WO2019159977A1 - Ultraviolet curable resin composition and optical fiber - Google Patents

Ultraviolet curable resin composition and optical fiber Download PDF

Info

Publication number
WO2019159977A1
WO2019159977A1 PCT/JP2019/005129 JP2019005129W WO2019159977A1 WO 2019159977 A1 WO2019159977 A1 WO 2019159977A1 JP 2019005129 W JP2019005129 W JP 2019005129W WO 2019159977 A1 WO2019159977 A1 WO 2019159977A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
resin composition
urethane
nco
Prior art date
Application number
PCT/JP2019/005129
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 本間
勝史 浜窪
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020500526A priority Critical patent/JP7140182B2/en
Publication of WO2019159977A1 publication Critical patent/WO2019159977A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/326Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present disclosure relates to an ultraviolet curable resin composition for optical fiber coating and an optical fiber.
  • This application claims priority based on Japanese Patent Application No. 2018-022904 filed on Feb. 13, 2018, and incorporates all the description content described in the above Japanese application.
  • an optical fiber has a coating resin layer for protecting a glass fiber that is an optical transmission body.
  • the covering resin layer is composed of, for example, a primary resin layer and a secondary resin layer.
  • Patent Document 1 discloses a primary resin using a resin composition containing a urethane oligomer obtained by reacting a monohydric alcohol and a hydroxyl group-containing (meth) acrylate with a reaction product of an aliphatic polyether diol and a diisocyanate. It is disclosed that the flexibility (low Young's modulus) of the layer is compatible with the mechanical strength.
  • An ultraviolet curable resin composition for coating an optical fiber includes a urethane (meth) acrylate oligomer, a monomer, and a photopolymerization initiator, and the urethane (meth) acrylate oligomer is terminated with a hydroxyl group. It contains a reaction product of a urethane prepolymer having an isocyanate compound having two or more (meth) acryloyl groups.
  • Optical fibers are required to have a high dynamic fatigue coefficient in order to improve dynamic fatigue characteristics.
  • an alcohol component such as monohydric alcohol has a function of corroding glass, if the alcohol component remains in the primary resin layer, the dynamic fatigue coefficient of the optical fiber may be reduced.
  • the resin composition which forms a coating resin layer is calculated
  • the reaction point at the time of ultraviolet curing decreases, so the curing rate of the resin composition tends to decrease.
  • the present disclosure relates to an ultraviolet curable resin composition for optical fiber coating that has a low Young's modulus and has a high curing speed and can exhibit excellent dynamic fatigue characteristics, and a coating resin formed from the resin composition
  • An object is to provide an optical fiber comprising a layer.
  • An optical fiber including a coating resin layer can be provided.
  • An ultraviolet curable resin composition for coating an optical fiber according to one embodiment of the present disclosure (hereinafter also simply referred to as “resin composition”) includes a urethane (meth) acrylate oligomer, a monomer, and a photopolymerization initiator.
  • the urethane (meth) acrylate oligomer contains a reaction product of a urethane prepolymer having a hydroxyl group at the terminal and an isocyanate compound having two or more (meth) acryloyl groups.
  • the reactant may have a structure represented by the following formula (1).
  • R 1 represents a hydrogen atom or a methyl group
  • L 1 represents an organic group having 1 or 2 carbon atoms
  • X represents an organic group having 1 or 2 carbon atoms
  • m represents 2 or 3 Show.
  • the urethane (meth) acrylate oligomer further comprises a reaction product of a urethane prepolymer having a hydroxyl group at the end, an isocyanate compound having two or more (meth) acryloyl groups, and an isocyanate compound having one (meth) acryloyl group. You may contain. By using such an oligomer, it becomes easy to adjust the balance between the curing rate of the resin composition and the Young's modulus.
  • the reactant may have a structure represented by the following formula (2).
  • R 2 represents a hydrogen atom or a methyl group
  • L 2 represents an organic group having 2 to 4 carbon atoms.
  • the 2.5% secant Young's modulus when the resin composition was cured with a metal halide lamp at 1000 mJ / cm 2 and 1000 mW / cm 2 was 0.1 MPa or more and less than 0.8 MPa at 23 ° C. ⁇ 2 ° C. May be. Since such a resin composition can form a primary resin layer having appropriate toughness, it is easy to improve the microbend characteristics of the optical fiber.
  • An optical fiber according to an aspect of the present disclosure includes a glass fiber including a core and a cladding, a primary resin layer that is in contact with the glass fiber and covers the glass fiber, and a secondary resin layer that covers the primary resin layer.
  • a resin layer consists of hardened
  • the resin composition according to this embodiment includes a urethane (meth) acrylate oligomer, a monomer, and a photopolymerization initiator.
  • the urethane (meth) acrylate oligomer includes a urethane prepolymer having a hydroxyl group at the terminal (hereinafter also simply referred to as “OH-terminated prepolymer”) and an isocyanate compound having two or more (meth) acryloyl groups (hereinafter simply referred to as “ And a reaction product with an NCO group-containing polyfunctional (meth) acrylate ”.
  • (meth) acrylate means acrylate or methacrylate corresponding thereto.
  • the urethane (meth) acrylate oligomer according to this embodiment is obtained by reacting an OH-terminated prepolymer with an NCO group-containing polyfunctional (meth) acrylate.
  • the OH-terminated prepolymer can be prepared by a reaction between a polyol compound and a polyisocyanate compound.
  • An OH-terminated prepolymer is obtained by reacting the polyol compound and the polyisocyanate compound at a ratio (molar ratio) in which the hydroxyl group (OH) of the polyol compound is excessive with respect to the isocyanate group (NCO) of the polyisocyanate compound.
  • polystyrene resin examples include polytetramethylene glycol, polypropylene glycol, polyester polyol, polycaprolactone polyol, polycarbonate diol, polybutadiene polyol, acrylic polyol, and bisphenol A / ethylene oxide addition diol.
  • the number average molecular weight (Mn) of the polyol compound is preferably 1000 to 5000.
  • the Mn of the polyol compound may be 2000 to 4000.
  • polyisocyanate compound examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, Examples include 1,5-naphthalene diisocyanate, norbornene diisocyanate, 1,5-pentamethylene diisocyanate, tetramethylxylylene diisocyanate, and trimethylhexamethylene diisocyanate.
  • the NCO group-containing polyfunctional (meth) acrylate is not particularly limited as long as it is a compound having an isocyanate group and at least two (meth) acryloyl groups.
  • the NCO group-containing polyfunctional (meth) acrylate may have two or three (meth) acryloyl groups.
  • a compound represented by the following formula (3) can be used as the NCO group-containing polyfunctional (meth) acrylate.
  • R 1 represents a hydrogen atom or a methyl group
  • L 1 represents an organic group having 1 or 2 carbon atoms
  • X represents an organic group having 1 or 2 carbon atoms
  • m represents 2 or 3 Show.
  • L 1 may be 1 or 2 alkylene groups or dialkylene ether groups.
  • X may be a hydrocarbon group having 1 or 2 carbon atoms.
  • m is preferably 2.
  • the structure represented by the above formula (1) can be introduced into the urethane (meth) acrylate oligomer by using the compound represented by the formula (3). Since the structure represented by Formula (1) has a plurality of (meth) acryloyl groups that are photopolymerizable groups, the curing rate of the resin composition can be increased. By using the oligomer having the structure represented by the formula (1) for the primary resin layer, a high-strength coating resin layer can be formed.
  • Examples of the compound represented by the formula (3) include 1,1- (bisacryloyloxymethyl) ethyl isocyanate and 1,1- (bismethacryloyloxymethyl) ethyl isocyanate.
  • an isocyanate compound having one (meth) acryloyl group together with an NCO group-containing polyfunctional (meth) acrylate (hereinafter simply referred to as “NCO group-containing monofunctional”).
  • NCO group-containing monofunctional an NCO group-containing polyfunctional (meth) acrylate
  • R 2 represents a hydrogen atom or a methyl group
  • L 2 represents an organic group having 2 to 4 carbon atoms.
  • L 2 may be an alkylene group having 2 to 4 carbon atoms or a dialkylene ether group.
  • the structure represented by the above formula (2) can be introduced into the urethane oligomer.
  • the oligomer having the structure represented by the formula (1) and the structure represented by the formula (2) it becomes easy to adjust the curing rate and Young's modulus of the resin composition.
  • Examples of the compound represented by the formula (4) include 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate and 2- (2-isocyanatoethoxy) ethyl methacrylate.
  • An organotin compound is generally used as a catalyst for synthesizing a urethane (meth) acrylate oligomer.
  • the organic tin compound include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin malate, dibutyltin bis (2-ethylhexyl mercaptoacetate), dibutyltin bis (isooctyl mercaptoacetate), and dibutyltin oxide. From the viewpoint of easy availability and catalyst performance, it is preferable to use dibutyltin dilaurate or dibutyltin diacetate as the catalyst.
  • the urethane (meth) acrylate oligomer according to the present embodiment is a first step in which a polyol compound and a polyisocyanate compound are reacted to obtain an OH-terminated prepolymer, and an OH-terminated prepolymer and an NCO group-containing polyfunctional (meth). It can be produced by the second step of reacting with acrylate to obtain a urethane (meth) acrylate oligomer.
  • OH of the polyol compound is reacted in an excess molar ratio with respect to the NCO of the polyisocyanate compound.
  • the molar ratio (OH / NCO) of OH of the polyol compound and NCO of the polyisocyanate compound in preparing the OH-terminated prepolymer is preferably more than 1 and 2 or less, and 1.1 to 2.0 More preferably.
  • OH / NCO is less than 1
  • the proportion of NCO becomes excessive and a urethane prepolymer having an isocyanate group at the terminal (hereinafter also simply referred to as “NCO-terminated prepolymer”) is formed. If it exceeds 2, a mixture of OH-terminated prepolymer and unreacted polyol compound is obtained.
  • the fact that an OH-terminated prepolymer was obtained can be confirmed by measuring the remaining amount of NCO.
  • the remaining amount of NCO can be measured by potentiometric titration in accordance with JIS K1603-1.
  • the second step is preferably performed after confirming that the remaining amount of NCO is 0.1% by mass or less.
  • an OH-terminated prepolymer and an NCO group-containing polyfunctional (meth) acrylate are reacted.
  • the molar ratio (NCO / OH) of the OH of the OH-terminated prepolymer and the NCO of the NCO group-containing polyfunctional (meth) acrylate when the OH-terminated prepolymer is reacted with the NCO group-containing polyfunctional (meth) acrylate is: 0.50 or more and 1.15 or less are preferable, 0.50 or more and 1.10 or less are more preferable, and 0.50 or more and 0.90 or less are still more preferable.
  • NCO / OH When NCO / OH is 0.50 or more, the OH group-terminated prepolymer hardly remains, and the breaking strength and breaking elongation of the cured product of the resin composition can be increased.
  • NCO / OH When NCO / OH is 1.15 or less, unreacted NCO group-containing polyfunctional (meth) acrylate hardly remains, and changes in physical properties such as an increase in the viscosity of the resin composition over time can be suppressed.
  • the OH-terminated prepolymer may be reacted with an NCO group-containing polyfunctional (meth) acrylate and an NCO group-containing monofunctional (meth) acrylate.
  • the molar ratio of the NCO total amount of the NCO group-containing polyfunctional (meth) acrylate and the NCO group-containing monofunctional (meth) acrylate to the OH of the OH group-terminated prepolymer is preferably 0.50 or more and 1.15 or less, 0.50 It is more preferably 1.10 or less and further preferably 0.50 or more and 0.90 or less.
  • the ratio of the NCO group-containing polyfunctional (meth) acrylate to the NCO of the NCO group-containing monofunctional (meth) acrylate is preferably 0.05 or more and more preferably 0.10 or more in terms of molar ratio. preferable. When the molar ratio is 0.05 or more, it becomes easy to increase the curing rate of the resin composition.
  • the residual amount of NCO in the urethane (meth) acrylate oligomer is preferably 0.1% by mass or less.
  • the residual amount of NCO is 0.1% by mass or less, it becomes easy to suppress changes in physical properties such as an increase in the viscosity of the resin composition over time.
  • the NCO-terminated prepolymer is reacted with a monohydric alcohol and a hydroxyl group-containing (meth) acrylate to prepare a urethane (meth) acrylate oligomer having a structure different from that of the urethane (meth) acrylate oligomer according to this embodiment.
  • a urethane (meth) acrylate oligomer has a hydroxyl group based on a monohydric alcohol at the terminal, it is possible to lower the crosslinking density and reduce the Young's modulus of the primary resin layer.
  • the photopolymerizable group of the urethane (meth) acrylate oligomer is decreased, the crosslinking point is decreased and the curing rate of the resin composition tends to be slow.
  • unreacted monohydric alcohol remains in the primary resin layer, the glass fiber is corroded to cause a decrease in strength of the optical fiber, and dynamic fatigue characteristics may be deteriorated.
  • the urethane (meth) acrylate oligomer according to the present embodiment has a structure having two or more (meth) acryloyl groups at least at one end, so that the curing rate of the resin composition is increased. Can do. Moreover, since monohydric alcohol is not used when preparing the urethane (meth) acrylate oligomer according to this embodiment, the dynamic fatigue characteristics of the optical fiber can be improved while having a low Young's modulus.
  • polypropylene glycol is used as the polyol compound
  • isophorone diisocyanate is used as the polyisocyanate compound
  • 1,1- (bisacryloyloxymethyl) ethyl isocyanate is used as the NCO group-containing polyfunctional (meth) acrylate.
  • polypropylene glycol and isophorone diisocyanate are reacted to synthesize an OH-terminated prepolymer represented by the following (a).
  • a urethane prepolymer having hydroxyl groups at both ends can be obtained by charging polypropylene glycol in an excess molar ratio relative to isophorone diisocyanate.
  • the molar ratio (OH / NCO) of OH of polypropylene glycol to NCO of isophorone diisocyanate is more than 1 and 2 or less, OH-terminated prepolymer (a) is mainly produced.
  • the OH / NCO is less than 1, an NCO-terminated prepolymer is formed.
  • 1,1- (bisacryloyloxymethyl) ethyl isocyanate is reacted with the OH group-terminated prepolymer (a), whereby a mixture of urethane acrylate oligomers represented by the following (b1) and (b2): Can be obtained.
  • (B1) A2-UP- (UIUP) n-U-A2
  • (B2) A2-UP- (UIUP) n-OH
  • A2 represents a residue of 1,1- (bisacryloyloxymethyl) ethyl isocyanate.
  • NCO / OH molar ratio of OH of the OH-terminated prepolymer to NCO of 2-acryloyloxyethyl acrylate of 1 or more and 1.15 or less.
  • the urethane acrylate oligomer (b1) is an oligomer having an acryloyl group that contributes to ultraviolet curing of the resin composition at both ends, so that the crosslink density of the cured product can be increased. Since the urethane acrylate oligomer (b2) has a hydroxyl group that does not contribute to ultraviolet curing of the resin composition at one end, the Young's modulus of the cured product can be reduced.
  • the OH group-terminated prepolymer may be reacted with an NCO group-containing polyfunctional (meth) acrylate and an NCO group-containing monofunctional (meth) acrylate.
  • an NCO group-containing polyfunctional (meth) acrylate and an NCO group-containing monofunctional (meth) acrylate.
  • 2-acryloyloxyethyl isocyanate is used as the NCO group-containing monofunctional (meth) acrylate
  • a mixture of urethane acrylate oligomers represented by the following (b1) to (b5) can be obtained.
  • A1 represents a residue of 2-acryloyloxyethyl isocyanate.
  • the urethane acrylate oligomer (b3) has two acryloyl groups at one end and one acryloyl group at the other end, the balance between the curing rate of the resin composition and the Young's modulus can be adjusted. it can. Since the urethane acrylate oligomers (b1) and (b4) are oligomers having acryloyl groups at both ends, the crosslinking density of the cured product can be increased. Since the urethane oligomers (b2) and (b5) are oligomers having a hydroxyl group at one end, they have an effect of lowering the crosslinking density of the cured product, and the Young's modulus can be reduced.
  • the amount of urethane acrylate oligomers (b1) and (b2) increases and approaches the first mode. .
  • a monofunctional monomer having one ethylenically unsaturated group which is a polymerizable group and a polyfunctional monomer having two or more ethylenically unsaturated groups can be used. Two or more kinds of monomers may be mixed and used.
  • Examples of the monofunctional monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate, tert-butyl (meth) acrylate, Isobutyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, isoamyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (Meth) acrylate, isooctyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, phenoxyethyl (meth) acrylate,
  • polyfunctional monomer examples include ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, Tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonane Diol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, 1,14-tetradecanediol di (meth) acrylate, 1,16-hexadecanediol di (meth) acrylate 1,20-eicosanediol di (meth
  • the photopolymerization initiator can be appropriately selected from known radical photopolymerization initiators.
  • the photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, bis ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2,4,6- Mention may be made of trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide.
  • Two or more photopolymerization initiators may be used as a mixture, but preferably contains 2,4,6-trimethylbenzoyldiphenylphosphine oxide because the resin is excellent in rapid curability.
  • the resin composition according to this embodiment may further contain a silane coupling agent, a photoacid generator, a leveling agent, an antifoaming agent, an antioxidant, and the like.
  • the silane coupling agent is not particularly limited as long as it does not hinder the curing of the resin composition by ultraviolet rays, and any silane coupling agent including publicly known and publicly used silane coupling agents can be used.
  • the silane coupling agent include tetramethyl silicate, tetraethyl silicate, (3-mercaptopropyl) trimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxy-ethoxy) silane, ⁇ - (3,4 -Epoxycyclohexyl) -ethyltrimethoxysilane, dimethoxydimethylsilane, diethoxydimethylsilane, 3-acryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -Methacryloxypropyltrimethoxysilane,
  • the content of the silane coupling agent is preferably 0.1 to 3% by mass, more preferably 0.3 to 2% by mass based on the total amount of the resin composition.
  • an onium salt having a structure of A + B ⁇ may be used.
  • the photoacid generator include sulfonium salts such as CPI-100P, CPI-101A, CPI-200K, CPI-210S, CPI-310B, CPI-400PG (manufactured by San Apro Co., Ltd.), WPI-113, and WPI-116.
  • Iodonium salts such as WPI-169, WPI-170, WPI-124 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), (4-methylphenyl) [4- (2-methylpropyl) phenyl] iodonium hexafluorophosphate Can be mentioned.
  • the resin composition according to the present embodiment is cured using a resin film (cured product of the resin composition) obtained by curing with a metal halide lamp under the conditions of 1000 mJ / cm 2 and 1000 mW / cm 2 (UVA). Can be evaluated.
  • the 2.5% secant Young's modulus of the resin film according to this embodiment is preferably 0.1 to 1.5 MPa at 23 ° C. ⁇ 2 ° C., and more preferably 0.1 MPa or more and less than 0.8 MPa. .
  • the 2.5% secant Young's modulus is 0.1 MPa or more, a primary resin layer having appropriate toughness can be formed using the resin composition according to the present embodiment, and therefore, the optical fiber is transmitted at a low temperature. It is easy to reduce the increase in loss.
  • the 2.5% secant Young's modulus is 1.5 MPa or less, it is easy to improve the microbend characteristics of the optical fiber.
  • the breaking strength of the resin film according to this embodiment is preferably 1.0 MPa or more at 23 ° C. ⁇ 2 ° C., more preferably 3 MPa or more.
  • the breaking strength is 1.0 MPa or more, it is easy to suppress the generation of voids in the primary resin layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of an optical fiber according to the present embodiment.
  • the optical fiber 10 includes a glass fiber 13 including a core 11 and a clad 12, and a covering resin layer 16 including a primary resin layer 14 and a secondary resin layer 15 provided on the outer periphery of the glass fiber 13.
  • the clad 12 surrounds the core 11.
  • the core 11 and the clad 12 mainly include glass such as quartz glass.
  • the core 11 can be made of quartz to which germanium is added, and the clad 12 is made of pure quartz or quartz to which fluorine is added. be able to.
  • the outer diameter (D2) of the glass fiber 13 is about 125 ⁇ m.
  • the diameter (D1) of the core 11 constituting the glass fiber 13 is about 7 to 15 ⁇ m.
  • the covering resin layer 16 has a structure of at least two layers including the primary resin layer 14 and the secondary resin layer 15.
  • the total thickness of the covering resin layer 16 is normally about 60 ⁇ m, and the thicknesses of the primary resin layer 14 and the secondary resin layer 15 are substantially the same, and are 20 to 40 ⁇ m, respectively.
  • the thickness of the primary resin layer 14 may be 35 ⁇ m, and the thickness of the secondary resin layer 15 may be 25 ⁇ m.
  • the coating diameter of the optical fiber is small.
  • the total thickness of the coating resin layer 16 is preferably 30 to 40 ⁇ m.
  • Each of the primary resin layer and the secondary resin layer can have a thickness of 10 to 30 ⁇ m.
  • the resin composition according to this embodiment can be applied to the primary resin layer.
  • the primary resin layer includes a urethane oligomer containing a reaction product of a urethane prepolymer having a hydroxyl group at its terminal and an isocyanate compound having two or more (meth) acryloyl groups, a monomer, and a photopolymerization initiator. Can be formed by curing. Thereby, the dynamic fatigue characteristics of the optical fiber can be improved.
  • the primary resin layer is a urethane oligomer containing a reaction product of a urethane prepolymer having a hydroxyl group at the end, an isocyanate compound having two or more (meth) acryloyl groups, and an isocyanate compound having one (meth) acryloyl group, You may harden and form the resin composition containing a monomer and a photoinitiator.
  • the Young's modulus of the primary resin layer is preferably 0.1 to 1.5 MPa at 23 ° C.
  • the Young's modulus of the secondary resin layer may be 500 to 2000 MPa at 23 ° C.
  • the Young's modulus of the secondary resin layer is 500 MPa or more, it is easy to improve the microbend characteristics, and when it is 2000 MPa or less, moderate toughness can be imparted to the secondary resin layer, so that cracks hardly occur.
  • the Young's modulus of the secondary resin layer can be measured by the following method. First, the optical fiber is immersed in a mixed solvent of acetone and ethanol, and only the coating resin layer is extracted in a cylindrical shape. At this time, the primary resin layer and the secondary resin layer are integrated, but the Young's modulus of the primary resin layer is 1/1000 to 1/10000 of the secondary resin layer, so the Young's modulus of the primary resin layer is Can be ignored. Next, after removing the solvent from the coating resin layer by vacuum drying, a tensile test (a tensile speed of 1 mm / min) is performed at 23 ° C., and a Young's modulus can be obtained by a secant formula of 2.5% strain.
  • the secondary resin layer 15 can be formed, for example, by curing an ultraviolet curable resin composition containing a urethane oligomer, a monomer, and a photopolymerization initiator.
  • a conventionally well-known technique can be used for the resin composition for secondary resin layers.
  • a urethane oligomer, a monomer, and a photoinitiator you may select suitably from the compound illustrated by the said resin composition.
  • the resin composition forming the secondary resin layer has a different composition from the resin composition forming the primary resin layer.
  • the reaction is carried out by adding 1,1- (bisacryloyloxymethyl) ethyl isocyanate to 0.5. After confirming that the remaining amount of NCO is 0.1% by mass or less, the reaction is terminated to obtain a urethane acrylate oligomer (U-1).
  • Synthesis Example 3 Similar to Synthesis Example 1 except that an OH-terminated prepolymer is prepared with an OH / NCO of 1.5 and 1,1- (bisacryloyloxymethyl) ethyl isocyanate is added so that the NCO / OH is 0.9. Thus, a urethane acrylate oligomer (U-3) is obtained.
  • Synthesis Example 4 Similar to Synthesis Example 1 except that an OH-terminated prepolymer was prepared with an OH / NCO of 1.5 and 1,1- (bisacryloyloxymethyl) ethyl isocyanate was added so that the NCO / OH was 1.1. Thus, a urethane acrylate oligomer (U-4) is obtained.
  • NCO-terminated prepolymer is prepared by reacting Mn4000 polypropylene glycol with isophorone diisocyanate at an NCO / OH of 1.5. Add 200 ppm of dibutyltin dilaurate to the final total charge. Next, the reaction is carried out by adding 0.3 mol of methanol and 0.7 mol of 2-hydroxyethyl acrylate to 1 mol of NCO of the NCO-terminated prepolymer to obtain a urethane oligomer (U-9).
  • NCO-terminated prepolymer is prepared by reacting Mn600 polypropylene glycol with isophorone diisocyanate at an NCO / OH of 1.5. Add 200 ppm of dibutyltin dilaurate to the final total charge. Next, 2-hydroxyethyl acrylate was added and reacted at 80 ° C. for 1 hour so that the molar ratio of 2-hydroxyethyl acrylate to NCO of the NCO-terminated prepolymer (OH / NCO) was 1.05. To obtain a urethane oligomer (U-10).
  • Resin composition for primary resin layer In the blending amounts (parts by mass) shown in Table 1, urethane acrylate oligomer, N-vinylcaprolactam, isobornyl acrylate, nonylphenol polyethylene glycol acrylate (“SR504” manufactured by Sartomer), 2,4,6-trimethylbenzoyldiphenylphosphine Oxide and 3-acryloxypropyltrimethoxysilane were mixed to prepare resin compositions for primary resin layers of Examples and Comparative Examples.
  • the resin film was punched into a JIS K 7127 Type 5 dumbbell shape, and under conditions of 23 ⁇ 2 ° C. and 50 ⁇ 10% RH, using a tensile tester at a pulling speed of 1 mm / min and a gap between 25 mm. Tensile, stress-strain curves were obtained.
  • the Young's modulus was determined by 2.5% secant. A Young's modulus of 0.1 MPa or more and less than 0.8 MPa was evaluated as A, 0.8 MPa or more and 1.5 MPa or less as B, and 1.5 MPa or more as C. A case where the Young's modulus was 0.1 to 1.5 MPa was regarded as acceptable.
  • condition 1 The resin layer having a thickness of 200 ⁇ 20 ⁇ m was formed on the PET substrate by curing under the condition of / cm 2 (hereinafter referred to as “condition 1”).
  • condition 2 a resin film was obtained in the same manner as above except that the curing conditions were changed to 100 ⁇ 10 mJ / cm 2 and 1000 ⁇ 100 mW / cm 2 (hereinafter referred to as “condition 2”).
  • Resin composition for secondary resin 50 parts by mass of urethane acrylate oligomer (U-10), 20 parts by mass of isobornyl acrylate, 15 parts by mass of bisphenol A / acrylic acid adduct, 14 parts by mass of trimethylolpropane triacrylate and 2,4,6- 1 part by mass of trimethylbenzoyldiphenylphosphine oxide was mixed to obtain a resin composition for a secondary resin.
  • the outer peripheral surface of the glass fiber 13 is coated with the mold resin composition for the primary resin layer and the resin composition for the secondary resin layer, respectively, to form a covering resin layer 16 including the primary resin layer 14 and the secondary resin layer 15. Then, the optical fiber 10 was produced.
  • the thickness of the primary resin layer 14 was 35 ⁇ m
  • the thickness of the secondary resin layer 15 was 25 ⁇ m.
  • the manufactured optical fiber is subjected to a tensile test 15 times each under three conditions of a tensile speed of 5 mm / min, 50 mm / min, and 500 mm / min in accordance with the test method of IEC 60793-1-33 to obtain a dynamic fatigue coefficient (Nd). It was. Nd evaluated 22 or more as A, 20 or more and less than 22 as B, and less than 20 as C. When Nd was 20 or more, the dynamic fatigue characteristics were judged to be good.

Abstract

This ultraviolet curable resin composition for coating an optical fiber contains a reaction product of: a urethane prepolymer including a urethane (meth)acrylate oligomer, a monomer, and a photopolymerization initiator, the urethane(meth)acrylate oligomer having a hydroxyl group at the end thereof; and an isocyanate compound having at least two (meth)acryloyl groups.

Description

紫外線硬化型樹脂組成物及び光ファイバUV-curable resin composition and optical fiber
 本開示は、光ファイバ被覆用の紫外線硬化型樹脂組成物及び光ファイバに関する。
 本出願は、2018年2月13日出願の日本出願第2018-022904号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to an ultraviolet curable resin composition for optical fiber coating and an optical fiber.
This application claims priority based on Japanese Patent Application No. 2018-022904 filed on Feb. 13, 2018, and incorporates all the description content described in the above Japanese application.
 一般に、光ファイバは、光伝送体であるガラスファイバを保護するための被覆樹脂層を有している。被覆樹脂層は、例えば、プライマリ樹脂層及びセカンダリ樹脂層から構成される。 Generally, an optical fiber has a coating resin layer for protecting a glass fiber that is an optical transmission body. The covering resin layer is composed of, for example, a primary resin layer and a secondary resin layer.
 光ファイバのマイクロベンド特性を改善するためには、プライマリ樹脂層のヤング率を小さくすることが重要となっている。例えば、特許文献1には、脂肪族ポリエーテルジオールとジイソシアネートとの反応物に、1価アルコールと水酸基含有(メタ)アクリレートとを反応させたウレタンオリゴマーを含有する樹脂組成物を用いて、プライマリ樹脂層の柔軟性(低ヤング率)と機械強度とを両立させることが開示されている。 In order to improve the microbend characteristics of optical fibers, it is important to reduce the Young's modulus of the primary resin layer. For example, Patent Document 1 discloses a primary resin using a resin composition containing a urethane oligomer obtained by reacting a monohydric alcohol and a hydroxyl group-containing (meth) acrylate with a reaction product of an aliphatic polyether diol and a diisocyanate. It is disclosed that the flexibility (low Young's modulus) of the layer is compatible with the mechanical strength.
特開2012-111674号公報JP 2012-1111674 A
 本開示の一態様に係る光ファイバ被覆用の紫外線硬化型樹脂組成物は、ウレタン(メタ)アクリレートオリゴマー、モノマー、及び、光重合開始剤を含み、ウレタン(メタ)アクリレートオリゴマーが、水酸基を末端に有するウレタンプレポリマーと、(メタ)アクリロイル基を2つ以上有するイソシアネート化合物との反応物を含有する。 An ultraviolet curable resin composition for coating an optical fiber according to one embodiment of the present disclosure includes a urethane (meth) acrylate oligomer, a monomer, and a photopolymerization initiator, and the urethane (meth) acrylate oligomer is terminated with a hydroxyl group. It contains a reaction product of a urethane prepolymer having an isocyanate compound having two or more (meth) acryloyl groups.
本実施形態に係る光ファイバの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the optical fiber which concerns on this embodiment.
[本開示が解決しようとする課題]
 光ファイバには、動疲労特性を向上するために動疲労係数を高くすることが求められている。しかしながら、1価アルコール等のアルコール成分にはガラスを腐食させる作用があるため、プライマリ樹脂層にアルコール成分が残存すると、光ファイバの動疲労係数が小さくなることがある。また、光ファイバの生産性を向上する点から、被覆樹脂層を形成する樹脂組成物には、紫外線による硬化速度を高めることが求められる。しかしながら、ヤング率を低減するために、1価アルコールを反応させたウレタンオリゴマーの場合、紫外線硬化時の反応点が減少するため、樹脂組成物の硬化速度が低下する傾向にある。
[Problems to be solved by the present disclosure]
Optical fibers are required to have a high dynamic fatigue coefficient in order to improve dynamic fatigue characteristics. However, since an alcohol component such as monohydric alcohol has a function of corroding glass, if the alcohol component remains in the primary resin layer, the dynamic fatigue coefficient of the optical fiber may be reduced. Moreover, from the point which improves the productivity of an optical fiber, the resin composition which forms a coating resin layer is calculated | required to raise the cure rate by an ultraviolet-ray. However, in the case of a urethane oligomer reacted with a monohydric alcohol in order to reduce the Young's modulus, the reaction point at the time of ultraviolet curing decreases, so the curing rate of the resin composition tends to decrease.
 本開示は、低いヤング率を有しながらも、硬化速度が速く、優れた動疲労特性を発現できる光ファイバ被覆用の紫外線硬化型樹脂組成物、及び、該樹脂組成物から形成された被覆樹脂層を備える光ファイバを提供することを目的とする。 The present disclosure relates to an ultraviolet curable resin composition for optical fiber coating that has a low Young's modulus and has a high curing speed and can exhibit excellent dynamic fatigue characteristics, and a coating resin formed from the resin composition An object is to provide an optical fiber comprising a layer.
[本開示の効果]
 本開示によれば、低いヤング率を有しながらも、硬化速度が速く、優れた動疲労特性を発現できる光ファイバ被覆用の紫外線硬化型樹脂組成物、及び、該樹脂組成物から形成された被覆樹脂層を備える光ファイバを提供することが可能となる。
[Effects of the present disclosure]
According to the present disclosure, an ultraviolet curable resin composition for coating an optical fiber that has a low Young's modulus and has a high curing speed and can exhibit excellent dynamic fatigue characteristics, and the resin composition is formed. An optical fiber including a coating resin layer can be provided.
[本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。本開示の一態様に係る光ファイバ被覆用の紫外線硬化型樹脂組成物(以下、単に「樹脂組成物」とも称する。)は、ウレタン(メタ)アクリレートオリゴマー、モノマー、及び、光重合開始剤を含み、ウレタン(メタ)アクリレートオリゴマーが、水酸基を末端に有するウレタンプレポリマーと、(メタ)アクリロイル基を2つ以上有するイソシアネート化合物との反応物を含有する。
[Description of Embodiment of Present Disclosure]
First, the contents of the embodiment of the present disclosure will be listed and described. An ultraviolet curable resin composition for coating an optical fiber according to one embodiment of the present disclosure (hereinafter also simply referred to as “resin composition”) includes a urethane (meth) acrylate oligomer, a monomer, and a photopolymerization initiator. The urethane (meth) acrylate oligomer contains a reaction product of a urethane prepolymer having a hydroxyl group at the terminal and an isocyanate compound having two or more (meth) acryloyl groups.
 上記特定のウレタン(メタ)アクリレートオリゴマーを用いることで、低いヤング率を有しながらも、硬化速度が速く、優れた動疲労特性を発現できる樹脂組成物を得ることができる。 By using the above-mentioned specific urethane (meth) acrylate oligomer, it is possible to obtain a resin composition that has a low Young's modulus but has a high curing rate and can exhibit excellent dynamic fatigue characteristics.
 上記反応物は、下記式(1)で表される構造を有していてもよい。式(1)中、Rは水素原子又はメチル基を示し、Lは炭素数1又は2の有機基を示し、Xは炭素数1又は2の有機基を示し、mは2又は3を示す。下記構造を有するオリゴマーを用いることで、樹脂組成物の硬化速度がより速くなる。
Figure JPOXMLDOC01-appb-C000003
The reactant may have a structure represented by the following formula (1). In formula (1), R 1 represents a hydrogen atom or a methyl group, L 1 represents an organic group having 1 or 2 carbon atoms, X represents an organic group having 1 or 2 carbon atoms, m represents 2 or 3 Show. By using an oligomer having the following structure, the curing rate of the resin composition becomes faster.
Figure JPOXMLDOC01-appb-C000003
 上記ウレタン(メタ)アクリレートオリゴマーは、水酸基を末端に有するウレタンプレポリマーと、(メタ)アクリロイル基を2つ以上有するイソシアネート化合物と、(メタ)アクリロイル基を1つ有するイソシアネート化合物との反応物を更に含有してもよい。このようなオリゴマーを用いることで、樹脂組成物の硬化速度とヤング率とのバランスを調整し易くなる。 The urethane (meth) acrylate oligomer further comprises a reaction product of a urethane prepolymer having a hydroxyl group at the end, an isocyanate compound having two or more (meth) acryloyl groups, and an isocyanate compound having one (meth) acryloyl group. You may contain. By using such an oligomer, it becomes easy to adjust the balance between the curing rate of the resin composition and the Young's modulus.
 上記反応物は、下記式(2)で表される構造を有していてもよい。式(2)中、Rは水素原子又はメチル基を示し、Lは炭素数2~4の有機基を示す。下記構造を有するオリゴマーを用いることで、樹脂組成物の硬化速度とヤング率とのバランスを調整し易くなる。
Figure JPOXMLDOC01-appb-C000004
The reactant may have a structure represented by the following formula (2). In the formula (2), R 2 represents a hydrogen atom or a methyl group, and L 2 represents an organic group having 2 to 4 carbon atoms. By using an oligomer having the following structure, it becomes easy to adjust the balance between the curing rate of the resin composition and the Young's modulus.
Figure JPOXMLDOC01-appb-C000004
 上記樹脂組成物をメタルハライドランプで1000mJ/cm及び1000mW/cmの条件で硬化させた時の2.5%割線ヤング率は、23℃±2℃で0.1MPa以上0.8MPa未満であってもよい。このような樹脂組成物は、適度な靭性を有するプライマリ樹脂層を形成することができるため、光ファイバのマイクロベンド特性を向上し易くなる。 The 2.5% secant Young's modulus when the resin composition was cured with a metal halide lamp at 1000 mJ / cm 2 and 1000 mW / cm 2 was 0.1 MPa or more and less than 0.8 MPa at 23 ° C. ± 2 ° C. May be. Since such a resin composition can form a primary resin layer having appropriate toughness, it is easy to improve the microbend characteristics of the optical fiber.
 本開示の一態様に係る光ファイバは、コア及びクラッドを含むガラスファイバと、ガラスファイバに接して該ガラスファイバを被覆するプライマリ樹脂層と、プライマリ樹脂層を被覆するセカンダリ樹脂層とを備え、プライマリ樹脂層が、上記紫外線硬化型樹脂組成物の硬化物からなる。本実施形態に係る樹脂組成物をプライマリ樹脂層に適用することで、光ファイバの動疲労特性を向上することができる。 An optical fiber according to an aspect of the present disclosure includes a glass fiber including a core and a cladding, a primary resin layer that is in contact with the glass fiber and covers the glass fiber, and a secondary resin layer that covers the primary resin layer. A resin layer consists of hardened | cured material of the said ultraviolet curable resin composition. By applying the resin composition according to the present embodiment to the primary resin layer, the dynamic fatigue characteristics of the optical fiber can be improved.
[本開示の実施形態の詳細]
 本開示の実施形態に係る光ファイバ被覆用の紫外線硬化型樹脂組成物及びそれを適用した光ファイバの具体例を、必要により図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されず、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
[Details of Embodiment of the Present Disclosure]
A specific example of an ultraviolet curable resin composition for coating an optical fiber according to an embodiment of the present disclosure and an optical fiber to which the ultraviolet curable resin composition is applied will be described with reference to the drawings as necessary. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included. In the following description, the same reference numerals are given to the same elements in the description of the drawings, and redundant descriptions are omitted.
(紫外線硬化型樹脂組成物)
 本実施形態に係る樹脂組成物は、ウレタン(メタ)アクリレートオリゴマー、モノマー及び光重合開始剤を含む。当該ウレタン(メタ)アクリレートオリゴマーは、水酸基を末端に有するウレタンプレポリマー(以下、単に「OH末端プレポリマー」とも称する。)と、(メタ)アクリロイル基を2つ以上有するイソシアネート化合物(以下、単に「NCO基含有多官能(メタ)アクリレート」とも称する。)との反応物を含有する。
(UV curable resin composition)
The resin composition according to this embodiment includes a urethane (meth) acrylate oligomer, a monomer, and a photopolymerization initiator. The urethane (meth) acrylate oligomer includes a urethane prepolymer having a hydroxyl group at the terminal (hereinafter also simply referred to as “OH-terminated prepolymer”) and an isocyanate compound having two or more (meth) acryloyl groups (hereinafter simply referred to as “ And a reaction product with an NCO group-containing polyfunctional (meth) acrylate ”.
 ここで、(メタ)アクリレートとは、アクリレート又はそれに対応するメタクリレートを意味する。(メタ)アクリル酸等の他の類似表現についても同様である。 Here, (meth) acrylate means acrylate or methacrylate corresponding thereto. The same applies to other similar expressions such as (meth) acrylic acid.
 本実施形態に係るウレタン(メタ)アクリレートオリゴマーは、OH末端プレポリマーに、NCO基含有多官能(メタ)アクリレートを反応させることで得られる。 The urethane (meth) acrylate oligomer according to this embodiment is obtained by reacting an OH-terminated prepolymer with an NCO group-containing polyfunctional (meth) acrylate.
 OH末端プレポリマーは、ポリオール化合物とポリイソシアネート化合物との反応により調製することができる。ポリオール化合物の水酸基(OH)がポリイソシアネート化合物のイソシアネート基(NCO)に対して過剰となる割合(モル比)で、ポリオール化合物とポリイソシアネート化合物とを反応させることで、OH末端プレポリマーを得ることができる。 The OH-terminated prepolymer can be prepared by a reaction between a polyol compound and a polyisocyanate compound. An OH-terminated prepolymer is obtained by reacting the polyol compound and the polyisocyanate compound at a ratio (molar ratio) in which the hydroxyl group (OH) of the polyol compound is excessive with respect to the isocyanate group (NCO) of the polyisocyanate compound. Can do.
 ポリオール化合物としては、例えば、ポリテトラメチレングリコール、ポリプロピレングリコール、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリカーボネートジオール、ポリブタジエンポリオール、アクリルポリオール及びビスフェノールA・エチレンオキサイド付加ジオールが挙げられる。ポリオール化合物の数平均分子量(Mn)は、1000~5000が好ましい。ポリオール化合物のMnは、2000~4000であってもよい。 Examples of the polyol compound include polytetramethylene glycol, polypropylene glycol, polyester polyol, polycaprolactone polyol, polycarbonate diol, polybutadiene polyol, acrylic polyol, and bisphenol A / ethylene oxide addition diol. The number average molecular weight (Mn) of the polyol compound is preferably 1000 to 5000. The Mn of the polyol compound may be 2000 to 4000.
 ポリイソシアネート化合物としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアナート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、ノルボルネンジイソシアネート、1,5-ペンタメチレンジイソシアネート、テトラメチルキシリレンジイソシアネート及びトリメチルヘキサメチレンジイソシアネートが挙げられる。 Examples of the polyisocyanate compound include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, Examples include 1,5-naphthalene diisocyanate, norbornene diisocyanate, 1,5-pentamethylene diisocyanate, tetramethylxylylene diisocyanate, and trimethylhexamethylene diisocyanate.
 NCO基含有多官能(メタ)アクリレートとしては、イソシアネート基と、少なくとも2つの(メタ)アクリロイル基とを有する化合物であれば特に限定されない。NCO基含有多官能(メタ)アクリレートは、2つ又は3つの(メタ)アクリロイル基を有していてもよい。NCO基含有多官能(メタ)アクリレートとして、例えば、下記式(3)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000005
式(3)中、Rは水素原子又はメチル基を示し、Lは炭素数1又は2の有機基を示し、Xは炭素数1又は2の有機基を示し、mは2又は3を示す。Lは、1又は2のアルキレン基又はジアルキレンエーテル基であってもよい。Xは炭素数1又は2の炭化水素基であってもよい。mは2であることが好ましい。
The NCO group-containing polyfunctional (meth) acrylate is not particularly limited as long as it is a compound having an isocyanate group and at least two (meth) acryloyl groups. The NCO group-containing polyfunctional (meth) acrylate may have two or three (meth) acryloyl groups. As the NCO group-containing polyfunctional (meth) acrylate, for example, a compound represented by the following formula (3) can be used.
Figure JPOXMLDOC01-appb-C000005
In Formula (3), R 1 represents a hydrogen atom or a methyl group, L 1 represents an organic group having 1 or 2 carbon atoms, X represents an organic group having 1 or 2 carbon atoms, m represents 2 or 3 Show. L 1 may be 1 or 2 alkylene groups or dialkylene ether groups. X may be a hydrocarbon group having 1 or 2 carbon atoms. m is preferably 2.
 式(3)で表される化合物を用いることで、ウレタン(メタ)アクリレートオリゴマーに上記式(1)で表される構造を導入することができる。式(1)で表される構造は、光重合性基である(メタ)アクリロイル基を複数有しているため、樹脂組成物の硬化速度を高めることができる。式(1)で表される構造を有するオリゴマーをプライマリ樹脂層に用いることで、強度の高い被覆樹脂層を形成できる。 The structure represented by the above formula (1) can be introduced into the urethane (meth) acrylate oligomer by using the compound represented by the formula (3). Since the structure represented by Formula (1) has a plurality of (meth) acryloyl groups that are photopolymerizable groups, the curing rate of the resin composition can be increased. By using the oligomer having the structure represented by the formula (1) for the primary resin layer, a high-strength coating resin layer can be formed.
 式(3)で表される化合物としては、例えば、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート及び1,1-(ビスメタクリロイルオキシメチル)エチルイソシアネートが挙げられる。 Examples of the compound represented by the formula (3) include 1,1- (bisacryloyloxymethyl) ethyl isocyanate and 1,1- (bismethacryloyloxymethyl) ethyl isocyanate.
 本実施形態に係るウレタン(メタ)アクリレートオリゴマーを調製する際には、NCO基含有多官能(メタ)アクリレートと共に、(メタ)アクリロイル基を1つ有するイソシアネート化合物(以下、単に「NCO基含有単官能(メタ)アクリレート」とも称する。)を用いてもよい。NCO基含有多官能(メタ)アクリレートとNCO基含有単官能(メタ)アクリレートとを併用することで、樹脂組成物の硬化速度とヤング率とのバランスを調整し易くなる。NCO基含有単官能(メタ)アクリレートとして、例えば、下記式(4)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000006
式(4)中、Rは水素原子又はメチル基を示し、Lは炭素数2~4の有機基を示す。Lは、炭素数2~4のアルキレン基又はジアルキレンエーテル基であってもよい。
When preparing the urethane (meth) acrylate oligomer according to this embodiment, an isocyanate compound having one (meth) acryloyl group together with an NCO group-containing polyfunctional (meth) acrylate (hereinafter simply referred to as “NCO group-containing monofunctional”). (Meth) acrylate ”may also be used. By using together the NCO group-containing polyfunctional (meth) acrylate and the NCO group-containing monofunctional (meth) acrylate, it becomes easy to adjust the balance between the curing rate and the Young's modulus of the resin composition. As the NCO group-containing monofunctional (meth) acrylate, for example, a compound represented by the following formula (4) can be used.
Figure JPOXMLDOC01-appb-C000006
In the formula (4), R 2 represents a hydrogen atom or a methyl group, and L 2 represents an organic group having 2 to 4 carbon atoms. L 2 may be an alkylene group having 2 to 4 carbon atoms or a dialkylene ether group.
 式(4)で表される化合物を用いることで、ウレタンオリゴマーに上記式(2)で表される構造を導入することができる。式(1)で表される構造と式(2)で表される構造とを有するオリゴマーを用いることで、樹脂組成物の硬化速度とヤング率とを調整し易くなる。 By using the compound represented by the formula (4), the structure represented by the above formula (2) can be introduced into the urethane oligomer. By using the oligomer having the structure represented by the formula (1) and the structure represented by the formula (2), it becomes easy to adjust the curing rate and Young's modulus of the resin composition.
 式(4)で表される化合物としては、例えば、2-アクリロイルオキシエチルイソシアネート、2-メタクリロイルオキシエチルイソシアネート及び2-(2-イソシアネートエトキシ)エチルメタクリレートが挙げられる。 Examples of the compound represented by the formula (4) include 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate and 2- (2-isocyanatoethoxy) ethyl methacrylate.
 ウレタン(メタ)アクリレートオリゴマーを合成する際の触媒として、一般に有機スズ化合物が使用される。有機スズ化合物としては、例えば、ジブチルスズジラウレート、ジブチルスズジアセテート、ジブチルスズマレート、ジブチルスズビス(メルカプト酢酸2-エチルヘキシル)、ジブチルスズビス(メルカプト酢酸イソオクチル)及びジブチルスズオキシドが挙げられる。易入手性や触媒性能の点から、触媒としてジブチルスズジラウレート又はジブチルスズジアセテートを使用することが好ましい。 An organotin compound is generally used as a catalyst for synthesizing a urethane (meth) acrylate oligomer. Examples of the organic tin compound include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin malate, dibutyltin bis (2-ethylhexyl mercaptoacetate), dibutyltin bis (isooctyl mercaptoacetate), and dibutyltin oxide. From the viewpoint of easy availability and catalyst performance, it is preferable to use dibutyltin dilaurate or dibutyltin diacetate as the catalyst.
 本実施形態に係るウレタン(メタ)アクリレートオリゴマーは、ポリオール化合物とポリイソシアネート化合物とを反応させて、OH末端プレポリマーを得る第1の工程と、OH末端プレポリマーとNCO基含有多官能(メタ)アクリレートとを反応させてウレタン(メタ)アクリレートオリゴマーを得る第2の工程により作製することができる。 The urethane (meth) acrylate oligomer according to the present embodiment is a first step in which a polyol compound and a polyisocyanate compound are reacted to obtain an OH-terminated prepolymer, and an OH-terminated prepolymer and an NCO group-containing polyfunctional (meth). It can be produced by the second step of reacting with acrylate to obtain a urethane (meth) acrylate oligomer.
 第1の工程において、ポリオール化合物のOHが、ポリイソシアネート化合物のNCOに対して過剰となるモル比で反応させる。OH末端プレポリマーを調製する際のポリオール化合物のOHと、ポリイソシアネート化合物のNCOとのモル比(OH/NCO)は、1を超え2以下であることが好ましく、1.1~2.0であることがより好ましい。一方、OH/NCOが1未満では、NCOの割合が過剰となりイソシアネート基を末端に有するウレタンプレポリマー(以下、単に「NCO末端プレポリマー」とも称する。)が生成することになり、OH/NCOが2を超えると、OH末端プレポリマーと未反応ポリオール化合物との混合物が得られる。 In the first step, OH of the polyol compound is reacted in an excess molar ratio with respect to the NCO of the polyisocyanate compound. The molar ratio (OH / NCO) of OH of the polyol compound and NCO of the polyisocyanate compound in preparing the OH-terminated prepolymer is preferably more than 1 and 2 or less, and 1.1 to 2.0 More preferably. On the other hand, if OH / NCO is less than 1, the proportion of NCO becomes excessive and a urethane prepolymer having an isocyanate group at the terminal (hereinafter also simply referred to as “NCO-terminated prepolymer”) is formed. If it exceeds 2, a mixture of OH-terminated prepolymer and unreacted polyol compound is obtained.
 OH末端プレポリマーが得られたことは、NCOの残存量を測定することにより確認することができる。NCOの残存量は、JIS K1603-1に準拠し、電位差滴定法により測定することができる。第2の工程は、NCOの残存量が0.1質量%以下であることを確認してから行うことが好ましい。 The fact that an OH-terminated prepolymer was obtained can be confirmed by measuring the remaining amount of NCO. The remaining amount of NCO can be measured by potentiometric titration in accordance with JIS K1603-1. The second step is preferably performed after confirming that the remaining amount of NCO is 0.1% by mass or less.
 第2の工程において、OH末端プレポリマーと、NCO基含有多官能(メタ)アクリレートとを反応させる。OH末端プレポリマーと、NCO基含有多官能(メタ)アクリレートとを反応させる際のOH末端プレポリマーのOHと、NCO基含有多官能(メタ)アクリレートのNCOとのモル比(NCO/OH)は、0.50以上1.15以下が好ましく、0.50以上1.10以下がより好ましく、0.50以上0.90以下が更に好ましい。NCO/OHが0.50以上であると、OH基末端プレポリマーが残存し難く、樹脂組成物の硬化物の破断強度及び破断伸びを高めることができる。NCO/OHが1.15以下であると、未反応のNCO基含有多官能(メタ)アクリレートが残存し難く、経時的に樹脂組成物の粘度が増加する等の物性の変化を抑制できる。 In the second step, an OH-terminated prepolymer and an NCO group-containing polyfunctional (meth) acrylate are reacted. The molar ratio (NCO / OH) of the OH of the OH-terminated prepolymer and the NCO of the NCO group-containing polyfunctional (meth) acrylate when the OH-terminated prepolymer is reacted with the NCO group-containing polyfunctional (meth) acrylate is: 0.50 or more and 1.15 or less are preferable, 0.50 or more and 1.10 or less are more preferable, and 0.50 or more and 0.90 or less are still more preferable. When NCO / OH is 0.50 or more, the OH group-terminated prepolymer hardly remains, and the breaking strength and breaking elongation of the cured product of the resin composition can be increased. When NCO / OH is 1.15 or less, unreacted NCO group-containing polyfunctional (meth) acrylate hardly remains, and changes in physical properties such as an increase in the viscosity of the resin composition over time can be suppressed.
 第2の工程では、OH末端プレポリマーに、NCO基含有多官能(メタ)アクリレート及びNCO基含有単官能(メタ)アクリレートを反応させてもよい。OH基末端プレポリマーのOHに対するNCO基含有多官能(メタ)アクリレート及びNCO基含有単官能(メタ)アクリレートのNCO合計量のモル比は、0.50以上1.15以下が好ましく、0.50以上1.10以下がより好ましく、0.50以上0.90以下が更に好ましい。この場合、NCO基含有多官能(メタ)アクリレートのNCO基含有単官能(メタ)アクリレートのNCOに対する割合は、モル比で0.05以上であることが好ましく、0.10以上であることがより好ましい。当該モル比が0.05以上であると、樹脂組成物の硬化速度を高め易くなる。 In the second step, the OH-terminated prepolymer may be reacted with an NCO group-containing polyfunctional (meth) acrylate and an NCO group-containing monofunctional (meth) acrylate. The molar ratio of the NCO total amount of the NCO group-containing polyfunctional (meth) acrylate and the NCO group-containing monofunctional (meth) acrylate to the OH of the OH group-terminated prepolymer is preferably 0.50 or more and 1.15 or less, 0.50 It is more preferably 1.10 or less and further preferably 0.50 or more and 0.90 or less. In this case, the ratio of the NCO group-containing polyfunctional (meth) acrylate to the NCO of the NCO group-containing monofunctional (meth) acrylate is preferably 0.05 or more and more preferably 0.10 or more in terms of molar ratio. preferable. When the molar ratio is 0.05 or more, it becomes easy to increase the curing rate of the resin composition.
 ウレタン(メタ)アクリレートオリゴマー中のNCOの残存量は、0.1質量%以下であることが好ましい。NCOの残存量が0.1質量%以下であると、経時的に樹脂組成物の粘度が増加する等の物性の変化を抑制し易くなる。 The residual amount of NCO in the urethane (meth) acrylate oligomer is preferably 0.1% by mass or less. When the residual amount of NCO is 0.1% by mass or less, it becomes easy to suppress changes in physical properties such as an increase in the viscosity of the resin composition over time.
 一方、NCO末端プレポリマーに、1価アルコール及び水酸基含有(メタ)アクリレートを反応させて、本実施形態に係るウレタン(メタ)アクリレートオリゴマーとは異なる構造を有するウレタン(メタ)アクリレートオリゴマーを調製することができる。このようなウレタン(メタ)アクリレートオリゴマーは、1価アルコールに基づく水酸基を末端に有するため、架橋密度を下げ、プライマリ樹脂層のヤング率を低減することが可能となる。しかしながら、ウレタン(メタ)アクリレートオリゴマーが有する光重合性基が減るため、架橋点が減少し、樹脂組成物の硬化速度が遅くなる傾向にある。また、プライマリ樹脂層内に未反応の1価アルコールが残存していると、ガラスファイバを腐食して、光ファイバの強度低下を引き起こし、動疲労特性が低下することがある。 On the other hand, the NCO-terminated prepolymer is reacted with a monohydric alcohol and a hydroxyl group-containing (meth) acrylate to prepare a urethane (meth) acrylate oligomer having a structure different from that of the urethane (meth) acrylate oligomer according to this embodiment. Can do. Since such a urethane (meth) acrylate oligomer has a hydroxyl group based on a monohydric alcohol at the terminal, it is possible to lower the crosslinking density and reduce the Young's modulus of the primary resin layer. However, since the photopolymerizable group of the urethane (meth) acrylate oligomer is decreased, the crosslinking point is decreased and the curing rate of the resin composition tends to be slow. In addition, if unreacted monohydric alcohol remains in the primary resin layer, the glass fiber is corroded to cause a decrease in strength of the optical fiber, and dynamic fatigue characteristics may be deteriorated.
 これに対して、本実施形態に係るウレタン(メタ)アクリレートオリゴマーは、少なくとも一方の末端に(メタ)アクリロイル基を2つ以上有する構造が導入されているため、樹脂組成物の硬化速度を高めることができる。また、本実施形態に係るウレタン(メタ)アクリレートオリゴマーを調製する際には1価アルコールを使用しないため、低ヤング率でありながら、光ファイバの動疲労特性を向上することができる。 On the other hand, the urethane (meth) acrylate oligomer according to the present embodiment has a structure having two or more (meth) acryloyl groups at least at one end, so that the curing rate of the resin composition is increased. Can do. Moreover, since monohydric alcohol is not used when preparing the urethane (meth) acrylate oligomer according to this embodiment, the dynamic fatigue characteristics of the optical fiber can be improved while having a low Young's modulus.
 以下、ウレタン(メタ)アクリレートオリゴマーの調製について、具体例を挙げて説明する。第1の様態として、例えば、ポリオール化合物としてポリプロピレングリコール、ポリイソシアネート化合物としてイソホロンジイソシアネート、NCO基含有多官能(メタ)アクリレートとして1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを使用する。 Hereinafter, the preparation of the urethane (meth) acrylate oligomer will be described with specific examples. In the first embodiment, for example, polypropylene glycol is used as the polyol compound, isophorone diisocyanate is used as the polyisocyanate compound, and 1,1- (bisacryloyloxymethyl) ethyl isocyanate is used as the NCO group-containing polyfunctional (meth) acrylate.
 第1の工程では、ポリプロピレングリコールとイソホロンジイソシアネートとを反応させて、下記(a)で表されるOH末端プレポリマーを合成する。ポリプロピレングリコールをイソホロンジイソシアネートより過剰のモル比で仕込むことで、両末端に水酸基を有するウレタンプレポリマーを得ることができる。ポリプロピレングリコールのOHとイソホロンジイソシアネートのNCOとのモル比(OH/NCO)が1を超え2以下では、OH末端プレポリマー(a)が主に生成する。これに対し、OH/NCOが1未満ではNCO末端プレポリマーが生成し、OH/NCOが2を超えると、OH末端プレポリマー(a)と未反応のポリプロピレングリコールとの混合物となる。
 (a) HO-P-(U-I-U-P)n-OH
ここで、Pはポリプロピレングリコールの残基、Iはイソホロンジイソシアネートの残基、Uはウレタン結合を表し、nは1以上の整数を表す。
In the first step, polypropylene glycol and isophorone diisocyanate are reacted to synthesize an OH-terminated prepolymer represented by the following (a). A urethane prepolymer having hydroxyl groups at both ends can be obtained by charging polypropylene glycol in an excess molar ratio relative to isophorone diisocyanate. When the molar ratio (OH / NCO) of OH of polypropylene glycol to NCO of isophorone diisocyanate is more than 1 and 2 or less, OH-terminated prepolymer (a) is mainly produced. On the other hand, when the OH / NCO is less than 1, an NCO-terminated prepolymer is formed. When the OH / NCO exceeds 2, a mixture of the OH-terminated prepolymer (a) and unreacted polypropylene glycol is obtained.
(A) HO-P- (UIUP) n-OH
Here, P represents a residue of polypropylene glycol, I represents a residue of isophorone diisocyanate, U represents a urethane bond, and n represents an integer of 1 or more.
 第2の工程では、OH基末端プレポリマー(a)に1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを反応させることで、下記(b1)及び(b2)で表されるウレタンアクリレートオリゴマーの混合物を得ることができる。
 (b1)A2-U-P-(U-I-U-P)n-U-A2
 (b2)A2-U-P-(U-I-U-P)n-OH
ここで、A2は1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートの残基を表す。
In the second step, 1,1- (bisacryloyloxymethyl) ethyl isocyanate is reacted with the OH group-terminated prepolymer (a), whereby a mixture of urethane acrylate oligomers represented by the following (b1) and (b2): Can be obtained.
(B1) A2-UP- (UIUP) n-U-A2
(B2) A2-UP- (UIUP) n-OH
Here, A2 represents a residue of 1,1- (bisacryloyloxymethyl) ethyl isocyanate.
 OH末端プレポリマーのOHと2-アクリロイルオキシエチルアクリレートのNCOとのモル比(NCO/OH)が、1以上1.15以下で反応させることで、主に(b1)で表されるウレタンアクリレートオリゴマーが得られる。NCO/OHが0.5以上1未満で反応させることで、(b1)及び(b2)で表されるウレタンアクリレートオリゴマーの混合物を得ることができる。 A urethane acrylate oligomer mainly represented by (b1) by reacting at a molar ratio (NCO / OH) of OH of the OH-terminated prepolymer to NCO of 2-acryloyloxyethyl acrylate of 1 or more and 1.15 or less. Is obtained. By making NCO / OH react at 0.5 or more and less than 1, a mixture of urethane acrylate oligomers represented by (b1) and (b2) can be obtained.
 ウレタンアクリレートオリゴマー(b1)は、両末端に樹脂組成物の紫外線硬化に寄与するアクリロイル基を有するオリゴマーであるため、硬化物の架橋密度を上げることができる。ウレタンアクリレートオリゴマー(b2)は、一方の末端に樹脂組成物の紫外線硬化に寄与しない水酸基を有するため、硬化物のヤング率を低減することができる。 The urethane acrylate oligomer (b1) is an oligomer having an acryloyl group that contributes to ultraviolet curing of the resin composition at both ends, so that the crosslink density of the cured product can be increased. Since the urethane acrylate oligomer (b2) has a hydroxyl group that does not contribute to ultraviolet curing of the resin composition at one end, the Young's modulus of the cured product can be reduced.
 また、第2の様態として、第2工程において、OH基末端プレポリマーに、NCO基含有多官能(メタ)アクリレート及びNCO基含有単官能(メタ)アクリレートを反応させてもよい。例えば、NCO基含有単官能(メタ)アクリレートとして、2-アクリロイルオキシエチルイソシアネートを用いた場合、下記(b1)~(b5)で表されるウレタンアクリレートオリゴマーの混合物を得ることができる。
 (b1)A2-U-P-(U-I-U-P)n-U-A2
 (b2)A2-U-P-(U-I-U-P)n-OH
 (b3)A2-U-P-(U-I-U-P)n-U-A1
 (b4)A1-U-P-(U-I-U-P)n-U-A1
 (b5)A1-U-P-(U-I-U-P)n-U-OH
ここで、A1は2-アクリロイルオキシエチルイソシアネートの残基を表す。
As a second mode, in the second step, the OH group-terminated prepolymer may be reacted with an NCO group-containing polyfunctional (meth) acrylate and an NCO group-containing monofunctional (meth) acrylate. For example, when 2-acryloyloxyethyl isocyanate is used as the NCO group-containing monofunctional (meth) acrylate, a mixture of urethane acrylate oligomers represented by the following (b1) to (b5) can be obtained.
(B1) A2-UP- (UIUP) n-U-A2
(B2) A2-UP- (UIUP) n-OH
(B3) A2-UP- (UIUP) n-U-A1
(B4) A1-UP- (UIUP) n-U-A1
(B5) A1-UP- (UIUP) n-U-OH
Here, A1 represents a residue of 2-acryloyloxyethyl isocyanate.
 ウレタンアクリレートオリゴマー(b3)は、一方の末端にアクリロイル基を2つ有し、もう一方の末端にアクリロイル基を1つ有するため、樹脂組成物の硬化速度とヤング率とのバランスを調整することができる。ウレタンアクリレートオリゴマー(b1)及び(b4)は、両末端にアクリロイル基を有するオリゴマーであるため、硬化物の架橋密度を上げることができる。ウレタンオリゴマー(b2)及び(b5)は、片末端に水酸基を有するオリゴマーであるため、硬化物の架橋密度を下げる効果があり、ヤング率を低減することができる。NCO基含有多官能(メタ)アクリレートのNCO基含有単官能(メタ)アクリレートに対する割合が多くなるにつれて、ウレタンアクリレートオリゴマー(b1)及び(b2)の量が増え、第1の様態に近づくことになる。 Since the urethane acrylate oligomer (b3) has two acryloyl groups at one end and one acryloyl group at the other end, the balance between the curing rate of the resin composition and the Young's modulus can be adjusted. it can. Since the urethane acrylate oligomers (b1) and (b4) are oligomers having acryloyl groups at both ends, the crosslinking density of the cured product can be increased. Since the urethane oligomers (b2) and (b5) are oligomers having a hydroxyl group at one end, they have an effect of lowering the crosslinking density of the cured product, and the Young's modulus can be reduced. As the ratio of NCO group-containing polyfunctional (meth) acrylate to NCO group-containing monofunctional (meth) acrylate increases, the amount of urethane acrylate oligomers (b1) and (b2) increases and approaches the first mode. .
 モノマーとしては、重合性基であるエチレン性不飽和基を1つ有する単官能モノマー、エチレン性不飽和基を2つ以上有する多官能モノマーを用いることができる。モノマーは、2種以上を混合して用いてもよい。 As the monomer, a monofunctional monomer having one ethylenically unsaturated group which is a polymerizable group and a polyfunctional monomer having two or more ethylenically unsaturated groups can be used. Two or more kinds of monomers may be mixed and used.
 単官能モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、へキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ノニルフェノールポリエチレングリコール(メタ)アクリレート(例えば、Sartomer社製の「SR504」)、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、イソボルニル(メタ)アクリレート等の(メタ)アクリレート系モノマー;(メタ)アクリル酸、(メタ)アクリル酸ダイマー、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(メタ)アクリレート等のカルボキシル基含有モノマー;4-アクリロイルモルホリン、N-ビニルピロリドン、N-ビニルカプロラクタム、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン、3-(3-ピリジニル)プロピル(メタ)アクリレート等の複素環含有モノマー;マレイミド、N-シクロへキシルマレイミド、N-フェニルマレイミド等のマレイミド系モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド等のアミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸アミノプロピル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸tert-ブチルアミノエチル等の(メタ)アクリル酸アミノアルキル系モノマーが挙げられる。 Examples of the monofunctional monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate, tert-butyl (meth) acrylate, Isobutyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, isoamyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (Meth) acrylate, isooctyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, phenoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, Benzyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, nonylphenol polyethylene glycol (meth) acrylate (for example, “SR504” manufactured by Sartomer) ), (Meth) acrylate monomers such as nonylphenoxypolyethylene glycol (meth) acrylate, isobornyl (meth) acrylate; (meth) acrylic acid, (meth) acrylic acid dimer, carboxyethyl (meth) acrylate, carboxypentyl (meth) Carboxyl group-containing monomers such as acrylate, ω-carboxy-polycaprolactone (meth) acrylate; 4-acryloylmorpholine, N-vinylpyrrolidone, N-vinyl Heterocycle-containing monomers such as lucaprolactam, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine, 3- (3-pyridinyl) propyl (meth) acrylate; maleimide, N-cyclohexylmaleimide, N-phenylmaleimide Maleimide monomers such as: (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-hexyl (meth) acrylamide, N-methyl (meth) acrylamide, N-butyl Amide monomers such as (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide; aminoethyl (meth) acrylate, (meth) acrylic acid Nopuropiru, (meth) acrylic acid N, N-dimethylaminoethyl, and (meth) acrylic acid tert- butyl aminoethyl (meth) amino alkyl acrylate monomers.
 多官能モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、1,14-テトラデカンジオールジ(メタ)アクリレート、1,16-ヘキサデカンジオールジ(メタ)アクリレート、1,20-エイコサンジオールジ(メタ)アクリレート、イソペンチルジオールジ(メタ)アクリレート、3-エチル-1,8-オクタンジオールジ(メタ)アクリレート、ビスフェノールAのEO付加物ジ(メタ)アクリレート(例えば、大阪有機化学工業株式会社製の「ビスコート#700」)、ビスフェノールAジグリシジルエーテルアクリル酸付加物のジ(メタ)アクリレート(例えば、大阪有機化学工業株式会社製の「ビスコート#540」)等の2官能モノマー;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、トリメチロールプロパンポリプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシポリプロポキシトリ(メタ)アクリレート、トリス[(メタ)アクリロイルオキシエチル]イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトールポリプロポキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、カプロラクトン変性トリス[(メタ)アクリロイルオキシエチル]イソシアヌレート等の3官能以上のモノマーが挙げられる。 Examples of the polyfunctional monomer include ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, Tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonane Diol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, 1,14-tetradecanediol di (meth) acrylate, 1,16-hexadecanediol di (meth) acrylate 1,20-eicosanediol di (meth) acrylate, isopentyldiol di (meth) acrylate, 3-ethyl-1,8-octanediol di (meth) acrylate, EO adduct di (meth) of bisphenol A Acrylate (for example, “Biscoat # 700” manufactured by Osaka Organic Chemical Industries, Ltd.), di (meth) acrylate of bisphenol A diglycidyl ether acrylic acid adduct (for example, “Biscoat # 540” manufactured by Osaka Organic Chemical Industries, Ltd.) Bifunctional monomers such as trimethylolpropane tri (meth) acrylate, trimethyloloctane tri (meth) acrylate, trimethylolpropane polyethoxytri (meth) acrylate, trimethylolpropane polypropoxytri (meth) acrylate, trimethylo Polypropane polyethoxypolypropoxytri (meth) acrylate, tris [(meth) acryloyloxyethyl] isocyanurate, pentaerythritol tri (meth) acrylate, pentaerythritol polyethoxytetra (meth) acrylate, pentaerythritol polypropoxytetra (meth) Acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, caprolactone modified tris [ (Meth) acryloyloxyethyl] isocyanurate and other trifunctional or higher monomers.
 光重合開始剤としては、公知のラジカル光重合開始剤の中から適宜選択して使用することができる。光重合開始剤として、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド及びビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシドが挙げられる。 The photopolymerization initiator can be appropriately selected from known radical photopolymerization initiators. Examples of the photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, bis ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2,4,6- Mention may be made of trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide.
 光重合開始剤は、2種以上を混合して用いてもよいが、樹脂の速硬化性に優れることから、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドを含むことが好ましい。 Two or more photopolymerization initiators may be used as a mixture, but preferably contains 2,4,6-trimethylbenzoyldiphenylphosphine oxide because the resin is excellent in rapid curability.
 本実施形態に係る樹脂組成物は、シランカップリング剤、光酸発生剤、レベリング剤、消泡剤、酸化防止剤等を更に含んでもよい。 The resin composition according to this embodiment may further contain a silane coupling agent, a photoacid generator, a leveling agent, an antifoaming agent, an antioxidant, and the like.
 シランカップリング剤としては、紫外線による樹脂組成物の硬化の妨げにならないものであれば、特に限定されず、公知公用のシランカップリング剤を含めあらゆるものを用いることができる。シランカップリング剤として、例えば、テトラメチルシリケート、テトラエチルシリケート、(3-メルカプトプロピル)トリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、ジメトキシジメチルシラン、ジエトキシジメチルシラン、3-アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、ビス-[3-(トリエトキシシリル)プロピル]テトラスルフィド、ビス-[3-(トリエトキシシリル)プロピル]ジスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド及びγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが挙げられる。 The silane coupling agent is not particularly limited as long as it does not hinder the curing of the resin composition by ultraviolet rays, and any silane coupling agent including publicly known and publicly used silane coupling agents can be used. Examples of the silane coupling agent include tetramethyl silicate, tetraethyl silicate, (3-mercaptopropyl) trimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxy-ethoxy) silane, β- (3,4 -Epoxycyclohexyl) -ethyltrimethoxysilane, dimethoxydimethylsilane, diethoxydimethylsilane, 3-acryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ -Methacryloxypropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethyldimethoxysilane, N-pheny -Γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, bis- [3- (triethoxysilyl) propyl] tetrasulfide, bis- Examples include [3- (triethoxysilyl) propyl] disulfide, γ-trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide and γ-trimethoxysilylpropylbenzothiazyl tetrasulfide.
 シランカップリング剤を使用することで、ガラスファイバとプライマリ樹脂層との密着力を調整したり、動疲労特性を改善したりすることができる。シランカップリング剤の含有量は、樹脂組成物の総量を基準として0.1~3質量%が好ましく、0.3~2質量%がより好ましい。 By using a silane coupling agent, it is possible to adjust the adhesion between the glass fiber and the primary resin layer, or to improve the dynamic fatigue characteristics. The content of the silane coupling agent is preferably 0.1 to 3% by mass, more preferably 0.3 to 2% by mass based on the total amount of the resin composition.
 光酸発生剤としては、Aの構造をしたオニウム塩を用いてもよい。光酸発生剤としては、例えば、CPI-100P、CPI-101A、CPI-200K、CPI-210S、CPI-310B、CPI-400PG(サンアプロ株式会社製)等のスルホニウム塩、WPI-113、WPI-116、WPI-169、WPI-170、WPI-124(富士フイルム和光純薬株式会社製)、(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヨードニウムヘキサフルオロフォスフェート等のヨードニウム塩が挙げられる。 As the photoacid generator, an onium salt having a structure of A + B may be used. Examples of the photoacid generator include sulfonium salts such as CPI-100P, CPI-101A, CPI-200K, CPI-210S, CPI-310B, CPI-400PG (manufactured by San Apro Co., Ltd.), WPI-113, and WPI-116. Iodonium salts such as WPI-169, WPI-170, WPI-124 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), (4-methylphenyl) [4- (2-methylpropyl) phenyl] iodonium hexafluorophosphate Can be mentioned.
 本実施形態に係る樹脂組成物の硬化後の特性は、メタルハライドランプで1000mJ/cm及び1000mW/cm(UVA)の条件で硬化させて得られる樹脂フィルム(樹脂組成物の硬化物)を用いて評価することができる。 The resin composition according to the present embodiment is cured using a resin film (cured product of the resin composition) obtained by curing with a metal halide lamp under the conditions of 1000 mJ / cm 2 and 1000 mW / cm 2 (UVA). Can be evaluated.
 本実施形態に係る樹脂フィルムの2.5%割線ヤング率は、23℃±2℃で0.1~1.5MPaであることが好ましく、0.1MPa以上0.8MPa未満であることがより好ましい。2.5%割線ヤング率が0.1MPa以上であると、本実施形態に係る樹脂組成物を用いて適度な靭性を有するプライマリ樹脂層を形成することができるため、光ファイバの低温での伝送損失の増加を小さくし易い。2.5%割線ヤング率が1.5MPa以下であると、光ファイバのマイクロベンド特性を向上し易い。 The 2.5% secant Young's modulus of the resin film according to this embodiment is preferably 0.1 to 1.5 MPa at 23 ° C. ± 2 ° C., and more preferably 0.1 MPa or more and less than 0.8 MPa. . When the 2.5% secant Young's modulus is 0.1 MPa or more, a primary resin layer having appropriate toughness can be formed using the resin composition according to the present embodiment, and therefore, the optical fiber is transmitted at a low temperature. It is easy to reduce the increase in loss. When the 2.5% secant Young's modulus is 1.5 MPa or less, it is easy to improve the microbend characteristics of the optical fiber.
 本実施形態に係る樹脂フィルムの破断強度は、23℃±2℃で1.0MPa以上であることが好ましく、3MPa以上であることがより好ましい。破断強度が1.0MPa以上であると、プライマリ樹脂層にボイドが発生することを抑制し易い。 The breaking strength of the resin film according to this embodiment is preferably 1.0 MPa or more at 23 ° C. ± 2 ° C., more preferably 3 MPa or more. When the breaking strength is 1.0 MPa or more, it is easy to suppress the generation of voids in the primary resin layer.
(光ファイバ)
 図1は、本実施形態に係る光ファイバの一例を示す概略断面図である。光ファイバ10は、コア11及びクラッド12を含むガラスファイバ13と、ガラスファイバ13の外周に設けられたプライマリ樹脂層14及びセカンダリ樹脂層15を含む被覆樹脂層16とを備えている。
(Optical fiber)
FIG. 1 is a schematic cross-sectional view showing an example of an optical fiber according to the present embodiment. The optical fiber 10 includes a glass fiber 13 including a core 11 and a clad 12, and a covering resin layer 16 including a primary resin layer 14 and a secondary resin layer 15 provided on the outer periphery of the glass fiber 13.
 クラッド12はコア11を取り囲んでいる。コア11及びクラッド12は石英ガラス等のガラスを主に含み、例えば、コア11にはゲルマニウムを添加した石英を用いることができ、クラッド12には純石英、又は、フッ素が添加された石英を用いることができる。 The clad 12 surrounds the core 11. The core 11 and the clad 12 mainly include glass such as quartz glass. For example, the core 11 can be made of quartz to which germanium is added, and the clad 12 is made of pure quartz or quartz to which fluorine is added. be able to.
 図1において、例えば、ガラスファイバ13の外径(D2)は125μm程度である。ガラスファイバ13を構成するコア11の直径(D1)は、7~15μm程度である。被覆樹脂層16は、プライマリ樹脂層14及びセカンダリ樹脂層15を含む、少なくとも二層の構造を有している。被覆樹脂層16の総厚は、通常、60μm程度であり、プライマリ樹脂層14及びセカンダリ樹脂層15の各層の厚さはほぼ同じで、それぞれ、20~40μmである。例えば、プライマリ樹脂層14の厚さが35μmで、セカンダリ樹脂層15の厚さが25μmであってもよい。光ファイバを多数集合してケーブルとする場合には、光ファイバの被覆径が細いことが好ましい。その場合、被覆樹脂層16の総厚は30~40μmであるのが好ましい。プライマリ樹脂層とセカンダリ樹脂層の厚さはそれぞれ10~30μmとすることができる。 In FIG. 1, for example, the outer diameter (D2) of the glass fiber 13 is about 125 μm. The diameter (D1) of the core 11 constituting the glass fiber 13 is about 7 to 15 μm. The covering resin layer 16 has a structure of at least two layers including the primary resin layer 14 and the secondary resin layer 15. The total thickness of the covering resin layer 16 is normally about 60 μm, and the thicknesses of the primary resin layer 14 and the secondary resin layer 15 are substantially the same, and are 20 to 40 μm, respectively. For example, the thickness of the primary resin layer 14 may be 35 μm, and the thickness of the secondary resin layer 15 may be 25 μm. When a large number of optical fibers are assembled into a cable, it is preferable that the coating diameter of the optical fiber is small. In that case, the total thickness of the coating resin layer 16 is preferably 30 to 40 μm. Each of the primary resin layer and the secondary resin layer can have a thickness of 10 to 30 μm.
 本実施形態に係る樹脂組成物は、プライマリ樹脂層に適用することができる。すなわち、プライマリ樹脂層は、水酸基を末端に有するウレタンプレポリマーと、(メタ)アクリロイル基を2つ以上有するイソシアネート化合物との反応物を含有するウレタンオリゴマー、モノマー及び光重合開始剤を含む樹脂組成物を硬化させて形成することができる。これにより、光ファイバの動疲労特性を向上することができる。プライマリ樹脂層は、水酸基を末端に有するウレタンプレポリマーと、(メタ)アクリロイル基を2つ以上有するイソシアネート化合物と、(メタ)アクリロイル基を1つ有するイソシアネート化合物との反応物を含有するウレタンオリゴマー、モノマー及び光重合開始剤を含む樹脂組成物を硬化させて形成してもよい。 The resin composition according to this embodiment can be applied to the primary resin layer. That is, the primary resin layer includes a urethane oligomer containing a reaction product of a urethane prepolymer having a hydroxyl group at its terminal and an isocyanate compound having two or more (meth) acryloyl groups, a monomer, and a photopolymerization initiator. Can be formed by curing. Thereby, the dynamic fatigue characteristics of the optical fiber can be improved. The primary resin layer is a urethane oligomer containing a reaction product of a urethane prepolymer having a hydroxyl group at the end, an isocyanate compound having two or more (meth) acryloyl groups, and an isocyanate compound having one (meth) acryloyl group, You may harden and form the resin composition containing a monomer and a photoinitiator.
 マイクロベンドによる伝送損失を低減する観点から、プライマリ樹脂層のヤング率は、23℃で0.1~1.5MPaであることが好ましい。 From the viewpoint of reducing transmission loss due to microbending, the Young's modulus of the primary resin layer is preferably 0.1 to 1.5 MPa at 23 ° C.
 セカンダリ樹脂層のヤング率は、23℃で500~2000MPaであってもよい。セカンダリ樹脂層のヤング率が500MPa以上であると、マイクロベンド特性を向上し易く、2000MPa以下であると、セカンダリ樹脂層に適度な靱性を付与できるため、亀裂が入り難くなる。 The Young's modulus of the secondary resin layer may be 500 to 2000 MPa at 23 ° C. When the Young's modulus of the secondary resin layer is 500 MPa or more, it is easy to improve the microbend characteristics, and when it is 2000 MPa or less, moderate toughness can be imparted to the secondary resin layer, so that cracks hardly occur.
 セカンダリ樹脂層のヤング率は、以下の方法で測定することができる。まず、光ファイバをアセトンとエタノールの混合溶剤に浸漬し、被覆樹脂層のみを筒状に抜き出す。この際、プライマリ樹脂層とセカンダリ樹脂層は一体となっているが、プライマリ樹脂層のヤング率はセカンダリ樹脂層の1/1000~1/10000のヤング率であるため、プライマリ樹脂層のヤング率は無視することができる。次に、被覆樹脂層から真空乾燥により溶剤を除いた後、23℃で引張試験(引張速度は1mm/分)を行い、2.5%歪の割線式によりヤング率を求めることができる。 The Young's modulus of the secondary resin layer can be measured by the following method. First, the optical fiber is immersed in a mixed solvent of acetone and ethanol, and only the coating resin layer is extracted in a cylindrical shape. At this time, the primary resin layer and the secondary resin layer are integrated, but the Young's modulus of the primary resin layer is 1/1000 to 1/10000 of the secondary resin layer, so the Young's modulus of the primary resin layer is Can be ignored. Next, after removing the solvent from the coating resin layer by vacuum drying, a tensile test (a tensile speed of 1 mm / min) is performed at 23 ° C., and a Young's modulus can be obtained by a secant formula of 2.5% strain.
 セカンダリ樹脂層15は、例えば、ウレタンオリゴマー、モノマー及び光重合開始剤を含む紫外線硬化型樹脂組成物を硬化させて形成することができる。セカンダリ樹脂層用の樹脂組成物は、従来公知の技術を用いることができる。ウレタンオリゴマー、モノマー及び光重合開始剤としては、上記樹脂組成物で例示した化合物から適宜、選択してもよい。ただし、セカンダリ樹脂層を形成する樹脂組成物は、プライマリ樹脂層を形成する樹脂組成物とは異なる組成を有している。 The secondary resin layer 15 can be formed, for example, by curing an ultraviolet curable resin composition containing a urethane oligomer, a monomer, and a photopolymerization initiator. A conventionally well-known technique can be used for the resin composition for secondary resin layers. As a urethane oligomer, a monomer, and a photoinitiator, you may select suitably from the compound illustrated by the said resin composition. However, the resin composition forming the secondary resin layer has a different composition from the resin composition forming the primary resin layer.
 以下、本開示に係る実施例及び比較例を用いた評価試験の結果を示し、本開示を更に詳細に説明する。なお、本発明はこれら実施例に限定されるものではない。 Hereinafter, the results of evaluation tests using examples and comparative examples according to the present disclosure will be shown, and the present disclosure will be described in more detail. The present invention is not limited to these examples.
[ウレタン(メタ)アクリレートオリゴマー]
(合成例1)
 Mn4000のポリプロピレングリコールとイソホロンジイソシアネートとをOHとNCOのモル比(OH/NCO)が1.1で反応させて、OH末端プレポリマーを調製する。触媒として、ジブチルスズジラウレートを最終的な全仕込み量に対して、200ppm添加する。NCOの残存量が0.1質量%以下になったことを確認した後、OH末端プレポリマーのOHに対する1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートのNCOのモル比(NCO/OH)が0.5となるように、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを添加して反応を行う。NCOの残存量が0.1質量%以下になったことを確認して反応を終了させて、ウレタンアクリレートオリゴマー(U-1)を得る。
[Urethane (meth) acrylate oligomer]
(Synthesis Example 1)
An OH-terminated prepolymer is prepared by reacting Mn4000 polypropylene glycol with isophorone diisocyanate at a molar ratio of OH to NCO (OH / NCO) of 1.1. As a catalyst, 200 ppm of dibutyltin dilaurate is added to the final total charge. After confirming that the remaining amount of NCO was 0.1% by mass or less, the molar ratio of NCO of 1,1- (bisacryloyloxymethyl) ethyl isocyanate to OH of the OH-terminated prepolymer (NCO / OH) was The reaction is carried out by adding 1,1- (bisacryloyloxymethyl) ethyl isocyanate to 0.5. After confirming that the remaining amount of NCO is 0.1% by mass or less, the reaction is terminated to obtain a urethane acrylate oligomer (U-1).
(合成例2)
 OH/NCOが1.5でOH末端プレポリマーを調製し、NCO/OHが0.7となるように、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを添加する以外は合成例1と同様にして、ウレタンアクリレートオリゴマー(U-2)を得る。
(Synthesis Example 2)
Similar to Synthesis Example 1 except that an OH-terminated prepolymer was prepared with an OH / NCO of 1.5 and 1,1- (bisacryloyloxymethyl) ethyl isocyanate was added so that the NCO / OH was 0.7. Thus, a urethane acrylate oligomer (U-2) is obtained.
(合成例3)
 OH/NCOが1.5でOH末端プレポリマーを調製し、NCO/OHが0.9となるように、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを添加する以外は合成例1と同様にして、ウレタンアクリレートオリゴマー(U-3)を得る。
(Synthesis Example 3)
Similar to Synthesis Example 1 except that an OH-terminated prepolymer is prepared with an OH / NCO of 1.5 and 1,1- (bisacryloyloxymethyl) ethyl isocyanate is added so that the NCO / OH is 0.9. Thus, a urethane acrylate oligomer (U-3) is obtained.
(合成例4)
 OH/NCOが1.5でOH末端プレポリマーを調製し、NCO/OHが1.1となるように、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを添加する以外は合成例1と同様にして、ウレタンアクリレートオリゴマー(U-4)を得る。
(Synthesis Example 4)
Similar to Synthesis Example 1 except that an OH-terminated prepolymer was prepared with an OH / NCO of 1.5 and 1,1- (bisacryloyloxymethyl) ethyl isocyanate was added so that the NCO / OH was 1.1. Thus, a urethane acrylate oligomer (U-4) is obtained.
(合成例5)
 OH/NCOが1.5でOH末端プレポリマーを調製した後、NCO/OHが0.1となるように、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを添加し、NCO/OHが0.6となるように、2-アクリロイルオキシエチルイソシアネートを添加する以外は合成例1と同様にして、ウレタンアクリレートオリゴマー(U-5)を得る。
(Synthesis Example 5)
After preparing an OH-terminated prepolymer with an OH / NCO of 1.5, 1,1- (bisacryloyloxymethyl) ethyl isocyanate was added so that the NCO / OH was 0.1, and the NCO / OH was 0. The urethane acrylate oligomer (U-5) is obtained in the same manner as in Synthesis Example 1 except that 2-acryloyloxyethyl isocyanate is added so as to be .6.
(合成例6)
 OH/NCOが1.5でOH末端プレポリマーを調製した後、NCO/OHが0.03となるように、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを添加し、NCO/OHが0.6となるように、2-アクリロイルオキシエチルイソシアネートを添加する以外は合成例1と同様にして、ウレタンアクリレートオリゴマー(U-6)を得る。
(Synthesis Example 6)
After preparing an OH-terminated prepolymer with an OH / NCO of 1.5, 1,1- (bisacryloyloxymethyl) ethyl isocyanate was added so that the NCO / OH was 0.03, and the NCO / OH was 0. The urethane acrylate oligomer (U-6) is obtained in the same manner as in Synthesis Example 1 except that 2-acryloyloxyethyl isocyanate is added so that the ratio is 0.6.
(合成例7)
 OH/NCOが1.5でOH末端プレポリマーを調製した後、NCO/OHが0.1となるように、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを添加し、NCO/OHが0.8となるように、2-アクリロイルオキシエチルイソシアネートを添加する以外は合成例1と同様にして、ウレタンアクリレートオリゴマー(U-7)を得る。
(Synthesis Example 7)
After preparing an OH-terminated prepolymer with an OH / NCO of 1.5, 1,1- (bisacryloyloxymethyl) ethyl isocyanate was added so that the NCO / OH was 0.1, and the NCO / OH was 0. A urethane acrylate oligomer (U-7) is obtained in the same manner as in Synthesis Example 1 except that 2-acryloyloxyethyl isocyanate is added so that the ratio is 0.8.
(合成例8)
 OH/NCOが2.0でOH末端プレポリマーを調製した後、NCO/OHが0.2となるように、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを添加し、NCO/OHが0.4となるように、2-アクリロイルオキシエチルイソシアネートを添加する以外は合成例1と同様にして、ウレタンアクリレートオリゴマー(U-8)を得る。
(Synthesis Example 8)
After preparing an OH-terminated prepolymer with an OH / NCO of 2.0, 1,1- (bisacryloyloxymethyl) ethyl isocyanate was added so that the NCO / OH was 0.2, and the NCO / OH was 0. The urethane acrylate oligomer (U-8) is obtained in the same manner as in Synthesis Example 1 except that 2-acryloyloxyethyl isocyanate is added so as to be .4.
(合成例9)
 Mn4000のポリプロピレングリコールとイソホロンジイソシアネートとをNCO/OHが1.5で反応させて、NCO末端プレポリマーを調製する。ジブチルスズジラウレートを最終的な全仕込み量に対して、200ppm添加する。次いで、NCO末端プレポリマーのNCOが1モルに対して、メタノールを0.3モル及び2-ヒドロキシエチルアクリレートを0.7モル添加して反応を行い、ウレタンオリゴマー(U-9)を得る。
(Synthesis Example 9)
An NCO-terminated prepolymer is prepared by reacting Mn4000 polypropylene glycol with isophorone diisocyanate at an NCO / OH of 1.5. Add 200 ppm of dibutyltin dilaurate to the final total charge. Next, the reaction is carried out by adding 0.3 mol of methanol and 0.7 mol of 2-hydroxyethyl acrylate to 1 mol of NCO of the NCO-terminated prepolymer to obtain a urethane oligomer (U-9).
(合成例10)
 Mn600のポリプロピレングリコールとイソホロンジイソシアネートとをNCO/OHが1.5で反応させて、NCO末端プレポリマーを調製する。ジブチルスズジラウレートを最終的な全仕込み量に対して、200ppm添加する。次いで、NCO末端プレポリマーのNCOに対する2-ヒドロキシエチルアクリレートのOHのモル比(OH/NCO)が1.05となるように、2-ヒドロキシエチルアクリレートを添加して80℃で1時間反応を行い、ウレタンオリゴマー(U-10)を得る。
(Synthesis Example 10)
An NCO-terminated prepolymer is prepared by reacting Mn600 polypropylene glycol with isophorone diisocyanate at an NCO / OH of 1.5. Add 200 ppm of dibutyltin dilaurate to the final total charge. Next, 2-hydroxyethyl acrylate was added and reacted at 80 ° C. for 1 hour so that the molar ratio of 2-hydroxyethyl acrylate to NCO of the NCO-terminated prepolymer (OH / NCO) was 1.05. To obtain a urethane oligomer (U-10).
[プライマリ樹脂層用の樹脂組成物]
 表1に示す配合量(質量部)で、ウレタンアクリレートオリゴマー、N-ビニルカプロラクタム、イソボルニルアクリレート、ノニルフェノールポリエチレングリコールアクリレート(Sartomer社製の「SR504」)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド及び3-アクリロキシプロピルトリメトキシシランを混合して、各実施例及び比較例のプライマリ樹脂層用の樹脂組成物を作製した。
[Resin composition for primary resin layer]
In the blending amounts (parts by mass) shown in Table 1, urethane acrylate oligomer, N-vinylcaprolactam, isobornyl acrylate, nonylphenol polyethylene glycol acrylate (“SR504” manufactured by Sartomer), 2,4,6-trimethylbenzoyldiphenylphosphine Oxide and 3-acryloxypropyltrimethoxysilane were mixed to prepare resin compositions for primary resin layers of Examples and Comparative Examples.
(ヤング率)
 スピンコータを用いて、上記樹脂組成物をポリエチレンテレフタレート(PET)基板の上に塗布した後、ヘレウス製の無電極UVランプシステム「F600V-10(Dバルブ)」を用いて、1000±100mJ/cm及び1000±100mW/cmの条件で硬化させ、PET基板上に厚み200±20μmの樹脂層を形成した。樹脂層をPET基板から剥がし、樹脂フィルムを得た。
(Young's modulus)
After applying the above resin composition onto a polyethylene terephthalate (PET) substrate using a spin coater, 1000 ± 100 mJ / cm 2 using an electrodeless UV lamp system “F600V-10 (D bulb)” manufactured by Heraeus. And cured under the condition of 1000 ± 100 mW / cm 2 to form a resin layer having a thickness of 200 ± 20 μm on the PET substrate. The resin layer was peeled from the PET substrate to obtain a resin film.
 樹脂フィルムをJIS K 7127 タイプ5号のダンベル形状に打ち抜き、23±2℃、50±10%RHの条件下で、引張試験機を用いて1mm/分の引張速度、標線間25mmの条件で引張り、応力-歪み曲線を得た。2.5%割線によりヤング率を求めた。ヤング率が0.1MPa以上0.8MPa未満をA、0.8MPa以上1.5MPa以下をB、1.5MPa超をCと評価した。ヤング率が0.1~1.5MPaの場合を合格とした。 The resin film was punched into a JIS K 7127 Type 5 dumbbell shape, and under conditions of 23 ± 2 ° C. and 50 ± 10% RH, using a tensile tester at a pulling speed of 1 mm / min and a gap between 25 mm. Tensile, stress-strain curves were obtained. The Young's modulus was determined by 2.5% secant. A Young's modulus of 0.1 MPa or more and less than 0.8 MPa was evaluated as A, 0.8 MPa or more and 1.5 MPa or less as B, and 1.5 MPa or more as C. A case where the Young's modulus was 0.1 to 1.5 MPa was regarded as acceptable.
(硬化速度)
 スピンコータを用いて、上記樹脂組成物をPET基板の上に塗布した後、ヘレウス製の無電極UVランプシステム「F600V-10(Dバルブ)」を用いて、1000±100mJ/cm及び1000±100mW/cmの条件(以下、「条件1」という。)で硬化させ、PET基板上に厚み200±20μmの樹脂層を形成した。樹脂層をPET基板から剥がし、樹脂フィルムを得た。また、硬化条件を100±10mJ/cm及び1000±100mW/cm((以下、「条件2」という。)に変更した以外は、上記と同様にして樹脂フィルムを得た。
(Curing speed)
After applying the above resin composition onto a PET substrate using a spin coater, 1000 ± 100 mJ / cm 2 and 1000 ± 100 mW using an electrodeless UV lamp system “F600V-10 (D bulb)” manufactured by Heraeus The resin layer having a thickness of 200 ± 20 μm was formed on the PET substrate by curing under the condition of / cm 2 (hereinafter referred to as “condition 1”). The resin layer was peeled from the PET substrate to obtain a resin film. Also, a resin film was obtained in the same manner as above except that the curing conditions were changed to 100 ± 10 mJ / cm 2 and 1000 ± 100 mW / cm 2 (hereinafter referred to as “condition 2”).
 条件1及び条件2でそれぞれ得られた樹脂フィルムの重量を測定した後、60℃のメチルエチルケトンに17時間浸漬した。次いで、浸漬後の樹脂フィルムを乾燥して重量を測定し、樹脂フィルムの浸漬前後の重量からゲル分率を求めた。
 ゲル分率(%)=(浸漬後の樹脂フィルム重量/浸漬前の樹脂フィルム重量)×100
 条件1で硬化した樹脂フィルムのゲル分率から、条件2で硬化した樹脂フィルムのゲル分率を引いた値(ゲル分率の差)が、1%未満をA、1%以上3%未満をB、3%以上をCと評価した。ゲル分率の差が3%未満の場合を硬化速度が速いと判断した。
After measuring the weight of the resin film obtained in each of conditions 1 and 2, it was immersed in methyl ethyl ketone at 60 ° C. for 17 hours. Subsequently, the resin film after immersion was dried and weighed, and the gel fraction was determined from the weight before and after immersion of the resin film.
Gel fraction (%) = (resin film weight after immersion / resin film weight before immersion) × 100
The value obtained by subtracting the gel fraction of the resin film cured under condition 2 from the gel fraction of the resin film cured under condition 1 (difference in gel fraction) is less than 1% A, 1% or more and less than 3% B, 3% or more was evaluated as C. The case where the difference in gel fraction was less than 3% was judged to be fast.
(セカンダリ樹脂用の樹脂組成物)
 ウレタンアクリレートオリゴマー(U-10)を50質量部、イソボルニルアクリレートを20質量部、ビスフェノールA・アクリル酸付加物を15質量部、トリメチロールプロパントリアクリレートを14質量部及び2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドを1質量部混合して、セカンダリ樹脂用の樹脂組成物を得た。
(Resin composition for secondary resin)
50 parts by mass of urethane acrylate oligomer (U-10), 20 parts by mass of isobornyl acrylate, 15 parts by mass of bisphenol A / acrylic acid adduct, 14 parts by mass of trimethylolpropane triacrylate and 2,4,6- 1 part by mass of trimethylbenzoyldiphenylphosphine oxide was mixed to obtain a resin composition for a secondary resin.
[光ファイバ10の作製]
 ガラスファイバ13の外周面に、プライマリ樹脂層用の型樹脂組成物とセカンダリ樹脂層用の樹脂組成物とをそれぞれ被覆して、プライマリ樹脂層14及びセカンダリ樹脂層15を備える被覆樹脂層16を形成し、光ファイバ10を作製した。プライマリ樹脂層14の厚さを35μm、セカンダリ樹脂層15の厚さを25μmとした。
[Fabrication of optical fiber 10]
The outer peripheral surface of the glass fiber 13 is coated with the mold resin composition for the primary resin layer and the resin composition for the secondary resin layer, respectively, to form a covering resin layer 16 including the primary resin layer 14 and the secondary resin layer 15. Then, the optical fiber 10 was produced. The thickness of the primary resin layer 14 was 35 μm, and the thickness of the secondary resin layer 15 was 25 μm.
(動疲労特性)
 作製した光ファイバについて、IEC60793-1-33の試験方法に従い、引張速度5mm/分、50mm/分、500mm/分の3条件で各15回の引張試験を行い、動疲労係数(Nd)を求めた。Ndが22以上をA、20以上22未満をB、20未満をCと評価した。Ndが20以上の場合を動疲労特性が良好と判断した。
(Dynamic fatigue characteristics)
The manufactured optical fiber is subjected to a tensile test 15 times each under three conditions of a tensile speed of 5 mm / min, 50 mm / min, and 500 mm / min in accordance with the test method of IEC 60793-1-33 to obtain a dynamic fatigue coefficient (Nd). It was. Nd evaluated 22 or more as A, 20 or more and less than 22 as B, and less than 20 as C. When Nd was 20 or more, the dynamic fatigue characteristics were judged to be good.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 10…光ファイバ、11…コア、12…クラッド、13…ガラスファイバ、14…プライマリ樹脂層、15…セカンダリ樹脂層、16…被覆樹脂層。 DESCRIPTION OF SYMBOLS 10 ... Optical fiber, 11 ... Core, 12 ... Cladding, 13 ... Glass fiber, 14 ... Primary resin layer, 15 ... Secondary resin layer, 16 ... Covering resin layer

Claims (7)

  1.  ウレタン(メタ)アクリレートオリゴマー、モノマー、及び、光重合開始剤を含み、
     前記ウレタン(メタ)アクリレートオリゴマーが、水酸基を末端に有するウレタンプレポリマーと、(メタ)アクリロイル基を2つ以上有するイソシアネート化合物との反応物を含有する、光ファイバ被覆用の紫外線硬化型樹脂組成物。
    Including a urethane (meth) acrylate oligomer, a monomer, and a photopolymerization initiator,
    An ultraviolet curable resin composition for optical fiber coating, wherein the urethane (meth) acrylate oligomer contains a reaction product of a urethane prepolymer having a hydroxyl group at the terminal and an isocyanate compound having two or more (meth) acryloyl groups. .
  2.  前記イソシアネート化合物が、2つ又は3つの(メタ)アクリロイル基を有する、請求項1に記載の紫外線硬化型樹脂組成物。 The ultraviolet curable resin composition according to claim 1, wherein the isocyanate compound has two or three (meth) acryloyl groups.
  3.  前記反応物が、下記式(1)で表される構造を有する、請求項1又は2に記載の紫外線硬化型樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子又はメチル基を示し、Lは炭素数1又は2の有機基を示し、Xは炭素数1又は2の有機基を示し、mは2又は3を示す。)
    The ultraviolet curable resin composition according to claim 1 or 2, wherein the reactant has a structure represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents a hydrogen atom or a methyl group, L 1 represents an organic group having 1 or 2 carbon atoms, X represents an organic group having 1 or 2 carbon atoms, and m represents 2 or 3). )
  4.  前記ウレタン(メタ)アクリレートオリゴマーが、水酸基を末端に有するウレタンプレポリマーと、(メタ)アクリロイル基を2つ以上有するイソシアネート化合物と、(メタ)アクリロイル基を1つ有するイソシアネート化合物との反応物を更に含有する、請求項1~3のいずれか一項に記載の紫外線硬化型樹脂組成物。 The urethane (meth) acrylate oligomer further comprises a reaction product of a urethane prepolymer having a hydroxyl group at the end, an isocyanate compound having two or more (meth) acryloyl groups, and an isocyanate compound having one (meth) acryloyl group. The ultraviolet curable resin composition according to any one of claims 1 to 3, which is contained.
  5.  前記反応物が、下記式(2)で表される構造を有する、請求項4に記載の紫外線硬化型樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子又はメチル基を示し、Lは炭素数2~4の有機基を示す。)
    The ultraviolet curable resin composition according to claim 4, wherein the reactant has a structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 2 represents a hydrogen atom or a methyl group, and L 2 represents an organic group having 2 to 4 carbon atoms.)
  6.  前記紫外線硬化型樹脂組成物を、メタルハライドランプで1000mJ/cm及び1000mW/cmの条件で硬化させた時の2.5%割線ヤング率が、23℃±2℃で0.1MPa以上0.8MPa未満である、請求項1~5のいずれか一項に記載の紫外線硬化型樹脂組成物。 The 2.5% secant Young's modulus when the ultraviolet curable resin composition is cured with a metal halide lamp under the conditions of 1000 mJ / cm 2 and 1000 mW / cm 2 is 0.1 MPa or more at 23 ° C. ± 2 ° C. The ultraviolet curable resin composition according to any one of claims 1 to 5, which is less than 8 MPa.
  7.  コア及びクラッドを含むガラスファイバと、
     前記ガラスファイバに接して該ガラスファイバを被覆するプライマリ樹脂層と、
     前記プライマリ樹脂層を被覆するセカンダリ樹脂層と、を備え、
     前記プライマリ樹脂層が、請求項1~6のいずれか一項に記載の紫外線硬化型樹脂組成物の硬化物からなる、光ファイバ。
    A glass fiber including a core and a cladding;
    A primary resin layer that contacts the glass fiber and covers the glass fiber;
    A secondary resin layer covering the primary resin layer,
    An optical fiber, wherein the primary resin layer is made of a cured product of the ultraviolet curable resin composition according to any one of claims 1 to 6.
PCT/JP2019/005129 2018-02-13 2019-02-13 Ultraviolet curable resin composition and optical fiber WO2019159977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500526A JP7140182B2 (en) 2018-02-13 2019-02-13 UV curable resin composition and optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022904 2018-02-13
JP2018-022904 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159977A1 true WO2019159977A1 (en) 2019-08-22

Family

ID=67618660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005129 WO2019159977A1 (en) 2018-02-13 2019-02-13 Ultraviolet curable resin composition and optical fiber

Country Status (2)

Country Link
JP (1) JP7140182B2 (en)
WO (1) WO2019159977A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074914A1 (en) * 2020-10-05 2022-04-14 住友電気工業株式会社 Resin composition, optical fiber, and method for producing optical fiber
WO2022123969A1 (en) * 2020-12-07 2022-06-16 住友電気工業株式会社 Resin composition, optical fiber, and method for producing optical fiber
WO2022138119A1 (en) * 2020-12-21 2022-06-30 住友電気工業株式会社 Resin composition, method for producing resin composition, optical fiber, method for producing optical fiber, optical fiber ribbon, and optical fiber cable
CN114845968A (en) * 2020-01-14 2022-08-02 住友电气工业株式会社 Resin composition, optical fiber, and method for producing optical fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512856A (en) * 2009-12-17 2013-04-18 ディーエスエム アイピー アセッツ ビー.ブイ. LED curing of radiation curable optical fiber coating composition
JP2016539380A (en) * 2013-09-12 2016-12-15 コーニング インコーポレイテッド Fiber coating with low Young's modulus and high tear strength
WO2017082200A1 (en) * 2015-11-09 2017-05-18 住友電気工業株式会社 Optical fiber core wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512856A (en) * 2009-12-17 2013-04-18 ディーエスエム アイピー アセッツ ビー.ブイ. LED curing of radiation curable optical fiber coating composition
JP2016539380A (en) * 2013-09-12 2016-12-15 コーニング インコーポレイテッド Fiber coating with low Young's modulus and high tear strength
WO2017082200A1 (en) * 2015-11-09 2017-05-18 住友電気工業株式会社 Optical fiber core wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114845968A (en) * 2020-01-14 2022-08-02 住友电气工业株式会社 Resin composition, optical fiber, and method for producing optical fiber
CN114845968B (en) * 2020-01-14 2023-12-01 住友电气工业株式会社 Resin composition, optical fiber, and method for producing optical fiber
WO2022074914A1 (en) * 2020-10-05 2022-04-14 住友電気工業株式会社 Resin composition, optical fiber, and method for producing optical fiber
WO2022123969A1 (en) * 2020-12-07 2022-06-16 住友電気工業株式会社 Resin composition, optical fiber, and method for producing optical fiber
WO2022138119A1 (en) * 2020-12-21 2022-06-30 住友電気工業株式会社 Resin composition, method for producing resin composition, optical fiber, method for producing optical fiber, optical fiber ribbon, and optical fiber cable

Also Published As

Publication number Publication date
JP7140182B2 (en) 2022-09-21
JPWO2019159977A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2019159977A1 (en) Ultraviolet curable resin composition and optical fiber
JP7192801B2 (en) UV curable resin composition and optical fiber
JP7200951B2 (en) UV curable resin composition and optical fiber
CN112601724B (en) Optical fiber
US11372155B2 (en) Optical fiber and method for manufacturing optical fiber
EP3778682A1 (en) Resin composition, secondary coating material for optical fiber, and optical fiber
EP3988514A1 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for manufacturing optical fiber
WO2020255570A1 (en) Optical fiber
US20190064434A1 (en) Optical fiber
US20190064433A1 (en) Optical fiber
US20200262749A1 (en) Resin composition and optical fiber
CN114867698A (en) Resin composition, optical fiber, and method for producing optical fiber
WO2022074914A1 (en) Resin composition, optical fiber, and method for producing optical fiber
US20230193073A1 (en) Resin composition, optical fiber, and method for producing optical fiber
WO2020255774A1 (en) Resin composition, optical fiber and method for producing optical fiber
US10809458B2 (en) Splicing structure of optical fibers
US20230416483A1 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for manufacturing optical fiber
US20230042395A1 (en) Optical fiber and method for manufacturing optical fiber
US20220363913A1 (en) Resin composition, method for producing resin composition, optical fiber, and method for producing optical fiber
US20230365735A1 (en) Resin composition, optical fiber, and method for manufacturing optical fiber
US20230071877A1 (en) Resin composition, optical fiber, and method for producing optical fiber
JP2019053244A (en) Optical fiber connection structure
CN115836239A (en) Resin composition, optical fiber, and method for producing optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500526

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754654

Country of ref document: EP

Kind code of ref document: A1