WO2019161672A1 - 遥控器 - Google Patents
遥控器 Download PDFInfo
- Publication number
- WO2019161672A1 WO2019161672A1 PCT/CN2018/111728 CN2018111728W WO2019161672A1 WO 2019161672 A1 WO2019161672 A1 WO 2019161672A1 CN 2018111728 W CN2018111728 W CN 2018111728W WO 2019161672 A1 WO2019161672 A1 WO 2019161672A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- remote controller
- ground
- frequency band
- microstrip antenna
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/42—Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/29—Combinations of different interacting antenna units for giving a desired directional characteristic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0471—Non-planar, stepped or wedge-shaped patch
Definitions
- Embodiments of the present invention relate to the field of antenna technologies, and in particular, to a remote controller.
- the microstrip antenna has been widely used due to its compact structure, small size, light weight, low cost, and easy integration with microstrip lines.
- the microstrip antenna is an antenna formed by attaching a conductor patch to a dielectric substrate having a grounding plate, and is fed by a coaxial wire to excite an electromagnetic field between the conductor patch and the ground plate, and radiates outward through the slit.
- the existing dual-frequency antenna can only be disposed outside the remote controller, so that the appearance of the remote controller is not beautiful.
- Embodiments of the present invention provide a remote controller to solve the problem of space size.
- the embodiment of the present invention provides the following technical solutions:
- an embodiment of the present invention provides a remote controller, including:
- a first frequency band microstrip antenna a second frequency band microstrip antenna and a housing
- the first frequency band microstrip antenna and the second frequency band microstrip antenna are disposed in the housing; and the second frequency band microstrip antenna is a patch antenna conformed to the housing.
- the remote controller further includes a first internal ground and a second internal ground;
- the first frequency band microstrip antenna includes: at least one first sub-microstrip antenna; the first sub-microstrip antenna includes: a microstrip feed line, a ground return line, an antenna vibrator arm, and a first feed coaxial line; The antenna element arms are respectively connected to the first end of the microstrip feed line and the first end of the return ground line;
- the second end of the return ground line is connected to the first internal ground
- a feeding end of the first feeding coaxial line is connected to a second end of the microstrip feeding line, and a ground end of the first feeding coaxial line is connected to the first internal ground;
- the second frequency band microstrip antenna includes: at least one second sub-microstrip antenna; the second sub-microstrip antenna includes: a patch antenna body, an antenna back ground end, and a second feed coaxial line; a feeding end of the feeding coaxial line and a first end of the antenna returning ground end are connected to the patch antenna main body; a ground end of the second feeding coaxial line and a second end of the antenna returning ground end Connected to the second internal ground separately.
- the first frequency band microstrip antenna is located on an inner wall of the housing
- the patch antenna body is located on the inner wall, and the patch antenna body is located below the first band microstrip antenna.
- the patch antenna main body is connected to the second internal ground through the antenna back ground end and the second feed coaxial line, and the patch antenna main body and the The second internal ground is separated by a predetermined distance.
- the preset distance is 2.75 mm.
- a battery is disposed in the remote controller; the first inner portion is disposed on an inner wall of the housing;
- the second interior is disposed below the first interior ground and between the patch antenna body and the battery.
- At least one of the first sub-microstrip antennas is two symmetrically disposed first sub-microstrip antennas; at least one of the second sub-microstrip antennas is symmetrically disposed The second sub-microstrip antenna.
- the patch antenna body is a flexible circuit board conformal patch antenna body.
- the first sub-microstrip antenna is an inverted F antenna
- the second sub-microstrip antenna is a planar inverted-F antenna.
- the remote controller is further provided with a printed circuit board; the first inner ground is connected to the main board of the printed circuit board;
- the second interior is connected to the battery.
- the first frequency band microstrip antenna is a 900 MHz microstrip antenna
- the second frequency band microstrip antenna is a 2.4 GHz microstrip antenna.
- the present invention also provides a drone, the drone comprising a remote controller for use therewith, the remote controller being the remote controller described above.
- the remote controller provided by the present invention includes: a first frequency band microstrip antenna, a second frequency band microstrip antenna, and a casing; wherein the first frequency band microstrip antenna and the second frequency band microstrip antenna are disposed in the housing;
- the second frequency band microstrip antenna is a patch antenna conforming to the housing, and the first frequency band microstrip antenna and the second frequency band microstrip antenna are disposed inside the shell of the remote controller, and the second frequency band microstrip
- the antenna is conformal to the housing, thus saving the internal space of the remote controller and meeting the built-in space size requirement, thereby realizing the dual-frequency antenna built in the remote controller.
- FIG. 1 is a schematic structural view of an embodiment of a remote controller according to the present invention.
- FIG. 2 is a schematic structural view of another embodiment of a remote controller according to the present invention.
- FIG. 3 is a schematic structural view of still another embodiment of a remote controller according to the present invention.
- FIG. 4 is a schematic structural view of still another embodiment of a remote controller according to the present invention.
- FIG. 5 is a schematic structural diagram of still another embodiment of a remote controller according to the present invention.
- FIG. 6 is a schematic diagram 1 of a scattering parameter of a dual-frequency microstrip antenna according to an embodiment of a remote controller of the present invention
- FIG. 7 is a second schematic diagram of scattering parameters of a dual-frequency microstrip antenna according to an embodiment of the remote controller of the present invention.
- FIG. 8 is a 900M antenna pattern diagram of an embodiment of a remote controller according to the present invention.
- FIG. 9 is a 2.4 GHz antenna pattern diagram of an embodiment of a remote controller of the present invention.
- the first frequency band microstrip antenna 1.
- the second frequency band microstrip antenna 2.
- the antenna back to the ground.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
- the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; may be directly connected, or may be indirectly connected through an intermediate medium, may be the internal communication of two elements or the interaction of two elements, unless explicitly defined otherwise.
- the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
- the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
- the dual-frequency antenna of the present invention is disposed in a remote controller, and the remote controller can be applied to a remote control of an electronic device such as a drone.
- the UAV in the embodiment of the present invention can be applied to military and civil scenes, and the civil scene includes, for example, aerial photography, express transportation, disaster rescue, observation of wildlife, surveying, news reporting, power inspection and the like.
- FIG. 1 is a schematic structural view of an embodiment of a remote controller according to the present invention. As shown in FIG. 1, the remote controller of this embodiment may include:
- the first frequency band microstrip antenna 1 and the second frequency band microstrip antenna 2 are disposed in the housing 3 of the remote controller;
- the second band microstrip antenna 2 is a patch antenna that is conformal to the housing 3.
- the occupation of the internal space of the remote controller is saved.
- the remote controller further includes a first inner ground 201 and a second inner ground 202;
- the first frequency band microstrip antenna includes: at least one first sub-microstrip antenna, please refer to FIG. 2;
- the first sub-microstrip antenna includes: a microstrip feed line 301, a ground return line 302, an antenna vibrator arm 303, and a first a feed coaxial line (not shown);
- the antenna element arm 303 is respectively connected to the first end of the microstrip feed line 301 and the first end of the return ground line 302;
- the second end of the return ground line 302 is connected to the first inner ground 201;
- a feeding end of the first feeding coaxial line is connected to a second end of the microstrip feeding line 301, and a ground end of the first feeding coaxial line is connected to the first internal ground 201;
- the second frequency band microstrip antenna includes: at least one second sub-microstrip antenna, please refer to FIG. 2; the second sub-microstrip antenna includes: a patch antenna main body 403, an antenna back ground end 404, and a second feed An axis; a feeding end 401 of the second feeding coaxial line and a first end of the antenna returning end 404 are connected to the patch antenna main body 403; and a grounding of the second feeding coaxial line The end 402 and the second end of the antenna back ground end 404 are respectively coupled to the second inner ground 202.
- the first frequency band microstrip antenna may be disposed above the second frequency band microstrip antenna, and the first frequency band microstrip antenna and the second frequency band microstrip antenna are both located in the remote controller.
- the housing of the remote controller is divided into two parts, wherein the first portion 31 is located above the second portion 32, and the first band microstrip antenna may be disposed inside the first portion 31.
- the second portion 32 internally defines a recess for the battery of the remote control.
- a battery (not shown) is disposed in the remote controller; the first inner ground 201 is disposed on the inner wall of the housing;
- the second inner ground 202 is disposed below the first inner ground 201 and between the patch antenna body and the battery.
- a remote control unit is provided with a printed circuit board (PCB) (not shown); the first inner ground 201 is connected to the main board of the PCB;
- PCB printed circuit board
- the second internal ground 202 is connected to the battery.
- the motherboard of the PCB is connected to the battery.
- the PCB is disposed inside the first portion 31, and the battery is disposed inside the second portion 32.
- the first band microstrip antenna is attached to the inner wall of the housing of the remote controller.
- the first sub-microstrip antenna is an inverted-F antenna.
- the first sub-microstrip antenna includes: a microstrip feed line 301, a ground return line 302, an antenna vibrator arm 303, and a first feed coaxial line; the antenna vibrator arm 303 and the first end of the microstrip feed line 301 and the back The first end of the ground line 302 is connected; the second end of the ground return line 302 is connected to the first inner ground 201 of the remote controller; the feed end of the first feed coaxial line is connected to the second end of the microstrip feed line 301, The ground end of the first feed coaxial line is connected to the first inner ground 201.
- the microstrip feed line 301 and the return ground line 302 are disposed in parallel and perpendicular to the antenna element arm 303 to form an inverted F antenna structure.
- microstrip antenna is in the form of a monopole.
- antenna structures such as a monopole, a dipole, and a loop antenna may be adopted.
- the present invention is not limited thereto.
- the second sub-microstrip antenna is a planar inverted-F antenna.
- the second sub-microstrip antenna includes: a patch antenna body 403, an antenna return ground end 404, and a second feed coaxial line; a feed end 401 of the second feed coaxial line and an antenna return end 404 The first end is connected to the patch antenna body 403; the ground end 402 of the second feed coaxial line and the second end of the antenna back ground end 404 are respectively connected to the second inner ground 202 of the remote controller.
- the patch antenna main body 403 is attached to the inner wall of the casing of the remote controller.
- An antenna back ground end 404 is disposed between the patch antenna main body 403 and the second inner ground 202 of the remote controller for connecting the patch antenna main body 403 and the second inner ground 202.
- the feed end 401 of the second feed coaxial line is connected to the patch antenna body 403; the ground end 402 of the second feed coaxial line is connected to the second internal ground 202 of the remote controller.
- the patch antenna body is a Flexible Printed Circuit (FPC) conformal patch antenna body.
- FPC Flexible Printed Circuit
- the FPC is more flexible when placed and conforms to the inner wall of the housing.
- the first band microstrip antenna is a 900 MHz microstrip antenna
- the second frequency band microstrip antenna is a 2.4 GHz microstrip antenna.
- first frequency band microstrip antenna and the second channel microstrip antenna in the embodiment of the present invention can also work in two other different frequency bands.
- the outer casing of the remote controller is made of polycarbonate (Polycarbonate, PC for short).
- the shape of the patch antenna main body, the position of the second feeding coaxial line, and the antenna returning to the ground end are only an example, and the present invention is not limited thereto.
- the remote controller of the embodiment includes: a first frequency band microstrip antenna, a second frequency band microstrip antenna, and a housing;
- the first frequency band microstrip antenna and the second frequency band microstrip antenna are disposed in the housing; the second frequency band microstrip antenna is a patch antenna conformed to the housing, and the dual frequency antenna includes
- the two-band microstrip antennas are respectively disposed in the casing of the remote controller, and since the second-band microstrip antenna is conformal to the casing, the space occupied by the remote controller is saved, and the built-in space size requirement can be met.
- the ground return end of the antenna is connected to the internal ground, the influence of environmental interference generated inside the remote controller is small, thereby realizing the dual-frequency antenna built in the remote controller.
- the first frequency band microstrip antenna 1 is located on the inner wall of the housing;
- the patch antenna main body 403 is located on the inner wall and is located below the first band microstrip antenna 1.
- the first band microstrip antenna 1 and the second channel microstrip antenna 2 of the embodiment of the present invention may be disposed in front of the casing of the remote controller.
- the first band microstrip antenna 1 is attached to the inner wall of the casing of the remote controller, and the patch antenna body 403 of the second band microstrip antenna 2 is also attached to the casing of the remote controller. On the inner wall, and below the microstrip antenna in the first band.
- the patch antenna body of the second frequency band microstrip antenna is located below the microstrip antenna of the first frequency band, so that the first frequency band microstrip antenna plays a guiding role, so that the first frequency band microstrip antenna
- the pattern is improved. Since the microstrip antennas of the two frequency bands are disposed in the housing of the front end of the remote controller, the pattern of the first frequency band microstrip antenna can be concentratedly radiated directly in front of the remote controller and below the remote controller.
- the patch antenna main body 403 is connected to the second internal ground 202 through the antenna return ground end 404 and the second feed coaxial line. And the patch antenna main body 403 and the second inner ground 202 are spaced apart by a predetermined distance.
- the second feeding coaxial line may be disposed at a lower end edge of the patch antenna main body 403, and the ground end of the second feeding coaxial line is connected to the second inner ground 202.
- the antenna back ground end 404 may be disposed at an upper portion of the patch antenna main body 403 and connected to the second inner ground 202.
- the antenna back ground end 404 can be cylindrical such that there is a predetermined distance between the patch antenna body 403 and the second inner ground 202.
- the second internal ground 202 is located between the patch antenna main body 403 and the battery of the remote controller, and the second internal ground 202 is connected to the battery of the remote controller.
- the preset distance is small.
- the preset distance can be 2.75 mm.
- the first inner ground 201 corresponds to the first portion 31 of the housing and the second inner ground 202 corresponds to the second portion 32 of the housing.
- the patch antenna main body is connected to the second internal ground through the antenna back ground end and the second feed coaxial line, and the patch antenna main body and the second inner ground are separated by a predetermined distance, in the remote control.
- the interior of the housing of the device implements a second frequency band microstrip antenna in a conformal manner in a plane that is closer to the metal body.
- the at least one first sub-microstrip antenna is two symmetrically disposed first sub-microstrip antennas; at least one of the second sub-microstrip antennas is two symmetrically disposed second sub-elements Microstrip antenna.
- the number of the first sub-microstrip antennas may be two, and the two first sub-microstrip antennas are symmetrically disposed in the casing of the remote controller, so that the performance of the antenna is relatively stable.
- the number of the second sub-microstrip antennas may be two, and the two second sub-microstrip antennas are symmetrically disposed in the casing of the remote controller, so that the performance of the antenna is relatively stable.
- the Scattering parameters are shown in FIG. 6 and FIG. 7.
- the antenna can work at 900 MHz-930 MHz (S11 ⁇ -8 dB).
- 2.4GHz-2.5GHz S11 ⁇ -10dB
- the bandwidth is 30MHz and 100MHz, respectively, to meet the coverage of the commonly used 900MHz and 2.45GHz bands.
- Fig. 8 and Fig. 9 The direction of the antenna is shown in Fig. 8 and Fig. 9.
- line 1 is the direction of the E plane
- line 2 is the direction of the H plane
- line 3 of Fig. 9 is the plane of the E plane
- line 4 is H. Plane pattern. It can be seen from FIG. 8 and FIG. 9 that the antenna is substantially in front of the front and the front side of the maximum radiation defense line at 900 MHz and 2.45 GHz, which conforms to the usage habit of the UAV remote controller and satisfies the use requirements of the UAV remote controller. .
- the embodiment of the present invention further provides a UAV, the UAV includes a remote controller for use with the same, and the remote controller can use the remote controller described in the foregoing embodiment, including: a first frequency band microstrip antenna, a two-band microstrip antenna and a housing;
- first frequency band microstrip antenna and the second frequency band microstrip antenna are disposed in the housing;
- the second frequency band microstrip antenna is a patch antenna that is conformal to the housing.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Support Of Aerials (AREA)
Abstract
本发明提供一种遥控器。该遥控器,包括:第一频段微带天线、第二频段微带天线和壳体;其中,所述第一频段微带天线和第二频段微带天线设置在所述壳体内;所述第二频段微带天线为与所述壳体共形的贴片天线。本发明提供的遥控器由于第一频段微带天线和第二频段微带天线设置在遥控器的壳体内部,且第二频段微带天线与壳体共形,因此节省了对遥控器内部空间的占用,能够满足内置的空间尺寸要求,从而实现了遥控器内置的双频天线。
Description
申请要求于2018年2月24日申请的、申请号为201810157643.5、申请名称为“遥控器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明实施例涉及天线技术领域,尤其涉及一种遥控器。
随着无线通信的飞速发展,各种数据业务的需求,天线设计主要朝着小型化、多频段及宽频带发展。微带天线由于具有结构紧凑、体积小、重量轻、成本低、易于与微带线路集成等优点,得到越来越广泛的应用。微带天线是在带有接地板的介质基板上贴导体贴片所构成的天线,利用同轴线馈电,使导体贴片和接地板间激励起电磁场,利用缝隙向外辐射。
由于遥控器的内部空间较小,且具有金属屏蔽阻挡影响,因此,现有的双频天线只能设置在遥控器的外部,使得遥控器的外观不美观。
因此,对于本领域技术人员来说,亟需实现一种设置在遥控器内部可以解决空间尺寸问题的双频天线。
发明内容
本发明实施例提供一种遥控器,以解决空间尺寸问题。
为了解决上述技术问题,本发明实施例提供了以下技术方案:
第一方面,本发明实施例提供一种遥控器,包括:
第一频段微带天线、第二频段微带天线和壳体;
其中,所述第一频段微带天线和第二频段微带天线设置在所述壳体内;所述第二频段微带天线为与所述壳体共形的贴片天线。
在一种可能的实现方式中,所述遥控器还包括第一内部地和第二内部地;
所述第一频段微带天线包括:至少一个第一子微带天线;所述第一子微带天线,包括:微带馈线、回地线、天线振子臂以及第一馈电同轴线;所述天线振子臂分别与所述微带馈线的第一端和所述回地线的第一端连接;
所述回地线的第二端与所述第一内部地连接;
所述第一馈电同轴线的馈电端与所述微带馈线的第二端连接,所述第一馈电同轴线的接地端与所述第一内部地连接;
第二频段微带天线包括:至少一个第二子微带天线;所述第二子微带天线,包括:贴片天线主体、天线回地端以及第二馈电同轴线;所述第二馈电同轴线的馈电端和所述天线回地端的第一端与所述贴片天线主体连接;所述第二馈电同轴线的接地端和所述天线回地端的第二端分别与所述第二内部地连接。
在一种可能的实现方式中,所述第一频段微带天线位于所述壳体的内壁上;
所述贴片天线主体位于所述内壁上,且所述贴片天线主体位于所述第一频段微带天线的下方。
在一种可能的实现方式中,所述贴片天线主体通过所述天线回地端以及所述第二馈电同轴线与所述第二内部地连接,且所述贴片天线主体与所述第二内部地之间间隔一预设距离。
在一种可能的实现方式中,所述预设距离为2.75mm。
在一种可能的实现方式中,所述遥控器内设有电池;所述第一内部地围设在所述壳体的内壁上;
所述第二内部地设置在所述第一内部地的下方,且位于所述贴片天线主体和所述电池之间。
在一种可能的实现方式中,至少一个所述第一子微带天线为两个对称设置的所述第一子微带天线;至少一个所述第二子微带天线为两个对称设置的所述第二子微带天线。
在一种可能的实现方式中,所述贴片天线主体为柔性电路板共形贴片天线主体。
在一种可能的实现方式中,所述第一子微带天线为倒F天线;
所述第二子微带天线为平面倒F天线。
在一种可能的实现方式中,所述遥控器内还设有印制电路板;所述第一内部地与所述印制电路板的主板地连接;
所述第二内部地与所述电池连接。
在一种可能的实现方式中,所述第一频段微带天线为900MHz微带天线;
所述第二频段微带天线为2.4GHz微带天线。
本发明还提供一种无人机,所述无人机包括与其配套使用的遥控器,所述遥控器为上述的遥控器。
本发明提供的遥控器,包括:第一频段微带天线、第二频段微带天线和壳体;其中,所述第一频段微带天线和第二频段微带天线设置在所述壳体内;所述第二频段微带天线为与所述壳体共形的贴片天线,由于第一频段微带天线和第二频段微带天线设置在遥控器的壳体内部,且第二频段微带天线与壳体共形,因此节省了对遥控器内部空间的占用,能够满足内置的空间尺寸要求,从而实现了遥控器内置的双频天线。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为本发明遥控器一实施例的结构示意图;
图2为本发明遥控器另一实施例的结构示意图;
图3为本发明遥控器又一实施例的结构示意图;
图4为本发明遥控器又一实施例的结构示意图;
图5为本发明遥控器又一实施例的结构示意图;
图6为本发明遥控器一实施例的双频微带天线散射参数示意图一;
图7为本发明遥控器一实施例的双频微带天线散射参数示意图二;
图8为本发明遥控器一实施例的900M天线方向图;
图9为本发明遥控器一实施例的2.4GHz天线方向图。
附图标记说明:
1、第一频段微带天线;
2、第二频段微带天线;
3、壳体;
31、第一部分;
32、第二部分;
201、第一内部地;
202、第二内部地;
301、微带馈线;
302、回地线;
303、天线振子臂;
401、第二馈电同轴线的馈电端;
402、第二馈电同轴线的接地端;
403、贴片天线主体;
404、天线回地端。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
以下结合附图对本发明的具体实施方式进行详细说明。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本发明的双频天线设置在遥控器中,遥控器可以应用于无人机等电子设备的遥控。本发明实施例中的无人机可以应用于军用以及民用场景中,民用场景例如包括航拍、快递运输、灾难救援、观察野生动物、测绘、新闻报道、电力巡检等应用场景中。
下面以具体的实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本发明遥控器一实施例的结构示意图。如图1所示,本实施例的遥控器,可以包括:
第一频段微带天线1、第二频段微带天线2和壳体3;
其中,所述第一频段微带天线1和第二频段微带天线2设置在遥控器的壳体3内;
所述第二频段微带天线2为与所述壳体3共形的贴片天线。
具体的,由于第二频段微带天线与壳体共形,因此节省了对遥控器内部空间的占用。
在一些实施方式中,如图4所示,遥控器还包括第一内部地201和第二内部地202;
第一频段微带天线包括:至少一个第一子微带天线,请结合图2;所述第一子微带天线,包括:微带馈线301、回地线302、天线振子臂303以及第一馈电同轴线(图未示出);所述天线振子臂303分别与所述微带馈线301的第一端和所述回地线302的第一端连接;
所述回地线302的第二端与所述第一内部地201连接;
所述第一馈电同轴线的馈电端与所述微带馈线301的第二端连接,所述第一馈电同轴线的接地端与所述第一内部地201连接;
第二频段微带天线包括:至少一个第二子微带天线,请结合图2;所述第二子微带天线,包括:贴片天线主体403、天线回地端404以及第二馈电同轴线;所述第二馈电同轴线的馈电端401和所述天线回地端404的第一端与所述贴片天线主体403连接;所述第二馈电同轴线的接地端402和所述天线回地端404的第二端分别与所述第二内部地202连接。
具体的,如图1、图2、图3所示,第一频段微带天线可以设置在第二频段微带天线的上方,第一频段微带天线和第二频段微带天线均位于遥控器的壳体内部。遥控器的壳体分为两个部分,其中第一部分31位于第二部分32的上方,第一频段微带天线可以设置在第一部分31的内部。第二部分32内部形成一凹槽,用于放置遥控器的电池。
在一些实施方式中,如图3-图5所示,遥控器内设有电池(图中未示出);第一内部地201围设在壳体的内壁上;
第二内部地202设置在第一内部地201的下方,且位于贴片天线主体和电池之间。
在一些实施方式中,遥控器内设有印制电路板(Printed Circuit Board,简称PCB)(图中未示出);第一内部地201与PCB的主板地连接;
第二内部地202与电池连接。
进一步,PCB的主板地与电池连接。
PCB设置在第一部分31的内部,电池设置在第二部分32的内部。
第一频段微带天线与遥控器的壳体的内壁贴合。
在一些实施方式中,如图1-图5所示,第一子微带天线为倒F天线。
其中,第一子微带天线,包括:微带馈线301、回地线302、天线振子臂303以及第一馈电同轴线;天线振子臂303分别与微带馈线301的第一端 和回地线302的第一端连接;回地线302的第二端与遥控器的第一内部地201连接;第一馈电同轴线的馈电端与微带馈线301的第二端连接,第一馈电同轴线的接地端与第一内部地201连接。
如图2所示,微带馈线301和回地线302平行设置,且与天线振子臂303垂直,形成倒F天线的结构。
需要说明的是,上述微带天线采用单极子形式,在其他实施方式中也可采取其他天线形式比如单极子、偶极子、环形天线等天线结构,本发明对此并不限定。
在一些实施方式中,如图1至图5所示,第二子微带天线为平面倒F天线。
其中,第二子微带天线,包括:贴片天线主体403、天线回地端404以及第二馈电同轴线;第二馈电同轴线的馈电端401和天线回地端404的第一端与贴片天线主体403连接;第二馈电同轴线的接地端402和天线回地端404的第二端分别与遥控器的第二内部地202连接。
具体的,贴片天线主体403与遥控器的壳体的内壁贴合。贴片天线主体403与遥控器的第二内部地202之间设置天线回地端404,用于连接贴片天线主体403与第二内部地202。
第二馈电同轴线的馈电端401与贴片天线主体403连接;第二馈电同轴线的接地端402遥控器的第二内部地202连接。
在一些实施方式中,所述贴片天线主体为柔性电路板(Flexible Printed Circuit,简称FPC)共形贴片天线主体。
FPC在贴装时更为灵活,可以与壳体的内壁共形。
在一些实施方式中,所述第一频段微带天线为900MHz微带天线;
所述第二频段微带天线为2.4GHz微带天线。
需要说明的是,本发明实施例中的第一频段微带天线和第二频道微带天线还可以工作在其他两个不同的频段。
在一些实施方式中,遥控器的外壳分的材质为聚碳酸酯(Polycarbonate,简称PC)。
需要说明的是,图1-图5中,贴片天线主体的形状、第二馈电同轴线和天线回地端的位置只是一种示例,本发明对此并不限定。
本实施例的遥控器,包括:第一频段微带天线、第二频段微带天线和壳体;
其中,所述第一频段微带天线和第二频段微带天线设置在所述壳体内;所述第二频段微带天线为与所述壳体共形的贴片天线,上述双频天线包括两个频段的微带天线,分别设置在遥控器的壳体内,而且由于第二频段微带天线与壳体共形,因此节省了对遥控器内部空间的占用,能够满足内置的空间尺寸要求,而且由于天线的回地端与内部地连接,使得遥控器内部产生的环境干扰的影响较小,从而实现了遥控器内置的双频天线。
在上述实施例的基础上,进一步,如图3所示,第一频段微带天线1位于壳体的内壁上;
贴片天线主体403位于内壁上,且位于第一频段微带天线1的下方。
在一些实施方式中,本发明实施例的第一频段微带天线1和第二频道微带天线2可以设置在遥控器的壳体内的前方。
具体的,如图3所示,第一频段微带天线1贴合在遥控器的壳体的内壁上,第二频段微带天线2的贴片天线主体403也贴合在遥控器的壳体的内壁上,而且位于第一频段微带天线的下方。
上述具体实施方式中,第二频段微带天线的贴片天线主体位于第一频段微带天线的下方,使得对第一频段微带天线起到了引向的作用,使得第一频段微带天线的方向图得到了改善,由于两个频段的微带天线设置在遥控器的前端的壳体内,使得第一频段微带天线的方向图能集中辐射于遥控器的正前方及其偏下方区域。
在上述实施例的基础上,在一些实施方式中,如图2、图4所示,贴片天线主体403通过天线回地端404以及第二馈电同轴线与第二内部地202连接,且贴片天线主体403与第二内部地202之间间隔一预设距离。
具体的,如图2所示,第二馈电同轴线可以设置在贴片天线主体403的下端边缘处,第二馈电同轴线的接地端与第二内部地202连接。
天线回地端404可以设置在贴片天线主体403的上部,与第二内部地202连接。
在一些实施方式中,天线回地端404可以为柱状,使得贴片天线主体403与第二内部地202之间有一预设距离。第二内部地202,位于贴片天线主体403和遥控器的电池之间,第二内部地202与遥控器的电池连接。
由于遥控器内的空间有限,因此该预设距离较小。示例性的,该预设距离可以为2.75mm。
其中,第一内部地201与壳体的第一部分31对应,第二内部地202与壳体的第二部分32对应。
上述具体实施方式中,贴片天线主体通过天线回地端以及第二馈电同轴线与第二内部地连接,且贴片天线主体与第二内部地之间间隔一预设距离,在遥控器的壳体内部通过共形的方式在离金属体较近的距离的平面内实现了第二频段微带天线。
在一些实施方式中,至少一个第一子微带天线为两个对称设置的所述第一子微带天线;至少一个所述第二子微带天线为两个对称设置的所述第二子微带天线。
具体的,如图1、图2所示,第一子微带天线的数量可以为两个,而且两个第一子微带天线对称设置在所述遥控器的壳体内,使得天线的性能较为稳定。
第二子微带天线的数量可以为两个,而且两个第二子微带天线对称设置在所述遥控器的壳体内,使得天线的性能较为稳定。
在一些实施方式中,微带天线散射参数(Scattering parameters,简称S参数)如图6、图7所示,由图6、图7可知,该天线可工作在900MHz-930MHz(S11<-8dB)及2.4GHz-2.5GHz(S11<-10dB),带宽分别为30MHz及100MHz,可满足常用的900MHz和2.45GHz频段的覆盖。
天线的方向图如图8、图9所示,图8中线条1为E平面的方向图,线条2为H平面的方向图;图9中线条3为E平面的方向图,线条4为H平面的方向图。由图8、图9可知,天线在900MHz和2.45GHz的最大辐射防线上基本上为正前方及正前方偏下方区域,符合无人机遥控器的使用习惯,满足无人机遥控器的使用需求。
本发明实施例还提供一种无人机,所述无人机包括与其配套使用的遥控器,该遥控器可以使用上述实施例中所述的遥控器,包括:第一频段微带天线、第二频段微带天线和壳体;
其中,所述第一频段微带天线和第二频段微带天线设置在所述壳体内;
所述第二频段微带天线为与所述壳体共形的贴片天线。
本实施例中的遥控器,其实现原理与技术效果与前述实施例类似,此处不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本发明旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求书指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求书来限制。
Claims (12)
- 一种遥控器,其特征在于,包括:第一频段微带天线、第二频段微带天线和壳体;其中,所述第一频段微带天线和第二频段微带天线设置在所述壳体内;所述第二频段微带天线为与所述壳体共形的贴片天线。
- 根据权利要求1所述的遥控器,其特征在于,所述遥控器还包括第一内部地和第二内部地;所述第一频段微带天线包括:至少一个第一子微带天线;所述第一子微带天线包括:微带馈线、回地线、天线振子臂以及第一馈电同轴线;所述天线振子臂分别与所述微带馈线的第一端和所述回地线的第一端连接;所述回地线的第二端与所述第一内部地连接;所述第一馈电同轴线的馈电端与所述微带馈线的第二端连接,所述第一馈电同轴线的接地端与所述第一内部地连接;第二频段微带天线包括:至少一个第二子微带天线;所述第二子微带天线包括:贴片天线主体、天线回地端以及第二馈电同轴线;所述第二馈电同轴线的馈电端和所述天线回地端的第一端与所述贴片天线主体连接;所述第二馈电同轴线的接地端和所述天线回地端的第二端分别与所述第二内部地连接。
- 根据权利要求2所述的遥控器,其特征在于,所述第一频段微带天线位于所述壳体的内壁上;所述贴片天线主体位于所述内壁上,且所述贴片天线主体位于所述第一频段微带天线的下方。
- 根据权利要求2或3所述的遥控器,其特征在于,所述贴片天线主体通过所述天线回地端以及所述第二馈电同轴线与所述第二内部地连接,且所述贴片天线主体与所述第二内部地之间间隔一预设距离。
- 根据权利要求4所述的遥控器,其特征在于,所述预设距离为2.75mm。
- 根据权利要求2或3所述的遥控器,其特征在于,所述遥控器内设有电池;所述第一内部地围设在所述壳体的内壁上;所述第二内部地设置在所述第一内部地的下方,且位于所述贴片天线主体和所述电池之间。
- 根据权利要求2或3所述的遥控器,其特征在于,至少一个所述第一子微带天线为两个对称设置的所述第一子微带天线;至少一个所述第二子微带天线为两个对称设置的所述第二子微带天线。
- 根据权利要求2或3所述的遥控器,其特征在于,所述贴片天线主体为柔性电路板共形贴片天线主体。
- 根据权利要求2或3所述的遥控器,其特征在于,所述第一子微带天线为倒F天线;所述第二子微带天线为平面倒F天线。
- 根据权利要求6所述的遥控器,其特征在于,所述遥控器内还设有印制电路板;所述第一内部地与所述印制电路板的主板地连接;所述第二内部地与所述电池连接。
- 根据权利要求1所述的遥控器,其特征在于,所述第一频段微带天线为900MHz微带天线;所述第二频段微带天线为2.4GHz微带天线。
- 一种无人机,所述无人机包括与其配套使用的遥控器,其特征在于,所述遥控器为权1~11任一项所述的遥控器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810157643.5A CN108172983B (zh) | 2018-02-24 | 2018-02-24 | 遥控器 |
CN201810157643.5 | 2018-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019161672A1 true WO2019161672A1 (zh) | 2019-08-29 |
Family
ID=62510556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/111728 WO2019161672A1 (zh) | 2018-02-24 | 2018-10-24 | 遥控器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108172983B (zh) |
WO (1) | WO2019161672A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108172983B (zh) * | 2018-02-24 | 2019-12-31 | 深圳市道通智能软件开发有限公司 | 遥控器 |
CN108767435B (zh) * | 2018-08-20 | 2024-02-27 | 深圳市道通智能航空技术股份有限公司 | 天线及无人飞行器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101552807A (zh) * | 2008-03-31 | 2009-10-07 | 英华达股份有限公司 | 具有电池装置的电子机构 |
CN102340056A (zh) * | 2010-07-19 | 2012-02-01 | 珀洛斯公司 | 多频带天线 |
CN106058423A (zh) * | 2015-04-08 | 2016-10-26 | 三星电机株式会社 | 天线装置 |
CN106602259A (zh) * | 2016-12-19 | 2017-04-26 | 环旭电子股份有限公司 | 天线模块及电子装置 |
CN108172983A (zh) * | 2018-02-24 | 2018-06-15 | 深圳市道通智能航空技术有限公司 | 遥控器 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208111672U (zh) * | 2018-02-24 | 2018-11-16 | 深圳市道通智能航空技术有限公司 | 遥控器 |
-
2018
- 2018-02-24 CN CN201810157643.5A patent/CN108172983B/zh active Active
- 2018-10-24 WO PCT/CN2018/111728 patent/WO2019161672A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101552807A (zh) * | 2008-03-31 | 2009-10-07 | 英华达股份有限公司 | 具有电池装置的电子机构 |
CN102340056A (zh) * | 2010-07-19 | 2012-02-01 | 珀洛斯公司 | 多频带天线 |
CN106058423A (zh) * | 2015-04-08 | 2016-10-26 | 三星电机株式会社 | 天线装置 |
CN106602259A (zh) * | 2016-12-19 | 2017-04-26 | 环旭电子股份有限公司 | 天线模块及电子装置 |
CN108172983A (zh) * | 2018-02-24 | 2018-06-15 | 深圳市道通智能航空技术有限公司 | 遥控器 |
Also Published As
Publication number | Publication date |
---|---|
CN108172983A (zh) | 2018-06-15 |
CN108172983B (zh) | 2019-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3855567B1 (en) | Coupled antenna device and electronic device | |
TWI514666B (zh) | 行動裝置 | |
TWI599095B (zh) | 天線結構及應用該天線結構的無線通訊裝置 | |
US7864116B2 (en) | Mounting structure of antenna device | |
US20150061952A1 (en) | Broadband Antenna | |
US11431093B2 (en) | Unmanned aerial vehicle built-in dual-band antenna and unmanned aerial vehicle | |
WO2019034085A1 (zh) | 金属屏蔽盖缝隙天线及电子设备 | |
EP2541678B1 (en) | Mobile communication antenna device and mobile communication terminal device | |
WO2021078199A1 (zh) | 双频天线以及无人飞行器 | |
CN108767436B (zh) | 天线及无人飞行器 | |
WO2019161672A1 (zh) | 遥控器 | |
EP3159963B1 (en) | Antenna and terminal | |
WO2023066217A1 (zh) | 天线装置与电子设备 | |
US12113292B2 (en) | Antenna device | |
CN208637583U (zh) | 天线及无人飞行器 | |
TWI573322B (zh) | 天線組件及具有該天線組件之無線通訊裝置 | |
CN208111672U (zh) | 遥控器 | |
US11223110B2 (en) | Unmanned aerial vehicle built-in antenna and unmanned aerial vehicle | |
CN108199140B (zh) | 遥控器 | |
CN207925670U (zh) | 无人机内置天线及无人机 | |
CN108767434B (zh) | 天线及无人飞行器 | |
TWM450086U (zh) | 多頻天線 | |
US8659481B2 (en) | Internal printed antenna | |
KR20210050279A (ko) | 모서리 안테나 | |
CN215989221U (zh) | 天线装置及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18906811 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18906811 Country of ref document: EP Kind code of ref document: A1 |