WO2019161727A1 - 半导体激光器的驱动装置 - Google Patents

半导体激光器的驱动装置 Download PDF

Info

Publication number
WO2019161727A1
WO2019161727A1 PCT/CN2019/073342 CN2019073342W WO2019161727A1 WO 2019161727 A1 WO2019161727 A1 WO 2019161727A1 CN 2019073342 W CN2019073342 W CN 2019073342W WO 2019161727 A1 WO2019161727 A1 WO 2019161727A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
current
driving
controller
module
Prior art date
Application number
PCT/CN2019/073342
Other languages
English (en)
French (fr)
Inventor
邓仕发
潘奕
丁庆
Original Assignee
深圳市太赫兹科技创新研究院有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹科技创新研究院有限公司, 深圳市太赫兹科技创新研究院 filed Critical 深圳市太赫兹科技创新研究院有限公司
Publication of WO2019161727A1 publication Critical patent/WO2019161727A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation

Definitions

  • the present invention relates to the field of laser technology, and in particular to a driving device for a semiconductor laser.
  • the terahertz generation system includes a photoconductive transmitting antenna, for example, an ultrafast laser can be used to excite a photoconductive transmitting antenna to generate a terahertz wave, and an ultrafast laser such as a femtosecond laser.
  • the laser used in the terahertz generation system is invisible. Therefore, in order to meet the requirements of the optical path in the terahertz generation system, it is necessary to use the laser generated by the semiconductor laser to debug the optical path of the terahertz generation system.
  • the controller is connected to the current monitoring module, and the controller determines whether the driving current meets the requirement according to the value of the driving current, and controls the working state of the semiconductor laser according to the determination result.
  • the controller is further configured to control opening and closing of the driving module and a magnitude of an output current of the driving module; wherein, when the semiconductor laser needs to be powered on, the controller is used to Controlling an output current of the driving module to gradually increase from zero to a first current value, and placing the semiconductor laser in a non-conducting state; when an output current of the driving module is increased to the first current value, The controller is further configured to place the semiconductor laser in an on state, and simultaneously control an output current of the driving module to be increased from a first current value to a second current value; an output current of the driving module is increased to When the second current value is described, the controller is configured to control the driving module to output a constant current; when the semiconductor laser needs to be turned off, the controller is configured to control an output current of the driving module by the second current value Decreasing to the first current value and placing the semiconductor laser in an on state; output current in the driving module is reduced to the first current Value, said controller further for said semiconductor laser is placed in the closed state, and simultaneously controlling said driving
  • the driving module further includes a protection unit and a driving unit; the protection unit is connected between the controller and the driving unit; the protection unit is configured to protect the driving unit; The controller is also used to control the closing and opening of the drive unit.
  • the controller first turns off the semiconductor laser and then controls the driving unit to turn off when the driving current does not meet the standard.
  • the driving device further includes:
  • a temperature collecting module configured to collect a temperature of the semiconductor laser
  • a temperature adjustment module for adjusting a temperature of the semiconductor laser
  • the controller is respectively connected to the temperature collecting module and the temperature adjusting module, and the controller controls the working of the temperature adjusting module according to the temperature value collected by the temperature collecting module to make the temperature of the semiconductor laser Within the preset temperature range.
  • FIG. 1 is a block diagram showing the structure of a driving device of a semiconductor laser of a first embodiment
  • Figure 2 is a block diagram showing the structure of a driving device of the second embodiment
  • FIG. 3 is a circuit diagram of the driving device of the embodiment shown in Figure 2;
  • Figure 4 is a block diagram showing the structure of a driving device of a third embodiment
  • Fig. 1 is a block diagram showing the configuration of a driving device of a semiconductor laser of a first embodiment.
  • the driving device 100 includes a driving module 110, a current monitoring module 120, and a controller 130.
  • the driving module 110 is connected to the semiconductor laser 500, and the driving module 110 supplies a driving current to the semiconductor laser 500.
  • the current monitoring module 120 is configured to monitor the drive current in real time and output the value of the drive current.
  • the current monitoring module 120 can indirectly measure the input current of the semiconductor laser 500, such as by measuring the current value of a resistor in series with the semiconductor laser 500.
  • the current monitoring module 120 feeds back the value of the drive current to the controller 130.
  • the controller 130 is coupled to the current monitoring module 120 and receives the value of the drive current.
  • the controller 130 determines whether the driving current meets the requirements based on the value of the driving current, and controls the operating state of the semiconductor laser 500 in accordance with the determination result. For example, a preset drive current range can be set in the controller 130.
  • the controller 130 can determine whether the drive current meets the requirements as long as the value of the drive current and the preset drive current range are compared. If the drive current meets the requirements, the drive module 110 operates normally, and the controller 130 controls the operation of the semiconductor laser 500 (so that the semiconductor laser 500 is turned on). If the drive current does not meet the requirements, the drive module 110 does not operate normally, and the controller 130 controls the semiconductor laser 500 to turn off.
  • Fig. 2 is a block diagram showing the structure of a driving device of the second embodiment.
  • Fig. 3 is a circuit diagram of the driving device of the embodiment shown in Fig. 2.
  • the driving device 200 includes a driving module, a current monitoring module 220, and a controller 230.
  • the settings of the driving module, the current monitoring module 220, and the controller 230 can be referred to the embodiment shown in FIG. 1.
  • the drive device 200 also includes a control switch 240 and a protection switch 250.
  • the protection switch 250 is connected in parallel with the semiconductor laser 500.
  • the protection switch 250 is turned on when the semiconductor laser 500 is turned off to prevent the semiconductor laser 500 from being damaged by static electricity, and the protection switch 250 is turned off when the semiconductor laser 500 is turned on. Therefore, the protection switch 250 can prevent the semiconductor laser 500 from being protected from static electricity during transportation, effectively protecting the semiconductor laser 500.
  • the protection switch 250 can adopt a single-pole double-throw relay, and the normally-closed circuit of the single-pole double-throw relay is connected in parallel at both ends of the semiconductor laser 500, so that the semiconductor laser 500 can be short-circuited.
  • the control switch 240 is connected between the protection switch 250 and the controller 230 for controlling the opening or closing of the protection switch 250.
  • the control switch 240 can be a triode.
  • the single pole double throw relay is turned off, and the semiconductor laser 500 is turned on (turned on).
  • the single-pole double-throw relay is turned on.
  • the normally closed circuit of the single-pole double-throw relay operates normally, and the semiconductor laser 500 is turned off (not turned on). Therefore, the controller 230 can control the opening and closing of the semiconductor laser diode as long as the operation state of the triode is controlled, and the control is convenient and safe.
  • the drive device 200 also includes a digital to analog converter 260.
  • Digital to analog converter 260 is coupled between controller 230 and the drive module.
  • the digital to analog converter 260 is configured to convert the control voltage signal output by the controller 230 from a digital signal to an analog signal so that the drive module can recognize.
  • the drive device 200 also includes an analog to digital converter 270.
  • the analog to digital converter 270 is coupled between the current monitoring module 220 and the controller 230.
  • the analog to digital converter 270 is operative to convert the monitoring signal output by the current monitoring module 220 into a digital signal for easy identification by the controller 230.
  • the drive module includes a guard unit 211 and a drive unit 212.
  • the guard unit 211 is connected between the controller 230 and the drive unit 212.
  • the protection unit 211 is used to protect the drive unit 212.
  • the guard unit 211 includes a voltage limiting circuit 211A, a filter circuit 211B, and a buffer circuit 211C.
  • the voltage limiting circuit 211A, the filter circuit 211B, and the buffer circuit 211C are sequentially disposed on the circuits of the digital to analog converter 260 to the driving unit 212.
  • the voltage limiting circuit 211A is for limiting the voltage of the driving unit 212.
  • the voltage limiting circuit 211A includes a first resistor (not shown in FIGS. 2 and 3) and a voltage dividing resistor (not shown in FIGS. 2 and 3).
  • the input of the first resistor is coupled to the output of the digital to analog converter 260, and the output of the first resistor is coupled to the input of the filter unit.
  • One end of the voltage dividing resistor is grounded, and the other end is connected to the output end of the first resistor.
  • the voltage divider resistor can divide the voltage control signal output by the controller 230 by two-thirds to limit the voltage in the circuit. Protect the circuit within a certain range.
  • Filter circuit 211B is used to filter out interference and/or reduce surges.
  • the filter circuit 211B includes a second resistor and a capacitor.
  • the input end of the second resistor is connected to the output end of the first resistor, and the output end of the second resistor is connected to the buffer circuit 211C.
  • One end of the capacitor is grounded, and the other end is connected to the output of the second resistor.
  • the resistance of the second resistor is 33 K ⁇ , and the capacitance value is 1 uF.
  • the second resistor and capacitor form a low pass filter that filters out the noise introduced in the circuit and the presence of interference to pre-empt noise and interference that may be introduced into the drive current.
  • the filter circuit 211B can also slow the change edge of the drive current, and reduce the damage caused by transients and the like to damage the semiconductor laser 500.
  • the buffer circuit 211C includes a first operational amplifier.
  • the first operational amplifier includes a first input and a second input and a first output. The first input is coupled to the second resistor output. The first output end is connected to the input end of the driving unit 212, and the first output end is connected to the second input end, that is, the first output end feeds back the output voltage signal to the first output end.
  • the first operational amplifier constitutes a buffer.
  • the buffer circuit 211C isolates the controller 230 and the drive unit 212 from the drive unit 212 from interference.
  • the drive unit 212 includes a power amplifier 212A and a feedback circuit 212B.
  • the power amplifier 212A includes a third input terminal and a fourth input terminal and a second output terminal, and the third input terminal is coupled to the first output terminal of the first operational amplifier.
  • the second output terminal is coupled to the semiconductor laser 500, and the power amplifier 212A outputs a current through the second output terminal and transmits the output current to the semiconductor laser 500.
  • the second output and the fourth input are connected by a feedback circuit 212B, and the second output feeds the output current back to the fourth input of the power amplifier 212A through the feedback circuit 212B.
  • the driving unit 212 further includes a current limiting device 212C for limiting the output current of the driving unit 212 within a preset current range.
  • the current limiting device 212C may be a fifth resistor having one end connected to the second output of the power amplifier 212A and the other end being grounded.
  • the fifth resistor limits the output current of the power amplifier 212A to a preset current range such that the semiconductor laser 500 operates at a safe drive current.
  • the output current of the power amplifier 212A is 5A, which far exceeds the demand of the semiconductor laser 500, which limits the output current of the power amplifier 212A. Therefore, the design sets the resistance of the fifth resistor to 57K ⁇ , and limits the current of the power amplifier to within 200mA, so that the semiconductor laser 500 operates safely.
  • Power amplifier 212A is also provided with an enable switch (not shown in Figures 2 and 3) and an overtemperature protection pin (not shown in Figures 2 and 3).
  • the controller 230 is connected to the enable switch and the overheat protection pin, respectively.
  • the controller 230 controls the turning on and off of the power amplifier 212A by an enable switch.
  • controller 230 protects power amplifier 212A via an overtemperature protection pin.
  • the enable switch and the overheat protection pin are connected together to simplify the circuit.
  • the current monitoring module 220 includes a first current monitoring unit 221 and a second current monitoring unit 222.
  • the first current monitoring unit 221 is configured to monitor the driving current of the semiconductor laser 500 in real time and feed back the value of the driving current to the controller 230.
  • the second current monitoring unit 222 is configured to monitor the output current of the driving module in real time and feed back the value of the output current to the controller 230. That is, the first current monitoring unit 221 and the second current monitoring unit 222 monitor the output current and the drive current, respectively. In order to make the monitoring of the drive current accurate.
  • the first current monitoring unit 221 includes a current monitoring amplifier.
  • the two input terminals of the current monitoring amplifier are respectively connected to both ends of the fourth resistor, so that the value of the driving current input to the semiconductor laser 500 can be conveniently monitored.
  • the output of the current monitoring amplifier is coupled to controller 230 via analog to digital converter 270, i.e., the value of the drive current monitored by the current monitoring amplifier is transmitted to controller 230 via analog to digital converter 270.
  • the second current monitoring unit 222 includes a second operational amplifier, one input of which is coupled to the output of the power amplifier 212A.
  • the output of the second operational amplifier is coupled to controller 230 via analog to digital converter 270. That is, the output of the second operational amplifier transmits the value of the output current of the drive unit 212 to the controller 230 through the analog to digital converter 270.
  • the output of the second operational amplifier also feeds back the value of the output current of the drive unit 212 to the other input of the second operational amplifier.
  • the second operational amplifier completes monitoring of the output current of the drive unit 212.
  • the controller 230 determines whether the difference between the output current and the drive current meets a preset criterion.
  • the controller 230 determines that the driving current meets the requirements when the difference meets the preset standard, and controls the semiconductor laser 500 to be turned on.
  • the controller 230 determines that the drive current does not meet the requirements, and controls the semiconductor laser 500 to be turned off, and controls the power amplifier 212A to turn off.
  • the default standard is 5 mA.
  • the difference between the value of the output current and the value of the driving current is less than or equal to a preset standard, it indicates that the driving module operates in accordance with the standard, and the semiconductor laser 500 can operate normally. On the contrary, it indicates that the driving module does not work in accordance with the standard, and if the semiconductor laser 500 continues to work, it may be unsafe or even damaged.
  • the controller 230 outputs a control voltage signal and outputs the control voltage signal to the driving module, and the driving module converts the control voltage signal into a driving current of the semiconductor laser 500.
  • the controller 230 is also used to control the opening and closing of the driving module and the magnitude of the output current.
  • the controller 230 determines that the drive current does not conform to the standard, the semiconductor laser 500 is turned off, and the drive module is also turned off. After the driving module is adjusted so that the driving current conforms to the standard, the semiconductor laser 500 and the driving module can be separately turned on.
  • the controller 230 determines that the driving current does not meet the standard, the semiconductor laser 500 is turned off first, and then the driving unit 212 is turned off. In this way, it is possible to avoid the drive current being turned off first, and the semiconductor laser 500 is damaged by sudden power failure. Therefore, the semiconductor laser 500 can be effectively protected.
  • the control process of the controller 230 for the driving module and the semiconductor laser 500 is as follows:
  • the controller 230 controls the driving module to output a constant current.
  • the controller 230 is configured to control the output current of the driving module to be reduced from the second current value to the first current value, and place the semiconductor laser 500 in an on state; the output current of the driving module is reduced.
  • the controller 230 is also used to place the semiconductor laser 500 in the off state and simultaneously control the output current of the drive module to decrease from the first current value to zero. That is, in this process, the controller 230 first controls the output current of the driving module to be reduced from the second current value to the first current value, while the controller 230 controls the semiconductor laser 500 to remain turned on. Next, the controller 230 controls the semiconductor laser 500 to be turned off while controlling the output current of the driving module to be reduced from the first current value to zero.
  • the output current of the driving module is first reduced from the second current value to the first current value, and then decreased to zero. That is, the output current of the driving module is slowly reduced to zero by the second current value. This avoids interference in the circuit during sudden jumps in current, resulting in excessive drive current output and surge problems, thereby avoiding damage to the semiconductor laser 500. Therefore, such a control process can protect the semiconductor laser 500 and extend the life of the semiconductor laser 500.
  • the second current value is greater than the first current value, and the first current value is greater than zero.
  • the first current value and the second current value may be set according to actual requirements of the semiconductor laser 500.
  • FIG. 4 is a structural block diagram of a driving device of a third embodiment
  • FIG. 5 is a circuit diagram of a temperature collecting module and a temperature adjusting module in the embodiment shown in FIG.
  • the driving device 300 includes a driving module (not shown in FIGS. 4 and 5), a current monitoring module (not shown in FIG. 4 and FIG. 5), and a controller 300.
  • the settings of the driving module, the current monitoring module, and the controller 300 can be referred to the drawing. 1 embodiment shown.
  • the driving device 300 further includes a temperature collecting module 380 and a temperature adjusting module 390.
  • the temperature acquisition module 380 is coupled to the controller 300 for collecting the temperature of the semiconductor laser.
  • the temperature acquisition module 380 includes a temperature acquisition device 381 and a processing circuit 382 for detecting the temperature of the semiconductor laser (not shown in FIGS. 4 and 5) and outputting a detection signal.
  • the temperature acquisition device 381 includes a temperature sensor.
  • the temperature sensor is disposed in the vicinity of the semiconductor laser for monitoring the temperature at which the semiconductor laser operates.
  • the temperature sensor can be two or more. Different temperature sensors can be located at different orientations of the semiconductor laser to detect temperatures in different orientations of the semiconductor laser.
  • the processing circuit 382 is coupled to the temperature acquisition device 381 and the controller 300, respectively, and the processing circuit 382 is configured to convert the detection signal into a temperature signal and transmit the temperature signal to the controller 300.
  • the temperature adjustment module 390 is coupled to the controller 300 for regulating the temperature of the semiconductor laser.
  • the operation of the temperature adjustment module 390 is controlled by the controller 300 based on the temperature values collected by the temperature acquisition module 380 such that the temperature of the semiconductor laser is within a predetermined temperature range.
  • the temperature adjustment module 390 includes a temperature adjustment unit 391 that controls the temperature adjustment unit 391 to cool when the temperature of the semiconductor laser is higher than the upper limit of the preset temperature range to cool the semiconductor laser.
  • the temperature adjustment unit 391 can employ a Peltier.
  • the controller 300 controls the temperature adjustment unit 391 to heat when the temperature of the semiconductor laser is lower than the lower limit of the preset temperature range to raise the temperature of the semiconductor laser.
  • the preset temperature range is, for example, 10° to 25°. In this way, it is ensured that the semiconductor laser always operates within a preset temperature range, so that the semiconductor laser works stably and prolongs the life of the semiconductor laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种半导体激光器的驱动装置,包括:驱动模块(110),与半导体激光器(500)连接,驱动模块为半导体激光器提供驱动电流;电流监测模块(120),用于实时监测驱动电流并输出驱动电流的值;控制器(130),与电流监测模块连接,控制器根据驱动电流的值判断驱动电流是否符合要求,并依据判断结果控制半导体激光器的工作状态。驱动装置,可以避免驱动驱动电流在不符合要求时,半导体激光器依然工作的情况,确保半导体激光器始终是在驱动电流符合要求时工作。即半导体激光器始终工作在稳定的驱动电流下,避免半导体激光器在不稳定的驱动电流下受到损坏,从而有效保护半导体激光器。

Description

半导体激光器的驱动装置 技术领域
本发明涉及激光技术领域,特别涉及一种半导体激光器的驱动装置。
背景技术
半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。半导体激光器是最实用最重要的一类激光器。由于这些优点,半导体激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。
半导体激光器还可以应用于太赫兹发生系统中,以测试太赫兹发生系统的光路。具体地,太赫兹发生系统包括光电导发射天线,比如可以利用超快激光激发光电导发射天线以产生太赫兹波,超快激光比如飞秒激光器产生的激光。而一般情况下,太赫兹发生系统所用到的激光为不可见光,因此,为了太赫兹发生系统中的光路符合要求,需要预先使用半导体激光器产生的激光来调试太赫兹发生系统的光路。通过半导体激光器产生的激光使得光路可视化,方便工作人员调试光路,确保光路符合要求。半导体激光器由电流激励,因此,半导体激光器需要设置专门的驱动电路给以驱动电流激励。然而,驱动电路往往不能稳定地驱动半导体激光器工作,导致半导体激光器极易损坏。
发明内容
基于此,有必要针对驱动电路往往不能稳定地驱动半导体激光器工作,导致半导体激光器极易损坏的问题,提供一种半导体激光器的驱动装置。
一种半导体激光器的驱动装置,所述驱动装置包括:
驱动模块,与所述半导体激光器连接,所述驱动模块为所述半导体激光器提供驱动电流;
电流监测模块,用于实时监测所述驱动电流并输出驱动电流的值;
控制器,与所述电流监测模块连接,所述控制器根据所述驱动电流的值判断驱动电流是否符合要求,并依据判断结果控制所述半导体激光器的工作状态。
上述半导体激光器的驱动装置,用电流监测模块实时监测半导体激光器的驱动电流,电流监测模块将驱动电流的值反馈至控制器。控制器根据驱动电流的值判断驱动电流是否符合要求,并依据判断结果控制半导体激光器的工作。这样,可以避免驱动驱动电流在不符合要求时,半导体激光器依然工作的情况,确保半导体激光器始终是在驱动电流符合要求时工作。即半导体激光器始终工作在稳定的驱动电流下,避免半导体激光器在不稳定的驱动电流下受到损坏,从而有效保护半导体激光器。
在其中一个实施例中,所述电流监测模块包括第一电流监测单元和第二电流监测单元;所述第一电流监测单元用于实时监测所述半导体激光器的驱动电流,并将所述驱动电流的值反馈至所述控制器;所述第二电流监测单元用于实时监测所述驱动模块的输出电流,并将所述输出电流的值反馈至所述控制器;其中,所述控制器用于判断所述输出电流与所述驱动电流之间的差值是否符合预设标准;若所述差值符合所述预设标准,所述控制器还用于判定所述驱动电流符合要求,并控制所述半导体激光器导通。
在其中一个实施例中,所述控制器还用于控制所述驱动模块的开启、关闭及该驱动模块输出电流的大小;其中,在所述半导体激光器需要上电启动时,所述控制器用于控制所述驱动模块的输出电流由零逐渐增加至第一电流值,并将所述半导体激光器置于不导通状态;在所述驱动模块的输出电流增加至所述第一电流值时,所述控制器还用于将所述半导体激光器置于导通状态,并同时控制所述驱动模块的输出电流由第一电流值增加至第二电流值;在所述驱动模块的输出电流增加至所述第二电流值时,所述控制器用于控制所述驱动模块输出恒定电流;在所述半导体激光器需要关闭时,所述控制器用于控制所述驱动模块的输出电流由所述第二电流值减小至所述第一电流值,并将所述半导体激光器置于导通状态;在所述驱动模块的输出电流减小至所述第一电流值时,所述控制器还用于将所述半导体激光器置于关闭状态,并同时控制所述驱动模块 的输出电流由第一电流值减小至零。
在其中一个实施例中,所述驱动模块还包括防护单元和驱动单元;所述防护单元连接于所述控制器和所述驱动单元之间;所述防护单元用于保护所述驱动单元;所述控制器还用于控制所述驱动单元的关闭和开启。
在其中一个实施例中,在所述驱动电流不符合标准时,所述控制器先关闭所述半导体激光器,再控制所述驱动单元关闭。
在其中一个实施例中,所述驱动单元还包括电流限制器件,用于将所述驱动单元的输出电流限制在预设电流范围内。
在其中一个实施例中,所述防护单元包括限压电路、滤波电路和缓冲电路;其中,所述限压电路用于限制所述驱动单元的电压;所述滤波电路用于滤除干扰和/或减少浪涌;所述缓冲电路用于隔离所述控制器和所述驱动单元。
在其中一个实施例中,驱动装置还包括控制开关和保护开关;所述保护开关与所述半导体激光器并联,所述保护开关在所述半导体激光器关闭时打开,以避免所述半导体激光器受到静电损坏,所述保护开关在所述半导体激光器开启时关闭;所述控制开关连接于所述保护开关和所述控制器之间,所述控制开关用于控制所述保护开关的打开或关闭。
在其中一个实施例中,驱动装置还包括:
温度采集模块,用于采集所述半导体激光器的温度;
温度调节模块,用于调节所述半导体激光器的温度;
所述控制器与所述温度采集模块和所述温度调节模块分别连接,所述控制器根据所述温度采集模块采集的温度值控制所述温度调节模块的工作,以使所述半导体激光器的温度在预设温度范围内。
在其中一个实施例中,所述温度采集模块包括温度采集设备和处理电路,所述温度采集设备用于探测所述半导体激光器的温度,并输出探测信号;所述处理电路与所述半导体激光器和所述控制器分别连接,所述处理电路用于将所述探测信号转变为温度信号,并将所述温度信号传输至所述控制器。
附图说明
图1为第一实施例的半导体激光器的驱动装置的结构框图;
图2为第二实施例的驱动装置的结构框图;
图3为图2所示的实施例的驱动装置的电路示意图;
图4为第三实施例的驱动装置的结构框图;
图5为图4所示实施例中的温度采集模块和温度调节模块的电路示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
图1为第一实施例的半导体激光器的驱动装置的结构框图。一种半导体激光器500的驱动装置100,用于驱动半导体激光器500工作。驱动装置100包括驱动模块110、电流监测模块120和控制器130。
驱动模块110与半导体激光器500连接,驱动模块110为半导体激光器500提供驱动电流。
电流监测模块120用于实时监测驱动电流并输出驱动电流的值。电流监测模块120可以间接测量半导体激光器500的输入电流,比如通过测量与半导体激光器500串联的电阻器的电流值来监测。电流监测模块120将驱动电流的值反馈给控制器130。
控制器130与电流监测模块120连接,并接收驱动电流的值。控制器130根据驱动电流的值判断驱动电流是否符合要求,并依据判断结果控制半导体激光器500的工作状态。例如,控制器130内可以设置预设驱动电流范围。控制器130只要比较驱动电流的值和预设驱动电流范围,则可以判断驱动电流是否符合要求。如果驱动电流符合要求,则驱动模块110工作正常,控制器130控制半导体激光器500工作(使得半导体激光器500呈开启状态)。如果驱动电流不符合要求,则驱动模块110工作不正常,控制器130控制半导体激光器500关闭。
上述半导体激光器500的驱动装置100,用电流监测模块120实时监测半导体激光器500的驱动电流,电流监测模块120将驱动电流的值反馈至控制器130。 控制器130根据驱动电流的值判断驱动电流是否符合要求,并依据判断结果控制半导体激光器500的工作。这样,可以避免驱动驱动电流在不符合要求时,半导体激光器500依然工作的情况,确保半导体激光器500始终是在驱动电流符合要求时工作。即半导体激光器500始终工作在稳定的驱动电流下,避免半导体激光器500在不稳定的驱动电流下受到损坏,从而有效保护半导体激光器500。
图2为第二实施例的驱动装置的结构框图。图3为图2所示的实施例的驱动装置的电路示意图。如图2和图3所示,驱动装置200包括驱动模块、电流监测模块220和控制器230,驱动模块、电流监测模块220和控制器230的设置可参照图1所示的实施例。
驱动装置200还包括控制开关240和保护开关250。保护开关250与半导体激光器500并联,保护开关250在半导体激光器500关闭时打开,以避免半导体激光器500受到静电损坏,保护开关250在半导体激光器500开启时关闭。因此,保护开关250可以避免半导体激光器500在运输时免受静电损坏,有效保护半导体激光器500。本实施例中,保护开关250可以采用单刀双掷继电器,单刀双掷继电器的常闭电路并联在半导体激光器500的两端,可以短路半导体激光器500。
控制开关240连接于保护开关250和控制器230之间,控制开关240用于控制保护开关250的打开或关闭。本实施例中,控制开关240可以采用三极管。三极管导通时,单刀双掷继电器断开,半导体激光器500打开(导通)。三极管不导通时,单刀双掷继电器开启,这时,单刀双掷继电器的常闭电路正常工作,半导体激光器500关闭(不导通)。因此,控制器230只要控制三极管的工作状态即可控制半导体激光二极管的开启与关闭,控制方便且安全。
驱动装置200还包括数模转换器260。数模转换器260连接于控制器230和驱动模块之间。数模转换器260用于将控制器230输出的控制电压信号由数字信号转换成模拟信号,以便驱动模块可以识别。
驱动装置200还包括模数转换器270。模数转换器270连接于电流监测模块220和控制器230之间,模数转换器270用于将电流监测模块220输出的监测信 号转换为数字信号,以便控制器230容易识别。
驱动模块包括防护单元211和驱动单元212。防护单元211连接于控制器230和驱动单元212之间。防护单元211用于保护驱动单元212。具体地,防护单元211包括限压电路211A、滤波电路211B和缓冲电路211C。本实施例中,限压电路211A、滤波电路211B和缓冲电路211C依次设置于数模转换器260至驱动单元212的电路上。
限压电路211A用于限制驱动单元212的电压。限压电路211A包括第一电阻(图2和图3未示出)和分压电阻(图2和图3未示出)。第一电阻的输入端与数模转换器260的输出端连接,第一电阻的输出端与滤波单元的输入端连接。分压电阻的一端接地,另一端与第一电阻的输出端连接。例如,第一电阻的阻值为5KΩ,分压电阻的阻值为10KΩ,那么分压电阻可以对控制器230输出的电压控制信号进行三分之二的分压,以将电路中的电压限制在一定范围内,保护电路。
滤波电路211B用于滤除干扰和/或减少浪涌。滤波电路211B包括第二电阻和电容。第二电阻的输入端与第一电阻的输出端连接,第二电阻的输出端与缓冲电路211C连接。电容的一端接地,另一端与第二电阻的输出端连接。本实施例中,第二电阻的阻值为33KΩ,电容值为1uF。这样,第二电阻和电容组成低通滤波器,滤除电路中引入的噪声和存在的干扰,以预先消除可能引入驱动电流中的噪声和干扰。滤波电路211B还可将驱动电流的变化边缘变缓,减少瞬变带来的浪涌等干扰损坏半导体激光器500。
缓冲电路211C包括第一运算放大器。第一运算放大器包括第一输入端和第二输入端及第一输出端。第一输入端与第二电阻输出端连接。第一输出端与驱动单元212的输入端连接,且第一输出端与第二输入端连接,即第一输出端将输出的电压信号反馈至第一输出端。第一运算放大器构成缓冲器。这样,缓冲电路211C隔离控制器230和驱动单元212,使得驱动单元212免受干扰。
驱动单元212包括功率放大器212A和反馈电路212B。功率放大器212A包括第三输入端和第四输入端及第二输出端,第三输入端与第一运算放大器的第一输出端连接。第二输出端与半导体激光器500连接,功率放大器212A通过第 二输出端输出电流,并将输出电流传输给半导体激光器500。第二输出端与第四输入端通过反馈电路212B连接,第二输出端将输出电流通过反馈电路212B反馈回功率放大器212A的第四输入端。
驱动单元212还包括第三电阻(图2和图3未示出)。反馈电路212B包括并联的电容和电阻。第三电阻一端与反馈电路212B的输出端连接,另一端接地。功率放大器212A与反馈电路212B及第三电阻一起组成恒流源,即驱动单元212的输出电流为恒定电流,可以确保激光半导体激光器500能够稳定工作。本实施例中,功率放大器212A的第二输出端通过第四电阻(图2和图3未示出)与半导体激光器500连接。半导体激光器500的驱动电流为半导体激光器500输入端的输入电流。
驱动单元212还包括电流限制器件212C,电流限制单元用于将驱动单元212的输出电流限制在预设电流范围内。电流限制器件212C可以是第五电阻,第五电阻一端连接功率放大器212A的第二输出端,另一端接地。第五电阻将功率放大器212A的输出电流限制在预设电流范围内,以使得半导体激光器500工作在安全的驱动电流下。例如,功率放大器212A的输出电流达5A,远远满足半导体激光器500的需求,第五电阻限制功率放大器212A的输出电流。因此,本设计设置第五电阻的阻值57KΩ,将功放的电流限制在200mA以内,以使得半导体激光器500安全工作。
功率放大器212A还设置有使能开关(图2和图3未示出)和过热保护引脚(图2和图3未示出)。控制器230与使能开关和过热保护引脚分别连接。控制器230通过使能开关控制功率放大器212A的开启与关闭。同理,控制器230通过过热保护引脚保护功率放大器212A。本实施例中,使能开关和过热保护引脚连接在一起,简化电路。
本实施例中,电流监测模块220包括第一电流监测单元221和第二电流监测单元222。第一电流监测单元221用于实时监测半导体激光器500的驱动电流,并将驱动电流的值反馈至控制器230。第二电流监测单元222用于实时监测驱动模块的输出电流,并将输出电流的值反馈至控制器230。即第一电流监测单元221和第二电流监测单元222分别监测输出电流和驱动电流。以使得驱动电流的 监测准确。
第一电流监测单元221包括电流监测放大器。电流监测放大器的两输入端分别连接在第四电阻的两端,这样可以方便地监测输入至半导体激光器500的驱动电流的值。电流监测放大器的输出端通过模数转换器270与控制器230连接,即电流监测放大器监测到的驱动电流的值通过模数转换器270传输给控制器230。
第二电流监测单元222包括第二运算放大器,第二运算放大器的一个输入端与功率放大器212A的输出端连接。第二运算放大器的输出端通过模数转换器270与控制器230连接。即第二运算放大器的输出端通过模数转换器270将驱动单元212的输出电流的值传输给控制器230。第二运算放大器的输出端还将驱动单元212的输出电流的值反馈给第二运算放大器的另一个输入端。第二运算放大器完成驱动单元212的输出电流的监测。
由控制器230判断输出电流和驱动电流的差值是否符合预设标准。控制器230在差值符合预设标准时,判定驱动电流符合要求,并控制半导体激光器500导通。控制器230在差值不符合预设标准时,判定驱动电流不符合要求,并控制半导体激光器500关闭,控制功率放大器212A关闭。例如,预设标准为5mA。在输出电流的值和驱动电流的值的差值小于或等于预设标准时,说明驱动模块工作符合标准,半导体激光器500可以正常工作。反之,则说明驱动模块工作不符合标准,半导体激光器500如果继续工作,会不安全,甚至会损坏。
控制器230输出控制电压信号,并将控制电压信号输出至驱动模块,由驱动模块将控制电压信号转变为半导体激光器500的驱动电流。控制器230还用于控制驱动模块的开启、关闭及其输出电流的大小。控制器230在判定驱动电流不符合标准时,要关闭半导体激光器500,也要关闭驱动模块。待将驱动模块调整之后,使得驱动电流符合标准时,可以再分别打开半导体激光器500和驱动模块。本实施例中,控制器230判定驱动电流不符合标准时,先关闭半导体激光器500,再控制驱动单元212关闭。这样,可以避免先关驱动电流,半导体激光器500遭受突然断电的损坏。因此,可以有效保护半导体激光器500。
在半导体激光器500开启与关闭(即开始工作与结束工作)时,控制器230 对驱动模块和半导体激光器500的控制过程如下:
在半导体激光器500需要上电启动时,控制器230先控制驱动模块的输出电流由零增加至第一电流值,并将半导体激光器500置于不导通状态,即同时控制器230控制半导体激光器500保持不导通。其次,在驱动模块的输出电流增加至第一电流值时,控制器230还用于将半导体激光器500置于导通状态,并同时控制驱动模块的输出电流由第一电流值增加至第二电流值。控制器230控制半导体激光器500导通,同时控制驱动模块的输出电流由第一电流值增加至第二电流值。然后,在驱动模块的输出电流增加至第二电流值时,控制器230控制驱动模块输出恒定电流。这样,在驱动装置200启动时,可以避免电路中在电流由0开始跳变的过程中引起的干扰,导致过大的驱动电流输出及浪涌问题,从而避免损坏半导体激光器500。因此,这样的控制过程可以保护半导体激光器500,延长半导体激光器500的使用寿命。
在半导体激光器500需要关闭时,控制器230用于控制驱动模块的输出电流由第二电流值减小至第一电流值,并将半导体激光器500置于导通状态;在驱动模块的输出电流减小至第一电流值时,控制器230还用于将半导体激光器500置于关闭状态,并同时控制驱动模块的输出电流由第一电流值减小至零。即这个过程中,控制器230先控制驱动模块的输出电流由第二电流值减小至第一电流值,同时控制器230控制半导体激光器500保持导通。其次,控制器230控制半导体激光器500关闭,同时控制驱动模块的输出电流由第一电流值减小至0。这样,在半导体激光器500关闭时,驱动模块的输出电流由第二电流值先减小至第一电流值,再减小至0。即驱动模块的输出电流由第二电流值缓慢减小至0。这样可以避免电路中在电流的突然跳变的过程中引起的干扰,导致过大的驱动电流输出及浪涌问题,从而避免损坏半导体激光器500。因此,这样的控制过程可以保护半导体激光器500,延长半导体激光器500的使用寿命。
需要说明的是,第二电流值大于第一电流值,第一电流值大于零。上述第一电流值和第二电流值可以依据半导体激光器500的实际需求设置。
图4为第三实施例的驱动装置的结构框图;图5为图4所示实施例中的温度采集模块和温度调节模块的电路示意图。驱动装置300包括驱动模块(图4 和图5未示出)、电流监测模块(图4和图5未示出)和控制器300,驱动模块、电流监测模块和控制器300的设置可参照图1所示的实施例。
如图4和图5所示,驱动装置300还包括温度采集模块380和温度调节模块390。温度采集模块380与控制器300连接,温度采集模块380用于采集半导体激光器的温度。
温度采集模块380包括温度采集设备381和处理电路382,温度采集设备381用于探测半导体激光器(图4和图5未示出)的温度,并输出探测信号。温度采集设备381包括温度传感器。温度传感器设置于半导体激光器的附近,用于监测半导体激光器工作时的温度。温度传感器可以是两个或多个。不同的温度传感器可以位于半导体激光器的不同方位,以探测半导体激光器的不同方位的温度。处理电路382与温度采集设备381和控制器300分别连接,处理电路382用于将探测信号转变为温度信号,并将温度信号传输至控制器300。
温度调节模块390与控制器300连接,温度调节模块390用于调节半导体激光器的温度。由控制器300根据温度采集模块380采集的温度值控制温度调节模块390的工作,以使半导体激光器的温度在预设温度范围内。温度调节模块390包括温度调节单元391,控制器300在半导体激光器的温度高于预设温度范围的上限时,控制温度调节单元391制冷,以使半导体激光器降温。温度调节单元391可以采用帕尔贴。控制器300在半导体激光器的温度低于预设温度范围的下限时,控制温度调节单元391加热,以使半导体激光器升温。预设温度范围比如10°到25°。这样,可以确保半导体激光器始终工作在预设温度范围内,使得半导体激光器稳定工作,延长半导体激光器的寿命。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权 利要求为准。

Claims (11)

  1. 一种半导体激光器的驱动装置,其特征在于,所述驱动装置包括:
    驱动模块,与所述半导体激光器连接,所述驱动模块为所述半导体激光器提供驱动电流;
    电流监测模块,用于实时监测所述驱动电流并输出驱动电流的值;
    控制器,与所述电流监测模块连接,所述控制器根据所述驱动电流的值判断驱动电流是否符合要求,并依据判断结果控制所述半导体激光器的工作状态。
  2. 根据权利要求1所述的驱动装置,其特征在于,所述电流监测模块包括第一电流监测单元和第二电流监测单元;
    所述第一电流监测单元用于实时监测所述半导体激光器的驱动电流,并将所述驱动电流的值反馈至所述控制器;
    所述第二电流监测单元用于实时监测所述驱动模块的输出电流,并将所述输出电流的值反馈至所述控制器;
    其中,所述控制器用于判断所述输出电流与所述驱动电流之间的差值是否符合预设标准;若所述差值符合所述预设标准,所述控制器还用于判定所述驱动电流符合要求,并控制所述半导体激光器导通。
  3. 根据权利要求1所述的驱动装置,其特征在于,所述控制器还用于控制所述驱动模块的开启、关闭及该驱动模块输出电流的大小;
    其中,在所述半导体激光器需要上电启动时,所述控制器用于控制所述驱动模块的输出电流由零逐渐增加至第一电流值,并将所述半导体激光器置于不导通状态;在所述驱动模块的输出电流增加至所述第一电流值时,所述控制器还用于将所述半导体激光器置于导通状态,并同时控制所述驱动模块的输出电流由第一电流值增加至第二电流值;在所述驱动模块的输出电流增加至所述第二电流值时,所述控制器用于控制所述驱动模块输出恒定电流;
    在所述半导体激光器需要关闭时,所述控制器用于控制所述驱动模块的输出电流由所述第二电流值减小至所述第一电流值,并将所述半导体激光器置于导通状态;在所述驱动模块的输出电流减小至所述第一电流值时,所述控制器还用于将所述半导体激光器置于关闭状态,并同时控制所述驱动模块的输出电 流由第一电流值减小至零。
  4. 根据权利要求3所述的驱动装置,其特征在于,所述驱动模块还包括防护单元和驱动单元;
    所述防护单元连接于所述控制器和所述驱动单元之间;所述防护单元用于保护所述驱动单元;所述控制器还用于控制所述驱动单元的关闭和开启。
  5. 根据权利要求4所述的驱动装置,其特征在于,在所述驱动电流不符合标准时,所述控制器先关闭所述半导体激光器,再控制所述驱动单元关闭。
  6. 根据权利要求4所述的驱动装置,其特征在于,所述驱动单元还包括:
    电流限制器件,用于将所述驱动单元的输出电流限制在预设电流范围内。
  7. 根据权利要求4所述的驱动装置,其特征在于,所述防护单元包括限压电路、滤波电路和缓冲电路;其中,所述限压电路用于限制所述驱动单元的电压;所述滤波电路用于滤除干扰和/或减少浪涌;所述缓冲电路用于隔离所述控制器和所述驱动单元。
  8. 根据权利要求1所述的驱动装置,其特征在于,还包括控制开关和保护开关;所述保护开关与所述半导体激光器并联,所述保护开关在所述半导体激光器关闭时打开,以避免所述半导体激光器受到静电损坏,所述保护开关在所述半导体激光器开启时关闭;所述控制开关连接于所述保护开关和所述控制器之间,所述控制开关用于控制所述保护开关的打开或关闭。
  9. 根据权利要求1所述的驱动装置,其特征在于,还包括:
    温度采集模块,用于采集所述半导体激光器的温度;
    温度调节模块,用于调节所述半导体激光器的温度;
    所述控制器与所述温度采集模块和所述温度调节模块分别连接,所述控制器根据所述温度采集模块采集的温度值控制所述温度调节模块的工作,以使所述半导体激光器的温度在预设温度范围内。
  10. 根据权利要求9所述的驱动装置,其特征在于,所述温度采集模块包括温度采集设备和处理电路,所述温度采集设备用于探测所述半导体激光器的温度,并输出探测信号;所述处理电路与所述半导体激光器和所述控制器分别连接,所述处理电路用于将所述探测信号转变为温度信号,并将所述温度信号 传输至所述控制器。
  11. 根据权利要求9所述的驱动装置,其特征在于,所述温度调节模块包括加热单元和制冷单元,所述控制器在所述半导体激光器的温度高于所述预设温度范围的上限时,控制所述制冷单元制冷,以使所述半导体激光器降温;所述控制器在所述半导体激光器的温度低于所述预设温度范围的下限时,控制所述加热单元加热,以使所述半导体激光器升温。
PCT/CN2019/073342 2018-02-26 2019-01-28 半导体激光器的驱动装置 WO2019161727A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810162542.7A CN108390253B (zh) 2018-02-26 2018-02-26 半导体激光器的驱动装置
CN201810162542.7 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019161727A1 true WO2019161727A1 (zh) 2019-08-29

Family

ID=63069922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073342 WO2019161727A1 (zh) 2018-02-26 2019-01-28 半导体激光器的驱动装置

Country Status (2)

Country Link
CN (1) CN108390253B (zh)
WO (1) WO2019161727A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098046A (zh) * 2020-09-21 2020-12-18 深圳市星汉激光科技有限公司 一种半导体激光器的检测系统及检测方法
CN113959492A (zh) * 2021-10-22 2022-01-21 济南森峰激光科技股份有限公司 一种自适应阈值的光路保护监控系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390253B (zh) * 2018-02-26 2020-10-13 深圳市太赫兹科技创新研究院有限公司 半导体激光器的驱动装置
CN109616867A (zh) * 2019-01-16 2019-04-12 吉林工程技术师范学院 一种具有温度补偿的激光驱动电路和激光驱动方法
CN111781790B (zh) * 2019-04-04 2022-12-23 中强光电股份有限公司 电子装置与激光单元保护方法
CN111585157B (zh) * 2020-05-22 2022-11-08 江苏师范大学 用于中红外超快激光器的数控驱动电源
CN114636989B (zh) * 2020-12-16 2023-02-24 上海禾赛科技有限公司 激光雷达的发射端电路及检测其驱动电流的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436756A (zh) * 2008-11-20 2009-05-20 武汉凌云光电科技有限责任公司 大功率半导体激光器电源驱动装置
CN102064467A (zh) * 2010-12-13 2011-05-18 赵智亮 连续可调节小功率半导体激光器驱动源装置
CN102306903A (zh) * 2011-08-24 2012-01-04 苏州生物医学工程技术研究所 一种数字式大功率半导体激光电源
CN104396102A (zh) * 2012-08-02 2015-03-04 宝马股份公司 用于操控激光二极管的控制设备
CN108390253A (zh) * 2018-02-26 2018-08-10 深圳市太赫兹科技创新研究院有限公司 半导体激光器的驱动装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795727A (zh) * 2014-01-16 2015-07-22 中能激光显示技术(上海)有限公司 一种大功率半导体激光器的驱动系统及其驱动方法
CN206272063U (zh) * 2016-12-20 2017-06-20 华南师范大学 半导体激光器恒流驱动系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436756A (zh) * 2008-11-20 2009-05-20 武汉凌云光电科技有限责任公司 大功率半导体激光器电源驱动装置
CN102064467A (zh) * 2010-12-13 2011-05-18 赵智亮 连续可调节小功率半导体激光器驱动源装置
CN102306903A (zh) * 2011-08-24 2012-01-04 苏州生物医学工程技术研究所 一种数字式大功率半导体激光电源
CN104396102A (zh) * 2012-08-02 2015-03-04 宝马股份公司 用于操控激光二极管的控制设备
CN108390253A (zh) * 2018-02-26 2018-08-10 深圳市太赫兹科技创新研究院有限公司 半导体激光器的驱动装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098046A (zh) * 2020-09-21 2020-12-18 深圳市星汉激光科技有限公司 一种半导体激光器的检测系统及检测方法
CN112098046B (zh) * 2020-09-21 2022-06-07 深圳市星汉激光科技股份有限公司 一种半导体激光器的检测系统及检测方法
CN113959492A (zh) * 2021-10-22 2022-01-21 济南森峰激光科技股份有限公司 一种自适应阈值的光路保护监控系统

Also Published As

Publication number Publication date
CN108390253A (zh) 2018-08-10
CN108390253B (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2019161727A1 (zh) 半导体激光器的驱动装置
KR101639488B1 (ko) 암 쇼트 방지를 위한 게이트 구동 회로 및 방법
JP7076430B2 (ja) ソリッドステート配線不良回路遮断器
US5977831A (en) Hybrid system for control and monitoring of an amplifier
US3020529A (en) Reflected power alarm for a variable power output antenna system
US20100214709A1 (en) Methods and systems relating to overcurrent circuit protection
US9018889B2 (en) Hardware-based, redundant overvoltage protection
EP3079259B1 (en) Low-power dissipation input circuit
US20160191000A1 (en) Protection device
US10256805B2 (en) Protective circuit with current regulating digital output module
US20050099163A1 (en) Temperature manager
US11569798B2 (en) Differential techniques for measuring voltage over a power switch
KR20190120527A (ko) 과전압 감지 시스템 및 방법
US11201480B2 (en) Device and method for preventing overcharging
JP5429439B2 (ja) 電流制限装置
US8891217B2 (en) Input/output interface circuit with overpower protection
EP3629039A1 (en) Solid state power switch device
US20150280422A1 (en) Fault protection of a voltage differential transformer (vdt) excitation circuit
CN105591694A (zh) 一种光模块
US2832947A (en) Control apparatus
KR20140143874A (ko) 션트 레귤레이터를 이용한 이상온도 검출 장치 및 이를 포함하는 배터리 시스템
AU2011265560B2 (en) Electrical fault detection
KR102059609B1 (ko) SCR(실리콘 정류소자)를 이용한 패일세이프(fail-safe) 방전 제어
KR101470256B1 (ko) 센서 그라운드와 센서 전원 출력 핀 간의 단락 검출 회로 및 시스템
CN104810785A (zh) 负载过流保护电路,电力采集设备及电力采集设备用试探性过流保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757864

Country of ref document: EP

Kind code of ref document: A1