WO2019159981A1 - Cover glass, and in-cell liquid crystal display device - Google Patents

Cover glass, and in-cell liquid crystal display device Download PDF

Info

Publication number
WO2019159981A1
WO2019159981A1 PCT/JP2019/005142 JP2019005142W WO2019159981A1 WO 2019159981 A1 WO2019159981 A1 WO 2019159981A1 JP 2019005142 W JP2019005142 W JP 2019005142W WO 2019159981 A1 WO2019159981 A1 WO 2019159981A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
layer
less
cover glass
chemically strengthened
Prior art date
Application number
PCT/JP2019/005142
Other languages
French (fr)
Japanese (ja)
Inventor
小池 章夫
洋介 竹田
康成 齋藤
池田 徹
貴章 村上
真 府川
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN201980013211.XA priority Critical patent/CN111727177B/en
Publication of WO2019159981A1 publication Critical patent/WO2019159981A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the present invention relates to a cover glass and an in-cell type liquid crystal display device.
  • An electronic device having a liquid crystal display device such as a smartphone may be equipped with a touch function.
  • the touch function referred to here is a function for inputting information when an operator makes a finger touch or approach a cover glass provided on the surface of the display device.
  • an external type out-cell type
  • the external type can be used even if one of the liquid crystal display device and the touch panel is defective, the yield is excellent, but there is a problem that the thickness and weight increase. Therefore, an on-cell type liquid crystal display device in which a touch panel is sandwiched between a liquid crystal element of a liquid crystal display device and a polarizing plate has appeared. Further, an in-cell type liquid crystal display device in which an element having a touch function is embedded in a liquid crystal element has been developed as a thinner and lighter structure than the on-cell type.
  • the in-cell type liquid crystal display device (especially IPS liquid crystal display device) has a problem that when the cover glass is touched with a finger, the liquid crystal screen becomes partially cloudy due to charging.
  • the touch panel located closer to the operator than the liquid crystal element contributes to static elimination, while the in-cell type liquid crystal display device does not include the touch panel closer to the operator than the liquid crystal element. This is because the liquid crystal element is easily charged with static electricity.
  • a layer for improving impact resistance and antifouling properties may be formed on the surface of the cover glass. If these layers are easily charged, white turbidity is likely to occur.
  • Patent Document 1 a structure is proposed in which a conductive layer is provided on the operator side of the liquid crystal display device to prevent white turbidity by releasing static electricity.
  • Patent Document 1 has a problem that the thickness is increased by providing a conductive layer. There is also a problem that the number of steps for manufacturing the display device increases.
  • the present invention has been made in view of the above problems, and can prevent white turbidity without increasing the thickness and man-hours for manufacturing, and can provide a cover glass excellent in impact resistance, and an in-cell type liquid crystal display device (In particular, an object is to provide an IPS liquid crystal display device.
  • the cover glass of the present invention includes a chemically strengthened glass having a first main surface and a second main surface, and a fingerprint prevention treatment layer provided on the first main surface of the chemically strengthened glass,
  • the chemically strengthened glass has the largest number of moles of Li among all alkali metals contained in the tensile stress layer, the depth DOL of the compressive stress layer is 60 ⁇ m or more, and the triboelectric charge amount on the surface of the anti-fingerprint treatment layer is , JIS L1094: 2014, it is 0 kV or less and -1.5 kV or more according to D method.
  • the cover glass of the present invention has a triboelectric charge amount of 0 kV or less and ⁇ 1.5 kV or more on the surface of the anti-fingerprint treatment layer, it is difficult to be triboelectrically charged even if a user's finger touches the surface. When incorporated, it can prevent white turbidity caused by static electricity.
  • the cover glass of the present invention suppresses frictional electrification due to the physical properties of the cover glass, it is not necessary to provide a conductive layer, and white turbidity can be prevented without increasing the thickness and man-hour.
  • the chemically strengthened glass has the largest number of moles of Li among all alkali metals contained in the tensile stress layer.
  • the compressive stress layer can contain more K and Na having a larger ion radius than Li during chemical strengthening, and the surface compressive stress of the compressive stress layer can be increased.
  • the cover glass of the present invention since the chemically strengthened glass has a depth DOL of the compressive stress layer of 60 ⁇ m or more, when an impact is applied from the outside, deformation due to the impact is difficult to be transmitted to the tensile stress layer, Increases sex.
  • the chemically strengthened glass is composed of A mol%, Al 2 O 3 with a total concentration of Li 2 O, Na 2 O, and K 2 O among oxide components constituting the tensile stress layer.
  • concentration is B mol%, it is preferable that A is 14.5 or more and A ⁇ B is 120 or more.
  • the oxide components constituting the tensile stress layer when the total concentration of Li 2 O, Na 2 O, and K 2 O is C mass% and the concentration of Al 2 O 3 is D mass%, C is 11 or more and C ⁇ D is preferably 140 or more.
  • Li 2 O, Na 2 O, and K 2 O which do not contribute to the formation of the glass skeleton and have high mobility and are combined with static electricity to perform static elimination, contain a certain amount or more, so that the user's finger or the like touches the surface. Even so, it is less likely to be triboelectrically charged.
  • Li 2 O, Na 2 O, K 2 O enters between the skeletons formed of Al 2 O 3 to extend the distance. Therefore, Li 2 O, Na 2 O, and K 2 O are more easily moved, and even if the user's finger or the like comes into contact with the surface, it is less likely to be frictionally charged.
  • the chemically strengthened glass has a total concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 of 81 mol% among the oxide components constituting the tensile stress layer. It is preferable that: Alternatively, the tensile of the oxide components constituting the stress layer, SiO 2, Al 2 O 3 , B 2 O 3, P 2 O total concentration of 5 is preferably not less 82% by mass. In this case, the concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 , which is a component having a low mobility and a weak effect of removing static electricity due to static electricity, contributes to the formation of the glass skeleton. Since it is suppressed below a certain level, even if the user's finger or the like comes into contact with the surface, it is more difficult to be triboelectrically charged.
  • the cover glass of the present invention preferably includes at least one of an antiglare function layer or an antireflection layer provided between the chemically strengthened glass and the anti-fingerprint treatment layer.
  • an antiglare function layer it can scatter incident light and blur the reflection due to incident light.
  • the cover glass of the present invention includes an antireflection layer, reflection of incident light can be prevented and reflection due to incident light can be prevented.
  • the cover glass of the present invention preferably includes a light shielding layer provided on the second main surface.
  • the light shielding layer is provided on the second main surface, when the cover glass is incorporated in the display device, the wiring on the display device side is concealed or the illumination light of the backlight is concealed from the periphery of the display device. It is possible to prevent the illumination light from leaking.
  • the cover glass of the present invention includes a light shielding layer provided on the second main surface
  • the light shielding layer preferably has an opening, and the opening has an infrared transmittance higher than that of the light shielding layer.
  • a high infrared transmission layer is preferably provided.
  • the infrared sensor can be provided on the back side of the light shielding layer and the infrared transmission layer can be made inconspicuous when a cover glass is incorporated in a display device having an infrared sensor.
  • the chemically strengthened glass is preferably bent glass.
  • the chemically strengthened glass is bent glass, even if the counterpart member to which the cover glass is attached has a bent shape, there is no possibility that the mounting accuracy will be lowered.
  • the cover glass of the present invention comprises an anti-glare layer between the first main surface and the anti-fingerprint treatment layer, and the anti-glare layer has a surface roughness Ra of 0.01 ⁇ m to 0.5 ⁇ m. preferable. In this case, visibility can be ensured while preventing charging.
  • the in-cell type IPS liquid crystal display device of the present invention includes any one of the above cover glasses. According to the present invention, an in-cell IPS liquid crystal display device protected by a cover glass can be obtained.
  • FIG. 1 is a cross-sectional view of a cover glass according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a cover glass according to a modification.
  • FIG. 3 is a cross-sectional view of a cover glass according to a modification.
  • 4A is a perspective view of a cover glass according to a modified example, and
  • FIG. 4B is a cross-sectional view taken along the line BB of FIG. 4A.
  • FIG. 5 is a cross-sectional view of a cover glass according to a modification.
  • FIG. 6 is a partial cross-sectional view of a display device including a cover glass according to an embodiment of the present invention.
  • a cover glass 1 shown in FIG. 1 includes a chemically strengthened glass 2 and a fingerprint prevention treatment layer 81.
  • the chemically strengthened glass 2 has a rectangular shape in plan view and transmits visible light.
  • the chemically strengthened glass 2 includes a first main surface 21, a second main surface 22, and an end surface 23.
  • a chamfered portion 24 is provided on the end surface 23.
  • the chemically strengthened glass 2 includes compressive stress layers 25 and 32 and a tensile stress layer 27.
  • the compressive stress layers 25 and 32 are layers on which a compressive stress acts (a layer having a compressive stress of 0 MPa or more).
  • the compressive stress layer 25 is provided on the surface on the first main surface 21 side, and the compressive stress layer 32 is provided on the surface on the second main surface 22 side. Although the compressive stress layer is also provided on the end face 23, description thereof is omitted here.
  • the tensile stress layer 27 is a layer on which a tensile stress acts (a layer having a compressive stress of less than 0 MPa).
  • the tensile stress layer 27 is provided between the compressive stress layer 25 and the compressive stress layer 32.
  • the number of moles of Li is the largest. Due to the composition having the largest number of moles of Li, the compressive stress layers 25 and 32 can contain more K and Na having a larger ion radius than Li during chemical strengthening.
  • the number of moles of Li is more preferably 0.5 times or more, more preferably 0.8 or more, relative to the number of moles of Na.
  • the depth DOL (Depth of Layer) of the compressive stress layers 25 and 32 of the chemically strengthened glass 2 is 60 ⁇ m or more.
  • the DOL is more preferably 80 ⁇ m to 250 ⁇ m.
  • DOL theoretically means the depth from the surface to the position where the compressive stress is 0 MPa in the plate thickness direction, but the alkali in the depth direction of the glass by EPMA (electron probe micro analyzer, electron beam microanalyzer).
  • An ion concentration analysis (concentration analysis of ions diffused by chemical strengthening in this example) is performed, and the ion diffusion depth obtained by measurement can be regarded as DOL.
  • the DOL can also be measured using a surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho).
  • A is preferably 14.5 or more and A ⁇ B is 120 or more. More preferably, A is 15 to 20, and A ⁇ B is 170 to 300.
  • Li 2 O when expressing A by mass (when the total concentration of Li 2 O, Na 2 O, and K 2 O among oxide components constituting the tensile stress layer is C mass%), Li 2 O, Depending on the molar ratio of each component to the total of Na 2 O and K 2 O, C is preferably 11 or more, more preferably 12 to 20.
  • a ⁇ B is expressed by mass (among the oxide components constituting the tensile stress layer, the total concentration of Li 2 O, Na 2 O, K 2 O is C mass%, and the concentration of Al 2 O 3 is D If the weight percent represented by C ⁇ D) also, Li 2 O, Na 2 O , depending on the molar ratio of each component to the sum of K 2 O, C ⁇ D is preferably 140 or more, 150-400 Gayori preferable. The reason is as follows.
  • Components constituting glass can be broadly classified into components that contribute to glass skeleton formation (also referred to as network formers) and components that do not contribute to skeleton formation.
  • these from the viewpoint of preventing charging, it is preferable that there are many components that do not contribute to skeleton formation. This is because the component that does not contribute to the skeleton formation has higher mobility than the contributing component, and is considered to perform static elimination in combination with static electricity.
  • Li 2 O, Na 2 O, and K 2 O are components that do not contribute to skeleton formation in glass, the content of these components is preferably large, that is, the above-described A and C are preferably large. This is the basis for defining A.
  • Al 2 O 3 behaves as a component that contributes to skeleton formation and a component that does not contribute.
  • Al 2 O 3 contributes to skeleton formation it tends to be close to Li 2 O, Na 2 O, and K 2 O.
  • the triboelectric charge is a phenomenon that occurs on the surface of the compressive stress layer 25.
  • the reason for defining a preferred composition of the tensile stress layer 27 is as follows. Since it is the skeleton of the glass that affects the triboelectric charge, it is originally desirable to define the glass structure. However, since glass is amorphous and it may be difficult to specify the structure, it is preferable to define it by composition. On the other hand, since the compressive stress layer 25 is subjected to ion exchange by chemical strengthening, the composition is different from that of the tensile stress layer 27, but the network structure of glass is the same. If a glass having the same composition as the composition of the compressive stress layer 25 is manufactured without chemical strengthening, the network structure is different.
  • the structure of the compressive stress layer 25 is specified by the composition of the compressive stress layer 25. Therefore, by specifying the composition of the tensile stress layer 27, the structure of the tensile stress layer 27 is specified, and the structure of the tensile stress layer 27 and the compressive stress layer 25 does not change even when chemically strengthened.
  • the structure of the compressive stress layer 25 is specified from the composition of the stress layer 27.
  • the total concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 is preferably 81 mol% or less. This is because these elements are components that contribute to the formation of a glass skeleton, and the smaller the content, the more components that contribute to static elimination. In addition, the smaller the content of these components, the wider the distance between the components forming the skeleton, and the higher the mobility of the components that do not contribute to the skeleton formation.
  • the triboelectric charge is a phenomenon that occurs on the surface of the compressive stress layer 25, but the reason for defining the preferred composition of the tensile stress layer is the same as the reason for defining A and A ⁇ B.
  • the total amount is preferably 82% by mass or less, and more preferably 70% by mass to 81% by mass.
  • the composition of the tensile stress layer 27 is expressed in terms of mass percentage on the basis of oxide, and SiO 2 is 55% to 68%, Al 2 O 3 is 10% to 25%, and B 2 O 3 is 0%. ⁇ 5%, P 2 O 5 0% ⁇ 15%, Li 2 O 0% ⁇ 8%, Na 2 O 1% ⁇ 20%, K 2 O 0.1% ⁇ 10%, M gO 0% to 10%, CaO 0% to 5%, SrO 0% to 5%, BaO 0% to 5%, ZnO 0% to 5%, TiO 2 0% to 1%, ZrO 2 from 0% to 5%, and Fe 2 O 3 glass composition containing 0.005% to 0.1% is preferred.
  • the composition of the tensile stress layer 27 can be quantified by a known composition analysis method such as chemical analysis, spectrophotometric analysis, atomic absorption analysis, or fluorescent X-ray analysis.
  • the measurement position may be an arbitrary position of the tensile stress layer 27, but is preferably the center position in the thickness direction of the glass substrate and the center of gravity on the plane.
  • the content expressed in% means the content in terms of oxide based mass percentage.
  • SiO 2 is a component constituting the skeleton of glass.
  • SiO 2 is a component that increases chemical durability, and is a component that reduces the occurrence of cracks when a scratch (indentation) is made on the glass surface.
  • the SiO 2 content is preferably 55% or more, more preferably 56% or more, further preferably 56.5% or more, and particularly preferably 58% or more.
  • the SiO 2 content is preferably 68% or less, more preferably 65% or less, More preferably, it is 63% or less, Most preferably, it is 61% or less.
  • Al 2 O 3 is an effective component for improving the ion exchange performance during the chemical strengthening treatment and increasing the surface compressive stress CS after the chemical strengthening.
  • Al 2 O 3 has an effect of improving the fracture toughness value of glass.
  • Al 2 O 3 is a component that increases the Tg of the glass and is also a component that increases the Young's modulus.
  • Al 2 O 3 also has an effect of improving the mobility of elements that contribute to static elimination in glass.
  • the Al 2 O 3 content is preferably 10% or more, and more preferably 12% or more.
  • the Al 2 O 3 content is more preferably 14% or more.
  • the content of Al 2 O 3 is preferably 25 from the viewpoint of increasing the content of elements contributing to static elimination in the glass and maintaining the acid resistance of the glass and lowering the devitrification temperature. % Or less, more preferably 23% or less.
  • Al 2 O 3 is a constituent component of the lithium aluminosilicate crystal.
  • the content of Al 2 O 3 is preferably 22% or less, more preferably 20% or less, and even more preferably 19% or less.
  • B 2 O 3 is a component that improves the meltability of the glass.
  • B 2 O 3 is also a component that improves the chipping resistance of the glass.
  • B 2 O 3 is not essential, but the content in the case of inclusion is preferably 0.1% or more, more preferably 0.5% or more, and further preferably 1% or more in order to improve the meltability. is there.
  • the content of B 2 O 3 is preferably 5% or less from the viewpoint of improving the mobility of elements contributing to static elimination in glass and preventing the occurrence of striae during melting.
  • it is 4% or less, More preferably, it is 3% or less, Most preferably, it is 2.5% or less.
  • P 2 O 5 is a component that improves ion exchange performance and chipping resistance during chemical strengthening treatment.
  • P 2 O 5 is not essential, but the content in the case of inclusion is preferably 0.1% or more, more preferably 1% or more, and further preferably 2% or more.
  • the content of P 2 O 5 is preferably 15% or less, more preferably 10% or less, still more preferably 8% or less, and even more preferably 6% or less. Especially preferably, it is 4% or less.
  • Li 2 O is a component that forms a surface compressive stress layer by chemical strengthening treatment with a sodium salt such as sodium nitrate. Li 2 O is also a substance that contributes to static elimination in the glass.
  • the content of Li 2 O is preferably 0.1% or more in order to obtain the effect of inclusion, more preferably 1% or more, and further preferably 2% or more.
  • the Li 2 O content is preferably 8% or less.
  • the Li 2 O content is preferably 7% or less, and more preferably 6% or less.
  • Na 2 O is a component that forms a surface compressive stress layer in a chemical strengthening treatment using a potassium salt, and is a component that can improve the meltability of glass.
  • Na 2 O is also a substance that contributes to static elimination in the glass.
  • the content of Na 2 O is preferably 1% or more, more preferably 1.5% or more, and further preferably 2% or more.
  • the content of Na 2 O is preferably 20% or less, more preferably 16% or less, further preferably 14% or less, and particularly preferably 8% or less.
  • K 2 O is a substance that improves the meltability of glass.
  • K 2 O is also a substance that contributes to static elimination in the glass.
  • the content is preferably 0.1% or more, and more preferably 0.5% or more.
  • the content of K 2 O is preferably 8% or less, more preferably 5% or less, and even more preferably 3% or less.
  • MgO is not essential, but is preferably contained in order to increase the surface compressive stress CS of the chemically strengthened glass. MgO has the effect of improving the fracture toughness value. Therefore, the content of MgO is preferably 0.1% or more, more preferably 0.5% or more, and further preferably 2% or more. On the other hand, in order to suppress devitrification at the time of glass melting, the content of MgO is preferably 10% or less, more preferably 8% or less, and further preferably 6% or less.
  • CaO is not essential, but is a component that improves the meltability of the glass and may be contained.
  • the content when CaO is contained is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.15% or more.
  • the CaO content is preferably 3.5% or less, more preferably 2.0% or less, and even more preferably 1.5% or less.
  • SrO is not essential, but is a component that improves the meltability of the glass and may be contained.
  • the content is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.5% or more.
  • the content of SrO is preferably 5% or less, more preferably 3.5% or less, further preferably 2% or less, and substantially no content. Particularly preferred.
  • BaO is not essential, but is a component that improves the meltability of the glass, and may be contained.
  • the content when BaO is contained is preferably 0.1% or more, more preferably 0.5% or more, and further preferably 1% or more.
  • the content of BaO is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less, and still more preferably not contained. .
  • ZnO is a component that improves the meltability of the glass and may be contained. Content in the case of containing ZnO becomes like this. Preferably it is 0.05% or more, More preferably, it is 0.1% or more. On the other hand, if the ZnO content is 5% or less, the weather resistance of the glass can be increased, which is preferable. The content of ZnO is more preferably 3% or less, still more preferably 1% or less, and particularly preferably not contained.
  • TiO 2 is a component that suppresses the color tone change of the glass due to solarization, and may be contained.
  • the content in the case of containing TiO 2 is preferably 0.01% or more, more preferably 0.03% or more, still more preferably 0.05% or more, and particularly preferably 0.1% or more.
  • the content of TiO 2 is preferably 1% or less, more preferably 0.5% or less, and still more preferably 0.2% or less.
  • ZrO 2 is a component that increases the surface compressive stress CS due to ion exchange during the chemical strengthening treatment, and may be contained.
  • the content is preferably 0.1% or more, more preferably 0.5% or more, and further preferably 1% or more.
  • the content of ZrO 2 is preferably 5% or less, more preferably 3% or less, and particularly preferably 2.5%. It is as follows.
  • Fe 2 O 3 absorbs heat rays, it has an effect of improving the solubility of the glass, and it is preferably contained when the glass is mass-produced using a large melting furnace.
  • the content is preferably 0.005% or more, more preferably 0.006% or more, and still more preferably 0.007% or more.
  • the content of Fe 2 O 3 is preferably 0.1% or less, more preferably 0.05% or less, and still more preferably 0.8% in order to increase the transparency of the glass. It is 02% or less, particularly preferably 0.015% or less.
  • a chemically tempered glass 2 Y 2 O 3, La 2 O 3, Nb 2 O 5 may be contained.
  • the total content when these components are contained is preferably 0.01% or more, more preferably 0.05% or more, still more preferably 0.1% or more, and particularly preferably 0.15. % Or more, most preferably 1% or more.
  • the content of Y 2 O 3 , La 2 O 3 , and Nb 2 O 5 is too large, the glass tends to be devitrified at the time of melting, and the quality of the chemically strengthened glass may be lowered.
  • the total amount is preferably 7% or less.
  • the total content of Y 2 O 3 , La 2 O 3 , and Nb 2 O 5 is more preferably 6% or less, further preferably 5% or less, particularly preferably 4% or less, and most preferably 3.5%. % Or less.
  • Ta 2 O 5 and Gd 2 O 3 may be contained in a small amount in order to improve the crushability of the chemically strengthened glass.
  • the total content thereof is 5% or less.
  • it is more preferably 2% or less, and further preferably not contained.
  • a coloring component may be added within a range that does not hinder achievement of desired chemical strengthening properties.
  • the coloring component include Co 3 O 4 , MnO 2 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , CeO 2 , Er 2 O 3 , Nd 3 O 3 and the like.
  • the total content of the coloring components is preferably 7% or less because problems such as devitrification hardly occur. This content is preferably 5% or less, more preferably 3% or less, and even more preferably 2% or less. When giving priority to the visible light transmittance of glass, it is preferable that these components are not substantially contained.
  • SO 3 As a fining agent for melting the glass, SO 3 , chloride, fluoride and the like may be appropriately contained. Since As 2 O 3 has a large environmental load, it is preferable not to contain it. When Sb 2 O 3 is contained, it is preferably 1% or less, more preferably 0.5% or less, and most preferably not contained.
  • the surface compressive stress CS of the chemically strengthened glass 2 is preferably 300 MPa to 1500 MPa.
  • CS is 300 MPa or more, the bending strength necessary for the cover glass can be maintained.
  • CS is 1500 MPa or less, it can be prevented from being shattered when broken.
  • CS is more preferably 800 MPa to 1200 MPa.
  • the surface compressive stress CS means the compressive stress on the outermost surface of the glass.
  • the surface compressive stress CS can be measured using a surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho).
  • the internal tensile stress CT of the chemically strengthened glass 2 is preferably 20 MPa to 100 MPa.
  • CT is 20 MPa or more, it is possible to achieve a state in which the compressive stress existing as a reaction has an appropriate stress value and depth.
  • CT is 100 MPa or less, scattering can be prevented when broken.
  • CT is more preferably 40 MPa to 85 MPa.
  • the fingerprint prevention treatment layer 81 is a layer that reduces the adhesion of dirt due to fingerprints, sebum, sweat, and the like when a human finger touches the first main surface 21.
  • the constituent material of the fingerprint prevention treatment layer 81 can be appropriately selected from fluorine-containing organic compounds that can impart antifouling properties, water repellency, and oil repellency.
  • fluorine-containing organic silicon compounds and fluorine-containing hydrolyzable silicon compounds.
  • the fluorine-containing organic compound can be used without particular limitation as long as it can impart antifouling properties, water repellency and oil repellency.
  • the fluorine-containing organic compound originally has a characteristic of being easily charged when touched with a finger when formed on chemically strengthened glass.
  • the triboelectric charge amount on the surface of the fingerprint prevention treatment layer 81 is 0 kV.
  • the triboelectric charge amount on the surface of the fingerprint prevention treatment layer 81 is 0 kV.
  • the fluorine-containing organosilicon compound film forming the fingerprint prevention treatment layer 81 is formed on the first main surface 21 of the chemically strengthened glass 2.
  • an antiglare layer is formed on the first main surface 21 and an antireflection layer is formed on the surface
  • an anti-fingerprint treatment layer 81 is formed on the surface of the antireflection layer.
  • the fluorine-containing organosilicon compound coating is used for these surface treatments. It is preferable to be formed directly on the surface provided with.
  • the fluorine-containing hydrolyzable silicon compound used for forming the fluorine-containing organic silicon compound film is not particularly limited as long as the resulting fluorine-containing organic silicon compound film has antifouling properties such as water repellency and oil repellency.
  • Specific examples include fluorine-containing hydrolyzable silicon compounds having one or more groups selected from the group consisting of perfluoropolyether groups, perfluoroalkylene groups, and perfluoroalkyl groups.
  • Specific examples of materials for forming the anti-fingerprint treatment layer 81 include “KP-801” (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) and “X-71” (trade name, Shin-Etsu Chemical) that are commercially available.
  • the layer thickness of the anti-fingerprint treatment layer 81 is not particularly limited, but is preferably 2 nm to 20 nm, more preferably 2 nm to 15 nm, and further preferably 3 nm to 10 nm.
  • the layer thickness is 2 nm or more, the surface of the antireflection layer is uniformly covered by the anti-fingerprint treatment layer 81, and the anti-fingerprint and abrasion resistance can withstand practical use.
  • the layer thickness is 20 nm or less, the optical characteristics such as luminous reflectance and haze value in the state where the anti-fingerprinting treatment layer 81 is laminated are good.
  • the triboelectric charge amount on the surface of the fingerprint prevention treatment layer 81 of the cover glass 1 is 0 kV or less and ⁇ 1.5 kV or more.
  • the triboelectric charge amount here means the triboelectric charge amount obtained by the D method (friction charge attenuation measuring method) described in JIS L1094: 2014. Although the fluorine-based anti-fingerprint treatment layer is negatively charged in the above evaluation method, it can be prevented from being charged when it is ⁇ 1.5 kV or more.
  • the triboelectric charge amount is more preferably 0 kV to ⁇ 1 kV. The above is the description of the configuration of the cover glass 1.
  • the chemically strengthened glass 2 is manufactured.
  • the chemically strengthened glass 2 is manufactured by chemically strengthening glass for chemical strengthening manufactured by a general glass manufacturing method.
  • a chemical strengthening process is a process which performs the ion exchange process on the surface of glass, and forms the surface layer which has a compressive stress. Specifically, an ion exchange treatment is performed at a temperature below the glass transition point of the chemically strengthened glass, and metal ions (typically Li ions or Na ions) having a small ion radius near the glass plate surface, Substitution with ions having a larger ionic radius (typically Na ions or K ions for Li ions and K ions for Na ions).
  • the chemically strengthened glass 2 can be produced, for example, by chemically strengthening glass for chemical strengthening having the composition of the tensile stress layer 27 described above.
  • the following manufacturing method is an example in the case of manufacturing plate-shaped chemically strengthened glass.
  • glass raw materials are prepared and heated and melted in a glass melting furnace. Thereafter, the glass is homogenized by bubbling, stirring, adding a clarifying agent, etc., formed into a glass plate having a predetermined thickness by a conventionally known forming method, and slowly cooled. Or you may shape
  • Examples of the method for forming into a plate shape include a float method, a press method, a fusion method, and a downdraw method.
  • the float method is preferable.
  • continuous molding methods other than the float method for example, a fusion method and a downdraw method are also preferable.
  • the molded glass is cut into a predetermined size and chamfered. It is preferable to chamfer so that the dimension of the chamfered portion 24 in a plan view is 0.05 mm or more and 0.5 mm or less.
  • a glass to be treated is a molten salt containing an alkali metal ion having a larger ionic radius than an alkali metal ion (for example, sodium ion or lithium ion) contained in the glass (for example, potassium salt, Or a sodium salt) is made to contact in the temperature range which does not exceed the transition temperature of glass.
  • an alkali metal ion for example, sodium ion or lithium ion
  • the alkali metal ions in the glass and the alkali metal ions having a large ion radius of the alkali metal salt are ion-exchanged, and a compressive stress is generated on the glass surface due to the difference in the occupied volume of the alkali metal ions to form a compressive stress layer.
  • the temperature range which makes glass contact with molten salt should just be a temperature range which does not exceed the transition temperature of glass, it is preferable that it is 50 degrees C or less from a glass transition point. Thereby, stress relaxation of the glass can be prevented.
  • the treatment temperature and treatment time for bringing the glass into contact with the molten salt containing alkali metal ions can be appropriately adjusted according to the composition of the glass and the molten salt.
  • the temperature of the molten salt is usually preferably 350 ° C. or higher, more preferably 370 ° C. or higher, usually 500 ° C. or lower, more preferably 450 ° C. or lower.
  • the temperature of the molten salt By setting the temperature of the molten salt to 350 ° C. or higher, it is possible to prevent chemical strengthening from becoming difficult due to a decrease in ion exchange rate. Moreover, decomposition
  • the time for bringing the glass into contact with the molten salt is usually preferably 10 minutes or more and more preferably 15 minutes or more in order to give sufficient compressive stress per time. Moreover, in long-time ion exchange, productivity falls and the compressive stress value decreases due to relaxation. Therefore, the time for contacting the glass with the molten salt is usually 20 hours or less, preferably 16 hours or less. .
  • the number of times of chemical strengthening is exemplified once or twice, but the number of times is not particularly limited as long as the physical properties (DOL, CS, CT) of the target compressive stress layer and tensile stress layer can be obtained. It may be strengthened 3 times or more. Moreover, you may perform the heat processing process between 2 strengthening. In the following description, the case where the chemical strengthening is performed three times and the case where the heat treatment process is performed between the two strengthening steps are referred to as three-step strengthening.
  • the three-stage strengthening can be performed by, for example, strengthening processing method 1 or strengthening processing method 2 described below.
  • first stage process a glass for chemical strengthening containing Li 2 O is brought into contact with a metal salt containing sodium (Na) ions (first metal salt), and Na ions in the metal salt, Ion exchange occurs with Li ions in the glass.
  • first stage process this ion exchange process may be referred to as “first stage process”.
  • the glass for chemical strengthening is immersed in a metal salt (for example, sodium nitrate) containing Na ions at about 350 ° C. to 500 ° C. for about 0.1 to 24 hours.
  • the treatment time for the first stage is preferably 12 hours or less, and more preferably 6 hours or less.
  • a deep compressive stress layer is formed on the glass surface, and a stress profile can be formed such that CS is 200 MPa or more and the compressive stress depth DOL is 1/8 or more of the plate thickness.
  • a stress profile can be formed such that CS is 200 MPa or more and the compressive stress depth DOL is 1/8 or more of the plate thickness.
  • stage has a large internal tensile stress CT, its crushability is large.
  • 90 MPa or more is preferable, as for the internal tensile stress CT of the glass which finished the process of the 1st step
  • the first metal salt is an alkali metal salt and contains the most Na ions as the alkali metal ions.
  • the first metal salt may contain Li ions, Li ions are preferably 2% or less, more preferably 1% or less, and more preferably 0.2% or less with respect to 100% of the number of moles of alkali ions.
  • the first metal salt may contain K ions.
  • the K ion is preferably 20% or less and more preferably 5% or less with respect to 100% of the number of moles of alkali ions contained in the first metal salt.
  • the glass after finishing the first step is brought into contact with a metal salt containing lithium (Li) ions (second metal salt), and ions of Li ions in the metal salt and Na ions in the glass are contacted.
  • the compressive stress value near the surface layer is reduced by the exchange.
  • This process may be referred to as “second stage process”.
  • a glass that has undergone the first stage treatment with a metal salt containing Na and Li at about 350 ° C. to 500 ° C. (for example, a mixed salt of sodium nitrate and lithium nitrate) is used for 0.1 to 24 hours. Soak for about an hour.
  • the treatment time for the second stage is preferably 12 hours or less, and more preferably 6 hours or less.
  • the glass after the second stage treatment can reduce the internal tensile stress and will not be severely cracked when broken.
  • the second metal salt is an alkali metal salt, and preferably contains Na ions and Li ions as alkali metal ions.
  • the second metal salt is preferably nitrate.
  • the total number of moles of Na ions and Li ions is preferably 50% or more, more preferably 70% or more, and more preferably 80% or more with respect to 100% of the number of moles of alkali metal ions contained in the second metal salt. preferable.
  • the stress profile in DOL / 4 to DOL / 2 can be controlled by adjusting the Na / Li molar ratio.
  • the optimum value of the Na / Li molar ratio of the second metal salt varies depending on the glass composition, but is preferably 0.3 or more, more preferably 0.5 or more, and more preferably 1 or more. In order to increase the compressive stress value of the compressive stress layer while reducing the CT, it is preferably 100 or less, more preferably 60 or less, and even more preferably 40 or less.
  • the mass ratio of sodium nitrate to lithium nitrate is preferably, for example, 25:75 to 99: 1, more preferably 50:50 to 98: 2, 70 : 30 to 97: 3 is more preferable.
  • the glass after finishing the second step is brought into contact with a metal salt containing potassium (K) ions (third metal salt), and ion exchange between K ions in the metal salt and Na ions in the glass is performed.
  • a large compressive stress is generated on the glass surface.
  • This ion exchange process may be referred to as a “third stage process”.
  • the glass after the second stage treatment is immersed in a metal salt (for example, potassium nitrate) containing K ions at about 350 to 500 ° C. for about 0.1 to 10 hours.
  • a large compressive stress can be formed in the region of about 0 ⁇ m to 10 ⁇ m on the glass surface layer.
  • the third metal salt is an alkali metal salt and may contain Li ions as alkali metal ions, but Li ions are 2% with respect to 100% of the number of moles of alkali metal ions contained in the third metal salt.
  • the following is preferable, 1% or less is more preferable, and 0.2% or less is more preferable.
  • the Na ion content is preferably 2% or less, more preferably 1% or less, and still more preferably 0.2% or less.
  • Enhance process 1 is preferable because the total processing time of the first to third stages can be reduced to 24 hours or less, so that productivity is high.
  • the total treatment time is more preferably 15 hours or less, and even more preferably 10 hours or less.
  • the second stage treatment is performed, for example, by holding the glass after the first stage treatment in the atmosphere at a temperature of 350 ° C. or higher for a certain period of time.
  • the holding temperature is a temperature below the strain point of the glass for chemical strengthening, preferably 10 ° C. or less higher than the first stage processing temperature, and more preferably the same temperature as the first stage processing temperature. According to this process, it is considered that the alkali ions introduced to the glass surface in the first stage process thermally diffuse to reduce the CT.
  • the glass after finishing the second step is brought into contact with a third metal salt containing potassium (K) ions, and the glass surface is obtained by ion exchange between K ions in the metal salt and Na ions in the glass. A large compressive stress is generated.
  • This ion exchange process may be referred to as a “third stage process”.
  • the third stage process is the same as that in the case of the strengthening process method 1, and the description thereof is omitted.
  • Enhance process 2 is preferable because the total processing time of the first to third stages can be reduced to 24 hours or less, so that productivity is high.
  • the total treatment time is more preferably 15 hours or less, and even more preferably 10 hours or less.
  • the stress profile can be precisely controlled by adjusting the composition of the second metal salt used in the second stage treatment and the treatment temperature.
  • the tempering method 2 a chemically strengthened glass having excellent characteristics can be obtained at a low cost by a relatively simple treatment.
  • the treatment conditions for the chemical strengthening treatment may be appropriately selected in terms of time, temperature, etc. in consideration of the characteristics / composition of the glass and the type of molten salt.
  • the chemically strengthened glass 2 is manufactured by the above procedure.
  • a fingerprint prevention treatment layer 81 is formed on the first main surface 21 of the chemically strengthened glass 2.
  • a vacuum deposition method dry method in which a fluorine-containing organic compound or the like is evaporated in a vacuum chamber and adhered to the surface of the antireflection layer, or a fluorine-containing organic compound or the like is used as an organic solvent.
  • a method (wet method) or the like that is dissolved in the solution, adjusted to a predetermined concentration, and applied to the surface of the antireflection layer can be used.
  • an ion beam assisted vapor deposition method As a dry method, an ion beam assisted vapor deposition method, an ion plate method, a sputtering method, a plasma CVD method and the like can be appropriately selected from a spin coating method, a dip coating method, a casting method, a slit coating method, a spray method, and the like. . Both dry and wet methods can be used.
  • a composition of a silane coupling agent having a perfluoroalkyl group; a fluoroalkyl group such as a fluoroalkyl group containing a perfluoro (polyoxyalkylene) chain is spin-coated.
  • coating by the spray coat method has preferable 0.15 mass% or less, and 0.1 mass% or less is still more preferable.
  • the formation of the fluorine-containing organosilicon compound film is preferably carried out using a film-forming composition containing a fluorine-containing hydrolyzable silicon compound. The above is description about the example of the manufacturing method of the cover glass 1. FIG.
  • the cover glass 1 has a triboelectric charge amount of 0 kV or less and ⁇ 1.5 kV or more on the surface of the anti-fingerprint treatment layer 81. Therefore, it is difficult to be triboelectrically charged even if a user's finger touches the surface, and is incorporated in a display device. In this case, white turbidity caused by static electricity can be prevented. Since the cover glass 1 suppresses frictional charging by the physical properties of the chemically strengthened glass 2, it is not necessary to provide a conductive layer, and white turbidity can be prevented without increasing the thickness and man-hour.
  • the depth DOL of the compressive stress layers 25 and 32 of the chemically strengthened glass 2 of the cover glass 1 is 60 ⁇ m or more. Therefore, when an impact is applied from the outside, the deformation due to the impact is hardly transmitted to the tensile stress layer, and the impact resistance of the glass surface can be improved.
  • the concentration of Li 2 O, Na 2 O, K 2 O which does not contribute to the formation of the glass skeleton and has high mobility and discharges in combination with static electricity
  • A is 14.5 or more and A ⁇ B is 120 or more.
  • C is 11 or more and C ⁇ D is preferably 140 or more.
  • the surface contains a certain amount or more of Li 2 O, Na 2 O, K 2 O that does not contribute to the formation of the glass skeleton, and has a high mobility and is statically discharged in combination with static electricity. Even if it contacts, it is hard to be frictionally charged. Furthermore, it contributes to skeletal formation, and Li 2 O, for containing Na 2 O, Al 2 close to the K 2 O O 3 also a certain amount or more, Li 2 O, Na 2 O , K 2 O is entered into between the networks Extend the distance with. Therefore, Li 2 O, Na 2 O, and K 2 O are more easily moved, and even if the user's finger or the like comes into contact with the surface, it is less likely to be frictionally charged.
  • the total concentration of SiO 2 , Al 2 O 3 , B 2 O 3 and P 2 O 5 is 81 mol% or less (or 82 mass% or less).
  • the concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 which is a component that contributes to the formation of a glass skeleton and has a high mobility and a weak effect of static elimination combined with static electricity, is constant. Since it is suppressed to the following, even if a user's finger or the like comes into contact with the surface, it is more difficult to be frictionally charged.
  • the shape of the chemically strengthened glass 2 may be not only a plate having only a flat surface but also a plate having at least a curved surface and a plate having a recess.
  • the chemically strengthened glass 2 may be a bent glass.
  • the thickness of the chemically strengthened glass 2 is preferably 0.5 mm or more. If it is glass provided with the thickness of 0.5 mm or more, there exists an advantage which can obtain the cover glass 1 which has high intensity
  • the thickness is more preferably 0.7 mm or more.
  • the thickness is preferably 1.1 mm or more in order to ensure impact resistance that can withstand a head impact test. From the viewpoint of securing light weight and ensuring transmittance, it is preferably 5 mm or less, and more preferably 3 mm or less.
  • the planar shape of the chemically strengthened glass 2 is not particularly limited. Area not also particularly limited in the first major surface 21 and second major surface 22 but, for example 5000 mm 2 ⁇ 50,000 mm 2 about.
  • At least one of the first main surface 21 and the second main surface 22 of the chemically strengthened glass 2 is anti-glare treated (AG treatment) as a functional layer 3.
  • AG treatment anti-glare treated
  • AR process antireflection process
  • the first main surface 21 is provided with an antiglare layer or an antireflection layer
  • an antiglare function layer or an antireflection layer is provided between the chemically strengthened glass 2 and the anti-fingerprint treatment layer 81.
  • Examples of a method for imparting antiglare properties include a method of forming an uneven shape on the first main surface 21 of the chemically strengthened glass 2. Either an antiglare layer may be provided after chemical strengthening, or a chemical strengthening treatment may be performed after providing the antiglare layer.
  • a known method can be applied as a method for forming the uneven shape.
  • a method of forming an etching layer by chemically or physically surface-treating the first main surface 21 of the chemically strengthened glass 2 to form an uneven shape with a desired surface roughness, or a coating such as an antiglare film A method of applying a layer can be used.
  • the antiglare layer is an etching layer, it is advantageous in that it is not necessary to separately coat an antiglare material.
  • the antiglare layer is a coating layer, it is advantageous in that the antiglare property can be easily controlled by selecting a material.
  • frost treatment can be mentioned.
  • the frost treatment can be realized, for example, by immersing a glass substrate as an object to be treated in a mixed solution of hydrogen fluoride and ammonium fluoride.
  • a method of physically performing the antiglare treatment for example, a sand blast treatment in which crystalline silicon dioxide powder, silicon carbide powder or the like is sprayed onto the main surface of the glass substrate with pressurized air, crystalline silicon dioxide powder, silicon carbide powder, or the like.
  • a method of rubbing with a brush moistened with water can be used.
  • the surface of the antiglare layer preferably has a surface roughness (root mean square roughness, RMS) of 0.01 ⁇ m to 0.5 ⁇ m.
  • the surface roughness (RMS) of the surface of the antiglare layer is more preferably 0.01 ⁇ m to 0.3 ⁇ m, further preferably 0.02 ⁇ m to 0.2 ⁇ m.
  • an antireflection layer As the functional layer 3, reflection of light incident from the first main surface 21 side can be prevented, and reflection due to incident light can be prevented.
  • the antireflection layer include the following. (1) An antireflection layer having a multilayer structure in which a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index are alternately laminated. (2) An antireflection layer comprising a low refractive index layer having a refractive index lower than that of the chemically strengthened glass 2.
  • the antireflection layer (1) has a structure in which a high refractive index layer having a refractive index of light of 1.9 nm or more and a low refractive index layer having a refractive index of light having a wavelength of 550 nm of 1.6 or less are laminated. Is preferably provided.
  • the antireflection layer has a structure in which a high refractive index layer and a low refractive index layer are stacked, reflection of visible light can be more reliably prevented.
  • the number of the high refractive index layer and the low refractive index layer in the antireflection layer of (1) may be one each, or may be two or more.
  • the antireflection layer is formed by laminating the high refractive index layer and the low refractive index layer in this order on the first main surface 21 of the chemically strengthened glass 2. It is preferable.
  • the antireflection layer is preferably a laminate in which high refractive index layers and low refractive index layers are alternately stacked.
  • the laminate is preferably a laminate of 2 to 8 layers as a whole, more preferably a laminate of 2 to 6 layers.
  • a SiO 2 film may be inserted between the glass and the first layer.
  • the material constituting the high refractive index layer and the low refractive index layer is not particularly limited, and can be selected in consideration of the required degree of antireflection and productivity.
  • Examples of the material constituting the high refractive index layer include niobium oxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), and silicon nitride (SiN). Etc.
  • the material constituting the low refractive index layer include silicon oxide (particularly silicon dioxide SiO 2 ), aluminum oxide (Al 2 O 3 ), magnesium fluoride (MgF 2 ), and a mixed oxide of Si and Sn.
  • a material containing a mixed oxide of Si and Zr a material containing a mixed oxide of Si and Al, and the like.
  • One or more selected from these materials can be preferably used.
  • the refractive index of the low refractive index layer is set according to the refractive index of the chemically strengthened glass 2, and is preferably 1.1 to 1.5, more preferably 1.1 to 1.4. preferable.
  • the antireflection layer of (2) is a method of directly forming an inorganic thin film on the surface, a method of surface treatment by a technique such as etching, a dry method such as a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method, It can be suitably formed by vacuum vapor deposition or sputtering, which is a kind of physical vapor deposition.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the thickness of the antireflection layer is preferably 90 nm to 500 nm. Setting the thickness of the antireflection layer to 90 nm or more is preferable because reflection of external light can be effectively suppressed.
  • the antireflection layer is preferably such that the reflective color of the cover glass with a film is a * of ⁇ 6 to 1 and b * of ⁇ 8 to 1.
  • the antireflection layer is not likely to be colored in a dangerous color (warning color), and the color of the antireflection layer is conspicuous. Can be prevented.
  • the cover glass 1 is reflected after the fingerprint prevention treatment layer 81 is removed by corona treatment or plasma treatment.
  • the surface roughness measured on the surface of the prevention treatment layer is preferably less than 1 nm in Ra. If the contact angle of water on the surface is about 20 ° or less, it can be determined that the anti-fingerprint treatment layer has been removed. When the surface roughness Ra after removing the outermost fingerprint prevention treatment layer 81 is less than 1 nm, high scratch resistance can be realized. More preferably, it is 0.3 nm to 0.6 nm, and particularly preferably 0.3 nm to 0.5 nm.
  • the surface roughness Ra can be measured, for example, in the DFM mode of a scanning probe microscope SPI3800N manufactured by Seiko Instruments Inc.
  • the cover glass 1 may include a light shielding layer 31 provided on the second main surface 22.
  • the light shielding layer 31 is a layer that shields visible light.
  • the light shielding layer 31 is, for example, a layer having a luminous transmittance of 50% or less for light with a wavelength of 380 nm to 780 nm.
  • the second main surface 22 and the chamfered portion 24 provided with the light shielding layer 31 may be subjected to a primer treatment, an etching treatment, or the like in order to improve the adhesion with the light shielding layer 31.
  • a method for providing the light shielding layer 31 is not particularly limited, and examples thereof include a method for providing ink by printing by a bar coating method, a reverse coating method, a gravure coating method, a die coating method, a roll coating method, a screen method, an ink jet method, or the like. Considering the easy difference in thickness control, the screen method is preferable.
  • the ink used for the light shielding layer 31 may be inorganic or organic.
  • Examples of the inorganic ink include one or more selected from SiO 2 , ZnO, B 2 O 3 , Bi 2 O 3 , Li 2 O, Na 2 O and K 2 O, CuO, Al 2 O 3 , ZrO 2, SnO 2 and one or more selected from CeO 2, may be a composition consisting of Fe 2 O 3 and TiO 2.
  • the resin includes acrylic resin, urethane resin, epoxy resin, polyester resin, polyamide resin, vinyl acetate resin, phenol resin, olefin, ethylene-vinyl acetate copolymer resin, polyvinyl acetal resin, natural rubber, styrene-butadiene copolymer
  • a resin such as a polymer, an acrylonitrile-butadiene copolymer, a polyester polyol, and a polyether polyurethane polyol may be selected and used.
  • solvent water, alcohols, esters, ketones, aromatic hydrocarbon solvents, and aliphatic hydrocarbon solvents may be used.
  • isopropyl alcohol, methanol, ethanol or the like can be used as the alcohol
  • ethyl acetate can be used as the ester
  • methyl ethyl ketone can be used as the ketone.
  • aromatic hydrocarbon solvent toluene, xylene, Solvesso (registered trademark) 100, Solvesso (registered trademark) 150 or the like can be used, and as the aliphatic hydrocarbon solvent, hexane or the like can be used. These are given as examples, and various other printing materials can be used.
  • the organic printing material can be applied to the chemically strengthened glass 2 and then the solvent is evaporated to form the resin light-shielding layer 31.
  • the ink used for the light shielding layer 31 may be a thermosetting ink that can be cured by heating or a UV curable ink, and is not particularly limited.
  • the ink used for the light shielding layer 31 may contain a colorant.
  • a colorant for example, when the light shielding layer 31 is black, a black colorant such as carbon black can be used. In addition, a colorant having an appropriate color can be used according to a desired color.
  • the light shielding layer 31 may be laminated as many times as desired, and different inks may be used for printing. Further, the light shielding layer 31 may be printed not only on the second main surface 22 but also on the first main surface 21 or on the end surface. When the light shielding layer 31 is laminated a desired number of times, different inks may be used for each layer.
  • the white light shielding layer 31 that suppresses the so-called “translucency” related to the visibility of the back surface of the light shielding layer 31 can be formed.
  • the planar shape of the light shielding layer 31 is a frame shape in FIG. 4, and the inside of the frame constitutes the display region 4, but is not a frame shape, but a linear shape along one side of the second main surface 22, two continuous sides L shape along the two, or two straight lines along the two opposite sides.
  • the second main surface 22 is a polygon other than a quadrangle, a circle, or an irregular shape
  • the light shielding layer 31 has a frame shape corresponding to these shapes, a linear shape along one side of the polygon, or an arc shape along a part of the circle. But you can.
  • the cover glass 1 is used for a display device, the light shielding layer 31 preferably has a color corresponding to the color when the display device is not displayed. For example, when the non-display color is black, it is desirable that the light shielding layer 31 is also black.
  • the light shielding layer 31 may have an opening 33 as shown in FIG. 5, and the infrared transmission layer having a higher infrared transmittance than the light shielding layer 31 is provided in the opening 33. 35 is preferably provided.
  • the infrared sensor can be provided on the back side of the light shielding layer 31, and the infrared transmission layer 35 can be made inconspicuous.
  • the ink forming the infrared transmission layer 35 may be inorganic or organic.
  • the pigment contained in the inorganic ink examples include one or more selected from SiO 2 , ZnO, B 2 O 3 , Bi 2 O 3 , Li 2 O, Na 2 O, and K 2 O, CuO, and Al 2. It may be a composition comprising at least one selected from O 3 , ZrO 2 , SnO 2 and CeO 2 , Fe 2 O 3 and TiO 2 .
  • the organic ink various printing materials in which a resin and a pigment are dissolved in a solvent can be used.
  • the resin includes acrylic resin, urethane resin, epoxy resin, polyester resin, polyamide resin, vinyl acetate resin, phenol resin, olefin, ethylene-vinyl acetate copolymer resin, polyvinyl acetal resin, natural rubber, styrene-butadiene copolymer
  • a resin such as a polymer, an acrylonitrile-butadiene copolymer, a polyester polyol, and a polyether polyurethane polyol may be selected and used.
  • solvent water, alcohols, esters, ketones, aromatic hydrocarbon solvents, and aliphatic hydrocarbon solvents may be used.
  • isopropyl alcohol, methanol, ethanol or the like can be used as the alcohol
  • ethyl acetate can be used as the ester
  • methyl ethyl ketone can be used as the ketone.
  • aromatic hydrocarbon solvent toluene, xylene, Solvesso (registered trademark) 100, Solvesso (registered trademark) 150 or the like can be used, and as the aliphatic hydrocarbon solvent, hexane or the like can be used. These are given as examples, and various other printing materials can be used.
  • the organic printing material can be applied to the chemically strengthened glass 2, and then the solvent can be evaporated to form the resin infrared transmission layer 35.
  • a thermosetting ink that can be cured by heating or a UV curable ink may be used, and there is no particular limitation.
  • the ink used for the infrared transmission layer 35 may contain a pigment.
  • a pigment for example, when the infrared transmitting layer 35 is black, a black pigment such as carbon black can be used.
  • a pigment having an appropriate color can be used according to a desired color.
  • the content ratio of the pigment in the infrared transmission layer 35 can be freely changed according to desired optical characteristics.
  • the content ratio which is the ratio of the pigment content to the total mass of the infrared transmitting layer 35, is preferably 0.01% by mass to 10% by mass.
  • the content ratio can be realized by adjusting the content ratio of the infrared transmitting material with respect to the entire mass of the ink.
  • the ink forming the infrared transmission layer 35 includes a pigment having infrared transmission ability in a photo-curable resin or a thermosetting resin.
  • a pigment having infrared transmission ability in a photo-curable resin or a thermosetting resin.
  • the pigment either an inorganic pigment or an organic pigment can be used.
  • inorganic pigments include iron oxide, titanium oxide, and complex oxides.
  • the organic pigment include metal complex pigments such as phthalocyanine pigments, anthraquinone pigments, and azo pigments.
  • the color of the infrared transmission layer 35 is preferably the same as that of the light shielding layer 31. When the light shielding layer 31 is black, the infrared transmission layer 35 is also preferably black.
  • the method for forming the infrared transmitting layer 35 is not particularly limited, and examples thereof include a bar coating method, a reverse coating method, a gravure coating method, a die coating method, a roll coating method, a screen method, and an ink jet method. In consideration of the continuity of the manufacturing method, the same formation method as the light shielding layer 31 is preferable.
  • the cover glass 1 of the present invention can be used, for example, as a cover member for a display device such as a panel display such as a liquid crystal display, an in-vehicle information device, or a portable device.
  • a display device such as a panel display such as a liquid crystal display, an in-vehicle information device, or a portable device.
  • the cover glass 1 of the present invention can be applied to the surface of the cover glass when a panel display such as a liquid crystal display or an organic EL display, an in-vehicle information device, or a portable device is bonded. Since the cover glass, which is generated when the laminate to be applied is peeled off, is suppressed from being charged, foreign matter adsorption due to charging can be suppressed.
  • the display device 10 illustrated in FIG. 6 includes a frame 5.
  • the frame 5 includes a bottom 51, a side wall 52 that intersects the bottom 51, and an opening 53 that faces the bottom 51.
  • the liquid crystal module 6 is disposed in a space surrounded by the bottom 51 and the side wall 52.
  • the liquid crystal module 6 includes a backlight 61 disposed on the bottom 51 side, and a liquid crystal panel 62 (display panel) disposed on the backlight 61.
  • the liquid crystal panel 62 includes an IPS liquid crystal and is an in-cell type in which an element having a touch function is embedded in the liquid crystal element.
  • cover glass 1 is provided at the upper end of the frame 5 so that the second main surface 22 faces the liquid crystal module 6 side.
  • the cover glass 1 is bonded to the frame 5 and the liquid crystal module 6 via an adhesive layer 7 provided on the upper end surface of the opening 53 and the side wall 52.
  • the adhesive layer 7 is preferably transparent and has a small refractive index difference from the chemically strengthened glass 2.
  • Examples of the adhesive layer 7 include a layer made of a transparent resin obtained by curing a liquid curable resin composition.
  • a curable resin composition a photocurable resin composition, a thermosetting resin composition, etc. are mentioned, for example, Among these, the photocurable resin composition containing a curable compound and a photoinitiator is preferable.
  • the curable resin composition is applied using a method such as a die coating method or a roll coating method to form a curable resin composition film.
  • the adhesive layer 7 may be an OCA film (OCA tape). In this case, an OCA film may be bonded to the second main surface 22 side of the cover glass 1.
  • the thickness of the adhesive layer 7 is preferably 5 ⁇ m or more and 400 ⁇ m or less, and more preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the storage shear modulus of the adhesive layer 7 is preferably 5 kPa to 5 MPa, and more preferably 1 MPa to 5 MPa.
  • the assembly order is not particularly limited.
  • a structure in which the adhesive layer 7 is disposed on the cover glass 1 in advance may be prepared, disposed on the frame 5, and then the liquid crystal module 6 may be bonded.
  • Example 1 is an example, and Examples 2 to 6 are comparative examples.
  • Example 1 First, as the glass before chemical strengthening, the raw materials were prepared and melted so as to become a glass having the composition shown in Example 1 in Table 1, and poured out into a block of about 110 mm square, and then slowly cooled. A glass body was obtained. Then, it cut
  • Example 1 The following evaluation was performed on the produced cover glass of Example 1.
  • ⁇ CS, DOL> Using a glass surface stress meter device (FSM-6000LE) manufactured by Orihara Manufacturing Co., Ltd. and a measuring machine SLP1000 manufactured by Orihara Manufacturing Co., Ltd. using scattered light photoelasticity, the stress distribution in the thickness direction of the glass was measured, The stress value was defined as surface compressive stress CS.
  • the glass depth at which the stress value becomes 0 MPa in the glass was defined as the compressive stress depth DOL.
  • the triboelectric charge amount was determined by the D method (triboelectric charge decay measurement method) described in JIS L1094: 2014 using a friction band voltage decay measurement device manufactured by INTEC.
  • ⁇ White turbidity> The obtained cover glass is incorporated into an in-cell type IPS liquid crystal display device, and with the power turned on, the surface of the cover glass is touched with a finger, and a distance of 10 cm is made 10 reciprocations at a speed of 1 reciprocation per second. It moved and the presence or absence of clouding was confirmed visually. Those that became white turbid were judged as “present”, and those that did not become white turbid were judged as “none”.
  • Example 2 As a glass before chemical strengthening, a glass having a composition shown in Example 2 in Table 1 was produced by a float process to obtain a 0.7 mm glass plate, and it was added to a 100 wt% potassium nitrate molten salt at 420 ° C. for 8 hours. A cover glass of Example 2 was produced under the same conditions as Example 1 except that chemical strengthening was performed by immersion.
  • Example 3 Except that the glass having the composition shown in Example 3 in Table 1 was used as the glass before chemical strengthening, and that chemical strengthening was performed by immersing in 100 wt% potassium nitrate molten salt at 425 ° C. for 6 hours. A cover glass of Example 3 was produced under the same conditions as in Example 1.
  • Example 4 Example 1 except that the glass having the composition shown in Example 4 in Table 1 was used as the glass before chemical strengthening, and that the glass was chemically strengthened by immersion in 100 wt% potassium nitrate molten salt at a temperature of 425 ° C. for 6 hours.
  • a cover glass of Example 4 was produced under the same conditions as in Example 1.
  • Example 5 As a glass before chemical strengthening, raw materials were prepared and melted so as to become a glass having the composition shown in Example 5 in Table 1, and a glass block was obtained. Also, a 100 wt% sodium nitrate molten salt at a temperature of 450 ° C. The cover glass of Example 5 was produced under the same conditions as in Example 1 except that it was immersed in 100 wt% potassium nitrate molten salt at a temperature of 425 ° C. for 1.5 hours for chemical strengthening.
  • Example 6 A cover glass of Example 6 was produced under the same conditions as Example 1 except that the glass having the composition shown in Example 6 in Table 1 was used as the glass after chemical strengthening. The results are shown in Table 1.
  • Example 1 As shown in Table 1, in Example 1, the triboelectric charge amount is 0 kV or less, ⁇ 1.5 kV or more, the depth DOL of the compressive stress layer is 60 ⁇ m or more, and among the total alkali metals contained in the tensile stress layer, , Li had the largest number of moles, and no clouding occurred. In Examples 2 to 4, since the DOL was less than 60 ⁇ m, the impact resistance of the glass surface was inferior, making it unsuitable as a cover glass. In Examples 4 to 6, the triboelectric charge amount was less than ⁇ 1.5 kV, and white turbidity occurred. In Example 1, CS was 800 to 1000 MPa, and CT was about 60 MPa. In Example 1, A was 14.5 mol or more, and A ⁇ B was 120 or more. In Example 1, the total concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 was 81 mol% or less.
  • the triboelectric charge amount is 0 kV or less, ⁇ 1.5 kV or more, the depth DOL of the compressive stress layer is 60 ⁇ m or more, and among all the alkali metals contained in the tensile stress layer, the number of moles of Li is It has been found that by using the largest composition, a cover glass that can prevent white turbidity and is excellent in impact resistance can be obtained.

Abstract

The purpose of the present invention is to provide: a cover glass which can be prevented from becoming cloudy, without an increase in the thickness thereof and the number of steps for production thereof, and which also has superior impact resistance; and an in-cell liquid crystal display device. The present invention pertains to a cover glass comprising: a chemically strengthened glass including a first main surface and a second main surface; and a fingerprint-resistant treatment layer provided on the first main surface, wherein of all alkali metals contained in a tensile stress layer of the chemically strengthened glass, the number of moles of Li is the largest, the DOL thereof is 60 μm or more, and the surface of the fingerprint-resistant treatment layer has a triboelectric charge amount of -1.5 to 0 kV.

Description

カバーガラス、およびインセル型液晶表示装置Cover glass and in-cell type liquid crystal display device
 本発明は、カバーガラス、およびインセル型液晶表示装置に関する。 The present invention relates to a cover glass and an in-cell type liquid crystal display device.
 スマートフォンのような液晶表示装置を有する電子機器には、タッチ機能が搭載される場合がある。ここでいうタッチ機能とは、表示装置の表面に設けられたカバーガラスに操作者が指を接触あるいは近接させることにより、情報を入力する機能である。
 タッチ機能を実現する構造としては、液晶表示装置にタッチパネルを取り付ける外付け型(アウトセル型)がある。
 外付け型は液晶表示装置とタッチパネルの一方が不良であっても他方は利用可能であるため、歩留まりに優れるが、厚みや重さが増えるという問題もある。
 そこで、液晶表示装置の液晶素子と偏光板の間にタッチパネルを挟み込んだオンセル型の液晶表示装置が登場している。
 さらに、オンセル型よりも薄型軽量な構造として、タッチ機能を有する素子を液晶素子に埋め込んだインセル型の液晶表示装置も開発されている。
An electronic device having a liquid crystal display device such as a smartphone may be equipped with a touch function. The touch function referred to here is a function for inputting information when an operator makes a finger touch or approach a cover glass provided on the surface of the display device.
As a structure for realizing a touch function, there is an external type (out-cell type) in which a touch panel is attached to a liquid crystal display device.
Since the external type can be used even if one of the liquid crystal display device and the touch panel is defective, the yield is excellent, but there is a problem that the thickness and weight increase.
Therefore, an on-cell type liquid crystal display device in which a touch panel is sandwiched between a liquid crystal element of a liquid crystal display device and a polarizing plate has appeared.
Further, an in-cell type liquid crystal display device in which an element having a touch function is embedded in a liquid crystal element has been developed as a thinner and lighter structure than the on-cell type.
 一方で、インセル型の液晶表示装置(特にIPS液晶表示装置)は、指でカバーガラスをタッチした際に、帯電により、液晶画面が部分的に白濁するという問題があった。これは、外付け型やオンセル型では、液晶素子よりも操作者側に位置するタッチパネルが除電に寄与する一方で、インセル型の液晶表示装置は、液晶素子よりも操作者側にタッチパネルが配置されないので、液晶素子が静電気で帯電しやすいためである。特に、カバーガラスの表面には耐衝撃性や防汚性を高めるための層を形成する場合があり、これらの層が帯電しやすいと、より白濁化が生じやすくなる。 On the other hand, the in-cell type liquid crystal display device (especially IPS liquid crystal display device) has a problem that when the cover glass is touched with a finger, the liquid crystal screen becomes partially cloudy due to charging. In the external type and the on-cell type, the touch panel located closer to the operator than the liquid crystal element contributes to static elimination, while the in-cell type liquid crystal display device does not include the touch panel closer to the operator than the liquid crystal element. This is because the liquid crystal element is easily charged with static electricity. In particular, a layer for improving impact resistance and antifouling properties may be formed on the surface of the cover glass. If these layers are easily charged, white turbidity is likely to occur.
 そこで、インセル型の液晶表示装置において、液晶表示装置よりも操作者側に導電層を設けて静電気を逃がすことにより白濁化を防止する構造が提案されている(特許文献1)。 Therefore, in an in-cell type liquid crystal display device, a structure is proposed in which a conductive layer is provided on the operator side of the liquid crystal display device to prevent white turbidity by releasing static electricity (Patent Document 1).
国際公開第2014/069377号International Publication No. 2014/069377
 しかしながら、特許文献1の構造では、導電層を設けることにより厚さが増えるという問題があった。また、表示装置を製造するための工数が増えるという問題もあった。 However, the structure of Patent Document 1 has a problem that the thickness is increased by providing a conductive layer. There is also a problem that the number of steps for manufacturing the display device increases.
 本発明は上記課題に鑑みてなされたものであり、厚さも、製造のための工数も増加させずに白濁化を防止でき、耐衝撃性にも優れたカバーガラス、およびインセル型液晶表示装置(特にIPS液晶表示装置)の提供を目的とする。 The present invention has been made in view of the above problems, and can prevent white turbidity without increasing the thickness and man-hours for manufacturing, and can provide a cover glass excellent in impact resistance, and an in-cell type liquid crystal display device ( In particular, an object is to provide an IPS liquid crystal display device.
 本発明のカバーガラスは、第1の主面および第2の主面を備える化学強化ガラスと、前記化学強化ガラスの第1の主面上に設けられた指紋防止処理層と、を備え、前記化学強化ガラスは、引張応力層の含有する全アルカリ金属のうち、Liのモル数が最も多く、圧縮応力層の深さDOLが60μm以上であり、前記指紋防止処理層の表面の摩擦帯電量が、JIS L1094:2014に記載のD法で0kV以下、-1.5kV以上であることを特徴とする。 The cover glass of the present invention includes a chemically strengthened glass having a first main surface and a second main surface, and a fingerprint prevention treatment layer provided on the first main surface of the chemically strengthened glass, The chemically strengthened glass has the largest number of moles of Li among all alkali metals contained in the tensile stress layer, the depth DOL of the compressive stress layer is 60 μm or more, and the triboelectric charge amount on the surface of the anti-fingerprint treatment layer is , JIS L1094: 2014, it is 0 kV or less and -1.5 kV or more according to D method.
 本発明のカバーガラスは、指紋防止処理層の表面の摩擦帯電量が0kV以下、-1.5kV以上であるため、表面に使用者の指等が接触しても摩擦帯電し難く、表示装置に組み込んだ場合に、静電気に起因する白濁化を防止できる。
 また、本発明のカバーガラスは、カバーガラスの物性で摩擦帯電を抑制しているため、導電層を設ける必要がなく、厚さも工数も増加させずに白濁化を防止できる。
 さらに、本発明のカバーガラスでは、化学強化ガラスは、引張応力層の含有する全アルカリ金属のうち、Liのモル数が最も多い。そのため、圧縮応力層は、化学強化の際に、Liよりイオン半径の大きいKやNaをより多く含有でき、圧縮応力層の表面圧縮応力を高められる。
 本発明のカバーガラスでは、化学強化ガラスは、圧縮応力層の深さDOLが60μm以上であるため、外部から衝撃が加えられた場合に、衝撃による変形が引張応力層まで伝わり難くなり、耐衝撃性を高められる。
Since the cover glass of the present invention has a triboelectric charge amount of 0 kV or less and −1.5 kV or more on the surface of the anti-fingerprint treatment layer, it is difficult to be triboelectrically charged even if a user's finger touches the surface. When incorporated, it can prevent white turbidity caused by static electricity.
In addition, since the cover glass of the present invention suppresses frictional electrification due to the physical properties of the cover glass, it is not necessary to provide a conductive layer, and white turbidity can be prevented without increasing the thickness and man-hour.
Further, in the cover glass of the present invention, the chemically strengthened glass has the largest number of moles of Li among all alkali metals contained in the tensile stress layer. Therefore, the compressive stress layer can contain more K and Na having a larger ion radius than Li during chemical strengthening, and the surface compressive stress of the compressive stress layer can be increased.
In the cover glass of the present invention, since the chemically strengthened glass has a depth DOL of the compressive stress layer of 60 μm or more, when an impact is applied from the outside, deformation due to the impact is difficult to be transmitted to the tensile stress layer, Increases sex.
 本発明のカバーガラスでは、前記化学強化ガラスは、引張応力層を構成する酸化物成分のうち、LiO、NaO、KOの濃度の合計をAモル%、Alの濃度をBモル%としたとき、Aが14.5以上、かつ、A×Bが120以上であるのが好ましい。
 あるいは、引張応力層を構成する酸化物成分のうち、LiO、NaO、KOの濃度の合計をC質量%、Alの濃度をD質量%としたとき、Cが11以上、かつ、C×Dが140以上であるのが好ましい。
 この場合、ガラスの骨格形成に寄与せず、移動度が高く静電気と結びついて除電を行うLiO、NaO、KOを一定量以上含むため、表面に使用者の指等が接触してもより摩擦帯電し難い。
 また、この場合、骨格形成に寄与し、かつLiO、NaO、KOと近接する傾向があるAlも一定量以上含むため、LiO、NaO、KOがAlで形成される骨格の間に入り込んで距離を拡張する。そのため、LiO、NaO、KOが、より移動しやすくなり、表面に使用者の指等が接触してもより摩擦帯電し難い。
In the cover glass of the present invention, the chemically strengthened glass is composed of A mol%, Al 2 O 3 with a total concentration of Li 2 O, Na 2 O, and K 2 O among oxide components constituting the tensile stress layer. When the concentration is B mol%, it is preferable that A is 14.5 or more and A × B is 120 or more.
Alternatively, among the oxide components constituting the tensile stress layer, when the total concentration of Li 2 O, Na 2 O, and K 2 O is C mass% and the concentration of Al 2 O 3 is D mass%, C is 11 or more and C × D is preferably 140 or more.
In this case, Li 2 O, Na 2 O, and K 2 O, which do not contribute to the formation of the glass skeleton and have high mobility and are combined with static electricity to perform static elimination, contain a certain amount or more, so that the user's finger or the like touches the surface. Even so, it is less likely to be triboelectrically charged.
In this case, since a certain amount or more of Al 2 O 3 that contributes to skeleton formation and tends to be close to Li 2 O, Na 2 O, and K 2 O is also included, Li 2 O, Na 2 O, K 2 O enters between the skeletons formed of Al 2 O 3 to extend the distance. Therefore, Li 2 O, Na 2 O, and K 2 O are more easily moved, and even if the user's finger or the like comes into contact with the surface, it is less likely to be frictionally charged.
 本発明のカバーガラスでは、前記化学強化ガラスは、引張応力層を構成する酸化物成分のうち、SiO、Al、B、Pの濃度の合計が81モル%以下であるのが好ましい。
 あるいは、引張応力層を構成する酸化物成分のうち、SiO、Al、B、Pの濃度の合計が82質量%以下であるのが好ましい。
 この場合、ガラスの骨格形成に寄与するため、移動度が低く、静電気と結びついて除電を行う作用が弱い成分であるSiO、Al、B、Pの濃度を一定以下に抑制されるため、表面に使用者の指等が接触してもより摩擦帯電し難い。
In the cover glass of the present invention, the chemically strengthened glass has a total concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 of 81 mol% among the oxide components constituting the tensile stress layer. It is preferable that:
Alternatively, the tensile of the oxide components constituting the stress layer, SiO 2, Al 2 O 3 , B 2 O 3, P 2 O total concentration of 5 is preferably not less 82% by mass.
In this case, the concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 , which is a component having a low mobility and a weak effect of removing static electricity due to static electricity, contributes to the formation of the glass skeleton. Since it is suppressed below a certain level, even if the user's finger or the like comes into contact with the surface, it is more difficult to be triboelectrically charged.
 本発明のカバーガラスは、前記化学強化ガラスと前記指紋防止処理層の間に設けられた防眩機能層または反射防止層の少なくとも一方を備えるのが好ましい。
 本発明のカバーガラスが防眩機能層を備える場合、入射した光を散乱させ、入射光による映り込みをぼかすことができる。本発明のカバーガラスが反射防止層を備える場合、入射した光の反射を防止でき、入射光による映り込みを防止できる。
The cover glass of the present invention preferably includes at least one of an antiglare function layer or an antireflection layer provided between the chemically strengthened glass and the anti-fingerprint treatment layer.
When the cover glass of the present invention includes an antiglare function layer, it can scatter incident light and blur the reflection due to incident light. When the cover glass of the present invention includes an antireflection layer, reflection of incident light can be prevented and reflection due to incident light can be prevented.
 本発明のカバーガラスは、前記第2の主面上に設けられた遮光層を備えるのが好ましい。
 第2の主面上に遮光層が設けられると、カバーガラスを表示装置に組み込んだ際に、表示装置側の配線を隠蔽したり、バックライトの照明光を隠蔽して、表示装置の周囲から照明光が漏れるのを防止したりできる。
The cover glass of the present invention preferably includes a light shielding layer provided on the second main surface.
When the light shielding layer is provided on the second main surface, when the cover glass is incorporated in the display device, the wiring on the display device side is concealed or the illumination light of the backlight is concealed from the periphery of the display device. It is possible to prevent the illumination light from leaking.
 本発明のカバーガラスが前記第2の主面上に設けられた遮光層を備える場合、前記遮光層は開口部を有するのが好ましく、前記開口部には、赤外線透過率が前記遮光層よりも高い赤外線透過層が設けられているのが好ましい。
 遮光層に赤外線透過層が設けられている場合、赤外線センサを有する表示装置にカバーガラスを組み込んだ際に、赤外線センサを遮光層の裏側に設けることができ、かつ赤外線透過層を目立たなくできる。
When the cover glass of the present invention includes a light shielding layer provided on the second main surface, the light shielding layer preferably has an opening, and the opening has an infrared transmittance higher than that of the light shielding layer. A high infrared transmission layer is preferably provided.
In the case where an infrared transmission layer is provided in the light shielding layer, the infrared sensor can be provided on the back side of the light shielding layer and the infrared transmission layer can be made inconspicuous when a cover glass is incorporated in a display device having an infrared sensor.
 本発明のカバーガラスでは、前記化学強化ガラスは屈曲ガラスであるのが好ましい。
 化学強化ガラスが屈曲ガラスである場合、カバーガラスを取り付ける相手側部材が屈曲形状を有していても、取り付けの精度が下がるおそれがない。
In the cover glass of the present invention, the chemically strengthened glass is preferably bent glass.
When the chemically strengthened glass is bent glass, even if the counterpart member to which the cover glass is attached has a bent shape, there is no possibility that the mounting accuracy will be lowered.
 本発明のカバーガラスは、前記第1の主面と前記指紋防止処理層の間に防眩層を備え、前記防眩層の表面粗さがRaで0.01μm~0.5μmであるのが好ましい。
 この場合、帯電を防止しつつ、視認性を確保できる。
The cover glass of the present invention comprises an anti-glare layer between the first main surface and the anti-fingerprint treatment layer, and the anti-glare layer has a surface roughness Ra of 0.01 μm to 0.5 μm. preferable.
In this case, visibility can be ensured while preventing charging.
 本発明のインセル型IPS液晶表示装置は、上記のいずれかのカバーガラスを備えることを特徴とする。
 本発明によれば、カバーガラスで保護されたインセル型IPS液晶表示装置を得られる。
The in-cell type IPS liquid crystal display device of the present invention includes any one of the above cover glasses.
According to the present invention, an in-cell IPS liquid crystal display device protected by a cover glass can be obtained.
図1は本発明の一実施形態に係るカバーガラスの断面図である。FIG. 1 is a cross-sectional view of a cover glass according to an embodiment of the present invention. 図2は変形例に係るカバーガラスの断面図である。FIG. 2 is a cross-sectional view of a cover glass according to a modification. 図3は変形例に係るカバーガラスの断面図である。FIG. 3 is a cross-sectional view of a cover glass according to a modification. 図4(A)は変形例に係るカバーガラスの斜視図であり、図4(B)は図4(A)のB-B断面図である。4A is a perspective view of a cover glass according to a modified example, and FIG. 4B is a cross-sectional view taken along the line BB of FIG. 4A. 図5は変形例に係るカバーガラスの断面図である。FIG. 5 is a cross-sectional view of a cover glass according to a modification. 図6は本発明の一実施形態に係るカバーガラスを備える表示装置の部分断面図である。FIG. 6 is a partial cross-sectional view of a display device including a cover glass according to an embodiment of the present invention.
 以下、本発明の一実施形態について図面を参照して説明する。
 なお、本明細書で範囲を「a~b」と表現した場合は、a以上b以下の範囲を表し、下限値aと上限値bをそれぞれ含む範囲を意味すると解釈する。
〔カバーガラスの構成〕
 まず、カバーガラスの構成について説明する。
 図1に示すカバーガラス1は、化学強化ガラス2と、指紋防止処理層81を備える。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In addition, when the range is expressed as “a to b” in the present specification, the range is a to b and is interpreted to mean a range including the lower limit value a and the upper limit value b.
[Composition of cover glass]
First, the configuration of the cover glass will be described.
A cover glass 1 shown in FIG. 1 includes a chemically strengthened glass 2 and a fingerprint prevention treatment layer 81.
 化学強化ガラス2は平面視で矩形であり、可視光が透過する。化学強化ガラス2は、第1の主面21と、第2の主面22と、端面23とを備える。端面23には、面取り部24が設けられる。 The chemically strengthened glass 2 has a rectangular shape in plan view and transmits visible light. The chemically strengthened glass 2 includes a first main surface 21, a second main surface 22, and an end surface 23. A chamfered portion 24 is provided on the end surface 23.
 化学強化ガラス2は圧縮応力層25、32および引張応力層27を備える。圧縮応力層25、32は圧縮応力が作用する層(圧縮応力が0MPa以上の層)である。圧縮応力層25は第1の主面21側の表面に設けられ、圧縮応力層32は、第2の主面22側の表面に設けられる。圧縮応力層は端面23にも設けられるが、ここでは説明を省略する。
 引張応力層27は、引張応力が作用する層(圧縮応力が0MPa未満の層)である。引張応力層27は、圧縮応力層25と圧縮応力層32の間に設けられる。
The chemically strengthened glass 2 includes compressive stress layers 25 and 32 and a tensile stress layer 27. The compressive stress layers 25 and 32 are layers on which a compressive stress acts (a layer having a compressive stress of 0 MPa or more). The compressive stress layer 25 is provided on the surface on the first main surface 21 side, and the compressive stress layer 32 is provided on the surface on the second main surface 22 side. Although the compressive stress layer is also provided on the end face 23, description thereof is omitted here.
The tensile stress layer 27 is a layer on which a tensile stress acts (a layer having a compressive stress of less than 0 MPa). The tensile stress layer 27 is provided between the compressive stress layer 25 and the compressive stress layer 32.
 化学強化ガラス2の引張応力層27の含有する全アルカリ金属のうち、Liのモル数が最も多い。Liのモル数が最も多い組成であることにより、圧縮応力層25、32は、化学強化の際に、Liよりイオン半径の大きいKやNaをより多く含有できる。Liのモル数は、より好ましくはNaのモル数に対して0.5倍以上、さらに好ましくは0.8以上である。 Among the total alkali metals contained in the tensile stress layer 27 of the chemically strengthened glass 2, the number of moles of Li is the largest. Due to the composition having the largest number of moles of Li, the compressive stress layers 25 and 32 can contain more K and Na having a larger ion radius than Li during chemical strengthening. The number of moles of Li is more preferably 0.5 times or more, more preferably 0.8 or more, relative to the number of moles of Na.
 化学強化ガラス2の圧縮応力層25、32の深さDOL(Depth of Layer)は60μm以上である。DOLが60μm以上であることにより、外部から衝撃が加えられた場合に、衝撃による変形が引張応力層まで伝わり難くなり、ガラス表面の耐衝撃性を高めることができる。
 DOLは、より好ましくは80μm~250μmである。
 DOLは、理論上は、板厚方向において、表面から圧縮応力が0MPaの位置までの深さを意味するが、EPMA(electron probe micro analyzer、電子線マイクロアナライザー)にてガラスの深さ方向のアルカリイオン濃度分析(この例の場合は化学強化で拡散したイオンの濃度分析)を行い、測定により得られたイオン拡散深さをDOLとみなすことができる。また、DOLは表面応力計(例えば、折原製作所製FSM-6000)等を用いても測定できる。
The depth DOL (Depth of Layer) of the compressive stress layers 25 and 32 of the chemically strengthened glass 2 is 60 μm or more. When the DOL is 60 μm or more, when an impact is applied from the outside, the deformation due to the impact becomes difficult to be transmitted to the tensile stress layer, and the impact resistance of the glass surface can be improved.
The DOL is more preferably 80 μm to 250 μm.
DOL theoretically means the depth from the surface to the position where the compressive stress is 0 MPa in the plate thickness direction, but the alkali in the depth direction of the glass by EPMA (electron probe micro analyzer, electron beam microanalyzer). An ion concentration analysis (concentration analysis of ions diffused by chemical strengthening in this example) is performed, and the ion diffusion depth obtained by measurement can be regarded as DOL. The DOL can also be measured using a surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho).
 化学強化ガラス2の引張応力層を構成する酸化物成分のうち、LiO、NaO、KOの濃度の合計をAモル%、Alの濃度をBモル%としたとき、Aが14.5以上、かつ、A×Bが120以上であるのが好ましい。Aが15~20、A×Bが170~300であるのがより好ましい。 Of the oxide components constituting the tensile stress layer of the chemically strengthened glass 2, when the total concentration of Li 2 O, Na 2 O, K 2 O is A mol% and the concentration of Al 2 O 3 is B mol% A is preferably 14.5 or more and A × B is 120 or more. More preferably, A is 15 to 20, and A × B is 170 to 300.
 なお、Aを質量で表す場合(引張応力層を構成する酸化物成分のうち、LiO、NaO、KOの濃度の合計をC質量%とする場合)は、LiO、NaO、KOの合計に対する各成分のモル比にもよるが、Cは11以上が好ましく、12~20がより好ましい。
 A×Bを質量で表す場合(引張応力層を構成する酸化物成分のうち、LiO、NaO、KOの濃度の合計をC質量%とし、Alの濃度をD質量%としてC×Dにより表す場合)も、LiO、NaO、KOの合計に対する各成分のモル比にもよるが、C×Dは140以上が好ましく、150~400がより好ましい。
 理由は以下の通りである。
In addition, when expressing A by mass (when the total concentration of Li 2 O, Na 2 O, and K 2 O among oxide components constituting the tensile stress layer is C mass%), Li 2 O, Depending on the molar ratio of each component to the total of Na 2 O and K 2 O, C is preferably 11 or more, more preferably 12 to 20.
When A × B is expressed by mass (among the oxide components constituting the tensile stress layer, the total concentration of Li 2 O, Na 2 O, K 2 O is C mass%, and the concentration of Al 2 O 3 is D If the weight percent represented by C × D) also, Li 2 O, Na 2 O , depending on the molar ratio of each component to the sum of K 2 O, C × D is preferably 140 or more, 150-400 Gayori preferable.
The reason is as follows.
 ガラスを構成する成分は、ガラスの骨格形成に寄与する成分(ネットワークフォーマーともいう)と、骨格形成に寄与しない成分とに大別できる。
 このうち、帯電を防止する観点からは、骨格形成に寄与しない成分が多い方が好ましい。骨格形成に寄与しない成分は、寄与する成分よりも、移動度が高いため、静電気と結びついて除電を行うと考えられるためである。LiO、NaO、KOは、ガラスにおいては、骨格形成に寄与しない成分であるので、これらの成分の含有量は多い方が好ましく、即ち上記A及びCは大きい方が好ましい。これがAを規定する根拠である。
 また、Alは、骨格形成に寄与する成分としても、寄与しない成分としてもふるまう。Alは、骨格形成に寄与する場合、LiO、NaO、KOと近接する傾向にある。AlがLiO、NaO、KOと近接すると、LiO、NaO、KOが骨格を形成する成分の間に入り込んで、骨格間の距離を拡張する。骨格間の距離が拡張されると、骨格形成に寄与しない成分が骨格間を移動しやすくなり、移動度が上昇するため、好ましい。これがA×Bを規定する理由である。
Components constituting glass can be broadly classified into components that contribute to glass skeleton formation (also referred to as network formers) and components that do not contribute to skeleton formation.
Among these, from the viewpoint of preventing charging, it is preferable that there are many components that do not contribute to skeleton formation. This is because the component that does not contribute to the skeleton formation has higher mobility than the contributing component, and is considered to perform static elimination in combination with static electricity. Since Li 2 O, Na 2 O, and K 2 O are components that do not contribute to skeleton formation in glass, the content of these components is preferably large, that is, the above-described A and C are preferably large. This is the basis for defining A.
Further, Al 2 O 3 behaves as a component that contributes to skeleton formation and a component that does not contribute. When Al 2 O 3 contributes to skeleton formation, it tends to be close to Li 2 O, Na 2 O, and K 2 O. When al 2 O 3 is Li 2 O, Na 2 O, close to the K 2 O, Li 2 O, Na 2 O, K 2 O is enters between the components forming the skeleton, to extend the distance between the backbone . Extending the distance between the skeletons is preferable because components that do not contribute to the skeleton formation easily move between the skeletons and the mobility increases. This is the reason for defining A × B.
 なお、摩擦帯電は、圧縮応力層25の表面で生じる現象であるが、引張応力層27の好ましい組成を規定する理由は以下の通りである。
 摩擦帯電に影響するのはガラスの骨格であるため、本来はガラスの構造を規定するのが望ましい。しかしながら、ガラスは非晶質であり、構造を特定し難い場合があるため、組成で規定するのが好ましい。一方で、圧縮応力層25は化学強化により、イオン交換が行われているため、引張応力層27とは組成が異なるが、ガラスのネットワーク構造は同じである。仮に圧縮応力層25の組成と同じ組成のガラスを化学強化なしで製造すると、ネットワーク構造が異なってしまうため、圧縮応力層25の組成で圧縮応力層25の構造を特定することは困難である。よって、引張応力層27の組成を特定することにより、引張応力層27の構造を特定し、化学強化しても引張応力層27と圧縮応力層25の構造が変わらないことを利用して、引張応力層27の組成から圧縮応力層25の構造を特定する。
The triboelectric charge is a phenomenon that occurs on the surface of the compressive stress layer 25. The reason for defining a preferred composition of the tensile stress layer 27 is as follows.
Since it is the skeleton of the glass that affects the triboelectric charge, it is originally desirable to define the glass structure. However, since glass is amorphous and it may be difficult to specify the structure, it is preferable to define it by composition. On the other hand, since the compressive stress layer 25 is subjected to ion exchange by chemical strengthening, the composition is different from that of the tensile stress layer 27, but the network structure of glass is the same. If a glass having the same composition as the composition of the compressive stress layer 25 is manufactured without chemical strengthening, the network structure is different. Therefore, it is difficult to specify the structure of the compressive stress layer 25 by the composition of the compressive stress layer 25. Therefore, by specifying the composition of the tensile stress layer 27, the structure of the tensile stress layer 27 is specified, and the structure of the tensile stress layer 27 and the compressive stress layer 25 does not change even when chemically strengthened. The structure of the compressive stress layer 25 is specified from the composition of the stress layer 27.
 化学強化ガラス2の引張応力層27を構成する酸化物成分のうち、SiO、Al、B、Pの濃度の合計は81モル%以下であるのが好ましい。これらの元素はガラスの骨格形成に寄与する成分であるため、含有量が少ない方が、除電に寄与する成分が多くなるためである。また、これらの成分の含有量が少ない方が、骨格を形成する成分間の距離が広くなり、骨格形成に寄与しない成分の移動度が上がるためでもある。
 なお、摩擦帯電は、圧縮応力層25の表面で生じる現象であるが、引張応力層の好ましい組成を規定する理由は、AやA×Bを規定する理由と同じである。
Of the oxide components constituting the tensile stress layer 27 of the chemically strengthened glass 2, the total concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 is preferably 81 mol% or less. This is because these elements are components that contribute to the formation of a glass skeleton, and the smaller the content, the more components that contribute to static elimination. In addition, the smaller the content of these components, the wider the distance between the components forming the skeleton, and the higher the mobility of the components that do not contribute to the skeleton formation.
The triboelectric charge is a phenomenon that occurs on the surface of the compressive stress layer 25, but the reason for defining the preferred composition of the tensile stress layer is the same as the reason for defining A and A × B.
 なお、SiO、Al、B、Pの濃度の合計を質量%で表す場合は、これらの合計に対する各成分のモル比にもよるが、これらの成分の含有量の合計は82質量%以下が好ましく、70質量%~81質量%がより好ましい。 In the case that is the total concentration of SiO 2, Al 2 O 3, B 2 O 3, P 2 O 5 in wt%, depending on the molar ratio of the components for these total content of these components The total amount is preferably 82% by mass or less, and more preferably 70% by mass to 81% by mass.
 より具体的には、引張応力層27の組成は、酸化物基準の質量百分率表示で、SiOを55%~68%、Alを10%~25%、Bを0%~5%、Pを0%~15%、LiOを0%~8%、NaOを1%~20%、KOを0.1%~10%、M
gOを0%~10%、CaOを0%~5%、SrOを0%~5%、BaOを0%~5%、ZnOを0%~5%、TiOを0%~1%、ZrOを0%~5%、及びFeを0.005%~0.1%含有するガラス組成が好ましい。
 引張応力層27の組成は、化学分析、吸光光度分析、原子吸光分析、蛍光X線分析等の、公知の組成分析方法で定量できる。測定位置は、引張応力層27の任意の位置でよいが、ガラス基板の厚さ方向の中心位置で、かつ平面上の重心位置が好ましい。
More specifically, the composition of the tensile stress layer 27 is expressed in terms of mass percentage on the basis of oxide, and SiO 2 is 55% to 68%, Al 2 O 3 is 10% to 25%, and B 2 O 3 is 0%. ~ 5%, P 2 O 5 0% ~ 15%, Li 2 O 0% ~ 8%, Na 2 O 1% ~ 20%, K 2 O 0.1% ~ 10%, M
gO 0% to 10%, CaO 0% to 5%, SrO 0% to 5%, BaO 0% to 5%, ZnO 0% to 5%, TiO 2 0% to 1%, ZrO 2 from 0% to 5%, and Fe 2 O 3 glass composition containing 0.005% to 0.1% is preferred.
The composition of the tensile stress layer 27 can be quantified by a known composition analysis method such as chemical analysis, spectrophotometric analysis, atomic absorption analysis, or fluorescent X-ray analysis. The measurement position may be an arbitrary position of the tensile stress layer 27, but is preferably the center position in the thickness direction of the glass substrate and the center of gravity on the plane.
 上述した引張応力層27の好ましいガラス組成における各成分について、以下に説明する。なお、以下のガラス組成の説明において特に注意のない場合は、%で表された含有量は、酸化物基準の質量百分率表示での含有量を意味する。 Each component in the preferable glass composition of the tensile stress layer 27 described above will be described below. In the following description of the glass composition, unless otherwise noted, the content expressed in% means the content in terms of oxide based mass percentage.
 SiOはガラスの骨格を構成する成分である。また、SiOは化学的耐久性を上げる成分であり、ガラス表面に傷(圧痕)がついた時のクラックの発生を低減させる成分である。クラックの発生を抑制するために、SiO含有量は55%以上が好ましく、56%以上がより好ましく、56.5%以上がさらに好ましく、58%以上が特に好ましい。一方、ガラス中で除電に寄与する元素の移動度を向上させるため、およびガラス製造工程における溶融性を向上させるためには、SiO含有量は68%以下が好ましく、より好ましくは65%以下、さらに好ましくは63%以下、特に好ましくは61%以下である。 SiO 2 is a component constituting the skeleton of glass. SiO 2 is a component that increases chemical durability, and is a component that reduces the occurrence of cracks when a scratch (indentation) is made on the glass surface. In order to suppress the occurrence of cracks, the SiO 2 content is preferably 55% or more, more preferably 56% or more, further preferably 56.5% or more, and particularly preferably 58% or more. On the other hand, in order to improve the mobility of elements contributing to static elimination in the glass and to improve the meltability in the glass production process, the SiO 2 content is preferably 68% or less, more preferably 65% or less, More preferably, it is 63% or less, Most preferably, it is 61% or less.
 Alは化学強化処理の際のイオン交換性能を向上させ、化学強化後の表面圧縮応力CSを大きくするために有効な成分である。また、Alはガラスの破壊靭性値を向上する効果がある。また、AlはガラスのTgを高くする成分であり、ヤング率を高くする成分でもある。さらに、Alはガラス中で除電に寄与する元素の移動度を向上させる効果も有する。これらの特性を高めるためには、Al含有量は10%以上が好ましく、12%以上がより好ましい。また破壊靭性値を大きくするためにはAl含有量は14%以上がさらに好ましい。一方、ガラス中で除電に寄与する元素の含有量を増やすという観点、およびガラスの耐酸性を保持し、失透温度を低くするという観点からは、Alの含有量は、好ましくは25%以下、より好ましくは23%以下である。 Al 2 O 3 is an effective component for improving the ion exchange performance during the chemical strengthening treatment and increasing the surface compressive stress CS after the chemical strengthening. Al 2 O 3 has an effect of improving the fracture toughness value of glass. Further, Al 2 O 3 is a component that increases the Tg of the glass and is also a component that increases the Young's modulus. Furthermore, Al 2 O 3 also has an effect of improving the mobility of elements that contribute to static elimination in glass. In order to enhance these properties, the Al 2 O 3 content is preferably 10% or more, and more preferably 12% or more. In order to increase the fracture toughness value, the Al 2 O 3 content is more preferably 14% or more. On the other hand, the content of Al 2 O 3 is preferably 25 from the viewpoint of increasing the content of elements contributing to static elimination in the glass and maintaining the acid resistance of the glass and lowering the devitrification temperature. % Or less, more preferably 23% or less.
 また、Alはリチウムアルミノシリケート結晶の構成成分である。曲げ成形時の結晶析出を抑制するためには、Alの含有量は好ましくは22%以下、より好ましくは20%以下、さらに好ましくは19%以下である。 Al 2 O 3 is a constituent component of the lithium aluminosilicate crystal. In order to suppress crystal precipitation during bending, the content of Al 2 O 3 is preferably 22% or less, more preferably 20% or less, and even more preferably 19% or less.
 Bは、ガラスの溶融性を向上させる成分である。また、Bはガラスのチッピング耐性を向上させる成分でもある。Bは必須ではないが、含有させる場合の含有量は、溶融性を向上するために、好ましくは0.1%以上、より好ましくは0.5%以上、さらに好ましくは1%以上である。一方、ガラス中で除電に寄与する元素の移動度を向上させるという観点、および溶融時に脈理が発生するのを防ぐという観点からは、Bの含有量は好ましくは5%以下、より好ましくは4%以下、さらに好ましくは3%以下であり、特に好ましくは2.5%以下である。 B 2 O 3 is a component that improves the meltability of the glass. B 2 O 3 is also a component that improves the chipping resistance of the glass. B 2 O 3 is not essential, but the content in the case of inclusion is preferably 0.1% or more, more preferably 0.5% or more, and further preferably 1% or more in order to improve the meltability. is there. On the other hand, the content of B 2 O 3 is preferably 5% or less from the viewpoint of improving the mobility of elements contributing to static elimination in glass and preventing the occurrence of striae during melting. Preferably it is 4% or less, More preferably, it is 3% or less, Most preferably, it is 2.5% or less.
 Pは、化学強化処理時のイオン交換性能、および、チッピング耐性を向上させる成分である。Pは必須ではないが、含有させる場合の含有量は、好ましくは0.1%以上、より好ましくは1%以上、さらに好ましくは2%以上である。一方、耐酸性を確保し、帯電を防止するためには、Pの含有量は好ましくは15%以下、より好ましくは10%以下、さらに好ましくは8%以下、さらに好ましくは6%以下、特に好ましくは4%以下である。 P 2 O 5 is a component that improves ion exchange performance and chipping resistance during chemical strengthening treatment. P 2 O 5 is not essential, but the content in the case of inclusion is preferably 0.1% or more, more preferably 1% or more, and further preferably 2% or more. On the other hand, in order to ensure acid resistance and prevent charging, the content of P 2 O 5 is preferably 15% or less, more preferably 10% or less, still more preferably 8% or less, and even more preferably 6% or less. Especially preferably, it is 4% or less.
 LiOは、硝酸ナトリウム等のナトリウム塩による化学強化処理で、表面圧縮応力層を形成させる成分である。また、LiOはガラス中で除電に寄与する物質でもある。
 LiOの含有量は、含有させる効果を得るためには0.1%以上が好ましく、より好ましくは1%以上、さらに好ましくは2%以上である。一方、耐候性を確保する観点からはLiOの含有量は8%以下が好ましい。また、曲げ成形時の結晶析出を抑制するためには、LiOの含有量は7%以下が好ましく、6%以下がより好ましい。
Li 2 O is a component that forms a surface compressive stress layer by chemical strengthening treatment with a sodium salt such as sodium nitrate. Li 2 O is also a substance that contributes to static elimination in the glass.
The content of Li 2 O is preferably 0.1% or more in order to obtain the effect of inclusion, more preferably 1% or more, and further preferably 2% or more. On the other hand, from the viewpoint of ensuring weather resistance, the Li 2 O content is preferably 8% or less. Further, in order to suppress crystal precipitation during bending, the Li 2 O content is preferably 7% or less, and more preferably 6% or less.
 NaOは、カリウム塩を用いる化学強化処理において表面圧縮応力層を形成させる成分であり、ガラスの溶融性を向上させ得る成分である。また、NaOはガラス中で除電に寄与する物質でもある。
 その効果を得るために、NaOの含有量は、1%以上が好ましく、より好ましくは1.5%以上、さらに好ましくは2%以上である。一方、表面圧縮応力CSを向上させるためには、NaOの含有量は20%以下が好ましく、16%以下がより好ましく、14%以下がさらに好ましく、8%以下が特に好ましい。
Na 2 O is a component that forms a surface compressive stress layer in a chemical strengthening treatment using a potassium salt, and is a component that can improve the meltability of glass. Na 2 O is also a substance that contributes to static elimination in the glass.
In order to obtain the effect, the content of Na 2 O is preferably 1% or more, more preferably 1.5% or more, and further preferably 2% or more. On the other hand, in order to improve the surface compressive stress CS, the content of Na 2 O is preferably 20% or less, more preferably 16% or less, further preferably 14% or less, and particularly preferably 8% or less.
 KOは、ガラスの溶融性を向上させる物質である。また、KOはガラス中で除電に寄与する物質でもある。KOを含有させる場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.5%以上である。一方、化学強化ガラスの破砕性を確保するという観点からは、KOの含有量は8%以下が好ましく、5%以下がより好ましく、3%以下がさらに好ましい。 K 2 O is a substance that improves the meltability of glass. K 2 O is also a substance that contributes to static elimination in the glass. When K 2 O is contained, the content is preferably 0.1% or more, and more preferably 0.5% or more. On the other hand, from the viewpoint of ensuring the friability of chemically strengthened glass, the content of K 2 O is preferably 8% or less, more preferably 5% or less, and even more preferably 3% or less.
 MgOは必須ではないが、化学強化ガラスの表面圧縮応力CSを増大させるために、含有させることが好ましい。また、MgOは破壊靱性値を向上する効果がある。そのため、MgOの含有量は、好ましくは0.1%以上であり、より好ましくは、0.5%以上、さらに好ましくは2%以上である。一方、ガラス溶融時の失透を抑制するために、MgOの含有量は10%以下が好ましく、8%以下がより好ましく、6%以下がさらに好ましい。 MgO is not essential, but is preferably contained in order to increase the surface compressive stress CS of the chemically strengthened glass. MgO has the effect of improving the fracture toughness value. Therefore, the content of MgO is preferably 0.1% or more, more preferably 0.5% or more, and further preferably 2% or more. On the other hand, in order to suppress devitrification at the time of glass melting, the content of MgO is preferably 10% or less, more preferably 8% or less, and further preferably 6% or less.
 CaOは必須ではないが、ガラスの溶融性を向上させる成分であり、含有させてもよい。CaOを含有させる場合の含有量は、好ましくは0.05%以上であり、より好ましくは0.1%以上、さらに好ましくは0.15%以上である。一方、化学強化処理時のイオン交換性能を確保する観点からは、CaOの含有量は3.5%以下が好ましく、2.0%以下がより好ましく1.5%以下がさらに好ましい。 CaO is not essential, but is a component that improves the meltability of the glass and may be contained. The content when CaO is contained is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.15% or more. On the other hand, from the viewpoint of ensuring the ion exchange performance during the chemical strengthening treatment, the CaO content is preferably 3.5% or less, more preferably 2.0% or less, and even more preferably 1.5% or less.
 SrOは必須ではないが、ガラスの溶融性を向上させる成分であり、含有させてもよい。SrOを含有させる場合の含有量は、好ましくは0.05%以上、より好ましくは0.1%以上、さらに好ましくは0.5%以上である。一方、化学強化処理時のイオン交換性能を高くするために、SrOの含有量は5%以下が好ましく、3.5%以下がより好ましく、2%以下がさらに好ましく、実質的に含有しないことが特に好ましい。 SrO is not essential, but is a component that improves the meltability of the glass and may be contained. When SrO is contained, the content is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.5% or more. On the other hand, in order to increase the ion exchange performance during the chemical strengthening treatment, the content of SrO is preferably 5% or less, more preferably 3.5% or less, further preferably 2% or less, and substantially no content. Particularly preferred.
 BaOは必須ではないがガラスの溶融性を向上させる成分であり、含有させてもよい。BaOを含有させる場合の含有量は、好ましくは0.1%以上、より好ましくは0.5%以上、さらに好ましくは1%以上である。一方、化学強化処理時のイオン交換性能を高くするために、BaOの含有量は5%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましく、実質的に含有しないことがさらに好ましい。 BaO is not essential, but is a component that improves the meltability of the glass, and may be contained. The content when BaO is contained is preferably 0.1% or more, more preferably 0.5% or more, and further preferably 1% or more. On the other hand, in order to increase the ion exchange performance during the chemical strengthening treatment, the content of BaO is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less, and still more preferably not contained. .
 ZnOはガラスの溶融性を向上させる成分であり、含有させてもよい。ZnOを含有させる場合の含有量は、好ましくは0.05%以上であり、より好ましくは0.1%以上である。一方、ZnO含有量が5%以下であるとガラスの耐候性を高くできるので好ましい。ZnOの含有量は3%以下がより好ましく、さらに好ましくは1%以下であり、実質的に含有しないことが特に好ましい。 ZnO is a component that improves the meltability of the glass and may be contained. Content in the case of containing ZnO becomes like this. Preferably it is 0.05% or more, More preferably, it is 0.1% or more. On the other hand, if the ZnO content is 5% or less, the weather resistance of the glass can be increased, which is preferable. The content of ZnO is more preferably 3% or less, still more preferably 1% or less, and particularly preferably not contained.
 TiOは、ソラリゼーションによるガラスの色調変化を抑制する成分であり、含有させてもよい。TiOを含有させる場合の含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上、さらに好ましくは0.05%以上、特に好ましくは0.1%以上である。一方、溶融時の失透を抑制するためにはTiOの含有量は1%以下が好ましく、より好ましくは0.5%以下、さらに好ましくは0.2%以下である。 TiO 2 is a component that suppresses the color tone change of the glass due to solarization, and may be contained. The content in the case of containing TiO 2 is preferably 0.01% or more, more preferably 0.03% or more, still more preferably 0.05% or more, and particularly preferably 0.1% or more. On the other hand, in order to suppress devitrification at the time of melting, the content of TiO 2 is preferably 1% or less, more preferably 0.5% or less, and still more preferably 0.2% or less.
 ZrOは、化学強化処理時にイオン交換による表面圧縮応力CSを増大させる成分であり、含有させてもよい。ZrOを含有させる場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.5%以上、さらに好ましくは1%以上である。一方、溶融時の失透を抑制し、化学強化ガラスの品質を高めるためには、ZrOの含有量は5%以下が好ましく、より好ましくは3%以下であり、特に好ましくは2.5%以下である。 ZrO 2 is a component that increases the surface compressive stress CS due to ion exchange during the chemical strengthening treatment, and may be contained. When ZrO 2 is contained, the content is preferably 0.1% or more, more preferably 0.5% or more, and further preferably 1% or more. On the other hand, in order to suppress devitrification at the time of melting and improve the quality of chemically strengthened glass, the content of ZrO 2 is preferably 5% or less, more preferably 3% or less, and particularly preferably 2.5%. It is as follows.
 Feは熱線を吸収するのでガラスの溶解性を向上させる効果があり、大型の溶解窯を用いてガラスを大量生産する場合には、含有することが好ましい。その場合の含有量は好ましくは0.005%以上、より好ましくは0.006%以上、さらに好ましくは0.007%以上である。一方、過剰に含有すると着色が生じるので、ガラスの透明性を高めるためにはFeの含有量は0.1%以下が好ましく、より好ましくは0.05%以下、さらに好ましくは0.02%以下、特に好ましくは0.015%以下である。
 なお、ここではガラス中の鉄酸化物をすべてFeとして説明したが、実際には、酸化状態のFe(III)と還元状態のFe(II)が混在しているのが普通である。このうちFe(III)は黄色の着色を生じ、Fe(II)は青色の着色を生じ、両者のバランスでガラスに緑色の着色が生じる。
Since Fe 2 O 3 absorbs heat rays, it has an effect of improving the solubility of the glass, and it is preferably contained when the glass is mass-produced using a large melting furnace. In that case, the content is preferably 0.005% or more, more preferably 0.006% or more, and still more preferably 0.007% or more. On the other hand, since coloring occurs when the content is excessive, the content of Fe 2 O 3 is preferably 0.1% or less, more preferably 0.05% or less, and still more preferably 0.8% in order to increase the transparency of the glass. It is 02% or less, particularly preferably 0.015% or less.
Here, all the iron oxides in the glass have been described as Fe 2 O 3 , but in actuality, it is common that Fe (III) in the oxidized state and Fe (II) in the reduced state are mixed. . Among these, Fe (III) produces yellow coloration, Fe (II) produces blue coloration, and a green coloration occurs on the glass in a balance between the two.
 化学強化ガラス2にY、La、Nbを含有させてもよい。これらの成分を含有させる場合の合計の含有量は、好ましくは0.01%以上であり、より好ましくは0.05%以上、さらに好ましくは0.1%以上であり、特に好ましくは0.15%以上、最も好ましくは1%以上である。一方、Y、La、Nbの含有量が多すぎると、溶融時にガラスが失透しやすくなり、化学強化ガラスの品質が低下する恐れがあるため、これらの含有量は合計で7%以下とすることが好ましい。Y、La、Nbの含有量の合計は、より好ましくは6%以下、さらに好ましくは5%以下、特に好ましくは4%以下であり、最も好ましくは3.5%以下である。 A chemically tempered glass 2 Y 2 O 3, La 2 O 3, Nb 2 O 5 may be contained. The total content when these components are contained is preferably 0.01% or more, more preferably 0.05% or more, still more preferably 0.1% or more, and particularly preferably 0.15. % Or more, most preferably 1% or more. On the other hand, if the content of Y 2 O 3 , La 2 O 3 , and Nb 2 O 5 is too large, the glass tends to be devitrified at the time of melting, and the quality of the chemically strengthened glass may be lowered. The total amount is preferably 7% or less. The total content of Y 2 O 3 , La 2 O 3 , and Nb 2 O 5 is more preferably 6% or less, further preferably 5% or less, particularly preferably 4% or less, and most preferably 3.5%. % Or less.
 Ta、Gdは、化学強化ガラスの破砕性を改善するために少量含有してもよいが、屈折率や反射率が高くなるのでこれらの含有量は合計で5%以下が好ましく、2%以下がより好ましく、含有しないことがさらに好ましい。 Ta 2 O 5 and Gd 2 O 3 may be contained in a small amount in order to improve the crushability of the chemically strengthened glass. However, since the refractive index and the reflectance are increased, the total content thereof is 5% or less. Preferably, it is more preferably 2% or less, and further preferably not contained.
 さらに、ガラスに着色する場合は、所望の化学強化特性の達成を阻害しない範囲において着色成分を添加してもよい。着色成分としては、例えば、Co、MnO、NiO、CuO、Cr、V、Bi、SeO、CeO、Er、Nd等が好適なものとして挙げられる。
 着色成分の含有量は合計で7%以下であると失透等の問題が生じにくいので好ましい。この含量は好ましくは5%以下であり、より好ましくは3%以下であり、さらに好ましくは2%以下である。ガラスの可視光透過率を優先させる場合は、これらの成分は実質的に含有しないことが好ましい。
Furthermore, when coloring glass, a coloring component may be added within a range that does not hinder achievement of desired chemical strengthening properties. Examples of the coloring component include Co 3 O 4 , MnO 2 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , CeO 2 , Er 2 O 3 , Nd 3 O 3 and the like. Are mentioned as preferred.
The total content of the coloring components is preferably 7% or less because problems such as devitrification hardly occur. This content is preferably 5% or less, more preferably 3% or less, and even more preferably 2% or less. When giving priority to the visible light transmittance of glass, it is preferable that these components are not substantially contained.
 ガラスの溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。Asは環境負荷が大きいので含有しないことが好ましい。Sbを含有する場合は、1%以下が好ましく、0.5%以下がより好ましく、含有しないことが最も好ましい。 As a fining agent for melting the glass, SO 3 , chloride, fluoride and the like may be appropriately contained. Since As 2 O 3 has a large environmental load, it is preferable not to contain it. When Sb 2 O 3 is contained, it is preferably 1% or less, more preferably 0.5% or less, and most preferably not contained.
 化学強化ガラス2の表面圧縮応力CSは300MPa~1500MPaが好ましい。
 CSが300MPa以上であることにより、カバーガラスとして必要な曲げ強度を保持することできる。CSが1500MPa以下であることにより、割れたときに粉々に飛散することを防ぐことができる。CSはより好ましくは800MPa~1200MPaである。
 表面圧縮応力CSは、ここではガラス最表面の圧縮応力を意味する。表面圧縮応力CSは、表面応力計(例えば、折原製作所製FSM-6000)等を用いて測定できる。
The surface compressive stress CS of the chemically strengthened glass 2 is preferably 300 MPa to 1500 MPa.
When CS is 300 MPa or more, the bending strength necessary for the cover glass can be maintained. When CS is 1500 MPa or less, it can be prevented from being shattered when broken. CS is more preferably 800 MPa to 1200 MPa.
Here, the surface compressive stress CS means the compressive stress on the outermost surface of the glass. The surface compressive stress CS can be measured using a surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho).
 化学強化ガラス2の内部引張応力CTは20MPa~100MPaであるのが好ましい。
 CTが20MPa以上であることにより、反作用として存在する圧縮応力が適切な応力値と深さである状態を達成できる。CTが100MPa以下であることにより、割れたときに粉々に飛散することを防ぐことができる。CTはより好ましくは40MPa~85MPaである。
 内部引張応力CTは、カバーガラス1の厚みをtとすると、関係式CT=(CS×DOL)/(t-2×DOL)により近似的に求められる。
The internal tensile stress CT of the chemically strengthened glass 2 is preferably 20 MPa to 100 MPa.
When CT is 20 MPa or more, it is possible to achieve a state in which the compressive stress existing as a reaction has an appropriate stress value and depth. When CT is 100 MPa or less, scattering can be prevented when broken. CT is more preferably 40 MPa to 85 MPa.
The internal tensile stress CT is approximately obtained by the relational expression CT = (CS × DOL) / (t−2 × DOL), where t is the thickness of the cover glass 1.
 指紋防止処理層81は、第1の主面21に人間の指が触れた際に、指紋、皮脂、汗等による汚れが付着するのを低減する層である。 The fingerprint prevention treatment layer 81 is a layer that reduces the adhesion of dirt due to fingerprints, sebum, sweat, and the like when a human finger touches the first main surface 21.
 指紋防止処理層81の構成材料は、防汚性、撥水性、撥油性を付与できるフッ素含有有機化合物等から適宜選択できる。具体的には、含フッ素有機ケイ素化合物や、含フッ素加水分解性ケイ素化合物が挙げられる。フッ素含有有機化合物は、防汚性、撥水性および撥油性を付与できれば、特に制限なく使用できる。
 なお、フッ素含有有機化合物は、本来は化学強化ガラス上に形成すると、指で触れた際に帯電しやすい特性を有するが、本実施形態では、指紋防止処理層81の表面の摩擦帯電量が0kV以下、-1.5kV以上であるため、帯電を抑制できる。
The constituent material of the fingerprint prevention treatment layer 81 can be appropriately selected from fluorine-containing organic compounds that can impart antifouling properties, water repellency, and oil repellency. Specific examples include fluorine-containing organic silicon compounds and fluorine-containing hydrolyzable silicon compounds. The fluorine-containing organic compound can be used without particular limitation as long as it can impart antifouling properties, water repellency and oil repellency.
Note that the fluorine-containing organic compound originally has a characteristic of being easily charged when touched with a finger when formed on chemically strengthened glass. In this embodiment, the triboelectric charge amount on the surface of the fingerprint prevention treatment layer 81 is 0 kV. Hereinafter, since it is −1.5 kV or more, charging can be suppressed.
 指紋防止処理層81を形成する含フッ素有機ケイ素化合物被膜は、化学強化ガラス2の第1の主面21に形成される。または、第1の主面21に防眩層を形成し、その表面に反射防止層が形成される場合には、当該反射防止層の表面に指紋防止処理層81が形成されることが好ましい。また、化学強化ガラス2の第1の主面21に防眩処理等の表面処理が施され、反射防止層が形成されないガラス基板を用いる場合には、含フッ素有機ケイ素化合物被膜は、これら表面処理の施された面に直接形成されることが好ましい。 The fluorine-containing organosilicon compound film forming the fingerprint prevention treatment layer 81 is formed on the first main surface 21 of the chemically strengthened glass 2. Alternatively, when an antiglare layer is formed on the first main surface 21 and an antireflection layer is formed on the surface, it is preferable that an anti-fingerprint treatment layer 81 is formed on the surface of the antireflection layer. In addition, when a glass substrate on which the first main surface 21 of the chemically strengthened glass 2 is subjected to a surface treatment such as an antiglare treatment and an antireflection layer is not used, the fluorine-containing organosilicon compound coating is used for these surface treatments. It is preferable to be formed directly on the surface provided with.
 含フッ素有機ケイ素化合物被膜の形成に用いる含フッ素加水分解性ケイ素化合物は、得られる含フッ素有機ケイ素化合物被膜が、撥水性、撥油性等の防汚性を有するものであれば特に制限はない。具体的には、パーフルオロポリエーテル基、パーフルオロアルキレン基、およびパーフルオロアルキル基からなる群から選ばれる、1つ以上の基を有する、含フッ素加水分解性ケイ素化合物が挙げられる。 The fluorine-containing hydrolyzable silicon compound used for forming the fluorine-containing organic silicon compound film is not particularly limited as long as the resulting fluorine-containing organic silicon compound film has antifouling properties such as water repellency and oil repellency. Specific examples include fluorine-containing hydrolyzable silicon compounds having one or more groups selected from the group consisting of perfluoropolyether groups, perfluoroalkylene groups, and perfluoroalkyl groups.
 指紋防止処理層81を形成する材料としては、具体的には例えば、市販されている「KP-801」(商品名、信越化学工業株式会社製)、「X-71」(商品名、信越化学工業株式会社製)、「KY-130」(商品名、信越化学工業株式会社製)、「KY-178」(商品名、信越化学工業株式会社製)、「KY-185」(商品名、信越化学工業株式会社製)、「KY-195」(商品名、信越化学工業株式会社製)、「オプツール(登録商標)、DSX(商品名、ダイキン工業株式会社製)等を使用できる。さらに、これらの市販品にオイルや帯電防止剤を添加して使用することもできる。 Specific examples of materials for forming the anti-fingerprint treatment layer 81 include “KP-801” (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) and “X-71” (trade name, Shin-Etsu Chemical) that are commercially available. Kogyo Co., Ltd.), "KY-130" (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), "KY-178" (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), "KY-185" (trade name, Shin-Etsu Chemical) Chemical Industry Co., Ltd.), “KY-195” (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), “OPTOOL (registered trademark)”, DSX (trade name, manufactured by Daikin Industries, Ltd.), etc. It is also possible to add oils and antistatic agents to commercially available products.
 指紋防止処理層81の層厚は、特に制限されないが、2nm~20nmが好ましく、2nm~15nmがより好ましく、3nm~10nmがさらに好ましい。層厚が2nm以上であれば、指紋防止処理層81によって反射防止層の表面が均一に覆われた状態となり、指紋防止性、耐擦り性が実用に耐えるものとなる。また、層厚が20nm以下であれば、指紋防止処理層81が積層された状態での視感反射率やヘイズ値等の光学特性が良好である。 The layer thickness of the anti-fingerprint treatment layer 81 is not particularly limited, but is preferably 2 nm to 20 nm, more preferably 2 nm to 15 nm, and further preferably 3 nm to 10 nm. When the layer thickness is 2 nm or more, the surface of the antireflection layer is uniformly covered by the anti-fingerprint treatment layer 81, and the anti-fingerprint and abrasion resistance can withstand practical use. Further, when the layer thickness is 20 nm or less, the optical characteristics such as luminous reflectance and haze value in the state where the anti-fingerprinting treatment layer 81 is laminated are good.
 カバーガラス1の指紋防止処理層81表面での摩擦帯電量は0kV以下、-1.5kV以上である。ここでいう摩擦帯電量は、JIS L1094:2014に記載のD法(摩擦帯電減衰測定法)により求められた、摩擦帯電量を意味する。フッ素系の指紋防止処理層は上記評価方法では負に帯電するが、-1.5kV以上であることにより、帯電を防止できる。
 当該摩擦帯電量は、より好ましくは0kV~-1kVである。
 以上が、カバーガラス1の構成の説明である。
The triboelectric charge amount on the surface of the fingerprint prevention treatment layer 81 of the cover glass 1 is 0 kV or less and −1.5 kV or more. The triboelectric charge amount here means the triboelectric charge amount obtained by the D method (friction charge attenuation measuring method) described in JIS L1094: 2014. Although the fluorine-based anti-fingerprint treatment layer is negatively charged in the above evaluation method, it can be prevented from being charged when it is −1.5 kV or more.
The triboelectric charge amount is more preferably 0 kV to −1 kV.
The above is the description of the configuration of the cover glass 1.
〔カバーガラス1の製造方法〕
 次に、カバーガラス1の製造方法の例について説明する。
[Production method of cover glass 1]
Next, an example of a method for manufacturing the cover glass 1 will be described.
 まず、化学強化ガラス2を製造する。
 化学強化ガラス2は、一般的なガラス製造方法によって製造された化学強化用ガラスを、化学強化処理して製造される。
 化学強化処理は、ガラスの表面にイオン交換処理を施し、圧縮応力を有する表面層を形成させる処理である。具体的には、化学強化用ガラスのガラス転移点以下の温度でイオン交換処理を行い、ガラス板表面付近に存在するイオン半径が小さな金属イオン(典型的には、LiイオンまたはNaイオン)を、イオン半径のより大きいイオン(典型的には、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオン)に置換する。
First, the chemically strengthened glass 2 is manufactured.
The chemically strengthened glass 2 is manufactured by chemically strengthening glass for chemical strengthening manufactured by a general glass manufacturing method.
A chemical strengthening process is a process which performs the ion exchange process on the surface of glass, and forms the surface layer which has a compressive stress. Specifically, an ion exchange treatment is performed at a temperature below the glass transition point of the chemically strengthened glass, and metal ions (typically Li ions or Na ions) having a small ion radius near the glass plate surface, Substitution with ions having a larger ionic radius (typically Na ions or K ions for Li ions and K ions for Na ions).
 化学強化ガラス2は、例えば前述の引張応力層27の組成を有する化学強化用ガラスを、化学強化処理して製造できる。
 なお、下記の製造方法は、板状の化学強化ガラスを製造する場合の例である。
The chemically strengthened glass 2 can be produced, for example, by chemically strengthening glass for chemical strengthening having the composition of the tensile stress layer 27 described above.
In addition, the following manufacturing method is an example in the case of manufacturing plate-shaped chemically strengthened glass.
 まず、ガラス原料を調合し、ガラス溶融窯で加熱溶融する。その後、バブリング、撹拌、清澄剤の添加等によりガラスを均質化し、従来公知の成形法により所定の厚さのガラス板に成形し、徐冷する。またはブロック状に成形して徐冷した後に切断する方法で板状に成形してもよい。 First, glass raw materials are prepared and heated and melted in a glass melting furnace. Thereafter, the glass is homogenized by bubbling, stirring, adding a clarifying agent, etc., formed into a glass plate having a predetermined thickness by a conventionally known forming method, and slowly cooled. Or you may shape | mold into a plate shape by the method of cut | disconnecting, after shape | molding in a block shape and gradually cooling.
 板状に成形する方法としては、例えば、フロート法、プレス法、フュージョン法及びダウンドロー法が挙げられる。特に、大型のガラス板を製造する場合は、フロート法が好ましい。また、フロート法以外の連続成形法、たとえば、フュージョン法及びダウンドロー法も好ましい。 Examples of the method for forming into a plate shape include a float method, a press method, a fusion method, and a downdraw method. In particular, when a large glass plate is produced, the float method is preferable. Further, continuous molding methods other than the float method, for example, a fusion method and a downdraw method are also preferable.
 その後、成形したガラスを所定の大きさに切断し、面取りを行う。平面視での面取り部24の寸法が、0.05mm以上0.5mm以下となるように面取りを行うことが好ましい。 Thereafter, the molded glass is cut into a predetermined size and chamfered. It is preferable to chamfer so that the dimension of the chamfered portion 24 in a plan view is 0.05 mm or more and 0.5 mm or less.
 次に、ガラス板を1回または2回程度(1段階または2段階程度)イオン交換処理することにより、化学強化を行い、圧縮応力層25、32および引張応力層27を形成する。
 化学強化工程では、処理に供するガラスを、そのガラス中に含まれるアルカリ金属イオン(例えば、ナトリウムイオン、または、リチウムイオン)より、イオン半径の大きなアルカリ金属イオンを含む溶融塩(例えば、カリウム塩、または、ナトリウム塩)と、ガラスの転移温度を超えない温度域で接触させる。
Next, the glass plate is subjected to ion exchange treatment once or twice (about one step or two steps) to perform chemical strengthening, and the compressive stress layers 25 and 32 and the tensile stress layer 27 are formed.
In the chemical strengthening step, a glass to be treated is a molten salt containing an alkali metal ion having a larger ionic radius than an alkali metal ion (for example, sodium ion or lithium ion) contained in the glass (for example, potassium salt, Or a sodium salt) is made to contact in the temperature range which does not exceed the transition temperature of glass.
 ガラス中のアルカリ金属イオンと、アルカリ金属塩のイオン半径の大きなアルカリ金属イオンとをイオン交換させ、アルカリ金属イオンの占有体積の差により、ガラス表面に圧縮応力を発生させ、圧縮応力層を形成する。ガラスを溶融塩と接触させる温度域はガラスの転移温度を超えない温度域であればよいが、ガラス転移点より50℃以下であることが好ましい。これによりガラスの応力緩和を防げる。 The alkali metal ions in the glass and the alkali metal ions having a large ion radius of the alkali metal salt are ion-exchanged, and a compressive stress is generated on the glass surface due to the difference in the occupied volume of the alkali metal ions to form a compressive stress layer. . Although the temperature range which makes glass contact with molten salt should just be a temperature range which does not exceed the transition temperature of glass, it is preferable that it is 50 degrees C or less from a glass transition point. Thereby, stress relaxation of the glass can be prevented.
 化学強化処理において、ガラスとアルカリ金属イオンを含む溶融塩とを接触させる処理温度および処理時間は、ガラスおよび溶融塩の組成に応じて適宜調整できる。溶融塩の温度は、通常350℃以上が好ましく、370℃以上がより好ましく、また、通常500℃以下が好ましく、450℃以下がより好ましい。 In the chemical strengthening treatment, the treatment temperature and treatment time for bringing the glass into contact with the molten salt containing alkali metal ions can be appropriately adjusted according to the composition of the glass and the molten salt. The temperature of the molten salt is usually preferably 350 ° C. or higher, more preferably 370 ° C. or higher, usually 500 ° C. or lower, more preferably 450 ° C. or lower.
 溶融塩の温度を350℃以上とすることにより、イオン交換速度の低下により化学強化が入りにくくなるのを防ぐ。また、溶融塩の温度を500℃以下とすることにより溶融塩の分解・劣化を抑制できる。 By setting the temperature of the molten salt to 350 ° C. or higher, it is possible to prevent chemical strengthening from becoming difficult due to a decrease in ion exchange rate. Moreover, decomposition | disassembly and deterioration of molten salt can be suppressed by making the temperature of molten salt into 500 degrees C or less.
 ガラスを溶融塩に接触させる時間は1回あたり、十分な圧縮応力を付与するためには、通常10分以上が好ましく、15分以上がより好ましい。また、長時間のイオン交換では、生産性が落ちるとともに、緩和により圧縮応力値が低下するため、ガラスを溶融塩に接触させる時間は1回あたり、通常20時間以下であり、16時間以下が好ましい。 The time for bringing the glass into contact with the molten salt is usually preferably 10 minutes or more and more preferably 15 minutes or more in order to give sufficient compressive stress per time. Moreover, in long-time ion exchange, productivity falls and the compressive stress value decreases due to relaxation. Therefore, the time for contacting the glass with the molten salt is usually 20 hours or less, preferably 16 hours or less. .
 化学強化の回数は、1回または2回を例示したが、目標とする圧縮応力層および引張応力層の物性(DOL、CS、CT)が得られるのであれば、特に回数は限定されない。3回以上の強化でもよい。また、2回の強化の間に、熱処理工程を行ってもよい。以下の説明では、3回化学強化を行う場合、および2回の強化の間に、熱処理工程を行う場合を3段階の強化と呼ぶ。
 3段階の強化は、例えば以下に説明する強化処理方法1または強化処理方法2により行うことができる。
The number of times of chemical strengthening is exemplified once or twice, but the number of times is not particularly limited as long as the physical properties (DOL, CS, CT) of the target compressive stress layer and tensile stress layer can be obtained. It may be strengthened 3 times or more. Moreover, you may perform the heat processing process between 2 strengthening. In the following description, the case where the chemical strengthening is performed three times and the case where the heat treatment process is performed between the two strengthening steps are referred to as three-step strengthening.
The three-stage strengthening can be performed by, for example, strengthening processing method 1 or strengthening processing method 2 described below.
 (強化処理方法1)
 強化処理方法1においては、まず、ナトリウム(Na)イオンを含む金属塩(第1の金属塩)に、LiOを含有する化学強化用ガラスを接触させて、金属塩中のNaイオンと、ガラス中のLiイオンとの、イオン交換を起こさせる。以下ではこのイオン交換処理を「1段目の処理」と呼ぶことがある。
 1段目の処理は、たとえば化学強化用ガラスを、350℃~500℃程度のNaイオンを含む金属塩(例えば硝酸ナトリウム)に、0.1時間~24時間程度浸漬する。生産性を向上するためには、1段目の処理時間は12時間以下が好ましく、6時間以下がより好ましい。
(Strengthening treatment method 1)
In the tempering treatment method 1, first, a glass for chemical strengthening containing Li 2 O is brought into contact with a metal salt containing sodium (Na) ions (first metal salt), and Na ions in the metal salt, Ion exchange occurs with Li ions in the glass. Hereinafter, this ion exchange process may be referred to as “first stage process”.
In the first stage treatment, for example, the glass for chemical strengthening is immersed in a metal salt (for example, sodium nitrate) containing Na ions at about 350 ° C. to 500 ° C. for about 0.1 to 24 hours. In order to improve productivity, the treatment time for the first stage is preferably 12 hours or less, and more preferably 6 hours or less.
 1段目の処理によって、ガラス表面に深い圧縮応力層が形成され、CSが200MPa以上、圧縮応力深さDOLが、板厚の1/8以上となるような応力プロファイルを形成できる。また、1段目の処理を終えた段階のガラスは、内部引張応力CTが大きいので破砕性が大きい。しかし、後の処理によって破砕性が改善されるので、この段階でのCTが大きいことはむしろ好ましい。1段目の処理を終えたガラスの内部引張応力CTは、90MPa以上が好ましく、100MPa以上がより好ましく、110MPa以上がさらに好ましい。圧縮応力層25の表面圧縮応力CSが大きくなるからである。 By the first step, a deep compressive stress layer is formed on the glass surface, and a stress profile can be formed such that CS is 200 MPa or more and the compressive stress depth DOL is 1/8 or more of the plate thickness. Moreover, since the glass of the stage which finished the process of the 1st step | stage has a large internal tensile stress CT, its crushability is large. However, it is preferable that the CT at this stage is large because the friability is improved by subsequent treatment. 90 MPa or more is preferable, as for the internal tensile stress CT of the glass which finished the process of the 1st step | paragraph, 100 MPa or more is more preferable, and 110 MPa or more is further more preferable. This is because the surface compressive stress CS of the compressive stress layer 25 increases.
 第1の金属塩はアルカリ金属塩であり、アルカリ金属イオンとしては、Naイオンを最も多く含有する。第1の金属塩はLiイオンを含有してもよいが、アルカリイオンのモル数100%に対して、Liイオンは2%以下が好ましく、1%以下がより好ましく、0.2%以下がさらに好ましい。また、第1の金属塩はKイオンを含有してもよい。第1の金属塩に含まれるアルカリイオンのモル数100%に対して、Kイオンは20%以下が好ましく、5%以下がより好ましい。 The first metal salt is an alkali metal salt and contains the most Na ions as the alkali metal ions. Although the first metal salt may contain Li ions, Li ions are preferably 2% or less, more preferably 1% or less, and more preferably 0.2% or less with respect to 100% of the number of moles of alkali ions. preferable. The first metal salt may contain K ions. The K ion is preferably 20% or less and more preferably 5% or less with respect to 100% of the number of moles of alkali ions contained in the first metal salt.
 次に、リチウム(Li)イオンを含有する金属塩(第2の金属塩)に、1段目の処理を終えたガラスを接触させ、金属塩中のLiイオンとガラス中のNaイオンとのイオン交換により、表層近傍の圧縮応力値を減少させる。この処理を「2段目の処理」と呼ぶことがある。
 具体的には、たとえば、350℃~500℃程度のNaとLiを含む金属塩(例えば硝酸ナトリウムと硝酸リチウムの混合塩)に、1段目の処理を終えたガラスを0.1時間~24時間程度浸漬する。生産性を向上するためには、2段目の処理時間は12時間以下が好ましく、6時間以下がより好ましい。
Next, the glass after finishing the first step is brought into contact with a metal salt containing lithium (Li) ions (second metal salt), and ions of Li ions in the metal salt and Na ions in the glass are contacted. The compressive stress value near the surface layer is reduced by the exchange. This process may be referred to as “second stage process”.
Specifically, for example, a glass that has undergone the first stage treatment with a metal salt containing Na and Li at about 350 ° C. to 500 ° C. (for example, a mixed salt of sodium nitrate and lithium nitrate) is used for 0.1 to 24 hours. Soak for about an hour. In order to improve productivity, the treatment time for the second stage is preferably 12 hours or less, and more preferably 6 hours or less.
 2段目の処理を終えたガラスは、内部の引っ張り応力を下げることができ、割れた際に激しい割れ方をしなくなる。 The glass after the second stage treatment can reduce the internal tensile stress and will not be severely cracked when broken.
 第2の金属塩は、アルカリ金属塩であり、アルカリ金属イオンとしてNaイオンとLiイオンを含有することが好ましい。また第2の金属塩は硝酸塩が好ましい。第2の金属塩に含まれるアルカリ金属イオンのモル数100%に対して、NaイオンとLiイオンの合計のモル数は、50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。Na/Liモル比を調整することで、DOL/4~DOL/2における応力プロファイルを制御できる。
 第2の金属塩のNa/Liモル比の最適値は、ガラス組成によって異なるが、0.3以上が好ましく、0.5以上がより好ましく、1以上がより好ましい。CTを小さくしつつ、圧縮応力層の圧縮応力値を大きくするためには、100以下であることが好ましく、60以下であることがより好ましく、40以下であることがさらに好ましい。
The second metal salt is an alkali metal salt, and preferably contains Na ions and Li ions as alkali metal ions. The second metal salt is preferably nitrate. The total number of moles of Na ions and Li ions is preferably 50% or more, more preferably 70% or more, and more preferably 80% or more with respect to 100% of the number of moles of alkali metal ions contained in the second metal salt. preferable. The stress profile in DOL / 4 to DOL / 2 can be controlled by adjusting the Na / Li molar ratio.
The optimum value of the Na / Li molar ratio of the second metal salt varies depending on the glass composition, but is preferably 0.3 or more, more preferably 0.5 or more, and more preferably 1 or more. In order to increase the compressive stress value of the compressive stress layer while reducing the CT, it is preferably 100 or less, more preferably 60 or less, and even more preferably 40 or less.
 第2の金属塩が、硝酸ナトリウム-硝酸リチウム混合塩の場合、硝酸ナトリウムと硝酸リチウムの質量比は、たとえば25:75~99:1が好ましく、50:50~98:2がより好ましく、70:30~97:3がさらに好ましい。 When the second metal salt is a sodium nitrate-lithium nitrate mixed salt, the mass ratio of sodium nitrate to lithium nitrate is preferably, for example, 25:75 to 99: 1, more preferably 50:50 to 98: 2, 70 : 30 to 97: 3 is more preferable.
 次に、カリウム(K)イオンを含む金属塩(第3の金属塩)に、2段目の処理を終えたガラスを接触させ、金属塩中のKイオンとガラス中のNaイオンとのイオン交換により、ガラス表面に大きな圧縮応力を発生させる。このイオン交換処理を「3段目の処理」と呼ぶことがある。
 具体的には、たとえば350℃~500℃程度のKイオンを含む金属塩(例えば硝酸カリウム)に2段目の処理を終えたガラスを0.1時間~10時間程度浸漬する。このプロセスにより、ガラス表層の0μm~10μm程度の領域に大きな圧縮応力を形成できる。
Next, the glass after finishing the second step is brought into contact with a metal salt containing potassium (K) ions (third metal salt), and ion exchange between K ions in the metal salt and Na ions in the glass is performed. Thus, a large compressive stress is generated on the glass surface. This ion exchange process may be referred to as a “third stage process”.
Specifically, for example, the glass after the second stage treatment is immersed in a metal salt (for example, potassium nitrate) containing K ions at about 350 to 500 ° C. for about 0.1 to 10 hours. By this process, a large compressive stress can be formed in the region of about 0 μm to 10 μm on the glass surface layer.
 3段目の処理はガラス表面の浅い部分の圧縮応力だけを大きくし、内部にはほとんど影響しないので、内部の引っ張り応力を抑制したままで、表層に大きな圧縮応力を形成できる。
 第3の金属塩はアルカリ金属塩であり、アルカリ金属イオンとして、Liイオンを含んでもよいが、第3の金属塩に含まれるアルカリ金属イオンのモル数100%に対して、Liイオンは2%以下が好ましく、1%以下がより好ましく、0.2%以下がさらに好ましい。また、Naイオンの含有量は2%以下が好ましく、1%以下がより好ましく0.2%以下がさらに好ましい。
Since the third stage treatment increases only the compressive stress in the shallow part of the glass surface and hardly affects the inside, a large compressive stress can be formed on the surface layer while suppressing the internal tensile stress.
The third metal salt is an alkali metal salt and may contain Li ions as alkali metal ions, but Li ions are 2% with respect to 100% of the number of moles of alkali metal ions contained in the third metal salt. The following is preferable, 1% or less is more preferable, and 0.2% or less is more preferable. The Na ion content is preferably 2% or less, more preferably 1% or less, and still more preferably 0.2% or less.
 強化処理方法1では、1段目~3段目の処理時間の総和を24時間以下にできるので、生産性が高く好ましい。処理時間の総和は15時間以下がより好ましく、10時間以下がさらに好ましい。 Enhance process 1 is preferable because the total processing time of the first to third stages can be reduced to 24 hours or less, so that productivity is high. The total treatment time is more preferably 15 hours or less, and even more preferably 10 hours or less.
 (強化処理方法2)
 強化処理方法2においては、まず、ナトリウム(Na)イオンを含む第1の金属塩に、LiOを含有する化学強化用ガラスを接触させて、金属塩中のNaイオンと、ガラス中のLiイオンとのイオン交換を起こさせる、1段目の処理を行う。
 1段目の処理については、強化処理方法1の場合と同様なので説明を省略する。
(Strengthening treatment method 2)
In the tempering treatment method 2, first, a chemically strengthening glass containing Li 2 O is brought into contact with a first metal salt containing sodium (Na) ions, so that Na ions in the metal salt and Li in the glass are in contact with each other. A first stage process for causing ion exchange with ions is performed.
Since the first stage process is the same as that in the case of the reinforcement process method 1, the description thereof is omitted.
 次に、1段目の処理を終えたガラスを金属塩に接触させずに熱処理する。これを2段目の処理と呼ぶ。
 2段目の処理は、たとえば1段目の処理を終えたガラスを、大気中で350℃以上の温度に一定時間保持して行う。保持温度は化学強化用ガラスの歪点以下の温度であり、1段目の処理温度より10℃高い温度以下が好ましく、1段目の処理温度と同じ温度がより好ましい。
 この処理によれば、1段目の処理でガラス表面に導入されたアルカリイオンが、熱拡散することでCTが低下すると考えられる。
Next, it heat-processes, without making the glass which finished the process of the 1st step contact a metal salt. This is called the second stage process.
The second stage treatment is performed, for example, by holding the glass after the first stage treatment in the atmosphere at a temperature of 350 ° C. or higher for a certain period of time. The holding temperature is a temperature below the strain point of the glass for chemical strengthening, preferably 10 ° C. or less higher than the first stage processing temperature, and more preferably the same temperature as the first stage processing temperature.
According to this process, it is considered that the alkali ions introduced to the glass surface in the first stage process thermally diffuse to reduce the CT.
 次に、カリウム(K)イオンを含む第3の金属塩に、2段目の処理を終えたガラスを接触させ、金属塩中のKイオンとガラス中のNaイオンとのイオン交換により、ガラス表面に大きな圧縮応力を発生させる。このイオン交換処理を「3段目の処理」と呼ぶことがある。
 3段目の処理については、強化処理方法1の場合と同様なので説明を省略する。
Next, the glass after finishing the second step is brought into contact with a third metal salt containing potassium (K) ions, and the glass surface is obtained by ion exchange between K ions in the metal salt and Na ions in the glass. A large compressive stress is generated. This ion exchange process may be referred to as a “third stage process”.
The third stage process is the same as that in the case of the strengthening process method 1, and the description thereof is omitted.
 強化処理方法2では、1段目~3段目の処理時間の総和を24時間以下にできるので、生産性が高く好ましい。処理時間の総和は15時間以下がより好ましく、10時間以下がさらに好ましい。 Enhance process 2 is preferable because the total processing time of the first to third stages can be reduced to 24 hours or less, so that productivity is high. The total treatment time is more preferably 15 hours or less, and even more preferably 10 hours or less.
 強化処理方法1によれば、2段目の処理に用いる第2の金属塩の組成や処理温度の調整により、応力プロファイルを精密に制御できる。
 強化処理方法2によれば、比較的簡単な処理により低コストで優れた特性の化学強化ガラスが得られる。
According to the strengthening treatment method 1, the stress profile can be precisely controlled by adjusting the composition of the second metal salt used in the second stage treatment and the treatment temperature.
According to the tempering method 2, a chemically strengthened glass having excellent characteristics can be obtained at a low cost by a relatively simple treatment.
 化学強化処理の処理条件は、ガラスの特性・組成や溶融塩の種類などを考慮して、時間及び温度等を適切に選択すればよい。
 以上の手順で化学強化ガラス2が製造される。
The treatment conditions for the chemical strengthening treatment may be appropriately selected in terms of time, temperature, etc. in consideration of the characteristics / composition of the glass and the type of molten salt.
The chemically strengthened glass 2 is manufactured by the above procedure.
 次に、化学強化ガラス2の第1の主面21に、指紋防止処理層81を形成する。
 指紋防止処理層81の形成方法としては、フッ素含有有機化合物等を真空槽内で蒸発させて、反射防止層の表面に付着させる真空蒸着法(乾式法)や、フッ素含有有機化合物等を有機溶剤に溶解させ、所定の濃度になるように調整し、反射防止層の表面に塗布する方法(湿式法)等を利用できる。
Next, a fingerprint prevention treatment layer 81 is formed on the first main surface 21 of the chemically strengthened glass 2.
As a method for forming the fingerprint prevention treatment layer 81, a vacuum deposition method (dry method) in which a fluorine-containing organic compound or the like is evaporated in a vacuum chamber and adhered to the surface of the antireflection layer, or a fluorine-containing organic compound or the like is used as an organic solvent. A method (wet method) or the like that is dissolved in the solution, adjusted to a predetermined concentration, and applied to the surface of the antireflection layer can be used.
 乾式法としては、イオンビームアシスト蒸着法、イオンプレート法、スパッタ法、プラズマCVD法等、湿式法としては、スピンコート法、ディップコート法、キャスト法、スリットコート法、スプレー法等から適宜選択できる。乾式法、湿式法のどちらも使用できる。 As a dry method, an ion beam assisted vapor deposition method, an ion plate method, a sputtering method, a plasma CVD method and the like can be appropriately selected from a spin coating method, a dip coating method, a casting method, a slit coating method, a spray method, and the like. . Both dry and wet methods can be used.
 含フッ素有機ケイ素化合物被膜を形成する方法としては、パーフルオロアルキル基;パーフルオロ(ポリオキシアルキレン)鎖を含む、フルオロアルキル基等のフルオロアルキル基を有するシランカップリング剤の組成物を、スピンコート法、ディップコート法、キャスト法、スリットコート法、スプレーコート法等により塗布した後加熱処理する方法、または、含フッ素有機ケイ素化合物を気相蒸着させた後加熱処理する、真空蒸着法等が挙げられる。なお、スプレーコート法により塗布する場合の溶液の濃度は、0.15質量%以下が好ましく、0.1質量%以下が更に好ましい。
 含フッ素有機ケイ素化合物被膜の形成は、含フッ素加水分解性ケイ素化合物を含有する、被膜形成用組成物を用いて行うことが好ましい。
 以上が、カバーガラス1の製造方法の例についての説明である。
As a method for forming a fluorine-containing organosilicon compound film, a composition of a silane coupling agent having a perfluoroalkyl group; a fluoroalkyl group such as a fluoroalkyl group containing a perfluoro (polyoxyalkylene) chain is spin-coated. Method, dip coating method, casting method, slit coating method, spray coating method, etc., followed by heat treatment, or vapor deposition of a fluorine-containing organosilicon compound, followed by heat treatment, vacuum deposition method, etc. It is done. In addition, the density | concentration of the solution in the case of apply | coating by the spray coat method has preferable 0.15 mass% or less, and 0.1 mass% or less is still more preferable.
The formation of the fluorine-containing organosilicon compound film is preferably carried out using a film-forming composition containing a fluorine-containing hydrolyzable silicon compound.
The above is description about the example of the manufacturing method of the cover glass 1. FIG.
〔カバーガラス1の作用効果〕
 カバーガラス1は、指紋防止処理層81の表面の摩擦帯電量が0kV以下、-1.5kV以上であるため、表面に使用者の指等が接触しても摩擦帯電し難く、表示装置に組み込んだ場合に、静電気に起因する白濁化を防止できる。
 カバーガラス1は、化学強化ガラス2の物性で摩擦帯電を抑制しているため、導電層を設ける必要がなく、厚さも工数も増加させずに白濁化を防止できる。
 カバーガラス1の化学強化ガラス2の圧縮応力層25、32の深さDOLは60μm以上である。そのため、外部から衝撃が加えられた場合に、衝撃による変形が引張応力層まで伝わり難くなり、ガラス表面の耐衝撃性を高めることができる。
[Function and effect of cover glass 1]
The cover glass 1 has a triboelectric charge amount of 0 kV or less and −1.5 kV or more on the surface of the anti-fingerprint treatment layer 81. Therefore, it is difficult to be triboelectrically charged even if a user's finger touches the surface, and is incorporated in a display device. In this case, white turbidity caused by static electricity can be prevented.
Since the cover glass 1 suppresses frictional charging by the physical properties of the chemically strengthened glass 2, it is not necessary to provide a conductive layer, and white turbidity can be prevented without increasing the thickness and man-hour.
The depth DOL of the compressive stress layers 25 and 32 of the chemically strengthened glass 2 of the cover glass 1 is 60 μm or more. Therefore, when an impact is applied from the outside, the deformation due to the impact is hardly transmitted to the tensile stress layer, and the impact resistance of the glass surface can be improved.
 カバーガラス1の引張応力層を構成する酸化物成分のうち、ガラスの骨格形成に寄与せず、移動度が高く静電気と結びついて除電を行うLiO、NaO、KOの濃度の合計をAモル%、Alの濃度をBモル%としたとき、Aが14.5以上、かつ、A×Bが120以上であることが好ましい。あるいは、引張応力層を構成する酸化物成分のうち、LiO、NaO、KOの濃度の合計をC質量%、Alの濃度をD質量%としたとき、Cが11以上、かつ、C×Dが140以上であることが好ましい。
 このような場合、ガラスの骨格形成に寄与せず、移動度が高く静電気と結びついて除電を行うLiO、NaO、KOを一定量以上含むため、表面に使用者の指等が接触してもより摩擦帯電し難い。
 さらに、骨格形成に寄与し、かつLiO、NaO、KOと近接するAlも一定量以上含むため、LiO、NaO、KOがネットワーク間に入り込んで距離を拡張する。そのため、LiO、NaO、KOが、より移動しやすくなり、表面に使用者の指等が接触してもより摩擦帯電し難い。
Of the oxide components constituting the tensile stress layer of the cover glass 1, the concentration of Li 2 O, Na 2 O, K 2 O, which does not contribute to the formation of the glass skeleton and has high mobility and discharges in combination with static electricity When the total is A mol% and the concentration of Al 2 O 3 is B mol%, it is preferable that A is 14.5 or more and A × B is 120 or more. Alternatively, among the oxide components constituting the tensile stress layer, when the total concentration of Li 2 O, Na 2 O, and K 2 O is C mass% and the concentration of Al 2 O 3 is D mass%, C is 11 or more and C × D is preferably 140 or more.
In such a case, the surface contains a certain amount or more of Li 2 O, Na 2 O, K 2 O that does not contribute to the formation of the glass skeleton, and has a high mobility and is statically discharged in combination with static electricity. Even if it contacts, it is hard to be frictionally charged.
Furthermore, it contributes to skeletal formation, and Li 2 O, for containing Na 2 O, Al 2 close to the K 2 O O 3 also a certain amount or more, Li 2 O, Na 2 O , K 2 O is entered into between the networks Extend the distance with. Therefore, Li 2 O, Na 2 O, and K 2 O are more easily moved, and even if the user's finger or the like comes into contact with the surface, it is less likely to be frictionally charged.
 化学強化ガラス2の引張応力層を構成する酸化物成分のうち、SiO、Al、B、Pの濃度の合計が81モル%以下(または82質量%以下)であると、ガラスの骨格形成に寄与し、移動度が高く静電気と結びついて除電を行う作用が弱い成分であるSiO、Al、B、Pの濃度が一定以下に抑制されるため、表面に使用者の指等が接触してもより摩擦帯電し難い。 Of the oxide components constituting the tensile stress layer of the chemically strengthened glass 2, the total concentration of SiO 2 , Al 2 O 3 , B 2 O 3 and P 2 O 5 is 81 mol% or less (or 82 mass% or less). In this case, the concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 , which is a component that contributes to the formation of a glass skeleton and has a high mobility and a weak effect of static elimination combined with static electricity, is constant. Since it is suppressed to the following, even if a user's finger or the like comes into contact with the surface, it is more difficult to be frictionally charged.
[変形例]
 本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更等が可能である。本発明の実施の際の具体的な手順、および構造等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
[Modification]
The present invention is not limited to the above embodiment, and various improvements and design changes can be made without departing from the scope of the present invention. Specific procedures, structures, and the like in carrying out the present invention may be other structures or the like as long as the object of the present invention can be achieved.
 化学強化ガラス2の形状は、平坦面のみを有する板のみならず、少なくとも一部に曲面を有する板、凹部を有する板であってもよい。例えば、図2に示すように、化学強化ガラス2が屈曲ガラスでもよい。屈曲ガラスを用いることで、カバーガラス1を取り付ける相手側部材が屈曲形状を有していても、取り付けの精度が下がるおそれがない。
 化学強化ガラス2の厚さは0.5mm以上が好ましい。0.5mm以上の厚さを備えたガラスであれば、高い強度と良好な質感を兼ね備えたカバーガラス1を得られる利点がある。厚さは、0.7mm以上がより好ましい。車載用の表示装置に用いる場合、ヘッドインパクト試験に耐えられる耐衝撃性を担保するためには、1.1mm以上であることが好ましい。軽量化や透過率の確保という観点からは、5mm以下が好ましく、3mm以下がより好ましい。
 化学強化ガラス2の平面形状は特に限定しない。第1の主面21および第2の主面22の面積も特に限定しないが、例えば5000mm~50000mm程度である。
The shape of the chemically strengthened glass 2 may be not only a plate having only a flat surface but also a plate having at least a curved surface and a plate having a recess. For example, as shown in FIG. 2, the chemically strengthened glass 2 may be a bent glass. By using the bent glass, even if the counterpart member to which the cover glass 1 is attached has a bent shape, there is no possibility that the mounting accuracy will be lowered.
The thickness of the chemically strengthened glass 2 is preferably 0.5 mm or more. If it is glass provided with the thickness of 0.5 mm or more, there exists an advantage which can obtain the cover glass 1 which has high intensity | strength and favorable texture. The thickness is more preferably 0.7 mm or more. When used in an in-vehicle display device, the thickness is preferably 1.1 mm or more in order to ensure impact resistance that can withstand a head impact test. From the viewpoint of securing light weight and ensuring transmittance, it is preferably 5 mm or less, and more preferably 3 mm or less.
The planar shape of the chemically strengthened glass 2 is not particularly limited. Area not also particularly limited in the first major surface 21 and second major surface 22 but, for example 5000 mm 2 ~ 50,000 mm 2 about.
 化学強化ガラス2の第1の主面21および第2の主面22のうち少なくとも一方の面には、図3に示すように、機能層3として、防眩処理(AG処理)を施した防眩層、または反射防止処理(AR処理)を施した反射防止層の、少なくとも一方を備えてもよい。
 第1の主面21に防眩層または反射防止層を備える場合、化学強化ガラス2と指紋防止処理層81の間に、防眩機能層または反射防止層を備える。
 機能層3として、防眩層を設けることにより、第1の主面21側から入射した光を散乱させ、入射光による映り込みをぼかすことができる。
 防眩性を付与する方法としては、化学強化ガラス2の第1の主面21に凹凸形状を形成する方法が挙げられる。化学強化後に防眩層を設けても、防眩層を設けた後に化学強化処理を行っても、どちらでもよい。
As shown in FIG. 3, at least one of the first main surface 21 and the second main surface 22 of the chemically strengthened glass 2 is anti-glare treated (AG treatment) as a functional layer 3. You may provide at least one of the glare layer or the antireflection layer which performed the antireflection process (AR process).
When the first main surface 21 is provided with an antiglare layer or an antireflection layer, an antiglare function layer or an antireflection layer is provided between the chemically strengthened glass 2 and the anti-fingerprint treatment layer 81.
By providing an anti-glare layer as the functional layer 3, it is possible to scatter light incident from the first main surface 21 side and blur the reflection due to the incident light.
Examples of a method for imparting antiglare properties include a method of forming an uneven shape on the first main surface 21 of the chemically strengthened glass 2. Either an antiglare layer may be provided after chemical strengthening, or a chemical strengthening treatment may be performed after providing the antiglare layer.
 凹凸形状を形成する方法としては、公知の方法を適用可能である。化学強化ガラス2の第1の主面21に、化学的または物理的に表面処理を施してエッチング層を形成し、所望の表面粗さの凹凸形状を形成する方法や、防眩フィルム等のコーティング層を貼りつける方法が利用できる。
 防眩層がエッチング層であると、防眩用の材料を別途被覆する必要がない点で有利である。防眩層がコーティング層であると、材料の選択により、防眩性の制御が容易な点で有利である。
As a method for forming the uneven shape, a known method can be applied. A method of forming an etching layer by chemically or physically surface-treating the first main surface 21 of the chemically strengthened glass 2 to form an uneven shape with a desired surface roughness, or a coating such as an antiglare film A method of applying a layer can be used.
When the antiglare layer is an etching layer, it is advantageous in that it is not necessary to separately coat an antiglare material. When the antiglare layer is a coating layer, it is advantageous in that the antiglare property can be easily controlled by selecting a material.
 化学的に防眩処理を行う方法としては、フロスト処理が挙げられる。フロスト処理は、例えば、フッ化水素とフッ化アンモニウムの混合溶液に、被処理体であるガラス基板を浸漬することで実現できる。物理的に防眩処理を行う方法としては、例えば、結晶質二酸化ケイ素粉、炭化ケイ素粉等を加圧空気でガラス基板の主面に吹き付けるサンドブラスト処理や、結晶質二酸化ケイ素粉、炭化ケイ素粉等を付着させたブラシを水で湿らせたものを用いて擦る方法等を利用できる。 As a method of chemically anti-glare treatment, frost treatment can be mentioned. The frost treatment can be realized, for example, by immersing a glass substrate as an object to be treated in a mixed solution of hydrogen fluoride and ammonium fluoride. As a method of physically performing the antiglare treatment, for example, a sand blast treatment in which crystalline silicon dioxide powder, silicon carbide powder or the like is sprayed onto the main surface of the glass substrate with pressurized air, crystalline silicon dioxide powder, silicon carbide powder, or the like. For example, a method of rubbing with a brush moistened with water can be used.
 防眩層の表面は、表面粗さ(二乗平均粗さ、RMS)が0.01μm~0.5μmであることが好ましい。防眩層の表面の表面粗さ(RMS)は、0.01μm~0.3μmがより好ましく、0.02μm~0.2μmがさらに好ましい。防眩層の表面の表面粗さ(RMS)を上記範囲とすることで、カバーガラス1のヘイズ値を1%~30%に調整できる。なお、ヘイズ値は、JIS K 7136(2000)で規定される値である。 The surface of the antiglare layer preferably has a surface roughness (root mean square roughness, RMS) of 0.01 μm to 0.5 μm. The surface roughness (RMS) of the surface of the antiglare layer is more preferably 0.01 μm to 0.3 μm, further preferably 0.02 μm to 0.2 μm. By setting the surface roughness (RMS) of the surface of the antiglare layer within the above range, the haze value of the cover glass 1 can be adjusted to 1% to 30%. The haze value is a value defined by JIS K 7136 (2000).
 機能層3として、反射防止層を備えることにより、第1の主面21側から入射した光の反射を防止でき、入射光による映り込みを防止できる。反射防止層としては、たとえば以下のものが挙げられる。
 (1)相対的に屈折率が低い低屈折率層と相対的に屈折率が高い高屈折率層とが交互に積層された多層構造の反射防止層。
 (2)化学強化ガラス2よりも屈折率が低い低屈折率層からなる反射防止層。
By providing an antireflection layer as the functional layer 3, reflection of light incident from the first main surface 21 side can be prevented, and reflection due to incident light can be prevented. Examples of the antireflection layer include the following.
(1) An antireflection layer having a multilayer structure in which a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index are alternately laminated.
(2) An antireflection layer comprising a low refractive index layer having a refractive index lower than that of the chemically strengthened glass 2.
 (1)の反射防止層は、波長550nmの光の屈折率が1.9以上の高屈折率層と、波長550nmの光の屈折率が1.6以下の低屈折率層を、積層した構造を備えるのが好ましい。反射防止層が高屈折率層と低屈折率層を積層した構造を備えることにより、可視光の反射を、より確実に防止できる。 The antireflection layer (1) has a structure in which a high refractive index layer having a refractive index of light of 1.9 nm or more and a low refractive index layer having a refractive index of light having a wavelength of 550 nm of 1.6 or less are laminated. Is preferably provided. When the antireflection layer has a structure in which a high refractive index layer and a low refractive index layer are stacked, reflection of visible light can be more reliably prevented.
 (1)の反射防止層における高屈折率層と低屈折率層との層数は、それぞれ1層ずつであってもよいが、それぞれ2層以上であってもよい。高屈折率層と低屈折率層をそれぞれ1層含む場合は、反射防止層は化学強化ガラス2の第1の主面21に、高屈折率層、低屈折率層の順に積層したものであることが好ましい。また、高屈折率層と低屈折率層をそれぞれ2層以上含む場合は、反射防止層は高屈折率層と低屈折率層とを交互に積層した積層体であることが好ましい。積層体は、生産性の観点から、全体で2層以上8層以下の積層が好ましく、2層以上6層以下の積層がより好ましい。また、光学特性を損なわない範囲での層の追加を行ってもよい。例えば、ガラス板からのNa拡散を防ぐために、ガラスと第1層との間にSiO膜を挿入しても良い。 The number of the high refractive index layer and the low refractive index layer in the antireflection layer of (1) may be one each, or may be two or more. When each of the high refractive index layer and the low refractive index layer is included, the antireflection layer is formed by laminating the high refractive index layer and the low refractive index layer in this order on the first main surface 21 of the chemically strengthened glass 2. It is preferable. When two or more high refractive index layers and low refractive index layers are included, the antireflection layer is preferably a laminate in which high refractive index layers and low refractive index layers are alternately stacked. From the viewpoint of productivity, the laminate is preferably a laminate of 2 to 8 layers as a whole, more preferably a laminate of 2 to 6 layers. Moreover, you may add the layer in the range which does not impair an optical characteristic. For example, in order to prevent Na diffusion from the glass plate, a SiO 2 film may be inserted between the glass and the first layer.
 高屈折率層、低屈折率層を構成する材料は特に限定されるものではなく、要求される反射防止性の程度や生産性を考慮して選択できる。高屈折率層を構成する材料としては、例えば、酸化ニオブ(Nb)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化タンタル(Ta)、窒化ケイ素(SiN)等が挙げられる。これらの材料から選択される1種以上を好ましく使用できる。低屈折率層を構成する材料としては、酸化ケイ素(特に、二酸化ケイ素SiO)、酸化アルミニウム(Al)、フッ化マグネシウム(MgF)、SiとSnとの混合酸化物を含む材料、SiとZrとの混合酸化物を含む材料、SiとAlとの混合酸化物を含む材料等が挙げられる。これら材料から選択される1種以上を好ましく使用できる。 The material constituting the high refractive index layer and the low refractive index layer is not particularly limited, and can be selected in consideration of the required degree of antireflection and productivity. Examples of the material constituting the high refractive index layer include niobium oxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), and silicon nitride (SiN). Etc. One or more selected from these materials can be preferably used. Examples of the material constituting the low refractive index layer include silicon oxide (particularly silicon dioxide SiO 2 ), aluminum oxide (Al 2 O 3 ), magnesium fluoride (MgF 2 ), and a mixed oxide of Si and Sn. And a material containing a mixed oxide of Si and Zr, a material containing a mixed oxide of Si and Al, and the like. One or more selected from these materials can be preferably used.
 (2)の反射防止層において、低屈折率層の屈折率は、化学強化ガラス2の屈折率に応じて設定され、1.1~1.5が好ましく、1.1~1.4がより好ましい。 In the antireflection layer of (2), the refractive index of the low refractive index layer is set according to the refractive index of the chemically strengthened glass 2, and is preferably 1.1 to 1.5, more preferably 1.1 to 1.4. preferable.
 (2)の反射防止層は、表面に無機薄膜を直接形成する方法、エッチング等の手法により表面処理する方法や、乾式法、例えば、化学蒸着(CVD)法や物理蒸着(PVD)法、特に物理蒸着法の一種である真空蒸着法やスパッタ法により好適に形成できる。 The antireflection layer of (2) is a method of directly forming an inorganic thin film on the surface, a method of surface treatment by a technique such as etching, a dry method such as a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method, It can be suitably formed by vacuum vapor deposition or sputtering, which is a kind of physical vapor deposition.
 反射防止層の厚さは、90nm~500nmが好ましい。反射防止層の厚さを90nm以上とすることで、効果的に外光の反射を抑制できるため好ましい。 The thickness of the antireflection layer is preferably 90 nm to 500 nm. Setting the thickness of the antireflection layer to 90 nm or more is preferable because reflection of external light can be effectively suppressed.
 反射防止層は、CIE(国際照明委員会)色差式において、膜付きカバーガラスの反射色がaが-6~1であり、bが-8~1であるのが好ましい。
 反射防止層のaが-6~1であり、bが-8~1であると、反射防止層が危険色(警告色)に着色する恐れがなく、反射防止層の色彩が目立つのを防止できる。
 防眩層を形成せず、ガラス上に直接、反射防止層および指紋防止処理層81を形成した場合において、カバーガラス1は、コロナ処理やプラズマ処理により指紋防止処理層81を除去した後の反射防止処理層の表面で測定した表面粗さがRaで1nm未満であることが好ましい。表面の、水の接触角が約20°以下であれば指紋防止処理層が除去されたと判断できる。最表面の指紋防止処理層81を除去した後の表面粗さRaが1nm未満であることにより、高耐擦傷性が実現できる。より好ましくは0.3nm~0.6nm、特に好ましくは0.3nm~0.5nmである。
 表面粗さRaは、例えば、セイコーインスツルメント社製走査型プローブ顕微鏡SPI3800NのDFMモードで測定できる。
In the CIE (International Commission on Illumination) color difference formula, the antireflection layer is preferably such that the reflective color of the cover glass with a film is a * of −6 to 1 and b * of −8 to 1.
When the a * of the antireflection layer is -6 to 1 and the b * is -8 to 1, the antireflection layer is not likely to be colored in a dangerous color (warning color), and the color of the antireflection layer is conspicuous. Can be prevented.
When the antireflection layer and the fingerprint prevention treatment layer 81 are formed directly on the glass without forming the antiglare layer, the cover glass 1 is reflected after the fingerprint prevention treatment layer 81 is removed by corona treatment or plasma treatment. The surface roughness measured on the surface of the prevention treatment layer is preferably less than 1 nm in Ra. If the contact angle of water on the surface is about 20 ° or less, it can be determined that the anti-fingerprint treatment layer has been removed. When the surface roughness Ra after removing the outermost fingerprint prevention treatment layer 81 is less than 1 nm, high scratch resistance can be realized. More preferably, it is 0.3 nm to 0.6 nm, and particularly preferably 0.3 nm to 0.5 nm.
The surface roughness Ra can be measured, for example, in the DFM mode of a scanning probe microscope SPI3800N manufactured by Seiko Instruments Inc.
 図4(B)に示すように、カバーガラス1は、第2の主面22上に設けられた遮光層31を備えてもよい。遮光層31は可視光を遮蔽する層であり、具体的には、例えば波長380nm~780nmの光の視感透過率が50%以下の層である。遮光層31を備えることにより、表示装置側の配線を隠蔽したり、バックライトの照明光を隠蔽して、表示装置の周囲から照明光が漏れるのを防止したりできる。
 遮光層31が設けられる第2の主面22および面取り部24には、遮光層31との密着性を向上させるため、プライマー処理やエッチング処理等が施されていてもよい。
As shown in FIG. 4B, the cover glass 1 may include a light shielding layer 31 provided on the second main surface 22. The light shielding layer 31 is a layer that shields visible light. Specifically, the light shielding layer 31 is, for example, a layer having a luminous transmittance of 50% or less for light with a wavelength of 380 nm to 780 nm. By providing the light shielding layer 31, it is possible to conceal the wiring on the display device side or conceal the illumination light of the backlight to prevent the illumination light from leaking from the periphery of the display device.
The second main surface 22 and the chamfered portion 24 provided with the light shielding layer 31 may be subjected to a primer treatment, an etching treatment, or the like in order to improve the adhesion with the light shielding layer 31.
 遮光層31を設ける方法は特に限定しないが、バーコート法、リバースコート法、グラビアコート法、ダイコート法、ロールコート法、スクリーン法、インクジェット法等によりインクを印刷することにより設ける方法が挙げられる。厚さの制御の容易差を考慮すると、スクリーン法が好ましい。
 遮光層31に使用するインクは、無機系でも有機系であってもよい。無機系のインクとしては、例えば、SiO、ZnO、B、Bi、LiO、NaOおよびKOから選択される1種以上、CuO、Al、ZrO、SnOおよびCeOから選択される1種以上、FeおよびTiOからなる組成物であってもよい。
A method for providing the light shielding layer 31 is not particularly limited, and examples thereof include a method for providing ink by printing by a bar coating method, a reverse coating method, a gravure coating method, a die coating method, a roll coating method, a screen method, an ink jet method, or the like. Considering the easy difference in thickness control, the screen method is preferable.
The ink used for the light shielding layer 31 may be inorganic or organic. Examples of the inorganic ink include one or more selected from SiO 2 , ZnO, B 2 O 3 , Bi 2 O 3 , Li 2 O, Na 2 O and K 2 O, CuO, Al 2 O 3 , ZrO 2, SnO 2 and one or more selected from CeO 2, may be a composition consisting of Fe 2 O 3 and TiO 2.
 有機系のインクとしては、樹脂を溶剤に溶解した種々の印刷材料を使用できる。例えば、樹脂としては、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、酢酸ビニル樹脂、フェノール樹脂、オレフィン、エチレン-酢酸ビニル共重合樹脂、ポリビニルアセタール樹脂、天然ゴム、スチレン-ブタジエン共重合体、アクリルニトリル-ブタジエン共重合体、ポリエステルポリオール、ポリエーテルポリウレタンポリオール等の樹脂からなる群から選ばれる、少なくとも1種以上を選択して使用してよい。溶媒としては、水、アルコール類、エステル類、ケトン類、芳香族炭化水素系溶剤、脂肪族炭化水素系溶剤を用いてもよい。例えば、アルコール類としては、イソプロピルアルコール、メタノール、エタノール等を使用でき、エステル類としては酢酸エチル、ケトン類としてはメチルエチルケトンを使用できる。芳香族炭化水素系溶剤としては、トルエン、キシレン、ソルベッソ(登録商標)100、ソルベッソ(登録商標)150等を使用でき、脂肪族炭化水素系溶剤としてはヘキサン等を使用できる。なお、これらは例として挙げたものであり、その他、種々の印刷材料を使用できる。前記有機系の印刷材料は、化学強化ガラス2に塗布した後、溶媒を蒸発させて樹脂の遮光層31を形成できる。遮光層31に用いられるインクは、加熱により硬化できる熱硬化性インクでもよく、UV硬化性インクでもよく、特に制限はない。 As the organic ink, various printing materials in which a resin is dissolved in a solvent can be used. For example, the resin includes acrylic resin, urethane resin, epoxy resin, polyester resin, polyamide resin, vinyl acetate resin, phenol resin, olefin, ethylene-vinyl acetate copolymer resin, polyvinyl acetal resin, natural rubber, styrene-butadiene copolymer At least one or more selected from the group consisting of a resin such as a polymer, an acrylonitrile-butadiene copolymer, a polyester polyol, and a polyether polyurethane polyol may be selected and used. As the solvent, water, alcohols, esters, ketones, aromatic hydrocarbon solvents, and aliphatic hydrocarbon solvents may be used. For example, isopropyl alcohol, methanol, ethanol or the like can be used as the alcohol, ethyl acetate can be used as the ester, and methyl ethyl ketone can be used as the ketone. As the aromatic hydrocarbon solvent, toluene, xylene, Solvesso (registered trademark) 100, Solvesso (registered trademark) 150 or the like can be used, and as the aliphatic hydrocarbon solvent, hexane or the like can be used. These are given as examples, and various other printing materials can be used. The organic printing material can be applied to the chemically strengthened glass 2 and then the solvent is evaporated to form the resin light-shielding layer 31. The ink used for the light shielding layer 31 may be a thermosetting ink that can be cured by heating or a UV curable ink, and is not particularly limited.
 遮光層31に用いられるインクには、着色剤が含まれてもよい。着色剤としては、例えば、遮光層31を黒色とする場合、カーボンブラック等の黒色の着色剤を使用できる。その他、所望の色に応じて適切な色の着色剤を使用できる。
 遮光層31は、所望の回数だけ積層してもよく、印刷に用いるインクは、各層異なるものを使用してもよい。また、遮光層31は、第2の主面22だけでなく、第1の主面21にも印刷してよく、端面に印刷してもよい。
 遮光層31を所望の回数だけ積層する場合、各層で異なるインクを用いてもよい。例えば、利用者がカバーガラス1を第1の主面21側から見たときに、遮光層31を白く見せたい場合には、1層目を白色で印刷し、続いて2層目を黒色で印刷すればよい。これにより使用者が第1の主面21側から遮光層31を見た際、遮光層31の背面の視認性に関わる、いわゆる「透け感」を抑制した白色の遮光層31を形成できる。
The ink used for the light shielding layer 31 may contain a colorant. As the colorant, for example, when the light shielding layer 31 is black, a black colorant such as carbon black can be used. In addition, a colorant having an appropriate color can be used according to a desired color.
The light shielding layer 31 may be laminated as many times as desired, and different inks may be used for printing. Further, the light shielding layer 31 may be printed not only on the second main surface 22 but also on the first main surface 21 or on the end surface.
When the light shielding layer 31 is laminated a desired number of times, different inks may be used for each layer. For example, when the user looks at the cover glass 1 from the first main surface 21 side and wants the light shielding layer 31 to appear white, the first layer is printed in white, and then the second layer is printed in black. Print it out. Thus, when the user views the light shielding layer 31 from the first main surface 21 side, the white light shielding layer 31 that suppresses the so-called “translucency” related to the visibility of the back surface of the light shielding layer 31 can be formed.
 遮光層31の平面形状は、図4では枠形であり、枠の内側が表示領域4を構成するが、枠形ではなく、第2の主面22の一辺に沿う線状、連続する二辺に沿うL字状、対向する二辺に沿う2本の直線状でもよい。遮光層31は、第2の主面22が四角形以外の多角形や円形あるいは異形の場合、これらの形状に対応する枠状、多角形の一辺に沿う直線状、円形の一部に沿う円弧状でもよい。
 カバーガラス1を表示装置に用いる場合、遮光層31は、表示装置が非表示の場合の色彩に対応した色彩を有するのが好ましい。例えば、非表示の場合の色彩が黒色系の場合は、遮光層31も黒色系であるのが望ましい。
The planar shape of the light shielding layer 31 is a frame shape in FIG. 4, and the inside of the frame constitutes the display region 4, but is not a frame shape, but a linear shape along one side of the second main surface 22, two continuous sides L shape along the two, or two straight lines along the two opposite sides. When the second main surface 22 is a polygon other than a quadrangle, a circle, or an irregular shape, the light shielding layer 31 has a frame shape corresponding to these shapes, a linear shape along one side of the polygon, or an arc shape along a part of the circle. But you can.
When the cover glass 1 is used for a display device, the light shielding layer 31 preferably has a color corresponding to the color when the display device is not displayed. For example, when the non-display color is black, it is desirable that the light shielding layer 31 is also black.
 カバーガラス1が遮光層31を備える場合、図5に示すように遮光層31は開口部33を有してもよく、開口部33には、赤外線透過率が遮光層31よりも高い赤外線透過層35を備えるのが好ましい。遮光層31の一部に開口部33を設けて、赤外線透過層35を設けることにより、赤外線センサを遮光層31の裏側に設けることができ、かつ赤外線透過層35を目立たなくできる。
 赤外線透過層35を形成するインクは、無機系でも有機系であってもよい。無機系インクに含まれる顔料としては、例えば、SiO、ZnO、B、Bi、LiO、NaOおよびKOから選択される1種以上、CuO、Al、ZrO、SnOおよびCeOから選択される1種以上、FeおよびTiOからなる組成物であってもよい。
When the cover glass 1 includes the light shielding layer 31, the light shielding layer 31 may have an opening 33 as shown in FIG. 5, and the infrared transmission layer having a higher infrared transmittance than the light shielding layer 31 is provided in the opening 33. 35 is preferably provided. By providing the opening 33 in a part of the light shielding layer 31 and providing the infrared transmission layer 35, the infrared sensor can be provided on the back side of the light shielding layer 31, and the infrared transmission layer 35 can be made inconspicuous.
The ink forming the infrared transmission layer 35 may be inorganic or organic. Examples of the pigment contained in the inorganic ink include one or more selected from SiO 2 , ZnO, B 2 O 3 , Bi 2 O 3 , Li 2 O, Na 2 O, and K 2 O, CuO, and Al 2. It may be a composition comprising at least one selected from O 3 , ZrO 2 , SnO 2 and CeO 2 , Fe 2 O 3 and TiO 2 .
 有機系インクとしては、樹脂と顔料とを溶剤に溶解した種々の印刷材料を使用できる。例えば、樹脂としては、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、酢酸ビニル樹脂、フェノール樹脂、オレフィン、エチレン-酢酸ビニル共重合樹脂、ポリビニルアセタール樹脂、天然ゴム、スチレン-ブタジエン共重合体、アクリルニトリル-ブタジエン共重合体、ポリエステルポリオール、ポリエーテルポリウレタンポリオール等の樹脂からなる群から選ばれる、少なくとも1種以上を選択して使用してよい。溶媒としては、水、アルコール類、エステル類、ケトン類、芳香族炭化水素系溶剤、脂肪族炭化水素系溶剤を用いてもよい。例えば、アルコール類としては、イソプロピルアルコール、メタノール、エタノール等を使用でき、エステル類としては酢酸エチル、ケトン類としてはメチルエチルケトンを使用できる。芳香族炭化水素系溶剤としては、トルエン、キシレン、ソルベッソ(登録商標)100、ソルベッソ(登録商標)150等を使用でき、脂肪族炭化水素系溶剤としてはヘキサン等を使用できる。なお、これらは例として挙げたものであり、その他、種々の印刷材料を使用できる。前記有機系の印刷材料は、化学強化ガラス2に塗布した後、溶媒を蒸発させて樹脂の赤外線透過層35を形成できる。加熱により硬化できる熱硬化性インクでもよく、UV硬化性インクでもよく、特に制限はない。 As the organic ink, various printing materials in which a resin and a pigment are dissolved in a solvent can be used. For example, the resin includes acrylic resin, urethane resin, epoxy resin, polyester resin, polyamide resin, vinyl acetate resin, phenol resin, olefin, ethylene-vinyl acetate copolymer resin, polyvinyl acetal resin, natural rubber, styrene-butadiene copolymer At least one or more selected from the group consisting of a resin such as a polymer, an acrylonitrile-butadiene copolymer, a polyester polyol, and a polyether polyurethane polyol may be selected and used. As the solvent, water, alcohols, esters, ketones, aromatic hydrocarbon solvents, and aliphatic hydrocarbon solvents may be used. For example, isopropyl alcohol, methanol, ethanol or the like can be used as the alcohol, ethyl acetate can be used as the ester, and methyl ethyl ketone can be used as the ketone. As the aromatic hydrocarbon solvent, toluene, xylene, Solvesso (registered trademark) 100, Solvesso (registered trademark) 150 or the like can be used, and as the aliphatic hydrocarbon solvent, hexane or the like can be used. These are given as examples, and various other printing materials can be used. The organic printing material can be applied to the chemically strengthened glass 2, and then the solvent can be evaporated to form the resin infrared transmission layer 35. A thermosetting ink that can be cured by heating or a UV curable ink may be used, and there is no particular limitation.
 赤外線透過層35に用いられるインクには、顔料が含まれてもよい。顔料としては、例えば、赤外線透過層35を黒色とする場合、カーボンブラック等の黒色顔料を使用できる。その他、所望の色に応じて適切な色の顔料を使用できる。 The ink used for the infrared transmission layer 35 may contain a pigment. As the pigment, for example, when the infrared transmitting layer 35 is black, a black pigment such as carbon black can be used. In addition, a pigment having an appropriate color can be used according to a desired color.
 赤外線透過層35中の顔料の含有割合は、所望の光学特性に応じて自由に変更できる。赤外線透過層35の全質量に対する、顔料の含有量の比である含有割合は0.01質量%~10質量%が好ましい。含有割合は、インクの質量全体に対する、赤外線透過材料の含有割合を調整することで実現できる。 The content ratio of the pigment in the infrared transmission layer 35 can be freely changed according to desired optical characteristics. The content ratio, which is the ratio of the pigment content to the total mass of the infrared transmitting layer 35, is preferably 0.01% by mass to 10% by mass. The content ratio can be realized by adjusting the content ratio of the infrared transmitting material with respect to the entire mass of the ink.
 赤外線透過層35を形成するインクは、光硬化性樹脂または熱硬化性樹脂に赤外線透過能を有する顔料を含む。顔料としては、無機顔料および有機顔料のいずれも使用できる。無機顔料としては、酸化鉄、酸化チタン、複合酸化物系などが挙げられる。有機顔料としては、フタロシアニン系顔料、アントラキノン系顔料、アゾ系顔料等の金属錯体系顔料などが挙げられる。赤外線透過層35の色彩は、遮光層31と同じであることが好ましい。遮光層31が黒色の場合は、赤外線透過層35も黒色であるのが好ましい。 The ink forming the infrared transmission layer 35 includes a pigment having infrared transmission ability in a photo-curable resin or a thermosetting resin. As the pigment, either an inorganic pigment or an organic pigment can be used. Examples of inorganic pigments include iron oxide, titanium oxide, and complex oxides. Examples of the organic pigment include metal complex pigments such as phthalocyanine pigments, anthraquinone pigments, and azo pigments. The color of the infrared transmission layer 35 is preferably the same as that of the light shielding layer 31. When the light shielding layer 31 is black, the infrared transmission layer 35 is also preferably black.
 赤外線透過層35を形成する方法としては、特に限定はされないが、バーコート法、リバースコート法、グラビアコート法、ダイコート法、ロールコート法、スクリーン法、インクジェット法が挙げられる。製法の連続性を考慮すると、遮光層31と同じ形成方法が好ましい。 The method for forming the infrared transmitting layer 35 is not particularly limited, and examples thereof include a bar coating method, a reverse coating method, a gravure coating method, a die coating method, a roll coating method, a screen method, and an ink jet method. In consideration of the continuity of the manufacturing method, the same formation method as the light shielding layer 31 is preferable.
 本発明のカバーガラス1は、例えば、液晶ディスプレイ等のパネルディスプレイや、車載用情報機器、携帯機器といった表示装置用のカバー部材に使用できる。本発明のカバーガラス1を表示装置用カバーに用いることで、被対象物を保護しつつ、タッチセンサ使用時の白濁化を防止できる。
 さらに、本発明のカバーガラス1は、例えば、液晶ディスプレイや有機ELディスプレイ等のパネルディスプレイや、車載用情報機器、携帯機器を作製する際、パネルとカバーガラス貼合時等に、カバーガラス表面に貼るラミネートを剥がした際に発生するカバーガラスの帯電が抑えられるため、帯電による異物吸着を抑制することができる。
The cover glass 1 of the present invention can be used, for example, as a cover member for a display device such as a panel display such as a liquid crystal display, an in-vehicle information device, or a portable device. By using the cover glass 1 of the present invention for the cover for a display device, it is possible to prevent white turbidity when using the touch sensor while protecting the object.
Furthermore, the cover glass 1 of the present invention can be applied to the surface of the cover glass when a panel display such as a liquid crystal display or an organic EL display, an in-vehicle information device, or a portable device is bonded. Since the cover glass, which is generated when the laminate to be applied is peeled off, is suppressed from being charged, foreign matter adsorption due to charging can be suppressed.
 ここで、カバーガラス1を備える表示装置の一例について図6を参照して説明する。ここではインセル型IPS(In Plane Switching)液晶表示装置を例示する。
 図6に示す表示装置10は、フレーム5を備える。フレーム5は、底部51と、底部51に対して交差する側壁部52と、底部51に対向する開口部53とを備える。底部51と側壁部52とで囲まれた空間には、液晶モジュール6が配置されている。液晶モジュール6は、底部51側に配置されたバックライト61と、バックライト61上に配置された液晶パネル62(表示パネル)とを備える。液晶パネル62は、IPS液晶を備え、タッチ機能を有する素子が液晶素子に埋め込まれたインセル型である。
 また、フレーム5の上端には、第2の主面22が液晶モジュール6側を向くようにカバーガラス1が設けられる。カバーガラス1は、開口部53および側壁部52の上端面に設けられた接着層7を介して、フレーム5と、液晶モジュール6に貼合されている。
Here, an example of a display device including the cover glass 1 will be described with reference to FIG. Here, an in-cell IPS (In Plane Switching) liquid crystal display device is illustrated.
The display device 10 illustrated in FIG. 6 includes a frame 5. The frame 5 includes a bottom 51, a side wall 52 that intersects the bottom 51, and an opening 53 that faces the bottom 51. The liquid crystal module 6 is disposed in a space surrounded by the bottom 51 and the side wall 52. The liquid crystal module 6 includes a backlight 61 disposed on the bottom 51 side, and a liquid crystal panel 62 (display panel) disposed on the backlight 61. The liquid crystal panel 62 includes an IPS liquid crystal and is an in-cell type in which an element having a touch function is embedded in the liquid crystal element.
Further, the cover glass 1 is provided at the upper end of the frame 5 so that the second main surface 22 faces the liquid crystal module 6 side. The cover glass 1 is bonded to the frame 5 and the liquid crystal module 6 via an adhesive layer 7 provided on the upper end surface of the opening 53 and the side wall 52.
 なお、接着層7は、透明で、化学強化ガラス2との屈折率差が小さいことが好ましい。
 接着層7としては、例えば、液状の硬化性樹脂組成物を硬化して得られる透明樹脂からなる層が挙げられる。硬化性樹脂組成物としては、例えば、光硬化性樹脂組成物、熱硬化性樹脂組成物等が挙げられ、その中でも、硬化性化合物および光重合開始剤を含む光硬化性樹脂組成物が好ましい。硬化性樹脂組成物を、例えば、ダイコート法、ロールコート法等の方法を用いて塗布し、硬化性樹脂組成物膜を形成する。
 接着層7は、OCAフィルム(OCAテープ)であってもよい。この場合、カバーガラス1の第2の主面22側にOCAフィルムを貼合すればよい。
 接着層7の厚さは、5μm以上400μm以下が好ましく、50μm以上200μm以下がより好ましい。接着層7の貯蔵せん断弾性率は、5kPa以上5MPa以下が好ましく、1MPa以上5MPa以下がより好ましい。
The adhesive layer 7 is preferably transparent and has a small refractive index difference from the chemically strengthened glass 2.
Examples of the adhesive layer 7 include a layer made of a transparent resin obtained by curing a liquid curable resin composition. As a curable resin composition, a photocurable resin composition, a thermosetting resin composition, etc. are mentioned, for example, Among these, the photocurable resin composition containing a curable compound and a photoinitiator is preferable. The curable resin composition is applied using a method such as a die coating method or a roll coating method to form a curable resin composition film.
The adhesive layer 7 may be an OCA film (OCA tape). In this case, an OCA film may be bonded to the second main surface 22 side of the cover glass 1.
The thickness of the adhesive layer 7 is preferably 5 μm or more and 400 μm or less, and more preferably 50 μm or more and 200 μm or less. The storage shear modulus of the adhesive layer 7 is preferably 5 kPa to 5 MPa, and more preferably 1 MPa to 5 MPa.
 表示装置10を製造するにあたり、組立順序は特に限定されない。例えば、予めカバーガラス1に接着層7を配置した構造体を準備しておき、フレーム5に配置し、その後、液晶モジュール6を貼合してもよい。 In manufacturing the display device 10, the assembly order is not particularly limited. For example, a structure in which the adhesive layer 7 is disposed on the cover glass 1 in advance may be prepared, disposed on the frame 5, and then the liquid crystal module 6 may be bonded.
 次に、本発明の実施例について説明する。本発明は以下の実施例に限定されるものではない。
 種々の特性のカバーガラスを作製し、帯電量および装置に組み込んだ際の白濁化の程度を求めた。具体的な手順は以下の通りである。例1は実施例、例2~例6は比較例である。
Next, examples of the present invention will be described. The present invention is not limited to the following examples.
Cover glasses having various characteristics were produced, and the amount of charge and the degree of white turbidity when incorporated in the apparatus were determined. The specific procedure is as follows. Example 1 is an example, and Examples 2 to 6 are comparative examples.
(例1)
 まず、化学強化前のガラスとして、表1中の例1に示す組成のガラスになるように、原料を調合、溶解して、約110mm角のブロックとなるように流し出した後、徐冷を行ってガラス体を得た。その後、縦100mm、横100mm、厚さ0.7mmの板状になるように、切断、切削加工した。
 次に、このガラスを化学強化した。化学強化の条件は、温度450℃の100重量%硝酸ナトリウム溶融塩に3時間浸漬後、温度450℃の100重量%硝酸カリウム溶融塩に3時間浸漬して化学強化した。
 強化後のガラスを洗浄した後に、表面に指紋防止処理層81として、旭硝子社製Afluid S-550を旭硝子社製のフッ素溶媒アサヒクリンAC6000で0.1質量%に希釈した液をスプレーコート法により塗布して指紋防止処理層を形成し、例1のカバーガラスを得た。指紋防止処理層の膜厚は5nmであった。
 なお、表1中の例1~例6の各ガラスの組成(モル%、質量%)の総和は100にならないこともあるが、それぞれの値を四捨五入した結果であり、請求項に記載された濃度の計算に特段の影響を与えない。
 作製した例1のカバーガラスに対して以下の評価を行った。
 <CS、DOL>
 折原製作所社製のガラス表面応力計装置(FSM-6000LE)及び散乱光光弾性を応用した折原製作所社製の測定機SLP1000を用いて、ガラスの厚さ方向の応力分布を測定し、最表面の応力値を表面圧縮応力CSとした。ガラス内部において応力値が0MPaとなるガラス深さを、圧縮応力深さDOLとした。
 <CT>
 関係式CT=(CS×DOL)/(t-2×DOL)により近似的にCTを求めた。
 <摩擦帯電量>
 摩擦帯電量は、INTEC社製摩擦帯電圧減衰測定装置を用い、JIS L1094:2014に記載のD法(摩擦帯電減衰測定法)により求めた。
 <白濁化>
 得られたカバーガラスをインセル型IPS液晶表示装置に組み込み、電源を入れた状態で、カバーガラス表面を指でタッチし、10cmの距離を、1秒間に1往復の速度で、10往復、指を移動し、白濁化の有無を目視で確認した。白濁化したものを「有」、白濁化しなかったものを「無」と判定した。
(Example 1)
First, as the glass before chemical strengthening, the raw materials were prepared and melted so as to become a glass having the composition shown in Example 1 in Table 1, and poured out into a block of about 110 mm square, and then slowly cooled. A glass body was obtained. Then, it cut | disconnected and cut so that it might become a plate shape of length 100mm, width 100mm, and thickness 0.7mm.
Next, this glass was chemically strengthened. The chemical strengthening was performed by immersing in a 100 wt% sodium nitrate molten salt at a temperature of 450 ° C. for 3 hours and then immersing in a 100 wt% potassium nitrate molten salt at a temperature of 450 ° C. for 3 hours for chemical strengthening.
After the tempered glass was washed, a liquid obtained by diluting Afluid S-550 manufactured by Asahi Glass Co. to 0.1% by mass with fluorinated solvent Asahi Clin AC6000 manufactured by Asahi Glass Co., Ltd. as a fingerprint prevention treatment layer 81 on the surface was spray-coated. This was applied to form an anti-fingerprint treatment layer, and the cover glass of Example 1 was obtained. The film thickness of the fingerprint prevention treatment layer was 5 nm.
In addition, although the sum total of the composition (mol%, mass%) of each glass of Example 1 to Example 6 in Table 1 may not be 100, it is a result of rounding off each value, and is described in the claims. Does not affect the concentration calculation.
The following evaluation was performed on the produced cover glass of Example 1.
<CS, DOL>
Using a glass surface stress meter device (FSM-6000LE) manufactured by Orihara Manufacturing Co., Ltd. and a measuring machine SLP1000 manufactured by Orihara Manufacturing Co., Ltd. using scattered light photoelasticity, the stress distribution in the thickness direction of the glass was measured, The stress value was defined as surface compressive stress CS. The glass depth at which the stress value becomes 0 MPa in the glass was defined as the compressive stress depth DOL.
<CT>
CT was approximately obtained by the relation CT = (CS × DOL) / (t−2 × DOL).
<Friction charge amount>
The triboelectric charge amount was determined by the D method (triboelectric charge decay measurement method) described in JIS L1094: 2014 using a friction band voltage decay measurement device manufactured by INTEC.
<White turbidity>
The obtained cover glass is incorporated into an in-cell type IPS liquid crystal display device, and with the power turned on, the surface of the cover glass is touched with a finger, and a distance of 10 cm is made 10 reciprocations at a speed of 1 reciprocation per second. It moved and the presence or absence of clouding was confirmed visually. Those that became white turbid were judged as “present”, and those that did not become white turbid were judged as “none”.
(例2)
 化学強化前のガラスとして、表1中の例2に示す組成のガラスをフロート法で製造し、0.7mmのガラス板を得たこと、また、420℃の100重量%硝酸カリウム溶融塩に8時間浸漬して化学強化を行ったこと以外は、例1と同じ条件で例2のカバーガラスを製造した。
(Example 2)
As a glass before chemical strengthening, a glass having a composition shown in Example 2 in Table 1 was produced by a float process to obtain a 0.7 mm glass plate, and it was added to a 100 wt% potassium nitrate molten salt at 420 ° C. for 8 hours. A cover glass of Example 2 was produced under the same conditions as Example 1 except that chemical strengthening was performed by immersion.
(例3)
 化学強化前のガラスとして、表1中の例3に示す組成のガラスを用いたこと、また、425℃の100重量%硝酸カリウム溶融塩に6時間浸漬して化学強化を行ったこと以外は、例1と同じ条件で例3のカバーガラスを製造した。
(Example 3)
Except that the glass having the composition shown in Example 3 in Table 1 was used as the glass before chemical strengthening, and that chemical strengthening was performed by immersing in 100 wt% potassium nitrate molten salt at 425 ° C. for 6 hours. A cover glass of Example 3 was produced under the same conditions as in Example 1.
(例4)
 化学強化前のガラスとして、表1中の例4に示す組成のガラスを用いたこと、また、温度425℃の100重量%硝酸カリウム溶融塩に6時間浸漬して化学強化したこと以外は、例1と同じ条件で例4のカバーガラスを製造した。
(Example 4)
Example 1 except that the glass having the composition shown in Example 4 in Table 1 was used as the glass before chemical strengthening, and that the glass was chemically strengthened by immersion in 100 wt% potassium nitrate molten salt at a temperature of 425 ° C. for 6 hours. A cover glass of Example 4 was produced under the same conditions as in Example 1.
(例5)
 化学強化前のガラスとして、表1中の例5に示す組成のガラスになるように、原料を調合、溶解してガラスブロックを得たこと、また、温度450℃の100重量%硝酸ナトリウム溶融塩に2時間浸漬後、温度425℃の100重量%硝酸カリウム溶融塩に1.5時間浸漬して化学強化したこと以外は、例1と同じ条件で例5のカバーガラスを製造した。
(Example 5)
As a glass before chemical strengthening, raw materials were prepared and melted so as to become a glass having the composition shown in Example 5 in Table 1, and a glass block was obtained. Also, a 100 wt% sodium nitrate molten salt at a temperature of 450 ° C. The cover glass of Example 5 was produced under the same conditions as in Example 1 except that it was immersed in 100 wt% potassium nitrate molten salt at a temperature of 425 ° C. for 1.5 hours for chemical strengthening.
(例6)
 化学強化後のガラスとして、表1中の例6に示す組成のガラスを用いたこと以外は、例1と同じ条件で例6のカバーガラスを製造した。
 以上の結果を表1に示す。
(Example 6)
A cover glass of Example 6 was produced under the same conditions as Example 1 except that the glass having the composition shown in Example 6 in Table 1 was used as the glass after chemical strengthening.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、例1は、摩擦帯電量が0kV以下、-1.5kV以上であり、圧縮応力層の深さDOLが60μm以上であり、引張応力層の含有する全アルカリ金属のうち、Liのモル数が最も多く、白濁化が生じていなかった。
 例2~4はDOLが60μm未満であったため、ガラス表面の耐衝撃性が劣ってしまい、カバーガラスとしては不適であった。
 例4~6は摩擦帯電量が-1.5kV未満であり、白濁化が生じてしまった。
 例1は、CSが800~1000MPa、CTが60MPa程度であった。
 また、例1は、Aが14.5モル以上、かつ、A×Bが120以上であった。
 例1は、SiO、Al、B、Pの濃度の合計が81モル%以下であった。
As shown in Table 1, in Example 1, the triboelectric charge amount is 0 kV or less, −1.5 kV or more, the depth DOL of the compressive stress layer is 60 μm or more, and among the total alkali metals contained in the tensile stress layer, , Li had the largest number of moles, and no clouding occurred.
In Examples 2 to 4, since the DOL was less than 60 μm, the impact resistance of the glass surface was inferior, making it unsuitable as a cover glass.
In Examples 4 to 6, the triboelectric charge amount was less than −1.5 kV, and white turbidity occurred.
In Example 1, CS was 800 to 1000 MPa, and CT was about 60 MPa.
In Example 1, A was 14.5 mol or more, and A × B was 120 or more.
In Example 1, the total concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 was 81 mol% or less.
 以上の結果から、摩擦帯電量が0kV以下、-1.5kV以上であり、圧縮応力層の深さDOLが60μm以上であり、引張応力層の含有する全アルカリ金属のうち、Liのモル数が最も多い組成とすることにより、白濁化が防止でき、かつ耐衝撃性に優れたカバーガラスが得られることが分かった。 From the above results, the triboelectric charge amount is 0 kV or less, −1.5 kV or more, the depth DOL of the compressive stress layer is 60 μm or more, and among all the alkali metals contained in the tensile stress layer, the number of moles of Li is It has been found that by using the largest composition, a cover glass that can prevent white turbidity and is excellent in impact resistance can be obtained.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2018年2月16付けで出願された日本特許出願(特願2018-26236)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on Feb. 16, 2018 (Japanese Patent Application No. 2018-26236), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
 1…カバーガラス、2…化学強化ガラス、3…機能層、4…表示領域、5…フレーム、6…液晶モジュール、7…接着層、10…表示装置、21…第1の主面、22…第2の主面、23…端面、24…面取り部、25…圧縮応力層、27…引張応力層、31…遮光層、32…圧縮応力層、33…開口部、35…赤外線透過層、51…底部、52…側壁部、53…開口部、61…バックライト、62…液晶パネル、81…指紋防止処理層 DESCRIPTION OF SYMBOLS 1 ... Cover glass, 2 ... Chemically tempered glass, 3 ... Functional layer, 4 ... Display area, 5 ... Frame, 6 ... Liquid crystal module, 7 ... Adhesive layer, 10 ... Display apparatus, 21 ... 1st main surface, 22 ... 2nd main surface, 23 ... end face, 24 ... chamfered portion, 25 ... compressive stress layer, 27 ... tensile stress layer, 31 ... light shielding layer, 32 ... compressive stress layer, 33 ... opening, 35 ... infrared ray transmitting layer, 51 ... Bottom, 52 ... Side wall, 53 ... Opening, 61 ... Backlight, 62 ... Liquid crystal panel, 81 ... Anti-fingerprint treatment layer

Claims (11)

  1.  第1の主面および第2の主面を備える化学強化ガラスと、
     前記第1の主面上に設けられた指紋防止処理層と、
     を備え、
     前記化学強化ガラスは、
     引張応力層の含有する全アルカリ金属のうち、Liのモル数が最も多く、
     圧縮応力層の深さDOLが60μm以上であり、
     前記指紋防止処理層の表面の摩擦帯電量が、JIS L1094:2014に記載のD法で0kV以下、-1.5kV以上であることを特徴とするカバーガラス。
    A chemically strengthened glass comprising a first main surface and a second main surface;
    An anti-fingerprint treatment layer provided on the first main surface;
    With
    The chemically strengthened glass is
    Of all alkali metals contained in the tensile stress layer, the number of moles of Li is the most,
    The depth DOL of the compressive stress layer is 60 μm or more,
    A cover glass characterized in that the triboelectric charge amount on the surface of the anti-fingerprint treatment layer is 0 kV or less and −1.5 kV or more according to the D method described in JIS L1094: 2014.
  2.  前記化学強化ガラスは、
     引張応力層を構成する酸化物成分のうち、LiO、NaO、KOの濃度の合計をAモル%、Alの濃度をBモル%としたとき、Aが14.5以上、かつ、A×Bが120以上である請求項1に記載のカバーガラス。
    The chemically strengthened glass is
    Among the oxide components constituting the tensile stress layer, when the total concentration of Li 2 O, Na 2 O, and K 2 O is A mol% and the concentration of Al 2 O 3 is B mol%, A is 14. The cover glass according to claim 1, wherein 5 or more and A × B is 120 or more.
  3.  前記化学強化ガラスは、
     引張応力層を構成する酸化物成分のうち、LiO、NaO、KOの濃度の合計をC質量%、Alの濃度をD質量%としたとき、Cが11以上、かつ、C×Dが140以上である請求項1に記載のカバーガラス。
    The chemically strengthened glass is
    Among oxide components constituting the tensile stress layer, when the total concentration of Li 2 O, Na 2 O, and K 2 O is C mass% and the concentration of Al 2 O 3 is D mass%, C is 11 or more. The cover glass according to claim 1, wherein C × D is 140 or more.
  4.  前記化学強化ガラスは、
     引張応力層を構成する酸化物成分のうち、SiO、Al、B、Pの濃度の合計が81モル%以下である、請求項1または2に記載のカバーガラス。
    The chemically strengthened glass is
    The cover according to claim 1 or 2, wherein the total concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 among the oxide components constituting the tensile stress layer is 81 mol% or less. Glass.
  5.  前記化学強化ガラスは、
     引張応力層を構成する酸化物成分のうち、SiO、Al、B、Pの濃度の合計が82質量%以下である、請求項1または2に記載のカバーガラス。
    The chemically strengthened glass is
    The cover according to claim 1 or 2, wherein the total concentration of SiO 2 , Al 2 O 3 , B 2 O 3 , and P 2 O 5 among the oxide components constituting the tensile stress layer is 82% by mass or less. Glass.
  6.  前記化学強化ガラスと前記指紋防止処理層の間に設けられた防眩機能層または反射防止層の少なくとも一方を備える、請求項1から5のいずれか一項に記載のカバーガラス。 The cover glass according to any one of claims 1 to 5, comprising at least one of an antiglare functional layer or an antireflection layer provided between the chemically strengthened glass and the anti-fingerprint treatment layer.
  7.  前記第2の主面上に設けられた遮光層を備える、請求項1から6のいずれか一項に記載のカバーガラス。 The cover glass according to any one of claims 1 to 6, further comprising a light shielding layer provided on the second main surface.
  8.  前記遮光層は開口部を有し、
     前記開口部には、赤外線透過率が前記遮光層よりも高い赤外線透過層が設けられている請求項7に記載のカバーガラス。
    The light shielding layer has an opening;
    The cover glass according to claim 7, wherein the opening is provided with an infrared transmission layer having an infrared transmission rate higher than that of the light shielding layer.
  9.  前記化学強化ガラスは屈曲ガラスである、請求項1から8のいずれか一項に記載のカバーガラス。 The cover glass according to any one of claims 1 to 8, wherein the chemically strengthened glass is a bent glass.
  10.  前記第1の主面と前記指紋防止処理層の間に防眩層を備え、前記防眩層の表面粗さがRaで0.01μm~0.5μmである、請求項1から9のいずれか一項に記載のカバーガラス。 The antiglare layer is provided between the first main surface and the fingerprint prevention treatment layer, and the surface roughness of the antiglare layer is 0.01 μm to 0.5 μm in Ra. The cover glass according to one item.
  11.  請求項1から10のいずれか一項に記載のカバーガラスを備えるインセル型IPS液晶表示装置。 An in-cell IPS liquid crystal display device comprising the cover glass according to any one of claims 1 to 10.
PCT/JP2019/005142 2018-02-16 2019-02-13 Cover glass, and in-cell liquid crystal display device WO2019159981A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980013211.XA CN111727177B (en) 2018-02-16 2019-02-13 Cover glass and embedded liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018026236A JP2021070590A (en) 2018-02-16 2018-02-16 Cover glass and in-cell liquid-crystal display device
JP2018-026236 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019159981A1 true WO2019159981A1 (en) 2019-08-22

Family

ID=67619969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005142 WO2019159981A1 (en) 2018-02-16 2019-02-13 Cover glass, and in-cell liquid crystal display device

Country Status (3)

Country Link
JP (1) JP2021070590A (en)
CN (1) CN111727177B (en)
WO (1) WO2019159981A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070788A1 (en) * 2019-10-08 2021-04-15 Agc株式会社 Article having water repellent and oil repellent layer
WO2022009850A1 (en) * 2020-07-10 2022-01-13 Agc株式会社 Glass and chemically strengthened glass
WO2023162900A1 (en) * 2022-02-25 2023-08-31 Agc株式会社 Glass laminate and method for producing glass laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219713A (en) * 2021-04-30 2021-08-06 惠科股份有限公司 Display panel and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020921A (en) * 2010-06-18 2012-02-02 Asahi Glass Co Ltd Glass for display device and glass plate
JP2012232882A (en) * 2011-04-18 2012-11-29 Asahi Glass Co Ltd Method for producing chemically tempered glass, and glass for chemical tempering
JP2014099159A (en) * 2012-10-16 2014-05-29 Toppan Printing Co Ltd Front plate for touch panel, display device including the plate, and integrated sensor substrate comprising front plate for touch panel and touch panel sensor
JP2017511785A (en) * 2014-02-13 2017-04-27 コーニング インコーポレイテッド Glass with enhanced strength and antibacterial properties and method for producing the same
WO2017161108A1 (en) * 2016-03-18 2017-09-21 Corning Incorporated Methods for preparing strengthened lithium-based glass articles and lithium-based glass articles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104350020A (en) * 2012-05-25 2015-02-11 旭硝子株式会社 Chemically strengthened glass plate, cover glass, chemically strengthened glass with touch sensor, and display device
CN103882392A (en) * 2012-12-21 2014-06-25 比亚迪股份有限公司 Preparation method of fingerprint resistant film and fingerprint resistant film
JP2014133683A (en) * 2013-01-10 2014-07-24 Central Glass Co Ltd Method for manufacturing a chemically strengthened glass plate
CN107074639A (en) * 2014-10-17 2017-08-18 旭硝子株式会社 The lid component
JP6561823B2 (en) * 2015-12-18 2019-08-21 Agc株式会社 Glass laminate with protective film
CN206264522U (en) * 2016-12-08 2017-06-20 东莞东美新材料有限公司 Anti-fingerprint diaphragm
CN107188429A (en) * 2017-05-27 2017-09-22 苏州东杏表面技术有限公司 It is a kind of that there is antistatic, the touch panel glass of anti-pollution function and its preparation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020921A (en) * 2010-06-18 2012-02-02 Asahi Glass Co Ltd Glass for display device and glass plate
JP2012232882A (en) * 2011-04-18 2012-11-29 Asahi Glass Co Ltd Method for producing chemically tempered glass, and glass for chemical tempering
JP2014099159A (en) * 2012-10-16 2014-05-29 Toppan Printing Co Ltd Front plate for touch panel, display device including the plate, and integrated sensor substrate comprising front plate for touch panel and touch panel sensor
JP2017511785A (en) * 2014-02-13 2017-04-27 コーニング インコーポレイテッド Glass with enhanced strength and antibacterial properties and method for producing the same
WO2017161108A1 (en) * 2016-03-18 2017-09-21 Corning Incorporated Methods for preparing strengthened lithium-based glass articles and lithium-based glass articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070788A1 (en) * 2019-10-08 2021-04-15 Agc株式会社 Article having water repellent and oil repellent layer
WO2022009850A1 (en) * 2020-07-10 2022-01-13 Agc株式会社 Glass and chemically strengthened glass
CN115776973A (en) * 2020-07-10 2023-03-10 Agc株式会社 Glass and chemically strengthened glass
WO2023162900A1 (en) * 2022-02-25 2023-08-31 Agc株式会社 Glass laminate and method for producing glass laminate

Also Published As

Publication number Publication date
CN111727177A (en) 2020-09-29
JP2021070590A (en) 2021-05-06
CN111727177B (en) 2023-06-02

Similar Documents

Publication Publication Date Title
WO2019159983A1 (en) Cover glass, and in-cell liquid-crystal display device
JP7331845B2 (en) Antiglare transparent substrate and display device provided with the same
WO2019159981A1 (en) Cover glass, and in-cell liquid crystal display device
US10816840B2 (en) Glass plate and display device
US10928561B2 (en) Enclosures having an improved tactile surface
TWI623507B (en) Durable glass articles for use as writable erasable marker boards
EP3144283B1 (en) Glass article
US20180257978A1 (en) Plate with print layer, display device using same, and glass with functional layer for in-vehicle display devices
JP2019144338A (en) Transparent plate with light-shielding layer
JP6874774B2 (en) Transparent substrate and display device with light-shielding area
JP5459122B2 (en) Display device
EP3833642B1 (en) Cover glass sheet
CN115136036A (en) Display device and article with color matched display and non-display regions
JP6801762B2 (en) Display device
JP2020027169A (en) Display device
JP6806193B2 (en) Glass laminate with protective film
JP7322362B2 (en) Laminates and displays
WO2022054960A1 (en) Display device
CN114302867B (en) Covering component
CN113454040A (en) Glass substrate with stain-proofing layer and method for producing glass substrate with stain-proofing layer
KR20230095101A (en) vitreous body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP