WO2019159978A1 - Control device for automatic transmission and control method for automatic transmission - Google Patents

Control device for automatic transmission and control method for automatic transmission Download PDF

Info

Publication number
WO2019159978A1
WO2019159978A1 PCT/JP2019/005131 JP2019005131W WO2019159978A1 WO 2019159978 A1 WO2019159978 A1 WO 2019159978A1 JP 2019005131 W JP2019005131 W JP 2019005131W WO 2019159978 A1 WO2019159978 A1 WO 2019159978A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
continuous
release
automatic transmission
gear
Prior art date
Application number
PCT/JP2019/005131
Other languages
French (fr)
Japanese (ja)
Inventor
勇希 下野
吉彦 太田
岩本 育弘
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2020500527A priority Critical patent/JP7008786B2/en
Publication of WO2019159978A1 publication Critical patent/WO2019159978A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Definitions

  • the present invention relates to a control device for an automatic transmission mounted on a vehicle and a control method for the automatic transmission.
  • the present invention has been made paying attention to the above-mentioned problem, and aims to realize a continuous shift with a single feeling of suppressing a lag while suppressing a generation of a pulling shock during a continuous downshift during a step-down continuous shift.
  • the change is made by replacing the friction element.
  • a step-down continuous shift is executed by a pre-shift and a post-shift where the progress of the shift overlaps each other. If a front shift engagement capacity or a rear shift engagement capacity occurs while the front shift is in progress, the rear shift release clutch is released to the rear shift release clutch so that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift. Correct the indicated pressure.
  • the rear shift release clutch is applied to the rear shift release clutch so that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift.
  • FIG. 1 is an overall system diagram illustrating an engine vehicle equipped with an automatic transmission to which a control device according to a first embodiment is applied.
  • 1 is a skeleton diagram showing an example of an automatic transmission to which a control device of Embodiment 1 is applied.
  • FIG. It is a fastening table
  • FIG. 4 is a time chart showing characteristics of a shift request gear position, a front shift gear position and a rear shift gear position, a clutch command pressure, an input rotation speed, a rear shift release clutch slip rotation speed, and a front and rear G in a normal depression down continuous shift.
  • It is a time chart which shows each characteristic of G.
  • the control device in the first embodiment is applied to an engine vehicle (an example of a vehicle) equipped with an automatic transmission having 9 forward speed and 1 reverse speed.
  • an engine vehicle an example of a vehicle
  • an automatic transmission having 9 forward speed and 1 reverse speed.
  • the configuration of the first embodiment will be described by being divided into “the overall system configuration”, “the detailed configuration of the automatic transmission”, and “the down-down continuous shift control processing configuration”.
  • FIG. 1 is an overall system diagram showing an engine vehicle equipped with an automatic transmission to which the control device of Embodiment 1 is applied. The overall system configuration will be described below with reference to FIG.
  • the drive system of the engine vehicle includes an engine 1, a torque converter 2, an automatic transmission 3, a propeller shaft 4, and drive wheels 5.
  • the automatic transmission 3 is provided with a control valve unit 6 including a spool valve, a hydraulic circuit, a solenoid valve, etc. for shifting.
  • the actuator included in the control valve unit 6 operates in response to a control command from the AT controller 10.
  • the engine vehicle control system includes an AT controller 10, an engine controller 11, and a CAN communication line 12.
  • the AT controller 10 which is a control device for the automatic transmission 3, includes a turbine rotation sensor 13, an output shaft rotation sensor 14, an ATF oil temperature sensor 15, an accelerator opening sensor 16, an engine rotation sensor 17, an inhibitor switch 18, an intermediate shaft rotation sensor. 19 and the like are input.
  • the ATF oil temperature sensor 15 detects the temperature of ATF (automatic transmission oil) and sends a signal of the ATF oil temperature TATF to the AT controller 10.
  • the accelerator opening sensor 16 detects the accelerator opening by the accelerator operation of the driver, and sends a signal of the accelerator opening APO to the AT controller 10.
  • the engine rotation sensor 17 detects the rotation speed of the engine 1 and sends a signal of the engine rotation speed Ne to the AT controller 10.
  • the inhibitor switch 18 detects the range position selected by the driver's selection operation to the select lever, the select button, etc., and sends a range position signal to the AT controller 10.
  • the AT controller 10 monitors changes in the driving points (VSP, APO) due to the vehicle speed VSP and the accelerator opening APO on the shift map, 1. Auto upshift (by increasing vehicle speed while maintaining accelerator opening) 2. Foot release upshift (by accelerator release operation) 3. Foot return upshift (by accelerator return operation) 4. Power-on downshift (due to a decrease in vehicle speed while maintaining the accelerator opening) 5. Small opening sudden step down shift (by small accelerator operation amount) 6. Large opening sudden step-down shift (depending on the amount of accelerator operation: "Kickdown") 7. Slow depressing downshift (by slowly depressing the accelerator and increasing vehicle speed) 8. Coast downshift (due to a decrease in vehicle speed when the accelerator is released) Shift control is performed using a basic shift pattern.
  • the AT controller 10 executes a step-down continuous gear shift control unit 10a.
  • the step-down down continuous shift refers to a shift by a pre-shift and a post-shift that are continuously executed with the progress of the changing shift overlapping each other.
  • the step-down down continuous shift to be processed in the continuous shift control processing unit 10a is a 7-3 step-down continuous shift and a 9-3 step-down continuous shift.
  • the 7th speed (high speed) shifts from the 4th speed (intermediate speed) to the 3rd speed (low speed).
  • the 9-3 step-down continuous shift the 9th speed (high speed) shifts from the 4th speed (intermediate speed) to the 3rd speed (low speed).
  • the continuous shift control processing unit 10a When there is a request for 7-3 step-down continuous shift or 9-3 step-down continuous shift and the front shift engagement capacity or the rear shift engagement capacity is generated during the progress of the previous shift, the continuous shift control processing unit 10a The rear shift release instruction pressure to the shift release clutch is corrected.
  • the rear shift release instruction pressure is corrected to shift downward so that the rear shift release clutch slides out after the end of the front shift.
  • the rear shift release instruction pressure is shift-corrected upward so that the rear shift release clutch does not slip until the end of the front shift.
  • the engine controller 11 performs engine torque limit control or the like by cooperative control with shift control in addition to various controls of the engine alone.
  • the AT controller 10 and the engine controller 11 can exchange information bidirectionally. 12 is connected. Therefore, when a torque information request is input from the AT controller 10, the engine controller 11 outputs information on the estimated engine torque Te to the AT controller 10.
  • engine torque limit control is executed in which the engine torque is an effective torque (torque required to limit the driver request torque by the upper limit torque).
  • FIG. 2 is a skeleton diagram showing an example of an automatic transmission 3 to which the control device of the first embodiment is applied.
  • FIG. 3 is a fastening table in the automatic transmission 3.
  • FIG. 4 is a shift table in the automatic transmission 3. An example of a map is shown.
  • a detailed configuration of the automatic transmission 3 will be described with reference to FIGS.
  • the automatic transmission 3 has a first planetary gear PG1, a second planetary gear PG2, and a third planetary gear in order from the input shaft IN to the output shaft OUT.
  • a gear PG3 and a fourth planetary gear PG4 are provided.
  • the first planetary gear PG1 is a single pinion type planetary gear, and includes a first sun gear S1, a first carrier C1 that supports a pinion that meshes with the first sun gear S1, and a first ring gear R1 that meshes with the pinion.
  • the second planetary gear PG2 is a single pinion type planetary gear, and has a second sun gear S2, a second carrier C2 that supports the pinion that meshes with the second sun gear S2, and a second ring gear R2 that meshes with the pinion.
  • the third planetary gear PG3 is a single pinion type planetary gear, and includes a third sun gear S3, a third carrier C3 that supports a pinion that meshes with the third sun gear S3, and a third ring gear R3 that meshes with the pinion.
  • the fourth planetary gear PG4 is a single pinion type planetary gear, and includes a fourth sun gear S4, a fourth carrier C4 that supports a pinion that meshes with the fourth sun gear S4, and a fourth ring gear R4 that meshes with the pinion.
  • the automatic transmission 3 includes an input shaft IN, an output shaft OUT, a first connecting member M1, a second connecting member M2, and a transmission case TC.
  • the first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3 are provided as friction elements that are engaged / released by shifting. Yes.
  • the input shaft IN is a shaft through which the driving force from the engine 1 is input via the torque converter 2, and is always connected to the first sun gear S1 and the fourth carrier C4.
  • the input shaft IN is connected to the first carrier C1 through the second clutch K2 so as to be connected and disconnected.
  • the output shaft OUT is a shaft that outputs a driving torque shifted to the driving wheel 5 through the propeller shaft 4 and a final gear (not shown), and is always connected to the third carrier C3.
  • the output shaft OUT is connected to the fourth ring gear R4 via the first clutch K1 so as to be connected and disconnected.
  • the first connecting member M1 is a member that always connects the first ring gear R1 of the first planetary gear PG1 and the second carrier C2 of the second planetary gear PG2 without interposing a friction element.
  • the second connecting member M2 always connects the second ring gear R2 of the second planetary gear PG2, the third sun gear S3 of the third planetary gear PG3, and the fourth sun gear S4 of the fourth planetary gear PG4 without interposing a friction element. Is a member.
  • the first brake B1 is a friction element that can lock the rotation of the first carrier C1 with respect to the transmission case TC.
  • the second brake B2 is a friction element that can lock the rotation of the third ring gear R3 with respect to the transmission case TC.
  • the third brake B3 is a friction element that can lock the rotation of the second sun gear S2 with respect to the transmission case TC.
  • the first clutch K1 is a friction element that selectively connects the fourth ring gear R4 and the output shaft OUT.
  • the second clutch K2 is a friction element that selectively connects the input shaft IN and the first carrier C1.
  • the third clutch K3 is a friction element that selectively couples the first carrier C1 and the second coupling member M2.
  • FIG. 3 shows an engagement table for achieving 9 forward speeds and 1 reverse speed in the D range by combining three simultaneous engagements among the six friction elements in the automatic transmission 3.
  • FIG. 3 shows an engagement table for achieving 9 forward speeds and 1 reverse speed in the D range by combining three simultaneous engagements among the six friction elements in the automatic transmission 3.
  • 1st gear (1st) is achieved by simultaneous engagement of the second brake B2, the third brake B3 and the third clutch K3.
  • the second speed (2nd) is achieved by simultaneously engaging the second brake B2, the second clutch K2, and the third clutch K3.
  • the third speed (3rd) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the second clutch K2.
  • the fourth speed (4th) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the first clutch K1.
  • the fifth speed (5th) is achieved by simultaneous engagement of the third brake B3, the first clutch K1, and the second clutch K2.
  • the first to fifth gears described above are underdrive gears with a reduction gear ratio with a gear ratio exceeding 1.
  • 6th speed (6th) is achieved by simultaneous engagement of the first clutch K1, the second clutch K2, and the third clutch K3.
  • 7th speed (7th) is achieved by simultaneous engagement of the third brake B3, the first clutch K1, and the third clutch K3.
  • the eighth speed (8th) is achieved by simultaneously engaging the first brake B1, the first clutch K1, and the third clutch K3.
  • the ninth speed (9th) is achieved by simultaneously engaging the first brake B1, the third brake B3, and the first clutch K1.
  • the above seventh to ninth gears are overdrive gears with an increased gear ratio with a gear ratio of less than 1.
  • shifting to an adjacent gear stage is achieved by releasing one friction element and fastening one friction element while maintaining the engagement of two of the three friction elements.
  • the reverse speed (Rev) by selecting the R range position is achieved by simultaneously engaging the first brake B1, the second brake B2, and the third brake B3.
  • the N range position and the P range position are selected, all of the six friction elements B1, B2, B3, K1, K2, and K3 are released.
  • a shift map as shown in FIG. 4 is stored and set in the AT controller 10, and a shift by changing the shift stage from the first speed stage to the ninth speed stage on the forward side by selecting the D range is performed. It is done according to the map. That is, when the operating point (VSP, APO) at that time crosses the upshift line shown by the solid line in FIG. 4, an upshift request is issued. When the operating point (VSP, APO) crosses the downshift line shown by the broken line in FIG. 4, a downshift request is issued.
  • Step-down down continuous gear shift request indicates that the operating point (VSP, APO) is changed by the sudden stepping on the accelerator to the full open range while driving at the 7th gear as shown in the characteristics of the arrow in Fig. 4A. It is issued by crossing the 7-6 downshift line, 6-5 downshift line, 5-4 downshift line and 4-3 downshift line at once.
  • Step-down down continuous shift is executed by a forward shift from the 7th speed to the 4th speed and a rear shift from the 4th speed to the 3rd speed.
  • the pre-shift from the seventh speed to the fourth speed is a change gear shift in which the third clutch K3 is a “front shift release clutch” and the second brake B2 is a “front shift engagement clutch”.
  • the rear shift from the fourth speed to the third speed is a change gear shift in which the first clutch K1 is a “rear shift release clutch” and the second clutch K2 is a “rear shift engagement clutch”.
  • the 9-3 step-down continuous shift is executed by a front shift from the 9th gear to the 4th gear and a rear shift from the 4th gear to the 3rd gear.
  • the pre-shift from the ninth speed to the fourth speed is a change-over shift in which the first brake B1 is a “front shift release clutch” and the second brake B2 is a “front shift engagement clutch”.
  • the rear shift from the fourth speed to the third speed is a change gear shift in which the first clutch K1 is a “rear shift release clutch” and the second clutch K2 is a “rear shift engagement clutch”.
  • FIG. 5 is a flowchart illustrating the flow of the step-down continuous shift control process executed by the continuous shift control processing unit 10a of the AT controller 10 according to the first embodiment. Hereinafter, each step of FIG. 5 will be described.
  • step S1 it is determined whether or not a step-down downshift by an accelerator stepping operation during traveling is being performed. If YES (during down-shifting), the process proceeds to step S2, and if NO (not down-shifting), the process proceeds to return.
  • step S2 following the determination that the step-down downshift is being performed in step S1, it is determined whether or not a continuous shift is being performed. If YES (during continuous shift), the process proceeds to step S3. If NO (not continuous shift), the process proceeds to return.
  • the process proceeds to return.
  • the 7-3 step-down down continuous shift is being performed or when the 9-3 step-down down continuous shift is being performed, it is determined that the continuous shift is being performed.
  • step S3 following the determination that the continuous shift is being performed in step S2 or the step-down continuous shift not being completed in step S15, it is determined whether or not the continuous shift is starting. If YES (when continuous shift is started), the process proceeds to step S4. If NO (continuous shift is in progress), the process proceeds to step 5.
  • step S4 following the determination that it is the time of the start of continuous shift in step S3, the front shift release instruction pressure and the rear shift release instruction pressure are calculated, and the process proceeds to step S5.
  • the front shift release instruction pressure and the rear shift release instruction pressure are calculated so that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift (the front shift release instruction pressure ⁇ Rear shift release command pressure: see FIG.
  • step S5 following the determination that the continuous shift is in progress in step S3 or the calculation of the front shift release command pressure and the rear shift release command pressure in step S4, each clutch command pressure is output. Proceed to S6.
  • each clutch command pressure refers to a front shift release command pressure to the front shift release clutch, a front shift engagement command pressure to the front shift engagement clutch, a rear shift release command pressure to the rear shift release clutch, and a rear The rear shift engagement command pressure to the shift engagement clutch.
  • step S6 following the output of each clutch command pressure in step S5, it is determined whether or not the previous shift is in progress. If YES (the previous shift is in progress), the process proceeds to step S7. If NO (the previous shift is completed), the process proceeds to step S15.
  • next shift is in progress means that the inertia phase in the previous shift starts after the start of the previous shift, and the inertia phase ends and the actual gear ratio becomes the intermediate gear ratio (fourth speed gear). The period until the ratio is reached.
  • the actual gear ratio is acquired by sequentially calculating the transmission gear speed Nin from the turbine rotation sensor 13 and the transmission output speed No from the output shaft rotation sensor 14 when the pre-shift is started.
  • step S7 following the determination that the previous shift is in progress in step S6, it is determined whether or not a shift engagement capacity has occurred. If YES (no shift engagement capacity is generated), the process proceeds to step S15. If NO (transition engagement capacity is generated), the process proceeds to step S8.
  • the occurrence of the front shift engagement capacity or the rear shift engagement capacity during the progress of the front shift is detected by the fluctuation of the rotational member rotational speed of the automatic transmission 3. That is, since the overall torque balance changes due to the generation of the engagement capacity, the rotational fluctuation amount of the turbine rotation speed Nt and / or the intermediate shaft rotation speed Nint changes. Therefore, the occurrence of the engagement capacity is detected by a change in gradient in at least one of the turbine speed Nt and the intermediate shaft speed Nint.
  • step S8 it is determined whether or not the previous shift engagement capacity has been generated following the determination that the shift engagement capacity has been generated in step S7. If YES (generation of the front shift engagement capacity), the process proceeds to step S9. If NO (generation of the rear shift engagement capacity), the process proceeds to step S11.
  • the determination that the front shift engagement capacity has occurred is detected by the increase gradient (inclination) of the intermediate shaft rotation speed Nint accompanying the generation of the front transmission engagement capacity.
  • the determination that the rear shift engagement capacity has occurred is detected by a decrease in the rising gradient of the intermediate shaft rotation speed Nint accompanying the generation of the rear shift engagement capacity (the inclination goes down). That is, it can be determined that the shift engagement capacity is generated only in one of the engagement elements by looking at the rising gradient of the intermediate shaft rotation speed Nint.
  • both the front shift and the rear shift engagement elements have capacity, it is not possible to determine which one has capacity only by the intermediate shaft rotation speed Nint. In this case, it is possible to determine which one has the capacity by using together the rotational speeds of other rotational members other than the intermediate shaft rotational speed Nint (for example, the transmission input shaft rotational speed and the transmission output shaft rotational speed). Is possible.
  • step S9 following the determination that the front shift engagement capacity is generated in step S8, the front shift engagement capacity is estimated, and the process proceeds to step S10.
  • estimate of the front shift engagement capacity is estimated by calculation of the front shift engagement torque using the gear train motion equation, the rotational system relational expression, the constraint condition, etc. of the automatic transmission 3 during the progress of the front shift.
  • step S10 following the estimation of the front shift engagement capacity in step S9, it is determined whether or not the estimated front shift engagement capacity is equal to or greater than a correction process execution determination threshold. If YES (previous shift engagement capacity ⁇ correction process execution determination threshold), the process proceeds to step S13. If NO (previous transmission engagement capacity ⁇ correction process execution determination threshold), the process proceeds to step S15.
  • the “correction process execution determination threshold value” does not correct the rear shift release instruction pressure if the front shift engagement capacity is equal to or less than a certain value. This is an allowable threshold value set for the purpose.
  • step S11 following the determination that the rear shift engagement capacity is generated in step S8, the rear shift engagement capacity is estimated, and the process proceeds to step S12.
  • the “estimation of the rear shift engagement capacity” is estimated by calculating the rear shift engagement torque using the gear train motion equation, the rotation system relational expression, the constraint condition, etc. of the automatic transmission 3 while the front shift is in progress.
  • step S12 following the estimation of the rear shift engagement capacity in step S11, it is determined whether or not the estimated rear shift engagement capacity is equal to or greater than a correction process execution determination threshold. If YES (rear shift engagement capacity ⁇ correction process execution determination threshold), the process proceeds to step S13. If NO (rear shift engagement capacity ⁇ correction process execution determination threshold), the process proceeds to step S15.
  • the “correction process execution determination threshold value” does not correct the rear shift release instruction pressure if the rear shift engagement capacity is less than a certain value. Is an allowable threshold value set to.
  • step S13 following the determination in step S10 that the front shift engagement capacity ⁇ the correction process execution determination threshold value or the determination in step S12 that the rear shift engagement capacity ⁇ the correction process execution determination threshold value, A correction amount to the release instruction pressure is calculated, and the process proceeds to step S14.
  • continuous shift is established on a coordinate plane having the front shift release torque (SFT1 Trls) and the rear shift release torque (SFT2 Trls) as coordinate axes.
  • a continuous shift establishment torque region is determined in advance. That is, the shock sensory evaluation line shown in the lower characteristic line of FIG. 6 is determined by the shock sensory evaluation experiment of the step-down continuous shift, and the lag sensory evaluation line shown in the upper characteristic line of FIG. Decide. Then, the triangular area surrounded by the two characteristic lines is determined as the continuous shift establishment torque area.
  • the continuous shift establishment torque region smoothly changes in input rotation from the end of the front shift toward the rear shift, and the acceleration (G).
  • the shock sensory evaluation line is a boundary line excluding a region where the acceleration (G) at the end of the previous shift is large and is evaluated as shock NG, as shown in an arrow C frame in the center of FIG.
  • the lag sensory evaluation line is a state where the input rotation remains constant and the rear shift does not proceed from the end of the front shift, and the region evaluated as the lag NG This refers to the boundary line that is excluded.
  • the correction amount is determined by the amount of the rear shift release torque shift amount at which the coordinate position ( ⁇ ) at the start of the correction enters the continuous shift establishment torque region. .
  • the position on the low torque side of the continuous shift establishment torque region (position as close as possible to the shock sensory evaluation line when variation is considered) is set as the position ( ⁇ ) of the rear shift release torque target value, and the coordinate position at the start of correction
  • the amount of correction is determined by the amount of deviation shift between ( ⁇ ) and the position ( ⁇ ) of the rear shift release torque target value.
  • the rear shift release instruction pressure to the rear shift release clutch is shift-corrected downward by a determined correction amount.
  • the rear shift release instruction pressure to the rear shift release clutch is shift-corrected upward by a determined correction amount.
  • step S14 following the calculation of the correction amount for the post-shift release command pressure in step S13, the correction amount is reflected in the post-shift release command pressure output in step S5, and the process proceeds to step S15.
  • reflecting the correction amount in the rear shift release instruction pressure means that the previous rear shift release instruction pressure is rewritten to the rear shift release instruction pressure after being corrected by the correction amount.
  • step S15 it is determined whether NO in steps S6, S10, and S12, or whether or not the step-down continuous shift has been completed following the correction amount being reflected in the rear shift release instruction pressure in step S14. . If YES (stepped down continuous shift completed), the process proceeds to return, and if NO (stepped down continuous shift not completed), the process returns to step S3.
  • the determination of completion of the step-down continuous shift is made when the inertia phase in the rear shift is completed and the actual gear ratio has reached the gear ratio (third gear ratio) after the completion of the step-down continuous shift.
  • step-down continuous shift control processing operation and “step-down continuous shift control operation”.
  • step S4 the front shift release instruction pressure and the rear shift release instruction pressure are calculated so that the rear shift release clutch does not slip until the end of the previous shift and starts to slide after the end of the previous shift.
  • step S5 the front shift release instruction pressure (calculated value) to the front shift release clutch and the front shift engagement instruction pressure to the front shift engagement clutch are output, and the front shift is started.
  • step S5 According to a predetermined command pressure profile, a front shift release instruction pressure to the front shift release clutch and a front shift engagement instruction pressure to the front shift engagement clutch are output.
  • step S5 the output command pressure is set to the rear shift release instruction pressure (calculated value) to the rear shift release clutch and the rear shift engagement to the rear shift engagement clutch. The command pressure is applied and the rear shift is started.
  • step S3 When the pre-shift is completed with no shift engagement capacity being generated during the pre-shift from the start of the post-shift, the flow from step S3 to step S5 to step S6 to step S15 is repeated. As the rear shift progresses, the actual gear ratio reaches the gear ratio after completion of the step-down continuous shift (third gear ratio). When the step-down continuous shift is completed, the process proceeds from step 15 to return.
  • step S8 it is determined whether or not a front shift engagement capacity has been generated, and processing is performed separately for a case where it is determined that a front shift engagement capacity has occurred and a case where it has been determined that a rear shift engagement capacity has occurred.
  • step S8 If it is determined in step S8 that the front shift engagement capacity has occurred during the progress of the previous shift, but the front shift engagement capacity is less than the correction process execution determination threshold, the process proceeds to step S8 ⁇ step S9 ⁇ step S10 ⁇ step S15. The rear shift release instruction pressure is not corrected. However, if it is determined in step S8 that the front shift engagement capacity has occurred, and it is determined in step S10 that the front shift engagement capacity is equal to or greater than the correction processing execution determination threshold, step S8 ⁇ step S9 ⁇ step S10 ⁇ step. The process proceeds from S13 to step S14.
  • step S13 a correction amount for shifting and correcting the rear shift release instruction pressure to the rear shift release clutch is calculated, and in step S14, the correction amount is reflected in the rear shift release instruction pressure and the previous rear shift release is performed.
  • the command pressure is rewritten to the rear shift release command pressure after the shift is corrected downward by the correction amount.
  • step S8 If it is determined in step S8 that the rear shift engagement capacity has occurred while the front shift is in progress, but the rear shift engagement capacity is less than the correction process execution determination threshold value, the process proceeds to step S8 ⁇ step S11 ⁇ step S12 ⁇ step S15. The rear shift release instruction pressure is not corrected. However, if it is determined in step S8 that the rear shift engagement capacity has occurred, and it is determined in step S12 that the rear shift engagement capacity is equal to or greater than the correction process execution determination threshold, step S8 ⁇ step S11 ⁇ step S12 ⁇ step. The process proceeds from S13 to step S14.
  • step S13 a correction amount for shifting the rear shift release instruction pressure to the rear shift release clutch upward is calculated, and in step S14, the correction amount is reflected in the rear shift release instruction pressure and the previous rear shift release instruction is calculated. After the pressure is shifted upward by the correction amount, it is rewritten as the rear shift release command pressure.
  • the rear shift release clutch is configured such that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift.
  • the rear shift release command pressure is corrected. More specifically, when it is determined that the front shift engagement capacity has occurred while the front shift is in progress, and the front shift engagement capacity is determined to be greater than or equal to the correction process execution determination threshold, the rear shift release command pressure is the correction amount. Is shifted downward. Further, when it is determined that the rear shift engagement capacity is generated while the front shift is in progress and the rear shift engagement capacity is determined to be equal to or greater than the correction process execution determination threshold, the rear shift release instruction pressure is shifted upward by the correction amount. It is corrected.
  • time t1 is the first shift change element control start time
  • time t3 is the rear shift engagement.
  • the capacity generation time, time t4 is the intermediate gear ratio arrival time, and time t5 is the second shift end time.
  • the input rotational speed smoothly changes from the end of the front shift toward the rear shift before and after the intermediate gear ratio arrival time t4. Furthermore, as shown by the in-frame characteristics of the arrow I in FIG. 11, the fluctuation of the front and rear G is also suppressed before and after the intermediate gear ratio arrival time t4. That is, in the step-down continuous shift control at the normal time, a continuous shift with a single feeling with a reduced lag is realized while suppressing the occurrence of a pulling shock during the continuous shift.
  • the rear shift release clutch does not start slipping even after the front shift is completed.
  • a lag occurs that the start of the inertia phase of the rear shift is delayed.
  • a pulling shock is generated when the rear shift engagement capacity is generated while the front shift is in progress, and the front shift engagement capacity is generated while the front shift is in progress. It was made paying attention to lag generation. That is, if a shift engagement capacity is generated while the front shift is in progress, the rear shift release instruction pressure to the rear shift release clutch is corrected so that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift. Adopted the configuration.
  • the input rotational speed smoothly changes from the end of the front shift toward the rear shift.
  • the fluctuation of the front and rear G is suppressed to be small before and after the intermediate gear ratio arrival time t4. That is, in the down-down continuous shift control for correcting the rear shift release instruction pressure, a continuous shift with a single feeling with a reduced lag is realized while suppressing the occurrence of a pulling shock during the continuous shift.
  • a control device for the automatic transmission 3 having a plurality of shift stages and a plurality of friction elements.
  • the step-down continuous shift is executed by the front shift (7-4 shift, 9-4 shift) and the rear shift (4-3 shift) in which the progress of the shift shift by the friction element switching overlaps each other.
  • the rear shift release clutch (first clutch K1) is released so that the rear shift release clutch (first clutch K1) does not slip until the end of the front shift and starts to slide after the end of the front shift.
  • a continuous shift control processing unit 10a that corrects the rear shift release instruction pressure to the clutch (first clutch K1) is provided.
  • the rear shift release clutch (first clutch K1) does not slip until the end of the front shift and starts to slide after the end of the front shift.
  • the continuous shift control processing unit 10a corrects the rear shift release instruction pressure to the rear shift release clutch when the front shift engagement capacity is generated while the front shift is in progress. If the rear shift engagement capacity is generated while the front shift is in progress, the rear shift release instruction pressure to the rear shift release clutch is corrected to be increased. In this way, by changing the increase / decrease direction of the rear shift release command pressure correction depending on whether the front shift engagement capacity has occurred or the rear shift engagement capacity has occurred while the front shift is in progress, The shift release instruction pressure can be corrected.
  • the continuous shift control processing unit 10a indicates that the front shift engagement capacity or the rear shift engagement capacity has occurred during the progress of the previous shift, and that the rotational member rotational speed (intermediate shaft rotational speed Nint, turbine rotational speed) of the automatic transmission 3 It is detected by the fluctuation of several Nt). In this way, by utilizing the fact that the overall torque balance changes due to the generation of the engagement capacity in the automatic transmission 3, it is possible to perform the front shift while the front shift is in progress due to fluctuations in the rotational member rotational speed of the automatic transmission 3. It can be detected that the engagement capacity or the rear shift engagement capacity has occurred.
  • the continuous shift control processing unit 10a performs a continuous shift on the coordinate plane having the front shift release torque (SFT1 Trls) and the rear shift release torque (SFT2 Trls) as coordinate axes through experiments of shock sensory evaluation and lag sensory evaluation.
  • a continuous shift establishment torque region to be established is determined in advance.
  • the correction amount is determined by the magnitude of the post-shift release torque shift amount where the coordinate position at the start of the correction enters the continuous shift establishment torque region.
  • a correction capable of obtaining both shock suppression and lag suppression as sensory evaluation is obtained. It can be performed.
  • the continuous shift control processing unit 10a sets the low torque side position in the continuous shift establishment torque region as the position of the rear shift release torque target value, and the difference between the coordinate position at the start of correction and the position of the rear shift release torque target value The amount of correction is determined by the amount of shift. In this manner, by making the position close to the shock NG area in the continuous shift establishment torque area as the position of the rear shift release torque target value, it is possible to perform correction for improving the continuous shift response.
  • examples of the 7-3 step-down continuous shift and the 9-3 step-down continuous shift in which the fourth step is an intermediate step are used as continuous shifts to be subjected to the step-down continuous shift by the continuous shift control processing unit 10a.
  • the continuous shift that is the target of the step-down continuous shift in the continuous shift control processing unit may be an example of a step-down continuous shift that uses an intermediate stage other than the fourth speed stage.
  • it may be an example of a step-down continuous shift by a jump gear stage other than a 7-3 step-down continuous shift or a 9-3 step-down continuous shift.
  • the continuous shift control processing unit 10a an example in which the generation of the engagement capacity is detected by a change in the gradient of at least one of the turbine rotation speed Nt and the intermediate shaft rotation speed Nint is shown.
  • the continuous shift control processing unit is a unit provided with a piston stroke amount detection sensor of a friction element, it is also possible to detect the engagement capacity generation timing by looking at the magnitude of the stroke amount.
  • Example 1 an example of an automatic transmission 3 with 9 forward speeds and 1 reverse speed was shown as an automatic transmission.
  • the automatic transmission may be an example of an automatic transmission having a stepped gear stage other than the 9th forward speed and the 1st reverse speed.
  • a control device for an automatic transmission mounted on an engine vehicle has been described.
  • the control device for an automatic transmission such as a hybrid vehicle or an electric vehicle is not limited to an engine vehicle. Is possible.

Abstract

According to the present invention, an AT controller 10 has a continuous shift control processing unit 10a which executes a step-down continuous shift through a front shift and a rear shift during which the progresses of a shift change overlap each other, when there is a down-shift request for transitioning from a high-shift stage to a low-shift stage with an intermediate-shift stage skipped according to an accelerator stepping operation while traveling. The continuous shift control processing unit 10a corrects a rear shift release indication pressure for a rear shift release clutch so that the rear shift release clutch does not slip until the completion of the front shift and starts to slip after the completion of the front shift, when a front shift engaging capacity or a rear shift engaging capacity is generated during the progress of the front shift.

Description

自動変速機の制御装置及び自動変速機の制御方法Control device for automatic transmission and control method for automatic transmission
 本発明は、車両に搭載される自動変速機の制御装置及び自動変速機の制御方法に関する。 The present invention relates to a control device for an automatic transmission mounted on a vehicle and a control method for the automatic transmission.
 従来、多重変速中、所定時間の間に第2ダウン変速で解放する係合装置の係合油圧を所定油圧まで低下させることができない場合、第1ダウン変速が完了するまで第2ダウン変速を禁止する変速制御装置が記載されている(特許文献1参照)。 Conventionally, during multiple shifts, when the engagement hydraulic pressure of the engagement device released by the second down shift cannot be reduced to a predetermined hydraulic pressure during a predetermined time, the second down shift is prohibited until the first down shift is completed. A shift control device is described (see Patent Document 1).
 上記従来装置は、変速ショックを抑制するために第2ダウン変速が禁止されると、第1ダウン変速と第2ダウン変速との間にラグが発生する。このため、アクセルペダルへの踏み込み操作によりハイ変速段から中間変速段を飛び越えてロー変速段へ移行する踏み込みダウン連続変速が実行されるとき、第1ダウン変速と第2ダウン変速による2段変速感になってしまう、という問題があった。 In the conventional device, when the second down shift is prohibited in order to suppress the shift shock, a lag is generated between the first down shift and the second down shift. Therefore, when a step-down down continuous shift is executed in which the accelerator pedal is depressed to jump from the high shift stage to the intermediate shift stage and shift to the low shift stage, the two-stage shift feeling by the first down shift and the second down shift is executed. There was a problem of becoming.
 本発明は、上記問題に着目してなされたもので、踏み込みダウン連続変速時、連続変速中の引きショックの発生を抑えながら、ラグを抑えた一発感のある連続変速を実現することを目的とする。 The present invention has been made paying attention to the above-mentioned problem, and aims to realize a continuous shift with a single feeling of suppressing a lag while suppressing a generation of a pulling shock during a continuous downshift during a step-down continuous shift. And
特開2015-140881号公報Japanese Patent Laying-Open No. 2015-140881
 上記目的を達成するため、本発明は、走行中のアクセル踏み込み操作に伴ってハイ変速段から中間変速段を飛び越えてロー変速段へ移行するダウンシフト要求があると、摩擦要素の架け替えによる掛け替え変速の進行が互いに重なり合う前変速と後変速による踏み込みダウン連続変速を実行する。前変速の進行中に前変速締結容量又は後変速締結容量が発生すると、後変速解放クラッチが前変速の終了まで滑らないで前変速の終了後に滑り出すように、後変速解放クラッチへの後変速解放指示圧を補正する。 In order to achieve the above object, according to the present invention, when there is a downshift request for jumping from the high gear to the intermediate gear to shift to the low gear as the accelerator is depressed during traveling, the change is made by replacing the friction element. A step-down continuous shift is executed by a pre-shift and a post-shift where the progress of the shift overlaps each other. If a front shift engagement capacity or a rear shift engagement capacity occurs while the front shift is in progress, the rear shift release clutch is released to the rear shift release clutch so that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift. Correct the indicated pressure.
 このように、変速の進行中に前変速締結容量又は後変速締結容量が発生すると、後変速解放クラッチが前変速の終了まで滑らないで前変速の終了後に滑り出すように、後変速解放クラッチへの後変速解放指示圧を補正することで、踏み込みダウン連続変速時、連続変速中の引きショックの発生を抑えながら、ラグを抑えた一発感のある連続変速を実現することができる。 As described above, when the front shift engagement capacity or the rear shift engagement capacity is generated while the shift is in progress, the rear shift release clutch is applied to the rear shift release clutch so that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift. By correcting the rear shift release instructing pressure, it is possible to achieve a continuous shift with a single feeling with a reduced lag while suppressing the occurrence of a pulling shock during the continuous shift during the step-down continuous shift.
実施例1の制御装置が適用された自動変速機を搭載するエンジン車を示す全体システム図である。1 is an overall system diagram illustrating an engine vehicle equipped with an automatic transmission to which a control device according to a first embodiment is applied. 実施例1の制御装置が適用された自動変速機の一例を示すスケルトン図である。1 is a skeleton diagram showing an example of an automatic transmission to which a control device of Embodiment 1 is applied. FIG. 実施例1の制御装置が適用された自動変速機での変速用の摩擦要素の各変速段での締結状態を示す締結表図である。It is a fastening table | surface figure which shows the fastening state in each gear stage of the friction element for gear shift in the automatic transmission to which the control apparatus of Example 1 was applied. 実施例1の制御装置が適用された自動変速機での変速マップの一例を示す変速マップ図である。It is a shift map figure which shows an example of the shift map in the automatic transmission to which the control apparatus of Example 1 was applied. 実施例1のATコントローラの連続変速制御処理部にて実行される踏み込みダウン連続変速制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the step-down continuous transmission control process performed in the continuous transmission control process part of the AT controller of Example 1. FIG. 踏み込みダウン連続変速のショックとラグの官能評価実験結果に基づいて前変速解放トルクと後変速解放トルクの二次元座標面上に設定される連続変速成立トルク領域を示す図である。It is a figure which shows the continuous gear shift establishment torque area | region set on the two-dimensional coordinate surface of the front transmission release torque and the rear transmission release torque based on the sensory evaluation experiment result of the step-down continuous transmission shock and lag. 踏み込みダウン連続変速の官能評価実験によるショック/ラグOKとショックNGとラグNGの場合の後変速解放クラッチスリップ回転・入力回転・加速度(G)・クラッチ指示圧の各特性を示すタイムチャートである。It is a time chart which shows each characteristic of rear shift release clutch slip rotation, input rotation, acceleration (G), and clutch command pressure in the case of shock / lag OK, shock NG, and lug NG by a sensory evaluation experiment of stepping down continuous shift. 踏み込みダウン連続変速の通常時に前変速解放トルクと後変速解放トルクの動作点が成立領域に存在する状態を示す図である。It is a figure which shows the state in which the operating point of the front transmission release torque and the rear transmission release torque exists in the formation area at the time of normal step-down continuous transmission. 踏み込みダウン連続変速での前変速進行中に後変速締結容量発生により前変速解放トルクと後変速解放トルクの動作点がショックNG領域に存在する状態を示す図である。It is a figure which shows the state in which the operating point of the front transmission release torque and the rear transmission release torque exists in the shock NG area | region by the generation | occurrence | production of a rear transmission fastening capacity | capacitance during progress of the front transmission by stepping down continuous transmission. 踏み込みダウン連続変速の後変速締結容量発生に合わせて後変速解放圧を上げることで前変速解放トルクと後変速解放トルクの動作点がショックNG領域から成立領域へと移行する状態を示す図である。It is a figure which shows the state which the operating point of the front transmission release torque and the rear transmission release torque transfers from the shock NG area | region to the formation area | region by raising the rear transmission release pressure according to generation | occurrence | production of the rear transmission fastening capacity | capacitance of stepping down continuous transmission. . 踏み込みダウン連続変速の通常時における変速要求ギヤ位置・前変速ギヤ位置及び後変速ギヤ位置・クラッチ指示圧・入力回転数・後変速解放クラッチスリップ回転数・前後Gの各特性を示すタイムチャートである。4 is a time chart showing characteristics of a shift request gear position, a front shift gear position and a rear shift gear position, a clutch command pressure, an input rotation speed, a rear shift release clutch slip rotation speed, and a front and rear G in a normal depression down continuous shift. . 踏み込みダウン連続変速での前変速進行中に後変速締結容量発生時における変速要求ギヤ位置・前変速ギヤ位置及び後変速ギヤ位置・クラッチ指示圧・入力回転数・後変速解放クラッチスリップ回転数・前後Gの各特性を示すタイムチャートである。Shift-required gear position, front transmission gear position and rear transmission gear position, clutch command pressure, input rotation speed, rear shift release clutch slip rotation speed, front / rear when the rear shift engagement capacity is generated while the front shift is in the continuous downshift It is a time chart which shows each characteristic of G. 踏み込みダウン連続変速の後変速締結容量発生に合わせて後変速解放圧を上げた場合における変速要求ギヤ位置・前変速ギヤ位置及び後変速ギヤ位置・クラッチ指示圧・入力回転数・後変速解放クラッチスリップ回転数・前後Gの各特性を示すタイムチャートである。Shift required gear position / front transmission gear position / rear transmission gear position / clutch command pressure / input rotation speed / rear transmission release clutch slip when the rear transmission release pressure is increased in accordance with the generation of the rear transmission engagement capacity of the down-down continuous transmission It is a time chart which shows each characteristic of rotation speed and front-back G.
 以下、本発明の自動変速機の制御装置を実施するための形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, a mode for carrying out the automatic transmission control device of the present invention will be described based on Example 1 shown in the drawings.
 実施例1における制御装置は、前進9速・後退1速の変速段を有する自動変速機を搭載したエンジン車(車両の一例)に適用したものである。以下、実施例1の構成を、「全体システム構成」、「自動変速機の詳細構成」、「踏み込みダウン連続変速制御処理構成」に分けて説明する。 The control device in the first embodiment is applied to an engine vehicle (an example of a vehicle) equipped with an automatic transmission having 9 forward speed and 1 reverse speed. Hereinafter, the configuration of the first embodiment will be described by being divided into “the overall system configuration”, “the detailed configuration of the automatic transmission”, and “the down-down continuous shift control processing configuration”.
 [全体システム構成]
 図1は実施例1の制御装置が適用された自動変速機を搭載するエンジン車を示す全体システム図である。以下、図1に基づき、全体システム構成を説明する。
[Overall system configuration]
FIG. 1 is an overall system diagram showing an engine vehicle equipped with an automatic transmission to which the control device of Embodiment 1 is applied. The overall system configuration will be described below with reference to FIG.
 エンジン車の駆動系には、図1に示すように、エンジン1と、トルクコンバータ2と、自動変速機3と、プロペラシャフト4と、駆動輪5と、を備える。自動変速機3には、変速のためのスプールバルブや油圧回路やソレノイドバルブ等によるコントロールバルブユニット6が取り付けられている。このコントロールバルブユニット6に有するアクチュエータは、ATコントローラ10からの制御指令を受けて作動する。 As shown in FIG. 1, the drive system of the engine vehicle includes an engine 1, a torque converter 2, an automatic transmission 3, a propeller shaft 4, and drive wheels 5. The automatic transmission 3 is provided with a control valve unit 6 including a spool valve, a hydraulic circuit, a solenoid valve, etc. for shifting. The actuator included in the control valve unit 6 operates in response to a control command from the AT controller 10.
 エンジン車の制御系には、図1に示すように、ATコントローラ10と、エンジンコントローラ11と、CAN通信線12と、を備える。 As shown in FIG. 1, the engine vehicle control system includes an AT controller 10, an engine controller 11, and a CAN communication line 12.
 自動変速機3の制御装置であるATコントローラ10は、タービン回転センサ13、出力軸回転センサ14、ATF油温センサ15、アクセル開度センサ16、エンジン回転センサ17、インヒビタースイッチ18、中間軸回転センサ19、等からの信号を入力する。 The AT controller 10, which is a control device for the automatic transmission 3, includes a turbine rotation sensor 13, an output shaft rotation sensor 14, an ATF oil temperature sensor 15, an accelerator opening sensor 16, an engine rotation sensor 17, an inhibitor switch 18, an intermediate shaft rotation sensor. 19 and the like are input.
 タービン回転センサ13は、トルクコンバータ2のタービン回転数(=変速機入力軸回転数)を検出し、タービン回転数Ntの信号をATコントローラ10に送出する。出力軸回転センサ14は、自動変速機3の出力軸回転数(=車速)を検出し、出力軸回転数No(車速VSP)の信号をATコントローラ10に送出する。ATF油温センサ15は、ATF(自動変速機用オイル)の温度を検出し、ATF油温TATFの信号をATコントローラ10に送出する。アクセル開度センサ16は、ドライバのアクセル操作によるアクセル開度を検出し、アクセル開度APOの信号をATコントローラ10に送出する。エンジン回転センサ17は、エンジン1の回転数を検出し、エンジン回転数Neの信号をATコントローラ10に送出する。インヒビタースイッチ18は、運転者によるセレクトレバーやセレクトボタン等へのセレクト操作により選択されたレンジ位置を検出し、レンジ位置信号をATコントローラ10に送出する。中間軸回転センサ19は、中間軸(インターミディエイトシャフト=第1キャリアC1に連結される回転メンバ)の回転数を検出し、中間軸回転数Nintの信号をATコントローラ10に送出する。 The turbine rotation sensor 13 detects the turbine rotation speed (= transmission input shaft rotation speed) of the torque converter 2 and sends a signal of the turbine rotation speed Nt to the AT controller 10. The output shaft rotation sensor 14 detects the output shaft rotation speed (= vehicle speed) of the automatic transmission 3 and sends a signal of the output shaft rotation speed No (vehicle speed VSP) to the AT controller 10. The ATF oil temperature sensor 15 detects the temperature of ATF (automatic transmission oil) and sends a signal of the ATF oil temperature TATF to the AT controller 10. The accelerator opening sensor 16 detects the accelerator opening by the accelerator operation of the driver, and sends a signal of the accelerator opening APO to the AT controller 10. The engine rotation sensor 17 detects the rotation speed of the engine 1 and sends a signal of the engine rotation speed Ne to the AT controller 10. The inhibitor switch 18 detects the range position selected by the driver's selection operation to the select lever, the select button, etc., and sends a range position signal to the AT controller 10. The intermediate shaft rotation sensor 19 detects the rotation speed of the intermediate shaft (intermediate shaft = rotary member coupled to the first carrier C1) and sends a signal of the intermediate shaft rotation speed Nint to the AT controller 10.
 ATコントローラ10では、変速マップ上での車速VSPとアクセル開度APOによる運転点(VSP,APO)の変化を監視することで、
1.オートアップシフト(アクセル開度を保った状態での車速上昇による)
2.足離しアップシフト(アクセル足離し操作による)
3.足戻しアップシフト(アクセル戻し操作による)
4.パワーオンダウンシフト(アクセル開度を保っての車速低下による)
5.小開度急踏みダウンシフト(アクセル操作量小による)
6.大開度急踏みダウンシフト(アクセル操作量大による:「キックダウン」)
7.緩踏みダウンシフト(アクセル緩踏み操作と車速上昇による)
8.コーストダウンシフト(アクセル足離し操作での車速低下による)
と呼ばれる基本変速パターンによる変速制御を行う。
The AT controller 10 monitors changes in the driving points (VSP, APO) due to the vehicle speed VSP and the accelerator opening APO on the shift map,
1. Auto upshift (by increasing vehicle speed while maintaining accelerator opening)
2. Foot release upshift (by accelerator release operation)
3. Foot return upshift (by accelerator return operation)
4. Power-on downshift (due to a decrease in vehicle speed while maintaining the accelerator opening)
5. Small opening sudden step down shift (by small accelerator operation amount)
6. Large opening sudden step-down shift (depending on the amount of accelerator operation: "Kickdown")
7. Slow depressing downshift (by slowly depressing the accelerator and increasing vehicle speed)
8. Coast downshift (due to a decrease in vehicle speed when the accelerator is released)
Shift control is performed using a basic shift pattern.
 ATコントローラ10は、走行中のアクセル踏み込み操作に伴ってハイ変速段から中間変速段を飛び越えてロー変速段へ移行するダウンシフト要求があると、踏み込みダウン連続変速を実行する連続変速制御処理部10aを有する。ここで、踏み込みダウン連続変速とは、掛け替え変速の進行が互いに重なり合って連続的に実行される前変速と後変速による変速をいう。 When there is a downshift request for shifting from the high gear to the intermediate gear to shift to the low gear as the accelerator is depressed during traveling, the AT controller 10 executes a step-down continuous gear shift control unit 10a. Have Here, the step-down down continuous shift refers to a shift by a pre-shift and a post-shift that are continuously executed with the progress of the changing shift overlapping each other.
 連続変速制御処理部10aにおいて対象となる踏み込みダウン連続変速は、7-3踏み込みダウン連続変速と9-3踏み込みダウン連続変速である。7-3踏み込みダウン連続変速では、7速段(ハイ変速段)から4速段(中間変速段)を飛び越えて3速段(ロー変速段)へ移行する。9-3踏み込みダウン連続変速では、9速段(ハイ変速段)から4速段(中間変速段)を飛び越えて3速段(ロー変速段)へ移行する。 The step-down down continuous shift to be processed in the continuous shift control processing unit 10a is a 7-3 step-down continuous shift and a 9-3 step-down continuous shift. In the 7-3 step-down continuous shift, the 7th speed (high speed) shifts from the 4th speed (intermediate speed) to the 3rd speed (low speed). In the 9-3 step-down continuous shift, the 9th speed (high speed) shifts from the 4th speed (intermediate speed) to the 3rd speed (low speed).
 連続変速制御処理部10aは、7-3踏み込みダウン連続変速又は9-3踏み込みダウン連続変速の要求があり、かつ、前変速の進行中に前変速締結容量又は後変速締結容量が発生すると、後変速解放クラッチへの後変速解放指示圧を補正する。前変速の進行中に前変速締結容量が発生した場合は、後変速解放クラッチが前変速の終了後に滑り出すように、後変速解放指示圧を下側にシフト補正をする。一方、前変速の進行中に後変速締結容量が発生した場合は、後変速解放クラッチが前変速の終了まで滑らないように、後変速解放指示圧を上側にシフト補正をする。 When there is a request for 7-3 step-down continuous shift or 9-3 step-down continuous shift and the front shift engagement capacity or the rear shift engagement capacity is generated during the progress of the previous shift, the continuous shift control processing unit 10a The rear shift release instruction pressure to the shift release clutch is corrected. When the front shift engagement capacity is generated while the front shift is in progress, the rear shift release instruction pressure is corrected to shift downward so that the rear shift release clutch slides out after the end of the front shift. On the other hand, when the rear shift engagement capacity is generated while the front shift is in progress, the rear shift release instruction pressure is shift-corrected upward so that the rear shift release clutch does not slip until the end of the front shift.
 エンジンコントローラ11は、エンジン単体の様々な制御に加え、変速制御との協調制御によりエンジントルク制限制御等を行うもので、ATコントローラ10とエンジンコントローラ11は、双方向に情報交換可能なCAN通信線12を介して接続されている。よって、エンジンコントローラ11は、ATコントローラ10からトルク情報リクエストが入力されると、推定したエンジントルクTeの情報をATコントローラ10に出力する。また、ATコントローラ10から上限トルクによるエンジントルク制限要求が入力されると、エンジントルクを有効トルク(ドライバ要求トルクを上限トルクにより制限したトルク)とするエンジントルク制限制御が実行される。 The engine controller 11 performs engine torque limit control or the like by cooperative control with shift control in addition to various controls of the engine alone. The AT controller 10 and the engine controller 11 can exchange information bidirectionally. 12 is connected. Therefore, when a torque information request is input from the AT controller 10, the engine controller 11 outputs information on the estimated engine torque Te to the AT controller 10. When an engine torque limit request based on the upper limit torque is input from the AT controller 10, engine torque limit control is executed in which the engine torque is an effective torque (torque required to limit the driver request torque by the upper limit torque).
 [自動変速機の詳細構成]
 図2は実施例1の制御装置が適用された自動変速機3の一例を示すスケルトン図であり、図3は自動変速機3での締結表であり、図4は自動変速機3での変速マップの一例を示す。以下、図2~図4に基づいて自動変速機3の詳細構成を説明する。
[Detailed configuration of automatic transmission]
2 is a skeleton diagram showing an example of an automatic transmission 3 to which the control device of the first embodiment is applied. FIG. 3 is a fastening table in the automatic transmission 3. FIG. 4 is a shift table in the automatic transmission 3. An example of a map is shown. Hereinafter, a detailed configuration of the automatic transmission 3 will be described with reference to FIGS.
 自動変速機3は、図2に示すように、ギヤトレーンを構成する遊星歯車として、入力軸INから出力軸OUTに向けて順に、第1遊星歯車PG1と、第2遊星歯車PG2と、第3遊星歯車PG3と、第4遊星歯車PG4と、を備えている。 As shown in FIG. 2, the automatic transmission 3 has a first planetary gear PG1, a second planetary gear PG2, and a third planetary gear in order from the input shaft IN to the output shaft OUT. A gear PG3 and a fourth planetary gear PG4 are provided.
 第1遊星歯車PG1は、シングルピニオン型遊星歯車であり、第1サンギヤS1と、第1サンギヤS1に噛み合うピニオンを支持する第1キャリアC1と、ピニオンに噛み合う第1リングギヤR1と、を有する。 The first planetary gear PG1 is a single pinion type planetary gear, and includes a first sun gear S1, a first carrier C1 that supports a pinion that meshes with the first sun gear S1, and a first ring gear R1 that meshes with the pinion.
 第2遊星歯車PG2は、シングルピニオン型遊星歯車であり、第2サンギヤS2と、第2サンギヤS2に噛み合うピニオンを支持する第2キャリアC2と、ピニオンに噛み合う第2リングギヤR2と、を有する。 The second planetary gear PG2 is a single pinion type planetary gear, and has a second sun gear S2, a second carrier C2 that supports the pinion that meshes with the second sun gear S2, and a second ring gear R2 that meshes with the pinion.
 第3遊星歯車PG3は、シングルピニオン型遊星歯車であり、第3サンギヤS3と、第3サンギヤS3に噛み合うピニオンを支持する第3キャリアC3と、ピニオンに噛み合う第3リングギヤR3と、を有する。 The third planetary gear PG3 is a single pinion type planetary gear, and includes a third sun gear S3, a third carrier C3 that supports a pinion that meshes with the third sun gear S3, and a third ring gear R3 that meshes with the pinion.
 第4遊星歯車PG4は、シングルピニオン型遊星歯車であり、第4サンギヤS4と、第4サンギヤS4に噛み合うピニオンを支持する第4キャリアC4と、ピニオンに噛み合う第4リングギヤR4と、を有する。 The fourth planetary gear PG4 is a single pinion type planetary gear, and includes a fourth sun gear S4, a fourth carrier C4 that supports a pinion that meshes with the fourth sun gear S4, and a fourth ring gear R4 that meshes with the pinion.
 自動変速機3は、図2に示すように、入力軸INと、出力軸OUTと、第1連結メンバM1と、第2連結メンバM2と、トランスミッションケースTCと、を備えている。変速により締結/解放される摩擦要素として、第1ブレーキB1と、第2ブレーキB2と、第3ブレーキB3と、第1クラッチK1と、第2クラッチK2と、第3クラッチK3と、を備えている。 As shown in FIG. 2, the automatic transmission 3 includes an input shaft IN, an output shaft OUT, a first connecting member M1, a second connecting member M2, and a transmission case TC. The first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3 are provided as friction elements that are engaged / released by shifting. Yes.
 入力軸INは、エンジン1からの駆動力がトルクコンバータ2を介して入力される軸で、第1サンギヤS1と第4キャリアC4に常時連結している。そして、入力軸INは、第2クラッチK2を介して第1キャリアC1に断接可能に連結している。 The input shaft IN is a shaft through which the driving force from the engine 1 is input via the torque converter 2, and is always connected to the first sun gear S1 and the fourth carrier C4. The input shaft IN is connected to the first carrier C1 through the second clutch K2 so as to be connected and disconnected.
 出力軸OUTは、プロペラシャフト4及び図外のファイナルギヤ等を介して駆動輪5へ変速した駆動トルクを出力する軸であり、第3キャリアC3に常時連結している。そして、出力軸OUTは、第1クラッチK1を介して第4リングギヤR4に断接可能に連結している。 The output shaft OUT is a shaft that outputs a driving torque shifted to the driving wheel 5 through the propeller shaft 4 and a final gear (not shown), and is always connected to the third carrier C3. The output shaft OUT is connected to the fourth ring gear R4 via the first clutch K1 so as to be connected and disconnected.
 第1連結メンバM1は、第1遊星歯車PG1の第1リングギヤR1と第2遊星歯車PG2の第2キャリアC2を、摩擦要素を介在させることなく常時連結するメンバである。第2連結メンバM2は、第2遊星歯車PG2の第2リングギヤR2と第3遊星歯車PG3の第3サンギヤS3と第4遊星歯車PG4の第4サンギヤS4を、摩擦要素を介在させることなく常時連結するメンバである。 The first connecting member M1 is a member that always connects the first ring gear R1 of the first planetary gear PG1 and the second carrier C2 of the second planetary gear PG2 without interposing a friction element. The second connecting member M2 always connects the second ring gear R2 of the second planetary gear PG2, the third sun gear S3 of the third planetary gear PG3, and the fourth sun gear S4 of the fourth planetary gear PG4 without interposing a friction element. Is a member.
 第1ブレーキB1は、第1キャリアC1の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。第2ブレーキB2は、第3リングギヤR3の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。第3ブレーキB3は、第2サンギヤS2の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。 The first brake B1 is a friction element that can lock the rotation of the first carrier C1 with respect to the transmission case TC. The second brake B2 is a friction element that can lock the rotation of the third ring gear R3 with respect to the transmission case TC. The third brake B3 is a friction element that can lock the rotation of the second sun gear S2 with respect to the transmission case TC.
 第1クラッチK1は、第4リングギヤR4と出力軸OUTの間を選択的に連結する摩擦要素である。第2クラッチK2は、入力軸INと第1キャリアC1の間を選択的に連結する摩擦要素である。第3クラッチK3は、第1キャリアC1と第2連結メンバM2の間を選択的に連結する摩擦要素である。 The first clutch K1 is a friction element that selectively connects the fourth ring gear R4 and the output shaft OUT. The second clutch K2 is a friction element that selectively connects the input shaft IN and the first carrier C1. The third clutch K3 is a friction element that selectively couples the first carrier C1 and the second coupling member M2.
 図3は、自動変速機3において6つの摩擦要素のうち三つの同時締結の組み合わせによりDレンジにて前進9速後退1速を達成する締結表を示す。以下、図3に基づいて、各変速段を成立させる変速構成を説明する。 FIG. 3 shows an engagement table for achieving 9 forward speeds and 1 reverse speed in the D range by combining three simultaneous engagements among the six friction elements in the automatic transmission 3. Hereinafter, based on FIG. 3, a description will be given of a shift configuration that establishes each shift stage.
 1速段(1st)は、第2ブレーキB2と第3ブレーキB3と第3クラッチK3の同時締結により達成する。2速段(2nd)は、第2ブレーキB2と第2クラッチK2と第3クラッチK3の同時締結により達成する。3速段(3rd)は、第2ブレーキB2と第3ブレーキB3と第2クラッチK2の同時締結により達成する。4速段(4th)は、第2ブレーキB2と第3ブレーキB3と第1クラッチK1の同時締結により達成する。5速段(5th)は、第3ブレーキB3と第1クラッチK1と第2クラッチK2の同時締結により達成する。以上の1速段~5速段が、ギヤ比が1を超えている減速ギヤ比によるアンダードライブ変速段である。 1st gear (1st) is achieved by simultaneous engagement of the second brake B2, the third brake B3 and the third clutch K3. The second speed (2nd) is achieved by simultaneously engaging the second brake B2, the second clutch K2, and the third clutch K3. The third speed (3rd) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the second clutch K2. The fourth speed (4th) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the first clutch K1. The fifth speed (5th) is achieved by simultaneous engagement of the third brake B3, the first clutch K1, and the second clutch K2. The first to fifth gears described above are underdrive gears with a reduction gear ratio with a gear ratio exceeding 1.
 6速段(6th)は、第1クラッチK1と第2クラッチK2と第3クラッチK3の同時締結により達成する。この第6速段は、ギヤ比=1の直結段である。 6th speed (6th) is achieved by simultaneous engagement of the first clutch K1, the second clutch K2, and the third clutch K3. The sixth speed stage is a direct connection stage with a gear ratio = 1.
 7速段(7th)は、第3ブレーキB3と第1クラッチK1と第3クラッチK3の同時締結により達成する。8速段(8th)は、第1ブレーキB1と第1クラッチK1と第3クラッチK3の同時締結により達成する。9速段(9th)は、第1ブレーキB1と第3ブレーキB3と第1クラッチK1の同時締結により達成する。以上の7速段~9速段は、ギヤ比が1未満の増速ギヤ比によるオーバードライブ変速段である。 7th speed (7th) is achieved by simultaneous engagement of the third brake B3, the first clutch K1, and the third clutch K3. The eighth speed (8th) is achieved by simultaneously engaging the first brake B1, the first clutch K1, and the third clutch K3. The ninth speed (9th) is achieved by simultaneously engaging the first brake B1, the third brake B3, and the first clutch K1. The above seventh to ninth gears are overdrive gears with an increased gear ratio with a gear ratio of less than 1.
 さらに、1速段から9速段までの変速段のうち、隣接する変速段へのアップ変速を行う際、或いは、ダウン変速を行う際、図3に示すように、掛け替え変速により行う構成としている。即ち、隣接する変速段への変速は、三つの摩擦要素のうち、二つの摩擦要素の締結は維持したままで、一つの摩擦要素の解放と一つの摩擦要素の締結を行うことで達成される。 Further, when performing an up shift to an adjacent shift stage or a down shift among the first to ninth shift stages, as shown in FIG. . That is, shifting to an adjacent gear stage is achieved by releasing one friction element and fastening one friction element while maintaining the engagement of two of the three friction elements. .
 Rレンジ位置の選択による後退速段(Rev)は、第1ブレーキB1と第2ブレーキB2と第3ブレーキB3の同時締結により達成する。なお、Nレンジ位置及びPレンジ位置を選択したときは、6つの摩擦要素B1,B2,B3,K1,K2,K3の全てが解放状態とされる。 The reverse speed (Rev) by selecting the R range position is achieved by simultaneously engaging the first brake B1, the second brake B2, and the third brake B3. When the N range position and the P range position are selected, all of the six friction elements B1, B2, B3, K1, K2, and K3 are released.
 そして、ATコントローラ10には、図4に示すような変速マップが記憶設定されていて、Dレンジの選択により前進側の1速段から9速段までの変速段の切り替えによる変速は、この変速マップに従って行われる。即ち、そのときの運転点(VSP,APO)が図4の実線で示すアップシフト線を横切るとアップシフト変速要求が出される。又、運転点(VSP,APO)が図4の破線で示すダウンシフト線を横切るとダウンシフト変速要求が出される。 A shift map as shown in FIG. 4 is stored and set in the AT controller 10, and a shift by changing the shift stage from the first speed stage to the ninth speed stage on the forward side by selecting the D range is performed. It is done according to the map. That is, when the operating point (VSP, APO) at that time crosses the upshift line shown by the solid line in FIG. 4, an upshift request is issued. When the operating point (VSP, APO) crosses the downshift line shown by the broken line in FIG. 4, a downshift request is issued.
 以下の説明において、変速パターンとして、走行中のアクセル踏み込み操作に伴って7速段から3速段へ移行する「7-3踏み込みダウン連続変速」と、走行中のアクセル踏み込み操作に伴って9速段から3速段へ移行する「9-3踏み込みダウン連続変速」とを取り扱う。 In the following description, as a shift pattern, “7-3 step-down down continuous shift” that shifts from the seventh gear to the third gear in accordance with the accelerator depressing operation during traveling, and the ninth speed according to the accelerator depressing operation during traveling. Handles "9-3 step-down continuous shifting" that shifts from the third gear to the third gear.
 7-3踏み込みダウン連続変速要求は、図4のAの矢印の枠内特性に示すように、7速段による走行中に全開域までのアクセル急踏み込み操作により、運転点(VSP,APO)が、7-6ダウンシフト線と6-5ダウンシフト線と5-4ダウンシフト線と4-3ダウンシフト線とを一気に横切ることで出される。 7-3 Step-down down continuous gear shift request indicates that the operating point (VSP, APO) is changed by the sudden stepping on the accelerator to the full open range while driving at the 7th gear as shown in the characteristics of the arrow in Fig. 4A. It is issued by crossing the 7-6 downshift line, 6-5 downshift line, 5-4 downshift line and 4-3 downshift line at once.
 7-3踏み込みダウン連続変速は、7速段から4速段への前変速と、4速段から3速段への後変速と、によって実行される。7速段から4速段への前変速は、第3クラッチK3を「前変速解放クラッチ」とし、第2ブレーキB2を「前変速締結クラッチ」とする掛け替え変速である。4速段から3速段への後変速は、第1クラッチK1を「後変速解放クラッチ」とし、第2クラッチK2を「後変速締結クラッチ」とする掛け替え変速である。 -7-7 Step-down down continuous shift is executed by a forward shift from the 7th speed to the 4th speed and a rear shift from the 4th speed to the 3rd speed. The pre-shift from the seventh speed to the fourth speed is a change gear shift in which the third clutch K3 is a “front shift release clutch” and the second brake B2 is a “front shift engagement clutch”. The rear shift from the fourth speed to the third speed is a change gear shift in which the first clutch K1 is a “rear shift release clutch” and the second clutch K2 is a “rear shift engagement clutch”.
 9-3踏み込みダウン連続変速は、9速段から4速段への前変速と、4速段から3速段への後変速と、によって実行される。9速段から4速段への前変速は、第1ブレーキB1を「前変速解放クラッチ」とし、第2ブレーキB2を「前変速締結クラッチ」とする掛け替え変速である。4速段から3速段への後変速は、第1クラッチK1を「後変速解放クラッチ」とし、第2クラッチK2を「後変速締結クラッチ」とする掛け替え変速である。 The 9-3 step-down continuous shift is executed by a front shift from the 9th gear to the 4th gear and a rear shift from the 4th gear to the 3rd gear. The pre-shift from the ninth speed to the fourth speed is a change-over shift in which the first brake B1 is a “front shift release clutch” and the second brake B2 is a “front shift engagement clutch”. The rear shift from the fourth speed to the third speed is a change gear shift in which the first clutch K1 is a “rear shift release clutch” and the second clutch K2 is a “rear shift engagement clutch”.
 [踏み込みダウン連続変速制御処理構成]
 図5は、実施例1のATコントローラ10の連続変速制御処理部10aにて実行される踏み込みダウン連続変速制御処理の流れを示すフローチャートである。以下、図5の各ステップについて説明する。
[Depression down continuous shift control processing configuration]
FIG. 5 is a flowchart illustrating the flow of the step-down continuous shift control process executed by the continuous shift control processing unit 10a of the AT controller 10 according to the first embodiment. Hereinafter, each step of FIG. 5 will be described.
 ステップS1では、走行中のアクセル踏み込み操作による踏み込みダウン変速中であるか否かを判断する。YES(踏み込みダウン変速中)の場合はステップS2へ進み、NO(踏み込みダウン変速中でない)の場合はリターンへ進む。 In step S1, it is determined whether or not a step-down downshift by an accelerator stepping operation during traveling is being performed. If YES (during down-shifting), the process proceeds to step S2, and if NO (not down-shifting), the process proceeds to return.
 ステップS2では、ステップS1での踏み込みダウン変速中との判断に続き、連続変速中であるか否かを判断する。YES(連続変速中)の場合はステップS3へ進み、NO(連続変速ではない)の場合はリターンへ進む。ここで、7-3踏み込みダウン連続変速中の場合、又は、9-3踏み込みダウン連続変速中の場合、連続変速中と判断される。 In step S2, following the determination that the step-down downshift is being performed in step S1, it is determined whether or not a continuous shift is being performed. If YES (during continuous shift), the process proceeds to step S3. If NO (not continuous shift), the process proceeds to return. Here, when the 7-3 step-down down continuous shift is being performed or when the 9-3 step-down down continuous shift is being performed, it is determined that the continuous shift is being performed.
 ステップS3では、ステップS2での連続変速中であるとの判断、或いは、ステップS15での踏み込みダウン連続変速未完了であるとの判断に続き、連続変速開始時であるか否かを判断する。YES(連続変速開始時)の場合はステップS4へ進み、NO(連続変速の進行中)の場合はステップ5へ進む。 In step S3, following the determination that the continuous shift is being performed in step S2 or the step-down continuous shift not being completed in step S15, it is determined whether or not the continuous shift is starting. If YES (when continuous shift is started), the process proceeds to step S4. If NO (continuous shift is in progress), the process proceeds to step 5.
 ステップS4では、ステップS3での連続変速開始時であるとの判断に続き、前変速解放指示圧と後変速解放指示圧を算出し、ステップS5へ進む。 In step S4, following the determination that it is the time of the start of continuous shift in step S3, the front shift release instruction pressure and the rear shift release instruction pressure are calculated, and the process proceeds to step S5.
 ここで、前変速解放指示圧と後変速解放指示圧は、設計上、後変速解放クラッチが前変速の終了まで滑らないで前変速の終了後に滑り出すように算出される(前変速解放指示圧<後変速解放指示圧:図8参照)。 Here, the front shift release instruction pressure and the rear shift release instruction pressure are calculated so that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift (the front shift release instruction pressure < Rear shift release command pressure: see FIG.
 ステップS5では、ステップS3での連続変速の進行中であるとの判断、或いは、ステップS4での前変速解放指示圧と後変速解放指示圧の算出に続き、各クラッチ指示圧を出力し、ステップS6へ進む。 In step S5, following the determination that the continuous shift is in progress in step S3 or the calculation of the front shift release command pressure and the rear shift release command pressure in step S4, each clutch command pressure is output. Proceed to S6.
 ここで、「各クラッチ指示圧」とは、前変速解放クラッチへの前変速解放指示圧及び前変速締結クラッチへの前変速締結指示圧と、後変速解放クラッチへの後変速解放指示圧及び後変速締結クラッチへの後変速締結指示圧をいう。前変速解放指示圧及び前変速締結指示圧は、前変速開始(=第1変速掛替要素制御開始)から出力される。後変速解放指示圧及び後変速締結指示圧は、後変速開始(=第2変速掛替要素制御開始)から出力される。なお、後変速解放指示圧が補正された場合は、補正量を反映した後変速解放指示圧とされる。 Here, “each clutch command pressure” refers to a front shift release command pressure to the front shift release clutch, a front shift engagement command pressure to the front shift engagement clutch, a rear shift release command pressure to the rear shift release clutch, and a rear The rear shift engagement command pressure to the shift engagement clutch. The front shift release instruction pressure and the front shift engagement instruction pressure are output from the start of the previous shift (= first shift change element control start). The rear shift release instruction pressure and the rear shift engagement instruction pressure are output from the start of the rear shift (= start of the second shift change element control). When the rear shift release instruction pressure is corrected, the rear shift release instruction pressure reflecting the correction amount is set.
 ステップS6では、ステップS5での各クラッチ指示圧の出力に続き、前変速進行中であるか否かを判断する。YES(前変速進行中)の場合はステップS7へ進み、NO(前変速終了)の場合はステップS15へ進む。 In step S6, following the output of each clutch command pressure in step S5, it is determined whether or not the previous shift is in progress. If YES (the previous shift is in progress), the process proceeds to step S7. If NO (the previous shift is completed), the process proceeds to step S15.
 ここで、「前変速進行中」とは、前変速を開始してから前変速でのイナーシャフェーズを開始し、さらに、イナーシャフェーズが終了して実ギヤ比が中間段ギヤ比(4速段ギヤ比)に到達するまでの区間をいう。なお、実ギヤ比は、前変速を開始すると、タービン回転センサ13からの変速機入力回転数Ninと出力軸回転センサ14からの変速機出力回転数Noの比により逐次算出することで取得する。 Here, “previous shift is in progress” means that the inertia phase in the previous shift starts after the start of the previous shift, and the inertia phase ends and the actual gear ratio becomes the intermediate gear ratio (fourth speed gear). The period until the ratio is reached. The actual gear ratio is acquired by sequentially calculating the transmission gear speed Nin from the turbine rotation sensor 13 and the transmission output speed No from the output shaft rotation sensor 14 when the pre-shift is started.
 ステップS7では、ステップS6での前変速進行中であるとの判断に続き、変速締結容量が発生していないか否かを判断する。YES(変速締結容量の発生無し)の場合はステップS15へ進み、NO(変速締結容量の発生有り)の場合はステップS8へ進む。 In step S7, following the determination that the previous shift is in progress in step S6, it is determined whether or not a shift engagement capacity has occurred. If YES (no shift engagement capacity is generated), the process proceeds to step S15. If NO (transition engagement capacity is generated), the process proceeds to step S8.
 ここで、前変速の進行中に前変速締結容量又は後変速締結容量が発生したことは、自動変速機3の回転メンバ回転数の変動により検知する。つまり、締結容量の発生により全体のトルクバランスが変化するため、タービン回転数Nt及び/又は中間軸回転数Nintの回転変動量に変化が生じる。よって、締結容量の発生は、タービン回転数Ntと中間軸回転数Nintのうち少なくとも一方の回転数特性に勾配変化が生じることによって検知する。 Here, the occurrence of the front shift engagement capacity or the rear shift engagement capacity during the progress of the front shift is detected by the fluctuation of the rotational member rotational speed of the automatic transmission 3. That is, since the overall torque balance changes due to the generation of the engagement capacity, the rotational fluctuation amount of the turbine rotation speed Nt and / or the intermediate shaft rotation speed Nint changes. Therefore, the occurrence of the engagement capacity is detected by a change in gradient in at least one of the turbine speed Nt and the intermediate shaft speed Nint.
 ステップS8では、ステップS7での変速締結容量の発生有りとの判断に続き、前変速締結容量が発生したか否かを判断する。YES(前変速締結容量発生)の場合はステップS9へ進み、NO(後変速締結容量発生)の場合はステップS11へ進む。 In step S8, it is determined whether or not the previous shift engagement capacity has been generated following the determination that the shift engagement capacity has been generated in step S7. If YES (generation of the front shift engagement capacity), the process proceeds to step S9. If NO (generation of the rear shift engagement capacity), the process proceeds to step S11.
 ここで、前変速締結容量が発生したとの判断は、前変速締結容量の発生に伴って中間軸回転数Nintの上昇勾配が増加する(傾きが起きる)ことで検知する。後変速締結容量が発生したとの判断は、後変速締結容量の発生に伴って中間軸回転数Nintの上昇勾配が減少する(傾きが寝る)ことで検知する。つまり、片方の締結要素のみに変速締結容量が発生したことは、中間軸回転数Nintの上昇勾配を見ることで判断できる。しかし、前変速と後変速の両方の締結要素が容量を持った場合、中間軸回転数Nintだけではどちらが容量を持っているか判断することはできない。この場合、中間軸回転数Nint以外の他の回転メンバの回転数(例えば、変速機入力軸回転数や変速機出力軸回転数)を併用することで、どちらが容量を持っているかを判断することが可能である。 Here, the determination that the front shift engagement capacity has occurred is detected by the increase gradient (inclination) of the intermediate shaft rotation speed Nint accompanying the generation of the front transmission engagement capacity. The determination that the rear shift engagement capacity has occurred is detected by a decrease in the rising gradient of the intermediate shaft rotation speed Nint accompanying the generation of the rear shift engagement capacity (the inclination goes down). That is, it can be determined that the shift engagement capacity is generated only in one of the engagement elements by looking at the rising gradient of the intermediate shaft rotation speed Nint. However, if both the front shift and the rear shift engagement elements have capacity, it is not possible to determine which one has capacity only by the intermediate shaft rotation speed Nint. In this case, it is possible to determine which one has the capacity by using together the rotational speeds of other rotational members other than the intermediate shaft rotational speed Nint (for example, the transmission input shaft rotational speed and the transmission output shaft rotational speed). Is possible.
 ステップS9では、ステップS8での前変速締結容量発生との判断に続き、前変速締結容量を推定し、ステップS10へ進む。 In step S9, following the determination that the front shift engagement capacity is generated in step S8, the front shift engagement capacity is estimated, and the process proceeds to step S10.
 ここで、「前変速締結容量の推定」は、前変速進行中における自動変速機3のギヤトレーン運動方程式、回転系関係式、拘束条件等を用いた前変速締結トルクの演算により推定する。 Here, “estimation of the front shift engagement capacity” is estimated by calculation of the front shift engagement torque using the gear train motion equation, the rotational system relational expression, the constraint condition, etc. of the automatic transmission 3 during the progress of the front shift.
 ステップS10では、ステップS9での前変速締結容量を推定に続き、推定された前変速締結容量が補正処理実行判断閾値以上か否かを判断する。YES(前変速締結容量≧補正処理実行判断閾値)の場合はステップS13へ進み、NO(前変速締結容量<補正処理実行判断閾値)の場合はステップS15へ進む。 In step S10, following the estimation of the front shift engagement capacity in step S9, it is determined whether or not the estimated front shift engagement capacity is equal to or greater than a correction process execution determination threshold. If YES (previous shift engagement capacity ≧ correction process execution determination threshold), the process proceeds to step S13. If NO (previous transmission engagement capacity <correction process execution determination threshold), the process proceeds to step S15.
 ここで、「補正処理実行判断閾値」は、前変速締結容量が発生していると検知されても前変速締結容量がある値以下であれば後変速解放指示圧の補正を行わないようにするために設定される許容閾値である。 Here, even if it is detected that the front shift engagement capacity is generated, the “correction process execution determination threshold value” does not correct the rear shift release instruction pressure if the front shift engagement capacity is equal to or less than a certain value. This is an allowable threshold value set for the purpose.
 ステップS11では、ステップS8での後変速締結容量発生との判断に続き、後変速締結容量を推定し、ステップS12へ進む。 In step S11, following the determination that the rear shift engagement capacity is generated in step S8, the rear shift engagement capacity is estimated, and the process proceeds to step S12.
 ここで、「後変速締結容量の推定」は、前変速進行中における自動変速機3のギヤトレーン運動方程式、回転系関係式、拘束条件等を用いた後変速締結トルクの演算により推定する。 Here, the “estimation of the rear shift engagement capacity” is estimated by calculating the rear shift engagement torque using the gear train motion equation, the rotation system relational expression, the constraint condition, etc. of the automatic transmission 3 while the front shift is in progress.
 ステップS12では、ステップS11での後変速締結容量を推定に続き、推定された後変速締結容量が補正処理実行判断閾値以上か否かを判断する。YES(後変速締結容量≧補正処理実行判断閾値)の場合はステップS13へ進み、NO(後変速締結容量<補正処理実行判断閾値)の場合はステップS15へ進む。 In step S12, following the estimation of the rear shift engagement capacity in step S11, it is determined whether or not the estimated rear shift engagement capacity is equal to or greater than a correction process execution determination threshold. If YES (rear shift engagement capacity ≧ correction process execution determination threshold), the process proceeds to step S13. If NO (rear shift engagement capacity <correction process execution determination threshold), the process proceeds to step S15.
 ここで、「補正処理実行判断閾値」は、後変速締結容量が発生していると検知されても後変速締結容量ある値以下であれば後変速解放指示圧の補正を行わないようにするために設定される許容閾値である。 Here, even if it is detected that the rear shift engagement capacity is generated, the “correction process execution determination threshold value” does not correct the rear shift release instruction pressure if the rear shift engagement capacity is less than a certain value. Is an allowable threshold value set to.
 ステップS13では、ステップS10での前変速締結容量≧補正処理実行判断閾値であるとの判断、或いは、ステップS12での後変速締結容量≧補正処理実行判断閾値であるとの判断に続き、後変速解放指示圧への補正量を算出し、ステップS14へ進む。 In step S13, following the determination in step S10 that the front shift engagement capacity ≧ the correction process execution determination threshold value or the determination in step S12 that the rear shift engagement capacity ≧ the correction process execution determination threshold value, A correction amount to the release instruction pressure is calculated, and the process proceeds to step S14.
 ここで、後変速解放指示圧を補正するとき、図6に示すように、前変速解放トルク(SFT1 Trls)と後変速解放トルク(SFT2 Trls)を座標軸とする座標平面上で連続変速が成立する連続変速成立トルク領域を予め決めておく。即ち、踏み込みダウン連続変速のショック官能評価の実験により図6の下側の特性線に示すショック官能評価線を決め、ラグ官能評価の実験により図6の上側の特性線に示すラグ官能評価線を決める。そして、2つの特性線に囲まれる三角形領域を連続変速成立トルク領域として決める。 Here, when correcting the rear shift release command pressure, as shown in FIG. 6, continuous shift is established on a coordinate plane having the front shift release torque (SFT1 Trls) and the rear shift release torque (SFT2 Trls) as coordinate axes. A continuous shift establishment torque region is determined in advance. That is, the shock sensory evaluation line shown in the lower characteristic line of FIG. 6 is determined by the shock sensory evaluation experiment of the step-down continuous shift, and the lag sensory evaluation line shown in the upper characteristic line of FIG. Decide. Then, the triangular area surrounded by the two characteristic lines is determined as the continuous shift establishment torque area.
 なお、連続変速成立トルク領域は、図7の左部分の矢印Bの枠内に示すように、前変速終了時から後変速に向かって入力回転が滑らかに変化し、かつ、加速度(G)の変動も小さく抑えられることで、ショック/ラグOKと評価された領域をいう。ショック官能評価線は、図7の中央部分の矢印Cの枠内に示すように、前変速終了時の加速度(G)の変動が大きく、ショックNGと評価された領域を除く境界線をいう。ラグ官能評価線は、図7の右部分の矢印Dの枠内に示すように、前変速終了時から入力回転が一定のままで後変速が進行しない状態となり、ラグNGと評価された領域を除く境界線をいう。 As shown in the frame of the arrow B in the left part of FIG. 7, the continuous shift establishment torque region smoothly changes in input rotation from the end of the front shift toward the rear shift, and the acceleration (G). This is a region that is evaluated as shock / lag OK because fluctuations are also kept small. The shock sensory evaluation line is a boundary line excluding a region where the acceleration (G) at the end of the previous shift is large and is evaluated as shock NG, as shown in an arrow C frame in the center of FIG. As shown in the frame of the arrow D in the right part of FIG. 7, the lag sensory evaluation line is a state where the input rotation remains constant and the rear shift does not proceed from the end of the front shift, and the region evaluated as the lag NG This refers to the boundary line that is excluded.
 そして、後変速解放クラッチへの後変速解放指示圧を補正するときは、補正開始時の座標位置(☆)が連続変速成立トルク領域に入る後変速解放トルクシフト量の大きさにより補正量を決める。このとき、連続変速成立トルク領域の低トルク側位置(ばらつきを考慮したときのショック官能評価線にできる限り近い位置)を後変速解放トルク目標値の位置(★)とし、補正開始時の座標位置(☆)と後変速解放トルク目標値の位置(★)との乖離シフト量の大きさにより補正量を決める。なお、前変速締結容量≧補正処理実行判断閾値と判断されたときは、後変速解放クラッチへの後変速解放指示圧が決められた補正量だけ下側にシフト補正される。一方、後変速締結容量≧補正処理実行判断閾値と判断されたときは、後変速解放クラッチへの後変速解放指示圧が決められた補正量だけ上側にシフト補正される。 When correcting the rear shift release instruction pressure to the rear shift release clutch, the correction amount is determined by the amount of the rear shift release torque shift amount at which the coordinate position (☆) at the start of the correction enters the continuous shift establishment torque region. . At this time, the position on the low torque side of the continuous shift establishment torque region (position as close as possible to the shock sensory evaluation line when variation is considered) is set as the position (★) of the rear shift release torque target value, and the coordinate position at the start of correction The amount of correction is determined by the amount of deviation shift between (☆) and the position (★) of the rear shift release torque target value. When it is determined that the front shift engagement capacity ≧ the correction process execution determination threshold, the rear shift release instruction pressure to the rear shift release clutch is shift-corrected downward by a determined correction amount. On the other hand, when it is determined that the rear shift engagement capacity ≧ the correction process execution determination threshold value, the rear shift release instruction pressure to the rear shift release clutch is shift-corrected upward by a determined correction amount.
 ステップS14では、ステップS13での後変速解放指示圧への補正量算出に続き、ステップS5にて出力される後変速解放指示圧へ補正量を反映し、ステップS15へ進む。ここで、後変速解放指示圧へ補正量を反映するとは、それまでの後変速解放指示圧を、補正量により補正した後の後変速解放指示圧に書き替えることをいう。 In step S14, following the calculation of the correction amount for the post-shift release command pressure in step S13, the correction amount is reflected in the post-shift release command pressure output in step S5, and the process proceeds to step S15. Here, reflecting the correction amount in the rear shift release instruction pressure means that the previous rear shift release instruction pressure is rewritten to the rear shift release instruction pressure after being corrected by the correction amount.
 ステップS15では、ステップS6、ステップS10、ステップS12でのNOとの判断、或いは、ステップS14での後変速解放指示圧へ補正量反映に続き、踏み込みダウン連続変速が完了したか否かを判断する。YES(踏み込みダウン連続変速完了)の場合はリターンへ進み、NO(踏み込みダウン連続変速未完了)の場合はステップS3へ戻る。 In step S15, it is determined whether NO in steps S6, S10, and S12, or whether or not the step-down continuous shift has been completed following the correction amount being reflected in the rear shift release instruction pressure in step S14. . If YES (stepped down continuous shift completed), the process proceeds to return, and if NO (stepped down continuous shift not completed), the process returns to step S3.
 ここで、踏み込みダウン連続変速完了の判断は、後変速でのイナーシャフェーズが終了し、実ギヤ比が、踏み込みダウン連続変速完了後のギヤ比(3速段ギヤ比)に到達したことで行う。 Here, the determination of completion of the step-down continuous shift is made when the inertia phase in the rear shift is completed and the actual gear ratio has reached the gear ratio (third gear ratio) after the completion of the step-down continuous shift.
 次に、実施例1の作用を、「踏み込みダウン連続変速制御処理作用」、「踏み込みダウン連続変速制御作用」に分けて説明する。 Next, the operation of the first embodiment will be described by dividing it into “step-down continuous shift control processing operation” and “step-down continuous shift control operation”.
 [踏み込みダウン連続変速制御処理作用]
 以下、図5のフローチャートに基づいて踏み込みダウン連続変速制御処理作用を説明する。
[Step down continuous shift control processing action]
Hereinafter, the step-down continuous shift control processing operation will be described based on the flowchart of FIG.
 走行中のアクセル踏み込み操作により踏み込みダウン連続変速が開始されると、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS7→ステップS15へと進む。ステップS4では、設計上、後変速解放クラッチが前変速の終了まで滑らないで前変速の終了後に滑り出すように、前変速解放指示圧と後変速解放指示圧が算出される。ステップS5では、前変速解放クラッチへの前変速解放指示圧(算出値)及び前変速締結クラッチへの前変速締結指示圧が出力され、前変速が開始される。 When the depressing down continuous shift is started by the accelerator depressing operation while traveling, the flow proceeds to step S1, step S2, step S3, step S4, step S5, step S6, step S7, and step S15 in the flowchart of FIG. In step S4, the front shift release instruction pressure and the rear shift release instruction pressure are calculated so that the rear shift release clutch does not slip until the end of the previous shift and starts to slide after the end of the previous shift. In step S5, the front shift release instruction pressure (calculated value) to the front shift release clutch and the front shift engagement instruction pressure to the front shift engagement clutch are output, and the front shift is started.
 次の制御周期からの前変速進行中であって、変速締結容量の発生が無い間は、ステップS3→ステップS5→ステップS6→ステップS7→ステップS15へと進む流れが繰り返され、ステップS5では、予め決められた指示圧プロファイルにしたがって前変速解放クラッチへの前変速解放指示圧及び前変速締結クラッチへの前変速締結指示圧が出力される。そして、前変速でのイナーシャフェーズが開始されると、ステップS5では、出力される指示圧に、後変速解放クラッチへの後変速解放指示圧(算出値)及び後変速締結クラッチへの後変速締結指示圧が加えられて後変速が開始される。 While the previous shift from the next control cycle is in progress and no shift engagement capacity is generated, the flow of steps S3 → step S5 → step S6 → step S7 → step S15 is repeated. In step S5, According to a predetermined command pressure profile, a front shift release instruction pressure to the front shift release clutch and a front shift engagement instruction pressure to the front shift engagement clutch are output. When the inertia phase at the front shift is started, in step S5, the output command pressure is set to the rear shift release instruction pressure (calculated value) to the rear shift release clutch and the rear shift engagement to the rear shift engagement clutch. The command pressure is applied and the rear shift is started.
 後変速の開始後からの前変速進行中に変速締結容量が発生しないままで前変速が終了すると、ステップS3→ステップS5→ステップS6→ステップS15へと進む流れが繰り返される。そして、後変速の進行により実ギヤ比が、踏み込みダウン連続変速完了後のギヤ比(3速段ギヤ比)に到達し、踏み込みダウン連続変速が完了すると、ステップ15からリターンへ進む。 When the pre-shift is completed with no shift engagement capacity being generated during the pre-shift from the start of the post-shift, the flow from step S3 to step S5 to step S6 to step S15 is repeated. As the rear shift progresses, the actual gear ratio reaches the gear ratio after completion of the step-down continuous shift (third gear ratio). When the step-down continuous shift is completed, the process proceeds from step 15 to return.
 一方、後変速の開始後からの前変速進行中に変速締結容量が発生すると、ステップS7からステップS8へ進む。ステップS8では、前変速締結容量が発生したか否かが判断され、前変速締結容量が発生したと判断された場合と後変速締結容量が発生したとの判断された場合とで別々に処理される。 On the other hand, if a shift engagement capacity is generated during the progress of the previous shift after the start of the subsequent shift, the process proceeds from step S7 to step S8. In step S8, it is determined whether or not a front shift engagement capacity has been generated, and processing is performed separately for a case where it is determined that a front shift engagement capacity has occurred and a case where it has been determined that a rear shift engagement capacity has occurred. The
 前変速進行中にステップS8にて前変速締結容量が発生したと判断されたが、前変速締結容量が補正処理実行判断閾値未満である場合は、ステップS8→ステップS9→ステップS10→ステップS15へと進み、後変速解放指示圧の補正が行われない。しかし、ステップS8にて前変速締結容量が発生したと判断され、かつ、ステップS10にて前変速締結容量が補正処理実行判断閾値以上と判断されると、ステップS8→ステップS9→ステップS10→ステップS13→ステップS14へと進む。ステップS13では、後変速解放クラッチへの後変速解放指示圧を下側にシフト補正する補正量が算出され、ステップS14では、後変速解放指示圧へ補正量を反映し、それまでの後変速解放指示圧が補正量により下側にシフト補正した後の後変速解放指示圧に書き替えられる。 If it is determined in step S8 that the front shift engagement capacity has occurred during the progress of the previous shift, but the front shift engagement capacity is less than the correction process execution determination threshold, the process proceeds to step S8 → step S9 → step S10 → step S15. The rear shift release instruction pressure is not corrected. However, if it is determined in step S8 that the front shift engagement capacity has occurred, and it is determined in step S10 that the front shift engagement capacity is equal to or greater than the correction processing execution determination threshold, step S8 → step S9 → step S10 → step. The process proceeds from S13 to step S14. In step S13, a correction amount for shifting and correcting the rear shift release instruction pressure to the rear shift release clutch is calculated, and in step S14, the correction amount is reflected in the rear shift release instruction pressure and the previous rear shift release is performed. The command pressure is rewritten to the rear shift release command pressure after the shift is corrected downward by the correction amount.
 前変速進行中にステップS8にて後変速締結容量が発生したと判断されたが、後変速締結容量が補正処理実行判断閾値未満である場合は、ステップS8→ステップS11→ステップS12→ステップS15へと進み、後変速解放指示圧の補正が行われない。しかし、ステップS8にて後変速締結容量が発生したと判断され、かつ、ステップS12にて後変速締結容量が補正処理実行判断閾値以上と判断されると、ステップS8→ステップS11→ステップS12→ステップS13→ステップS14へと進む。ステップS13では、後変速解放クラッチへの後変速解放指示圧を上側にシフト補正する補正量が算出され、ステップS14では、後変速解放指示圧へ補正量を反映し、それまでの後変速解放指示圧が補正量により上側にシフト補正した後の後変速解放指示圧に書き替えられる。 If it is determined in step S8 that the rear shift engagement capacity has occurred while the front shift is in progress, but the rear shift engagement capacity is less than the correction process execution determination threshold value, the process proceeds to step S8 → step S11 → step S12 → step S15. The rear shift release instruction pressure is not corrected. However, if it is determined in step S8 that the rear shift engagement capacity has occurred, and it is determined in step S12 that the rear shift engagement capacity is equal to or greater than the correction process execution determination threshold, step S8 → step S11 → step S12 → step. The process proceeds from S13 to step S14. In step S13, a correction amount for shifting the rear shift release instruction pressure to the rear shift release clutch upward is calculated, and in step S14, the correction amount is reflected in the rear shift release instruction pressure and the previous rear shift release instruction is calculated. After the pressure is shifted upward by the correction amount, it is rewritten as the rear shift release command pressure.
 このように、踏み込みダウン連続変速制御処理では、前変速進行中に変速締結容量が発生すると、後変速解放クラッチが前変速の終了まで滑らないで前変速の終了後に滑り出すように、後変速解放クラッチへの後変速解放指示圧が補正される。より具体的には、前変速進行中に前変速締結容量が発生したと判断され、かつ、前変速締結容量が補正処理実行判断閾値以上と判断された場合は、後変速解放指示圧が補正量により下側にシフト補正される。又、前変速進行中に後変速締結容量が発生したと判断され、かつ、後変速締結容量が補正処理実行判断閾値以上と判断された場合は、後変速解放指示圧が補正量により上側にシフト補正される。 As described above, in the step-down continuous shift control process, when the shift engagement capacity is generated while the front shift is in progress, the rear shift release clutch is configured such that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift. The rear shift release command pressure is corrected. More specifically, when it is determined that the front shift engagement capacity has occurred while the front shift is in progress, and the front shift engagement capacity is determined to be greater than or equal to the correction process execution determination threshold, the rear shift release command pressure is the correction amount. Is shifted downward. Further, when it is determined that the rear shift engagement capacity is generated while the front shift is in progress and the rear shift engagement capacity is determined to be equal to or greater than the correction process execution determination threshold, the rear shift release instruction pressure is shifted upward by the correction amount. It is corrected.
 [踏み込みダウン連続変速制御作用]
 以下、図8~図13に基づいて踏み込みダウン連続変速制御作用を説明する。なお、図11~図13において、「前変速」を「第1変速」、「後変速」を「第2変速」という。図11~図13において、時刻t1は第1変速掛替要素制御開始時刻、時刻t2はI/P開始(=イナーシャフェーズ開始)&第2変速掛替要素制御開始時刻、時刻t3は後変速締結容量発生時刻、時刻t4は中間段ギヤ比到達時刻、時刻t5は第2変速終了時刻である。
[Depression down continuous shift control action]
Hereinafter, the step-down continuous shift control operation will be described with reference to FIGS. 11 to 13, “front shift” is referred to as “first shift”, and “rear shift” is referred to as “second shift”. 11 to 13, time t1 is the first shift change element control start time, time t2 is the I / P start (= inertia phase start) & second shift change element control start time, and time t3 is the rear shift engagement. The capacity generation time, time t4 is the intermediate gear ratio arrival time, and time t5 is the second shift end time.
 まず、通常時の踏み込みダウン連続変速制御においては、図8に示すように、前変速解放トルク(SFT1 Trls)と後変速解放トルク(SFT2 Trls)を座標軸とする座標平面上で連続変速が成立する連続変速成立トルク領域に動作点E(★)が存在する。ここで、「通常時」とは、踏み込みダウン連続変速制御を実行したとき、前変速進行中に前変速締結容量も後変速締結容量も発生しない状況をいう。 First, in the normal step-down continuous shift control, as shown in FIG. 8, continuous shift is established on a coordinate plane having the front shift release torque (SFT1 Trls) and the rear shift release torque (SFT2 Trls) as coordinate axes. An operating point E (★) exists in the continuous shift establishment torque region. Here, the “normal time” refers to a situation in which, when the step-down continuous shift control is executed, neither the front shift engagement capacity nor the rear shift engagement capacity is generated while the front shift is in progress.
 このため、通常時の踏み込みダウン連続変速制御においては、図11の矢印Gの枠内特性に示すように、前変速終了後(第1変速が終了する中間段ギヤ比到達時刻t4の後)に後変速解放クラッチがスリップを開始する。 Therefore, in the normal down-down continuous shift control at the normal time, as shown by the characteristics in the frame of the arrow G in FIG. 11, after the end of the previous shift (after the intermediate gear ratio arrival time t4 when the first shift ends). The rear shift release clutch starts to slip.
 よって、図11の矢印Hの枠内特性に示すように、中間段ギヤ比到達時刻t4の前後において、前変速終了時から後変速に向かって入力回転数が滑らかに変化する。さらに、図11の矢印Iの枠内特性に示すように、中間段ギヤ比到達時刻t4の前後において、前後Gの変動も小さく抑えられる。即ち、通常時の踏み込みダウン連続変速制御においては、連続変速中の引きショックの発生を抑えながら、ラグを抑えた一発感のある連続変速が実現される。 Therefore, as indicated by the characteristics in the frame indicated by the arrow H in FIG. 11, the input rotational speed smoothly changes from the end of the front shift toward the rear shift before and after the intermediate gear ratio arrival time t4. Furthermore, as shown by the in-frame characteristics of the arrow I in FIG. 11, the fluctuation of the front and rear G is also suppressed before and after the intermediate gear ratio arrival time t4. That is, in the step-down continuous shift control at the normal time, a continuous shift with a single feeling with a reduced lag is realized while suppressing the occurrence of a pulling shock during the continuous shift.
 次に、踏み込みダウン連続変速制御を実行したとき、前変速進行中に後変速締結容量が発生した場合、図9に示すように、前変速解放トルク(SFT1 Trls)と後変速解放トルク(SFT2 Trls)の座標平面上でショックとラグの官能評価線が上側にシフトする。このため、動作点E(★)が、連続変速成立トルク領域から外れてショックNG領域に存在することになる。 Next, when the downshift continuous shift control is executed and the rear shift engagement capacity is generated while the front shift is in progress, as shown in FIG. 9, the front shift release torque (SFT1 Trls) and the rear shift release torque (SFT2 Trls) ) The sensory evaluation line of shock and lag shifts upward on the coordinate plane. Therefore, the operating point E (★) is out of the continuous shift establishment torque region and exists in the shock NG region.
 よって、前変速進行中に後変速締結容量が発生した時の踏み込みダウン連続変速制御においては、図12の矢印Jの枠内特性に示すように、前変速終了する直前(中間段ギヤ比到達時刻t4の直前)のタイミングで後変速解放クラッチがスリップを開始する。このように、後変速解放クラッチの締結容量が不足する結果、図12の矢印Kの枠内特性に示すように、中間段ギヤ比到達時刻t4での前変速締結クラッチへの繋ぎ時に前後Gが大きく変動する引きショックが発生する。 Therefore, in the down-down continuous shift control when the rear shift engagement capacity is generated while the front shift is in progress, as shown by the in-frame characteristics of the arrow J in FIG. 12, immediately before the end of the front shift (intermediate gear ratio arrival time). The rear shift release clutch starts to slip at the timing (just before t4). As described above, as a result of the lack of the engagement capacity of the rear shift release clutch, as shown in the in-frame characteristics of the arrow K in FIG. 12, the front / rear G is changed when connected to the front shift engagement clutch at the intermediate gear ratio arrival time t4. A pulling shock that fluctuates greatly occurs.
 なお、図示していないが、前変速進行中に前変速締結容量が発生した時の踏み込みダウン連続変速制御においては、前変速が終了した後も後変速解放クラッチがスリップを開始しない。このように、後変速解放クラッチの締結容量が過剰になる結果、後変速のイナーシャフェーズ開始が遅れるというラグが発生する。 Although not shown, in the down-down continuous shift control when the front shift engagement capacity is generated while the front shift is in progress, the rear shift release clutch does not start slipping even after the front shift is completed. As described above, as a result of the engagement capacity of the rear shift release clutch becoming excessive, a lag occurs that the start of the inertia phase of the rear shift is delayed.
 実施例1は、上記のように、踏み込みダウン連続変速制御において、前変速進行中に後変速締結容量が発生した時の引きショック発生と、前変速進行中に前変速締結容量が発生した時のラグ発生に着目してなされたものである。つまり、前変速進行中に変速締結容量が発生すると、後変速解放クラッチが前変速の終了まで滑らないで前変速の終了後に滑り出すように、後変速解放クラッチへの後変速解放指示圧を補正する構成を採用した。 In the first embodiment, as described above, in the down-down continuous shift control, a pulling shock is generated when the rear shift engagement capacity is generated while the front shift is in progress, and the front shift engagement capacity is generated while the front shift is in progress. It was made paying attention to lag generation. That is, if a shift engagement capacity is generated while the front shift is in progress, the rear shift release instruction pressure to the rear shift release clutch is corrected so that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift. Adopted the configuration.
 即ち、踏み込みダウン連続変速制御を実行したとき、前変速進行中に後変速締結容量が発生すると、これに合わせて後変速解放指示圧を上げた場合、図10に示すように、再び動作点E(☆)から動作点F(★)へ移動し、連続変速成立トルク領域に入る。 In other words, when the rear shift engagement capacity is generated while the forward shift is in progress when the step-down continuous shift control is executed, if the rear shift release command pressure is increased in accordance with this, the operating point E is again displayed as shown in FIG. It moves from (*) to the operating point F (*) and enters the continuous shift establishment torque region.
 このため、後変速解放指示圧を時刻t3から上げる補正を行う踏み込みダウン連続変速制御においては、図13の矢印Lの枠内特性に示すように、前変速終了後(第1変速が終了する中間段ギヤ比到達時刻t4の後)に後変速解放クラッチがスリップを開始する。つまり、前変速でのイナーシャフェーズの終了に引き続いて、後変速でのイナーシャフェーズが開始し、前変速と後変速が重なったり離れたりすることなく、連続的に実行されることになる。 For this reason, in the step-down continuous shift control that corrects the rear shift release command pressure from time t3, as indicated by the in-frame characteristics indicated by the arrow L in FIG. After the step gear ratio arrival time t4), the rear shift release clutch starts to slip. In other words, following the end of the inertia phase at the front shift, the inertia phase at the rear shift starts, and the front shift and the rear shift are continuously executed without overlapping or leaving.
 よって、通常時と同様に、中間段ギヤ比到達時刻t4の前後において、前変速終了時から後変速に向かって入力回転数が滑らかに変化する。さらに、通常時と同様に、中間段ギヤ比到達時刻t4の前後において、前後Gの変動も小さく抑えられる。即ち、後変速解放指示圧を補正する踏み込みダウン連続変速制御においては、連続変速中の引きショックの発生を抑えながら、ラグを抑えた一発感のある連続変速が実現される。 Therefore, similarly to the normal time, before and after the intermediate gear ratio arrival time t4, the input rotational speed smoothly changes from the end of the front shift toward the rear shift. Further, similarly to the normal time, the fluctuation of the front and rear G is suppressed to be small before and after the intermediate gear ratio arrival time t4. That is, in the down-down continuous shift control for correcting the rear shift release instruction pressure, a continuous shift with a single feeling with a reduced lag is realized while suppressing the occurrence of a pulling shock during the continuous shift.
 なお、踏み込みダウン連続変速制御を実行したとき、前変速進行中に前変速締結容量が発生した場合には、後変速締結容量が発生した場合とは逆に、これに合わせて後変速解放指示圧を下側にシフト補正する。これにより、連続変速中の引きショックの発生を抑えながら、ラグを抑えた一発感のある連続変速が実現される。 When the downshift continuous shift control is executed and the front shift engagement capacity is generated while the front shift is in progress, the rear shift release command pressure is adjusted accordingly, contrary to the case where the rear shift engagement capacity is generated. Shift correction downward. As a result, a continuous shift with a single shot with reduced lag can be realized while suppressing the occurrence of a pulling shock during the continuous shift.
 以上述べたように、実施例1の自動変速機3の制御装置にあっては、下記に列挙する効果が得られる。 As described above, the effects listed below can be obtained in the control device for the automatic transmission 3 according to the first embodiment.
 (1) 複数の変速段と複数の摩擦要素を有する自動変速機3の制御装置である。
走行中のアクセル踏み込み操作に伴ってハイ変速段(7速段、9速段)から中間変速段(4速段)を飛び越えてロー変速段(3速段)へ移行するダウンシフト要求があると、摩擦要素の掛け替えによる掛け替え変速の進行が互いに重なり合う前変速(7-4変速、9-4変速)と後変速(4-3変速)による踏み込みダウン連続変速を実行する。前変速の進行中に前変速締結容量又は後変速締結容量が発生すると、後変速解放クラッチ(第1クラッチK1)が前変速の終了まで滑らないで前変速の終了後に滑り出すように、後変速解放クラッチ(第1クラッチK1)への後変速解放指示圧を補正する連続変速制御処理部10aを有する。このように、前変速の進行中に前変速締結容量又は後変速締結容量が発生すると、後変速解放クラッチ(第1クラッチK1)が前変速の終了まで滑らないで前変速の終了後に滑り出すように、後変速解放クラッチ(第1クラッチK1)への後変速解放指示圧を補正することで、踏み込みダウン連続変速時、連続変速中の引きショックの発生を抑えながら、ラグを抑えた一発感のある連続変速を実現することができる。
(1) A control device for the automatic transmission 3 having a plurality of shift stages and a plurality of friction elements.
When there is a downshift request to jump from the high gear (7th gear, 9th gear) to the intermediate gear (4th gear) and to shift to the low gear (3rd gear) as the accelerator is depressed during travel The step-down continuous shift is executed by the front shift (7-4 shift, 9-4 shift) and the rear shift (4-3 shift) in which the progress of the shift shift by the friction element switching overlaps each other. When the front shift engagement capacity or the rear shift engagement capacity is generated during the progress of the front shift, the rear shift release clutch (first clutch K1) is released so that the rear shift release clutch (first clutch K1) does not slip until the end of the front shift and starts to slide after the end of the front shift. A continuous shift control processing unit 10a that corrects the rear shift release instruction pressure to the clutch (first clutch K1) is provided. As described above, when the front shift engagement capacity or the rear shift engagement capacity is generated while the front shift is in progress, the rear shift release clutch (first clutch K1) does not slip until the end of the front shift and starts to slide after the end of the front shift. By correcting the rear shift release command pressure to the rear shift release clutch (first clutch K1), it is possible to reduce the lag while suppressing the occurrence of pulling shock during the continuous shift during the step-down continuous shift. A certain continuous shift can be realized.
 (2) 連続変速制御処理部10aは、前変速の進行中に前変速締結容量が発生すると、後変速解放クラッチへの後変速解放指示圧を下げる補正をする。前変速の進行中に後変速締結容量が発生すると、後変速解放クラッチへの後変速解放指示圧を上げる補正をする。このように、前変速の進行中に前変速締結容量が発生したか後変速締結容量が発生したかにより後変速解放指示圧補正の増減方向を変えることで、ラグ抑制とショック抑制に対応する後変速解放指示圧の補正を行うことができる。 (2) The continuous shift control processing unit 10a corrects the rear shift release instruction pressure to the rear shift release clutch when the front shift engagement capacity is generated while the front shift is in progress. If the rear shift engagement capacity is generated while the front shift is in progress, the rear shift release instruction pressure to the rear shift release clutch is corrected to be increased. In this way, by changing the increase / decrease direction of the rear shift release command pressure correction depending on whether the front shift engagement capacity has occurred or the rear shift engagement capacity has occurred while the front shift is in progress, The shift release instruction pressure can be corrected.
 (3) 連続変速制御処理部10aは、前変速の進行中に前変速締結容量又は後変速締結容量が発生したことを、自動変速機3の回転メンバ回転数(中間軸回転数Nint、タービン回転数Nt)の変動により検知する。このように、自動変速機3での締結容量の発生により全体のトルクバランスが変化することを利用することで、自動変速機3の回転メンバ回転数の変動により、前変速の進行中に前変速締結容量又は後変速締結容量が発生したことを検知することができる。 (3) The continuous shift control processing unit 10a indicates that the front shift engagement capacity or the rear shift engagement capacity has occurred during the progress of the previous shift, and that the rotational member rotational speed (intermediate shaft rotational speed Nint, turbine rotational speed) of the automatic transmission 3 It is detected by the fluctuation of several Nt). In this way, by utilizing the fact that the overall torque balance changes due to the generation of the engagement capacity in the automatic transmission 3, it is possible to perform the front shift while the front shift is in progress due to fluctuations in the rotational member rotational speed of the automatic transmission 3. It can be detected that the engagement capacity or the rear shift engagement capacity has occurred.
 (4) 連続変速制御処理部10aは、前変速解放トルク(SFT1 Trls)と後変速解放トルク(SFT2 Trls)を座標軸とする座標平面上で、ショック官能評価とラグ官能評価の実験により連続変速が成立する連続変速成立トルク領域を予め決めておく。後変速解放クラッチへの後変速解放指示圧を補正するとき、補正開始時の座標位置が連続変速成立トルク領域に入る後変速解放トルクシフト量の大きさにより補正量を決める。このように、連続変速成立トルク領域を予め決めておくことで、後変速解放クラッチへの後変速解放指示圧を補正するとき、官能評価としてショック抑制とラグ抑制とが両立する評価が得られる補正を行うことができる。 (4) The continuous shift control processing unit 10a performs a continuous shift on the coordinate plane having the front shift release torque (SFT1 Trls) and the rear shift release torque (SFT2 Trls) as coordinate axes through experiments of shock sensory evaluation and lag sensory evaluation. A continuous shift establishment torque region to be established is determined in advance. When correcting the post-shift release command pressure to the post-shift release clutch, the correction amount is determined by the magnitude of the post-shift release torque shift amount where the coordinate position at the start of the correction enters the continuous shift establishment torque region. As described above, by determining the continuous shift establishment torque region in advance, when correcting the rear shift release command pressure to the rear shift release clutch, a correction capable of obtaining both shock suppression and lag suppression as sensory evaluation is obtained. It can be performed.
 (5) 連続変速制御処理部10aは、連続変速成立トルク領域の低トルク側位置を後変速解放トルク目標値の位置とし、補正開始時の座標位置と後変速解放トルク目標値の位置との乖離シフト量の大きさにより補正量を決める。このように、連続変速成立トルク領域のうちショックNG領域に近い位置を後変速解放トルク目標値の位置とすることで、連続変速レスポンスを向上させる補正を行うことができる。 (5) The continuous shift control processing unit 10a sets the low torque side position in the continuous shift establishment torque region as the position of the rear shift release torque target value, and the difference between the coordinate position at the start of correction and the position of the rear shift release torque target value The amount of correction is determined by the amount of shift. In this manner, by making the position close to the shock NG area in the continuous shift establishment torque area as the position of the rear shift release torque target value, it is possible to perform correction for improving the continuous shift response.
 以上、本発明の自動変速機の制御装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The automatic transmission control device of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and design changes and additions are permitted without departing from the gist of the invention according to each claim of the claims.
 実施例1では、連続変速制御処理部10aで踏み込みダウン連続変速の対象とする連続変速として、4速段を中間段とする7-3踏み込みダウン連続変速と9-3踏み込みダウン連続変速の例を示した。しかし、連続変速制御処理部で踏み込みダウン連続変速の対象とする連続変速としては、4速段以外を中間段とする踏み込みダウン連続変速の例であっても良い。さらに、7-3踏み込みダウン連続変速や9-3踏み込みダウン連続変速以外の飛び変速段による踏み込みダウン連続変速の例であっても良い。 In the first embodiment, examples of the 7-3 step-down continuous shift and the 9-3 step-down continuous shift in which the fourth step is an intermediate step are used as continuous shifts to be subjected to the step-down continuous shift by the continuous shift control processing unit 10a. Indicated. However, the continuous shift that is the target of the step-down continuous shift in the continuous shift control processing unit may be an example of a step-down continuous shift that uses an intermediate stage other than the fourth speed stage. Further, it may be an example of a step-down continuous shift by a jump gear stage other than a 7-3 step-down continuous shift or a 9-3 step-down continuous shift.
 実施例1では、連続変速制御処理部10aとして、締結容量の発生を、タービン回転数Ntと中間軸回転数Nintのうち少なくとも一方の回転数特性に勾配変化が生じることによって検知する例を示した。しかし、連続変速制御処理部としては、摩擦要素のピストンストローク量検出センサがついたユニットであれば、ストローク量の大きさを見ることによって締結容量発生タイミングを検知することも可能である。 In the first embodiment, as the continuous shift control processing unit 10a, an example in which the generation of the engagement capacity is detected by a change in the gradient of at least one of the turbine rotation speed Nt and the intermediate shaft rotation speed Nint is shown. . However, if the continuous shift control processing unit is a unit provided with a piston stroke amount detection sensor of a friction element, it is also possible to detect the engagement capacity generation timing by looking at the magnitude of the stroke amount.
 実施例1では、自動変速機として、前進9速後退1速の自動変速機3の例を示した。しかし、自動変速機としては、前進9速後退1速以外の有段変速段を持つ自動変速機の例としても良い。また、実施例1では、エンジン車に搭載される自動変速機の制御装置の例を示したが、エンジン車に限らず、ハイブリッド車や電気自動車等の自動変速機の制御装置としても適用することが可能である。 In Example 1, an example of an automatic transmission 3 with 9 forward speeds and 1 reverse speed was shown as an automatic transmission. However, the automatic transmission may be an example of an automatic transmission having a stepped gear stage other than the 9th forward speed and the 1st reverse speed. In the first embodiment, an example of a control device for an automatic transmission mounted on an engine vehicle has been described. However, the control device for an automatic transmission such as a hybrid vehicle or an electric vehicle is not limited to an engine vehicle. Is possible.

Claims (6)

  1.  複数の変速段と複数の摩擦要素を有する自動変速機の制御装置であって、
     走行中のアクセル踏み込み操作に伴ってハイ変速段から中間変速段を飛び越えてロー変速段へ移行するダウンシフト要求があると、前記摩擦要素の掛け替えによる掛け替え変速の進行が互いに重なり合う前変速と後変速による踏み込みダウン連続変速を実行し、
     前記前変速の進行中に前変速締結容量又は後変速締結容量が発生すると、後変速解放クラッチが前記前変速の終了まで滑らないで前記前変速の終了後に滑り出すように、前記後変速解放クラッチへの後変速解放指示圧を補正する連続変速制御処理部を有する
     自動変速機の制御装置。
    A control device for an automatic transmission having a plurality of shift stages and a plurality of friction elements,
    If there is a downshift request that shifts from the high gear to the intermediate gear and then shifts to the low gear as the accelerator is depressed during traveling, the front gear and the rear gear that overlap with each other due to the switching of the friction elements are overlapped. Execute the continuous downshift by stepping on,
    When the front shift engagement capacity or the rear shift engagement capacity is generated during the progress of the front shift, the rear shift release clutch is moved to the rear shift release clutch so that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift. A control device for an automatic transmission having a continuous shift control processing unit for correcting a rear shift release instruction pressure.
  2.  請求項1に記載された自動変速機の制御装置において、
     前記連続変速制御処理部は、前記前変速の進行中に前変速締結容量が発生すると、前記後変速解放クラッチへの後変速解放指示圧を下げる補正をし、
     前記前変速の進行中に後変速締結容量が発生すると、前記後変速解放クラッチへの後変速解放指示圧を上げる補正をする
     自動変速機の制御装置。
    The control device for an automatic transmission according to claim 1,
    The continuous shift control processing unit corrects the rear shift release instruction pressure to the rear shift release clutch when the front shift engagement capacity is generated during the progress of the front shift,
    A control device for an automatic transmission that performs correction to increase a rear shift release instruction pressure to the rear shift release clutch when a rear shift engagement capacity is generated while the front shift is in progress.
  3.  請求項1又は2に記載された自動変速機の制御装置において、
     前記連続変速制御処理部は、前記前変速の進行中に前変速締結容量又は後変速締結容量が発生したことを、前記自動変速機の回転メンバ回転数の変動により検知する
     自動変速機の制御装置。
    In the control device for an automatic transmission according to claim 1 or 2,
    The continuous transmission control processing unit detects the occurrence of a front transmission engagement capacity or a rear transmission engagement capacity while the front transmission is in progress based on fluctuations in the rotational member rotational speed of the automatic transmission. .
  4.  請求項1から3までの何れか一項に記載された自動変速機の制御装置において、
     前記連続変速制御処理部は、前変速解放トルクと後変速解放トルクを座標軸とする座標平面上で、ショック官能評価とラグ官能評価の実験により連続変速が成立する連続変速成立トルク領域を予め決めておき、
     前記後変速解放クラッチへの後変速解放指示圧を補正するとき、補正開始時の座標位置が前記連続変速成立トルク領域に入る後変速解放トルクシフト量の大きさにより補正量を決める
     自動変速機の制御装置。
    In the control apparatus for an automatic transmission according to any one of claims 1 to 3,
    The continuous shift control processing unit predetermines a continuous shift establishment torque region where a continuous shift is established by an experiment of shock sensory evaluation and lag sensory evaluation on a coordinate plane having the front shift release torque and the rear shift release torque as coordinate axes. Every
    When correcting the rear shift release instruction pressure to the rear shift release clutch, the correction amount is determined by the magnitude of the rear shift release torque shift amount where the coordinate position at the start of the correction enters the continuous shift establishment torque region. Control device.
  5.  請求項4に記載された自動変速機の制御装置において、
     前記連続変速制御処理部は、前記連続変速成立トルク領域の低トルク側位置を後変速解放トルク目標値の位置とし、補正開始時の座標位置と前記後変速解放トルク目標値の位置との乖離シフト量の大きさにより補正量を決める
     自動変速機の制御装置。
    The control apparatus for an automatic transmission according to claim 4,
    The continuous shift control processing unit sets the low torque side position of the continuous shift establishment torque region as the position of the rear shift release torque target value, and the deviation shift between the coordinate position at the start of correction and the position of the rear shift release torque target value A control device for an automatic transmission that determines the amount of correction based on the amount.
  6.  複数の変速段と複数の摩擦要素を有する自動変速機の制御方法であって、
     走行中のアクセル踏み込み操作に伴ってハイ変速段から中間変速段を飛び越えてロー変速段へ移行するダウンシフト要求があると、前記摩擦要素の掛け替えによる掛け替え変速の進行が互いに重なり合う前変速と後変速による踏み込みダウン連続変速を実行し、
     前記前変速の進行中に前変速締結容量又は後変速締結容量が発生すると、後変速解放クラッチが前記前変速の終了まで滑らないで前記前変速の終了後に滑り出すように、前記後変速解放クラッチへの後変速解放指示圧を補正する
     自動変速機の制御方法。
    A method for controlling an automatic transmission having a plurality of shift stages and a plurality of friction elements,
    If there is a downshift request that shifts from the high gear to the intermediate gear and then shifts to the low gear as the accelerator is depressed during traveling, the front gear and the rear gear that overlap with each other due to the switching of the friction elements are overlapped. Execute the continuous downshift by stepping on,
    When the front shift engagement capacity or the rear shift engagement capacity is generated during the progress of the front shift, the rear shift release clutch is moved to the rear shift release clutch so that the rear shift release clutch does not slip until the end of the front shift and starts to slide after the end of the front shift. A control method for an automatic transmission that corrects the post-shift release command pressure.
PCT/JP2019/005131 2018-02-14 2019-02-13 Control device for automatic transmission and control method for automatic transmission WO2019159978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500527A JP7008786B2 (en) 2018-02-14 2019-02-13 Control device for automatic transmission and control method for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018023793 2018-02-14
JP2018-023793 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159978A1 true WO2019159978A1 (en) 2019-08-22

Family

ID=67618696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005131 WO2019159978A1 (en) 2018-02-14 2019-02-13 Control device for automatic transmission and control method for automatic transmission

Country Status (2)

Country Link
JP (1) JP7008786B2 (en)
WO (1) WO2019159978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11280403B2 (en) * 2020-07-02 2022-03-22 Toyota Jidosha Kabushiki Kaisha Control device for automatic transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106440A (en) * 2001-09-28 2003-04-09 Jatco Ltd Variable speed control device for automatic transmission
JP2009162249A (en) * 2007-12-28 2009-07-23 Aisin Aw Co Ltd Shift controller for automatic transmission
JP2009174711A (en) * 2007-12-28 2009-08-06 Aisin Aw Co Ltd Shift control system for automatic transmission
JP2014137137A (en) * 2013-01-18 2014-07-28 Toyota Motor Corp Shift control device of vehicle
JP2018009686A (en) * 2016-07-15 2018-01-18 トヨタ自動車株式会社 Control unit of automatic transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106440A (en) * 2001-09-28 2003-04-09 Jatco Ltd Variable speed control device for automatic transmission
JP2009162249A (en) * 2007-12-28 2009-07-23 Aisin Aw Co Ltd Shift controller for automatic transmission
JP2009174711A (en) * 2007-12-28 2009-08-06 Aisin Aw Co Ltd Shift control system for automatic transmission
JP2014137137A (en) * 2013-01-18 2014-07-28 Toyota Motor Corp Shift control device of vehicle
JP2018009686A (en) * 2016-07-15 2018-01-18 トヨタ自動車株式会社 Control unit of automatic transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11280403B2 (en) * 2020-07-02 2022-03-22 Toyota Jidosha Kabushiki Kaisha Control device for automatic transmission

Also Published As

Publication number Publication date
JPWO2019159978A1 (en) 2020-12-03
JP7008786B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
JP4630355B2 (en) Shift control device for automatic transmission
JP4970480B2 (en) Control device for automatic transmission
JP4639760B2 (en) Shift control device for automatic transmission
JP5292807B2 (en) Shift control device for automatic transmission
EP3489554B1 (en) Automatic gear changer control device and control method
JP2008032191A (en) Shift control device for automatic transmission
JP3649004B2 (en) Shift control device for automatic transmission
JP5962778B2 (en) Automatic transmission starting clutch control device
KR101533117B1 (en) Shift control apparatus for automatic transmission
JP6512638B2 (en) Vehicle control device
WO2019159978A1 (en) Control device for automatic transmission and control method for automatic transmission
JP6865890B2 (en) Control device for automatic transmission
JP7341600B2 (en) Shift control device for automatic transmission
JP6377240B2 (en) Control device for automatic transmission
JP7118526B2 (en) Upshift control device for automatic transmission
JP6561979B2 (en) Control device for vehicle drive device
JP5905580B2 (en) Control device and control method for automatic transmission
JP6856818B2 (en) Automatic transmission downshift control device and automatic transmission downshift control method
JP6632092B2 (en) Automatic transmission select control device
JP2020148317A (en) Shift control device of automatic transmission
JP4337440B2 (en) Shift control device for automatic transmission
JP2016084915A (en) Control device of automatic transmission
JP2830181B2 (en) Transmission control device for automatic transmission
WO2017047479A1 (en) Vehicle transmission control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500527

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753800

Country of ref document: EP

Kind code of ref document: A1