WO2019159717A1 - Light control member - Google Patents

Light control member Download PDF

Info

Publication number
WO2019159717A1
WO2019159717A1 PCT/JP2019/003588 JP2019003588W WO2019159717A1 WO 2019159717 A1 WO2019159717 A1 WO 2019159717A1 JP 2019003588 W JP2019003588 W JP 2019003588W WO 2019159717 A1 WO2019159717 A1 WO 2019159717A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light control
control member
cation
electrode
Prior art date
Application number
PCT/JP2019/003588
Other languages
French (fr)
Japanese (ja)
Inventor
青木 純
暉 伊藤
茂樹 渡邉
慎貴 酒向
Original Assignee
国立大学法人名古屋工業大学
トヨタ紡織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋工業大学, トヨタ紡織株式会社 filed Critical 国立大学法人名古屋工業大学
Priority to CN201980011016.3A priority Critical patent/CN111670407B/en
Publication of WO2019159717A1 publication Critical patent/WO2019159717A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present disclosure relates to a light control member.
  • the following are known as light control members. That is, it is electrochromic light control glass (resin glass) (see Patent Document 1).
  • the light control glass (resin glass)
  • a material having a light control function and / or a transparent conductor is attached to each side surface of two glass (resin glass) plates.
  • the adhesion surface of a glass (resin glass) board is faced inside, the electrolyte for light control is distribute
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a novel light control member.
  • the present invention can be realized as the following forms.
  • a light control member A dimming pole, The opposite pole, An electrolyte sandwiched between the dimming electrode and the counter electrode, The light control member, wherein the electrolyte contains an ionic liquid, an organic solvent, silver ions, and citric acid.
  • R 1 , R 2 , R 3 , R 4 , R 5 are each independently Hydrogen atom, A substituted or unsubstituted C1-C20 saturated or unsaturated linear, branched, or cyclic alkyl group, A substituted or unsubstituted aryl group having 6 to 30 carbon atoms, A substituted or unsubstituted arylalkyl group having 7 to 31 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms, When the alkyl group, the aryl group or the arylalkyl group is substituted, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an acyloxy group, an acyl group, an alkyl
  • the light control member of the present invention is a novel light control member using an electrolyte containing an ionic liquid, an organic solvent, silver ions, and citric acid, the application range of the light control member is expanded.
  • the reflectance of visible light is changed by reversibly performing the formation of a silver coating by electrolytic plating and the elution of the silver coating by electrolytic elution, it can be effectively used as a mirror.
  • the silver coating has a mirror surface, the reflectance of visible light is improved.
  • visible light means light having a wavelength of 400 to 800 nm.
  • the organic solvent is a polar solvent
  • citric acid is well dissolved in the electrolyte, and the formation of a silver coating by electrolytic plating and the elution of the silver coating by electrolytic elution can be performed smoothly.
  • the volume ratio of the ionic liquid to the organic solvent is 90:10 to 10:90, formation of the silver coating by electrolytic plating and elution of the silver coating by electrolytic elution can be performed smoothly.
  • the light control member of the present invention is practically very effective when used as a light control smart window, a light control mirror, or a design part.
  • the description using “ ⁇ ” in the numerical range includes the lower limit value and the upper limit value unless otherwise specified.
  • the description “10 to 20” includes both the lower limit “10” and the upper limit “20”. That is, “10 to 20” has the same meaning as “10 to 20”.
  • the light control member 1 of the present invention includes a light control electrode 3, a counter electrode 5, and an electrolyte 7, as shown in FIG.
  • symbol 9 means the sealing material which is arbitrary structural requirements.
  • a known transparent electrode used as a dimming electrode can be appropriately used.
  • a transparent conductive film containing tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), or the like can be suitably used.
  • Inorganic glass and resin glass such as polycarbonate (PC), polyethylene terephthalate (PET), and acrylic resin can be suitably used for the substrate of the transparent conductive film.
  • Pd nanoparticles may be attached to the surface of the transparent electrode. When a transparent electrode to which Pd nanoparticles are attached is used, the silver coating formed on the transparent electrode tends to exhibit a beautiful specular gloss.
  • the method for attaching the Pd nanoparticles to the transparent electrode surface is not particularly limited.
  • a deposition method a method in which Pd 2+ is strike-plated to deposit Pd nanoparticles is preferably employed.
  • the size of the Pd nanoparticle is not particularly limited.
  • the average particle diameter of the Pd nanoparticle is preferably 5 to 70 nm, more preferably 10 to 60 nm, and particularly preferably 30 to 50 nm. When the average particle size is within this range, the dispersibility of the Pd nanoparticle on the transparent electrode is increased, and a silver coating with extremely high uniformity is formed by electrolytic plating.
  • the average particle diameter of the Pd nanoparticle is obtained by measuring the particle diameter of any 200 or more Pd nanoparticles using a scanning electron microscope (SEM) and averaging the measured values.
  • the average Pd surface density in the case of carrying Pd is not particularly limited.
  • the average Pd surface density is preferably 1.0 ⁇ 10 ⁇ 6 to 9.0 ⁇ 10 ⁇ 6 g / cm 2 , more preferably 2.0 ⁇ 10 ⁇ 6 to 8.0 ⁇ 10 ⁇ 6 g / cm 2. cm 2 , more preferably 3.0 ⁇ 10 ⁇ 6 to 7.0 ⁇ 10 ⁇ 6 g / cm 2 . Within this range, a sufficient transmittance for visible light can be secured for the dimming electrode before the silver coating is formed.
  • Counter electrode As the counter electrode 5, a known electrode used as a counter electrode can be used as appropriate.
  • As the counter electrode for example, an Ag electrode, an ITO electrode, an FTO electrode, or the like can be suitably employed.
  • Reference electrode The light control member may be equipped with the reference electrode.
  • the reference electrode for example, an Ag / Ag + electrode, an Ag / AgCl electrode, an SCE electrode, or the like can be suitably used.
  • the electrolyte 7 contains an ionic liquid, an organic solvent, silver ions, and citric acid.
  • This “electrolyte” is sometimes referred to as an “Ag plating bath”.
  • the conventional Ag plating bath uses highly toxic cyan as a ligand.
  • the conventional Ag plating bath is an aqueous solution-based plating bath, and when used for a light control member (device), there are problems of solvent volatilization and electrolyte salt precipitation.
  • the electrolyte of the present invention uses safe citric acid instead of cyanide.
  • the electrolyte of the present invention uses a mixed system of an ionic liquid and an organic solvent instead of an aqueous system.
  • the present inventors have found an unexpected fact that electrolytic plating and electrolytic elution can be performed reversibly by using an electrolyte containing an ionic liquid, an organic solvent, silver ions, and citric acid.
  • the present invention has been made based on the above. Next, each component will be described in detail.
  • Ionic liquid The above-mentioned ionic liquid is in a molten state at room temperature (25 ° C.) and indicates an ionic substance composed of a cation part and an anion part.
  • a cation used in a normal ionic liquid can be used. Examples thereof include a cation moiety selected from the group consisting of an onium cation, a quaternary ammonium cation, and a quaternary phosphonium cation of a 5- to 6-membered ring compound having 1 to 3 nitrogen atoms.
  • Examples of the onium cation of the 5- to 6-membered ring compound having 1 to 3 nitrogen atoms include, for example, an onium cation of a 5-membered ring compound such as an imidazolium cation and a pyrrolidinium cation, a pyridinium cation, and a piperidinium cation. Mention may be made of onium cations of member ring compounds. Among these, an imidazolium cation is preferable because it has a low melting point and easily becomes liquid.
  • R 1 , R 2 , R 3 , R 4 , R 5 are each independently Hydrogen atom, A substituted or unsubstituted C1-C20 saturated or unsaturated linear, branched, or cyclic alkyl group, A substituted or unsubstituted aryl group having 6 to 30 carbon atoms, A substituted or unsubstituted arylalkyl group having 7 to 31 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms, When the alkyl group, the aryl group or the arylalkyl group is substituted, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an acyloxy group, an acyl group, an alkylsulfanyl group,
  • the cyclic alkyl group include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, Isoamyl group, tert-pentyl group, neopentyl group, n-hexyl group, 3-methylpentan-2-yl group, 3-methylpentan-3-yl group, 4-methylpentyl group, 4-methylpentane-2- Yl group, 1,3-dimethylbutyl group, 3,3-dimethylbutyl group, 3,3-dimethylbutan
  • Examples of the substituted or unsubstituted aryl group having 6 to 30 carbon atoms used as R 1 , R 2 , R 3 , R 4 , R 5 in the chemical formula (1) include, for example, a phenyl group, Biphenyl group, 1-naphthyl group, 2-naphthyl group, 9-anthryl group, 9-phenanthryl group, 1-pyrenyl group, 5-naphthacenyl group, 1-indenyl group, 2-azurenyl group, 9-fluorenyl group, terphenyl Group, quarterphenyl group, mesityl group, pentarenyl group, binaphthalenyl group, tarnaphthalenyl group, quarternaphthalenyl group, heptaenyl group, biphenylenyl group, indacenyl group, fluoranthenyl group, acenaphthylenyl group, aceanthrylenyl group
  • Examples of the substituted or unsubstituted arylalkyl group having 7 to 31 carbon atoms used as R 1 , R 2 , R 3 , R 4 and R 5 in the chemical formula (1) include, for example, a benzyl group Phenylethyl, 3-phenylpropyl, 1-naphthylmethyl, 2-naphthylmethyl, 2- (1-naphthyl) ethyl, 2- (2-naphthyl) ethyl, 3- (1-naphthyl) A propyl group, or a 3- (2-naphthyl) propyl group is exemplified.
  • a benzyl group Phenylethyl, 3-phenylpropyl, 1-naphthylmethyl, 2-naphthylmethyl, 2- (1-naphthyl) ethyl, 2- (2-naphthyl) ethyl,
  • Examples of the alkoxy group having 1 to 20 carbon atoms used as R 1 , R 2 , R 3 , R 4 , R 5 in the chemical formula (1) include, for example, a methoxy group, an ethoxy group, an n-propoxy group, Examples include i-propoxy group, n-butoxy group, 2-methylpropoxy group, 1-methylpropoxy group, t-butoxy group and the like. Among these, those having 1 to 4 carbon atoms are preferable.
  • the hydrogen atom in the group, substituted or unsubstituted arylalkyl group, and alkylene group may be further substituted with another substituent.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkyl groups such as methyl group, ethyl group, tert-butyl group and dodecyl group, phenyl group, p-tolyl.
  • xylyl group cumenyl group, naphthyl group, anthryl group, aryl group such as phenanthryl group, alkoxy group such as methoxy group, ethoxy group, tert-butoxy group, aryloxy group such as phenoxy group, p-tolyloxy group, methoxy Alkoxycarbonyl groups such as carbonyl group, butoxycarbonyl group, phenoxycarbonyl, etc., acetoxy group, propionyloxy group, acyloxy group such as benzoyloxy group, acetyl group, benzoyl group, isobutyryl group, acryloyl group, methacryloyl group, methoxalyl group, etc.
  • dialkylamino groups such as diethylamino group, morpholino group and piperidino group
  • arylamino groups such as phenylamino group and p-tolylamino group, hydroxy group, carboxy group, formyl group, mercapto group, sulfo group, mesyl group, p -Toluenesulfonyl group, amino group, nitro group, cyano group, trifluoromethyl group, trichloromethyl group, trimethylsilyl group, phosphinico group,
  • 1,3-disubstituted imidazolium cation and 1,2,3-trisubstituted imidazolium cation are preferably used from the viewpoint of easiness of synthesis. 1,3-disubstituted imidazolium cations are preferably used. Specific examples of the imidazolium cation include 1-ethyl-3-methylimidazolium cation, 1,3-dimethylimidazolium cation, 1-methyl-3-propylimidazolium cation, and 1-butyl-3-methylimidazolium cation.
  • Examples of the pyrrolidinium cation include N, N-dimethylpyrrolidinium cation, N-ethyl-N-methylpyrrolidinium cation, N-methyl-N-propylpyrrolidinium cation, and N-butyl-N-methyl.
  • pyridinium cation examples include a pyridinium cation substituted with an alkyl group having 1 to 16 carbon atoms such as an N-methylpyridinium cation, an N-ethylpyridinium cation, an N-butylpyridinium cation, and an N-propylpyridinium cation. Can do.
  • piperidinium cations include N, N-dimethylpiperidinium cation, N-ethyl-N-methylpiperidinium cation, N-methyl-N-propylpiperidinium cation, and N-butyl-N-methyl.
  • anion part of an ionic liquid (1) It does not specifically limit regarding the anion part of an ionic liquid (1), It is possible to use the anion used with a general ionic liquid.
  • anion moiety Cl ⁇ , Br ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ , BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , NO 3 ⁇ , CH 3 COO ⁇ , CF 3 COO ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 3 C ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , NbF 6 ⁇ , TaF 6 ⁇ , F (HF) n ⁇ , (CN) 2 N ⁇ , SCN ⁇ , C 4 F 9 SO 3 ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ , C 3 F 7 COO ⁇
  • n is usually 0 to 15, preferably 0 to 8, particularly preferably 0 to 4.
  • the method for producing the ionic liquid is not particularly limited.
  • a known method such as an anion exchange method or an acid ester method can be applied as the production method. More specifically, for example, it can be obtained by an anion exchange reaction using a halogenated salt of an organic cation to be used and an alkali metal salt of a perfluoroalkylsulfonate anion.
  • the halogen of the halogenated salt includes chlorine or bromine.
  • Examples of the alkali metal of the alkali metal salt include sodium and potassium.
  • the organic solvent contained in the electrolyte is not particularly limited.
  • the organic solvent is preferably a polar solvent from the viewpoint that it is easy to dissolve citric acid.
  • the polar solvent include acetonitrile, ethanol, isopropanol, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N, N-dimethylacetamide, tetrahydrofuran (THF), methyl triglycol diester succinate, acetone, Acetic acid etc. are mentioned, These 1 type can be used individually or in combination of 2 or more types.
  • volume ratio between ionic liquid and organic solvent is not particularly limited.
  • the volume ratio of the ionic liquid to the organic solvent is preferably 90:10 to 10:90, more preferably 60:40 to 40:60, and still more preferably 55:45 to 45:55. . Within this range, citric acid can be sufficiently dissolved in the electrolyte.
  • the concentration of silver ions in the electrolyte is not particularly limited.
  • the concentration of silver ions is preferably 0.01 to 2.0M, more preferably 0.02 to 0.8M, and still more preferably 0.1 to 0.3M. When the concentration of silver ions is within this range, a sufficient amount of current that can be passed through the electrolyte for reversible reaction can be secured.
  • Citric acid in the present invention, by containing citric acid in the electrolyte, formation of a silver coating by electrolytic plating and elution of the silver coating by electrolytic elution can be performed reversibly.
  • the concentration of citric acid in the electrolyte is not particularly limited.
  • the concentration of citric acid is preferably 0.5 to 1000 mM, more preferably 5 to 250 mM, and still more preferably 20 to 100 mM as citric acid monohydrate.
  • the citric acid concentration is within this range, the formation of the silver coating by electrolytic plating and the elution of the silver coating by electrolysis can be sufficiently performed, and the characteristics of the light control member are improved.
  • the electrolyte may contain other components as long as the effects of the present invention are not impaired.
  • the current density during electroplating is not particularly limited.
  • the current density during electrolytic plating is preferably 0.5 to 20 mA / cm 2 , more preferably 1 to 10 mA / cm 2 , and further preferably 2 to 5 mA / cm 2 .
  • the silver coating can be sufficiently formed by electrolytic plating, and the characteristics of the light control member are improved.
  • the current density during electrolysis is not particularly limited.
  • Current density during electrolysis elution is preferably 0.1 ⁇ 10mA / cm 2, more preferably 0.4 ⁇ 6mA / cm 2, more preferably from 1 ⁇ 4mA / cm 2.
  • the silver coating can be sufficiently eluted by electrolytic elution, and the characteristics of the light control member are improved.
  • the light control member of this embodiment can reversibly form a silver coating by electrolytic plating and elution of a silver coating by electrolytic elution. And the reflectance of visible light can be changed by this reversible reaction. Since the light control member of this embodiment is a novel light control member, the application range of a light control member spreads.
  • Silver electroplating test and electrolysis elution test were performed using the apparatus shown in FIG.
  • reference numeral 3 indicates a dimming electrode
  • reference numeral 5 indicates a counter electrode
  • reference numeral 7 indicates an electrolyte
  • reference numeral 9 indicates a reference electrode
  • reference numeral 11 indicates a potentiostat.
  • Electrolyte 6 mL of electrolyte was prepared with the following composition.
  • the “electrolyte” may be referred to as “Ag plating bath” as described above.
  • the ionic liquid used is 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide.
  • Test (3.1) Test 1 (Test using an electrolyte containing citric acid) Electrolytic plating was performed for a predetermined time (25 s) at a constant current ( ⁇ 4 mA / cm 2 ) on the various transparent light control electrodes prepared in (2.1) above. As a result, in any case, a silver film having a mirror surface on the dimming electrode was formed. Next, using the dimming electrode on which the silver coating was formed, electrolytic dissolution of the silver coating was performed under the conditions of constant current density (+1 mA / cm 2 ) and predetermined time (100 s).
  • the silver coating 17 is coated from the state shown in FIG. 3B to the state shown in FIG.
  • the silver coating 17 is eluted from the state shown in FIG. 3C to the state shown in FIG. In this way, the reflectance of visible light can be changed by reversibly performing the formation of the silver coating 17 by electrolytic plating and the elution of the silver coating 17 by electrolytic elution.
  • Test 3 (Test using an electrolyte containing 2-hydroxypyridine) The experiment was conducted using 2-hydroxypyridine instead of citric acid. Specifically, 6 mL of electrolyte was prepared with the following composition.
  • the ionic liquid used is 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide. ⁇ Composition of electrolyte> 0.2M AgNO 3 0.4M 2-hydroxypyridine acetonitrile 2.9mL Ionic liquid 3.1mL
  • Pd ( ⁇ 10 mA, 1 s) means an ITO electrode manufactured under the condition of ⁇ 10 mA / cm 2 , 1 s, and “Pd ( ⁇ 10 mA, 3 s)” means ⁇ 10 mA / cm 2 , 3 s. It means an ITO electrode manufactured under conditions.
  • the average Pd surface density is 5.5 ⁇ 10 ⁇ 6 g / cm 2 , the average visible light transmittance is not so low as compared to the ITO electrode to which no Pd nanoparticles are attached. It was practical. Therefore, it was found that the average Pd surface density is preferably in the range of 1.0 ⁇ 10 ⁇ 6 to 9.0 ⁇ 10 ⁇ 6 g / cm 2 .
  • Pd ( ⁇ 5 mA, 1 s) means an ITO electrode manufactured under the conditions of ⁇ 5 mA / cm 2 and 1 s
  • Pd ( ⁇ 10 mA, 0.5 s) means ⁇ 10 mA / It means an ITO electrode manufactured under conditions of cm 2 and 0.5 s
  • Pd ( ⁇ 20 mA, 0.25 s) means an ITO electrode manufactured under conditions of ⁇ 20 mA / cm 2 and 0.25 s.
  • the light control member of the present invention has a novel structure, it is effective for expanding the application range of the light control member.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

Provided is a novel light control member (1). This light control member (1) is provided with a light control pole (3), a counter pole (5) and an electrolyte (7). The electrolyte (7) contains an ionic liquid, an organic solvent, silver ions and citric acid. For example, tin-doped indium oxide (ITO) is used as the light control pole (3). An ionic liquid which contains imidazolium cations is suitable for use as the ionic liquid of the present invention. This light control member has a configuration wherein the reflectance of visible light is changed by reversibly performing formation of a silver coating film by means of electrolytic plating and dissolution of the silver coating film by means of electrolytic dissolution.

Description

調光部材Light control member
 本開示は、調光部材に関する。 The present disclosure relates to a light control member.
 従来、調光部材としては、例えば、次のものが知られている。すなわち、エレクトロクロミック型の調光ガラス(樹脂ガラス)である(特許文献1参照)。この調光ガラス(樹脂ガラス)は、2枚のガラス(樹脂ガラス)板のそれぞれ片側面に調光機能を有する材料及び/又は透明導電体が付着されている。そして、ガラス(樹脂ガラス)板の付着面が内側に向かい合わされ、その間に調光用電解質が配され、通電することによって調光される。 Conventionally, for example, the following are known as light control members. That is, it is electrochromic light control glass (resin glass) (see Patent Document 1). In the light control glass (resin glass), a material having a light control function and / or a transparent conductor is attached to each side surface of two glass (resin glass) plates. And the adhesion surface of a glass (resin glass) board is faced inside, the electrolyte for light control is distribute | arranged between them, and it light-controls by supplying with electricity.
特開2003-344878号公報JP 2003-344878 A
 ところで、近年、調光部材を用いた商品開発が幅広くなされており、既存の調光部材では所望の効果が得られない場合もある。そこで、新規な構成の調光部材の開発が切望されている。
 本発明は、上記実情に鑑みてなされたものであり、新規な調光部材を提供することを目的とする。本発明は、以下の形態として実現することが可能である。
By the way, in recent years, product development using a light control member has been extensively performed, and there are cases where a desired effect cannot be obtained with an existing light control member. Therefore, development of a light control member having a novel configuration is eagerly desired.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a novel light control member. The present invention can be realized as the following forms.
 〔1〕調光部材であって、
 調光極と、
 対向極と、
 前記調光極と、前記対向極との間に挟まれた電解質と、を備え、
 前記電解質には、イオン液体、有機溶媒、銀イオン、及びクエン酸が含まれることを特徴とする調光部材。
[1] A light control member,
A dimming pole,
The opposite pole,
An electrolyte sandwiched between the dimming electrode and the counter electrode,
The light control member, wherein the electrolyte contains an ionic liquid, an organic solvent, silver ions, and citric acid.
 〔2〕電解メッキによる銀被膜の形成と、電解溶出による前記銀被膜の溶出とを可逆的に行うことで、可視光の反射率を変化させる構成であることを特徴とする〔1〕に記載の調光部材。 [2] The configuration according to [1], wherein the reflectance of visible light is changed by reversibly performing formation of a silver coating by electrolytic plating and elution of the silver coating by electrolytic elution. Dimmable member.
 〔3〕前記銀被膜は、鏡面を有していることを特徴とする〔2〕に記載の調光部材。 [3] The light control member according to [2], wherein the silver coating has a mirror surface.
 〔4〕前記イオン液体のカチオン部が下記一般式(1)で表されることを特徴とする〔1〕~〔3〕のいずれか1項に記載の調光部材。
Figure JPOXMLDOC01-appb-C000002

〔式(1)中、R、R、R、R、Rは、それぞれ独立して、
 水素原子、
 置換されているかもしくは非置換の炭素数1~20の飽和もしくは不飽和の直鎖状、分枝状、もしくは環状のアルキル基、
 置換されているかもしくは非置換の炭素数6~30のアリール基、
 置換されているかもしくは非置換の炭素数7~31のアリールアルキル基、又は
 炭素数1~20のアルコキシ基であり、
 前記アルキル基、前記アリール基又は前記アリールアルキル基が置換されている場合は、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシルオキシ基、アシル基、アルキルスルファニル基、アリールスルファニル基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ヒドロキシ基、カルボキシ基、ホルミル基、メルカプト基、スルホ基、メシル基、p-トルエンスルホニル基、アミノ基、ニトロ基、シアノ基、トリフルオロメチル基、トリクロロメチル基、トリメチルシリル基、ホスフィニコ基、又はホスホノ基で置換されている。〕
[4] The light control member according to any one of [1] to [3], wherein the cation portion of the ionic liquid is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002

[In formula (1), R 1 , R 2 , R 3 , R 4 , R 5 are each independently
Hydrogen atom,
A substituted or unsubstituted C1-C20 saturated or unsaturated linear, branched, or cyclic alkyl group,
A substituted or unsubstituted aryl group having 6 to 30 carbon atoms,
A substituted or unsubstituted arylalkyl group having 7 to 31 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms,
When the alkyl group, the aryl group or the arylalkyl group is substituted, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an acyloxy group, an acyl group, an alkylsulfanyl group, Arylsulfanyl, alkylamino, dialkylamino, arylamino, hydroxy, carboxy, formyl, mercapto, sulfo, mesyl, p-toluenesulfonyl, amino, nitro, cyano, tri Substituted with a fluoromethyl group, a trichloromethyl group, a trimethylsilyl group, a phosphinico group, or a phosphono group. ]
 〔5〕前記有機溶媒が極性溶媒であることを特徴とする〔1〕~〔4〕のいずれか1項に記載の調光部材。 [5] The light control member according to any one of [1] to [4], wherein the organic solvent is a polar solvent.
 〔6〕前記イオン液体と、前記有機溶媒との体積比率が90:10~10:90であることを特徴とする〔1〕~〔5〕のいずれか1項に記載の調光部材。 [6] The light control member according to any one of [1] to [5], wherein a volume ratio of the ionic liquid to the organic solvent is 90:10 to 10:90.
 〔7〕調光スマートウィンドウ、調光ミラー、又は意匠部品として用いられることを特徴とする〔1〕~〔6〕のいずれか1項に記載の調光部材。 [7] The light control member according to any one of [1] to [6], which is used as a light control smart window, a light control mirror, or a design part.
 本発明の調光部材は、イオン液体、有機溶媒、銀イオン、及びクエン酸を含む電解質を用いた新規な調光部材であるため、調光部材の応用範囲が広がる。
 電解メッキによる銀被膜の形成と、電解溶出による銀被膜の溶出とを可逆的に行うことで、可視光の反射率を変化させる構成では、ミラーとして有効に利用できる。
 銀被膜が鏡面を有している場合には、可視光の反射率が向上する。なお、本明細書における可視光とは、波長が400~800nmの光を意味する。
 特定のカチオンを有するイオン液体を用いると、電解メッキによる銀被膜の形成、及び電解溶出による銀被膜の溶出を円滑に行うことができる。
 有機溶媒が極性溶媒であると、クエン酸が電解質によく溶解され、電解メッキによる銀被膜の形成、及び電解溶出による銀被膜の溶出を円滑に行うことができる。
 イオン液体と、有機溶媒との体積比率が90:10~10:90である場合には、電解メッキによる銀被膜の形成、及び電解溶出による銀被膜の溶出を円滑に行うことができる。
 本発明の調光部材は、調光スマートウィンドウ、調光ミラー、又は意匠部品として用いられると実用上、非常に有効である。
Since the light control member of the present invention is a novel light control member using an electrolyte containing an ionic liquid, an organic solvent, silver ions, and citric acid, the application range of the light control member is expanded.
In a configuration in which the reflectance of visible light is changed by reversibly performing the formation of a silver coating by electrolytic plating and the elution of the silver coating by electrolytic elution, it can be effectively used as a mirror.
When the silver coating has a mirror surface, the reflectance of visible light is improved. In the present specification, visible light means light having a wavelength of 400 to 800 nm.
When an ionic liquid having a specific cation is used, formation of a silver film by electrolytic plating and elution of the silver film by electrolytic elution can be performed smoothly.
When the organic solvent is a polar solvent, citric acid is well dissolved in the electrolyte, and the formation of a silver coating by electrolytic plating and the elution of the silver coating by electrolytic elution can be performed smoothly.
When the volume ratio of the ionic liquid to the organic solvent is 90:10 to 10:90, formation of the silver coating by electrolytic plating and elution of the silver coating by electrolytic elution can be performed smoothly.
The light control member of the present invention is practically very effective when used as a light control smart window, a light control mirror, or a design part.
 本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明する。
調光部材の構造を模式的に示す断面図である。 実験装置を模式的に示す断面図である。 調光極を模式的に示す断面図である。
The invention will be further described in the following detailed description, given by way of non-limiting example of exemplary embodiments according to the invention, with reference to the mentioned drawings.
It is sectional drawing which shows the structure of a light control member typically. It is sectional drawing which shows an experimental apparatus typically. It is sectional drawing which shows a light control pole typically.
 ここで示される事項は例示的なもの及び本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。 The items shown here are for illustrative purposes and exemplary embodiments of the present invention, and are the most effective and easy-to-understand explanations of the principles and conceptual features of the present invention. It is stated for the purpose of providing what seems to be. In this respect, it is not intended to illustrate the structural details of the present invention beyond what is necessary for a fundamental understanding of the present invention. It will be clear to those skilled in the art how it is actually implemented.
 以下、本発明を詳しく説明する。なお、本明細書において、数値範囲について「~」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10~20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10~20」は、「10以上20以下」と同じ意味である。 Hereinafter, the present invention will be described in detail. In the present specification, the description using “˜” in the numerical range includes the lower limit value and the upper limit value unless otherwise specified. For example, the description “10 to 20” includes both the lower limit “10” and the upper limit “20”. That is, “10 to 20” has the same meaning as “10 to 20”.
1.調光部材
 本発明の調光部材1は、図1に示すように、調光極3と、対向極5と、電解質7と、を備えている。なお、符号9は、任意の構成要件であるシール材を意味する。
1. Light Control Member The light control member 1 of the present invention includes a light control electrode 3, a counter electrode 5, and an electrolyte 7, as shown in FIG. In addition, the code | symbol 9 means the sealing material which is arbitrary structural requirements.
(1)調光極
 調光極3には、調光極として使用される公知の透明電極を適宜用いることができる。透明電極としては、例えば、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)等を含む透明導電膜を好適に採用できる。透明導電膜の基板には無機ガラス、樹脂ガラス、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、アクリル樹脂を好適に採用できる。
 透明電極の表面にPdナノ微粒子を付着させてもよい。Pdナノ微粒子を付着させた透明電極を用いると、透明電極上に形成される銀被膜が、美しい鏡面光沢を呈する傾向がある。すなわち、透明電極上に形成される銀被膜の可視光の反射率が高くなる傾向にある。
 透明電極表面へのPdナノ微粒子の付着方法は、特に限定されない。付着方法としてPd2+をストライクメッキしてPdナノ微粒子を付着する方法が好適に採用される。
 Pdナノ微粒子のサイズは特に限定されない。Pdナノ微粒子の平均粒子径は、5~70nmであることが好ましく、10~60nmであることがより好ましく、30~50nmであることが特に好ましい。この範囲の平均粒子径とすると、透明電極上でのPdナノ微粒子の分散性が高くなり、電解メッキによって極めて均一性の高い銀被膜が形成される。
 なお、Pdナノ微粒子の平均粒子径は、任意の200個以上のPdナノ微粒子の粒子径を走査型電子顕微鏡(SEM)により測定し、その測定値を平均化することにより求める。
 また、Pdを担持させる場合の平均Pd表面密度は、特に限定されない。平均Pd表面密度は、好ましくは1.0×10-6~9.0×10-6g/cmであり、より好ましくは2.0×10-6~8.0×10-6g/cmであり、更に好ましくは3.0×10-6~7.0×10-6g/cmである。この範囲内であると、銀被膜形成前の調光極について、可視光に対する透過率を十分に確保できる。
(1) Dimming Electrode As the dimming electrode 3, a known transparent electrode used as a dimming electrode can be appropriately used. As the transparent electrode, for example, a transparent conductive film containing tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), or the like can be suitably used. Inorganic glass and resin glass such as polycarbonate (PC), polyethylene terephthalate (PET), and acrylic resin can be suitably used for the substrate of the transparent conductive film.
Pd nanoparticles may be attached to the surface of the transparent electrode. When a transparent electrode to which Pd nanoparticles are attached is used, the silver coating formed on the transparent electrode tends to exhibit a beautiful specular gloss. That is, the visible light reflectance of the silver coating formed on the transparent electrode tends to increase.
The method for attaching the Pd nanoparticles to the transparent electrode surface is not particularly limited. As a deposition method, a method in which Pd 2+ is strike-plated to deposit Pd nanoparticles is preferably employed.
The size of the Pd nanoparticle is not particularly limited. The average particle diameter of the Pd nanoparticle is preferably 5 to 70 nm, more preferably 10 to 60 nm, and particularly preferably 30 to 50 nm. When the average particle size is within this range, the dispersibility of the Pd nanoparticle on the transparent electrode is increased, and a silver coating with extremely high uniformity is formed by electrolytic plating.
The average particle diameter of the Pd nanoparticle is obtained by measuring the particle diameter of any 200 or more Pd nanoparticles using a scanning electron microscope (SEM) and averaging the measured values.
Moreover, the average Pd surface density in the case of carrying Pd is not particularly limited. The average Pd surface density is preferably 1.0 × 10 −6 to 9.0 × 10 −6 g / cm 2 , more preferably 2.0 × 10 −6 to 8.0 × 10 −6 g / cm 2. cm 2 , more preferably 3.0 × 10 −6 to 7.0 × 10 −6 g / cm 2 . Within this range, a sufficient transmittance for visible light can be secured for the dimming electrode before the silver coating is formed.
(2)対向極
 対向極5には、対向極として使用される公知の電極を適宜用いることができる。対向極としてとしては、例えば、Ag電極、ITO電極、FTO電極等を好適に採用できる。
(2) Counter electrode As the counter electrode 5, a known electrode used as a counter electrode can be used as appropriate. As the counter electrode, for example, an Ag electrode, an ITO electrode, an FTO electrode, or the like can be suitably employed.
(3)参照電極
 調光部材は、参照電極を備えていてもよい。参照電極としては、例えば、Ag/Ag電極、Ag/AgCl電極、SCE電極等を好適に採用できる。
(3) Reference electrode The light control member may be equipped with the reference electrode. As the reference electrode, for example, an Ag / Ag + electrode, an Ag / AgCl electrode, an SCE electrode, or the like can be suitably used.
(4)電解質
 電解質7には、イオン液体、有機溶媒、銀イオン、及びクエン酸が含まれる。この「電解質」は「Agメッキ浴」と称される場合がある。
 ここで、本発明がなされた経緯を説明する。
 従来のAgメッキ浴は、猛毒のシアンが配位子として用いられている。また、従来のAgメッキ浴は水溶液系のメッキ浴であり、調光部材(デバイス)に使用する場合は、溶媒の揮発や電解質塩の析出という問題もある。また、電解メッキと、電解溶出とを可逆的に行うことができるAgメッキ浴は現状存在していない。
 このような背景の下、本発明の電解質が開発されたのである。本発明の電解質は、シアンの代わりに安全なクエン酸を用いている。また、本発明の電解質は、水系ではなく、イオン液体と有機溶媒の混合系を用いている。そして、本発明者らは、イオン液体、有機溶媒、銀イオン、及びクエン酸を含む電解質を用いることにより、電解メッキと、電解溶出とが可逆的に行えるという予想外の事実を見いだし、この知見に基づいて本発明はなされた。
 次に、各成分について詳細に説明する。
(4) Electrolyte The electrolyte 7 contains an ionic liquid, an organic solvent, silver ions, and citric acid. This “electrolyte” is sometimes referred to as an “Ag plating bath”.
Here, the background of the present invention will be described.
The conventional Ag plating bath uses highly toxic cyan as a ligand. Further, the conventional Ag plating bath is an aqueous solution-based plating bath, and when used for a light control member (device), there are problems of solvent volatilization and electrolyte salt precipitation. In addition, there is currently no Ag plating bath capable of reversibly performing electrolytic plating and electrolytic elution.
Under such circumstances, the electrolyte of the present invention was developed. The electrolyte of the present invention uses safe citric acid instead of cyanide. In addition, the electrolyte of the present invention uses a mixed system of an ionic liquid and an organic solvent instead of an aqueous system. The present inventors have found an unexpected fact that electrolytic plating and electrolytic elution can be performed reversibly by using an electrolyte containing an ionic liquid, an organic solvent, silver ions, and citric acid. The present invention has been made based on the above.
Next, each component will be described in detail.
(4.1)イオン液体
 上述のイオン液体とは、常温(25℃)において溶融状態にあり、カチオン部とアニオン部からなるイオン性物質のことを示す。
 イオン液体のカチオン部としては、通常のイオン液体に用いられるカチオンを用いることができる。例えば、窒素数1~3個の5~6員環化合物のオニウムカチオン、第四級アンモニウムカチオン、及び第四級ホスホニウムカチオンからなる群より選択されるカチオン部が挙げられる。
(4.1) Ionic liquid The above-mentioned ionic liquid is in a molten state at room temperature (25 ° C.) and indicates an ionic substance composed of a cation part and an anion part.
As the cation portion of the ionic liquid, a cation used in a normal ionic liquid can be used. Examples thereof include a cation moiety selected from the group consisting of an onium cation, a quaternary ammonium cation, and a quaternary phosphonium cation of a 5- to 6-membered ring compound having 1 to 3 nitrogen atoms.
 窒素数1~3個の5~6員環化合物のオニウムカチオンとしては、例えば、イミダゾリウムカチオン、ピロリジニウムカチオン等の5員環化合物のオニウムカチオンや、ピリジニウムカチオン、ピペリジニウムカチオン等の6員環化合物のオニウムカチオンを挙げることができる。これらの中でも、イミダゾリウムカチオンが、融点が低く液状になりやすい点で好ましい。 Examples of the onium cation of the 5- to 6-membered ring compound having 1 to 3 nitrogen atoms include, for example, an onium cation of a 5-membered ring compound such as an imidazolium cation and a pyrrolidinium cation, a pyridinium cation, and a piperidinium cation. Mention may be made of onium cations of member ring compounds. Among these, an imidazolium cation is preferable because it has a low melting point and easily becomes liquid.
 イミダゾリウムカチオンとしては、特に限定されるものではない。例えば、下記一般式(1)の構造を有するものをあげることができる。
Figure JPOXMLDOC01-appb-C000003

〔式(1)中、R、R、R、R、Rは、それぞれ独立して、
 水素原子、
 置換されているかもしくは非置換の炭素数1~20の飽和もしくは不飽和の直鎖状、分枝状、もしくは環状のアルキル基、
 置換されているかもしくは非置換の炭素数6~30のアリール基、
 置換されているかもしくは非置換の炭素数7~31のアリールアルキル基、又は
 炭素数1~20のアルコキシ基であり、
 前記アルキル基、前記アリール基又は前記アリールアルキル基が置換されている場合は、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシルオキシ基、アシル基、アルキルスルファニル基、アリールスルファニル基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ヒドロキシ基、カルボキシ基、ホルミル基、メルカプト基、スルホ基、メシル基、p-トルエンスルホニル基、アミノ基、ニトロ基、シアノ基、トリフルオロメチル基、トリクロロメチル基、トリメチルシリル基、ホスフィニコ基、又はホスホノ基で置換されている。〕
The imidazolium cation is not particularly limited. For example, what has the structure of following General formula (1) can be mention | raise | lifted.
Figure JPOXMLDOC01-appb-C000003

[In formula (1), R 1 , R 2 , R 3 , R 4 , R 5 are each independently
Hydrogen atom,
A substituted or unsubstituted C1-C20 saturated or unsaturated linear, branched, or cyclic alkyl group,
A substituted or unsubstituted aryl group having 6 to 30 carbon atoms,
A substituted or unsubstituted arylalkyl group having 7 to 31 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms,
When the alkyl group, the aryl group or the arylalkyl group is substituted, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an acyloxy group, an acyl group, an alkylsulfanyl group, Arylsulfanyl, alkylamino, dialkylamino, arylamino, hydroxy, carboxy, formyl, mercapto, sulfo, mesyl, p-toluenesulfonyl, amino, nitro, cyano, tri Substituted with a fluoromethyl group, a trichloromethyl group, a trimethylsilyl group, a phosphinico group, or a phosphono group. ]
 前記化学式(1)中のR、R、R、R、Rとして用いられる置換されているかもしくは非置換の炭素数1~20の飽和もしくは不飽和の直鎖状、分枝状、もしくは環状のアルキル基の例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、tert-ペンチル基、ネオペンチル基、n-へキシル基、3-メチルペンタン-2-イル基、3-メチルペンタン-3-イル基、4-メチルペンチル基、4-メチルペンタン-2-イル基、1,3-ジメチルブチル基、3,3-ジメチルブチル基、3,3-ジメチルブタン-2-イル基、n-ヘプチル基、1-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1-エチルペンチル基、1-(n-プロピル)ブチル基、1,1-ジメチルペンチル基、1,4-ジメチルペンチル基、1,1-ジエチルプロピル基、1,3,3-トリメチルブチル基、1-エチル-2,2-ジメチルプロピル基、n-オクチル基、2-メチルヘキサン-2-イル基、2,4-ジメチルペンタン-3-イル基、1,1-ジメチルペンタン-1-イル基、2,2-ジメチルヘキサン-3-イル基、2,3-ジメチルヘキサン-2-イル基、2,5-ジメチルヘキサン-2-イル基、2,5-ジメチルヘキサン-3-イル基、3,4-ジメチルヘキサン-3-イル基、3,5-ジメチルヘキサン-3-イル基、1-メチルヘプチル基、2-メチルヘプチル基、5-メチルヘプチル基、2-メチルヘプタン-2-イル基、3-メチルヘプタン-3-イル基、4-メチルヘプタン-3-イル基、4-メチルヘプタン-4-イル基、1-エチルヘキシル基、2-エチルヘキシル基、1-プロピルペンチル基、2-プロピルペンチル基、1,1-ジメチルヘキシル基、1,4-ジメチルヘキシル基、1,5-ジメチルヘキシル基、1-エチル-1-メチルペンチル基、1-エチル-4-メチルペンチル基、1,1,4-トリメチルペンチル基、2,4,4-トリメチルペンチル基、1-イソプロピル-1,2-ジメチルプロピル基、1,1,3,3-テトラメチルブチル基、n-ノニル基、1-メチルオクチル基、6-メチルオクチル基、1-エチルヘプチル基、1-(n-ブチル)ペンチル基、4-メチル-1-(n-プロピル)ペンチル基、1,5,5-トリメチルヘキシル基、1,1,5-トリメチルヘキシル基、2-メチルオクタン-3-イル基、n-デシル基、1-メチルノニル基、1-エチルオクチル基、1-(n-ブチル)ヘキシル基、1,1-ジメチルオクチル基、3,7-ジメチルオクチル基、n-ウンデシル基、1-メチルデシル基、1-エチルノニル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、1-メチルトリデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などが挙げられる。入手容易性の観点から、置換されているかもしくは非置換の炭素数1~8の飽和もしくは不飽和の直鎖状又は分岐状のアルキル基が好ましく、メチル基、エチル基が特に好ましい。 Substituted or unsubstituted C1-C20 saturated or unsaturated linear or branched, used as R 1 , R 2 , R 3 , R 4 , R 5 in the chemical formula (1) Examples of the cyclic alkyl group include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, Isoamyl group, tert-pentyl group, neopentyl group, n-hexyl group, 3-methylpentan-2-yl group, 3-methylpentan-3-yl group, 4-methylpentyl group, 4-methylpentane-2- Yl group, 1,3-dimethylbutyl group, 3,3-dimethylbutyl group, 3,3-dimethylbutan-2-yl group, n-heptyl group, 1-methylhexyl group, 3-methylhexyl group 4-methylhexyl group, 5-methylhexyl group, 1-ethylpentyl group, 1- (n-propyl) butyl group, 1,1-dimethylpentyl group, 1,4-dimethylpentyl group, 1,1-diethylpropyl Group, 1,3,3-trimethylbutyl group, 1-ethyl-2,2-dimethylpropyl group, n-octyl group, 2-methylhexane-2-yl group, 2,4-dimethylpentan-3-yl group 1,1-dimethylpentan-1-yl group, 2,2-dimethylhexane-3-yl group, 2,3-dimethylhexane-2-yl group, 2,5-dimethylhexane-2-yl group, , 5-dimethylhexane-3-yl group, 3,4-dimethylhexane-3-yl group, 3,5-dimethylhexane-3-yl group, 1-methylheptyl group, 2-methylheptyl group, 5-methylheptyl group Group, 2-methylheptan-2-yl group, 3-methylheptan-3-yl group, 4-methylheptan-3-yl group, 4-methylheptan-4-yl group, 1-ethylhexyl group, 2-ethylhexyl Group, 1-propylpentyl group, 2-propylpentyl group, 1,1-dimethylhexyl group, 1,4-dimethylhexyl group, 1,5-dimethylhexyl group, 1-ethyl-1-methylpentyl group, 1- Ethyl-4-methylpentyl group, 1,1,4-trimethylpentyl group, 2,4,4-trimethylpentyl group, 1-isopropyl-1,2-dimethylpropyl group, 1,1,3,3-tetramethyl Butyl group, n-nonyl group, 1-methyloctyl group, 6-methyloctyl group, 1-ethylheptyl group, 1- (n-butyl) pentyl group, 4-methyl-1- (n-propyl L) Pentyl group, 1,5,5-trimethylhexyl group, 1,1,5-trimethylhexyl group, 2-methyloctane-3-yl group, n-decyl group, 1-methylnonyl group, 1-ethyloctyl group 1- (n-butyl) hexyl group, 1,1-dimethyloctyl group, 3,7-dimethyloctyl group, n-undecyl group, 1-methyldecyl group, 1-ethylnonyl group, n-dodecyl group, n-tridecyl group Group, n-tetradecyl group, 1-methyltridecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group, cyclopropyl group, cyclobutyl group , Cyclopentyl group, cyclohexyl group, cyclooctyl group and the like. From the viewpoint of availability, a substituted or unsubstituted C1-C8 saturated or unsaturated linear or branched alkyl group is preferable, and a methyl group and an ethyl group are particularly preferable.
 前記化学式(1)中のR、R、R、R、Rとして用いられる置換されているかもしくは非置換の炭素数6~30のアリール基の例としては、例えば、フェニル基、ビフェニル基、1-ナフチル基、2-ナフチル基、9-アンスリル基、9-フェナントリル基、1-ピレニル基、5-ナフタセニル基、1-インデニル基、2-アズレニル基、9-フルオレニル基、ターフェニル基、クオーターフェニル基、メシチル基、ペンタレニル基、ビナフタレニル基、ターナフタレニル基、クオーターナフタレニル基、ヘプタレニル基、ビフェニレニル基、インダセニル基、フルオランテニル基、アセナフチレニル基、アセアントリレニル基、フェナレニル基、フルオレニル基、アントリル基、ビアントラセニル基、ターアントラセニル基、クオーターアントラセニル基、アントラキノリル基、フェナントリル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基、プレイアデニル基、ピセニル基、ペリレニル基、ペンタフェニル基、ペンタセニル基、テトラフェニレニル基、ヘキサフェニル基、ヘキサセニル基、ルビセニル基、コロネニル基、トリナフチレニル基、ヘプタフェニル基、ヘプタセニル基、ピラントレニル基、オバレニル基などが挙げられる。 Examples of the substituted or unsubstituted aryl group having 6 to 30 carbon atoms used as R 1 , R 2 , R 3 , R 4 , R 5 in the chemical formula (1) include, for example, a phenyl group, Biphenyl group, 1-naphthyl group, 2-naphthyl group, 9-anthryl group, 9-phenanthryl group, 1-pyrenyl group, 5-naphthacenyl group, 1-indenyl group, 2-azurenyl group, 9-fluorenyl group, terphenyl Group, quarterphenyl group, mesityl group, pentarenyl group, binaphthalenyl group, tarnaphthalenyl group, quarternaphthalenyl group, heptaenyl group, biphenylenyl group, indacenyl group, fluoranthenyl group, acenaphthylenyl group, aceanthrylenyl group, phenenyl group, fluorenyl group Group, anthryl group, bianthracenyl group, teranthracenyl group , Quarter anthracenyl group, anthraquinolyl group, phenanthryl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, preadenyl group, picenyl group, perylenyl group, pentaphenyl group, pentacenyl group, tetraphenylenyl group, hexaphenyl group Group, hexacenyl group, rubicenyl group, coronenyl group, trinaphthylenyl group, heptaphenyl group, heptacenyl group, pyrantrenyl group, and oberenyl group.
 前記化学式(1)中のR、R、R、R、Rとして用いられる置換されているかもしくは非置換の炭素数7~31のアリールアルキル基の例としては、例えば、ベンジル基、フェニルエチル基、3-フェニルプロピル基、1-ナフチルメチル基、2-ナフチルメチル基、2-(1-ナフチル)エチル基、2-(2-ナフチル)エチル基、3-(1-ナフチル)プロピル基、又は3-(2-ナフチル)プロピル基などが挙げられる。 Examples of the substituted or unsubstituted arylalkyl group having 7 to 31 carbon atoms used as R 1 , R 2 , R 3 , R 4 and R 5 in the chemical formula (1) include, for example, a benzyl group Phenylethyl, 3-phenylpropyl, 1-naphthylmethyl, 2-naphthylmethyl, 2- (1-naphthyl) ethyl, 2- (2-naphthyl) ethyl, 3- (1-naphthyl) A propyl group, or a 3- (2-naphthyl) propyl group is exemplified.
 前記化学式(1)中のR、R、R、R、Rとして用いられる炭素数1~20のアルコキシ基の例としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、2-メチルプロポキシ基、1-メチルプロポキシ基、t-ブトキシ基等を挙げることができる。これらのなかでも、炭素数1~4のものが好ましい。 Examples of the alkoxy group having 1 to 20 carbon atoms used as R 1 , R 2 , R 3 , R 4 , R 5 in the chemical formula (1) include, for example, a methoxy group, an ethoxy group, an n-propoxy group, Examples include i-propoxy group, n-butoxy group, 2-methylpropoxy group, 1-methylpropoxy group, t-butoxy group and the like. Among these, those having 1 to 4 carbon atoms are preferable.
 前述した置換されているかもしくは非置換の炭素数1~20の飽和もしくは不飽和の直鎖状、分枝状、もしくは環状のアルキル基、置換されているかもしくは非置換の炭素数6~30のアリール基、置換されているかもしくは非置換のアリールアルキル基、及びアルキレン基中の水素原子は、更に他の置換基で置換されていてもよい。 The above-mentioned substituted or unsubstituted saturated or unsaturated linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 carbon atoms The hydrogen atom in the group, substituted or unsubstituted arylalkyl group, and alkylene group may be further substituted with another substituent.
 そのような置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子、メチル基、エチル基、tert-ブチル基、ドデシル基などのアルキル基、フェニル基、p-トリル基、キシリル基、クメニル基、ナフチル基、アンスリル基、フェナントリル基などのアリール基、メトキシ基、エトキシ基、tert-ブトキシ基などのアルコキシ基、フェノキシ基、p-トリルオキシ基などのアリールオキシ基、メトキシカルボニル基、ブトキシカルボニル基、フェノキシカルボニルなど等のアルコキシカルボニル基、アセトキシ基、プロピオニルオキシ基、ベンゾイルオキシ基などのアシルオキシ基、アセチル基、ベンゾイル基、イソブチリル基、アクリロイル基、メタクリロイル基、メトキサリル基などのアシル基、メチルスルファニル基、tert-ブチルスルファニル基などのアルキルスルファニル基、フェニルスルファニル基、p-トリルスルファニル基などのアリールスルファニル基、メチルアミノ基、シクロヘキシルアミノ基などのアルキルアミノ基、ジメチルアミノ基、ジエチルアミノ基、モルホリノ基、ピペリジノ基などのジアルキルアミノ基、フェニルアミノ基、p-トリルアミノ基等のアリールアミノ基などの他、ヒドロキシ基、カルボキシ基、ホルミル基、メルカプト基、スルホ基、メシル基、p-トルエンスルホニル基、アミノ基、ニトロ基、シアノ基、トリフルオロメチル基、トリクロロメチル基、トリメチルシリル基、ホスフィニコ基、ホスホノ基などが挙げられる。 Examples of such substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkyl groups such as methyl group, ethyl group, tert-butyl group and dodecyl group, phenyl group, p-tolyl. Group, xylyl group, cumenyl group, naphthyl group, anthryl group, aryl group such as phenanthryl group, alkoxy group such as methoxy group, ethoxy group, tert-butoxy group, aryloxy group such as phenoxy group, p-tolyloxy group, methoxy Alkoxycarbonyl groups such as carbonyl group, butoxycarbonyl group, phenoxycarbonyl, etc., acetoxy group, propionyloxy group, acyloxy group such as benzoyloxy group, acetyl group, benzoyl group, isobutyryl group, acryloyl group, methacryloyl group, methoxalyl group, etc. A Alkyl group, methylsulfanyl group, alkylsulfanyl group such as tert-butylsulfanyl group, arylsulfanyl group such as phenylsulfanyl group, p-tolylsulfanyl group, alkylamino group such as methylamino group, cyclohexylamino group, dimethylamino group, In addition to dialkylamino groups such as diethylamino group, morpholino group and piperidino group, arylamino groups such as phenylamino group and p-tolylamino group, hydroxy group, carboxy group, formyl group, mercapto group, sulfo group, mesyl group, p -Toluenesulfonyl group, amino group, nitro group, cyano group, trifluoromethyl group, trichloromethyl group, trimethylsilyl group, phosphinico group, phosphono group and the like.
 上記式(1)で示されるイミダゾリウムカチオンとしては、合成の容易さの点から、1,3-二置換イミダゾリウムカチオン、1,2,3-三置換イミダゾリウムカチオンが好ましく用いられ、特には1,3-二置換イミダゾリウムカチオンが好ましく用いられる。
 具体的にイミダゾリウムカチオンとしては、1-エチル-3-メチルイミダゾリウムカチオン、1,3-ジメチルイミダゾリウムカチオン、1-メチル-3-プロピルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-メチル-3-ペンチルイミダゾリウムカチオン、1-ヘキシル-3-メチルイミダゾリウムカチオン、1-ヘプチル-3-メチルイミダゾリウムカチオン、1-メチル-3-オクチルイミダゾリウムカチオン、1-デシル-3-メチルイミダゾリウムカチオン、1-ドデシル-3-メチルイミダゾリウムカチオン、1-エチル-3-プロピルイミダゾリウムカチオン、1-ブチル-3-エチルイミダゾリウムカチオンなどのジアルキルイミダゾリウムカチオン;3-エチル-1,2-ジメチル-イミダゾリウムカチオン、1,2-ジメチル-3-プロピルイミダゾリウムカチオン、1-ブチル-2,3-ジメチルイミダゾリウムカチオン、1,2-ジメチル-3-ヘキシルイミダゾリウムカチオン、1,2-ジメチル-3-オクチルイミダゾリウムカチオン、1-エチル-3,4-ジメチルイミダゾリウムカチオン、1-イソプロピル-2,3-ジメチルイミダゾリウムカチオンなどのトリアルキルイミダゾリウムカチオンなどを挙げることができる。
As the imidazolium cation represented by the above formula (1), 1,3-disubstituted imidazolium cation and 1,2,3-trisubstituted imidazolium cation are preferably used from the viewpoint of easiness of synthesis. 1,3-disubstituted imidazolium cations are preferably used.
Specific examples of the imidazolium cation include 1-ethyl-3-methylimidazolium cation, 1,3-dimethylimidazolium cation, 1-methyl-3-propylimidazolium cation, and 1-butyl-3-methylimidazolium cation. 1-methyl-3-pentylimidazolium cation, 1-hexyl-3-methylimidazolium cation, 1-heptyl-3-methylimidazolium cation, 1-methyl-3-octylimidazolium cation, 1-decyl-3 Dialkyl imidazolium cations such as methyl imidazolium cation, 1-dodecyl-3-methyl imidazolium cation, 1-ethyl-3-propyl imidazolium cation, 1-butyl-3-ethyl imidazolium cation; 3-ethyl-1 , 2-Dimethyl Imidazolium cation, 1,2-dimethyl-3-propylimidazolium cation, 1-butyl-2,3-dimethylimidazolium cation, 1,2-dimethyl-3-hexylimidazolium cation, 1,2-dimethyl-3 -Trialkylimidazolium cations such as octylimidazolium cation, 1-ethyl-3,4-dimethylimidazolium cation, and 1-isopropyl-2,3-dimethylimidazolium cation.
 ピロリジニウムカチオンとしては、例えば、N,N-ジメチルピロリジニウムカチオン、N-エチル-N-メチルピロリジニウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、N-ブチル-N-メチルピロリジニウムカチオン、N-メチル-N-ペンチルピロリジニウムカチオン、N-ヘキシル-N-メチルピロリジニウムカチオン、N-メチル-N-オクチルピロリジニウムカチオン、N-デシル-N-メチルピロリジニウムカチオン、N-ドデシル-N-メチルピロリジニウムカチオン、N-(2-メトキシエチル)-N-メチルピロリジニウムカチオン、N-(2-エトキシエチル)-N-メチルピロリジニウムカチオン、N-(2-プロポキシエチル)-N-メチルピロリジニウムカチオン、N-(2-イソプロポキシエチル)-N-メチルピロリジニウムカチオンなどを挙げることができる。 Examples of the pyrrolidinium cation include N, N-dimethylpyrrolidinium cation, N-ethyl-N-methylpyrrolidinium cation, N-methyl-N-propylpyrrolidinium cation, and N-butyl-N-methyl. Pyrrolidinium cation, N-methyl-N-pentylpyrrolidinium cation, N-hexyl-N-methylpyrrolidinium cation, N-methyl-N-octylpyrrolidinium cation, N-decyl-N-methylpyrrolidi Nium cation, N-dodecyl-N-methylpyrrolidinium cation, N- (2-methoxyethyl) -N-methylpyrrolidinium cation, N- (2-ethoxyethyl) -N-methylpyrrolidinium cation, N -(2-propoxyethyl) -N-methylpyrrolidinium cation, N- (2-isopro Kishiechiru) -N-, methyl pyrrolidinium cation can be exemplified.
 ピリジニウムカチオンとしては、例えば、N-メチルピリジニウムカチオン、N-エチルピリジニウムカチオン、N-ブチルピリジニウムカチオン、N-プロピルピリジニウムカチオンなどの炭素数1~16のアルキル基により置換されたピリジニウムカチオンなどを挙げることができる。 Examples of the pyridinium cation include a pyridinium cation substituted with an alkyl group having 1 to 16 carbon atoms such as an N-methylpyridinium cation, an N-ethylpyridinium cation, an N-butylpyridinium cation, and an N-propylpyridinium cation. Can do.
 ピペリジニウムカチオンとしては、例えば、N,N-ジメチルピペリジニウムカチオン、N-エチル-N-メチルピペリジニウムカチオン、N-メチル-N-プロピルピペリジニウムカチオン、N-ブチル-N-メチルピペリジニウムカチオン、N-メチル-N-ペンチルピペリジニウムカチオン、N-ヘキシル-N-メチルピペリジニウムカチオン、N-メチル-N-オクチルピペリジニウムカチオン、N-デシル-N-メチルピペリジニウムカチオン、N-ドデシル-N-メチルピペリジニウムカチオン、N-(2-メトキシエチル)-N-メチルピペリジニウムカチオン、N-(2-メトキシエチル)-N-エチルピペリジニウムカチオン、N-(2-エトキシエチル)-N-メチルピペリジニウムカチオン、N-メチル-N-(2-メトキシフェニル)ピペリジニウムカチオン、N-メチル-N-(4-メトキシフェニル)ピペリジニウムカチオン、N-エチル-N-(2-メトキシフェニル)ピペリジニウムカチオン、N-エチル-N-(4-メトキシフェニル)ピペリジニウムカチオンなどを挙げることができる。 Examples of piperidinium cations include N, N-dimethylpiperidinium cation, N-ethyl-N-methylpiperidinium cation, N-methyl-N-propylpiperidinium cation, and N-butyl-N-methyl. Piperidinium cation, N-methyl-N-pentylpiperidinium cation, N-hexyl-N-methylpiperidinium cation, N-methyl-N-octylpiperidinium cation, N-decyl-N-methylpiperidi Nium cation, N-dodecyl-N-methylpiperidinium cation, N- (2-methoxyethyl) -N-methylpiperidinium cation, N- (2-methoxyethyl) -N-ethylpiperidinium cation, N -(2-Ethoxyethyl) -N-methylpiperidinium cation, N-methyl-N- (2 Methoxyphenyl) piperidinium cation, N-methyl-N- (4-methoxyphenyl) piperidinium cation, N-ethyl-N- (2-methoxyphenyl) piperidinium cation, N-ethyl-N- (4 -Methoxyphenyl) piperidinium cation.
 イオン液体(1)のアニオン部に関しては、特に限定されず、一般的なイオン液体で使用されるアニオンを用いることが可能である。例えば、アニオン部として、Cl、Br、AlCl 、AlCl 、BF 、PF 、ClO 、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF)n、(CN)、SCN、CSO 、(CSO、CCOO、(CFSO)(CFCO)Nなどの一般的なイオン液体で使用されるアニオンを用いることが可能である。
 これらの中でも、ハロゲン原子を有するアニオンが好ましく、特にはフッ素原子含有アニオンが好ましく、更には、下記一般式(2)で示されるフッ素含有イミドアニオンを用いることが好ましい。
It does not specifically limit regarding the anion part of an ionic liquid (1), It is possible to use the anion used with a general ionic liquid. For example, as the anion moiety, Cl , Br , AlCl 4 , Al 2 Cl 7 , BF 4 , PF 6 , ClO 4 , NO 3 , CH 3 COO , CF 3 COO , CH 3 SO 3 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , AsF 6 , SbF 6 , NbF 6 , TaF 6 , F (HF) n , (CN) 2 N , SCN , C 4 F 9 SO 3 , (C 2 F 5 SO 2 ) 2 N , C 3 F 7 COO , (CF 3 SO 2 ) (CF 3 CO ) N - it is possible to use an anion commonly used in ionic liquids such as.
Among these, an anion having a halogen atom is preferable, a fluorine atom-containing anion is particularly preferable, and a fluorine-containing imide anion represented by the following general formula (2) is preferably used.
 (C2n+1SO  ・・・(2)
  (式中、nは、0~15の整数)
(C n F 2n + 1 SO 2 ) 2 N (2)
(Where n is an integer from 0 to 15)
 一般式(2)で示されるフッ素含有イミドアニオンとして、具体的には、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオンを用いることが好ましい。なお、上記nとしては、通常0~15、好ましくは0~8、特に好ましくは0~4である。 Specifically, as the fluorine-containing imide anion represented by the general formula (2), it is preferable to use a bis (trifluoromethanesulfonyl) imide anion or a bis (fluorosulfonyl) imide anion. The above n is usually 0 to 15, preferably 0 to 8, particularly preferably 0 to 4.
 イオン液体の製造方法は、特に限定されない。例えば、製造方法として、アニオン交換法又は酸エステル法などの公知の方法を適用することができる。より詳細には、例えば、用いる有機カチオンのハロゲン化塩とパーフルオロアルキルスルホネートアニオンのアルカリ金属塩とを用いてアニオン交換反応により得ることができる。ハロゲン化塩のハロゲンとしては、塩素又は臭素があげられる。アルカリ金属塩のアルカリ金属としては、ナトリウム、カリウムなどが挙げられる。 The method for producing the ionic liquid is not particularly limited. For example, a known method such as an anion exchange method or an acid ester method can be applied as the production method. More specifically, for example, it can be obtained by an anion exchange reaction using a halogenated salt of an organic cation to be used and an alkali metal salt of a perfluoroalkylsulfonate anion. The halogen of the halogenated salt includes chlorine or bromine. Examples of the alkali metal of the alkali metal salt include sodium and potassium.
(4.2)有機溶媒
 電解質に含まれる有機溶媒は、特に限定されない。有機溶媒は、クエン酸を溶解しやすいという観点から、極性溶媒であることが好ましい。極性溶媒としては、例えば、アセトニトリル、エタノール、イソプロパノール、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N,N-ジメチルアセトアミド、テトラヒドロフラン(THF)、コハク酸メチルトリグリコールジエステル、アセトン、酢酸等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。
(4.2) Organic solvent The organic solvent contained in the electrolyte is not particularly limited. The organic solvent is preferably a polar solvent from the viewpoint that it is easy to dissolve citric acid. Examples of the polar solvent include acetonitrile, ethanol, isopropanol, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N, N-dimethylacetamide, tetrahydrofuran (THF), methyl triglycol diester succinate, acetone, Acetic acid etc. are mentioned, These 1 type can be used individually or in combination of 2 or more types.
(4.3)イオン液体と、有機溶媒との体積比率
 イオン液体と、有機溶媒との体積比率は、特に限定されない。イオン液体と、有機溶媒との体積比率は、好ましくは、90:10~10:90であり、より好ましくは60:40~40:60であり、更に好ましくは55:45~45:55である。この範囲内であると、電解質にクエン酸を十分に溶解できる。
(4.3) Volume ratio between ionic liquid and organic solvent The volume ratio between the ionic liquid and the organic solvent is not particularly limited. The volume ratio of the ionic liquid to the organic solvent is preferably 90:10 to 10:90, more preferably 60:40 to 40:60, and still more preferably 55:45 to 45:55. . Within this range, citric acid can be sufficiently dissolved in the electrolyte.
(4.4)銀イオン
 銀イオン源としては特に限定されないが、一般的に入手しやすいものとして、硝酸銀、硫酸銀などが挙げられる。これらを用いることが汎用性、コストの面でも望ましい。
 電解質中の銀イオンの濃度は、特に限定されない。銀イオンの濃度は、好ましくは0.01~2.0Mであり、より好ましくは0.02~0.8Mであり、更に好ましくは0.1~0.3Mである。銀イオンの濃度を、この範囲にすると、可逆反応のために電解質に流すことができる電流量を十分に確保できる。
(4.4) Silver ion Although it does not specifically limit as a silver ion source, Silver nitrate, silver sulfate, etc. are mentioned as what is generally easy to obtain. Use of these is desirable also in terms of versatility and cost.
The concentration of silver ions in the electrolyte is not particularly limited. The concentration of silver ions is preferably 0.01 to 2.0M, more preferably 0.02 to 0.8M, and still more preferably 0.1 to 0.3M. When the concentration of silver ions is within this range, a sufficient amount of current that can be passed through the electrolyte for reversible reaction can be secured.
(4.5)クエン酸
 本発明では、電解質にクエン酸が含まれることで、電解メッキによる銀被膜の形成と、電解溶出による銀被膜の溶出とを可逆的に行うことができる。
 電解質中のクエン酸の濃度は、特に限定されない。クエン酸の濃度は、クエン酸一水和物として、好ましくは0.5~1000mMであり、より好ましくは5~250mMであり、更に好ましくは20~100mMである。クエン酸の濃度を、この範囲にすると、電解メッキによる銀被膜の形成と、電解溶出による銀被膜の溶出とを十分に行うことができ、調光部材の特性が良好となる。
(4.5) Citric acid In the present invention, by containing citric acid in the electrolyte, formation of a silver coating by electrolytic plating and elution of the silver coating by electrolytic elution can be performed reversibly.
The concentration of citric acid in the electrolyte is not particularly limited. The concentration of citric acid is preferably 0.5 to 1000 mM, more preferably 5 to 250 mM, and still more preferably 20 to 100 mM as citric acid monohydrate. When the citric acid concentration is within this range, the formation of the silver coating by electrolytic plating and the elution of the silver coating by electrolysis can be sufficiently performed, and the characteristics of the light control member are improved.
(4.6)他の成分
 電解質には、本発明の効果を阻害しない限り、他の成分を含んでもよい。
(4.6) Other components The electrolyte may contain other components as long as the effects of the present invention are not impaired.
(4.7)電解メッキ時の電流密度
 電解メッキ時の電流密度は、特に限定されない。電解メッキ時の電流密度は、好ましくは0.5~20mA/cmであり、より好ましくは1~10mA/cmであり、更に好ましくは2~5mA/cmである。電解メッキ時の電流密度を、この範囲にすると、電解メッキによる銀被膜の形成を十分に行うことができ、調光部材の特性が良好となる。
(4.7) Current density during electroplating The current density during electroplating is not particularly limited. The current density during electrolytic plating is preferably 0.5 to 20 mA / cm 2 , more preferably 1 to 10 mA / cm 2 , and further preferably 2 to 5 mA / cm 2 . When the current density during electrolytic plating is within this range, the silver coating can be sufficiently formed by electrolytic plating, and the characteristics of the light control member are improved.
(4.8)電解溶出時の電流密度
 電解溶出時の電流密度は、特に限定されない。電解溶出時の電流密度は、好ましくは0.1~10mA/cmであり、より好ましくは0.4~6mA/cmであり、更に好ましくは1~4mA/cmである。電解溶出時の電流密度を、この範囲にすると、電解溶出による銀被膜の溶出を十分に行うことができ、調光部材の特性が良好となる。
(4.8) Current density during electrolysis The current density during electrolysis is not particularly limited. Current density during electrolysis elution is preferably 0.1 ~ 10mA / cm 2, more preferably 0.4 ~ 6mA / cm 2, more preferably from 1 ~ 4mA / cm 2. When the current density during electrolytic elution is within this range, the silver coating can be sufficiently eluted by electrolytic elution, and the characteristics of the light control member are improved.
2.本実施形態の調光部材の効果
 本実施形態の調光部材は、電解メッキによる銀被膜の形成と、電解溶出による銀被膜の溶出とを可逆的に行うことができる。そして、この可逆反応によって、可視光の反射率を変化することができる。本実施形態の調光部材は、新規な調光部材であるため、調光部材の適用範囲が広がる。
2. Effect of Light Control Member of this Embodiment The light control member of this embodiment can reversibly form a silver coating by electrolytic plating and elution of a silver coating by electrolytic elution. And the reflectance of visible light can be changed by this reversible reaction. Since the light control member of this embodiment is a novel light control member, the application range of a light control member spreads.
 以下、実施例により更に具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
1.銀の電気メッキ試験、及び電解溶出試験
 図2に示す装置を用いて銀の電気メッキ試験、及び電解溶出試験を行った。ここで、符号3は調光極を示し、符号5は対向極を示し、符号7は電解質を示し、符号9は参照極を示し、符号11はポテンショスタットを示す。
1. Silver electroplating test and electrolysis elution test Silver electroplating test and electrolysis elution test were performed using the apparatus shown in FIG. Here, reference numeral 3 indicates a dimming electrode, reference numeral 5 indicates a counter electrode, reference numeral 7 indicates an electrolyte, reference numeral 9 indicates a reference electrode, and reference numeral 11 indicates a potentiostat.
(1)電解質
 次の組成で6mLの電解質を調製した。なお、「電解質」は、上述のように「Agメッキ浴」と称される場合がある。使用したイオン液体は、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドである。

<電解質の組成>
0.2M AgNO
40mM クエン酸一水和物
アセトニトリル 2.9mL
イオン液体 3.1mL
(1) Electrolyte 6 mL of electrolyte was prepared with the following composition. The “electrolyte” may be referred to as “Ag plating bath” as described above. The ionic liquid used is 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide.

<Composition of electrolyte>
0.2M AgNO 3
40 mM citric acid monohydrate acetonitrile 2.9 mL
Ionic liquid 3.1mL
(2)電極
 各電極としては、以下のものを用いた。
(2.1)調光極(作用電極)
 調光極には、Pdナノ微粒子が分散した状態で付着したITO電極を用いた。Pdナノ微粒子をITO電極上に分散被覆するためのメッキ浴組成は0.049M PdCl、0.765M NHOH、0.44M NHPO、0.237M NHClを4mL HOに溶解したものである。ポテンショスタットを用いて作用電極に透明導電性のITO電極、参照電極にAg/Ag電極、対極にPt電極を用いて定電流電解にてパラジウムイオンの電解メッキを行った。この時、高電流(-5~-20mA/cm)を短時間(0.25~3s)印加してPd2+をストライクメッキしてPdナノ微粒子のサイズ制御及び分散度の制御を行い、各種サイズのPdナノ微粒子が分散した状態で付着したITO電極を作製した。これらのITO電極を調光極として使用した。
 なお、図3(A)は、Pdナノ微粒子13を分散被覆する前のITO電極15を示し、図3(B)は、Pdナノ微粒子13を分散被覆した後のITO電極15たる調光極3を示す。すなわち、本実験においては、図3(B)の調光極3を使用した。
(2) Electrode The following were used as each electrode.
(2.1) Dimming electrode (working electrode)
As the light control electrode, an ITO electrode adhered in a state where Pd nanoparticles were dispersed was used. Plating bath composition is 0.049M PdCl 2 for dispersing covering the Pd nanoparticles on the ITO electrode, 0.765M NH 4 OH, 0.44M NH 4 H 2 PO 4, 0.237M NH 4 a Cl 4 mL H 2 Dissolved in O. Using a potentiostat, palladium ion electroplating was performed by constant current electrolysis using a transparent conductive ITO electrode as a working electrode, an Ag / Ag + electrode as a reference electrode, and a Pt electrode as a counter electrode. At this time, a high current (−5 to −20 mA / cm 2 ) is applied for a short time (0.25 to 3 s) to strike Pd 2+ to perform size control and dispersion degree control of Pd nanoparticles. An ITO electrode adhered with dispersed Pd nanoparticles of size was prepared. These ITO electrodes were used as dimming electrodes.
3A shows the ITO electrode 15 before the Pd nanoparticle 13 is dispersedly coated, and FIG. 3B shows the light control electrode 3 as the ITO electrode 15 after the Pd nanoparticle 13 is dispersedly coated. Indicates. That is, in this experiment, the dimming electrode 3 of FIG. 3 (B) was used.
(2.2)参照電極
 参照電極には、Ag/Ag電極を用いた。
(2.3)対向極
 対向極には、銀電極(銀線)を用いた。
(2.2) Reference electrode An Ag / Ag + electrode was used as a reference electrode.
(2.3) Counter electrode A silver electrode (silver wire) was used as the counter electrode.
(3)試験
(3.1)試験1(クエン酸を含有する電解質を用いた試験)
 上述の(2.1)で作製した各種の透明な調光極上に定電流(-4mA/cm)にて所定時間(25s)電解メッキを行った。その結果、いずれの場合にも、調光極上に鏡面を有する銀被膜が形成された。
 次に、銀被膜が形成された調光極を用い、定電流密度(+1mA/cm)、所定時間(100s)の条件で、銀被膜の電解溶出を行った。その結果、いずれの場合にも、銀被膜が形成された調光極から、銀被膜が溶出して、透明性な元の調光極に戻ることが確認された。
 この試験のようすを模式的に図3に示す。電解メッキでは、図3(B)に示す状態から、銀被膜17が被覆されて図3(C)の状態となる。電解溶出では、図3(C)に示す状態から、銀被膜17が溶出して図3(B)の状態になる。このように、電解メッキによる銀被膜17の形成と、電解溶出による銀被膜17の溶出とを可逆的に行うことで、可視光の反射率を変化できる。
(3) Test (3.1) Test 1 (Test using an electrolyte containing citric acid)
Electrolytic plating was performed for a predetermined time (25 s) at a constant current (−4 mA / cm 2 ) on the various transparent light control electrodes prepared in (2.1) above. As a result, in any case, a silver film having a mirror surface on the dimming electrode was formed.
Next, using the dimming electrode on which the silver coating was formed, electrolytic dissolution of the silver coating was performed under the conditions of constant current density (+1 mA / cm 2 ) and predetermined time (100 s). As a result, in any case, it was confirmed that the silver coating was eluted from the light control electrode on which the silver coating was formed, and returned to the transparent original light control electrode.
The appearance of this test is schematically shown in FIG. In the electrolytic plating, the silver coating 17 is coated from the state shown in FIG. 3B to the state shown in FIG. In the electrolytic elution, the silver coating 17 is eluted from the state shown in FIG. 3C to the state shown in FIG. In this way, the reflectance of visible light can be changed by reversibly performing the formation of the silver coating 17 by electrolytic plating and the elution of the silver coating 17 by electrolytic elution.
(3.2)試験2(クエン酸なしの電解質を用いた試験)
 電解質からクエン酸を除いたことのみ異なる条件で、上記実験(3.1)と同様の実験をしたところ、Pdナノ微粒子が分散した状態で付着したITO電極上に、銀の白色被膜が形成された。電子顕微鏡で表面を観察すると、半球状多角形の銀結晶が形成されており、光の散乱により、白色に見えていた。このため、鏡面光沢にするためには、添加剤としてクエン酸が必須となることが確認された。クエン酸がない場合は銀結晶の成長が等方的に起こり、半球面を形成するが、クエン酸が存在することで、異方性成長となり、面状に銀結晶が成長することで、鏡面光沢になるものと推測される。
(3.2) Test 2 (Test using an electrolyte without citric acid)
An experiment similar to the above experiment (3.1) was performed under the same conditions except that citric acid was removed from the electrolyte. As a result, a silver white film was formed on the ITO electrode adhered with the Pd nanoparticles dispersed. It was. When the surface was observed with an electron microscope, hemispherical polygonal silver crystals were formed, which looked white due to light scattering. For this reason, it was confirmed that citric acid is essential as an additive in order to obtain a mirror gloss. In the absence of citric acid, silver crystals grow isotropically and form a hemispherical surface, but the presence of citric acid results in anisotropic growth, and the silver crystals grow in a planar shape, resulting in a mirror surface. Presumably glossy.
(3.3)試験3(2-ヒドロキシピリジンを含有する電解質を用いた試験)
 クエン酸に代えて2-ヒドロキシピリジンを用いて実験を行った。詳細には、次の組成で6mLの電解質を調製した。なお、使用したイオン液体は、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドである。

<電解質の組成>
0.2M AgNO
0.4M 2-ヒドロキシピリジン
アセトニトリル 2.9mL
イオン液体 3.1mL
(3.3) Test 3 (Test using an electrolyte containing 2-hydroxypyridine)
The experiment was conducted using 2-hydroxypyridine instead of citric acid. Specifically, 6 mL of electrolyte was prepared with the following composition. The ionic liquid used is 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide.

<Composition of electrolyte>
0.2M AgNO 3
0.4M 2-hydroxypyridine acetonitrile 2.9mL
Ionic liquid 3.1mL
 クエン酸の代わりに添加剤として2-ヒドロキシピリジンを用いると、鏡面光沢を持った銀被膜が形成された。しかし、電解溶出を行っても、完全に元の透明性な調光極には戻らず、灰色被膜が残ってしまった。更に、2-ヒドロキシピリジの電解酸化により電解質が褐色に変化した。これに対し、上述のクエン酸を用いた場合((3.1)試験1)では、電解溶出を行ってもメッキ浴は透明のままであった。このことからも、本発明が調光スマートウィンドウ等に適していることが確認された。 When 2-hydroxypyridine was used as an additive instead of citric acid, a silver film having a specular gloss was formed. However, even when electrolytic elution was performed, the original transparent dimming electrode did not return and a gray coating remained. Furthermore, the electrolyte turned brown by electrolytic oxidation of 2-hydroxypyridy. On the other hand, in the case of using the citric acid described above ((3.1) Test 1), the plating bath remained transparent even after electrolytic elution. From this, it was confirmed that the present invention is suitable for a dimming smart window and the like.
(3.4)試験4(Pdナノ微粒子が付着していないITO電極を用いた実験)
 Pdナノ微粒子が付着していないITO電極を用いて同様の実験をおこなったところ、銀被膜は形成できるが、やや鏡面光沢の少ないつや消しの銀被膜となった。よって、銀被膜の鏡面光沢性を高めるためには、ITO電極にPdナノ微粒子を付着させることが好ましいことが分かった。
(3.4) Test 4 (Experiment using an ITO electrode to which Pd nanoparticles are not attached)
When a similar experiment was performed using an ITO electrode to which no Pd nanoparticle adhered, a silver coating could be formed, but a matte silver coating with slightly less specular gloss was obtained. Therefore, in order to improve the specular gloss of the silver coating, it has been found that it is preferable to attach Pd nanoparticles to the ITO electrode.
2.ITO電極に付着させるPdナノ微粒子の検討
(1)平均Pd表面密度の検討
 上記(2.1)で記載したように、Pdのストライクメッキの条件は、-5~-20mA/cmを、0.25~3s印加している。このような種々の条件で作製されたPdナノ微粒子が付着したITO電極の可視光の平均透過率を測定した。結果を表1に示す。
 なお、この表1では、「ITOのみ」はPdナノ微粒子が付着していないITO電極を意味し、「Pd(-5mA,1s)」は-5mA/cm,1sの条件で作製したITO電極を意味し、「Pd(-10mA,1s)」は-10mA/cm,1sの条件で作製したITO電極を意味し、「Pd(-10mA,3s)」は-10mA/cm,3sの条件で作製したITO電極を意味する。
2. Examination of Pd nano-particles adhered to ITO electrode (1) Examination of average Pd surface density As described in (2.1) above, the Pd strike plating conditions were -5 to -20 mA / cm 2 and 0 .25 to 3 s is applied. The average visible light transmittance of the ITO electrode to which the Pd nanoparticle prepared under such various conditions adhered was measured. The results are shown in Table 1.
In Table 1, “ITO only” means an ITO electrode to which no Pd nanoparticles are attached, and “Pd (−5 mA, 1 s)” means an ITO electrode manufactured under the conditions of −5 mA / cm 2 , 1 s. “Pd (−10 mA, 1 s)” means an ITO electrode manufactured under the condition of −10 mA / cm 2 , 1 s, and “Pd (−10 mA, 3 s)” means −10 mA / cm 2 , 3 s. It means an ITO electrode manufactured under conditions.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1の結果から、平均Pd表面密度が5.5×10-6g/cmでは、可視光の平均透過率は、Pdナノ微粒子が付着していないITO電極と比べて、それ程低くならず、実用的であった。よって、平均Pd表面密度は1.0×10-6~9.0×10-6g/cmの範囲内が好ましいことが分かった。 From the results of Table 1, when the average Pd surface density is 5.5 × 10 −6 g / cm 2 , the average visible light transmittance is not so low as compared to the ITO electrode to which no Pd nanoparticles are attached. It was practical. Therefore, it was found that the average Pd surface density is preferably in the range of 1.0 × 10 −6 to 9.0 × 10 −6 g / cm 2 .
(2)Pdナノ微粒子の平均粒子径の検討
 次に、電析量を5mC/cmと一定にし、電流密度を変化させて、Pdナノ微粒子の平均粒子径を測定した。また、Pdナノ微粒子のITO電極上での分散性を走査型電子顕微鏡(SEM)により観察した。結果を表2に示す。
 なお、この表2では、「Pd(-5mA,1s)」は-5mA/cm,1sの条件で作製したITO電極を意味し、「Pd(-10mA,0.5s)」は-10mA/cm,0.5sの条件で作製したITO電極を意味し、「Pd(-20mA,0.25s)」は-20mA/cm,0.25sの条件で作製したITO電極を意味する。
(2) Examination of average particle diameter of Pd nanoparticle Next, the amount of electrodeposition was made constant at 5 mC / cm 2 , the current density was changed, and the average particle diameter of Pd nanoparticle was measured. Further, the dispersibility of the Pd nanoparticle on the ITO electrode was observed with a scanning electron microscope (SEM). The results are shown in Table 2.
In Table 2, “Pd (−5 mA, 1 s)” means an ITO electrode manufactured under the conditions of −5 mA / cm 2 and 1 s, and “Pd (−10 mA, 0.5 s)” means −10 mA / It means an ITO electrode manufactured under conditions of cm 2 and 0.5 s, and “Pd (−20 mA, 0.25 s)” means an ITO electrode manufactured under conditions of −20 mA / cm 2 and 0.25 s.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2の結果から、Pdナノ微粒子の平均粒子径が42nmの場合には、分散性が高いことが確認された。また、この電極を用いて、定電流(-4mA/cm)にて所定時間(25s)電解メッキを行った。その結果、調光極上に鏡面を有する極めて均一な銀被膜が形成された。よって、Pdナノ微粒子の平均粒子径を5~70nmの範囲内にすることで、極めて均一な銀被膜が形成されることが確認された。 From the results in Table 2, it was confirmed that the dispersibility was high when the average particle diameter of the Pd nanoparticle was 42 nm. Further, using this electrode, electrolytic plating was performed at a constant current (−4 mA / cm 2 ) for a predetermined time (25 s). As a result, a very uniform silver film having a mirror surface on the dimming electrode was formed. Therefore, it was confirmed that a very uniform silver coating was formed by setting the average particle size of the Pd nanoparticle within the range of 5 to 70 nm.
3.まとめ
 クエン酸を含む電解質を用いることで、電解メッキによる銀被膜の形成と、電解溶出による銀被膜の溶出とを可逆的に行うことができることが確認された。
 銀被膜の鏡面光沢性を高めるためには、ITO電極にPdナノ微粒子を付着させることが好ましいことが分かった。
3. Summary It was confirmed that the formation of a silver coating by electrolytic plating and the elution of a silver coating by electrolytic elution can be performed reversibly by using an electrolyte containing citric acid.
In order to increase the specular gloss of the silver coating, it has been found preferable to attach Pd nanoparticles to the ITO electrode.
 前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述及び図示において使用された文言は、限定的な文言ではなく説明的及び例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲又は本質から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料及び実施例を参照したが、本発明をここにおける開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。 The above examples are for illustrative purposes only and are not to be construed as limiting the invention. Although the invention has been described with reference to exemplary embodiments, it is to be understood that the language used in the description and illustration of the invention is illustrative and exemplary rather than limiting. As detailed herein, modifications may be made in its form within the scope of the appended claims without departing from the scope or spirit of the invention. Although specific structures, materials and examples have been referred to in the detailed description of the invention herein, it is not intended to limit the invention to the disclosure herein, but rather, the invention is claimed. It covers all functionally equivalent structures, methods and uses within the scope.
 本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形又は変更が可能である。 The present invention is not limited to the embodiments described in detail above, and various modifications or changes can be made within the scope of the claims of the present invention.
 本発明の調光部材は、新規な構造を有しているため、調光部材の応用範囲を広げるために有効である。 Since the light control member of the present invention has a novel structure, it is effective for expanding the application range of the light control member.
1…調光部材
3…調光極
5…対向極
7…電解質
9…参照極
11…ポテンショスタット
13…Pdナノ微粒子
15…ITO電極
17…銀被膜
DESCRIPTION OF SYMBOLS 1 ... Light control member 3 ... Light control electrode 5 ... Counter electrode 7 ... Electrolyte 9 ... Reference electrode 11 ... Potentiostat 13 ... Pd nanoparticle 15 ... ITO electrode 17 ... Silver coating

Claims (7)

  1.  調光部材であって、
     調光極と、
     対向極と、
     前記調光極と、前記対向極との間に挟まれた電解質と、を備え、
     前記電解質には、イオン液体、有機溶媒、銀イオン、及びクエン酸が含まれることを特徴とする調光部材。
    A light control member,
    A dimming pole,
    The opposite pole,
    An electrolyte sandwiched between the dimming electrode and the counter electrode,
    The light control member, wherein the electrolyte contains an ionic liquid, an organic solvent, silver ions, and citric acid.
  2.  電解メッキによる銀被膜の形成と、電解溶出による前記銀被膜の溶出とを可逆的に行うことで、可視光の反射率を変化させる構成であることを特徴とする請求項1に記載の調光部材。 2. The light control according to claim 1, wherein the light-controlling ratio is configured to change the reflectance of visible light by reversibly performing formation of a silver coating by electroplating and elution of the silver coating by electrolytic elution. Element.
  3.  前記銀被膜は、鏡面を有していることを特徴とする請求項2に記載の調光部材。 The light control member according to claim 2, wherein the silver film has a mirror surface.
  4.  前記イオン液体のカチオン部が下記一般式(1)で表されることを特徴とする請求項1~3のいずれか1項に記載の調光部材。
    Figure JPOXMLDOC01-appb-C000001

    〔式(1)中、R、R、R、R、Rは、それぞれ独立して、
     水素原子、
     置換されているかもしくは非置換の炭素数1~20の飽和もしくは不飽和の直鎖状、分枝状、もしくは環状のアルキル基、
     置換されているかもしくは非置換の炭素数6~30のアリール基、
     置換されているかもしくは非置換の炭素数7~31のアリールアルキル基、又は
     炭素数1~20のアルコキシ基であり、
     前記アルキル基、前記アリール基又は前記アリールアルキル基が置換されている場合は、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシルオキシ基、アシル基、アルキルスルファニル基、アリールスルファニル基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ヒドロキシ基、カルボキシ基、ホルミル基、メルカプト基、スルホ基、メシル基、p-トルエンスルホニル基、アミノ基、ニトロ基、シアノ基、トリフルオロメチル基、トリクロロメチル基、トリメチルシリル基、ホスフィニコ基、又はホスホノ基で置換されている。〕
    The light control member according to any one of claims 1 to 3, wherein the cation portion of the ionic liquid is represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    [In formula (1), R 1 , R 2 , R 3 , R 4 , R 5 are each independently
    Hydrogen atom,
    A substituted or unsubstituted C1-C20 saturated or unsaturated linear, branched, or cyclic alkyl group,
    A substituted or unsubstituted aryl group having 6 to 30 carbon atoms,
    A substituted or unsubstituted arylalkyl group having 7 to 31 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms,
    When the alkyl group, the aryl group or the arylalkyl group is substituted, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an acyloxy group, an acyl group, an alkylsulfanyl group, Arylsulfanyl, alkylamino, dialkylamino, arylamino, hydroxy, carboxy, formyl, mercapto, sulfo, mesyl, p-toluenesulfonyl, amino, nitro, cyano, tri Substituted with a fluoromethyl group, a trichloromethyl group, a trimethylsilyl group, a phosphinico group, or a phosphono group. ]
  5.  前記有機溶媒が極性溶媒であることを特徴とする請求項1~4のいずれか1項に記載の調光部材。 The light control member according to any one of claims 1 to 4, wherein the organic solvent is a polar solvent.
  6.  前記イオン液体と、前記有機溶媒との体積比率が90:10~10:90であることを特徴とする請求項1~5のいずれか1項に記載の調光部材。 The light control member according to any one of claims 1 to 5, wherein a volume ratio of the ionic liquid to the organic solvent is 90:10 to 10:90.
  7.  調光スマートウィンドウ、調光ミラー、又は意匠部品として用いられることを特徴とする請求項1~6のいずれか1項に記載の調光部材。 The light control member according to any one of claims 1 to 6, wherein the light control member is used as a light control smart window, a light control mirror, or a design part.
PCT/JP2019/003588 2018-02-19 2019-02-01 Light control member WO2019159717A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980011016.3A CN111670407B (en) 2018-02-19 2019-02-01 Light modulation component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-026586 2018-02-19
JP2018026586A JP7072796B2 (en) 2018-02-19 2018-02-19 Dimming member

Publications (1)

Publication Number Publication Date
WO2019159717A1 true WO2019159717A1 (en) 2019-08-22

Family

ID=67619400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003588 WO2019159717A1 (en) 2018-02-19 2019-02-01 Light control member

Country Status (3)

Country Link
JP (1) JP7072796B2 (en)
CN (1) CN111670407B (en)
WO (1) WO2019159717A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023085578A (en) * 2020-04-30 2023-06-21 株式会社村上開明堂 Variable ND filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061987A1 (en) * 2004-12-10 2006-06-15 Konica Minolta Holdings, Inc. Display element
WO2007010653A1 (en) * 2005-07-19 2007-01-25 Konica Minolta Holding, Inc. Salt molten at room temperature and display device
JP2007199147A (en) * 2006-01-24 2007-08-09 Konica Minolta Holdings Inc Display element
JP2010256436A (en) * 2009-04-22 2010-11-11 Konica Minolta Holdings Inc Electrochemical display element
JP2016157064A (en) * 2015-02-26 2016-09-01 スタンレー電気株式会社 Optical device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904101B2 (en) * 1996-09-20 2007-04-11 ソニー株式会社 Optical device and electrolyte
JP2005351933A (en) * 2004-06-08 2005-12-22 Nissan Motor Co Ltd Reflection dimmer electrochromic element, manufacturing method of the element and reflection dimmer glass using the element
WO2009016189A1 (en) * 2007-08-02 2009-02-05 Akzo Nobel N.V. Method to electrodeposit metals using ionic liquids in the presence of an additive
WO2010010793A1 (en) 2008-07-23 2010-01-28 コニカミノルタホールディングス株式会社 Display device
JP6402113B2 (en) * 2013-12-19 2018-10-10 株式会社村上開明堂 Reflectance variable element and method of manufacturing the element
JP2018009227A (en) * 2016-07-14 2018-01-18 日本高純度化学株式会社 Electrolytic palladium silver alloy plated film and electrolytic plating liquid for forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061987A1 (en) * 2004-12-10 2006-06-15 Konica Minolta Holdings, Inc. Display element
WO2007010653A1 (en) * 2005-07-19 2007-01-25 Konica Minolta Holding, Inc. Salt molten at room temperature and display device
JP2007199147A (en) * 2006-01-24 2007-08-09 Konica Minolta Holdings Inc Display element
JP2010256436A (en) * 2009-04-22 2010-11-11 Konica Minolta Holdings Inc Electrochemical display element
JP2016157064A (en) * 2015-02-26 2016-09-01 スタンレー電気株式会社 Optical device

Also Published As

Publication number Publication date
JP7072796B2 (en) 2022-05-23
JP2019144330A (en) 2019-08-29
CN111670407A (en) 2020-09-15
CN111670407B (en) 2023-04-07

Similar Documents

Publication Publication Date Title
Campus et al. Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes
CN101765681B (en) Method to electrodeposit metals using ionic liquids in the presence of an additive
Rondinini et al. Electrocatalytic potentialities of silver as a cathode for organic halide reductions
Wang et al. Electrodeposition of bright Al coatings from 1-butyl-3-methylimidazolium chloroaluminate ionic liquids with specific additives
WO2019159717A1 (en) Light control member
KR102480158B1 (en) Thin and uniform silver nanowires, synthesis method, and transparent conductive film formed of nanowires
O’Regan et al. Electrochemical deposition of smooth and homogeneously mesoporous ZnO films from propylene carbonate electrolytes
Guzel et al. Synthesis and fluorescence properties of carbazole based asymmetric functionalized star shaped polymer
Lee et al. Improved electrochromic device performance from silver grid on flexible transparent conducting electrode prepared by electrohydrodynamic jet printing
Bar et al. RGB organic electrochromic cells
JP2002517799A (en) Electrochrome display device with supply line insulated from electrochrome media
Tsuda et al. Electrochemical behavior and solvation analysis of rare earth complexes in ionic liquids media investigated by SECM and Raman spectroscopy
US20170309840A1 (en) High efficiency dye sensitized photoelectrosynthesis cells
CN104294327A (en) Ionic liquid electrolyte and method for preparing bright aluminum coating by use of ionic liquid electrolyte
Ramírez et al. Electrochemical aspects of asymmetric phosphonium ionic liquids
Li et al. Electrolyte effects in reversible metal electrodeposition for optically switching thin films
JP7269128B2 (en) Dimming element and dimming element system
CN1414060A (en) Electro Chromotropic solution containing hydrazone compound and its electro chromotropic apparatus
JP7083123B2 (en) A method for manufacturing a transmissive electrochromic element and a method for manufacturing a reflective electrochromic element.
JP2021021908A (en) Vehicle heater device
JP6803038B2 (en) A method for manufacturing a gel film for an electrochromic device, an electrochromic device, and a gel film for an electrochromic device.
CN109562628A (en) Silver ion carboxylate radical N- heteroaromatic complex compound and purposes
Hansen et al. Products of the electrochemical oxidation of cis-L2Ru (II)(NCS) 2 in dimethylformamide and acetonitrile determined by LC-UV/Vis-MS
CN103752343B (en) Ruthenium Water oxidize catalyst, Preparation method and use
JP7200648B2 (en) decorative panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755054

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19755054

Country of ref document: EP

Kind code of ref document: A1