WO2017047479A1 - Vehicle transmission control device - Google Patents

Vehicle transmission control device Download PDF

Info

Publication number
WO2017047479A1
WO2017047479A1 PCT/JP2016/076363 JP2016076363W WO2017047479A1 WO 2017047479 A1 WO2017047479 A1 WO 2017047479A1 JP 2016076363 W JP2016076363 W JP 2016076363W WO 2017047479 A1 WO2017047479 A1 WO 2017047479A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
engine
shift
friction element
transmission
Prior art date
Application number
PCT/JP2016/076363
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 平迫
豊田 英二
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Publication of WO2017047479A1 publication Critical patent/WO2017047479A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor

Definitions

  • the present invention relates to a shift control device for a vehicle that permits an increase in engine torque during a changeover shift of a stepped transmission.
  • An object of the present invention is to provide a shift control device for a vehicle that suppresses acceleration.
  • the present invention includes a stepped transmission having a plurality of gears that are automatically shifted in a driving force transmission system from an engine to driving wheels.
  • the shift control means for outputting a torque-up request flag for permitting the engine torque-up to the engine control means when the cooperative control accompanied by the engine torque-up is determined at the time of the shifting of the stepped transmission.
  • the shift control means outputs a torque-up request flag while the torque transmission capacity by the engagement-side friction element or the disengagement-side friction element during the crossover shift is in a low capacity range smaller than a predetermined value.
  • a torque-up request flag that permits engine torque-up is given to the engine control means. Is output. That is, the engine control means performs engine torque-up control when a torque-up request flag is input. Even if the engine torque is increased more than expected in this torque-up control, the torque transmitted to the drive wheels via the engagement-side friction element or the release-side friction element during shifting is limited to the torque transmission capacity by the friction element. To do. That is, the input torque to the stepped transmission that exceeds the torque transmission capacity is absorbed by the slip of the friction element and is not transmitted to the drive wheels. As a result, during engine / shift coordination control, even if there is more torque input than expected during shifting, vehicle acceleration can be suppressed by limiting the torque transmitted to the drive wheels.
  • FIG. 1 is an overall system diagram showing a drive system and a control system of an engine vehicle equipped with an automatic transmission to which a control device of Example 1 is applied.
  • 2 is an engagement operation table showing an engagement state of each shift friction element for each shift stage in the automatic transmission according to the first embodiment.
  • FIG. 3 is a shift map diagram illustrating an example of a shift map used for shift control in the automatic transmission according to the first embodiment. 3 is a flowchart showing a flow of engine / shift cooperative control processing executed by the automatic transmission controller according to the first embodiment.
  • FIG. 6 is a release pressure characteristic diagram of a shift hydraulic pressure showing a minimum current and a maximum current of a monitor current defined as being shifted (during intermediate hydraulic pressure) in engine / shift cooperative control processing. Indicates the characteristics of accelerator opening APO, torque up request flag, release side command hydraulic pressure monitor current, engagement side command hydraulic pressure monitor current, engine torque Te, and engine speed Ne when engine / shift coordination control is executed It is a time chart.
  • the shift control apparatus of the first embodiment is applied to an engine vehicle equipped with a stepped automatic transmission of 7 forward speeds and 1 reverse speed.
  • the configuration of the shift control device for the engine vehicle in the first embodiment is described as “the overall system configuration”, “the power train configuration of the automatic transmission”, “the shift control configuration of the automatic transmission”, “the engine / shift cooperative control processing configuration”. It is divided and explained.
  • FIG. 1 shows a drive system and a control system of an engine vehicle equipped with an automatic transmission to which the control device of the first embodiment is applied.
  • the following is an overall system diagram.
  • the drive system of the engine vehicle includes an engine Eng and an automatic transmission AT (a stepped transmission having a plurality of shift stages that are automatically shifted).
  • the automatic transmission AT is a stepped automatic transmission called step AT with 7 forward speeds and 1 reverse speed.
  • the automatic transmission AT receives the driving force of the engine Eng from the input shaft Input via the torque converter TC having the lockup clutch LU / C. Then, the rotational speed is changed by the four planetary gears and the seven shift friction elements, and is output from the output shaft Output to the drive wheels 50. Further, an oil pump OP is provided coaxially with the pump impeller of the torque converter TC, and is rotated by the driving force of the engine Eng to pressurize the oil.
  • the engine vehicle control system includes an engine controller 10 (ECU), an automatic transmission controller 20 (ATCU), and a control valve unit 30 (CVU).
  • the engine controller 10 (engine control means) and the automatic transmission controller 20 (shift control means) are connected via a CAN communication line 40 and share sensor information, control information, and the like by bidirectional communication.
  • the engine controller 10 is a control means for mainly controlling the driving state of the engine Eng.
  • an accelerator opening sensor 1 that detects an accelerator opening APO that represents the amount of accelerator pedal operation by the driver
  • an engine speed sensor 2 that detects an engine speed Ne.
  • the engine controller 10 controls the engine speed Ne and the engine torque Te by adjusting the fuel injection amount and the throttle opening based on the engine speed Ne and the accelerator opening APO. Further, when a torque-up request flag is input from the automatic transmission controller 20 during the transmission shift, torque-up control for increasing the engine torque Te is performed by adjusting the fuel injection amount and the throttle opening.
  • the automatic transmission controller 20 is a control means for mainly performing shift control of the automatic transmission AT.
  • a first turbine rotation speed sensor 3 for detecting the rotation speed of the first carrier PC1 and a second turbine rotation speed sensor 4 for detecting the rotation speed of the first ring gear R1.
  • an inhibitor switch 6 for detecting the range position selected by the driver's select lever
  • a variable speed friction element A solenoid current sensor 7 for monitoring each solenoid current is connected.
  • the control valve unit 30 is configured to have a solenoid valve and an oil passage for controlling the engagement / release of each variable speed friction element based on a control command from the automatic transmission controller 20.
  • the automatic transmission AT has a first planetary gear set GS1 and a third planetary gear by a first planetary gear G1 and a second planetary gear G2 in order on a shaft from the input shaft Input side to the output shaft Output side as a transmission gear.
  • a second planetary gear set GS2 is arranged by G3 and the fourth planetary gear G4.
  • a first clutch C1, a second clutch C2, a third clutch C3, a first brake B1, a second brake B2, a third brake B3, and a fourth brake B4 are arranged as shift friction elements that are hydraulically controlled.
  • a first one-way clutch F1 and a second one-way clutch F2 are arranged as one-way clutches that are mechanically engaged / idly rotated.
  • the first planetary gear G1 is a single pinion planetary gear having a first sun gear S1, a first ring gear R1, and a first carrier PC1 that supports a first pinion P1 that meshes with both gears S1, R1. .
  • the second planetary gear G2 is a single pinion type planetary gear having a second sun gear S2, a second ring gear R2, and a second carrier PC2 that supports a second pinion P2 meshing with both gears S2 and R2. .
  • the third planetary gear G3 is a single pinion planetary gear having a third sun gear S3, a third ring gear R3, and a third carrier PC3 that supports a third pinion P3 meshing with both gears S3 and R3. .
  • the fourth planetary gear G4 is a single pinion planetary gear having a fourth sun gear S4, a fourth ring gear R4, and a fourth carrier PC4 that supports a fourth pinion P4 meshing with both the gears S4 and R4. .
  • the input shaft Input is connected to the second ring gear R2 and inputs the rotational driving force from the engine Eng via the torque converter TC or the like.
  • the output shaft Output is coupled to the third carrier PC3, and transmits the output rotational driving force to the driving wheels 50 via a final gear or the like.
  • the first ring gear R1, the second carrier PC2, and the fourth ring gear R4 are integrally connected by a first connecting member M1.
  • the third ring gear R3 and the fourth carrier PC4 are integrally connected by a second connecting member M2.
  • the first sun gear S1 and the second sun gear S2 are integrally connected by a third connecting member M3.
  • the first planetary gear set GS1 includes four rotating elements by connecting the first planetary gear G1 and the second planetary gear G2 with the first connecting member M1 and the third connecting member M3. Is done. Further, the second planetary gear set GS2 is configured to have five rotating elements by connecting the third planetary gear G3 and the fourth planetary gear G4 by the second connecting member M2.
  • first planetary gear set GS1 torque is input from the input shaft Input to the second ring gear R2, and the input torque is output to the second planetary gear set GS2 via the first connecting member M1.
  • torque is directly input to the second connection member M2 from the input shaft Input, and is input to the fourth ring gear R4 via the first connection member M1, and the input torque is Output from 3 carrier PC3 to output shaft Output.
  • the first clutch C1 (input clutch I / C) is a clutch that selectively connects and disconnects the input shaft Input and the second connecting member M2.
  • the second clutch C2 (direct clutch D / C) is a clutch that selectively connects and disconnects the fourth sun gear S4 and the fourth carrier PC4.
  • the third clutch C3 (H & LSR clutch H & LR / C) is a clutch that selectively connects and disconnects the third sun gear S3 and the fourth sun gear S4.
  • the second one-way clutch F2 is disposed between the third sun gear S3 and the fourth sun gear S4.
  • the third sun gear S3 and the fourth sun gear S4 generate independent rotation speeds. Therefore, the third planetary gear G3 and the fourth planetary gear G4 are connected via the second connecting member M2, and each planetary gear achieves an independent gear ratio.
  • the first brake B1 front brake F / B is a brake that selectively stops the rotation of the first carrier PC1 with respect to the transmission case Case.
  • the first one-way clutch F1 is disposed in parallel with the first brake B1.
  • the second brake B2 (low brake LOW / B) is a brake that selectively stops the rotation of the third sun gear S3 with respect to the transmission case Case.
  • the third brake B3 (2346 brake 2-3-4-6 / B) is a brake that selectively stops the rotation of the third connecting member M3 that connects the first sun gear S1 and the second sun gear S2 with respect to the transmission case Case. It is.
  • the fourth brake B4 (reverse brake REV / B) is a brake that selectively stops the rotation of the fourth carrier PC4 with respect to the transmission case Case.
  • FIG. 2 is a fastening operation table showing a fastening state of each shift friction element for each shift stage in the automatic transmission AT of the first embodiment.
  • a circle indicates that the speed change friction element is in an engaged state
  • a mark ( ⁇ ) indicates that the speed change friction element is in an engaged state when the engine brake is coasted
  • no mark indicates that the speed change friction element is in an engaged state. It shows that the shift friction element is in a released state.
  • the first one-way clutch F1 and the second one-way clutch F2 are engaged while the second brake B2 is engaged.
  • the first one-way clutch F1 and the second one-way clutch F2 are idling so that the third clutch C3, the first brake B1, and the second brake B2 It will be in a fastening state.
  • the second brake B2, the third brake B3, and the second clutch C2 are engaged regardless of whether driving or coasting.
  • fourth speed the third brake B3, the second clutch C2, and the third clutch C3 are engaged regardless of whether driving or coasting.
  • the first clutch C1, the second clutch C2, and the third clutch C3 are engaged regardless of whether driving or coasting.
  • 6-speed the third brake B3, the first clutch C1, and the third clutch C3 are engaged regardless of whether driving or coasting.
  • the first brake B1, the first clutch C1, and the third clutch C3 are engaged regardless of whether driving or coasting.
  • FIG. 3 is a shift map diagram showing an example of a shift map used for shift control in the automatic transmission AT according to the first embodiment. Note that the shift map shown in FIG. 3 is stored in advance in the memory of the automatic transmission controller 20, and the solid line indicates the up shift line and the dotted line indicates the down shift line.
  • FIG. 4 shows a flow of engine / shift cooperative control processing executed by the automatic transmission controller 20 of the first embodiment (shift control means).
  • shift control means the automatic transmission controller 20 of the first embodiment
  • FIG. 4 shows a flow of engine / shift cooperative control processing executed by the automatic transmission controller 20 of the first embodiment (shift control means).
  • FIG. 4 shows a flow of engine / shift cooperative control processing executed by the automatic transmission controller 20 of the first embodiment (shift control means).
  • FIG. 4 shows a flow of engine / shift cooperative control processing executed by the automatic transmission controller 20 of the first embodiment (shift control means).
  • FIG. 4 shows a flow of engine / shift cooperative control processing executed by the automatic transmission controller 20 of the first embodiment (shift control means).
  • step S1 following the start, it is determined whether or not a cooperative control operation with the engine Eng is performed. If YES (cooperative control operation), the process proceeds to step S2, and if NO (cooperative control non-operation), the process proceeds to step S5.
  • “cooperative control” for example, when there is an auto-down shift request for increasing the engine speed due to a decrease in the vehicle speed VSP, it is determined that the cooperative control with the engine Eng is activated during the replacement shift. On the other hand, when there is an upshift request or the like, it is determined that the cooperative control with the engine Eng is deactivated during the changeover shift.
  • step S2 following the determination that the cooperative control operation is performed in step S1, it is determined whether or not the monitor current is a value in the intermediate hydraulic pressure region. If YES (the monitor current is a value in the intermediate hydraulic pressure region), the process proceeds to step S3. If NO (the monitor current is a value other than the intermediate hydraulic pressure region), the process proceeds to step S5.
  • the “monitor current” means the solenoid current to the solenoid valve that controls the hydraulic pressure of the engagement-side friction element and the hydraulic pressure of the release-side friction element during the switching speed change by cooperative control operation with the engine Eng. The solenoid current to the valve. This monitor current is acquired by the solenoid current sensor 7 provided in the solenoid valve of each friction engagement element.
  • the “intermediate hydraulic pressure range value” means a monitor current value that is a low capacity range in which the torque transmission capacity due to the hydraulic pressure to the engagement-side friction element or the release-side friction element during the cross-over shift is smaller than a predetermined value, that is, current This is the interval between the minimum value (current MIN) and the maximum current value (current MAX).
  • a predetermined value is an unexpected increase in engine torque during traveling due to a changeover shift, that is, the vehicle is unexpectedly steep enough to give the driver a sense of incongruity even if there is an engine torque increase greater than the requested torque.
  • the torque transmission capacity that does not accelerate is determined.
  • the current is within the range of the current MIN and the current MAX.
  • the current value is defined as shifting during which an engine torque increase request is output.
  • the current MIN and the current MAX are determined for each shift friction element and set in advance as a solenoid current map. Then, when there is a change-over shift request by cooperative control operation with the engine Eng, the use range by the current MIN and current MAX is quoted from the solenoid current map.
  • the current MIN and current MAX set in the solenoid current map are provided with a margin for monitor current variation (for example, ⁇ 10 mA) to prevent erroneous detection.
  • step S3 following the determination that the monitor current in step S2 is a value in the intermediate hydraulic pressure region, a torque request is set, and the process proceeds to step S4.
  • torque request refers to “engine Eng torque-up request”.
  • step S4 following the torque request set in step S3, a torque-up request flag is output from the automatic transmission controller 20 to the engine controller 10 via the CAN communication line 40, and the process proceeds to return.
  • output of torque-up request flag means output of torque-up request flag when torque-up request flag is not output, and torque-up request flag when torque request has already been output. Keep the output of.
  • step S5 following the determination that the cooperative control is not activated in step S1 or the determination that the monitor current is a value outside the intermediate hydraulic pressure region in step S2, the torque request is reset, and the process proceeds to step S6. move on.
  • torque request reset resets the torque request when the torque request is set, and maintains the torque request reset as it is when the torque request is already reset.
  • step S6 following the torque request reset in step S5, output of the engine torque increase request flag to the engine controller 10 is stopped, and the process proceeds to return.
  • output stop of torque-up request flag means that output of torque-up request flag is stopped when torque-up request flag is output, and output of torque-up request flag is already stopped. The output stop of the torque up request flag is maintained as it is.
  • the operation of the engine vehicle speed change control apparatus according to the first embodiment will be described by dividing it into “engine / transmission cooperative control processing operation”, “engine / transmission cooperative control operation”, and “characteristic operation of engine / transmission cooperative control”.
  • step S2 the solenoid current to the solenoid valve that controls the hydraulic pressure of the engagement-side friction element and the solenoid current to the solenoid valve that controls the hydraulic pressure of the disengagement-side friction element are monitored during the crossover shift. It is determined whether or not the value is an area value. As long as the monitoring current does not reach the current MIN even when the changeover is started, the flow of steps S1 ⁇ S2 ⁇ step S5 ⁇ step S6 is repeated in the flowchart of FIG. The up request flag is not output.
  • step S2 When the monitor current reaches the current MIN after the start of the shifting gear change, it is determined in step S2 that the monitor current is a value in the intermediate hydraulic pressure region.
  • step S1 ⁇ step S2 ⁇ step S3.
  • step S4 ⁇ return.
  • step S4 following the torque request set in step S3, the automatic transmission controller 20 starts to output a torque-up request flag to the engine controller 10 via the CAN communication line 40.
  • the engine controller 10 when a torque-up request flag is input, torque-up control of the engine Eng with the limit torque as an upper limit is started.
  • the output of the torque-up request flag from the automatic transmission controller 20 to the engine controller 10 is continued until the monitor current reaches the current MIN, the current value further increases, and the monitor current reaches the current MAX.
  • step S2 When the monitor current reaches the current MAX after the start of the shifting gear change, it is determined in step S2 that the monitor current is a value outside the intermediate hydraulic pressure region.
  • step S1 ⁇ step S2 ⁇ step The process proceeds from S5 to step S6.
  • step S6 following the torque request reset in step S5, the output of the torque-up request flag from the automatic transmission controller 20 to the engine controller 10 is stopped. The output stop of the torque-up request flag from the automatic transmission controller 20 is continued until the replacement shift is completed.
  • time t1 is the output time of the downshift request.
  • Time t2 is the output start time of the torque-up request flag.
  • Time t3 is the start time of decrease in engine torque.
  • Time t4 is the output stop time of the torque up request flag.
  • Time t5 is the downshift end time.
  • the torque up request flag is not output, and output of the torque up request flag is started from time t2 when the monitored current of the release side command hydraulic pressure becomes equal to or less than the predetermined value.
  • the output of the torque-up request flag is maintained until time t4 when the engagement side command hydraulic pressure monitor current exceeds a predetermined value.
  • the engine torque Te increases during output of the torque increase request flag from time t2 to time t4.
  • the characteristic of the engine torque Te increases stepwise at time t2 and is maintained until time t3, and gradually decreases with a predetermined decrease gradient during the shift end period from time t3 to time t4.
  • the engine torque corresponding to the opening APO and vehicle speed VSP is reduced.
  • the engine speed Ne gradually increases from the engine speed before downshift at time t2 to the engine speed after downshift (target speed) at time t4, and the downshift progresses smoothly.
  • the monitoring current of the engagement-side command hydraulic pressure rises at a predetermined rising gradient and then maintains a constant value. Further, at time t5, the monitoring current rises stepwise and ends the shift.
  • a case where a torque-up request flag is output during the shift period from time t1 to time t2 is taken as a comparative example.
  • torque having a predetermined value A (> predetermined value) as a maximum torque is driven through the disengagement side friction element. 50.
  • torque having a predetermined value B (> predetermined value) as a maximum torque is transmitted to the drive wheels 50 via the engagement side friction element.
  • a torque-up request flag is output during a shift within a limited range from time t2 to time t4. Even if an engine torque higher than expected is input between time t2 and time t4, it is transmitted to the drive wheels 50 via the disengagement side friction element (second clutch C2) or the engagement side friction element (third clutch C3). Torque does not exceed a predetermined value ( ⁇ predetermined value B ⁇ predetermined value A). That is, even if an engine torque higher than expected is input between time t2 and time t4, the vehicle does not accelerate unexpectedly.
  • the period of the torque-up request flag output from the transmission controller 20 is specified as the period from time t2 to time t4.
  • a torque-up request flag for permitting torque-up of the engine Eng is maintained while the torque transmission capacity by the engagement-side friction element or the release-side friction element during the crossover shift is in a low capacity region smaller than a predetermined value.
  • the engine controller 10 is configured to output. That is, when the torque-up request flag is input, the engine controller 10 performs torque-up control of the engine Eng. Even if the torque up control exceeds the expected torque increase, the torque transmitted to the drive wheel 50 through the engagement-side friction element or the release-side friction element during the shift has a torque transmission capacity by the friction element as an upper limit. To do.
  • the input torque to the automatic transmission AT that exceeds the torque transmission capacity is absorbed by the slip of the friction element and is not transmitted to the drive wheels 50.
  • vehicle acceleration is suppressed by limiting the torque transmitted to the drive wheels 50.
  • the predetermined value is determined to be a torque transmission capacity value at which the vehicle does not unexpectedly accelerate even if torque is transmitted to the drive wheels 50 during traveling by the changing gear. That is, the lower the predetermined value, the higher the effect of limiting the torque transmitted to the drive wheel 50. However, the torque transmitted to the drive wheel is reduced, and the torque increase request flag is further reduced. The output period becomes shorter, and the torque increase effect itself becomes smaller. On the other hand, if the predetermined value is set to a high value that secures the output period of the torque-up request flag, the vehicle may unexpectedly accelerate during the decelerating travel, and the driver feels uncomfortable.
  • the predetermined value is determined to be a torque transmission capacity value at which the vehicle does not accelerate unexpectedly enough to give the driver a sense of incongruity even if the engine torque is larger than the requested torque
  • the output period of the torque up request flag It is an appropriate value that can prevent unexpected acceleration of the vehicle while ensuring the above. Accordingly, it is possible to prevent the driver from feeling uncomfortable when there is more torque input than expected during the shift while securing the output period of the torque-up request flag during engine / shift cooperative control.
  • the current value supplied to the solenoid valve that controls the engagement-side friction element and the release-side friction element is monitored.
  • the torque up request flag is output while the monitor current is in the range between the current MIN and the current MAX where the torque transmission capacity is smaller than a predetermined value. That is, it is possible to determine the period for outputting the torque-up request flag based on the current value supplied to the solenoid valve. That is, it is possible to monitor a period in which the torque transmission capacity is smaller than a predetermined value by a simple configuration of monitoring the solenoid current without providing a hydraulic pressure sensor for each shift friction element and monitoring the torque transmission capacity due to the hydraulic pressure. Therefore, the period during which the torque-up request flag is output is determined by a simple configuration that only monitors the current value supplied to the solenoid valve.
  • the current MIN and the current MAX are set separately for each of a plurality of shift friction elements included in the automatic transmission AT. That is, the torque transmission capacity at which the vehicle does not suddenly accelerate so as to give the driver a sense of incongruity is different between the engagement side friction element and the release side friction element, and the speed change type (up shift, Downshifts) and shift speeds (1st to 7th). For this reason, if the current MIN and the current MAX are set to the same value for a plurality of shift friction elements included in the automatic transmission AT, the shift friction element and the shift stage deviate from an appropriate value. Therefore, by setting the current MIN and the current MAX separately for each of the plurality of shift friction elements, the current MIN and the MAX are set to appropriate values regardless of the shift type and the shift speed.
  • Torque-up request flag for permitting engine control means (engine controller 10) to increase engine torque when coordinated control with torque-up of engine Eng is performed at the time of a change over speed of a stepped transmission (automatic transmission AT).
  • the transmission control means transmits the predetermined value to the torque that does not accelerate the vehicle to the extent that the driver feels strange even if there is a torque increase that is greater than the torque requested during traveling by the changing gear. Decide on a capacitance value. For this reason, in addition to the effect of (1), during the engine / shift coordination control, while ensuring the output period of the torque up request flag, the driver feels uncomfortable when there is more torque input than expected during the shift. Can be prevented.
  • the transmission control means monitors the current value supplied to the solenoid valve that controls the engagement-side friction element and the release-side friction element, and the monitor current is greater than the predetermined value. While in the range between the minimum current value (current MIN) and the maximum current value (current MAX), the torque up request flag is output. For this reason, in addition to the effect of (1) or (2), the period during which the torque-up request flag is output can be determined by a simple configuration that only monitors the current value supplied to the solenoid valve.
  • the transmission control means includes a plurality of transmission friction elements each having a minimum current value (current MIN) and a maximum current value (current MAX) in the stepped transmission (automatic transmission AT). Set separately for. For this reason, in addition to the effect of (3), the current minimum value (current MIN) and current maximum value (current MAX) are set separately for each of the multiple shift friction elements, regardless of the shift type and shift speed. An appropriate value can be set.
  • the vehicle shift control device of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims. Design changes and additions are permitted without departing from the gist of the present invention.
  • Example 1 the current value supplied to the solenoid valve that controls the engagement-side friction element and the release-side friction element is monitored as the shift control means.
  • the shift control means the hydraulic pressure value for controlling the engagement side frictional element and the release side frictional element is monitored, and while the monitored hydraulic pressure is below the hydraulic pressure threshold value where the torque transmission capacity is smaller than the predetermined value, a torque increase request is made.
  • An example of outputting a flag may be used.
  • the shift control means may be an example in which the monitor current and the monitor hydraulic pressure are set separately according to the shift type, the accelerator opening APO, and the vehicle speed VSP.
  • the shift control device of the present invention is applied to an engine vehicle equipped with a forward 7-speed automatic transmission AT.
  • the speed change control device of the present invention can be applied to a hybrid vehicle as long as the engine is mounted on the drive source, and also as a transmission, a stepped transmission other than the forward seventh speed is used. It may be.
  • the present invention is applicable to any vehicle provided with a stepped transmission having a plurality of gears that are automatically shifted in a driving force transmission system from the engine to the driving wheels.

Abstract

A drive force transfer system from an engine to a drive wheel (50) is provided with an automatic transmission (AT) having a plurality of gear positions that are automatically changed. This engine vehicle is provided with a transmission controller (20) for outputting a torque-increase-demand flag for allowing an increase in engine torque to an engine controller (10) when cooperative control accompanying an increase in torque in an engine (Eng) is performed during gearshift repositioning in the automatic transmission (AT). The transmission controller (20) outputs a torque-increase-demand flag during the period when the torque transfer capacity from a engagement-side friction element or a disengagement-side friction element by gearshift repositioning is in a capacity range below a specific value.

Description

車両の変速制御装置Vehicle shift control device
 本発明は、有段変速機の架け替え変速中にエンジンのトルクアップを許可する車両の変速制御装置に関する。 The present invention relates to a shift control device for a vehicle that permits an increase in engine torque during a changeover shift of a stepped transmission.
 従来、変速のイナーシャフェーズ期間にエンジンをフューエルカット状態からリカバーを行い、コーストダウン変速による引きショックを緩和する有段変速機の制御装置が知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, there is known a control device for a stepped transmission that recovers an engine from a fuel cut state during a shift inertia phase period to alleviate a pulling shock caused by a coast down shift (see, for example, Patent Document 1).
特開2012-251575号公報JP 2012-251575 A
 しかしながら、従来装置にあっては、エンジンのリカバーを、変速のイナーシャフェーズ期間としていることで、解放側クラッチの油圧が下がらないうちに、エンジンのリカバーが行われることがある。このため、エンジンリカバー中に想定以上のトルクが入力された場合、解放側クラッチの締結容量に依存するトルク伝達があり、その結果、車両にドライバーが意図しない加速が生じて違和感を与えてしまう、という問題がある。 However, in the conventional apparatus, the recovery of the engine is performed during the inertia phase period of the shift, so that the engine may be recovered before the hydraulic pressure of the release side clutch is lowered. For this reason, when more torque than expected is input during engine recovery, there is torque transmission that depends on the engagement capacity of the release side clutch, and as a result, acceleration that the driver does not intend occurs in the vehicle, giving an uncomfortable feeling. There is a problem.
 本発明は、上記問題に着目してなされたもので、エンジン/変速協調制御時、変速中に想定以上のトルク入力があっても、駆動輪へ伝達されるトルクに制限を加えることにより、車両加速を抑制する車両の変速制御装置を提供することを目的とする。 The present invention has been made paying attention to the above-described problem, and during engine / shift cooperative control, even if there is more torque input than expected during shift, the vehicle is configured to limit the torque transmitted to the drive wheels. An object of the present invention is to provide a shift control device for a vehicle that suppresses acceleration.
 上記目的を達成するため、本発明は、エンジンから駆動輪までの駆動力伝達系に、自動変速される複数の変速段を有する有段変速機を備える。
この車両において、有段変速機の架け替え変速時、エンジンのトルクアップを伴う協調制御が判断されると、エンジン制御手段に対しエンジントルクアップを許可するトルクアップ要求フラグを出力する変速制御手段を設ける。
変速制御手段は、架け替え変速中における締結側摩擦要素又は解放側摩擦要素によるトルク伝達容量が、所定値よりも小さい低容量域である間、トルクアップ要求フラグを出力する。
In order to achieve the above object, the present invention includes a stepped transmission having a plurality of gears that are automatically shifted in a driving force transmission system from an engine to driving wheels.
In this vehicle, the shift control means for outputting a torque-up request flag for permitting the engine torque-up to the engine control means when the cooperative control accompanied by the engine torque-up is determined at the time of the shifting of the stepped transmission. Provide.
The shift control means outputs a torque-up request flag while the torque transmission capacity by the engagement-side friction element or the disengagement-side friction element during the crossover shift is in a low capacity range smaller than a predetermined value.
 よって、架け替え変速中における締結側摩擦要素又は解放側摩擦要素によるトルク伝達容量が、所定値よりも小さい低容量域である間、エンジンのトルクアップを許可するトルクアップ要求フラグがエンジン制御手段に対し出力される。
即ち、エンジン制御手段では、トルクアップ要求フラグが入力されるとエンジンのトルクアップ制御を行う。このトルクアップ制御で想定以上のエンジントルクアップが行われても、変速時の締結側摩擦要素又は解放側摩擦要素を介して駆動輪へ伝達されるトルクは、摩擦要素によるトルク伝達容量を上限とする。つまり、トルク伝達容量を上回る有段変速機への入力トルク分は、摩擦要素の滑りにより吸収され、駆動輪に伝達されない。
この結果、エンジン/変速協調制御時、変速中に想定以上のトルク入力があっても、駆動輪へ伝達されるトルクに制限を加えることにより、車両加速を抑制することができる。
Therefore, while the torque transmission capacity by the engagement-side friction element or the release-side friction element during the reshuffling shift is in a low capacity region that is smaller than a predetermined value, a torque-up request flag that permits engine torque-up is given to the engine control means. Is output.
That is, the engine control means performs engine torque-up control when a torque-up request flag is input. Even if the engine torque is increased more than expected in this torque-up control, the torque transmitted to the drive wheels via the engagement-side friction element or the release-side friction element during shifting is limited to the torque transmission capacity by the friction element. To do. That is, the input torque to the stepped transmission that exceeds the torque transmission capacity is absorbed by the slip of the friction element and is not transmitted to the drive wheels.
As a result, during engine / shift coordination control, even if there is more torque input than expected during shifting, vehicle acceleration can be suppressed by limiting the torque transmitted to the drive wheels.
実施例1の制御装置が適用された自動変速機を搭載したエンジン車の駆動系及び制御系を示す全体システム図である。1 is an overall system diagram showing a drive system and a control system of an engine vehicle equipped with an automatic transmission to which a control device of Example 1 is applied. 実施例1の自動変速機において変速段ごとの各変速摩擦要素の締結状態を示す締結作動表である。2 is an engagement operation table showing an engagement state of each shift friction element for each shift stage in the automatic transmission according to the first embodiment. 実施例1の自動変速機において変速制御で用いられる変速マップの一例を示す変速マップ図である。FIG. 3 is a shift map diagram illustrating an example of a shift map used for shift control in the automatic transmission according to the first embodiment. 実施例1の自動変速機コントローラで実行されるエンジン/変速協調制御処理の流れを示すフローチャートである。3 is a flowchart showing a flow of engine / shift cooperative control processing executed by the automatic transmission controller according to the first embodiment. エンジン/変速協調制御処理において変速中(中間油圧中)と定義されるモニタ電流の最小電流と最大電流を示す変速油圧の解放圧特性図である。FIG. 6 is a release pressure characteristic diagram of a shift hydraulic pressure showing a minimum current and a maximum current of a monitor current defined as being shifted (during intermediate hydraulic pressure) in engine / shift cooperative control processing. エンジン/変速協調制御が実行されるときのアクセル開度APO・トルクアップ要求フラグ・解放側指令油圧のモニタ電流・締結側指令油圧のモニタ電流・エンジントルクTe・エンジン回転数Neの各特性を示すタイムチャートである。Indicates the characteristics of accelerator opening APO, torque up request flag, release side command hydraulic pressure monitor current, engagement side command hydraulic pressure monitor current, engine torque Te, and engine speed Ne when engine / shift coordination control is executed It is a time chart.
 以下、本発明の車両の変速制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, the best mode for realizing the transmission control device for a vehicle according to the present invention will be described based on Example 1 shown in the drawings.
 まず、構成を説明する。
実施例1の変速制御装置は、前進7速後退1速の有段式による自動変速機を搭載したエンジン車に適用したものである。以下、実施例1におけるエンジン車の変速制御装置の構成を、「全体システム構成」、「自動変速機のパワートレーン構成」、「自動変速機の変速制御構成」、「エンジン/変速協調制御処理構成」に分けて説明する。
First, the configuration will be described.
The shift control apparatus of the first embodiment is applied to an engine vehicle equipped with a stepped automatic transmission of 7 forward speeds and 1 reverse speed. Hereinafter, the configuration of the shift control device for the engine vehicle in the first embodiment is described as “the overall system configuration”, “the power train configuration of the automatic transmission”, “the shift control configuration of the automatic transmission”, “the engine / shift cooperative control processing configuration”. It is divided and explained.
 [全体システム構成]
図1は、実施例1の制御装置が適用された自動変速機を搭載したエンジン車の駆動系及び制御系を示す。以下、全体システム図である。
[Overall system configuration]
FIG. 1 shows a drive system and a control system of an engine vehicle equipped with an automatic transmission to which the control device of the first embodiment is applied. The following is an overall system diagram.
 エンジン車の駆動系は、図1に示すように、エンジンEngと、自動変速機AT(自動変速される複数の変速段を有する有段変速機)と、を備えている。 As shown in FIG. 1, the drive system of the engine vehicle includes an engine Eng and an automatic transmission AT (a stepped transmission having a plurality of shift stages that are automatically shifted).
 前記自動変速機ATは、前進7速後退1速によるステップATと呼ばれる有段式自動変速機である。この自動変速機ATには、エンジンEngの駆動力が、ロックアップクラッチLU/Cを有するトルクコンバータTCを介して入力軸Inputから入力される。そして、4つの遊星ギアと7つの変速摩擦要素とによって回転数が変速され、出力軸Outputから駆動輪50へ出力される。また、トルクコンバータTCのポンプインペラと同軸上にオイルポンプOPが設けられ、エンジンEngの駆動力によって回転駆動され、オイルを加圧する。 The automatic transmission AT is a stepped automatic transmission called step AT with 7 forward speeds and 1 reverse speed. The automatic transmission AT receives the driving force of the engine Eng from the input shaft Input via the torque converter TC having the lockup clutch LU / C. Then, the rotational speed is changed by the four planetary gears and the seven shift friction elements, and is output from the output shaft Output to the drive wheels 50. Further, an oil pump OP is provided coaxially with the pump impeller of the torque converter TC, and is rotated by the driving force of the engine Eng to pressurize the oil.
 エンジン車の制御系は、図1に示すように、エンジンコントローラ10(ECU)と、自動変速機コントローラ20(ATCU)と、コントロールバルブユニット30(CVU)と、を備えている。そして、エンジンコントローラ10(エンジン制御手段)と自動変速機コントローラ20(変速制御手段)は、CAN通信線40を介して接続され、センサ情報や制御情報等を双方向通信により共有している。 As shown in FIG. 1, the engine vehicle control system includes an engine controller 10 (ECU), an automatic transmission controller 20 (ATCU), and a control valve unit 30 (CVU). The engine controller 10 (engine control means) and the automatic transmission controller 20 (shift control means) are connected via a CAN communication line 40 and share sensor information, control information, and the like by bidirectional communication.
 前記エンジンコントローラ10は、主にエンジンEngの駆動状態制御を行う制御手段である。エンジンコントローラ10には、運転者のアクセルペダル操作量をあらわすアクセル開度APOを検出するアクセル開度センサ1と、エンジン回転数Neを検出するエンジン回転数センサ2と、が接続されている。このエンジンコントローラ10では、エンジン回転数Neやアクセル開度APOに基づいて燃料噴射量やスロットル開度を調整することで、エンジン回転数NeやエンジントルクTeを制御する。また、自動変速機コントローラ20から架け替え変速中にトルクアップ要求フラグを入力すると、燃料噴射量やスロットル開度を調整することで、エンジントルクTeを上昇するトルクアップ制御を行う。 The engine controller 10 is a control means for mainly controlling the driving state of the engine Eng. Connected to the engine controller 10 are an accelerator opening sensor 1 that detects an accelerator opening APO that represents the amount of accelerator pedal operation by the driver, and an engine speed sensor 2 that detects an engine speed Ne. The engine controller 10 controls the engine speed Ne and the engine torque Te by adjusting the fuel injection amount and the throttle opening based on the engine speed Ne and the accelerator opening APO. Further, when a torque-up request flag is input from the automatic transmission controller 20 during the transmission shift, torque-up control for increasing the engine torque Te is performed by adjusting the fuel injection amount and the throttle opening.
 前記自動変速機コントローラ20は、主に自動変速機ATの変速制御を行う制御手段である。自動変速機コントローラ20には、第1キャリアPC1の回転数を検出する第1タービン回転数センサ3と、第1リングギアR1の回転数を検出する第2タービン回転数センサ4とが接続されている。さらに、出力軸Outputの回転数(=車速VSP)を検出する出力軸回転数センサ5(車速センサ)と、運転者のセレクトレバーにより選択されたレンジ位置を検出するインヒビタスイッチ6と、変速摩擦要素毎のソレノイド電流をモニタするソレノイド電流センサ7と、が接続されている。自動変速機コントローラ20からは、架け替え変速時、エンジンEngのトルクアップを伴う協調制御が判断されると、エンジントルクアップを許可するトルクアップ要求フラグが、CAN通信線40を介してエンジンコントローラ10に出力される。 The automatic transmission controller 20 is a control means for mainly performing shift control of the automatic transmission AT. Connected to the automatic transmission controller 20 are a first turbine rotation speed sensor 3 for detecting the rotation speed of the first carrier PC1 and a second turbine rotation speed sensor 4 for detecting the rotation speed of the first ring gear R1. Yes. Furthermore, an output shaft rotational speed sensor 5 (vehicle speed sensor) for detecting the rotational speed of the output shaft Output (= vehicle speed VSP), an inhibitor switch 6 for detecting the range position selected by the driver's select lever, and a variable speed friction element A solenoid current sensor 7 for monitoring each solenoid current is connected. When the automatic transmission controller 20 determines cooperative control with torque increase of the engine Eng at the time of the changeover speed change, a torque increase request flag for permitting engine torque increase is sent via the CAN communication line 40 to the engine controller 10. Is output.
 前記コントロールバルブユニット30は、自動変速機コントローラ20からの制御指令に基づいて、各変速摩擦要素の締結/解放を制御するソレノイドバルブや油路を有して構成される。 The control valve unit 30 is configured to have a solenoid valve and an oil passage for controlling the engagement / release of each variable speed friction element based on a control command from the automatic transmission controller 20.
 [自動変速機のパワートレーン構成]
 以下、図1に基づき、自動変速機ATのパワートレーン構成を説明する。
前記自動変速機ATは、変速ギアとして、入力軸Input側から出力軸Output側までの軸上に、順に第1遊星ギアG1と第2遊星ギアG2による第1遊星ギアセットGS1及び第3遊星ギアG3と第4遊星ギアG4による第2遊星ギアセットGS2が配置されている。また、油圧制御される変速摩擦要素として、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、第2ブレーキB2、第3ブレーキB3、第4ブレーキB4が配置されている。さらに、機械的に締結/空転するワンウェイクラッチとして、第1ワンウェイクラッチF1と第2ワンウェイクラッチF2が配置されている。
[Powertrain configuration of automatic transmission]
Hereinafter, the power train configuration of the automatic transmission AT will be described with reference to FIG.
The automatic transmission AT has a first planetary gear set GS1 and a third planetary gear by a first planetary gear G1 and a second planetary gear G2 in order on a shaft from the input shaft Input side to the output shaft Output side as a transmission gear. A second planetary gear set GS2 is arranged by G3 and the fourth planetary gear G4. In addition, a first clutch C1, a second clutch C2, a third clutch C3, a first brake B1, a second brake B2, a third brake B3, and a fourth brake B4 are arranged as shift friction elements that are hydraulically controlled. . Further, a first one-way clutch F1 and a second one-way clutch F2 are arranged as one-way clutches that are mechanically engaged / idly rotated.
 前記第1遊星ギアG1は、第1サンギアS1と、第1リングギアR1と、両ギアS1,R1に噛み合う第1ピニオンP1を支持する第1キャリアPC1と、を有するシングルピニオン型遊星ギアである。 The first planetary gear G1 is a single pinion planetary gear having a first sun gear S1, a first ring gear R1, and a first carrier PC1 that supports a first pinion P1 that meshes with both gears S1, R1. .
 前記第2遊星ギアG2は、第2サンギアS2と、第2リングギアR2と、両ギアS2,R2に噛み合う第2ピニオンP2を支持する第2キャリアPC2と、を有するシングルピニオン型遊星ギアである。 The second planetary gear G2 is a single pinion type planetary gear having a second sun gear S2, a second ring gear R2, and a second carrier PC2 that supports a second pinion P2 meshing with both gears S2 and R2. .
 前記第3遊星ギアG3は、第3サンギアS3と、第3リングギアR3と、両ギアS3,R3に噛み合う第3ピニオンP3を支持する第3キャリアPC3と、を有するシングルピニオン型遊星ギアである。 The third planetary gear G3 is a single pinion planetary gear having a third sun gear S3, a third ring gear R3, and a third carrier PC3 that supports a third pinion P3 meshing with both gears S3 and R3. .
 前記第4遊星ギアG4は、第4サンギアS4と、第4リングギアR4と、両ギアS4,R4に噛み合う第4ピニオンP4を支持する第4キャリアPC4と、を有するシングルピニオン型遊星ギアである。 The fourth planetary gear G4 is a single pinion planetary gear having a fourth sun gear S4, a fourth ring gear R4, and a fourth carrier PC4 that supports a fourth pinion P4 meshing with both the gears S4 and R4. .
 前記入力軸Inputは、第2リングギアR2に連結され、エンジンEngからの回転駆動力を、トルクコンバータTC等を介して入力する。前記出力軸Outputは、第3キャリアPC3に連結され、出力回転駆動力を、ファイナルギア等を介して駆動輪50に伝達する。 The input shaft Input is connected to the second ring gear R2 and inputs the rotational driving force from the engine Eng via the torque converter TC or the like. The output shaft Output is coupled to the third carrier PC3, and transmits the output rotational driving force to the driving wheels 50 via a final gear or the like.
 前記第1リングギアR1と第2キャリアPC2と第4リングギアR4とは、第1連結メンバM1により一体的に連結される。前記第3リングギアR3と第4キャリアPC4とは、第2連結メンバM2により一体的に連結される。前記第1サンギアS1と第2サンギアS2とは、第3連結メンバM3により一体的に連結される。 The first ring gear R1, the second carrier PC2, and the fourth ring gear R4 are integrally connected by a first connecting member M1. The third ring gear R3 and the fourth carrier PC4 are integrally connected by a second connecting member M2. The first sun gear S1 and the second sun gear S2 are integrally connected by a third connecting member M3.
 前記第1遊星ギアセットGS1は、第1遊星ギアG1と第2遊星ギアG2とを、第1連結メンバM1と第3連結メンバM3とによって連結することで、4つの回転要素を有して構成される。また、第2遊星ギアセットGS2は、第3遊星ギアG3と第4遊星ギアG4とを、第2連結メンバM2によって連結することで、5つの回転要素を有して構成される。 The first planetary gear set GS1 includes four rotating elements by connecting the first planetary gear G1 and the second planetary gear G2 with the first connecting member M1 and the third connecting member M3. Is done. Further, the second planetary gear set GS2 is configured to have five rotating elements by connecting the third planetary gear G3 and the fourth planetary gear G4 by the second connecting member M2.
 前記第1遊星ギアセットGS1では、トルクが入力軸Inputから第2リングギアR2に入力され、入力されたトルクは第1連結メンバM1を介して第2遊星ギアセットGS2に出力される。前記第2遊星ギアセットGS2では、トルクが入力軸Inputから直接第2連結メンバM2に入力されると共に、第1連結メンバM1を介して第4リングギアR4に入力され、入力されたトルクは第3キャリアPC3から出力軸Outputに出力される。 In the first planetary gear set GS1, torque is input from the input shaft Input to the second ring gear R2, and the input torque is output to the second planetary gear set GS2 via the first connecting member M1. In the second planetary gear set GS2, torque is directly input to the second connection member M2 from the input shaft Input, and is input to the fourth ring gear R4 via the first connection member M1, and the input torque is Output from 3 carrier PC3 to output shaft Output.
 前記第1クラッチC1(インプットクラッチI/C)は、入力軸Inputと第2連結メンバM2とを選択的に断接するクラッチである。第2クラッチC2(ダイレクトクラッチD/C)は、第4サンギアS4と第4キャリアPC4とを選択的に断接するクラッチである。第3クラッチC3(H&LSRクラッチH&LR/C)は、第3サンギアS3と第4サンギアS4とを選択的に断接するクラッチである。 The first clutch C1 (input clutch I / C) is a clutch that selectively connects and disconnects the input shaft Input and the second connecting member M2. The second clutch C2 (direct clutch D / C) is a clutch that selectively connects and disconnects the fourth sun gear S4 and the fourth carrier PC4. The third clutch C3 (H & LSR clutch H & LR / C) is a clutch that selectively connects and disconnects the third sun gear S3 and the fourth sun gear S4.
 前記第2ワンウェイクラッチF2は、第3サンギアS3と第4サンギアS4の間に配置されている。これにより、第3クラッチC3が解放され、第3サンギアS3よりも第4サンギアS4の回転数が大きい時、第3サンギアS3と第4サンギアS4とは独立した回転数を発生する。よって、第3遊星ギアG3と第4遊星ギアG4が第2連結メンバM2を介して接続された構成となり、それぞれの遊星ギアが独立したギア比を達成する。 The second one-way clutch F2 is disposed between the third sun gear S3 and the fourth sun gear S4. As a result, when the third clutch C3 is released and the rotation speed of the fourth sun gear S4 is larger than that of the third sun gear S3, the third sun gear S3 and the fourth sun gear S4 generate independent rotation speeds. Therefore, the third planetary gear G3 and the fourth planetary gear G4 are connected via the second connecting member M2, and each planetary gear achieves an independent gear ratio.
 前記第1ブレーキB1(フロントブレーキF/B)は、第1キャリアPC1の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。また、第1ワンウェイクラッチF1は、第1ブレーキB1と並列に配置されている。第2ブレーキB2(ローブレーキLOW/B)は、第3サンギアS3の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。第3ブレーキB3(2346ブレーキ2-3-4-6/B)は、第1サンギアS1及び第2サンギアS2を連結する第3連結メンバM3の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。第4ブレーキB4(リバースブレーキREV/B)は、第4キャリアPC4の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。 The first brake B1 (front brake F / B) is a brake that selectively stops the rotation of the first carrier PC1 with respect to the transmission case Case. The first one-way clutch F1 is disposed in parallel with the first brake B1. The second brake B2 (low brake LOW / B) is a brake that selectively stops the rotation of the third sun gear S3 with respect to the transmission case Case. The third brake B3 (2346 brake 2-3-4-6 / B) is a brake that selectively stops the rotation of the third connecting member M3 that connects the first sun gear S1 and the second sun gear S2 with respect to the transmission case Case. It is. The fourth brake B4 (reverse brake REV / B) is a brake that selectively stops the rotation of the fourth carrier PC4 with respect to the transmission case Case.
 [自動変速機の変速制御構成]
 図2は、実施例1の自動変速機ATにおいて変速段ごとの各変速摩擦要素の締結状態を示す締結作動表である。なお、図2において、○印は当該変速摩擦要素が締結状態となることを示し、(○)印はエンジンブレーキが作動するコースト時に当該変速摩擦要素が締結状態となることを示し、無印は当該変速摩擦要素が解放状態となることを示す。
[Transmission control configuration of automatic transmission]
FIG. 2 is a fastening operation table showing a fastening state of each shift friction element for each shift stage in the automatic transmission AT of the first embodiment. In FIG. 2, a circle indicates that the speed change friction element is in an engaged state, a mark (○) indicates that the speed change friction element is in an engaged state when the engine brake is coasted, and no mark indicates that the speed change friction element is in an engaged state. It shows that the shift friction element is in a released state.
 自動変速機ATによる隣接する変速段間のアップ変速時やダウン変速時においては、締結していた1つの変速摩擦要素を解放し、解放していた1つの変速摩擦要素を締結するという架け替え変速を行う。この架け替え変速により、下記のように、前進7速で後退1速の変速段を実現することができる。 At the time of up-shifting or down-shifting between adjacent shift stages by the automatic transmission AT, the one-off friction friction element that has been engaged is released and the one-off friction friction element that has been released is engaged. I do. As a result of this change-over shift, it is possible to achieve a shift speed of seven forward speeds and one reverse speed as described below.
 即ち、アクセル踏み込みによるドライブ時の「1速段」では、第2ブレーキB2が締結状態で、第1ワンウェイクラッチF1及び第2ワンウェイクラッチF2が締結する。アクセル足離しによるコースト時(エンブレ時)の「1速段」では、第1ワンウェイクラッチF1及び第2ワンウェイクラッチF2が空転することで、第3クラッチC3と第1ブレーキB1と第2ブレーキB2が締結状態となる。 That is, at the “first speed” during driving by depressing the accelerator, the first one-way clutch F1 and the second one-way clutch F2 are engaged while the second brake B2 is engaged. In the “first speed” during coasting (emblem) with the release of the accelerator pedal, the first one-way clutch F1 and the second one-way clutch F2 are idling so that the third clutch C3, the first brake B1, and the second brake B2 It will be in a fastening state.
 アクセル踏み込みによるドライブ時の「2速段」では、第2ブレーキB2及び第3ブレーキB3が締結状態で、第2ワンウェイクラッチF2が締結する。アクセル足離しによるコースト時(エンブレ時)の「2速段」では、第2ワンウェイクラッチF2が空転することで、第3クラッチC3と第2ブレーキB2と第3ブレーキB3が締結状態となる。 ¡At “2nd gear” when driving by depressing the accelerator, the second brake B2 and the third brake B3 are engaged, and the second one-way clutch F2 is engaged. In the “second gear stage” during coasting (at the time of emblem) by releasing the accelerator foot, the second one-way clutch F2 idles, and the third clutch C3, the second brake B2, and the third brake B3 are engaged.
 「3速段」では、ドライブ時/コースト時にかかわらず、第2ブレーキB2、第3ブレーキB3、第2クラッチC2が締結状態となる。
「4速段」では、ドライブ時/コースト時にかかわらず、第3ブレーキB3、第2クラッチC2、第3クラッチC3が締結状態となる。
「5速段」では、ドライブ時/コースト時にかかわらず、第1クラッチC1、第2クラッチC2、第3クラッチC3が締結状態となる。
「6速段」では、ドライブ時/コースト時にかかわらず、第3ブレーキB3、第1クラッチC1、第3クラッチC3が締結状態となる。
「7速段」では、ドライブ時/コースト時にかかわらず、第1ブレーキB1、第1クラッチC1、第3クラッチC3が締結状態となる。
In “3rd speed”, the second brake B2, the third brake B3, and the second clutch C2 are engaged regardless of whether driving or coasting.
In “fourth speed”, the third brake B3, the second clutch C2, and the third clutch C3 are engaged regardless of whether driving or coasting.
In "5th gear", the first clutch C1, the second clutch C2, and the third clutch C3 are engaged regardless of whether driving or coasting.
In “6-speed”, the third brake B3, the first clutch C1, and the third clutch C3 are engaged regardless of whether driving or coasting.
At “7th speed”, the first brake B1, the first clutch C1, and the third clutch C3 are engaged regardless of whether driving or coasting.
 アクセル踏み込みによるドライブ時の「後退速段」では、第4ブレーキB4が締結状態で、第1ワンウェイクラッチF1及び第2ワンウェイクラッチF2が締結する。アクセル足離しによるコースト時(エンブレ時)の「後退速段」では、第1ワンウェイクラッチF1及び第2ワンウェイクラッチF2が空転することで、第3クラッチC3、第1ブレーキB1、第4ブレーキB4が締結状態となる。 ¡At “reverse speed” when driving by accelerator depression, the first one-way clutch F1 and the second one-way clutch F2 are engaged with the fourth brake B4 engaged. At the "reverse speed" when coasting with the accelerator released (when the emblem is engaged), the first one-way clutch F1 and the second one-way clutch F2 are idling so that the third clutch C3, the first brake B1, and the fourth brake B4 It will be in a fastening state.
 図3は、実施例1の自動変速機ATにおいて変速制御で用いられる変速マップの一例を示す変速マップ図である。なお、図3に示す変速マップは、自動変速機コントローラ20のメモリに予め記憶設定されていて、実線はアップ変速線を示し、点線はダウン変速線を示す。 FIG. 3 is a shift map diagram showing an example of a shift map used for shift control in the automatic transmission AT according to the first embodiment. Note that the shift map shown in FIG. 3 is stored in advance in the memory of the automatic transmission controller 20, and the solid line indicates the up shift line and the dotted line indicates the down shift line.
 Dレンジの選択時には、出力軸回転数センサ5(=車速センサ)からの車速VSPと、アクセル開度センサ1からのアクセル開度APOに基づき決まる運転点(VSP,APO)が、変速マップ上において存在する位置を検索する。そして、運転点(VSP,APO)が動かない、或いは、運転点(VSP,APO)が動いても図3の変速マップ上で1つの変速段領域内に存在したままであれば、そのときの変速段をそのまま維持する。 When the D range is selected, the driving point (VSP, APO) determined based on the vehicle speed VSP from the output shaft speed sensor 5 (= vehicle speed sensor) and the accelerator opening APO from the accelerator opening sensor 1 is shown on the shift map. Search for an existing location. And if the driving point (VSP, APO) does not move, or if the driving point (VSP, APO) moves, but remains within one gear range on the shift map of FIG. Maintain the gear position.
 一方、運転点(VSP,APO)が動いて図3の変速マップ上でアップ変速線を横切ると、横切る前の運転点(VSP,APO)が存在する領域が示す変速段から横切った後の運転点(VSP,APO)が存在する領域が示す変速段へのアップ変速指令を出力する。また、運転点(VSP,APO)が動いて図3の変速マップ上でダウン変速線を横切ると、横切る前の運転点(VSP,APO)が存在する領域が示す変速段から横切った後の運転点(VSP,APO)が存在する領域が示す変速段へのダウン変速指令を出力する。 On the other hand, when the operating point (VSP, APO) moves and crosses the upshift line on the shift map in FIG. 3, the operation after crossing from the shift stage indicated by the region where the operating point (VSP, APO) before crossing exists An up-shift command to the gear position indicated by the region where the point (VSP, APO) exists is output. Also, when the operating point (VSP, APO) moves and crosses the downshift line on the shift map in FIG. 3, the operation after crossing from the shift stage indicated by the region where the operating point (VSP, APO) before crossing exists A downshift command to the gear position indicated by the region where the point (VSP, APO) exists is output.
 [エンジン/変速協調制御処理構成]
 図4は、実施例1の自動変速機コントローラ20にて実行されるエンジン/変速協調制御処理の流れを示す(変速制御手段)。以下、エンジン/変速協調制御処理構成をあらわす図4の各ステップについて説明する。なお、走行中に変速要求が出ると、図4のフローチャートによるエンジン/変速協調制御処理を開始し、変速が完了するとエンジン/変速協調制御処理を終了する。
[Engine / shift coordination control processing configuration]
FIG. 4 shows a flow of engine / shift cooperative control processing executed by the automatic transmission controller 20 of the first embodiment (shift control means). Hereinafter, each step of FIG. 4 showing the engine / shift cooperative control processing configuration will be described. When a shift request is issued during traveling, the engine / shift cooperative control process according to the flowchart of FIG. 4 is started, and when the shift is completed, the engine / shift cooperative control process is terminated.
 ステップS1では、スタートに続き、エンジンEngと協調制御作動するか否かを判断する。YES(協調制御作動)の場合はステップS2へ進み、NO(協調制御非作動)の場合はステップS5へ進む。
ここで、「協調制御」は、例えば、車速VSPの低下によりエンジン回転数を上昇させるオートダウン変速要求があったとき、架け替え変速中にエンジンEngとの協調制御を作動すると判断する。一方、アップ変速要求等があったときは、架け替え変速中にエンジンEngとの協調制御を非作動にすると判断する。
In step S1, following the start, it is determined whether or not a cooperative control operation with the engine Eng is performed. If YES (cooperative control operation), the process proceeds to step S2, and if NO (cooperative control non-operation), the process proceeds to step S5.
Here, in “cooperative control”, for example, when there is an auto-down shift request for increasing the engine speed due to a decrease in the vehicle speed VSP, it is determined that the cooperative control with the engine Eng is activated during the replacement shift. On the other hand, when there is an upshift request or the like, it is determined that the cooperative control with the engine Eng is deactivated during the changeover shift.
 ステップS2では、ステップS1での協調制御作動であるとの判断に続き、モニタ電流が中間油圧領域の値であるか否かを判断する。YES(モニタ電流が中間油圧領域の値)の場合はステップS3へ進み、NO(モニタ電流が中間油圧領域以外の値)の場合はステップS5へ進む。
ここで、「モニタ電流」とは、エンジンEngとの協調制御作動による架け替え変速中の締結側摩擦要素の油圧を制御するソレノイドバルブへのソレノイド電流と、解放側摩擦要素の油圧を制御するソレノイドバルブへのソレノイド電流をいう。このモニタ電流は、各摩擦締結要素のソレノイドバルブに設けられたソレノイド電流センサ7により取得される。「中間油圧領域の値」とは、架け替え変速中における締結側摩擦要素又は解放側摩擦要素への油圧によるトルク伝達容量が、所定値よりも小さい低容量域であるモニタ電流値、即ち、電流最小値(電流MIN)と電流最大値(電流MAX)の範囲にある間をいう。ここで、「所定値」は、架け替え変速による走行中に予期しないエンジントルクの上昇、つまり、要求したトルクよりも大きなエンジンのトルクアップがあっても運転者に違和感を与えるほど車両が不意に加速しないトルク伝達容量の値に決定される。
In step S2, following the determination that the cooperative control operation is performed in step S1, it is determined whether or not the monitor current is a value in the intermediate hydraulic pressure region. If YES (the monitor current is a value in the intermediate hydraulic pressure region), the process proceeds to step S3. If NO (the monitor current is a value other than the intermediate hydraulic pressure region), the process proceeds to step S5.
Here, the “monitor current” means the solenoid current to the solenoid valve that controls the hydraulic pressure of the engagement-side friction element and the hydraulic pressure of the release-side friction element during the switching speed change by cooperative control operation with the engine Eng. The solenoid current to the valve. This monitor current is acquired by the solenoid current sensor 7 provided in the solenoid valve of each friction engagement element. The “intermediate hydraulic pressure range value” means a monitor current value that is a low capacity range in which the torque transmission capacity due to the hydraulic pressure to the engagement-side friction element or the release-side friction element during the cross-over shift is smaller than a predetermined value, that is, current This is the interval between the minimum value (current MIN) and the maximum current value (current MAX). Here, the “predetermined value” is an unexpected increase in engine torque during traveling due to a changeover shift, that is, the vehicle is unexpectedly steep enough to give the driver a sense of incongruity even if there is an engine torque increase greater than the requested torque. The torque transmission capacity that does not accelerate is determined.
 なお、解放側摩擦要素の油圧を制御するソレノイドバルブへのソレノイド電流の場合、図5の油圧特性(実線と破線はヒステリシスを表す。)に示すように、電流MINと電流MAXの範囲内にある電流値を、エンジントルクアップ要求を出力する変速中と定義する。さらに、電流MINと電流MAXは、各変速摩擦要素についてそれぞれ決め、予めソレノイド電流マップとして設定しておく。そして、エンジンEngとの協調制御作動による架け替え変速要求があったとき、ソレノイド電流マップから電流MINと電流MAXによる使用範囲を引用する。ソレノイド電流マップに設定する電流MINと電流MAXには、誤検知防止のためにモニタ電流のばらつき(例えば、±10mA)分のマージンを持たせておく。 In the case of the solenoid current to the solenoid valve that controls the hydraulic pressure of the release side friction element, as shown in the hydraulic characteristics in FIG. 5 (the solid line and the broken line indicate hysteresis), the current is within the range of the current MIN and the current MAX. The current value is defined as shifting during which an engine torque increase request is output. Furthermore, the current MIN and the current MAX are determined for each shift friction element and set in advance as a solenoid current map. Then, when there is a change-over shift request by cooperative control operation with the engine Eng, the use range by the current MIN and current MAX is quoted from the solenoid current map. The current MIN and current MAX set in the solenoid current map are provided with a margin for monitor current variation (for example, ± 10 mA) to prevent erroneous detection.
 ステップS3では、ステップS2でのモニタ電流が中間油圧領域の値であるとの判断に続き、トルク要求をセットし、ステップS4へ進む。
ここで、「トルク要求」とは、「エンジンEngのトルクアップ要求」のことをいう。
In step S3, following the determination that the monitor current in step S2 is a value in the intermediate hydraulic pressure region, a torque request is set, and the process proceeds to step S4.
Here, “torque request” refers to “engine Eng torque-up request”.
 ステップS4では、ステップS3でのトルク要求セットに続き、トルクアップ要求フラグを、自動変速機コントローラ20からエンジンコントローラ10に対しCAN通信線40を介して出力し、リターンへ進む。
ここで、「トルクアップ要求フラグの出力」とは、トルクアップ要求フラグが出力されていないときはトルクアップ要求フラグの出力を開始し、トルク要求が既に出力されているときは、トルクアップ要求フラグの出力をそのまま維持する。
In step S4, following the torque request set in step S3, a torque-up request flag is output from the automatic transmission controller 20 to the engine controller 10 via the CAN communication line 40, and the process proceeds to return.
Here, “output of torque-up request flag” means output of torque-up request flag when torque-up request flag is not output, and torque-up request flag when torque request has already been output. Keep the output of.
 ステップS5では、ステップS1での協調制御非作動であるとの判断、或いは、ステップS2でのモニタ電流が中間油圧領域以外の値であるとの判断に続き、トルク要求をリセットし、ステップS6へ進む。
ここで、「トルク要求リセット」とは、トルク要求がセットされているときはトルク要求をリセットし、トルク要求が既にリセットであるときはトルク要求リセットをそのまま維持する。
In step S5, following the determination that the cooperative control is not activated in step S1 or the determination that the monitor current is a value outside the intermediate hydraulic pressure region in step S2, the torque request is reset, and the process proceeds to step S6. move on.
Here, “torque request reset” resets the torque request when the torque request is set, and maintains the torque request reset as it is when the torque request is already reset.
 ステップS6では、ステップS5でのトルク要求リセットに続き、エンジントルクアップ要求フラグのエンジンコントローラ10への出力を停止し、リターンへ進む。
ここで、「トルクアップ要求フラグの出力停止」とは、トルクアップ要求フラグが出力されているときはトルクアップ要求フラグの出力を停止し、トルクアップ要求フラグが既に出力停止されているときは、トルクアップ要求フラグの出力停止をそのまま維持する。
In step S6, following the torque request reset in step S5, output of the engine torque increase request flag to the engine controller 10 is stopped, and the process proceeds to return.
Here, “output stop of torque-up request flag” means that output of torque-up request flag is stopped when torque-up request flag is output, and output of torque-up request flag is already stopped. The output stop of the torque up request flag is maintained as it is.
 次に、作用を説明する。
実施例1のエンジン車の変速制御装置における作用を、「エンジン/変速協調制御処理作用」、「エンジン/変速協調制御作用」、「エンジン/変速協調制御の特徴作用」に分けて説明する。
Next, the operation will be described.
The operation of the engine vehicle speed change control apparatus according to the first embodiment will be described by dividing it into “engine / transmission cooperative control processing operation”, “engine / transmission cooperative control operation”, and “characteristic operation of engine / transmission cooperative control”.
 [エンジン/変速協調制御処理作用]
 以下、実施例1におけるエンジン/変速協調制御処理作用を、図4に示すフローチャートに基づき説明する。
[Engine / shift cooperative control processing action]
Hereinafter, the engine / transmission cooperative control processing operation in the first embodiment will be described based on the flowchart shown in FIG.
 架け替え変速中にエンジンEngとの協調制御作動が必要であると判断されると、図4のフローチャートにおいて、ステップS1からステップS2へ進む。ステップS2では、架け替え変速中の締結側摩擦要素の油圧を制御するソレノイドバルブへのソレノイド電流と、解放側摩擦要素の油圧を制御するソレノイドバルブへのソレノイド電流をモニタし、モニタ電流が中間油圧領域の値であるか否かが判断される。架け替え変速が開始されてもモニタ電流が電流MINに到達しない間は、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS5→ステップS6へと進む流れが繰り返され、エンジンコントローラ10に対しトルクアップ要求フラグは出力されない。 If it is determined that the cooperative control operation with the engine Eng is necessary during the changeover shift, the process proceeds from step S1 to step S2 in the flowchart of FIG. In step S2, the solenoid current to the solenoid valve that controls the hydraulic pressure of the engagement-side friction element and the solenoid current to the solenoid valve that controls the hydraulic pressure of the disengagement-side friction element are monitored during the crossover shift. It is determined whether or not the value is an area value. As long as the monitoring current does not reach the current MIN even when the changeover is started, the flow of steps S1 → S2 → step S5 → step S6 is repeated in the flowchart of FIG. The up request flag is not output.
 そして、架け替え変速の開始後、モニタ電流が電流MINに到達すると、ステップS2において、モニタ電流が中間油圧領域の値であると判断され、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→リターンへと進む。そして、ステップS4では、ステップS3でのトルク要求セットに続き、自動変速機コントローラ20からエンジンコントローラ10に対しCAN通信線40を介してトルクアップ要求フラグの出力が開始される。なお、エンジンコントローラ10では、トルクアップ要求フラグを入力すると、リミットトルクを上限とするエンジンEngのトルクアップ制御が開始される。自動変速機コントローラ20からエンジンコントローラ10に対するトルクアップ要求フラグの出力は、モニタ電流が電流MINに到達し、さらに電流値が上昇してモニタ電流が電流MAXに到達するまでの間、継続される。 When the monitor current reaches the current MIN after the start of the shifting gear change, it is determined in step S2 that the monitor current is a value in the intermediate hydraulic pressure region. In the flowchart of FIG. 4, step S1 → step S2 → step S3. → Go to step S4 → return. In step S4, following the torque request set in step S3, the automatic transmission controller 20 starts to output a torque-up request flag to the engine controller 10 via the CAN communication line 40. In the engine controller 10, when a torque-up request flag is input, torque-up control of the engine Eng with the limit torque as an upper limit is started. The output of the torque-up request flag from the automatic transmission controller 20 to the engine controller 10 is continued until the monitor current reaches the current MIN, the current value further increases, and the monitor current reaches the current MAX.
 そして、架け替え変速の開始後、モニタ電流が電流MAXに到達すると、ステップS2において、モニタ電流が中間油圧領域以外の値であると判断され、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS5→ステップS6へと進む。ステップS6では、ステップS5でのトルク要求リセットに続き、自動変速機コントローラ20からエンジンコントローラ10に対するトルクアップ要求フラグの出力が停止される。自動変速機コントローラ20からのトルクアップ要求フラグの出力停止は、架け替え変速が終了するまで継続される。 When the monitor current reaches the current MAX after the start of the shifting gear change, it is determined in step S2 that the monitor current is a value outside the intermediate hydraulic pressure region. In the flowchart of FIG. 4, step S1 → step S2 → step The process proceeds from S5 to step S6. In step S6, following the torque request reset in step S5, the output of the torque-up request flag from the automatic transmission controller 20 to the engine controller 10 is stopped. The output stop of the torque-up request flag from the automatic transmission controller 20 is continued until the replacement shift is completed.
 [エンジン/変速協調制御作用]
 例えば、車速VSPの低下によりオートダウン変速要求があったとき、或いは、踏み込みダウン変速要求であるがアクセル開度APOの踏み込み量が小さいとき、等において、ダウン変速中にエンジントルクの上昇が遅れることがある。エンジントルクの上昇が遅れ、ダウン変速終了時に目標とするエンジン回転数に到達しないと、ダウン変速後、急にエンジン回転数が上昇し、これが変速ショックになる。このようなエンジントルクの上昇遅れを原因とする変速ショックを抑制し、変速品質の向上を目指すのが、変速制御中のエンジントルクアップ協調制御である。このエンジントルクアップ協調制御の場合、イナーシャフェーズ中にトルクアップ要求フラグをエンジンコントローラに出力すると、イナーシャフェーズ開始域で解放側摩擦要素の伝達トルク容量が大きいとき、想定以上のエンジントルクが入力されると、解放側摩擦要素の伝達トルク容量に相当する駆動トルクが駆動輪へ伝達され、車両が減速走行中であると、急な車両加速により、ドライバーに対し違和感を与える。このような問題に対し、エンジンコントローラ側でトルクアップ要求に対するエンジントルクアップ量を制限する制御を行っても、エンジントルクアップ制御で想定以上のトルク出力を皆無にすることは困難である。
[Engine / shift cooperative control action]
For example, when there is an auto down shift request due to a decrease in the vehicle speed VSP, or when the step down shift request is requested but the amount of depression of the accelerator opening APO is small, the increase in engine torque is delayed during the down shift. There is. If the increase in engine torque is delayed and the target engine speed is not reached at the end of the downshift, the engine speed suddenly increases after the downshift, which becomes a shift shock. The engine torque-up coordinated control during the shift control aims to suppress the shift shock caused by the engine torque increase delay and improve the shift quality. In the case of this engine torque-up coordinated control, if a torque-up request flag is output to the engine controller during the inertia phase, an engine torque higher than expected is input when the transfer torque capacity of the release side friction element is large in the inertia phase start region. When the driving torque corresponding to the transmission torque capacity of the disengagement side friction element is transmitted to the driving wheel and the vehicle is traveling at a reduced speed, the driver feels uncomfortable due to sudden vehicle acceleration. For such a problem, even if the engine controller performs control to limit the engine torque increase amount in response to the torque increase request, it is difficult to eliminate the torque output exceeding the expected value by the engine torque increase control.
 そこで、自動変速機コントローラ20側から出力されるトルクアップ要求フラグに着目した。そして、エンジンコントローラ10側の制御で想定以上のエンジントルクを発生した場合であっても、解放側摩擦要素や締結側摩擦要素の伝達トルク容量を超えるトルク分は摩擦要素が滑って駆動輪50に伝達させないようにしたのが本発明である。 Therefore, we focused on the torque-up request flag output from the automatic transmission controller 20 side. Even when the engine controller 10 side generates an engine torque that is higher than expected, the friction element slips to the drive wheel 50 when the torque exceeds the transmission torque capacity of the disengagement side frictional element or the engagement side frictional element. It is the present invention that is not transmitted.
 以下、実施例1におけるエンジン/変速協調制御作用を、図6に示すタイムチャートに基づき説明する。図6において、時刻t1はダウン変速要求の出力時刻である。時刻t2はトルクアップ要求フラグの出力開始時刻である。時刻t3はエンジントルクアップの低下開始時刻である。時刻t4はトルクアップ要求フラグの出力停止時刻である。時刻t5はダウン変速終了時刻である。なお、アクセル開度APOの踏み込み量が小さいとき、踏み込みダウン変速要求が出された場合を例にとる(例えば、3-2ダウン変速時には、第2クラッチC2が解放側摩擦要素となり、第3クラッチC3が締結側摩擦要素になる。)。 Hereinafter, the engine / shift cooperative control operation in the first embodiment will be described based on the time chart shown in FIG. In FIG. 6, time t1 is the output time of the downshift request. Time t2 is the output start time of the torque-up request flag. Time t3 is the start time of decrease in engine torque. Time t4 is the output stop time of the torque up request flag. Time t5 is the downshift end time. In addition, when the depression amount of the accelerator opening APO is small, a case where a depression down shift request is issued is taken as an example (for example, during 3-2 downshifting, the second clutch C2 becomes a disengagement side friction element, and the third clutch C3 is the fastening side friction element.)
 時刻t1にてダウン変速要求が出力されても、トルクアップ要求フラグが出力されることがなく、解放側指令油圧のモニタ電流が所定値以下になる時刻t2からトルクアップ要求フラグの出力が開始される。そして、締結側指令油圧のモニタ電流が所定値を超える時刻t4までトルクアップ要求フラグの出力が維持される。エンジントルクTeは、時刻t2から時刻t4までのトルクアップ要求フラグの出力中にトルクアップする。エンジントルクTeの特性は、時刻t2にてステップ的に上昇して時刻t3まで維持し、時刻t3から時刻t4までの変速終了期間にて所定の低下勾配により徐々に低下し、時刻t4になるとアクセル開度APOや車速VSPに対応したエンジントルクまで低下する。エンジン回転数Neは、時刻t2のダウン変速前エンジン回転数から時刻t4のダウン変速後エンジン回転数(目標回転数)まで徐々に上昇し、ダウン変速がスムーズに進行する。時刻t4以降は、締結側指令油圧のモニタ電流が所定の上昇勾配にて上昇した後、一定の値を保ち、さらに、時刻t5にてモニタ電流がステップ的に立ち上がり変速を終了する。 Even if a downshift request is output at time t1, the torque up request flag is not output, and output of the torque up request flag is started from time t2 when the monitored current of the release side command hydraulic pressure becomes equal to or less than the predetermined value. The The output of the torque-up request flag is maintained until time t4 when the engagement side command hydraulic pressure monitor current exceeds a predetermined value. The engine torque Te increases during output of the torque increase request flag from time t2 to time t4. The characteristic of the engine torque Te increases stepwise at time t2 and is maintained until time t3, and gradually decreases with a predetermined decrease gradient during the shift end period from time t3 to time t4. The engine torque corresponding to the opening APO and vehicle speed VSP is reduced. The engine speed Ne gradually increases from the engine speed before downshift at time t2 to the engine speed after downshift (target speed) at time t4, and the downshift progresses smoothly. After time t4, the monitoring current of the engagement-side command hydraulic pressure rises at a predetermined rising gradient and then maintains a constant value. Further, at time t5, the monitoring current rises stepwise and ends the shift.
 ここで、時刻t1から時刻t2までの変速期間中、トルクアップ要求フラグを出力する場合を比較例とする。この比較例の場合、時刻t1から時刻t2までの間に想定以上のエンジントルクが入力された場合、解放側摩擦要素を介して所定値A(>所定値)を最大トルクとするトルクが駆動輪50に伝達される。さらに、時刻t4から時刻t5までの間に想定以上のエンジントルクが入力された場合、締結側摩擦要素を介して所定値B(>所定値)を最大トルクとするトルクが駆動輪50に伝達される。 Here, a case where a torque-up request flag is output during the shift period from time t1 to time t2 is taken as a comparative example. In the case of this comparative example, when an engine torque more than expected is input between time t1 and time t2, torque having a predetermined value A (> predetermined value) as a maximum torque is driven through the disengagement side friction element. 50. Further, when an engine torque higher than expected is input between time t4 and time t5, torque having a predetermined value B (> predetermined value) as a maximum torque is transmitted to the drive wheels 50 via the engagement side friction element. The
 これに対し、実施例1では、時刻t2から時刻t4までの限られた範囲での変速中、トルクアップ要求フラグを出力するようにしている。時刻t2から時刻t4までの間に想定以上のエンジントルクが入力されても、解放側摩擦要素(第2クラッチC2)又は締結側摩擦要素(第3クラッチC3)を介して駆動輪50へ伝達されるトルクは、所定値(<所定値B<所定値A)を超えることが無い。つまり、時刻t2から時刻t4までの間に想定以上のエンジントルクが入力されても、車両が不意に加速することが無い。 In contrast, in the first embodiment, a torque-up request flag is output during a shift within a limited range from time t2 to time t4. Even if an engine torque higher than expected is input between time t2 and time t4, it is transmitted to the drive wheels 50 via the disengagement side friction element (second clutch C2) or the engagement side friction element (third clutch C3). Torque does not exceed a predetermined value (<predetermined value B <predetermined value A). That is, even if an engine torque higher than expected is input between time t2 and time t4, the vehicle does not accelerate unexpectedly.
 このように、変速機コントローラ20から出力されるトルクアップ要求フラグの期間を時刻t2から時刻t4までの期間に特定している。このトルクアップ要求フラグの出力期間特定により、エンジンEngのトルクアップ制御の如何にかかわらず、駆動輪50へ伝達される駆動トルクを所定値以下に抑えるという制限が加えられることになる。 Thus, the period of the torque-up request flag output from the transmission controller 20 is specified as the period from time t2 to time t4. By specifying the output period of the torque-up request flag, there is a restriction that the drive torque transmitted to the drive wheels 50 is suppressed to a predetermined value or less regardless of the torque-up control of the engine Eng.
 [エンジン/変速協調制御の特徴作用]
 実施例1では、架け替え変速中における締結側摩擦要素又は解放側摩擦要素によるトルク伝達容量が、所定値よりも小さい低容量域である間、エンジンEngのトルクアップを許可するトルクアップ要求フラグをエンジンコントローラ10に対し出力する構成とした。即ち、エンジンコントローラ10では、トルクアップ要求フラグが入力されるとエンジンEngのトルクアップ制御を行う。このトルクアップ制御で想定以上のトルクアップが行われても、変速中の締結側摩擦要素又は解放側摩擦要素を介して駆動輪50へ伝達されるトルクは、摩擦要素によるトルク伝達容量を上限とする。つまり、トルク伝達容量を上回る自動変速機ATへの入力トルク分は、摩擦要素の滑りにより吸収され、駆動輪50に伝達されない。
この結果、エンジン/変速協調制御時、変速中に想定以上のトルク入力があっても、駆動輪50へ伝達されるトルクに制限を加えることにより、車両加速が抑制される。
[Characteristic effects of engine / shift coordination control]
In the first embodiment, a torque-up request flag for permitting torque-up of the engine Eng is maintained while the torque transmission capacity by the engagement-side friction element or the release-side friction element during the crossover shift is in a low capacity region smaller than a predetermined value. The engine controller 10 is configured to output. That is, when the torque-up request flag is input, the engine controller 10 performs torque-up control of the engine Eng. Even if the torque up control exceeds the expected torque increase, the torque transmitted to the drive wheel 50 through the engagement-side friction element or the release-side friction element during the shift has a torque transmission capacity by the friction element as an upper limit. To do. That is, the input torque to the automatic transmission AT that exceeds the torque transmission capacity is absorbed by the slip of the friction element and is not transmitted to the drive wheels 50.
As a result, during engine / shift coordination control, even if there is more torque input than expected during shifting, vehicle acceleration is suppressed by limiting the torque transmitted to the drive wheels 50.
 実施例1では、所定値を、架け替え変速による走行中に駆動輪50へのトルク伝達があっても車両が不意に加速しないトルク伝達容量値に決める構成としている。
即ち、所定値としては、より低い値に決めた方が駆動輪50へ伝達されるトルクの制限効果が高いが、その反面、駆動輪に伝達されるトルクが小さくなり、更に、トルクアップ要求フラグの出力期間が短くなってしまい、トルクアップの効果そのものが小さくなってしまう。一方、所定値として、トルクアップ要求フラグの出力期間を確保する高めの値にすると、減速走行中に車両が不意に加速することがあり、ドライバーへ与える違和感が大きくなる。これに対し、所定値を、要求したトルクよりも大きなエンジンのトルクアップがあっても運転者に違和感を与えるほど車両が不意に加速しないトルク伝達容量値に決めると、トルクアップ要求フラグの出力期間を確保しつつ、車両の不意な加速も抑えられるという適正値になる。
従って、エンジン/変速協調制御時、トルクアップ要求フラグの出力期間を確保しつつ、変速中に想定以上のトルク入力があったときにドライバーへ違和感を与えるのが防止される。
In the first embodiment, the predetermined value is determined to be a torque transmission capacity value at which the vehicle does not unexpectedly accelerate even if torque is transmitted to the drive wheels 50 during traveling by the changing gear.
That is, the lower the predetermined value, the higher the effect of limiting the torque transmitted to the drive wheel 50. However, the torque transmitted to the drive wheel is reduced, and the torque increase request flag is further reduced. The output period becomes shorter, and the torque increase effect itself becomes smaller. On the other hand, if the predetermined value is set to a high value that secures the output period of the torque-up request flag, the vehicle may unexpectedly accelerate during the decelerating travel, and the driver feels uncomfortable. On the other hand, if the predetermined value is determined to be a torque transmission capacity value at which the vehicle does not accelerate unexpectedly enough to give the driver a sense of incongruity even if the engine torque is larger than the requested torque, the output period of the torque up request flag It is an appropriate value that can prevent unexpected acceleration of the vehicle while ensuring the above.
Accordingly, it is possible to prevent the driver from feeling uncomfortable when there is more torque input than expected during the shift while securing the output period of the torque-up request flag during engine / shift cooperative control.
 実施例1では、締結側摩擦要素と解放側摩擦要素を制御するソレノイドバルブへ供給される電流値をモニタする。そして、モニタ電流が、トルク伝達容量が所定値よりも小さくなる電流MINと電流MAXの範囲にある間、トルクアップ要求フラグを出力する構成としている。
即ち、ソレノイドバルブへ供給される電流値により、トルクアップ要求フラグを出力する期間を判定することができる。つまり、各変速摩擦要素について油圧センサを設け、油圧によるトルク伝達容量を監視することなく、ソレノイド電流の監視という簡単な構成により、トルク伝達容量が所定値よりも小さくなる期間を監視できる。
従って、トルクアップ要求フラグを出力する期間が、ソレノイドバルブへ供給される電流値を監視するだけの簡単な構成により判定される。
In the first embodiment, the current value supplied to the solenoid valve that controls the engagement-side friction element and the release-side friction element is monitored. The torque up request flag is output while the monitor current is in the range between the current MIN and the current MAX where the torque transmission capacity is smaller than a predetermined value.
That is, it is possible to determine the period for outputting the torque-up request flag based on the current value supplied to the solenoid valve. That is, it is possible to monitor a period in which the torque transmission capacity is smaller than a predetermined value by a simple configuration of monitoring the solenoid current without providing a hydraulic pressure sensor for each shift friction element and monitoring the torque transmission capacity due to the hydraulic pressure.
Therefore, the period during which the torque-up request flag is output is determined by a simple configuration that only monitors the current value supplied to the solenoid valve.
 実施例1では、電流MINと電流MAXを、自動変速機ATに有する複数の変速摩擦要素のそれぞれについて分けて設定する構成としている。
即ち、運転者に違和感を与えるほど車両が不意に加速しないトルク伝達容量は、締結側摩擦要素と解放側摩擦要素が異なると共に、運転点(VSP,APO)の領域が異なる変速種類(アップ変速、ダウン変速)や変速段(1速段~7速段)に影響される。このため、自動変速機ATに有する複数の変速摩擦要素について、電流MINと電流MAXを同じ値にすると、変速種類や変速段によって適正な値から外れてしまう。
従って、電流MINと電流MAXを複数の変速摩擦要素のそれぞれについて分けて設定することで、変速種類や変速段にかかわらず適正な値に設定される。
In the first embodiment, the current MIN and the current MAX are set separately for each of a plurality of shift friction elements included in the automatic transmission AT.
That is, the torque transmission capacity at which the vehicle does not suddenly accelerate so as to give the driver a sense of incongruity is different between the engagement side friction element and the release side friction element, and the speed change type (up shift, Downshifts) and shift speeds (1st to 7th). For this reason, if the current MIN and the current MAX are set to the same value for a plurality of shift friction elements included in the automatic transmission AT, the shift friction element and the shift stage deviate from an appropriate value.
Therefore, by setting the current MIN and the current MAX separately for each of the plurality of shift friction elements, the current MIN and the MAX are set to appropriate values regardless of the shift type and the shift speed.
 次に、効果を説明する。
実施例1のエンジン車の変速制御装置にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the engine vehicle speed change control apparatus according to the first embodiment, the effects listed below can be obtained.
 (1) エンジンから駆動輪50までの駆動力伝達系に、自動変速される複数の変速段を有する有段変速機(自動変速機AT)を備える車両(エンジン車)において、
 有段変速機(自動変速機AT)の架け替え変速時、エンジンEngのトルクアップを伴う協調制御が行われる場合、エンジン制御手段(エンジンコントローラ10)に対しエンジントルクアップを許可するトルクアップ要求フラグを出力する変速制御手段(変速機コントローラ20)を設け、
 変速制御手段(変速機コントローラ20)は、架け替え変速中における締結側摩擦要素又は解放側摩擦要素によるトルク伝達容量が、所定値よりも小さい低容量域である間、トルクアップ要求フラグを出力する(図4)。
このため、エンジン/変速協調制御時、変速中に想定以上のトルク入力があっても、駆動輪50へ伝達されるトルクに制限を加えることにより、車両加速を抑制することができる。
(1) In a vehicle (engine vehicle) provided with a stepped transmission (automatic transmission AT) having a plurality of automatic transmission speeds in a driving force transmission system from the engine to the drive wheels 50,
Torque-up request flag for permitting engine control means (engine controller 10) to increase engine torque when coordinated control with torque-up of engine Eng is performed at the time of a change over speed of a stepped transmission (automatic transmission AT). Transmission control means (transmission controller 20) for outputting
The shift control means (transmission controller 20) outputs a torque-up request flag while the torque transmission capacity by the engagement-side friction element or the release-side friction element during the reshuffling shift is in a low capacity region smaller than a predetermined value. (FIG. 4).
For this reason, during engine / shift coordination control, even if there is more torque input than expected during shifting, vehicle acceleration can be suppressed by limiting the torque transmitted to the drive wheels 50.
 (2) 変速制御手段(変速機コントローラ20)は、所定値を、架け替え変速による走行中に要求したトルクよりも大きなトルクアップがあっても運転者に違和感を与えるほど車両が加速しないトルク伝達容量値に決める。
このため、(1)の効果に加え、エンジン/変速協調制御時、トルクアップ要求フラグの出力期間を確保しつつ、変速中に想定以上のトルク入力があったときにドライバーへ違和感を与えるのを防止することができる。
(2) The transmission control means (transmission controller 20) transmits the predetermined value to the torque that does not accelerate the vehicle to the extent that the driver feels strange even if there is a torque increase that is greater than the torque requested during traveling by the changing gear. Decide on a capacitance value.
For this reason, in addition to the effect of (1), during the engine / shift coordination control, while ensuring the output period of the torque up request flag, the driver feels uncomfortable when there is more torque input than expected during the shift. Can be prevented.
 (3) 変速制御手段(変速機コントローラ20)は、締結側摩擦要素と解放側摩擦要素を制御するソレノイドバルブへ供給される電流値をモニタし、モニタ電流が、トルク伝達容量が所定値よりも小さくなる電流最小値(電流MIN)と電流最大値(電流MAX)の範囲にある間、トルクアップ要求フラグを出力する。
このため、(1)又は(2)の効果に加え、トルクアップ要求フラグを出力する期間を、ソレノイドバルブへ供給される電流値を監視するだけの簡単な構成により判定することができる。
(3) The transmission control means (transmission controller 20) monitors the current value supplied to the solenoid valve that controls the engagement-side friction element and the release-side friction element, and the monitor current is greater than the predetermined value. While in the range between the minimum current value (current MIN) and the maximum current value (current MAX), the torque up request flag is output.
For this reason, in addition to the effect of (1) or (2), the period during which the torque-up request flag is output can be determined by a simple configuration that only monitors the current value supplied to the solenoid valve.
 (4) 変速制御手段(変速機コントローラ20)は、電流最小値(電流MIN)と電流最大値(電流MAX)を、有段変速機(自動変速機AT)に有する複数の変速摩擦要素のそれぞれについて分けて設定する。
このため、(3)の効果に加え、電流最小値(電流MIN)と電流最大値(電流MAX)を複数の変速摩擦要素のそれぞれについて分けて設定することで、変速種類や変速段にかかわらず適正な値に設定することができる。
(4) The transmission control means (transmission controller 20) includes a plurality of transmission friction elements each having a minimum current value (current MIN) and a maximum current value (current MAX) in the stepped transmission (automatic transmission AT). Set separately for.
For this reason, in addition to the effect of (3), the current minimum value (current MIN) and current maximum value (current MAX) are set separately for each of the multiple shift friction elements, regardless of the shift type and shift speed. An appropriate value can be set.
 以上、本発明の車両の変速制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The vehicle shift control device of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims. Design changes and additions are permitted without departing from the gist of the present invention.
 実施例1では、変速制御手段として、締結側摩擦要素と解放側摩擦要素を制御するソレノイドバルブへ供給される電流値をモニタする。そして、モニタ電流が、トルク伝達容量が所定値よりも小さくなる電流MINと電流MAXの範囲にある間、トルクアップ要求フラグを出力する例を示した。しかし、変速制御手段としては、締結側摩擦要素と解放側摩擦要素を制御する油圧値をモニタし、モニタ油圧が、トルク伝達容量が所定値よりも小さくなる油圧閾値以下である間、トルクアップ要求フラグを出力する例としても良い。 In Example 1, the current value supplied to the solenoid valve that controls the engagement-side friction element and the release-side friction element is monitored as the shift control means. An example in which the torque-up request flag is output while the monitor current is in the range between the current MIN and the current MAX where the torque transmission capacity becomes smaller than a predetermined value is shown. However, as the shift control means, the hydraulic pressure value for controlling the engagement side frictional element and the release side frictional element is monitored, and while the monitored hydraulic pressure is below the hydraulic pressure threshold value where the torque transmission capacity is smaller than the predetermined value, a torque increase request is made. An example of outputting a flag may be used.
 実施例1では、変速制御手段として、電流MINと電流MAXを、自動変速機ATに有する複数の変速摩擦要素のそれぞれについて分けて設定する例を示した。しかし、変速制御手段としては、モニタ電流やモニタ油圧を、変速の種類やアクセル開度APOや車速VSPにより分けて設定する例としても良い。 In the first embodiment, the example in which the current MIN and the current MAX are separately set as the shift control means for each of the plurality of shift friction elements included in the automatic transmission AT is shown. However, the shift control means may be an example in which the monitor current and the monitor hydraulic pressure are set separately according to the shift type, the accelerator opening APO, and the vehicle speed VSP.
 実施例1では、本発明の変速制御装置を、前進7速の自動変速機ATを搭載したエンジン車に適用する例を示した。しかし、本発明の変速制御装置は、駆動源にエンジンが搭載された車両であれば、ハイブリッド車に対しても適用することができるし、変速機としても、前進7速以外の有段変速機であっても良い。要するに、エンジンから駆動輪までの駆動力伝達系に、自動変速される複数の変速段を有する有段変速機を備える車両であれば適用できる。 In the first embodiment, an example in which the shift control device of the present invention is applied to an engine vehicle equipped with a forward 7-speed automatic transmission AT is shown. However, the speed change control device of the present invention can be applied to a hybrid vehicle as long as the engine is mounted on the drive source, and also as a transmission, a stepped transmission other than the forward seventh speed is used. It may be. In short, the present invention is applicable to any vehicle provided with a stepped transmission having a plurality of gears that are automatically shifted in a driving force transmission system from the engine to the driving wheels.

Claims (5)

  1.  エンジンから駆動輪までの駆動力伝達系に、自動変速される複数の変速段を有する有段変速機を備える車両において、
     前記有段変速機の架け替え変速時、前記エンジンのトルクアップを伴う協調制御が行われる場合、エンジン制御手段に対しエンジントルクアップを許可するトルクアップ要求フラグを出力する変速制御手段を設け、
     前記変速制御手段は、架け替え変速中における締結側摩擦要素又は解放側摩擦要素によるトルク伝達容量が、所定値よりも小さい低容量域である間、前記トルクアップ要求フラグを出力する
     車両の変速制御装置。
    In a vehicle including a stepped transmission having a plurality of shift stages that are automatically shifted in a drive force transmission system from an engine to a drive wheel,
    A shift control means for outputting a torque-up request flag for permitting engine torque-up to the engine control means when cooperative control with torque-up of the engine is performed at the time of the shifting of the stepped transmission;
    The shift control means outputs the torque-up request flag while the torque transmission capacity by the engagement-side friction element or the disengagement-side friction element during the changeover shift is in a low capacity range smaller than a predetermined value. apparatus.
  2.  請求項1に記載された車両の変速制御装置において、
     前記変速制御手段は、前記所定値を、架け替え変速による走行中に要求したトルクよりも大きなトルクアップがあっても運転者に違和感を与えるほど車両が加速しないトルク伝達容量値に決める
     車両の変速制御装置。
    The vehicle shift control device according to claim 1,
    The shift control means determines the predetermined value as a torque transmission capacity value at which the vehicle does not accelerate so that the driver feels uncomfortable even if there is a torque increase greater than the torque required during traveling by the shifting shift. Control device.
  3.  請求項1又は請求項2に記載された車両の変速制御装置において、
     前記変速制御手段は、前記締結側摩擦要素と前記解放側摩擦要素を制御するソレノイドバルブへ供給される電流値をモニタし、モニタ電流が、トルク伝達容量が所定値よりも小さくなる電流最小値と電流最大値の範囲にある間、トルクアップ要求フラグを出力する
     車両の変速制御装置。
    In the vehicle shift control device according to claim 1 or 2,
    The shift control means monitors a current value supplied to a solenoid valve that controls the engagement-side friction element and the release-side friction element, and the monitor current is a minimum current value at which the torque transmission capacity becomes smaller than a predetermined value. A shift control device for a vehicle that outputs a torque-up request flag while within the range of the maximum current value.
  4.  請求項3に記載された車両の変速制御装置において、
     前記変速制御手段は、前記電流最小値と前記電流最大値を、前記有段変速機に有する複数の変速摩擦要素のそれぞれについて分けて設定する
     車両の変速制御装置。
    In the vehicle shift control device according to claim 3,
    The shift control means sets the current minimum value and the current maximum value separately for each of a plurality of shift friction elements included in the stepped transmission.
  5.  エンジンから駆動輪までの駆動力伝達系に、自動変速される複数の変速段を有する有段変速機を備える車両において、
     前記有段変速機を制御する変速機コントローラは、前記有段変速機の架け替え変速時、前記エンジンのトルクアップを伴う協調制御が行われる場合、架け替え変速中における締結側摩擦要素又は解放側摩擦要素によるトルク伝達容量が、所定値よりも小さい低容量域である間、前記エンジンを制御するエンジンコントローラに対し、エンジントルクアップを許可するトルクアップ要求フラグを出力する
     車両の変速制御方法。
    In a vehicle including a stepped transmission having a plurality of shift stages that are automatically shifted in a drive force transmission system from an engine to a drive wheel,
    The transmission controller for controlling the stepped transmission is configured such that when cooperative control with torque increase of the engine is performed at the time of the changeover of the stepped transmission, the engagement side friction element or the release side during the changeover shift is performed. A vehicle speed change control method for outputting a torque-up request flag for permitting an engine torque increase to an engine controller for controlling the engine while a torque transmission capacity by a friction element is in a low capacity range smaller than a predetermined value.
PCT/JP2016/076363 2015-09-18 2016-09-08 Vehicle transmission control device WO2017047479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-185350 2015-09-18
JP2015185350A JP2017057988A (en) 2015-09-18 2015-09-18 Gear change control device of vehicle

Publications (1)

Publication Number Publication Date
WO2017047479A1 true WO2017047479A1 (en) 2017-03-23

Family

ID=58289316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076363 WO2017047479A1 (en) 2015-09-18 2016-09-08 Vehicle transmission control device

Country Status (2)

Country Link
JP (1) JP2017057988A (en)
WO (1) WO2017047479A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682173B2 (en) * 1989-11-02 1997-11-26 トヨタ自動車株式会社 Differential control device for four-wheel drive vehicle
JP2004245285A (en) * 2003-02-12 2004-09-02 Komatsu Ltd Speed change device for work vehicle
JP2006153225A (en) * 2004-12-01 2006-06-15 Denso Corp Control device for automatic transmission
JP2008128437A (en) * 2006-11-24 2008-06-05 Honda Motor Co Ltd Creep control unit of vehicle
JP2013032793A (en) * 2011-08-01 2013-02-14 Aisin Seiki Co Ltd Shift control device of automatic transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682173B2 (en) * 1989-11-02 1997-11-26 トヨタ自動車株式会社 Differential control device for four-wheel drive vehicle
JP2004245285A (en) * 2003-02-12 2004-09-02 Komatsu Ltd Speed change device for work vehicle
JP2006153225A (en) * 2004-12-01 2006-06-15 Denso Corp Control device for automatic transmission
JP2008128437A (en) * 2006-11-24 2008-06-05 Honda Motor Co Ltd Creep control unit of vehicle
JP2013032793A (en) * 2011-08-01 2013-02-14 Aisin Seiki Co Ltd Shift control device of automatic transmission

Also Published As

Publication number Publication date
JP2017057988A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP4858501B2 (en) Control device for automatic transmission for vehicle
EP2136108B1 (en) Automatic transmission control apparatus and method
JP2007309475A (en) Shift control device of automatic transmission for vehicle
JP2008169874A (en) Control device for vehicle drive mechanism
JP4690278B2 (en) Shift control device for automatic transmission
KR101533117B1 (en) Shift control apparatus for automatic transmission
JP6865890B2 (en) Control device for automatic transmission
JP2019151273A (en) Shift control device for automatic transmission
JP6377240B2 (en) Control device for automatic transmission
JP5664377B2 (en) Control device for vehicle power transmission device
WO2014156368A1 (en) Vehicle control device, and vehicle control method
WO2017047479A1 (en) Vehicle transmission control device
JP7341600B2 (en) Shift control device for automatic transmission
JP7118526B2 (en) Upshift control device for automatic transmission
JP5673004B2 (en) Control device for vehicle drive device
JP7041739B2 (en) Control device for automatic transmission and control method for automatic transmission
JP6856818B2 (en) Automatic transmission downshift control device and automatic transmission downshift control method
JPWO2019159978A1 (en) Control device for automatic transmission and control method for automatic transmission
JP5790535B2 (en) Shift control device for automatic transmission for vehicle
CN114302836B (en) Vehicle control device, control method, and storage medium
JP7353719B2 (en) Automatic transmission control device
JP2018112229A (en) Gear change control device of automatic transmission
JP2020148317A (en) Shift control device of automatic transmission
JP2008144737A (en) Control device of power output device
JP2007147067A (en) Speed-change controller for automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846350

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846350

Country of ref document: EP

Kind code of ref document: A1