WO2019159512A1 - Load sensor and load detection device - Google Patents

Load sensor and load detection device Download PDF

Info

Publication number
WO2019159512A1
WO2019159512A1 PCT/JP2018/045258 JP2018045258W WO2019159512A1 WO 2019159512 A1 WO2019159512 A1 WO 2019159512A1 JP 2018045258 W JP2018045258 W JP 2018045258W WO 2019159512 A1 WO2019159512 A1 WO 2019159512A1
Authority
WO
WIPO (PCT)
Prior art keywords
circle
strain
load
resistor
load sensor
Prior art date
Application number
PCT/JP2018/045258
Other languages
French (fr)
Japanese (ja)
Inventor
公宏 横山
朋子 海老沢
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2020500297A priority Critical patent/JPWO2019159512A1/en
Publication of WO2019159512A1 publication Critical patent/WO2019159512A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/14Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Definitions

  • the present invention relates to a load sensor and a load detection device.
  • load sensors using strain gauges have been used.
  • a load sensor a sensor in which a bridge circuit is formed by four strain gauges arranged on a strain generating body, and a load is detected by an output voltage of the bridge circuit is known.
  • the conventional load sensor has a problem that when the direction in which the load is applied is not perpendicular to the strain generating body, the strain of the strain generating body is biased and the load detection accuracy is lowered.
  • the present invention has been made in view of the above-described problems, and an object thereof is to improve the detection accuracy of a load sensor having a strain gauge.
  • a load sensor includes a strain generating body provided with a load receiving portion, an insulating layer provided on the strain generating body, and a first resistance portion provided on the insulating layer and connected in series. And a first output terminal that outputs a voltage between the first resistance part and the second resistance part, wherein the first resistance part is connected in series and is a circle or an ellipse
  • a plurality of first strain gauges arranged on the circumference of the first circle, and the second resistance portion is connected in series and arranged on the circumference of the second circle that is a circle or an ellipse.
  • a plurality of second strain gauges are provided, and the first circle and the second circle are concentric circles or concentric ellipses around the load receiving portion.
  • the detection accuracy of a load sensor having a strain gauge can be improved.
  • FIG. 1 The top view which shows an example of the load sensor 100.
  • FIG. The side view which shows an example of the load sensor 100.
  • FIG. The elements on larger scale which show an example of the leg part 5 of FIG. Sectional drawing of the leg part 5 of FIG.
  • a load sensor 100 according to the first embodiment will be described with reference to FIGS.
  • the load sensor 100 according to the present embodiment is a sensor that detects an applied load, and includes a strain gauge.
  • a strain gauge is an element whose resistance value changes according to the strain.
  • FIG. 1 is a plan view showing an example of the load sensor 100.
  • FIG. 2 is a side view showing an example of the load sensor 100.
  • the top, bottom, left, and right in the figure will be described as the top, bottom, left, and right of the load sensor 100.
  • the load sensor 100 includes a strain body 1, an insulating layer 2, a first resistor R 1, a second resistor R 2, a third resistor R 3, and a fourth resistor.
  • a section R4, a first output terminal T1, a first output terminal T2, and a conversion circuit 3 are provided.
  • the strain body 1 is a plate-like member to which a load is applied, and is formed of a metal plate.
  • the load sensor 100 detects a load applied to the strain body 1 by detecting strain of the strain body 1 using a strain gauge. As shown in FIG. 1, the strain body 1 includes a first portion 11 and a second portion 12.
  • the first portion 11 is a circular portion that is distorted according to the load.
  • the first portion 11 has a plurality of openings 13 on the outer peripheral portion, and the outer peripheral portion is fixed to a load detection target by inserting a bolt through each opening 13.
  • a load receiver 14 that receives a load from the detection target is provided at the center of the first portion 11. In this way, by fixing the outer peripheral portion of the circular first portion 11 and applying a load at the center, the distortion of the first portion 11 according to the load can be made uniform.
  • the load receiving portion 14 is a nut having a hemispherical head, is provided on the lower surface of the strain body 1, and is inserted with a screw 15 provided on the upper surface of the strain body 1.
  • the load receiver 14 may be provided on the upper surface of the strain body 1 or may be fixed by a nut. In the latter case, a bolt having a hemispherical head may be used as the load receiving portion 14.
  • the second portion 12 is a substantially rectangular portion extending from the first portion 11.
  • the shape of the second portion 12 can be arbitrarily designed.
  • the insulating layer 2 is an insulating layer provided on the strain body 1.
  • the insulating layer 2 may be an oxide film, a nitride film, or a resin insulating film formed on the strain generating body 1, or an insulating printed board fixed on the strain generating body 1. Also good.
  • the printed circuit board may be a flexible board or a rigid board. In any case, the entire surface of the insulating layer 2 is fixed to the strain generating body 1 so as to be distorted according to the strain of the strain generating body 1.
  • the insulating layer 2 has a first portion 21 and a second portion 22.
  • the first portion 21 is a circular portion that is distorted according to the load.
  • the first portion 21 is fixed to the first portion 11 of the strain body 1 so that the center thereof coincides with the first portion 11.
  • the first portion 11 is provided with a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4.
  • an opening for inserting the screw 15 is provided at the center of the first portion 21.
  • the second portion 22 is a substantially rectangular portion extending from the first portion 21.
  • the shape of the second portion 22 can be arbitrarily designed.
  • the second portion 22 is provided from the first portion 11 to the second portion 12 of the strain body 1.
  • the conversion circuit 3 is provided in the second portion 22 on the second portion 12 of the strain generating body 1.
  • FIG. 3 is a diagram illustrating an example of a circuit configuration of the load sensor 100.
  • the first resistor R1, the second resistor R2, the third resistor R3, the fourth resistor R4, the first output terminal T1, and the first resistor A two-output terminal T2 and a conversion circuit 3 are provided on the insulating layer 2.
  • the first resistor R1 has one end connected to the power supply and the other end connected to the first output terminal T1.
  • the second resistor unit R1 has one end connected to the first output terminal T1 and the other end connected to the ground. That is, the first resistor R1 and the second resistor R2 are connected in series to form a half bridge circuit.
  • a voltage between the first resistor R1 and the second resistor R2 (a voltage obtained by dividing the power supply voltage Vdd by the first resistor R1 and the second resistor R2) is output from the first output terminal T1 as the output voltage V1. Is output.
  • the first output terminal T ⁇ b> 1 is connected to the conversion circuit 3, and the output voltage V ⁇ b> 1 is input to the conversion circuit 3.
  • the third resistor R3 has one end connected to the power supply and the other end connected to the second output terminal T2.
  • the fourth resistor unit R4 has one end connected to the second output terminal T2 and the other end connected to the ground. That is, the third resistor unit R3 and the fourth resistor unit R4 are connected in series to form a half bridge circuit.
  • a voltage between the third resistor R3 and the fourth resistor R4 (a voltage obtained by dividing the power supply voltage Vdd by the third resistor R3 and the fourth resistor R4) is output from the second output terminal T2 as an output voltage V2. Is output.
  • the second output terminal T2 is connected to the conversion circuit 3, and the output voltage V2 is input to the conversion circuit 3.
  • the third resistor R3 and the fourth resistor R4 are connected in parallel with the first resistor R1 and the second resistor R2, and are bridged together with the first resistor R1 and the second resistor R2. Configure the circuit.
  • each of the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 includes a plurality of strain gauges, and the resistance value changes according to the load.
  • the output voltage V1 becomes a voltage according to the resistance values of the first resistance part R1 and the second resistance part R2 that have changed according to the load.
  • the output voltage V2 becomes a voltage according to the resistance values of the third resistor portion R3 and the fourth resistor portion R4 that have changed according to the load. That is, the output voltages V1, V2 are both voltages according to the load.
  • the conversion circuit 3 is a circuit that detects a load based on the output voltages V1 and V2. Specifically, the conversion circuit 3 converts the difference between the output voltages V1 and V2 into a load with reference to a table prepared in advance. In the example of FIG. 3, it is assumed that the conversion circuit 3 is one IC (Integrated Circuit), but the conversion circuit 3 may be configured by a plurality of discrete components.
  • the first resistance portion R1 includes four first strain gauges r1 connected in series by printed wiring (not shown).
  • the first strain gauge r1 may be formed by printing a resistance material in which a metal material or carbon is mixed with a binder resin on the insulating layer 2, or formed by sticking a metal foil to the insulating layer 2. Also good.
  • the first strain gauge r1 may be an independent element mounted on the insulating layer 2. In any case, the entire surface of the first strain gauge r1 is fixed to the strain generating body 1 so as to be distorted according to the strain of the insulating layer 2.
  • the strain body 1 when a load is applied to the strain body 1, the strain body 1 is distorted according to the load, the insulation layer 2 is distorted together with the strain body 1, and the first strain gauge r1 is strained together with the insulation layer 2.
  • the resistance value of each first strain gauge r1 changes according to the strain, and the resistance value of the first resistance unit R1 changes according to the change of the resistance value of each first strain gauge r1.
  • the output voltage V1 changes according to the load.
  • the first strain gauges r1 are arranged at equal intervals (every 90 °) on the circumference of the first circle centered on the center of the strain body 1 (load receiving portion 14). By disposing each first strain gauge r1 in this way, it is possible to suppress an error in the resistance value of the first resistance portion R1 that occurs when the direction of the load is inclined (not perpendicular) to the strain generating body 1. This is because the strain of the first strain gauge r1 disposed on the side opposite to the tilt direction is decreased at the same time as the strain of the first strain gauge r1 disposed on the tilt direction side of the load is increased. By suppressing the error of the first resistance unit R1, the error of the output voltage V1 can be suppressed.
  • the 1st resistance part R1 should just be provided with the some 1st strain gauge r1, and the number is not restricted to four.
  • the first strain gauges r1 are preferably arranged at equal intervals on the circumference of the first circle. However, it is possible not to arrange the first strain gauges r1 at equal intervals.
  • the second resistance portion R2 includes four second strain gauges r2 connected in series by printed wiring (not shown).
  • the second strain gauge r ⁇ b> 2 may be formed by printing a metal material on the insulating layer 2, or may be formed by attaching a metal foil to the insulating layer 2.
  • the second strain gauge r2 may be an independent element mounted on the insulating layer 2. In either case, the entire surface of the second strain gauge r2 is fixed to the strain generating body 1 so as to be distorted in accordance with the strain of the insulating layer 2.
  • the strain generating body 1 when a load is applied to the strain generating body 1, the strain generating body 1 is strained according to the load, the strain generating body 1 and the insulating layer 2 are strained, and the insulating layer 2 and the second strain gauge r2 are strained.
  • the resistance value of each second strain gauge r2 changes according to the strain, and the resistance value of the second resistance portion R2 changes according to the change of the resistance value of each second strain gauge r2.
  • the output voltage V1 changes according to the load.
  • the second strain gauges r2 are arranged at equal intervals (every 90 °) on the circumference of the second circle with the center of the strain generating body 1 as the center.
  • the second circle is a concentric circle of the first circle smaller than the first circle.
  • the outer peripheral portion of the first portion 11 is fixed, when a load is applied to the strain generating body 1, the central portion side and the outer peripheral portion side of the first portion 11 are distorted in opposite directions.
  • the resistance value of the gauge r2 changes in the opposite direction. That is, when a load is applied to the strain body 1, the resistance value of the first resistance part R1 and the resistance value of the second resistance part R2 change in opposite directions.
  • the first resistor R1 and the second resistor R2 constitute a half-bridge circuit, and the voltage between the first resistor R1 and the second resistor R2 is output as the output voltage V1. The corresponding change in the output voltage V1 can be amplified.
  • the 2nd resistance part R2 should just be equipped with several 2nd strain gauge r2, and the number is not restricted to four.
  • the second strain gauges r2 are preferably arranged at equal intervals on the circumference of the second circle. However, it is possible not to arrange the second strain gauges r2 at equal intervals.
  • each second strain gauge r2 is preferably disposed between the center of the first circle and the second circle and each first strain gauge r1.
  • each second strain gauge r2 is preferably arranged on a line segment connecting the centers of the first circle and the second circle and each first strain gauge r1.
  • the third resistance portion R3 includes four third strain gauges r3 connected in series by printed wiring (not shown).
  • the third strain gauge r3 may be formed by printing a metal material on the insulating layer 2, or may be formed by attaching a metal foil to the insulating layer 2.
  • the third strain gauge r3 may be an independent element mounted on the insulating layer 2. In any case, the entire surface of the third strain gauge r3 is fixed to the strain generating body 1 so as to be distorted according to the strain of the insulating layer 2.
  • the strain generating body 1 when a load is applied to the strain generating body 1, the strain generating body 1 is strained according to the load, the insulating layer 2 is strained together with the strain generating body 1, and the third strain gauge r3 is strained together with the insulating layer 2.
  • the resistance value of each third strain gauge r3 changes according to the strain, and the resistance value of the third resistance portion R3 changes according to the change of the resistance value of each third strain gauge r3.
  • the output voltage V2 changes according to the load.
  • the third strain gauges r3 are arranged at equal intervals (every 90 °) on the circumference of the third circle centered on the center of the strain body 1 (load receiving portion 14). By disposing each third strain gauge r3 in this way, it is possible to suppress an error in the resistance value of the third resistance portion R3 that occurs when the direction of the load is inclined (not vertical) with respect to the strain generating body 1. This is because the strain of the third strain gauge r3 disposed on the side opposite to the tilt direction is reduced at the same time as the strain of the third strain gauge r3 disposed on the load tilt direction side is increased. By suppressing the error of the third resistor R3, the error of the output voltage V2 can be suppressed.
  • the third resistor R3 only needs to include a plurality of third strain gauges r3, and the number is not limited to four. In any case, the third strain gauges r3 are preferably arranged at equal intervals on the circumference of the third circle. However, it is possible not to arrange the third strain gauges r3 at equal intervals.
  • the first strain gauges r1 and the third strain gauges r3 are alternately arranged at equal intervals (every 45 °). Thereby, the difference
  • the first circle and the third circle are preferably the same. That is, it is preferable that the first strain gauge r1 and the third strain gauge r3 are arranged on the same circumference. Thereby, the change of the resistance value of 1st resistance part R1 according to a load and the change of the resistance value of 3rd resistance part R3 can be equalize
  • the fourth resistance portion R4 includes four fourth strain gauges r4 connected in series by printed wiring (not shown).
  • the fourth strain gauge r4 may be formed by printing a metal material on the insulating layer 2, or may be formed by attaching a metal foil to the insulating layer 2.
  • the fourth strain gauge r4 may be an independent element mounted on the insulating layer 2. In any case, the entire surface of the fourth strain gauge r4 is fixed to the strain generating body 1 so as to be distorted according to the strain of the insulating layer 2.
  • the strain generating body 1 when a load is applied to the strain generating body 1, the strain generating body 1 is strained according to the load, the strain generating body 1 and the insulating layer 2 are strained, and the insulating layer 2 and the fourth strain gauge r4 are strained.
  • the resistance value of each fourth strain gauge r4 changes according to the strain, and the resistance value of the fourth resistance portion R4 changes according to the change of the resistance value of each fourth strain gauge r4.
  • the output voltage V2 changes according to the load.
  • the fourth strain gauges r4 are arranged at equal intervals (every 90 °) on the circumference of the fourth circle with the center of the strain body 1 as the center.
  • the fourth circle is a concentric circle of the third circle smaller than the third circle.
  • the outer peripheral portion of the first portion 11 is fixed, when a load is applied to the strain generating body 1, the central portion side and the outer peripheral portion side of the first portion 11 are distorted in opposite directions.
  • the resistance value of the gauge r4 changes in the opposite direction. That is, when a load is applied to the strain generating body 1, the resistance value of the third resistance portion R3 and the resistance value of the fourth resistance portion R4 change in opposite directions.
  • the third resistor portion R3 and the fourth resistor portion R4 constitute a half-bridge circuit, and the voltage between the third resistor portion R3 and the fourth resistor portion R4 is output as the output voltage V2, thereby increasing the load.
  • the corresponding change in the output voltage V2 can be amplified.
  • the 4th resistance part R4 should just be equipped with several 4th strain gauge r4, and the number is not restricted to four. In any case, it is preferable that the fourth strain gauges r4 are arranged at equal intervals on the circumference of the second circle. However, the fourth strain gauges r4 may not be arranged at equal intervals.
  • each fourth strain gauge r4 is preferably arranged between the third circle and the center of the fourth circle and each third strain gauge r3. That is, each fourth strain gauge r4 is preferably arranged on a line segment connecting the third circle and the center of the fourth circle and each third strain gauge r3.
  • the second strain gauges r2 and the fourth strain gauges r4 are alternately arranged at equal intervals (every 45 °). Thereby, the difference
  • the second circle and the fourth circle are preferably the same. That is, it is preferable that the second strain gauge r2 and the fourth strain gauge r4 are arranged on the same circumference. Thereby, the change of the resistance value of 2nd resistance part R2 according to a load and the change of the resistance value of 4th resistance part R4 can be equalize
  • the plurality of first gauge elements r1 are arranged at equal intervals on the circumference of the first circle.
  • the load sensor 100 can accurately detect the load based on the output voltages V1 and V2 even when the direction of the load is inclined with respect to the strain body 1.
  • the influence of the position shift of the first gauge elements r1 is affected by the plurality of first gauge elements r1. Is offset between. The same applies to the second resistor portion R2, the third resistor portion R3, and the fourth resistor portion R4. Therefore, even if the load sensor 100 is misaligned in the first gauge element r1, the second gauge element r2, the third gauge element r3, and the fourth gauge element r4 due to a manufacturing error, the output voltage V1, Based on V2, the load can be detected with high accuracy.
  • the load sensor 100 can accurately detect the load based on the output voltage V1.
  • first portion 11 of the strain body 1 may be oval.
  • first circle, the second circle, the third circle, and the fourth circle are concentric ellipses centered on the center of the first portion 11 (load receiving portion 14), which is similar to the first portion 11. It is preferable.
  • the load detection device according to the present embodiment can be any device including the load sensor 100.
  • the load detection device is, for example, a chair, a bed, a table, or a stretcher, but is not limited thereto.
  • a case where the load detection device is a bed will be described as an example.
  • FIG. 4 is a diagram illustrating an example of the bed 200 according to the present embodiment.
  • the bed 200 in FIG. 4 includes a top plate 4 and four legs 5.
  • the top plate 4 is a part for a person to lie down, and is composed of a frame and a floor plate.
  • the bed 200 is laid with a mattress or the like on the top 4 in use.
  • the leg part 5 supports the top plate 4 horizontally.
  • FIG. 5 is a partially enlarged view showing an example of the leg portion 5 of FIG. 6 is a cross-sectional view of the leg 5 of FIG.
  • the leg portion 5 is disposed between the first support portion 51 that supports the top plate 4, the second support portion 52 that supports the first support portion 51, and the first support portion 51 and the second support portion 52.
  • Load sensor 100 The 1st support part 51 has the recessed part 511 which accommodates the screw 15 of the load sensor 100 in a lower end.
  • the second support part 52 includes a housing 53, a caster 54, and a pressing part 55.
  • the housing 53 is a cylindrical member that connects the first support portion 51 and the casters 54, and has a hollow portion 531.
  • the upper end of the casing 53 is fixed to the lower ends of the load sensor 100 and the first support portion 51, and the lower end of the casing 53 is fixed to the upper end of the casters 54.
  • the load receiving portion 14 of the load sensor 100 is accommodated in the hollow portion 531 of the housing 53.
  • the caster 54 includes a wheel that can rotate about a horizontal axis, and a universal bracket that supports the wheel to rotate about a vertical axis.
  • the bed 200 can be easily moved by the casters 54.
  • the pressing portion 55 is a rod-like member extending upward from the upper end of the caster 54 and is housed in the hollow portion 531 of the housing 53.
  • the pressing portion 55 is designed to have a height at which the upper end of the pressing portion 55 can press the load receiving portion 14 when a load is applied to the bed 200.
  • the load sensor 100 when a person is on the bed 200, the load sensor 100 is pushed down by the first support portion 51, and the load receiving portion 14 is pressed from below by the pressing portion 55. Thereby, since the load according to a person's weight is added to the load receiving part 14, the load sensor 100 can detect a person's weight (load).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Force In General (AREA)

Abstract

A load sensor according to an embodiment is provided with: a strain body provided with a load receiving part; an insulating layer provided on the strain body; a first resistor part and a second resistor part which are provided on the insulating layer and connected in series; and a first output terminal that outputs a voltage between the first resistor part and the second resistor part, wherein: the first resistor part is provided with a plurality of first strain gauges connected in series and arranged on the circumference of a first circle that is a circle or an ellipse; the second resistor part is provided with a plurality of second strain gauges connected in series and arranged on the circumference of a second circle that is a circle or an ellipse; and the first circle and the second circle are concentric circles or concentric ellipses centered on the load receiving part.

Description

荷重センサ及び荷重検出装置Load sensor and load detection device
 本発明は、荷重センサ及び荷重検出装置に関する。 The present invention relates to a load sensor and a load detection device.
 従来、歪ゲージを利用した荷重センサが利用されている。このような荷重センサとして、起歪体上に配置された4つの歪ゲージによりブリッジ回路を形成し、ブリッジ回路の出力電圧により、荷重を検出するものが知られている。 Conventionally, load sensors using strain gauges have been used. As such a load sensor, a sensor in which a bridge circuit is formed by four strain gauges arranged on a strain generating body, and a load is detected by an output voltage of the bridge circuit is known.
特許6078478号明細書Japanese Patent No. 6078478
 しかしながら、上記従来の荷重センサでは、荷重が加えられる方向が起歪体に対して垂直でない場合、起歪体の歪みに偏りが生じ、荷重の検出精度が低下するという問題があった。 However, the conventional load sensor has a problem that when the direction in which the load is applied is not perpendicular to the strain generating body, the strain of the strain generating body is biased and the load detection accuracy is lowered.
 本発明は、上記の課題に鑑みてなされたものであり、歪ゲージを備えた荷重センサの検出精度を向上させることを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to improve the detection accuracy of a load sensor having a strain gauge.
 一実施形態に係る荷重センサは、荷重受け部を備えた起歪体と、前記起歪体上に設けられた絶縁層と、前記絶縁層上に設けられ、直列に接続された第1抵抗部及び第2抵抗部と、前記第1抵抗部と前記第2抵抗部との間の電圧を出力する第1出力端子と、を備え、前記第1抵抗部は、直列に接続され、円又は楕円である第1円の円周上に配置された複数の第1歪ゲージを備え、前記第2抵抗部は、直列に接続され、円又は楕円である第2円の円周上に配置された複数の第2歪ゲージを備え、前記第1円及び前記第2円は、前記荷重受け部を中心とする同心円又は同心楕円である。 A load sensor according to an embodiment includes a strain generating body provided with a load receiving portion, an insulating layer provided on the strain generating body, and a first resistance portion provided on the insulating layer and connected in series. And a first output terminal that outputs a voltage between the first resistance part and the second resistance part, wherein the first resistance part is connected in series and is a circle or an ellipse A plurality of first strain gauges arranged on the circumference of the first circle, and the second resistance portion is connected in series and arranged on the circumference of the second circle that is a circle or an ellipse. A plurality of second strain gauges are provided, and the first circle and the second circle are concentric circles or concentric ellipses around the load receiving portion.
 本発明の各実施形態によれば、歪ゲージを備えた荷重センサの検出精度を向上させることができる。 According to each embodiment of the present invention, the detection accuracy of a load sensor having a strain gauge can be improved.
荷重センサ100の一例を示す平面図。The top view which shows an example of the load sensor 100. FIG. 荷重センサ100の一例を示す側面図。The side view which shows an example of the load sensor 100. FIG. 荷重センサ100の回路構成の一例を示す図。The figure which shows an example of the circuit structure of the load sensor. ベッド200の一例を示す図。The figure which shows an example of the bed 200. FIG. 図4の脚部5の一例を示す部分拡大図。The elements on larger scale which show an example of the leg part 5 of FIG. 図5の脚部5の断面図。Sectional drawing of the leg part 5 of FIG.
 以下、本発明の各実施形態について、添付の図面を参照しながら説明する。なお、各実施形態に係る明細書及び図面の記載に関して、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重畳した説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, regarding the description of the specification and the drawings according to each embodiment, constituent elements having substantially the same functional configuration are denoted by the same reference numerals and overlapping description is omitted.
<第1実施形態>
 第1実施形態に係る荷重センサ100について、図1~図3を参照して説明する。本実施形態に係る荷重センサ100は、加えられた荷重を検出するセンサであり、歪ゲージを備える。歪ゲージとは、その歪みに応じて抵抗値が変化する素子である。図1は、荷重センサ100の一例を示す平面図である。図2は、荷重センサ100の一例を示す側面図である。以下、便宜上、図における上下左右を、荷重センサ100の上下左右として説明する。
<First Embodiment>
A load sensor 100 according to the first embodiment will be described with reference to FIGS. The load sensor 100 according to the present embodiment is a sensor that detects an applied load, and includes a strain gauge. A strain gauge is an element whose resistance value changes according to the strain. FIG. 1 is a plan view showing an example of the load sensor 100. FIG. 2 is a side view showing an example of the load sensor 100. Hereinafter, for convenience, the top, bottom, left, and right in the figure will be described as the top, bottom, left, and right of the load sensor 100.
 図1及び図2に示すように、荷重センサ100は、起歪体1と、絶縁層2と、第1抵抗部R1と、第2抵抗部R2と、第3抵抗部R3と、第4抵抗部R4と、第1出力端子T1と、第1出力端子T2と、変換回路3と、を備える。 As shown in FIGS. 1 and 2, the load sensor 100 includes a strain body 1, an insulating layer 2, a first resistor R 1, a second resistor R 2, a third resistor R 3, and a fourth resistor. A section R4, a first output terminal T1, a first output terminal T2, and a conversion circuit 3 are provided.
 起歪体1は、荷重を加えられる板状部材であり、金属板により形成される。荷重センサ100は、歪ゲージを利用して起歪体1の歪みを検出することにより、起歪体1に加えられた荷重を検出する。図1に示すように、起歪体1は、第1部分11と、第2部分12と、を有する。 The strain body 1 is a plate-like member to which a load is applied, and is formed of a metal plate. The load sensor 100 detects a load applied to the strain body 1 by detecting strain of the strain body 1 using a strain gauge. As shown in FIG. 1, the strain body 1 includes a first portion 11 and a second portion 12.
 第1部分11は、荷重に応じて歪む円形の部分である。第1部分11は、外周部に複数の開口部13を有し、各開口部13にボルトを挿通させることにより、外周部を荷重の検出対象に固定される。また、図2に示すように、第1部分11の中心には、検出対象からの荷重を受ける荷重受け部14が設けられる。このように、円形の第1部分11の外周部を固定し、中心に荷重を加えることにより、荷重に応じた第1部分11の歪みを均一化できる。 The first portion 11 is a circular portion that is distorted according to the load. The first portion 11 has a plurality of openings 13 on the outer peripheral portion, and the outer peripheral portion is fixed to a load detection target by inserting a bolt through each opening 13. As shown in FIG. 2, a load receiver 14 that receives a load from the detection target is provided at the center of the first portion 11. In this way, by fixing the outer peripheral portion of the circular first portion 11 and applying a load at the center, the distortion of the first portion 11 according to the load can be made uniform.
 なお、図2の例では、荷重受け部14は、頭部が半球状のナットであり、起歪体1の下面に設けられ、起歪体1の上面に設けられたネジ15を挿通させることによりに第1部分11に固定されているが、荷重受け部14の位置及び固定方法はこれに限られない。荷重受け部14は、起歪体1の上面に設けられてもよいし、ナットにより固定されてもよい。後者の場合、荷重受け部14として、頭部が半球状のボルトを利用すればよい。 In the example of FIG. 2, the load receiving portion 14 is a nut having a hemispherical head, is provided on the lower surface of the strain body 1, and is inserted with a screw 15 provided on the upper surface of the strain body 1. However, the position and fixing method of the load receiving portion 14 are not limited to this. The load receiver 14 may be provided on the upper surface of the strain body 1 or may be fixed by a nut. In the latter case, a bolt having a hemispherical head may be used as the load receiving portion 14.
 第2部分12は、第1部分11から延出した略矩形の部分である。第2部分12の形状は任意に設計可能である。 The second portion 12 is a substantially rectangular portion extending from the first portion 11. The shape of the second portion 12 can be arbitrarily designed.
 絶縁層2は、起歪体1上に設けられた絶縁性の層である。絶縁層2は、起歪体1上に形成された酸化膜、窒化膜、又は樹脂製の絶縁膜であってもよいし、起歪体1上に固定された絶縁性のプリント基板であってもよい。プリント基板は、フレキシブル基板であってもよいし、リジッド基板であってもよい。いずれの場合も、絶縁層2は、起歪体1の歪みに応じて歪むように、全面を起歪体1に固定される。絶縁層2は、第1部分21と、第2部分22と、を有する。 The insulating layer 2 is an insulating layer provided on the strain body 1. The insulating layer 2 may be an oxide film, a nitride film, or a resin insulating film formed on the strain generating body 1, or an insulating printed board fixed on the strain generating body 1. Also good. The printed circuit board may be a flexible board or a rigid board. In any case, the entire surface of the insulating layer 2 is fixed to the strain generating body 1 so as to be distorted according to the strain of the strain generating body 1. The insulating layer 2 has a first portion 21 and a second portion 22.
 第1部分21は、荷重に応じて歪む円形の部分である。第1部分21は、起歪体1の第1部分11に、第1部分11と中心が一致するように固定される。第1部分11には、第1抵抗部R1、第2抵抗部R2、第3抵抗部R3、及び第4抵抗部R4が設けられる。また、第1部分21の中心部には、ネジ15を挿通させるための開口部が設けられる。 The first portion 21 is a circular portion that is distorted according to the load. The first portion 21 is fixed to the first portion 11 of the strain body 1 so that the center thereof coincides with the first portion 11. The first portion 11 is provided with a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4. In addition, an opening for inserting the screw 15 is provided at the center of the first portion 21.
 第2部分22は、第1部分21から延出した略矩形の部分である。第2部分22の形状は任意に設計可能である。第2部分22は、起歪体1の第1部分11から第2部分12に亘って設けられる。起歪体1の第2部分12上の第2部分22には、変換回路3が設けられる。 The second portion 22 is a substantially rectangular portion extending from the first portion 21. The shape of the second portion 22 can be arbitrarily designed. The second portion 22 is provided from the first portion 11 to the second portion 12 of the strain body 1. The conversion circuit 3 is provided in the second portion 22 on the second portion 12 of the strain generating body 1.
 ここで、絶縁層2上に形成される回路構成について、図3を参照して説明する。図3は、荷重センサ100の回路構成の一例を示す図である。図3に示すように、絶縁層2上には、第1抵抗部R1と、第2抵抗部R2と、第3抵抗部R3と、第4抵抗部R4と、第1出力端子T1と、第2出力端子T2と、変換回路3と、が設けられる。 Here, a circuit configuration formed on the insulating layer 2 will be described with reference to FIG. FIG. 3 is a diagram illustrating an example of a circuit configuration of the load sensor 100. As shown in FIG. 3, on the insulating layer 2, the first resistor R1, the second resistor R2, the third resistor R3, the fourth resistor R4, the first output terminal T1, and the first resistor A two-output terminal T2 and a conversion circuit 3 are provided.
 第1抵抗部R1は、一端が電源に接続され、他端が第1出力端子T1に接続される。第2抵抗部R1は、一端が第1出力端子T1に接続され、他端がグラウンドに接続される。すなわち、第1抵抗部R1及び第2抵抗部R2は、直列に接続され、ハーフブリッジ回路を構成する。第1抵抗部R1と第2抵抗部R2との間の電圧(電源電圧Vddを第1抵抗部R1及び第2抵抗部R2で分圧した電圧)が、第1出力端子T1から出力電圧V1として出力される。第1出力端子T1は、変換回路3に接続され、出力電圧V1は、変換回路3に入力される。 The first resistor R1 has one end connected to the power supply and the other end connected to the first output terminal T1. The second resistor unit R1 has one end connected to the first output terminal T1 and the other end connected to the ground. That is, the first resistor R1 and the second resistor R2 are connected in series to form a half bridge circuit. A voltage between the first resistor R1 and the second resistor R2 (a voltage obtained by dividing the power supply voltage Vdd by the first resistor R1 and the second resistor R2) is output from the first output terminal T1 as the output voltage V1. Is output. The first output terminal T <b> 1 is connected to the conversion circuit 3, and the output voltage V <b> 1 is input to the conversion circuit 3.
 第3抵抗部R3は、一端が電源に接続され、他端が第2出力端子T2に接続される。第4抵抗部R4は、一端が第2出力端子T2に接続され、他端がグラウンドに接続される。すなわち、第3抵抗部R3及び第4抵抗部R4は、直列に接続され、ハーフブリッジ回路を構成する。第3抵抗部R3と第4抵抗部R4との間の電圧(電源電圧Vddを第3抵抗部R3及び第4抵抗部R4で分圧した電圧)が、第2出力端子T2から出力電圧V2として出力される。第2出力端子T2は、変換回路3に接続され、出力電圧V2は、変換回路3に入力される。 The third resistor R3 has one end connected to the power supply and the other end connected to the second output terminal T2. The fourth resistor unit R4 has one end connected to the second output terminal T2 and the other end connected to the ground. That is, the third resistor unit R3 and the fourth resistor unit R4 are connected in series to form a half bridge circuit. A voltage between the third resistor R3 and the fourth resistor R4 (a voltage obtained by dividing the power supply voltage Vdd by the third resistor R3 and the fourth resistor R4) is output from the second output terminal T2 as an output voltage V2. Is output. The second output terminal T2 is connected to the conversion circuit 3, and the output voltage V2 is input to the conversion circuit 3.
 図3からわかるように、第3抵抗部R3及び第4抵抗部R4は、第1抵抗部R1及び第2抵抗部R2と並列に接続され、第1抵抗部R1及び第2抵抗部R2と共にブリッジ回路を構成する。第1抵抗部R1、第2抵抗部R2、第3抵抗部R3、及び第4抵抗部R4は、後述する通り、いずれも複数の歪ゲージを備え、荷重に応じて抵抗値が変化する。このため、出力電圧V1は、荷重に応じて変化した第1抵抗部R1及び第2抵抗部R2の抵抗値に応じた電圧となる。同様に、出力電圧V2は、荷重に応じて変化した第3抵抗部R3及び第4抵抗部R4の抵抗値に応じた電圧となる。すなわち、出力電圧V1,V2は、いずれも荷重に応じた電圧となる。 As can be seen from FIG. 3, the third resistor R3 and the fourth resistor R4 are connected in parallel with the first resistor R1 and the second resistor R2, and are bridged together with the first resistor R1 and the second resistor R2. Configure the circuit. As will be described later, each of the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 includes a plurality of strain gauges, and the resistance value changes according to the load. For this reason, the output voltage V1 becomes a voltage according to the resistance values of the first resistance part R1 and the second resistance part R2 that have changed according to the load. Similarly, the output voltage V2 becomes a voltage according to the resistance values of the third resistor portion R3 and the fourth resistor portion R4 that have changed according to the load. That is, the output voltages V1, V2 are both voltages according to the load.
 変換回路3は、出力電圧V1,V2に基づいて、荷重を検出する回路である。具体的には、変換回路3は、出力電圧V1,V2の差を、予め用意されたテーブルを参照して、荷重に変換する。図3の例では、変換回路3が1つのIC(Integrated Circuit)である場合を想定しているが、変換回路3は、複数のディスクリート部品により構成されてもよい。 The conversion circuit 3 is a circuit that detects a load based on the output voltages V1 and V2. Specifically, the conversion circuit 3 converts the difference between the output voltages V1 and V2 into a load with reference to a table prepared in advance. In the example of FIG. 3, it is assumed that the conversion circuit 3 is one IC (Integrated Circuit), but the conversion circuit 3 may be configured by a plurality of discrete components.
 次に、第1抵抗部R1、第2抵抗部R2、第3抵抗部R3、及び第4抵抗部R4の構成について、図1を参照して説明する。 Next, the configuration of the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 will be described with reference to FIG.
 第1抵抗部R1は、プリント配線(図示省略)により直列に接続された4つの第1歪ゲージr1を備える。第1歪ゲージr1は、絶縁層2に金属材料やカーボンをバインダー樹脂に混ぜ込んだ抵抗材料をプリントすることにより形成されてもよいし、絶縁層2に金属箔を貼付することにより形成されてもよい。また、第1歪ゲージr1は、絶縁層2に実装された独立した素子であってもよい。いずれの場合も、第1歪ゲージr1は、絶縁層2の歪みに応じて歪むように、全面を起歪体1に固定される。このような構成により、起歪体1に荷重が加わると、荷重に応じて起歪体1が歪み、起歪体1と共に絶縁層2が歪み、絶縁層2と共に第1歪ゲージr1が歪み、歪みに応じて各第1歪ゲージr1の抵抗値が変化し、各第1歪ゲージr1の抵抗値の変化に応じて第1抵抗部R1の抵抗値が変化する。結果として、出力電圧V1が、荷重に応じて変化する。 The first resistance portion R1 includes four first strain gauges r1 connected in series by printed wiring (not shown). The first strain gauge r1 may be formed by printing a resistance material in which a metal material or carbon is mixed with a binder resin on the insulating layer 2, or formed by sticking a metal foil to the insulating layer 2. Also good. The first strain gauge r1 may be an independent element mounted on the insulating layer 2. In any case, the entire surface of the first strain gauge r1 is fixed to the strain generating body 1 so as to be distorted according to the strain of the insulating layer 2. With such a configuration, when a load is applied to the strain body 1, the strain body 1 is distorted according to the load, the insulation layer 2 is distorted together with the strain body 1, and the first strain gauge r1 is strained together with the insulation layer 2. The resistance value of each first strain gauge r1 changes according to the strain, and the resistance value of the first resistance unit R1 changes according to the change of the resistance value of each first strain gauge r1. As a result, the output voltage V1 changes according to the load.
 各第1歪ゲージr1は、起歪体1の中心(荷重受け部14)を中心とした第1円の円周上に、等間隔(90°ごと)に配置される。各第1歪ゲージr1をこのように配置することにより、荷重の方向が起歪体1に対して傾いている(垂直でない)場合に生じる第1抵抗部R1の抵抗値の誤差を抑制できる。これは、荷重の傾斜方向側に配置された第1歪ゲージr1の歪みが大きくなると同時に、傾斜方向と反対側に配置された第1歪ゲージr1の歪が小さくなるためである。第1抵抗部R1の誤差を抑制することにより、出力電圧V1の誤差を抑制できる。 The first strain gauges r1 are arranged at equal intervals (every 90 °) on the circumference of the first circle centered on the center of the strain body 1 (load receiving portion 14). By disposing each first strain gauge r1 in this way, it is possible to suppress an error in the resistance value of the first resistance portion R1 that occurs when the direction of the load is inclined (not perpendicular) to the strain generating body 1. This is because the strain of the first strain gauge r1 disposed on the side opposite to the tilt direction is decreased at the same time as the strain of the first strain gauge r1 disposed on the tilt direction side of the load is increased. By suppressing the error of the first resistance unit R1, the error of the output voltage V1 can be suppressed.
 なお、第1抵抗部R1は、複数の第1歪ゲージr1を備えればよく、その数は4つに限られない。いずれの場合も、各第1歪ゲージr1は、第1円の円周上に等間隔に配置されるのが好ましい。ただし、各第1歪ゲージr1を等間隔に配置しないことも可能である。 In addition, the 1st resistance part R1 should just be provided with the some 1st strain gauge r1, and the number is not restricted to four. In any case, the first strain gauges r1 are preferably arranged at equal intervals on the circumference of the first circle. However, it is possible not to arrange the first strain gauges r1 at equal intervals.
 第2抵抗部R2は、プリント配線(図示省略)により直列に接続された4つの第2歪ゲージr2を備える。第2歪ゲージr2は、絶縁層2に金属材料をプリントすることにより形成されてもよいし、絶縁層2に金属箔を貼付することにより形成されてもよい。また、第2歪ゲージr2は、絶縁層2に実装された独立した素子であってもよい。いずれの場合も、第2歪ゲージr2は、絶縁層2の歪みに応じて歪むように、全面を起歪体1に固定される。このような構成により、起歪体1に荷重が加わると、荷重に応じて起歪体1が歪み、起歪体1と共に絶縁層2が歪み、絶縁層2と共に第2歪ゲージr2が歪み、歪みに応じて各第2歪ゲージr2の抵抗値が変化し、各第2歪ゲージr2の抵抗値の変化に応じて第2抵抗部R2の抵抗値が変化する。結果として、出力電圧V1が、荷重に応じて変化する。 The second resistance portion R2 includes four second strain gauges r2 connected in series by printed wiring (not shown). The second strain gauge r <b> 2 may be formed by printing a metal material on the insulating layer 2, or may be formed by attaching a metal foil to the insulating layer 2. The second strain gauge r2 may be an independent element mounted on the insulating layer 2. In either case, the entire surface of the second strain gauge r2 is fixed to the strain generating body 1 so as to be distorted in accordance with the strain of the insulating layer 2. With such a configuration, when a load is applied to the strain generating body 1, the strain generating body 1 is strained according to the load, the strain generating body 1 and the insulating layer 2 are strained, and the insulating layer 2 and the second strain gauge r2 are strained. The resistance value of each second strain gauge r2 changes according to the strain, and the resistance value of the second resistance portion R2 changes according to the change of the resistance value of each second strain gauge r2. As a result, the output voltage V1 changes according to the load.
 各第2歪ゲージr2は、起歪体1の中心を中心とした第2円の円周上に、等間隔(90°ごと)に配置される。第2円は、第1円より小さい第1円の同心円である。各第2歪ゲージr2をこのように配置することにより、荷重の方向が起歪体1に対して傾いている場合に生じる第2抵抗部R2の抵抗値の誤差を抑制できる。これは、荷重の傾斜方向側に配置された第2歪ゲージr2の歪みが大きくなると同時に、傾斜方向と反対側に配置された第2歪ゲージr2の歪が小さくなるためである。第2抵抗部R2の誤差を抑制することにより、出力電圧V2の誤差を抑制できる。 The second strain gauges r2 are arranged at equal intervals (every 90 °) on the circumference of the second circle with the center of the strain generating body 1 as the center. The second circle is a concentric circle of the first circle smaller than the first circle. By disposing each second strain gauge r2 in this way, it is possible to suppress an error in the resistance value of the second resistance portion R2 that occurs when the direction of the load is inclined with respect to the strain generating body 1. This is because the strain of the second strain gauge r2 disposed on the side opposite to the tilt direction is reduced at the same time as the strain of the second strain gauge r2 disposed on the load tilt direction side is increased. By suppressing the error of the second resistance unit R2, the error of the output voltage V2 can be suppressed.
 また、第1部分11の外周部は固定されているため、起歪体1に荷重が加わると、第1部分11の中心部側と外周部側とは逆向きに歪む。この結果、起歪体1に荷重が加わると、第1部分11の外周部側に配置された第1歪ゲージr1の抵抗値と、第1部分11の中心部側に配置された第2歪ゲージr2の抵抗値と、は逆向きに変化する。すなわち、起歪体1に荷重が加わると、第1抵抗部R1の抵抗値と、第2抵抗部R2の抵抗値と、は逆向きに変化する。このような第1抵抗部R1及び第2抵抗部R2によりハーフブリッジ回路を構成し、第1抵抗部R1と第2抵抗部R2との間の電圧を出力電圧V1として出力することにより、荷重に応じた出力電圧V1の変化を増幅することができる。 Further, since the outer peripheral portion of the first portion 11 is fixed, when a load is applied to the strain generating body 1, the central portion side and the outer peripheral portion side of the first portion 11 are distorted in opposite directions. As a result, when a load is applied to the strain generating body 1, the resistance value of the first strain gauge r <b> 1 disposed on the outer peripheral side of the first portion 11 and the second strain disposed on the central portion side of the first portion 11. The resistance value of the gauge r2 changes in the opposite direction. That is, when a load is applied to the strain body 1, the resistance value of the first resistance part R1 and the resistance value of the second resistance part R2 change in opposite directions. The first resistor R1 and the second resistor R2 constitute a half-bridge circuit, and the voltage between the first resistor R1 and the second resistor R2 is output as the output voltage V1. The corresponding change in the output voltage V1 can be amplified.
 なお、第2抵抗部R2は、複数の第2歪ゲージr2を備えればよく、その数は4つに限られない。いずれの場合も、各第2歪ゲージr2は、第2円の円周上に等間隔に配置されるのが好ましい。ただし、各第2歪ゲージr2を等間隔に配置しないことも可能である。 In addition, the 2nd resistance part R2 should just be equipped with several 2nd strain gauge r2, and the number is not restricted to four. In any case, the second strain gauges r2 are preferably arranged at equal intervals on the circumference of the second circle. However, it is possible not to arrange the second strain gauges r2 at equal intervals.
 また、図1の例のように、各第2歪ゲージr2は、第1円及び第2円の中心と、各第1歪ゲージr1と、の間に配置されるのが好ましい。すなわち、各第2歪ゲージr2は、第1円及び第2円の中心と、各第1歪ゲージr1と、を結ぶ線分上に配置されるのが好ましい。第1歪ゲージr1及び第2歪ゲージr2をこのように配置することにより、荷重の方向の傾斜による影響を、第1抵抗部R1及び第2抵抗部R2の間で均一化できる。 Also, as in the example of FIG. 1, each second strain gauge r2 is preferably disposed between the center of the first circle and the second circle and each first strain gauge r1. In other words, each second strain gauge r2 is preferably arranged on a line segment connecting the centers of the first circle and the second circle and each first strain gauge r1. By arranging the first strain gauge r1 and the second strain gauge r2 in this way, the influence of the inclination in the direction of the load can be made uniform between the first resistance portion R1 and the second resistance portion R2.
 第3抵抗部R3は、プリント配線(図示省略)により直列に接続された4つの第3歪ゲージr3を備える。第3歪ゲージr3は、絶縁層2に金属材料をプリントすることにより形成されてもよいし、絶縁層2に金属箔を貼付することにより形成されてもよい。また、第3歪ゲージr3は、絶縁層2に実装された独立した素子であってもよい。いずれの場合も、第3歪ゲージr3は、絶縁層2の歪みに応じて歪むように、全面を起歪体1に固定される。このような構成により、起歪体1に荷重が加わると、荷重に応じて起歪体1が歪み、起歪体1と共に絶縁層2が歪み、絶縁層2と共に第3歪ゲージr3が歪み、歪みに応じて各第3歪ゲージr3の抵抗値が変化し、各第3歪ゲージr3の抵抗値の変化に応じて第3抵抗部R3の抵抗値が変化する。結果として、出力電圧V2が、荷重に応じて変化する。 The third resistance portion R3 includes four third strain gauges r3 connected in series by printed wiring (not shown). The third strain gauge r3 may be formed by printing a metal material on the insulating layer 2, or may be formed by attaching a metal foil to the insulating layer 2. The third strain gauge r3 may be an independent element mounted on the insulating layer 2. In any case, the entire surface of the third strain gauge r3 is fixed to the strain generating body 1 so as to be distorted according to the strain of the insulating layer 2. With such a configuration, when a load is applied to the strain generating body 1, the strain generating body 1 is strained according to the load, the insulating layer 2 is strained together with the strain generating body 1, and the third strain gauge r3 is strained together with the insulating layer 2. The resistance value of each third strain gauge r3 changes according to the strain, and the resistance value of the third resistance portion R3 changes according to the change of the resistance value of each third strain gauge r3. As a result, the output voltage V2 changes according to the load.
 各第3歪ゲージr3は、起歪体1の中心(荷重受け部14)を中心とした第3円の円周上に、等間隔(90°ごと)に配置される。各第3歪ゲージr3をこのように配置することにより、荷重の方向が起歪体1に対して傾いている(垂直でない)場合に生じる第3抵抗部R3の抵抗値の誤差を抑制できる。これは、荷重の傾斜方向側に配置された第3歪ゲージr3の歪みが大きくなると同時に、傾斜方向と反対側に配置された第3歪ゲージr3の歪が小さくなるためである。第3抵抗部R3の誤差を抑制することにより、出力電圧V2の誤差を抑制できる。 The third strain gauges r3 are arranged at equal intervals (every 90 °) on the circumference of the third circle centered on the center of the strain body 1 (load receiving portion 14). By disposing each third strain gauge r3 in this way, it is possible to suppress an error in the resistance value of the third resistance portion R3 that occurs when the direction of the load is inclined (not vertical) with respect to the strain generating body 1. This is because the strain of the third strain gauge r3 disposed on the side opposite to the tilt direction is reduced at the same time as the strain of the third strain gauge r3 disposed on the load tilt direction side is increased. By suppressing the error of the third resistor R3, the error of the output voltage V2 can be suppressed.
 なお、第3抵抗部R3は、複数の第3歪ゲージr3を備えればよく、その数は4つに限られない。いずれの場合も、各第3歪ゲージr3は、第3円の円周上に等間隔に配置されるのが好ましい。ただし、各第3歪ゲージr3を等間隔に配置しないことも可能である。 Note that the third resistor R3 only needs to include a plurality of third strain gauges r3, and the number is not limited to four. In any case, the third strain gauges r3 are preferably arranged at equal intervals on the circumference of the third circle. However, it is possible not to arrange the third strain gauges r3 at equal intervals.
 また、各第1歪ゲージr1と各第3歪ゲージr3とは、交互に等間隔(45°ごと)に配置されるのが好ましい。これにより、荷重の方向が起歪体1に対して傾いている場合に生じる出力電圧V1,V2の差の誤差を抑制できる。 Further, it is preferable that the first strain gauges r1 and the third strain gauges r3 are alternately arranged at equal intervals (every 45 °). Thereby, the difference | error of the difference of output voltage V1, V2 produced when the direction of a load inclines with respect to the strain body 1 can be suppressed.
 また、第1円及び第3円は同一であるのが好ましい。すなわち、第1歪ゲージr1と第3歪ゲージr3とは同一円周上に配置されるのが好ましい。これにより、荷重に応じた第1抵抗部R1の抵抗値の変化と第3抵抗部R3の抵抗値の変化とを均一化できる。 Also, the first circle and the third circle are preferably the same. That is, it is preferable that the first strain gauge r1 and the third strain gauge r3 are arranged on the same circumference. Thereby, the change of the resistance value of 1st resistance part R1 according to a load and the change of the resistance value of 3rd resistance part R3 can be equalize | homogenized.
 第4抵抗部R4は、プリント配線(図示省略)により直列に接続された4つの第4歪ゲージr4を備える。第4歪ゲージr4は、絶縁層2に金属材料をプリントすることにより形成されてもよいし、絶縁層2に金属箔を貼付することにより形成されてもよい。また、第4歪ゲージr4は、絶縁層2に実装された独立した素子であってもよい。いずれの場合も、第4歪ゲージr4は、絶縁層2の歪みに応じて歪むように、全面を起歪体1に固定される。このような構成により、起歪体1に荷重が加わると、荷重に応じて起歪体1が歪み、起歪体1と共に絶縁層2が歪み、絶縁層2と共に第4歪ゲージr4が歪み、歪みに応じて各第4歪ゲージr4の抵抗値が変化し、各第4歪ゲージr4の抵抗値の変化に応じて第4抵抗部R4の抵抗値が変化する。結果として、出力電圧V2が、荷重に応じて変化する。 The fourth resistance portion R4 includes four fourth strain gauges r4 connected in series by printed wiring (not shown). The fourth strain gauge r4 may be formed by printing a metal material on the insulating layer 2, or may be formed by attaching a metal foil to the insulating layer 2. The fourth strain gauge r4 may be an independent element mounted on the insulating layer 2. In any case, the entire surface of the fourth strain gauge r4 is fixed to the strain generating body 1 so as to be distorted according to the strain of the insulating layer 2. With such a configuration, when a load is applied to the strain generating body 1, the strain generating body 1 is strained according to the load, the strain generating body 1 and the insulating layer 2 are strained, and the insulating layer 2 and the fourth strain gauge r4 are strained. The resistance value of each fourth strain gauge r4 changes according to the strain, and the resistance value of the fourth resistance portion R4 changes according to the change of the resistance value of each fourth strain gauge r4. As a result, the output voltage V2 changes according to the load.
 各第4歪ゲージr4は、起歪体1の中心を中心とした第4円の円周上に、等間隔(90°ごと)に配置される。第4円は、第3円より小さい第3円の同心円である。各第4歪ゲージr4をこのように配置することにより、荷重の方向が起歪体1に対して傾いている場合に生じる第4抵抗部R4の抵抗値の誤差を抑制できる。これは、荷重の傾斜方向側に配置された第4歪ゲージr4の歪みが大きくなると同時に、傾斜方向と反対側に配置された第4歪ゲージr4の歪が小さくなるためである。第4抵抗部R4の誤差を抑制することにより、出力電圧V2の誤差を抑制できる。 The fourth strain gauges r4 are arranged at equal intervals (every 90 °) on the circumference of the fourth circle with the center of the strain body 1 as the center. The fourth circle is a concentric circle of the third circle smaller than the third circle. By disposing each fourth strain gauge r4 in this way, it is possible to suppress an error in the resistance value of the fourth resistance portion R4 that occurs when the direction of the load is inclined with respect to the strain generating body 1. This is because the strain of the fourth strain gauge r4 disposed on the side opposite to the tilt direction is reduced at the same time as the strain of the fourth strain gauge r4 disposed on the load tilt direction side is increased. By suppressing the error of the fourth resistor R4, the error of the output voltage V2 can be suppressed.
 また、第1部分11の外周部は固定されているため、起歪体1に荷重が加わると、第1部分11の中心部側と外周部側とは逆向きに歪む。この結果、起歪体1に荷重が加わると、第1部分11の外周部側に配置された第3歪ゲージr3の抵抗値と、第1部分11の中心部側に配置された第4歪ゲージr4の抵抗値と、は逆向きに変化する。すなわち、起歪体1に荷重が加わると、第3抵抗部R3の抵抗値と、第4抵抗部R4の抵抗値と、は逆向きに変化する。このような第3抵抗部R3及び第4抵抗部R4によりハーフブリッジ回路を構成し、第3抵抗部R3と第4抵抗部R4との間の電圧を出力電圧V2として出力することにより、荷重に応じた出力電圧V2の変化を増幅することができる。 Further, since the outer peripheral portion of the first portion 11 is fixed, when a load is applied to the strain generating body 1, the central portion side and the outer peripheral portion side of the first portion 11 are distorted in opposite directions. As a result, when a load is applied to the strain generating body 1, the resistance value of the third strain gauge r <b> 3 disposed on the outer peripheral side of the first portion 11 and the fourth strain disposed on the center portion side of the first portion 11. The resistance value of the gauge r4 changes in the opposite direction. That is, when a load is applied to the strain generating body 1, the resistance value of the third resistance portion R3 and the resistance value of the fourth resistance portion R4 change in opposite directions. The third resistor portion R3 and the fourth resistor portion R4 constitute a half-bridge circuit, and the voltage between the third resistor portion R3 and the fourth resistor portion R4 is output as the output voltage V2, thereby increasing the load. The corresponding change in the output voltage V2 can be amplified.
 なお、第4抵抗部R4は、複数の第4歪ゲージr4を備えればよく、その数は4つに限られない。いずれの場合も、各第4歪ゲージr4は、第2円の円周上に等間隔に配置されるのが好ましい。ただし、各第4歪ゲージr4を等間隔に配置しないことも可能である。 In addition, the 4th resistance part R4 should just be equipped with several 4th strain gauge r4, and the number is not restricted to four. In any case, it is preferable that the fourth strain gauges r4 are arranged at equal intervals on the circumference of the second circle. However, the fourth strain gauges r4 may not be arranged at equal intervals.
 また、図1の例のように、各第4歪ゲージr4は、第3円及び第4円の中心と、各第3歪ゲージr3と、の間に配置されるのが好ましい。すなわち、各第4歪ゲージr4は、第3円及び第4円の中心と、各第3歪ゲージr3と、を結ぶ線分上に配置されるのが好ましい。第3歪ゲージr3及び第4歪ゲージr4をこのように配置することにより、荷重の方向の傾斜による影響を、第3抵抗部R3及び第4抵抗部R4の間で均一化できる。 Further, as in the example of FIG. 1, each fourth strain gauge r4 is preferably arranged between the third circle and the center of the fourth circle and each third strain gauge r3. That is, each fourth strain gauge r4 is preferably arranged on a line segment connecting the third circle and the center of the fourth circle and each third strain gauge r3. By arranging the third strain gauge r3 and the fourth strain gauge r4 in this way, the influence of the inclination in the direction of the load can be made uniform between the third resistance portion R3 and the fourth resistance portion R4.
 また、各第2歪ゲージr2と各第4歪ゲージr4とは、交互に等間隔(45°ごと)に配置されるのが好ましい。これにより、荷重の方向が起歪体1に対して傾いている場合に生じる出力電圧V1,V2の差の誤差を抑制できる。 Also, it is preferable that the second strain gauges r2 and the fourth strain gauges r4 are alternately arranged at equal intervals (every 45 °). Thereby, the difference | error of the difference of output voltage V1, V2 produced when the direction of a load inclines with respect to the strain body 1 can be suppressed.
 また、第2円及び第4円は同一であるのが好ましい。すなわち、第2歪ゲージr2と第4歪ゲージr4とは同一円周上に配置されるのが好ましい。これにより、荷重に応じた第2抵抗部R2の抵抗値の変化と第4抵抗部R4の抵抗値の変化とを均一化できる。 Also, the second circle and the fourth circle are preferably the same. That is, it is preferable that the second strain gauge r2 and the fourth strain gauge r4 are arranged on the same circumference. Thereby, the change of the resistance value of 2nd resistance part R2 according to a load and the change of the resistance value of 4th resistance part R4 can be equalize | homogenized.
 以上説明した通り、本実施形態によれば、複数の第1ゲージ素子r1は第1円の円周上に等間隔に配置される。このような構成により、荷重の方向が起歪体1に対して傾いている場合であっても、荷重の傾斜による影響が、複数の第1ゲージ素子r1の間で相殺される。これは、第2抵抗部R2、第3抵抗部R3、及び第4抵抗部R4についても同様である。したがって、荷重センサ100は、荷重の方向が起歪体1に対して傾いている場合であっても、出力電圧V1,V2に基づいて、精度よく荷重を検出することができる。 As described above, according to the present embodiment, the plurality of first gauge elements r1 are arranged at equal intervals on the circumference of the first circle. With such a configuration, even when the direction of the load is inclined with respect to the strain body 1, the influence due to the inclination of the load is canceled between the plurality of first gauge elements r <b> 1. The same applies to the second resistor portion R2, the third resistor portion R3, and the fourth resistor portion R4. Therefore, the load sensor 100 can accurately detect the load based on the output voltages V1 and V2 even when the direction of the load is inclined with respect to the strain body 1.
 また、本実施形態によれば、製造誤差により、複数の第1ゲージ素子r1の位置がずれた場合であっても、第1ゲージ素子r1の位置ずれによる影響が、複数の第1ゲージ素子r1の間で相殺される。これは、第2抵抗部R2、第3抵抗部R3、及び第4抵抗部R4についても同様である。したがって、荷重センサ100は、製造誤差により第1ゲージ素子r1、第2ゲージ素子r2、第3ゲージ素子r3、及び第4ゲージ素子r4に位置ずれが生じた場合であっても、出力電圧V1,V2に基づいて、精度よく荷重を検出することができる。 Further, according to the present embodiment, even if the positions of the plurality of first gauge elements r1 are shifted due to manufacturing errors, the influence of the position shift of the first gauge elements r1 is affected by the plurality of first gauge elements r1. Is offset between. The same applies to the second resistor portion R2, the third resistor portion R3, and the fourth resistor portion R4. Therefore, even if the load sensor 100 is misaligned in the first gauge element r1, the second gauge element r2, the third gauge element r3, and the fourth gauge element r4 due to a manufacturing error, the output voltage V1, Based on V2, the load can be detected with high accuracy.
 なお、本実施形態において、第3抵抗部R3及び第4抵抗部R4を備えない構成も可能である。このような場合であっても、荷重センサ100は、出力電圧V1に基づいて、精度よく荷重を検出することができる。 In addition, in this embodiment, the structure which is not provided with 3rd resistance part R3 and 4th resistance part R4 is also possible. Even in such a case, the load sensor 100 can accurately detect the load based on the output voltage V1.
 また、起歪体1の第1部分11は、楕円形であってもよい。この場合、第1円、第2円、第3円、及び第4円は、第1部分11と相似形の、第1部分11の中心(荷重受け部14)を中心とした同心楕円であることが好ましい。 Further, the first portion 11 of the strain body 1 may be oval. In this case, the first circle, the second circle, the third circle, and the fourth circle are concentric ellipses centered on the center of the first portion 11 (load receiving portion 14), which is similar to the first portion 11. It is preferable.
<第2実施形態>
 第2実施形態に係る荷重検出装置について、図4~図6を参照して説明する。本実施形態に係る荷重検出装置は、荷重センサ100を備えた任意の装置で有り得る。荷重検出装置は、例えば、椅子、ベッド、テーブル、又は担架であるが、これに限られない。以下、荷重検出装置がベッドである場合を例に説明する。
Second Embodiment
A load detection apparatus according to the second embodiment will be described with reference to FIGS. The load detection device according to the present embodiment can be any device including the load sensor 100. The load detection device is, for example, a chair, a bed, a table, or a stretcher, but is not limited thereto. Hereinafter, a case where the load detection device is a bed will be described as an example.
 図4は、本実施形態に係るベッド200の一例を示す図である。図4のベッド200は、天板4と、4つの脚部5と、を備える。天板4は、人が横たわるための部分であり、フレームや床板により構成される。ベッド200は、使用時において、天板4の上部にマットレスなどを敷かれる。脚部5は、天板4を水平に支持する。 FIG. 4 is a diagram illustrating an example of the bed 200 according to the present embodiment. The bed 200 in FIG. 4 includes a top plate 4 and four legs 5. The top plate 4 is a part for a person to lie down, and is composed of a frame and a floor plate. The bed 200 is laid with a mattress or the like on the top 4 in use. The leg part 5 supports the top plate 4 horizontally.
 図5は、図4の脚部5の一例を示す部分拡大図である。図6は、図5の脚部5の断面図である。脚部5は、天板4を支持する第1支持部51と、第1支持部51を支持する第2支持部52と、第1支持部51と第2支持部52との間に配置された荷重センサ100と、を備える。第1支持部51は、下端に荷重センサ100のネジ15を収納する凹部511を有する。第2支持部52は、筐体53と、キャスタ54と、押圧部55と、を備える。 FIG. 5 is a partially enlarged view showing an example of the leg portion 5 of FIG. 6 is a cross-sectional view of the leg 5 of FIG. The leg portion 5 is disposed between the first support portion 51 that supports the top plate 4, the second support portion 52 that supports the first support portion 51, and the first support portion 51 and the second support portion 52. Load sensor 100. The 1st support part 51 has the recessed part 511 which accommodates the screw 15 of the load sensor 100 in a lower end. The second support part 52 includes a housing 53, a caster 54, and a pressing part 55.
 筐体53は、第1支持部51とキャスタ54とを連結する筒状部材であり、中空部分531を有する。筐体53の上端は荷重センサ100及び第1支持部51の下端に固定され、筐体53の下端はキャスタ54の上端に固定される。筐体53の中空部分531には、荷重センサ100の荷重受け部14が収納される。 The housing 53 is a cylindrical member that connects the first support portion 51 and the casters 54, and has a hollow portion 531. The upper end of the casing 53 is fixed to the lower ends of the load sensor 100 and the first support portion 51, and the lower end of the casing 53 is fixed to the upper end of the casters 54. The load receiving portion 14 of the load sensor 100 is accommodated in the hollow portion 531 of the housing 53.
 キャスタ54は、水平軸まわりに回転可能な車輪と、車輪を鉛直軸まわりに回転可能に支持する自在金具とを備える。キャスタ54により、ベッド200は容易に移動可能となる。 The caster 54 includes a wheel that can rotate about a horizontal axis, and a universal bracket that supports the wheel to rotate about a vertical axis. The bed 200 can be easily moved by the casters 54.
 押圧部55は、キャスタ54の上端から上方に延びる棒状部材であり、筐体53の中空部分531に収納される。押圧部55は、ベッド200に荷重が加わった際に、その上端が荷重受け部14を押圧可能な高さに設計される。 The pressing portion 55 is a rod-like member extending upward from the upper end of the caster 54 and is housed in the hollow portion 531 of the housing 53. The pressing portion 55 is designed to have a height at which the upper end of the pressing portion 55 can press the load receiving portion 14 when a load is applied to the bed 200.
 以上のような構成により、ベッド200に人がのると、第1支持部51により荷重センサ100が押し下げられ、荷重受け部14が押圧部55により下方から押圧される。これにより、人の重さに応じた荷重が荷重受け部14に加えられるため、荷重センサ100は、人の重さ(荷重)を検出することができる。 With the above configuration, when a person is on the bed 200, the load sensor 100 is pushed down by the first support portion 51, and the load receiving portion 14 is pressed from below by the pressing portion 55. Thereby, since the load according to a person's weight is added to the load receiving part 14, the load sensor 100 can detect a person's weight (load).
 なお、上記実施形態に挙げた構成等に、その他の要素との組み合わせなど、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更可能であり、その応用形態に応じて適切に定めることができる。 It should be noted that the present invention is not limited to the configuration shown here, such as a combination with other elements in the configuration described in the above embodiment. These points can be changed without departing from the spirit of the present invention, and can be appropriately determined according to the application form.
 また、本国際出願は、2018年2月15日に出願した日本国特許出願第2018-024953号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2018-024953 filed on February 15, 2018, and the entire contents of the application are incorporated herein by reference.
1:起歪体
2:絶縁層
3:変換回路
4:天板
5:脚部
11:第1部分
12:第2部分
13:開口部
14:荷重受け部
15:ネジ
21:第1部分
22:第2部分
51:第1支持部
52:第2支持部
53:筐体
54:キャスタ
55:押圧部
100:荷重センサ
200:ベッド
1: Strain body 2: Insulating layer 3: Conversion circuit 4: Top plate 5: Leg part 11: First part 12: Second part 13: Opening part 14: Load receiving part 15: Screw 21: First part 22: 2nd part 51: 1st support part 52: 2nd support part 53: Case 54: Caster 55: Press part 100: Load sensor 200: Bed

Claims (16)

  1.  荷重受け部を備えた起歪体と、
     前記起歪体上に設けられた絶縁層と、
     前記絶縁層上に設けられ、直列に接続された第1抵抗部及び第2抵抗部と、
     前記第1抵抗部と前記第2抵抗部との間の電圧を出力する第1出力端子と、
    を備え、
     前記第1抵抗部は、直列に接続され、円又は楕円である第1円の円周上に配置された複数の第1歪ゲージを備え、
     前記第2抵抗部は、直列に接続され、円又は楕円である第2円の円周上に配置された複数の第2歪ゲージを備え、
     前記第1円及び前記第2円は、前記荷重受け部を中心とする同心円又は同心楕円である
    荷重センサ。
    A strain body having a load receiving portion;
    An insulating layer provided on the strain body;
    A first resistor part and a second resistor part provided on the insulating layer and connected in series;
    A first output terminal for outputting a voltage between the first resistor unit and the second resistor unit;
    With
    The first resistance unit includes a plurality of first strain gauges connected in series and disposed on a circumference of a first circle that is a circle or an ellipse,
    The second resistance portion includes a plurality of second strain gauges connected in series and disposed on a circumference of a second circle that is a circle or an ellipse,
    The first circle and the second circle are load sensors that are concentric circles or concentric ellipses centered on the load receiving portion.
  2.  前記第1歪ゲージは、前記第1円の円周上に等間隔に配置される
    請求項1に記載の荷重センサ。
    The load sensor according to claim 1, wherein the first strain gauges are arranged at equal intervals on a circumference of the first circle.
  3.  前記第2歪ゲージは、前記第2円の円周上に等間隔に配置される
    請求項1又は請求項2に記載の荷重センサ。
    The load sensor according to claim 1 or 2, wherein the second strain gauges are arranged at equal intervals on a circumference of the second circle.
  4.  前記第2歪ゲージは、前記第1歪ゲージと前記第1円の中心との間に配置される
    請求項1から請求項3までのいずれか1項に記載の荷重センサ。
    The load sensor according to any one of claims 1 to 3, wherein the second strain gauge is disposed between the first strain gauge and a center of the first circle.
  5.  前記第1抵抗部は、2つ又は4つの前記第1歪ゲージを備える
    請求項1から請求項4までのいずれか1項に記載の荷重センサ。
    The load sensor according to any one of claims 1 to 4, wherein the first resistance portion includes two or four of the first strain gauges.
  6.  前記第2抵抗部は、2つ又は4つの前記第2歪ゲージを備える
    請求項1から請求項5までのいずれか1項に記載の荷重センサ。
    The load sensor according to any one of claims 1 to 5, wherein the second resistance portion includes two or four of the second strain gauges.
  7.  前記絶縁層上に設けられ、直列に接続された第3抵抗部及び第4抵抗部と、
     前記第3抵抗部と前記第4抵抗部との間の電圧を出力する第2出力端子と、
    を備え、
     前記第3抵抗部及び前記第4抵抗部は、前記第1抵抗部及び前記第2抵抗部と並列に接続され、
     前記第3抵抗部は、直列に接続され、円又は楕円である第3円の円周上に配置された複数の第3歪ゲージを備え、
     前記第4抵抗部は、直列に接続され、円又は楕円である第4円の円周上に配置された複数の第4歪ゲージを備え、
     前記第3円及び前記第4円は、前記荷重受け部を中心とする同心円又は同心楕円である
    請求項1から請求項6までのいずれか1項に記載の荷重センサ。
    A third resistor portion and a fourth resistor portion provided on the insulating layer and connected in series;
    A second output terminal that outputs a voltage between the third resistor unit and the fourth resistor unit;
    With
    The third resistor unit and the fourth resistor unit are connected in parallel to the first resistor unit and the second resistor unit,
    The third resistance portion includes a plurality of third strain gauges connected in series and arranged on the circumference of a third circle that is a circle or an ellipse,
    The fourth resistance unit includes a plurality of fourth strain gauges connected in series and arranged on the circumference of a fourth circle that is a circle or an ellipse,
    The load sensor according to any one of claims 1 to 6, wherein the third circle and the fourth circle are concentric circles or concentric ellipses centered on the load receiving portion.
  8.  前記第3歪ゲージは、前記第3円の円周上に等間隔に配置される
    請求項7に記載の荷重センサ。
    The load sensor according to claim 7, wherein the third strain gauges are arranged at equal intervals on a circumference of the third circle.
  9.  前記第4歪ゲージは、前記第4円の円周上に等間隔に配置される
    請求項7又は請求項8に記載の荷重センサ。
    The load sensor according to claim 7 or 8, wherein the fourth strain gauges are arranged at equal intervals on a circumference of the fourth circle.
  10.  前記第4歪ゲージは、前記第3歪ゲージと前記第3円の中心との間に配置される
    請求項7から請求項9までのいずれか1項に記載の荷重センサ。
    The load sensor according to any one of claims 7 to 9, wherein the fourth strain gauge is disposed between the third strain gauge and a center of the third circle.
  11.  前記第3抵抗部は、2つ又は4つの前記第3歪ゲージを備える
    請求項7から請求項10までのいずれか1項に記載の荷重センサ。
    The load sensor according to any one of claims 7 to 10, wherein the third resistance unit includes two or four third strain gauges.
  12.  前記第4抵抗部は、2つ又は4つの前記第4歪ゲージを備える
    請求項7から請求項11までのいずれか1項に記載の荷重センサ。
    The load sensor according to any one of claims 7 to 11, wherein the fourth resistance portion includes two or four of the fourth strain gauges.
  13.  前記第1円及び前記第3円は同一であり、
     前記第2円及び前記第4円は同一である
    請求項7から請求項12までのいずれか1項に記載の荷重センサ。
    The first circle and the third circle are the same,
    The load sensor according to any one of claims 7 to 12, wherein the second circle and the fourth circle are the same.
  14.  前記第1歪ゲージ及び前記第3歪ゲージは、交互に等間隔に配置され、
     前記第2歪ゲージ及び前記第4歪ゲージは、交互に等間隔に配置される
    請求項7から請求項13までのいずれか1項に記載の荷重センサ。
    The first strain gauge and the third strain gauge are alternately arranged at equal intervals,
    The load sensor according to any one of claims 7 to 13, wherein the second strain gauge and the fourth strain gauge are alternately arranged at equal intervals.
  15.  前記起歪体は、外周部を固定される
    請求項1から請求項14までのいずれか1項に記載の荷重センサ。
    The load sensor according to any one of claims 1 to 14, wherein an outer peripheral portion of the strain generating body is fixed.
  16.  天板と、
     前記天板を支持する第1支持部と、
     前記第1支持部を支持する第2支持部と、
     前記第1支持部と前記第2支持部との間に配置され、前記第1支持部又は前記第2支持部から荷重を加えられる請求項1から請求項15までのいずれか1項に記載の荷重センサと、
    を備える荷重検出装置。
    With the top plate,
    A first support for supporting the top plate;
    A second support part for supporting the first support part;
    It is arrange | positioned between the said 1st support part and the said 2nd support part, The load is applied from the said 1st support part or the said 2nd support part, The any one of Claim 1-15 A load sensor;
    A load detection device comprising:
PCT/JP2018/045258 2018-02-15 2018-12-10 Load sensor and load detection device WO2019159512A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500297A JPWO2019159512A1 (en) 2018-02-15 2018-12-10 Load sensor and load detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024953 2018-02-15
JP2018-024953 2018-02-15

Publications (1)

Publication Number Publication Date
WO2019159512A1 true WO2019159512A1 (en) 2019-08-22

Family

ID=67619177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045258 WO2019159512A1 (en) 2018-02-15 2018-12-10 Load sensor and load detection device

Country Status (2)

Country Link
JP (1) JPWO2019159512A1 (en)
WO (1) WO2019159512A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302333A (en) * 1987-06-02 1988-12-09 Komatsu Ltd Pin type load cell
JP2009020096A (en) * 2007-06-14 2009-01-29 Panasonic Corp Strain detector
US20110067502A1 (en) * 2008-05-29 2011-03-24 Weigh Point Incorporated Load-Cell System
US8256306B1 (en) * 2009-09-02 2012-09-04 The Boeing Company High-capacity low-profile load cell for measuring compression force
WO2013108502A1 (en) * 2012-01-20 2013-07-25 昭和電工株式会社 Bed with load detection function, and load detector for bed
JP2013217815A (en) * 2012-04-11 2013-10-24 Yamato Scale Co Ltd Load cell
JP2013250161A (en) * 2012-05-31 2013-12-12 Aisin Seiki Co Ltd Load detection device
JP2017211297A (en) * 2016-05-26 2017-11-30 アイシン精機株式会社 Load detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302333A (en) * 1987-06-02 1988-12-09 Komatsu Ltd Pin type load cell
JP2009020096A (en) * 2007-06-14 2009-01-29 Panasonic Corp Strain detector
US20110067502A1 (en) * 2008-05-29 2011-03-24 Weigh Point Incorporated Load-Cell System
US8256306B1 (en) * 2009-09-02 2012-09-04 The Boeing Company High-capacity low-profile load cell for measuring compression force
WO2013108502A1 (en) * 2012-01-20 2013-07-25 昭和電工株式会社 Bed with load detection function, and load detector for bed
JP2013217815A (en) * 2012-04-11 2013-10-24 Yamato Scale Co Ltd Load cell
JP2013250161A (en) * 2012-05-31 2013-12-12 Aisin Seiki Co Ltd Load detection device
JP2017211297A (en) * 2016-05-26 2017-11-30 アイシン精機株式会社 Load detector

Also Published As

Publication number Publication date
JPWO2019159512A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
US7555960B2 (en) Occupant load sensor for a vehicle seat with flexible printed circuitry
JP6823759B2 (en) Torque sensor
US6407347B1 (en) Vehicle seat weight sensor
US8387437B2 (en) Weight applying unit for calibration and weight applying method for calibration
US5708236A (en) Weighing scale with cantilever beam for transmitting force to a strain gauge
JP2011209104A (en) Chip for force sensor and chip for acceleration sensor
JP2009128107A (en) Vehicular seat load detector
JP2005131036A (en) Sensor sheet
WO2019159512A1 (en) Load sensor and load detection device
JP3814403B2 (en) Bed detection device
JP5003430B2 (en) Vehicle seat load detection device
JP2006252540A (en) Load detector for bed, in-bed position detector and in-bed position detecting method
JP2007256074A (en) Bed device for load measurement
JP6373778B2 (en) Load sensor and load detection device
JP2007175148A (en) On-bed situation detection mat
JP2576327Y2 (en) Flat type weight sensor
JP6194754B2 (en) Bed load detector
JPS6238323A (en) Vibration detection probe
JP2010209603A (en) Pressurizing device for horizontal pressure calibration
JP2019045250A (en) Body support device
JP6278338B2 (en) Bed load detector
JP2002286538A (en) Load cell
CN208692710U (en) A kind of height-adjustable infanette
JP6887937B2 (en) Bed device
KR101861552B1 (en) Active type slope compensating load cell device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500297

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906593

Country of ref document: EP

Kind code of ref document: A1