-liquid separation tank 30 (diameter) d (m) and 0.15 (m), the vertical distance of H 2 secondary space 30B assuming 0.5 (m), swirling flow introduced from the circulating fluid inlet 64 defining the flow velocity U 2 3 and (m / s). The turning radius r 2 of the swirling flow is 0.075 (m) of d / 2, and A 2 is calculated as 120 (m / s 2 ) from Equation 4. In other words, the centrifugal force acceleration A 2 is a vertical gravitational acceleration g (= 9.8) of 12 times or more.
 旋回流Sの遠心力加速度Aによって気泡Kが中心軸Cの方向に移動する速度をJ(m/s)と定義すると、上記式2のストークス式の重力加速度gを、遠心力加速度A2に置換した式5によって導かれる。 As the bubble K by centrifugal force acceleration A 2 of the swirling flow S to define the speed of moving in the direction of the central axis C J 2 and (m / s), the gravitational acceleration g of the Stokes formula of the formula 2, the centrifugal force acceleration A2 And is derived by Equation 5 substituting
 式5:J=D ×ρ×A/(18η) Formula 5: J 2 = D p 2 × ρ × A 2 / (18η)
 更に二次空間30Bを下降する流量Q(L/min)を40(L/min)とする場合、以下(1)~(6)の事項が算出される。 Further, when the flow rate Q 2 (L / min) descending the secondary space 30B is 40 (L / min), the following items (1) to (6) are calculated.
 (1)二次空間30Bにおけるオゾンガス混合液の下降速度Vは、上記式1を参考に、V=Q/6000 ×(4/πd)=0.1224(m/s)となる。 (1) lowering speed V 2 of the ozone gas mixture in the secondary space 30B is in reference to the above equation 1, V 2 = Q 2/ 6000 × (4 / πd 2) = 0.1224 a (m / s).
 (2)二次空間30Bにおいて気泡Kが鉛直上方に上昇する速度Zは、上記式2と同じ結果となり、Z=5.44×10-3(m/s)となる。 Speed Z 2 bubbles K rises vertically upward (2) secondary space 30B is the same result as in the above formula 2, and Z 2 = 5.44 × 10 -3 ( m / s).
 (3)上記仮想条件の場合、二次空間30Bでは、V>Zとなって気泡Kは下降できることになる。実質的な気泡Kの下降速度V2d(m/s)はV-Z=0.1171(m/s)となる。 (3) In the case of the above virtual condition, in the secondary space 30B, V 2 > Z 2 and the bubble K can be lowered. The descending speed V 2d (m / s) of the substantial bubble K is V 2 −Z 2 = 0.1171 (m / s).
 (4)気泡Kが、下降速度V2dで、高さHとなる二次空間30Bを下降する際に必要な時間T2d(s)はH/V2d=4.27(s)となる。 (4) The time T 2d (s) required for the bubble K to descend at the descending speed V 2d and the secondary space 30B having the height H 2 is H 2 / V 2d = 4.27 (s).
 (5)二次空間30Bの旋回流Sによって、周壁に位置する気泡Kが、中心軸Cまで移動する速度Jは、式5に、A=120(m/s2)を代入して0.067(m/s)となる。 (5) The velocity J 2 at which the bubble K located on the peripheral wall moves to the central axis C by the swirling flow S in the secondary space 30B is obtained by substituting A 2 = 120 (m / s 2 ) into Equation 5. 0.067 (m / s).
 (6)二次空間30Bにおいて、気泡Kが下降する時間T2d(s)内に気泡Kが中心に向かって移動する距離r2d(m)はJ×T2dとなり0.28(m)となる。この移動距離は気液分離タンク30の半径d/2(m)を超えている。 (6) In the secondary space 30B, the distance r 2d (m) that the bubble K moves toward the center within the time T 2d (s) when the bubble K descends is J 2 × T 2d , which is 0.28 (m). . This moving distance exceeds the radius d / 2 (m) of the gas-liquid separation tank 30.
 以上のことから、二次空間30Bにおいて、内周壁に位置する100μmの気泡Kは、循環液導入口64から循環液導出口62まで旋回しながら下降する間に、少なくとも中心軸Cまで移動可能となる。本実施形態では、循環液導出口62(オゾン溶液導出口86)は、中心軸Cから径方向の外側に離れた位置、具体的には、気液分離タンク30の内周壁に形成されているため、オゾン水と一緒に気泡Kが排出されないで済む。 From the above, in the secondary space 30B, the 100 μm bubble K located on the inner peripheral wall can move to at least the central axis C while descending while turning from the circulating fluid inlet 64 to the circulating fluid outlet 62. Become. In the present embodiment, the circulating fluid outlet 62 (ozone solution outlet 86) is formed at a position away from the central axis C in the radial direction, specifically, on the inner peripheral wall of the gas-liquid separation tank 30. Therefore, the bubbles K do not have to be discharged together with the ozone water.
 なお、上記検証は、循環液導入口64から導入される循環液の流速Uが、最後まで減衰しないことを前提としている。しかし上記検証の通り、気泡Kが中心軸Cに向かって移動する距離r2d(m)は0.28(m)であり、気液分離タンク30の半径(d/2)となる0.075(m)よりも大幅に大きい。従って、流速Uが多少減衰しても問題にならない。具体的に、二次空間30Bにおいて、気泡Kが、下降中の滞留時間T2d(s)によって、半径(d/2)の距離となる中心軸Cに丁度到達するための最小限の移動速度J2minは、J2min=(d/2)/T2d(m/s)となり、上記T2d=4.27(s)、d/2=0.075(m)から、最小限の移動速度J2minは0.0175(m/s)となる。この最小限の移動速度J2minを利用して、循環液の最小限の流速U2minを算出する場合、式4及び式5から導出される以下の式6を用いることができる。 The above verification, the circulating liquid flow rate U 2 that are introduced from the circulating fluid inlet 64, it is assumed that not attenuated until the end. However, as verified above, the distance r 2d (m) that the bubble K moves toward the central axis C is 0.28 (m), which is 0.075 (m), which is the radius (d / 2) of the gas-liquid separation tank 30. Is also significantly larger. Therefore, even if the flow velocity U 2 is somewhat attenuated no problem. Specifically, in the secondary space 30B, the minimum moving speed for the bubble K to reach the central axis C having a radius (d / 2) by the dwelling time T 2d (s) during descent. J 2min is, J 2min = (d / 2 ) / T 2d (m / s) , and the from the T 2d = 4.27 (s), d / 2 = 0.075 (m), the minimum movement speed J 2min is 0.0175 (M / s). When calculating the minimum flow rate U 2min of the circulating fluid using this minimum moving speed J 2min , the following formula 6 derived from formula 4 and formula 5 can be used.
 式6:U2min=√{J2min×18η×(d/2)/(D ×ρ)} Equation 6: U 2min = √ {J 2min × 18η × (d / 2) / (D p 2 × ρ)}
 式6の結果は1.53(m/s)となる。つまり、循環液導入口64から導入される循環液の流速Uが3(m/s)であった場合、仮に、約半分となる1.53(m/s)まで減衰しても、全く問題が無いことが分かる。更に、気泡Kが中心軸Cまで到達しなくても、内周壁からある程度内側まで離反していれば良いことから、更なる減衰も許容される。 The result of Equation 6 is 1.53 (m / s). That is, if the flow rate U 2 of the circulating fluid to be introduced from the circulating fluid inlet 64 was 3 (m / s), Even if decayed to about half 1.53 (m / s), is no problem I understand that there is no. Further, even if the bubble K does not reach the central axis C, it is sufficient if it is separated from the inner peripheral wall to some extent inside, so that further attenuation is allowed.
 二次空間30Bにおいて気泡Kが上昇する際の視覚的な状態を図5に示す。気泡Kは、下降流による下降と、浮力による上昇の双方を伴いつつ、旋回流によって、径方向中央に移動しようとする。この気泡は、中央に移動しようとする際に、気泡同士が合体して粒径が大きくなり浮力も増大する。この際、旋回流の中に形成される螺旋状の上昇路Nに沿って上昇する。気泡Kは、常に、気液分離タンク30の内周壁から径方向内側に離れた位置に存在しており、効率的な気液分離が実現される。 FIG. 5 shows a visual state when the bubble K rises in the secondary space 30B. The bubble K tends to move to the center in the radial direction by the swirling flow, accompanied by both the descending by the descending flow and the rising by the buoyancy. When these bubbles try to move to the center, the bubbles merge to increase the particle size and buoyancy. At this time, it rises along the spiral ascending path N formed in the swirling flow. The bubbles K are always present at a position radially inward from the inner peripheral wall of the gas-liquid separation tank 30, so that efficient gas-liquid separation is realized.
 ちなみに、上記検証事項の(6)に基づくと、旋回流Sによって中心軸Cの方向に移動する距離r2d(m)は、気液分離タンク30の半径(d/2)(m)以上となることが望ましいことになり、以下の式7を導くことが出来る。 Incidentally, based on (6) of the verification items, the distance r 2d (m) moved in the direction of the central axis C by the swirl flow S is not less than the radius (d / 2) (m) of the gas-liquid separation tank 30. The following equation 7 can be derived.
 式7:r2d≧d/2 Formula 7: r 2d ≧ d / 2
 この式7の中のr2dは、次の式8に展開できる。 R 2d in Equation 7 can be expanded into the following Equation 8.
 式8:r2d=J×T2d={D ×ρ×A/(18η)}×{H/V2d}={D ×ρ×A/(18η)}×{H/(V-Z)}={D ×ρ×U ×2/(d×18η)}×{H/(Q/6000 ×(4/πd)-D ×ρ×g/(18η))}=D ×ρ×U ×2×H×6000×πd/{Q×4×18η-D ×ρ×g×6000×πdExpression 8: r 2d = J 2 × T 2d = {D p 2 × ρ × A 2 / (18η)} × {H 2 / V 2d } = {D p 2 × ρ × A 2 / (18η)} × {H 2 / (V 2 -Z 2)} = {D p 2 × ρ × U 2 2 × 2 / (d × 18η)} × {H 2 / (Q 2/6000 × (4 / πd 2) - D p 2 × ρ × g / (18η))} = D p 2 × ρ × U 2 2 × 2 × H 2 × 6000 × πd / {Q 2 × 4 × 18η−D p 2 × ρ × g × 6000 × πd 2 }
 この式8のr2dの展開結果を式7に代入し、更に以下の通りdの基準に展開すれば式9が得られる。本実施形態のオゾン溶液生成装置1は式9の内径dを満たすことが好ましい。 Substituting the expansion result of r 2d in Expression 8 into Expression 7 and further expanding to the reference of d as follows, Expression 9 is obtained. It is preferable that the ozone solution generating apparatus 1 of the present embodiment satisfies the inner diameter d of Equation 9.
 D ×ρ×U ×2×H×6000×πd/{Q×4×18η-D ×ρ×g×6000×πd}≧d/2 D p 2 × ρ × U 2 2 × 2 × H 2 × 6000 × πd / {Q 2 × 4 × 18 η−D p 2 × ρ × g × 6000 × πd 2 } ≧ d / 2
 D ×ρ×U ×4×H×6000×π≧{Q×4×18η-D ×ρ×g×6000×πdD p 2 × ρ × U 2 2 × 4 × H 2 × 6000 × π ≧ {Q 2 × 4 × 18 η−D p 2 × ρ × g × 6000 × πd 2 }
 式9:d≧√{(Q×4×18η-D ×ρ×U ×4×H×6000×π)/(D ×ρ×g×6000×π)} Formula 9: d ≧ √ {(Q 2 × 4 × 18 η−D p 2 × ρ × U 2 2 × 4 × H 2 × 6000 × π) / (D p 2 × ρ × g × 6000 × π)}
 従って、二次空間30Bを下降する流量Qを増大させる場合、これと同時に、気液二相流の旋回流の流速U(m/s)も高められことから、循環流によって、気液分離タンク30の内径dを小さくできることが分かる。 Therefore, when increasing the flow rate Q 2 to which descends the secondary space 30B, at the same time, gas-liquid two-phase flow of the swirling flow of the flow velocity U 2 (m / s) from also increased that, by the circulating flow, the gas-liquid It can be seen that the inner diameter d of the separation tank 30 can be reduced.
 具体的に、本実施形態のオゾン溶液生成装置1の場合、例えば、気液分離タンク30の内径(直径)d(m)を0.6(m)未満、望ましくは0.5(m)以下、更に望ましくは0.3(m)以下に設定できる。 Specifically, in the case of the ozone solution generation apparatus 1 of the present embodiment, for example, the inner diameter (diameter) d (m) of the gas-liquid separation tank 30 is less than 0.6 (m), desirably 0.5 (m) or less, and more desirably. Can be set to 0.3 (m) or less.
 同様に、上記式を、流量Qを基準に展開すると次式10のようになる。本実施形態のオゾン溶液生成装置1は、この流量Qを満たすように制御されることが好ましい。 Similarly, the above equation, by expanding the flow rate Q 2 based is as follows 10. Ozone solution generating apparatus 1 of the present embodiment is preferably controlled to satisfy the flow rate Q 2.
 式10:(D ×ρ×g×6000×πd+D ×ρ×U ×4×H×6000×π)/(4×18η)≧Q Formula 10: (D p 2 × ρ × g × 6000 × πd 2 + D p 2 × ρ × U 2 2 × 4 × H 2 × 6000 × π) / (4 × 18η) ≧ Q 2
 同様に、上記式を、流速Uを基準に展開すると次式11のようになる。本実施形態のオゾン溶液生成装置1は、この流速Uを満たすように制御されることが好ましい。 Similarly, the above equation, the following equation 11 by expanding the flow velocity U 2 as a reference. Ozone solution generating apparatus 1 of the present embodiment is preferably controlled to satisfy the velocity U 2.
 式11:U≧√{(Q×4×18η-D ×ρ×g×6000×πd)/(D ×ρ×4×H×6000×π)} Formula 11: U 2 ≧ √ {(Q 2 × 4 × 18η−D p 2 × ρ × g × 6000 × πd 2 ) / (D p 2 × ρ × 4 × H 2 × 6000 × π)}
 ちなみに、オゾンガスの水への溶解は、気泡中(混合ガス中)においてオゾン分子が拡散していく工程と、気液境界において気泡から水側に移動したオゾン分子が水中に拡散していく工程の2つのプロセスでなされる。気泡中のオゾン分子の拡散速度は、水中におけるオゾン分子の拡散速度に比して極めて大きいことから、実際のオゾンガスの水への溶解速度の律速は、水中でのオゾン分子の拡散速度となる。水中のオゾン分子の拡散速度は、気液境界における気泡から水側に向かうオゾン分子の濃度勾配(単位距離当たりの濃度の変化)に依存するが、境界近傍の表層水のオゾン分子の濃度が高いと、その境界においてオゾンが平衡状態となりやすく、気泡から水側に向かうオゾン分子の移動速度が低下する。 By the way, the dissolution of ozone gas in water involves a process in which ozone molecules diffuse in bubbles (mixed gas) and a process in which ozone molecules that have moved from the bubbles to the water side at the gas-liquid boundary diffuse into water. It is done in two processes. Since the diffusion rate of ozone molecules in the bubbles is extremely higher than the diffusion rate of ozone molecules in water, the rate limiting of the actual dissolution rate of ozone gas in water is the diffusion rate of ozone molecules in water. The diffusion rate of ozone molecules in water depends on the concentration gradient of ozone molecules from the bubble to the water side at the gas-liquid boundary (change in concentration per unit distance), but the concentration of ozone molecules in the surface water near the boundary is high Then, ozone tends to be in an equilibrium state at the boundary, and the moving speed of ozone molecules from the bubbles toward the water side decreases.
 したがって、オゾンガスの水への溶解速度を大きくするには、気泡と水の相対移動速度を大きくして、高オゾン濃度の気泡を、低オゾン濃度となる表層水と接触させることが好ましい。従来のように、鉛直方向に一様なピストンフロー下降流の場合は、気泡と水の間の相対速度は、気泡の上昇速度と一致する。一方、本オゾン溶液生成装置1の場合、旋回流の遠心力によって、気泡が中心軸Cの方向に移動する速度も加わるため、気泡と水との相対速度は、従来と比して大きくなり、オゾン水のオゾン濃度を高めたり、制御の応答性を高めたりすることが出来る。 Therefore, in order to increase the dissolution rate of ozone gas in water, it is preferable to increase the relative movement speed of the bubbles and water so that the bubbles having a high ozone concentration are brought into contact with the surface water having a low ozone concentration. In the case of a downward piston flow that is uniform in the vertical direction as in the prior art, the relative speed between the bubbles and the water coincides with the rising speed of the bubbles. On the other hand, in the case of the present ozone solution generating apparatus 1, the speed at which the bubbles move in the direction of the central axis C is also added due to the centrifugal force of the swirling flow, so the relative speed between the bubbles and water is larger than the conventional one, The ozone concentration of the ozone water can be increased, and the control response can be increased.
 以上の通り、本実施形態のオゾン溶液生成装置1によれば、気液分離タンク30の内部において、そのタンクの円筒軸を中心に回転する気液二相流(旋回流S)が生成される。結果、余剰オゾンガスの気泡が、旋回中の遠心力の反作用によって中心軸側に移動する。オゾン溶液導出口86(循環液導出口62)を、中心軸Cから径方向外側にオフセットした位置に配置することで、気泡が、排出されるオゾン水に混入しにくくなる。従って、排出流量を増大させたとしても、気液分離タンク30をコンパクトに構築できる。また、旋回流によって、溶媒となる水とオゾンガス気泡の相対移動速度が高められるので、溶解効率の高いオゾン水を生成することが可能となる。 As described above, according to the ozone solution generating apparatus 1 of the present embodiment, a gas-liquid two-phase flow (swirl flow S) that rotates about the cylindrical axis of the tank is generated inside the gas-liquid separation tank 30. . As a result, bubbles of excess ozone gas move to the central axis side due to the reaction of centrifugal force during turning. By disposing the ozone solution outlet 86 (circulating fluid outlet 62) at a position offset radially outward from the central axis C, bubbles are less likely to be mixed into the discharged ozone water. Therefore, even if the discharge flow rate is increased, the gas-liquid separation tank 30 can be constructed in a compact manner. Further, the swirl flow increases the relative movement speed of the water serving as the solvent and the ozone gas bubbles, so that it is possible to generate ozone water with high dissolution efficiency.
 旋回流を作り出す手段として、溶媒導入口76や循環液導入口64のように、水平面における旋回流の接線方向成分を含む方向に、水又はオゾンガス混合液を導入して旋回流を生み出す接線方向導入部50Aを有しているので、効率的に旋回流を作り出すことが出来る。特に、オゾン水の消費量に依存しない循環液を利用して、安定して強力な旋回流を作り出すことが可能となり、二次空間30Bによって、遠心力を利用した余剰オゾンガスの分離と、オゾンガスの水への溶解を両立できる。また、循環液によって、旋回流の流速を任意に制御することも可能となる。 As means for creating a swirl flow, tangential direction introduction that introduces a swirl flow by introducing water or an ozone gas mixture in a direction including a tangential component of the swirl flow in the horizontal plane, such as the solvent introduction port 76 and the circulating fluid introduction port 64. Since it has the part 50A, a swirl flow can be created efficiently. In particular, it becomes possible to create a stable and powerful swirl flow by using a circulating liquid that does not depend on the consumption of ozone water, and the secondary space 30B allows the separation of excess ozone gas using centrifugal force and the ozone gas. Can be dissolved in water. Further, the flow velocity of the swirling flow can be arbitrarily controlled by the circulating fluid.
 更に、旋回流を作り出す手段として、水平面における旋回流の接線方向成分を含む方向に、気液分離タンク30に貯留されるオゾンガス混合液を導出して旋回流を生み出す接線方向導出部50Bを有しているので、一層、効率的に旋回流を作り出すことが出来る。特に、この接線方向導出部50Bには、余剰オゾンガスの気泡が進入しにくいので、これをオゾン溶液導出口86とすることで、気泡の少ないオゾン水のみを導出することが可能となる。導出時に、旋回流の流れに外乱を与えることが少なく、旋回流を安定して保持することも可能になる。ちなみに、旋回流と一致しない方向に、オゾン水を導出すると、その導出口の近傍に、個別の小さな旋回流が生成されてしまい、余剰オゾンガスの気泡を吸い寄せてしまう場合が有る。 Further, as a means for generating a swirl flow, a tangential direction deriving unit 50B that generates a swirl flow by deriving the ozone gas mixture stored in the gas-liquid separation tank 30 in a direction including a tangential component of the swirl flow in the horizontal plane. Therefore, it is possible to create a swirl flow more efficiently. In particular, it is difficult for excessive ozone gas bubbles to enter the tangential direction deriving portion 50B. By using this as the ozone solution outlet 86, it is possible to derive only ozone water with few bubbles. At the time of derivation, the flow of the swirling flow is hardly disturbed, and the swirling flow can be stably maintained. Incidentally, if ozone water is derived in a direction that does not coincide with the swirling flow, an individual small swirling flow is generated in the vicinity of the outlet, and bubbles of excess ozone gas may be sucked up.
 また、本オゾン溶液生成装置1では、既にオゾンが高濃度となっている循環液の循環路60に配置される循環側気液混合器24において、オゾンガス生成部10のオゾンガスを混合させている。オゾンガス生成部10では、オゾンガスの濃度が高精度に制御されるので、ここで混合されるオゾン水の濃度を高精度且つ高応答に制御できる。具体的に、オゾン水の濃度制御の時定数は、気液分離タンク30のオゾンガス混合液の貯留量と、循環ポンプ66による循環液の循環量の比となる。この比率を小さく設定することにより、オゾン濃度の制御の応答速度を速くできる。例えば、循環ポンプ66による循環流量Qを40(L/min)とし、気液分離タンク30の内径を0.15(m)、貯留するオゾンガス混合液の水位を底面から0.5(m)とする場合、貯留量は約8.8(L)となる。従って、制御の時定数は、8.8/40=0.2(分)、即ち13(秒)程度になる。この時定数をさらに小さくするためには、循環流量Qを大きくし、貯留量を減らせば良いことになる。 Moreover, in this ozone solution production | generation apparatus 1, the ozone gas of the ozone gas production | generation part 10 is mixed in the circulation side gas-liquid mixer 24 arrange | positioned at the circulation path 60 of the circulation liquid in which ozone is already high concentration. In the ozone gas generation unit 10, since the concentration of ozone gas is controlled with high accuracy, the concentration of the ozone water mixed here can be controlled with high accuracy and high response. Specifically, the time constant of the concentration control of the ozone water is the ratio between the amount of the ozone gas mixture stored in the gas-liquid separation tank 30 and the amount of circulating fluid circulated by the circulation pump 66. By setting this ratio small, the response speed of the ozone concentration control can be increased. For example, the circulation flow rate Q 4 by the circulating pump 66 and 40 (L / min), inner diameter 0.15 of the gas-liquid separation tank 30 (m), if the water level of the reservoir is ozone gas mixture from the bottom with 0.5 (m), The storage amount is about 8.8 (L). Therefore, the control time constant is about 8.8 / 40 = 0.2 (minutes), that is, about 13 (seconds). To further reduce the time constant, it increases the circulation flow rate Q 4, so that may be reduced to the reservoir volume.
 また、オゾンガス混合液から分離された余剰オゾンガスは、再利用されて、溶媒側気液混合器22によって純水側に混合されるので、オゾンガスの使用効率を大幅に高めることが可能となっている。つまり、循環液を利用した旋回流による、余剰オゾンガスの分離効率が高いからこそ、これを再利用することで、益々オゾンガスの利用効率が高められる構造となっている。 Further, since the surplus ozone gas separated from the ozone gas mixture is reused and mixed to the pure water side by the solvent-side gas-liquid mixer 22, it is possible to greatly increase the use efficiency of the ozone gas. . In other words, because the surplus ozone gas separation efficiency by the swirling flow using the circulating liquid is high, the utilization efficiency of the ozone gas can be further increased by reusing it.
 <検証例>
本オゾン溶液生成装置1を用いて、オゾン溶液導出部80から排出されるオゾン水の流量Qを変化させた場合において、オゾン濃度のバラツキを実測した結果を図6に示す。ここでは、オゾンガス生成部10によって生成されるオゾンガスの流量を15(L/min)とし、オゾン水の制御濃度が比較的高濃度の80(ppm)となるように、オゾンガス生成部10をデューティー制御してオゾンガスの濃度を調整する。また、気液分離タンク30の圧力を0.17(MPa)とし、気液分離タンク30の底面から溶媒導入口76の高さを0.6(m)、循環液導入口64の高さを0.3(m)とし、水位は溶媒導入口76の高さに一致させた。
<Verification example>
Using this ozone solution generating apparatus 1, in the case of changing the flow rate Q 3 of the ozone water discharged from the ozone solution deriving unit 80, shown in FIG. 6 the results of actual measurement of the variation of ozone concentration. Here, the flow rate of the ozone gas generated by the ozone gas generation unit 10 is set to 15 (L / min), and the ozone gas generation unit 10 is duty-controlled so that the control concentration of the ozone water is 80 (ppm), which is a relatively high concentration. And adjust the concentration of ozone gas. Further, the pressure of the gas-liquid separation tank 30 is set to 0.17 (MPa), the height of the solvent inlet 76 from the bottom of the gas-liquid separation tank 30 is 0.6 (m), and the height of the circulating liquid inlet 64 is 0.3 (m). The water level was made to coincide with the height of the solvent inlet 76.
 図6からわかる様に流量Qを5(L/min)、10(L/min)、15(L/min)、20(L/min)に変化させたとしても、オゾン水の濃度が80(ppm)に維持されていることが分かる。具体的には、流量Qの変化に対して、オゾン水のオゾン濃度の瞬間的な変動は3(ppm)以下となる。また、流量Qが安定している最中(流量変更から2分経過後)では、オゾン水のオゾン濃度の変動は1(ppm)以下(実測値で0.43(ppm))となり、変動係数(=標準偏差/平均値)は1%以下(実測値で0.54%)となる。また、比較的大きな流量となる20(L/min)であっても、高濃度となる80(ppm)のオゾン水を生成できることが分かる。 5 flow Q 3 As can be seen from FIG. 6 (L / min), 10 (L / min), 15 (L / min), even varied to 20 (L / min), the concentration of ozone water 80 It can be seen that (ppm) is maintained. Specifically, with respect to the change of the flow rate Q 3, momentary fluctuations in ozone concentration in the ozone water becomes 3 (ppm) or less. Further, in the midst of the flow rate Q 3 is stable (after 2 minutes from the flow changes), fluctuation of the ozone concentration of ozone water is 1 (ppm) or less (measured value by 0.43 (ppm)), and the coefficient of variation ( = Standard deviation / average value) is 1% or less (measured value is 0.54%). It can also be seen that even at a relatively high flow rate of 20 (L / min), 80 (ppm) of ozone water with a high concentration can be generated.
 更に、本発明者らの実証実験によれば、本オゾン溶液生成装置1を用い、オゾンガス生成部10によって生成するオゾンガスの濃度を160(g/m3)以上、望ましく170(g/m3)以上とし、更に、そのオゾンガス流量を10(L/min)以上、望ましくは15(L/min)以上とし、また更に、循環ポンプ66による循環流量Qを20(L/min)以上、好ましくは40(L/min)以上、さらに望ましくは60(L/min)以上としても、オゾン水の排出量15(L/min)以上、望ましくは20(L/min)以上の条件で、極めて高濃度となる90(ppm)以上のオゾン水が得られる。 Furthermore, according to the verification experiment of the present inventors, the concentration of ozone gas generated by the ozone gas generation unit 10 is 160 (g / m 3 ) or more, preferably 170 (g / m 3 ), using the present ozone solution generation apparatus 1. and above, further, the ozone gas flow rate 10 (L / min) or more, preferably a 15 (L / min) or more and further, the circulation flow rate Q 4 by the circulating pump 66 20 (L / min) or more, preferably Even if it is 40 (L / min) or higher, more preferably 60 (L / min) or higher, the ozone water discharge is 15 (L / min) or higher, preferably 20 (L / min) or higher. Ozone water of 90 (ppm) or more is obtained.
 次に、上記本発明の第一実施形態のオゾン溶液生成装置1の変形例となる実施例について説明する。なお、重複説明を回避するために、これから説明する部品・部材について、第一実施形態のオゾン溶液生成装置1と同一・類似するものについては、説明中の符号を一致させるようにし、主として、第一実施形態等の相違点を中心に説明する。 Next, an example that is a modification of the ozone solution generation apparatus 1 according to the first embodiment of the present invention will be described. In order to avoid duplication, parts and members to be described below are the same as or similar to those in the ozone solution generating device 1 of the first embodiment, and the reference numerals in the description are made to coincide with each other. A description will be given centering on differences in one embodiment and the like.
 図7に、第二実施形態のオゾン溶液生成装置101を示す。このオゾン溶液生成装置101では、循環路60の下流側を、溶媒案内路70に合流させることで、溶媒導入口76と循環液導入口64を兼ねるようにし、溶媒側気液混合器22と循環側気液混合器24も兼ねる。溶媒導入口76と循環液導入口64は、接線方向導入部50Aも兼ねる。一方、図7(C)に示すように、気液分離タンク30に配置されるオゾン溶液導出口86または循環液導出口62は、気液分離タンク30に対して、半径方向外側にオゾン水を導出するようになっており、旋回流を生み出す機能は有していない。このようにしても、上方側の接線方向導入部50Aによって十分に旋回流を創出できる。なお、溶媒案内路70において、水供給部72から常に安定した原料水が供給される場合は、点線に示すように、循環路60を省略することも可能である。 FIG. 7 shows an ozone solution generation apparatus 101 according to the second embodiment. In this ozone solution generating apparatus 101, the downstream side of the circulation path 60 is merged with the solvent guide path 70, so that the solvent introduction port 76 and the circulation liquid introduction port 64 serve as both, and the solvent side gas-liquid mixer 22 and the circulation are provided. It also serves as the side gas-liquid mixer 24. The solvent introduction port 76 and the circulating fluid introduction port 64 also serve as the tangential direction introduction unit 50A. On the other hand, as shown in FIG. 7C, the ozone solution outlet 86 or the circulating fluid outlet 62 disposed in the gas-liquid separation tank 30 supplies ozone water radially outward with respect to the gas-liquid separation tank 30. It is designed to derive and does not have a function to generate a swirling flow. Even in this case, a swirl flow can be sufficiently created by the upper tangential direction introduction portion 50A. In the solvent guide path 70, when stable raw material water is always supplied from the water supply unit 72, the circulation path 60 can be omitted as shown by the dotted line.
 また、気液分離タンク30の上方に貯まる余剰オゾンガスの再利用方法として、第一実施形態では、オゾンガス混合部に直接供給する場合を例示したが、第二実施形態のように、オゾンガス循環路26を、除湿器27を介してオゾンガス生成部10に供給しても良い。オゾンガス生成部10では、循環される余剰オゾンガスと原料酸素と混合させながら、オゾンガスを新たに生成することで、オゾンガスの利用効率を高めることができる。 Moreover, although the case where it supplied directly to an ozone gas mixing part was illustrated in 1st embodiment as a recycle method of the surplus ozone gas stored above the gas-liquid separation tank 30, ozone gas circulation path 26 like 2nd embodiment was illustrated. May be supplied to the ozone gas generator 10 via the dehumidifier 27. In the ozone gas production | generation part 10, the utilization efficiency of ozone gas can be improved by producing | generating ozone gas newly, mixing the surplus ozone gas and raw material oxygen which are circulated.
 また、第二実施形態のオゾン溶液生成装置101では、溶媒導入口76と循環液導入口64は、接線方向導入部50Aも兼ねるようにしたが、本発明はこれに限定されない。図8に示す第三実施形態のオゾン水生成装置201のように、オゾン溶液導出口86及び循環液導出口62が接線方向導出部50Bも兼ねるようにしつつ、溶媒導入口76と循環液導入口64は、旋回流Sの接線方向成分を含まないように導入してもよい。 In the ozone solution generating apparatus 101 of the second embodiment, the solvent introduction port 76 and the circulating fluid introduction port 64 are also used as the tangential direction introduction unit 50A, but the present invention is not limited to this. Like the ozone water generator 201 of the third embodiment shown in FIG. 8, the solvent introduction port 76 and the circulating fluid introduction port are made so that the ozone solution outlet 86 and the circulating fluid outlet 62 also serve as the tangential direction outlet 50B. 64 may be introduced so as not to include the tangential component of the swirl flow S.
 図9に示す第四実施形態のオゾン水生成装置301のように、循環液導入口64のみについて接線方向導入部50Aも兼ねるようにし、溶媒導入口76とオゾン溶液導出口86(循環液導出口62)は旋回流を創出しない構造としてもよい。またオゾンガス混合部20は、循環側気液混合器24のみとして、溶媒側気液混合器を省略してもよい。 As in the ozone water generator 301 of the fourth embodiment shown in FIG. 9, only the circulating fluid inlet 64 serves as the tangential direction inlet 50A, and the solvent inlet 76 and the ozone solution outlet 86 (circulating fluid outlet 86). 62) may have a structure that does not create a swirling flow. Further, the ozone gas mixing unit 20 may omit the solvent side gas-liquid mixer as the circulation side gas-liquid mixer 24 only.
 図10に示す第五実施形態のオゾン水生成装置401のように、オゾンガス混合部20は溶媒側気液混合器22のみとして、循環側気液混合器を省略してもよい。この場合、溶媒側気液混合器22では、オゾン発生装置10から供給されるオゾンガスを混合すればよい。 As in the ozone water generator 401 of the fifth embodiment shown in FIG. 10, the ozone gas mixing unit 20 may be the solvent side gas / liquid mixer 22 only, and the circulation side gas / liquid mixer may be omitted. In this case, the solvent-side gas-liquid mixer 22 may mix ozone gas supplied from the ozone generator 10.
 また、第一実施形態では、導出路82やオゾン溶液導出口86が、循環路60と循環液導出口62を兼ねる場合を例示したが、本発明はこれに限定されない。例えば、図11に示す第六実施形態のオゾン水生成装置501のように、導出路82やオゾン溶液導出口86が、循環路60や循環液導出口62から独立して配置されるようにしてもよい。この際、オゾン溶液導出口86を、循環液導出口62よりも下側に配置することが好ましく、これにより循環液導出口62とオゾン溶液導出口86の間に三次空間30Cを形成できる。三次空間30Cにおける下降流の流量Q(L/min)は、二次空間30Bの流量Q(L/min)よりも小さくなり、一次空間30AのQ(L/min)と一致させることができるので、二次空間30Bと比較して、三次空間30Cの下降流速Vを小さくできる。結果、二次空間30Bの循環流量を増大させたとしても、三次空間30Cの下降流速Vは小さく維持されるので、より一層、オゾン溶液導出口86に気泡が進入しにくい状態となる。なお、図11(F)に示すように、オゾン溶液導出口86を介して導出路82に導出されるオゾンガス混合液の直前の流れは、矢印FEに示されるように、気液分離タンク30の内周壁に沿う旋回流となる。 In the first embodiment, the case where the outlet path 82 and the ozone solution outlet 86 serve as the circulation path 60 and the circulating fluid outlet 62 is illustrated, but the present invention is not limited to this. For example, as in the ozone water generator 501 of the sixth embodiment shown in FIG. 11, the outlet path 82 and the ozone solution outlet 86 are arranged independently of the circulation path 60 and the circulating liquid outlet 62. Also good. At this time, it is preferable to arrange the ozone solution outlet 86 below the circulating fluid outlet 62, whereby a tertiary space 30 </ b> C can be formed between the circulating fluid outlet 62 and the ozone solution outlet 86. The flow rate Q 3 (L / min) of the downward flow in the tertiary space 30C is smaller than the flow rate Q 2 (L / min) of the secondary space 30B, and is matched with Q 1 (L / min) of the primary space 30A. since it is, compared to the secondary space 30B, it can be reduced down velocity V 3 of the tertiary space 30C. Result, even increased the circulation flow rate of the secondary space 30B, so lowering the flow velocity V 3 of the tertiary space 30C is kept small, more air bubbles in the ozone solution outlet 86 is in a state not easily enter. As shown in FIG. 11 (F), the flow immediately before the ozone gas mixture led to the lead-out path 82 via the ozone solution lead-out port 86 is the flow of the gas-liquid separation tank 30 as indicated by the arrow FE. It becomes a swirl flow along the inner peripheral wall.
 第一実施形態では、原料水や循環液の導入力により、気液分離タンク30内に貯留されるオゾンガス混合液に旋回流を生じさせる場合を例示したが、本発明はこれに限定されない。例えば、図12に示す第七実施形態のオゾン水生成装置601のように、旋回流生成部50が、オゾンガス混合液内で回転することで旋回流を生み出す回転体56を有してもよい。この回転体56は、図12(B)乃至(D)に示すように回転翼56Aを有しており、さらに鉛直方向に延びる回転軸が、気液分離タンク30の上面及び/又は底面で回転自在に保持されて、モータMT等によって強制回転される。回転翼56Aの回転によって、オゾンガス混合液に旋回流Sが生成されると同時に、回転軸に集まってくる径の比較的大きな気泡を、この回転翼56Aで破砕、分散させる効果を発揮できるので、オゾン溶解効率が向上される。 In the first embodiment, the case where the swirl flow is generated in the ozone gas mixture stored in the gas-liquid separation tank 30 by the introduction force of the raw water or the circulating liquid is exemplified, but the present invention is not limited to this. For example, like the ozone water generating device 601 of the seventh embodiment shown in FIG. 12, the swirling flow generating unit 50 may have a rotating body 56 that generates a swirling flow by rotating in the ozone gas mixture. The rotating body 56 has rotating blades 56A as shown in FIGS. 12B to 12D, and the rotating shaft extending in the vertical direction rotates on the upper surface and / or the bottom surface of the gas-liquid separation tank 30. It is held freely and is forcibly rotated by a motor MT or the like. By rotating the rotary blade 56A, the swirl flow S is generated in the ozone gas mixture, and at the same time, the effect of causing the rotary blade 56A to crush and disperse bubbles having a relatively large diameter gathered on the rotary shaft. Ozone dissolution efficiency is improved.
 また、回転体56の構造は翼式に限定されず、例えば図13に示す第八実施形態のオゾン水生成装置701のように、円盤状の回転体56を回転させることで、その粘性抵抗によって旋回流Sを生じさせてもよい。鉛直方向に複数の回転体56を配置することも好ましい。 Further, the structure of the rotating body 56 is not limited to the wing type. For example, like the ozone water generating device 701 of the eighth embodiment shown in FIG. A swirling flow S may be generated. It is also preferable to arrange a plurality of rotating bodies 56 in the vertical direction.
 なお、上記実施形態では、気液分離タンク30内の液位を、溶媒導入口76と一致させる場合を例示したが、本発明はこれに限定されない。例えば、液位を、溶媒導入口76よりも上方に設定することも好ましく、水没する溶媒導入口76から導入される原料水によって、効果的に旋回流を生じさせることができる。一方、液位を、溶媒導入口76よりも下側に設定することも好ましい。 In the above embodiment, the case where the liquid level in the gas-liquid separation tank 30 is made to coincide with the solvent introduction port 76 is exemplified, but the present invention is not limited to this. For example, it is also preferable to set the liquid level above the solvent introduction port 76, and a swirling flow can be effectively generated by the raw material water introduced from the solvent introduction port 76 that is submerged. On the other hand, it is also preferable to set the liquid level below the solvent introduction port 76.
 また、上記実施形態では、溶媒として純水等を用いる場合を例示しているが、本発明はこれに限定されない。例えば、このオゾン水生成装置は、オゾンを活用した有機物の分解や、オゾンの殺菌特性を利用した水処理装置として利用できる。この際、溶媒としては、オゾンと化学反応を生じる有機物を含有する液体(水)や、ウイルス、細菌、菌類及び微生物の少なくともいずれかの物質を含有する液体(水)を利用できる。気液分離タンク中において有機物やウイルスを処理する場合に限られず、気液分離タンクから導出されたオゾン溶液に含有するオゾンが、経時的に、有機物やウイルスを処理する場合を含む。 Moreover, although the case where pure water etc. are used as a solvent is illustrated in the said embodiment, this invention is not limited to this. For example, the ozone water generating device can be used as a water treatment device that utilizes the decomposition of organic matter using ozone and the sterilization characteristics of ozone. In this case, a liquid (water) containing an organic substance that chemically reacts with ozone, or a liquid (water) containing at least one of a virus, a bacterium, a fungus, and a microorganism can be used as the solvent. The present invention is not limited to the case where organic substances and viruses are treated in the gas-liquid separation tank, but includes the case where ozone contained in the ozone solution derived from the gas-liquid separation tank treats organic substances and viruses over time.
 なお、処理対象とする有機物、ウイルス、細菌、菌類及び微生物等は、その種類によりオゾン溶液中において処理に要するオゾン濃度と時間の積が大幅に異なる。従って、種類に応じて、オゾン濃度を制御しても良く、また、気液分離タンク内での滞留時間(循環時間)を制御しても良い。また、オゾン溶液導出部の下流側に貯留槽や配管等の待機空間を用意しておき、気液分離タンクから導出されるオゾン溶液を、一時的に、待機空間に滞留させることで、オゾン処理時間を確保しても良い。なお、この待機空間は、オゾン溶液にどうしても残存してしまったオゾン等の気泡を追加脱気する場所として用いることもできる。 The organic matter, virus, bacteria, fungi, microorganisms, and the like to be treated vary greatly in the product of ozone concentration and time required for treatment in the ozone solution depending on the type. Therefore, the ozone concentration may be controlled according to the type, and the residence time (circulation time) in the gas-liquid separation tank may be controlled. In addition, a standby space such as a storage tank or piping is prepared on the downstream side of the ozone solution outlet, and the ozone solution derived from the gas-liquid separation tank is temporarily retained in the standby space, so that the ozone treatment is performed. Time may be secured. Note that this standby space can also be used as a place to additionally deaerate bubbles such as ozone that have remained in the ozone solution.
 尚、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

Claims (15)

  1.  オゾンガス生成装置によって生成されるオゾンガスを溶媒に溶かしてしてオゾン溶液を生成するオゾン溶液生成装置であって、
     前記オゾンガスと前記溶媒を混合してオゾンガス混合液を生成する気液混合器と、
     前記気液混合器によって生成された前記オゾンガス混合液を貯留する気液分離タンクと、
     前記気液分離タンク内において前記オゾンガス混合液に旋回流を生じさせる旋回流生成部と、
     前記旋回流を経た前記オゾンガス混合液によって生成される前記オゾン溶液を、前記気液分離タンクの外部に案内するオゾン溶液導出部と、
     を備えることを特徴とするオゾン溶液生成装置。
    An ozone solution generator that generates an ozone solution by dissolving ozone gas generated by an ozone gas generator in a solvent,
    A gas-liquid mixer that mixes the ozone gas and the solvent to produce an ozone gas mixture;
    A gas-liquid separation tank for storing the ozone gas mixture produced by the gas-liquid mixer;
    A swirl flow generating section for generating a swirl flow in the ozone gas mixture in the gas-liquid separation tank;
    An ozone solution derivation unit that guides the ozone solution generated by the ozone gas mixture that has passed through the swirling flow to the outside of the gas-liquid separation tank;
    An ozone solution generation device comprising:
  2.  前記オゾン溶液導出部は、前記オゾン溶液を前記気液分離タンクの外部に導出する為のオゾン溶液導出口を有しており、
     前記オゾン溶液導出口は、前記オゾン混合液における前記旋回流の中心軸から径方向外側に外れた場所に位置することを特徴とする、
     請求の範囲1に記載のオゾン溶液生成装置。
    The ozone solution outlet has an ozone solution outlet for leading the ozone solution out of the gas-liquid separation tank;
    The ozone solution outlet is located at a location that is radially outward from the central axis of the swirling flow in the ozone mixture,
    The ozone solution generation device according to claim 1.
  3.  前記旋回流生成部は、
     前記溶媒又は前記オゾンガス混合液の前記気液分離タンク内への導入方向の範囲を、前記旋回流の接線方向を含む範囲とすることによって旋回流を作り出す接線方向導入部を有することを特徴とする、
     請求の範囲1又は2に記載のオゾン溶液生成装置。
    The swirl flow generator is
    It has a tangential direction introduction part that creates a swirl flow by setting the range of the introduction direction of the solvent or the ozone gas mixture into the gas-liquid separation tank to include the tangential direction of the swirl flow. ,
    The ozone solution generation apparatus according to claim 1 or 2.
  4.  前記旋回流生成部は、
     前記溶媒、前記オゾンガス混合液又は前記オゾン溶液の前記気液分離タンクからの導出方向の範囲を、前記旋回流の接線方向を含む範囲とすることによって旋回流を作り出す接線方向導出部を有することを特徴とする、
     請求の範囲1乃至3のいずれかに記載のオゾン溶液生成装置。
    The swirl flow generator is
    A tangential direction deriving unit that creates a swirling flow by setting a range of a deriving direction of the solvent, the ozone gas mixed solution or the ozone solution from the gas-liquid separation tank to a range including a tangential direction of the swirling flow; Features
    The ozone solution production | generation apparatus in any one of Claims 1 thru | or 3.
  5.  前記旋回流生成部は、
     前記オゾンガス混合液内で回転することで、該旋回流を生み出す回転体を有することを特徴とする、
     請求の範囲1乃至4のいずれかに記載のオゾン溶液生成装置。
    The swirl flow generator is
    It has a rotating body that generates the swirling flow by rotating in the ozone gas mixture,
    The ozone solution production | generation apparatus in any one of Claims 1 thru | or 4.
  6.  前記気液分離タンクの前記オゾンガス混合液を導出して循環液とし、該循環液を前記気液分離タンクに戻す循環路を有し、
     前記循環路の途中には、前記オゾンガス生成装置から供給される前記オゾンガスと前記循環液を混合する前記循環側気液混合器が配置されること特徴とする、
     請求の範囲1乃至5のいずれかに記載のオゾン溶液生成装置。
    A circulation path for deriving the ozone gas mixture in the gas-liquid separation tank to be a circulation liquid and returning the circulation liquid to the gas-liquid separation tank;
    In the middle of the circulation path, the circulation-side gas-liquid mixer for mixing the ozone gas supplied from the ozone gas generation device and the circulation liquid is disposed,
    The ozone solution generation device according to any one of claims 1 to 5.
  7.  前記気液分離タンクの前記オゾンガス混合液を導出して循環液とし、該循環液を前記気液分離タンクに戻す循環路を有し、
     前記循環路の下流端に位置する循環液導入口は、前記オゾンガス混合液の前記気液分離タンク内への導入方向の範囲を、前記旋回流の接線方向を含む範囲とすることによって旋回流を作り出す接線方向導入部を兼ねることを特徴とする、
     請求の範囲1乃至6のいずれかに記載のオゾン溶液生成装置。
    A circulation path for deriving the ozone gas mixture in the gas-liquid separation tank to be a circulation liquid and returning the circulation liquid to the gas-liquid separation tank;
    The circulating fluid introduction port located at the downstream end of the circulation path generates a swirl flow by setting the range of the introduction direction of the ozone gas mixture into the gas-liquid separation tank as a range including the tangential direction of the swirl flow. It also serves as a tangential direction introduction part to create,
    The ozone solution production | generation apparatus in any one of Claims 1 thru | or 6.
  8.  前記気液分離タンクの前記オゾンガス混合液を導出して循環液とし、該循環液を前記気液分離タンクに戻す循環路を有し、
     前記循環路の上流端に位置する循環液導出口は、前記オゾンガス混合液の前記気液分離タンクからの導出方向の範囲を、前記旋回流の接線方向を含む範囲とすることによって旋回流を作り出す接線方向導出部を兼ねることを特徴とする、
     請求の範囲1乃至7のいずれかに記載のオゾン溶液生成装置。
    A circulation path for deriving the ozone gas mixture in the gas-liquid separation tank to be a circulation liquid and returning the circulation liquid to the gas-liquid separation tank;
    The circulating fluid outlet located at the upstream end of the circulation path creates a swirling flow by setting a range of a direction in which the ozone gas mixture is led out from the gas-liquid separation tank to a range including a tangential direction of the swirling flow. It also serves as a tangential direction deriving part,
    The ozone solution production | generation apparatus in any one of Claims 1 thru | or 7.
  9.  前記循環路の下流端に位置して前記気液分離タンク内に前記循環を導入する循環液導入口は、前記オゾン溶液導出部において前記オゾン混合液を前記気液分離タンクの外部に導出するオゾン溶液導出口と比較して、上方に配置されることを特徴とする、
     請求の範囲6乃至8のいずれかに記載のオゾン溶液生成装置。
    The circulating fluid inlet that introduces the circulation into the gas-liquid separation tank located at the downstream end of the circulation path is ozone that guides the ozone mixture to the outside of the gas-liquid separation tank in the ozone solution outlet. Compared with the solution outlet, it is arranged above,
    The ozone solution generation device according to any one of claims 6 to 8.
  10.  少なくとも前記溶媒を前記気液分離タンクまで案内する溶媒案内路の途中には、前記溶媒と前記オゾンガスを混合する前記気液混合器が配置されており、
     前記気液混合器には、前記気液分離タンクにおいて前記オゾンガス混合液から分離回収された前記オゾンガスが供給されることを特徴とする、
     請求の範囲1乃至9のいずれかに記載のオゾン溶液生成装置。
    At least in the middle of the solvent guide path that guides the solvent to the gas-liquid separation tank, the gas-liquid mixer for mixing the solvent and the ozone gas is disposed,
    The gas-liquid mixer is supplied with the ozone gas separated and recovered from the ozone gas mixed liquid in the gas-liquid separation tank,
    The ozone solution production | generation apparatus in any one of Claims 1 thru | or 9.
  11.  少なくとも前記溶媒を前記気液分離タンクまで案内する溶媒案内路の下流端に位置する溶媒導入口は、前記溶媒の前記気液分離タンク内への導入方向の範囲を、前記旋回流の接線方向を含む範囲とすることによって旋回流を作り出す接線方向導入部を兼ねることを特徴とする、
     請求の範囲1乃至10のいずれかに記載のオゾン溶液生成装置。
    At least a solvent introduction port located at a downstream end of a solvent guide path that guides the solvent to the gas-liquid separation tank has a range of a direction in which the solvent is introduced into the gas-liquid separation tank in a tangential direction of the swirl flow. It also serves as a tangential direction introduction part that creates a swirling flow by including the range,
    The ozone solution generation device according to any one of claims 1 to 10.
  12.  前記溶媒として、前記オゾンと化学反応を生じる有機物を含有する液体を用い、前記液体における前記有機物の処理用途として使用されることを特徴とする、
     請求の範囲1乃至11のいずれかに記載のオゾン溶液生成装置。
    As the solvent, a liquid containing an organic substance that causes a chemical reaction with ozone is used as a treatment application of the organic substance in the liquid.
    The ozone solution generation device according to any one of claims 1 to 11.
  13.  前記溶媒として、ウイルス、細菌、菌類及び微生物の少なくともいずれかの物質を含有する液体を用い、前記液体における前記物質の処理用途として使用されることを特徴とする、
     請求の範囲1乃至12のいずれかに記載のオゾン溶液生成装置。
    As the solvent, a liquid containing at least one of a virus, a bacterium, a fungus, and a microorganism is used, and the solvent is used for processing the substance in the liquid,
    The ozone solution generation device according to any one of claims 1 to 12.
  14.  前記オゾン溶液導出部から導出される前記オゾン溶液を一時的に滞留させる待機空間を有することを特徴とする、
     請求の範囲1乃至13のいずれかに記載のオゾン溶液生成装置。
    It has a waiting space for temporarily retaining the ozone solution derived from the ozone solution deriving unit,
    The ozone solution generation device according to any one of claims 1 to 13.
  15.  オゾンガス生成装置によって生成されるオゾンガスを溶媒に溶かしてしてオゾン溶液を生成するオゾン溶液生成方法であって、
     前記オゾンガスと前記溶媒を混合してオゾンガス混合液を生成する気液混合工程と、
     前記気液混合工程によって生成された前記オゾンガス混合液を気液分離タンクに貯留し、前記気液分離タンク内において前記オゾンガス混合液に旋回流を生じさせる旋回流生成工程と、
     前記旋回流を経た前記オゾンガス混合液によって生成される前記オゾン溶液を、前記気液分離タンクの外部に案内するオゾン溶液導出工程と、
     を備えることを特徴とするオゾン溶液生成方法。
    An ozone solution generation method for generating an ozone solution by dissolving ozone gas generated by an ozone gas generation device in a solvent,
    A gas-liquid mixing step of mixing the ozone gas and the solvent to produce an ozone gas mixture;
    A swirling flow generating step of storing the ozone gas mixed solution generated in the gas-liquid mixing step in a gas-liquid separation tank, and generating a swirling flow in the ozone gas mixed solution in the gas-liquid separation tank;
    An ozone solution derivation step for guiding the ozone solution generated by the ozone gas mixture that has passed through the swirling flow to the outside of the gas-liquid separation tank;
    An ozone solution generation method comprising:
PCT/JP2018/006781 2018-02-23 2018-02-23 Ozone solution generation apparatus and ozone solution generation method WO2019163105A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/006781 WO2019163105A1 (en) 2018-02-23 2018-02-23 Ozone solution generation apparatus and ozone solution generation method
JP2018510903A JP6954645B2 (en) 2018-02-23 2018-02-23 Ozone solution generator and ozone solution generation method
TW108105911A TWI844527B (en) 2018-02-23 2019-02-22 Apparatus for producing ozone solution, method for producing ozone solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006781 WO2019163105A1 (en) 2018-02-23 2018-02-23 Ozone solution generation apparatus and ozone solution generation method

Publications (1)

Publication Number Publication Date
WO2019163105A1 true WO2019163105A1 (en) 2019-08-29

Family

ID=67688018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006781 WO2019163105A1 (en) 2018-02-23 2018-02-23 Ozone solution generation apparatus and ozone solution generation method

Country Status (3)

Country Link
JP (1) JP6954645B2 (en)
TW (1) TWI844527B (en)
WO (1) WO2019163105A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166628A1 (en) * 2020-02-18 2021-08-26 パナソニックIpマネジメント株式会社 Chemical agent dissolution device, water treatment system, and solid chemical agent cartridge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703086B (en) * 2019-11-08 2020-09-01 華仕德科技股份有限公司 Ozone water supply apparatus and ozone supply device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028636A (en) * 2000-07-18 2002-01-29 Max Co Ltd Exhaust valve structure in gas-liquid separator of ozone water producer
JP2002028635A (en) * 2000-07-18 2002-01-29 Max Co Ltd Gas-liquid separator in ozone water producer
JP2003205225A (en) * 2002-01-16 2003-07-22 Eco Design Kk Ozonized water manufacturing apparatus
JP2004313847A (en) * 2003-04-11 2004-11-11 Nippon Kankyo Kagaku:Kk Gas-liquid dissolving device, water treatment system using the device and water treatment method
JP2008119567A (en) * 2006-11-08 2008-05-29 Yokota Seisakusho:Kk Microbubble generation device
JP2013010068A (en) * 2011-06-29 2013-01-17 Sharp Corp Ozone liquid generator and method for generating ozone liquid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513122B2 (en) * 2004-03-31 2010-07-28 栗田工業株式会社 Ozone water supply method and ozone water supply device
PL2020260T3 (en) * 2006-05-23 2016-12-30 Fine bubble generating apparatus
JP2010155749A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Fine bubble generator
JP2013081880A (en) * 2011-10-06 2013-05-09 Clean Tech Service:Kk Gas dissolving apparatus
JP5959860B2 (en) * 2012-01-27 2016-08-02 シャープ株式会社 Gas-liquid separator, dissolution liquid generating apparatus including the same, and sanitary instrument cleaning apparatus including the same
CN106861478A (en) * 2017-03-20 2017-06-20 江苏德邦工程有限公司 New and effective gas-liquid is atomized hybrid heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028636A (en) * 2000-07-18 2002-01-29 Max Co Ltd Exhaust valve structure in gas-liquid separator of ozone water producer
JP2002028635A (en) * 2000-07-18 2002-01-29 Max Co Ltd Gas-liquid separator in ozone water producer
JP2003205225A (en) * 2002-01-16 2003-07-22 Eco Design Kk Ozonized water manufacturing apparatus
JP2004313847A (en) * 2003-04-11 2004-11-11 Nippon Kankyo Kagaku:Kk Gas-liquid dissolving device, water treatment system using the device and water treatment method
JP2008119567A (en) * 2006-11-08 2008-05-29 Yokota Seisakusho:Kk Microbubble generation device
JP2013010068A (en) * 2011-06-29 2013-01-17 Sharp Corp Ozone liquid generator and method for generating ozone liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166628A1 (en) * 2020-02-18 2021-08-26 パナソニックIpマネジメント株式会社 Chemical agent dissolution device, water treatment system, and solid chemical agent cartridge

Also Published As

Publication number Publication date
TWI844527B (en) 2024-06-11
TW201938497A (en) 2019-10-01
JP6954645B2 (en) 2021-10-27
JPWO2019163105A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP6564092B2 (en) Gas-liquid dissolution tank and fine bubble generator
US8715512B2 (en) Systems and methods for liquid separation
US4097026A (en) Apparatus for mixing a basic liquid substance with other media
US8567769B2 (en) Apparatus and method of dissolving a gas into a liquid
US3322497A (en) Process for the production of diluted chlorine dioxide
WO2019163105A1 (en) Ozone solution generation apparatus and ozone solution generation method
US20100243580A1 (en) Hyperoxidation advanced oxidative treatment of water
JP2015083302A (en) Exhaust nozzle device, manufacturing method of the same, fluid distribution method using the same, and fluid processing method using the same
WO2014102581A1 (en) Apparatus and method for separation of oil from oil-containing produced water
JP2005144320A (en) Fluid mixing apparatus
US6602327B2 (en) Process for removing an undesirable dissolved gas from a liquid
KR101863769B1 (en) apparatus of generating macro or nano bubble
JP2001104764A (en) Gas-liquid mixing apparatus
US10603643B2 (en) Process and device for dispersing gas in a liquid
RU2258559C2 (en) Method of performing gas-and-liquid multi-phase reactions and vortex centrifugal bubbling reactor for realization of this method
JP6584372B2 (en) Defoaming tank, ozone treatment device and sludge treatment method
JPH0113897B2 (en)
JP2003001009A (en) Apparatus for removing dissolved oxygen
JPH10165800A (en) Jet bubbling reactor
WO2015083363A1 (en) Water-quality improvement device
JPH04346894A (en) Ozone catalytic reaction tank
KR20010103873A (en) a microbuble generator
JP2001120982A (en) Gas-liquid contact device of column system
JP2016155073A (en) Fine bubble generating device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510903

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907177

Country of ref document: EP

Kind code of ref document: A1