WO2019159395A1 - Thermal excitation type sound wave generation device - Google Patents

Thermal excitation type sound wave generation device Download PDF

Info

Publication number
WO2019159395A1
WO2019159395A1 PCT/JP2018/030482 JP2018030482W WO2019159395A1 WO 2019159395 A1 WO2019159395 A1 WO 2019159395A1 JP 2018030482 W JP2018030482 W JP 2018030482W WO 2019159395 A1 WO2019159395 A1 WO 2019159395A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound wave
source
current
wave generator
heating element
Prior art date
Application number
PCT/JP2018/030482
Other languages
French (fr)
Japanese (ja)
Inventor
晋一 佐々木
隆昭 浅田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020500253A priority Critical patent/JPWO2019159395A1/en
Publication of WO2019159395A1 publication Critical patent/WO2019159395A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy

Definitions

  • the present invention relates to a thermal excitation type sound wave generator that generates sound waves by heating air.
  • a sound source has been proposed that generates air pressure waves (ie, sound waves) by heating air using a heating element that generates heat when an electric current is applied.
  • Patent Document 1 discloses an ultrasonic generator that drives a sound wave source with a DC power source.
  • the ultrasonic generator includes a pulse generation circuit, a DC power supply, a MOSFET, and a sound wave source.
  • the sound wave source is connected between the drain of the MOSFET and the DC power source.
  • the source of the MOSFET is grounded.
  • the pulse generation circuit applies a pulse voltage to the gate of the MOSFET.
  • a driving current is supplied from a DC power source to a sound wave source in accordance with a gate signal of the MOSFET.
  • An object of the present invention is to provide a thermal excitation type sound wave generator capable of improving safety when sound waves are generated by heat generation according to current.
  • a thermal excitation type sound wave generator includes a sound wave source, a switching element, a capacitor, and a resistance element.
  • the sound wave source generates heat by generating heat by passing an electric current.
  • the switching element performs on / off control of a current flowing through the sound wave source.
  • the capacitor is charged when the switching element is turned off, and supplies the current from the charging to the sound wave source when the switching element is turned on.
  • the resistance element limits the current flowing to the sound wave source when the switching element is turned on.
  • thermal excitation type sound wave generator According to the thermal excitation type sound wave generator according to the present invention, it is possible to improve safety when generating sound waves by heat generation according to current.
  • FIG. Sectional drawing which shows the structure of the sound wave source in a sound wave generator
  • the circuit diagram which shows the structural example of the drive part in a sound wave generator
  • Waveform diagram showing the simulation result of the sound wave generator with resistance value R2 set to 50 ⁇
  • Waveform diagram showing simulation results of a sound wave generator with a resistance value R2 set to 500 ⁇
  • Waveform diagram showing simulation results of a sound wave generator with a resistance value R2 set to 5 k ⁇
  • Graph illustrating the relationship between the current I1 of the heating element and the resistance value R2 of the limiting resistor in the sound wave generator
  • Graph illustrating the relationship between the current I2 of the limiting resistance and the resistance value R2 in the sound wave generator
  • FIG. 1 is a diagram showing a sound wave generator 1 according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the configuration of the sound wave source 10 of the sound wave generator 1 corresponding to the AA ′ cross section of FIG.
  • the sound wave generator 1 includes a sound wave source 10 and a drive unit 20 as shown in FIG.
  • the sound wave generator 1 is a thermal excitation type sound wave generator that generates sound waves by heat generated in the sound wave source 10.
  • the sound wave generator 1 can generate a pulsed sound wave by changing the pressure of the surrounding air by instantaneous heat generation of the sound wave source 10.
  • the sound wave generator 1 of this embodiment can be applied to uses such as a distance sensor or a proximity sensor of a TOF (time of flight measurement) system, for example.
  • the sound wave source 10 is an element that generates sound waves by heating air. As shown in FIG. 2, the sound wave source 10 includes a heating element 11, a substrate 12, a pair of electrodes 13, and a heat insulating layer 14. In the acoustic wave source 10, the heating element 11 and the heat insulating layer 14 are laminated on the substrate 12.
  • the main surface side of the substrate 12 on which the heating elements 11 and the like are stacked may be referred to as the upper side, and the other main surface side may be referred to as the lower side.
  • the heating element 11 is a resistor that generates heat when an electric current flows.
  • the heating element 11 is provided so as to be in contact with the air on the upper side of the substrate 12, for example.
  • the air around the heating element 11 expands or contracts due to the temperature change of the heating element 11. Thereby, an air pressure wave, that is, a sound wave is generated.
  • the heating element 11 is made of silver palladium, silver, gold, platinum, carbon nanotube, or the like.
  • the heating element 11 has, for example, a specific heat of 500 [J / kg ° C.] or less and a thermal conductivity of 50 [W / mK] or more.
  • the heating element 11 may be pattern-printed so as to have various shapes on the main surface of the substrate 12, for example.
  • the substrate 12 is made of an insulating material such as silicon or aluminum oxide. In the substrate 12, the heat conducted from the heating element 11 can be radiated without being completely blocked by the heat insulating layer 14.
  • the substrate 12 may be a printed circuit board.
  • the pair of electrodes 13 are electrodes for flowing a current from the outside of the sound source 10 to the heating element 11.
  • the pair of electrodes 13 are provided on both sides of the heating element 11.
  • the drive unit 20 is connected to the sound wave source 10 via the electrode 13.
  • Each electrode 13 is made of a metal material such as Cu, Au, or Al.
  • the resistance value of the heating element 11 is R1.
  • the resistance value R1 is, for example, 1 ⁇ .
  • the drive unit 20 includes a DC power source 24 that outputs a DC voltage E, and a limiting resistor 22 connected between the high-voltage side end of the DC power source 24 and the electrode 13b.
  • the drive unit 20 further includes a MOSFET 23 connected between the electrode 13 a and the low-voltage side end of the DC power supply 24, a pulse drive circuit 25 that drives the MOSFET 23, and an electrode 13 b and the low-voltage side end of the DC power supply 24.
  • a capacitor 21 connected to.
  • the capacitor 21 is connected in parallel to a series circuit of the heating element 11 and the MOSFET 23.
  • Capacitor 21 has a capacitance value C1.
  • the capacitance value C1 of the capacitor 21 is, for example, 10 uF or more and 100 uF or less.
  • the capacitor 21 is, for example, an electrolytic capacitor or a ceramic capacitor.
  • the pulse drive circuit 25 generates a pulse signal Sp indicating the on voltage Von or the off voltage Voff based on, for example, a preset cycle and duty ratio (see FIG. 6).
  • the pulse drive circuit 25 performs on / off control of the MOSFET 23 using the pulse signal Sp.
  • the on voltage Von of the pulse signal Sp is larger than the threshold voltage of the MOSFET 23.
  • the off voltage Voff is smaller than the threshold voltage.
  • the pulse drive circuit 25 is connected to the gate of the MOSFET 23.
  • the pulse drive circuit 25 includes an oscillator and the like.
  • the pulse drive circuit 25 outputs the pulse signal Sp to the gate of the MOSFET 23 to drive the MOSFET 23 in a pulse manner.
  • the MOSFET 23 is turned on (conductive) when the pulse signal Sp indicates the on voltage Von, and is turned off (non-conductive) when the pulse signal Sp indicates the off voltage Voff.
  • FIG. 4 shows an equivalent circuit of the sound wave generator 1 when the MOSFET 23 is in the OFF state.
  • the DC power supply 24 supplies a DC voltage E to the limiting resistor 22.
  • the charging voltage V (t) of the capacitor 21 at time t increases.
  • FIG. 5 shows an equivalent circuit of the sound wave generator 1 when the MOSFET 23 is on.
  • the current I2 of FIG. 3 is ignored based on the setting of the resistance value R2 of the limiting resistor 22.
  • the charging voltage V (t) of the capacitor 21 is applied to the heating element 11 and a current I1 flows through the heating element 11.
  • the heating element 11 generates heat according to the magnitude of the current I1.
  • the charging voltage V (t) is reduced by supplying current to the heating element 11.
  • the sound wave source 10 can be driven by causing the current I1 that generates heat from the heating element 11 to flow by charging / discharging of the capacitor 21 that is discharged when the MOSFET 23 is turned on.
  • the limiting resistor 22 is set to a resistance value R2 that is so large that the current I2 from the DC power supply 24 can be ignored with respect to the current I1 that causes the heating element 11 to generate heat.
  • FIG. 6 is a timing chart for explaining a sound wave generation method in the sound wave generator 1.
  • FIG. 6A shows the input timing of the pulse signal Sp in the MOSFET 23.
  • FIG. 6B shows the output timing of sound waves from the sound source 10.
  • the pulse signal Sp input to the gate of the MOSFET 23 indicates the off voltage Voff before time t1, as shown in FIG. 6 (a). At this time, the capacitor 21 is in a state near full charge (see FIG. 4).
  • the pulse signal Sp rises to the on voltage Von (FIG. 6 (a)), and the MOSFET 23 is turned on.
  • the capacitor 21 starts discharging, and causes the current I1 to flow through the heating element 11 (see FIG. 5).
  • the temperature of the heating element 11 rises, and the heating element 11 heats the surrounding air.
  • the air in the vicinity of the sound wave source 10 is thermally expanded, and the pressure of the air (that is, the sound pressure) increases from the steady value P0 as shown in FIG. 6B.
  • pulse width Ton the discharge of the capacitor 21 and the supply of the current I1 to the heating element 11 are continued.
  • Ton the temperature change of the air near the sound source 10 is stabilized, and the sound pressure returns to the steady value P0 (FIG. 6B).
  • FIG. 7B shows the current I2 of the limiting resistor 22.
  • FIG. 7C shows the current I1 of the heating element 11.
  • FIG. 10 is a graph illustrating the relationship between the current I1 of the heating element 11 and the resistance value R2 of the limiting resistor 22 in the sound wave generator 1.
  • the peak value of the current I1 flowing through the heating element 11 is not reduced until the resistance value R2 of the limiting resistor 22 reaches 1 k ⁇ . From this, it was confirmed that the limiting resistor 22 can be applied without affecting the output of the sound wave from the sound wave source 10.
  • the condition can be achieved by setting the resistance value R2 to 100 ⁇ or more. Therefore, the resistance value R2 of the limiting resistor 22 may be 1000 times or more the internal resistance of the DC power supply 24.
  • the sound wave generator 1 includes the sound wave source 10, the MOSFET 23, the capacitor 21, and the limiting resistor 22.
  • the sound wave source 10 generates heat by generating heat due to the current supplied from the DC power supply 24.
  • the limiting resistor 22 is inserted between the DC power supply 24 and the sound wave source 10 and limits the current flowing from the DC power supply 24 to the sound wave source 10.
  • the MOSFET 23 is connected in series with the sound wave source 10 and is turned on / off to control inflow / cutoff of a current flowing through the sound wave source 10.
  • the capacitor 21 is connected in parallel to the series circuit of the sound wave source 10 and the MOSFET 23.
  • the resistance value R2 of the limiting resistor 22 is larger than the resistance value R1 of the sound wave source 10. Thereby, the safety
  • the resistance value R2 of the limiting resistor 22 may be, for example, 50 times or more than the resistance value R1 of the sound source 10, or 100 times or more.
  • the sound wave source 10 is connected to the MOSFET 23 and the capacitor 21.
  • One end of the limiting resistor 22 is connected between the sound wave source 10 and the capacitor 21.
  • a DC voltage E is supplied from the DC power source 24 to the other end of the limiting resistor 22.
  • the sound wave generator 1 further includes a pulse driving circuit 25 that drives the MOSFET 23 in pulses. Thereby, for example, a single-pulse sound wave can be formed. Various sound waves can be generated by changing the pulse width and the pulse period.
  • the configuration example of FIG. 3 has been described for the drive unit 20 of the sound wave generator 1.
  • the drive unit 20 of the sound wave generator 1 is not limited to the configuration example of FIG. 3 and may have various circuit configurations.
  • the switching element of the drive unit 20 is not limited to the n-type MOSFET 23 but may be a p-type MOSFET. In this case, the high-pressure side and the low-pressure side of the connection relationship in the drive unit 20 are appropriately reversed.
  • the pulse width of the pulse signal Sp and the like may be set from a control circuit outside the sound wave generator 1.
  • a ceramic capacitor is used as an example of the capacitor 21 in the driving unit 20 of the sound wave generator 1.
  • a ceramic capacitor in which noise reduction measures are taken may be used.
  • circuit constants of the sound wave generator 1 are exemplified, but values of other circuit constants may be used as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

This thermal excitation type sound wave generation device (1) is provided with a sound wave source (10), a switching element (23), a capacitor (21), and a limiting resistor (22). The sound wave source generates a sound wave by being heated by power supplied from a DC power supply. The limiting resistor is inserted between the DC power supply and the sound wave source and limits the power that is input to the sound wave source from the DC power supply. The switching element is connected in series with the sound wave source and is turned on/off to control the input/shutoff of the current flowing through the sound wave source. The capacitor is connected in parallel with the series circuit of the sound wave source and the switching element.

Description

熱励起型の音波発生装置Thermally excited sound generator
 本発明は、空気を加熱して音波を発生させる熱励起型の音波発生装置に関する。 The present invention relates to a thermal excitation type sound wave generator that generates sound waves by heating air.
 電流を流すと発熱する発熱体を用いて空気を加熱することによって、空気の圧力波(即ち音波)を発生させる音波源が提案されている。 A sound source has been proposed that generates air pressure waves (ie, sound waves) by heating air using a heating element that generates heat when an electric current is applied.
 特許文献1は、直流電源で音波源を駆動する超音波発生装置を開示している。超音波発生装置は、パルス発生回路と、直流電源と、MOSFETと、音波源とを備える。超音波発生装置において、音波源は、MOSFETのドレインと直流電源との間に接続される。MOSFETのソースは、接地される。パルス発生回路は、パルス電圧をMOSFETのゲートに印加する。特許文献1の超音波発生装置は、MOSFETのゲート信号に応じて、直流電源から音波源に駆動電流を流している。 Patent Document 1 discloses an ultrasonic generator that drives a sound wave source with a DC power source. The ultrasonic generator includes a pulse generation circuit, a DC power supply, a MOSFET, and a sound wave source. In the ultrasonic generator, the sound wave source is connected between the drain of the MOSFET and the DC power source. The source of the MOSFET is grounded. The pulse generation circuit applies a pulse voltage to the gate of the MOSFET. In the ultrasonic generator of Patent Document 1, a driving current is supplied from a DC power source to a sound wave source in accordance with a gate signal of the MOSFET.
国際公開第2012/020600号International Publication No. 2012/020600
 本発明の目的は、電流に応じた発熱によって音波を発生する際の安全性を向上することができる熱励起型の音波発生装置を提供することである。 An object of the present invention is to provide a thermal excitation type sound wave generator capable of improving safety when sound waves are generated by heat generation according to current.
 本発明の一態様に係る熱励起型の音波発生装置は、音波源と、スイッチング素子と、キャパシタと、制限抵抗とを備える。音波源は、直流電源から供給される電流により発熱して音波を発生する。制限抵抗は、直流電源と音波源の間に挿入され、直流電源から音波源に流入する電流を制限する。スイッチング素子は、音波源に直列に接続され、オン/オフして音波源を流れる電流の流入/遮断を制御する。キャパシタは、音波源とスイッチング素子の直列回路に並列に接続される。 A thermal excitation type sound wave generator according to an aspect of the present invention includes a sound wave source, a switching element, a capacitor, and a limiting resistor. The sound wave source generates heat waves by generating heat due to the current supplied from the DC power supply. The limiting resistor is inserted between the DC power source and the sound wave source, and limits the current flowing from the DC power source to the sound wave source. The switching element is connected in series to the sound wave source, and controls on / off of current flowing through the sound wave source. The capacitor is connected in parallel to the series circuit of the sound wave source and the switching element.
 本発明の別の態様に係る熱励起型の音波発生装置は、音波源と、スイッチング素子と、キャパシタと、抵抗素子とを備える。音波源は、電流を流すことによって発熱して、音波を発生する。スイッチング素子は、音波源に流す電流をオンオフ制御する。キャパシタは、スイッチング素子がオフしたときに充電されて、スイッチング素子がオンしたときに充電による電流を音波源に供給する。抵抗素子は、スイッチング素子がオンしたときに音波源に流れる電流を制限する。 A thermal excitation type sound wave generator according to another aspect of the present invention includes a sound wave source, a switching element, a capacitor, and a resistance element. The sound wave source generates heat by generating heat by passing an electric current. The switching element performs on / off control of a current flowing through the sound wave source. The capacitor is charged when the switching element is turned off, and supplies the current from the charging to the sound wave source when the switching element is turned on. The resistance element limits the current flowing to the sound wave source when the switching element is turned on.
 本発明に係る熱励起型の音波発生装置によれば、電流に応じた発熱によって音波を発生する際の安全性を向上することができる。 According to the thermal excitation type sound wave generator according to the present invention, it is possible to improve safety when generating sound waves by heat generation according to current.
実施形態1に係る熱励起型の音波発生装置を示す図The figure which shows the thermal excitation type sound wave generator which concerns on Embodiment 1. FIG. 音波発生装置における音波源の構成を示す断面図Sectional drawing which shows the structure of the sound wave source in a sound wave generator 音波発生装置における駆動部の構成例を示す回路図The circuit diagram which shows the structural example of the drive part in a sound wave generator 音波発生装置の充電時における等価回路を示す図The figure which shows the equivalent circuit at the time of charge of a sound wave generator 音波発生装置の放電時における等価回路を示す図The figure which shows the equivalent circuit at the time of discharge of the sound wave generator 音波発生装置における音波の発生方法を説明するためのタイミングチャートTiming chart for explaining a sound wave generation method in a sound wave generator 抵抗値R2を50Ωに設定した音波発生装置のシミュレーション結果を示す波形図Waveform diagram showing the simulation result of the sound wave generator with resistance value R2 set to 50Ω 抵抗値R2を500Ωに設定した音波発生装置のシミュレーション結果を示す波形図Waveform diagram showing simulation results of a sound wave generator with a resistance value R2 set to 500Ω 抵抗値R2を5kΩに設定した音波発生装置のシミュレーション結果を示す波形図Waveform diagram showing simulation results of a sound wave generator with a resistance value R2 set to 5 kΩ 音波発生装置における発熱体の電流I1と制限抵抗の抵抗値R2との関係を例示するグラフGraph illustrating the relationship between the current I1 of the heating element and the resistance value R2 of the limiting resistor in the sound wave generator 音波発生装置における制限抵抗の電流I2と抵抗値R2との関係を例示するグラフGraph illustrating the relationship between the current I2 of the limiting resistance and the resistance value R2 in the sound wave generator
 以下、添付の図面を参照して本発明に係る熱励起型の音波発生装置の実施の形態について説明する。 Hereinafter, embodiments of a thermal excitation type sound wave generator according to the present invention will be described with reference to the accompanying drawings.
 各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。実施形態2以降では実施形態1と共通の事項についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態毎には逐次言及しない。 Each embodiment is an exemplification, and it is needless to say that a partial replacement or combination of configurations shown in different embodiments is possible. In the second and subsequent embodiments, description of matters common to the first embodiment is omitted, and only different points will be described. In particular, the same operational effects by the same configuration will not be sequentially described for each embodiment.
 (実施形態1)
1.構成
 実施形態1に係る熱励起型の音波発生装置の構成について、図1,2を参照して説明する。図1は、本実施形態に係る音波発生装置1を示す図である。図2は、図1のA-A’断面に対応する、音波発生装置1の音波源10の構成を示す断面図である。
(Embodiment 1)
1. Configuration The configuration of the thermal excitation type sound wave generator according to Embodiment 1 will be described with reference to FIGS. FIG. 1 is a diagram showing a sound wave generator 1 according to the present embodiment. FIG. 2 is a cross-sectional view showing the configuration of the sound wave source 10 of the sound wave generator 1 corresponding to the AA ′ cross section of FIG.
 本実施形態に係る音波発生装置1は、図1に示すように、音波源10と駆動部20とを備える。音波発生装置1は、音波源10における発熱によって音波を発生する熱励起型の音波発生装置である。例えば、音波発生装置1は、音波源10の瞬間的な発熱によって周囲の空気の圧力を変化させることにより、パルス状の音波を発生することができる。本実施形態の音波発生装置1は、例えばTOF(飛行時間測定)方式の距離センサ或いは近接センサ等の用途に適用可能である。 The sound wave generator 1 according to this embodiment includes a sound wave source 10 and a drive unit 20 as shown in FIG. The sound wave generator 1 is a thermal excitation type sound wave generator that generates sound waves by heat generated in the sound wave source 10. For example, the sound wave generator 1 can generate a pulsed sound wave by changing the pressure of the surrounding air by instantaneous heat generation of the sound wave source 10. The sound wave generator 1 of this embodiment can be applied to uses such as a distance sensor or a proximity sensor of a TOF (time of flight measurement) system, for example.
 音波発生装置1において、駆動部20は、例えば電流駆動により音波源10を駆動する回路である。駆動部20の回路構成については後述する。 In the sound wave generator 1, the drive unit 20 is a circuit that drives the sound wave source 10 by current drive, for example. The circuit configuration of the drive unit 20 will be described later.
 音波源10は、空気を加熱して音波を発生させる素子である。音波源10は、図2に示すように、発熱体11と、基板12と、一対の電極13と、断熱層14とを備える。音波源10において、発熱体11と断熱層14とは基板12上に積層される。以下、基板12における発熱体11等が積層された主面の側を上側といい、他方の主面側を下側という場合がある。 The sound wave source 10 is an element that generates sound waves by heating air. As shown in FIG. 2, the sound wave source 10 includes a heating element 11, a substrate 12, a pair of electrodes 13, and a heat insulating layer 14. In the acoustic wave source 10, the heating element 11 and the heat insulating layer 14 are laminated on the substrate 12. Hereinafter, the main surface side of the substrate 12 on which the heating elements 11 and the like are stacked may be referred to as the upper side, and the other main surface side may be referred to as the lower side.
 発熱体11は、電流を流すことによって発熱する抵抗体である。発熱体11は、例えば基板12の上側の空気に接触するように設けられる。発熱体11の周囲の空気は、発熱体11の温度変化によって膨張又は収縮する。これにより、空気の圧力波即ち音波が発生する。 The heating element 11 is a resistor that generates heat when an electric current flows. The heating element 11 is provided so as to be in contact with the air on the upper side of the substrate 12, for example. The air around the heating element 11 expands or contracts due to the temperature change of the heating element 11. Thereby, an air pressure wave, that is, a sound wave is generated.
 発熱体11は、銀パラジウム、銀、金、プラチナ、カーボンナノチューブなどで構成される。発熱体11は、例えば500[J/kg℃]以下の比熱、及び50[W/mK]以上の熱伝導率を有する。発熱体11は、例えば基板12の主面上で種々の形状を有するようにパターン印刷されてもよい。 The heating element 11 is made of silver palladium, silver, gold, platinum, carbon nanotube, or the like. The heating element 11 has, for example, a specific heat of 500 [J / kg ° C.] or less and a thermal conductivity of 50 [W / mK] or more. The heating element 11 may be pattern-printed so as to have various shapes on the main surface of the substrate 12, for example.
 断熱層14は、発熱体11と基板12との間に設けられる。断熱層14は、例えば、基板12の熱伝導率よりも小さい熱伝導率を有する。断熱層14は、発熱体11から下側への熱伝導を抑制する。断熱層14は、ガラスグレース、ポーラスシリコン、二酸化ケイ素などで構成される。断熱層14は、例えばガラス成分及び金属成分を含む厚膜導体として、発熱体11と一体的に構成されてもよい。 The heat insulating layer 14 is provided between the heating element 11 and the substrate 12. The heat insulating layer 14 has, for example, a thermal conductivity smaller than that of the substrate 12. The heat insulating layer 14 suppresses heat conduction from the heating element 11 to the lower side. The heat insulating layer 14 is made of glass grace, porous silicon, silicon dioxide, or the like. The heat insulating layer 14 may be configured integrally with the heating element 11 as, for example, a thick film conductor including a glass component and a metal component.
 基板12は、シリコン、酸化アルミニウムなどの絶縁性の材料で構成される。基板12においては、断熱層14で遮断しきれずに発熱体11から伝導した熱を放熱することができる。基板12は、プリント基板であってもよい。 The substrate 12 is made of an insulating material such as silicon or aluminum oxide. In the substrate 12, the heat conducted from the heating element 11 can be radiated without being completely blocked by the heat insulating layer 14. The substrate 12 may be a printed circuit board.
 一対の電極13は、音波源10の外部から発熱体11に電流を流すための電極である。一対の電極13は、発熱体11の両側に設けられる。駆動部20は、電極13を介して音波源10に接続される。各電極13はCu、Au、Alなどの金属材料で構成される。 The pair of electrodes 13 are electrodes for flowing a current from the outside of the sound source 10 to the heating element 11. The pair of electrodes 13 are provided on both sides of the heating element 11. The drive unit 20 is connected to the sound wave source 10 via the electrode 13. Each electrode 13 is made of a metal material such as Cu, Au, or Al.
 以上のような音波源10においては、発熱体11を発熱させるための電流が、故障等により過度に発熱体11に、供給され続けると、過熱状態になる場合がある。このような問題に対して、本実施形態の音波発生装置1は、駆動部20により、上記のような故障時においても発熱体11の過熱状態を避けることができる構成を有する。以下、本実施形態の駆動部20の詳細を説明する。 In the acoustic wave source 10 as described above, if the current for heating the heating element 11 continues to be supplied to the heating element 11 due to a failure or the like, an overheating state may occur. In response to such a problem, the sound wave generator 1 according to the present embodiment has a configuration in which the drive unit 20 can avoid an overheated state of the heating element 11 even at the time of the failure as described above. Hereinafter, details of the drive unit 20 of the present embodiment will be described.
1-1.音波発生装置の駆動部について
 本実施形態における音波発生装置1の駆動部20の回路構成について、図3を用いて説明する。図3は、音波発生装置1における駆動部20の構成例を示す回路図である。
1-1. About the drive part of a sound wave generator The circuit structure of the drive part 20 of the sound wave generator 1 in this embodiment is demonstrated using FIG. FIG. 3 is a circuit diagram illustrating a configuration example of the drive unit 20 in the sound wave generator 1.
 なお、以下では、発熱体11の抵抗値をR1としている。抵抗値R1は、例えば1Ωである。 In the following, the resistance value of the heating element 11 is R1. The resistance value R1 is, for example, 1Ω.
 図3に示すように、駆動部20は、直流電圧Eを出力する直流電源24と、直流電源24の高圧側端と電極13bとの間に接続された制限抵抗22とを備える。駆動部20は、さらに、電極13aと直流電源24の低圧側端との間に接続されたMOSFET23と、MOSFET23を駆動するパルス駆動回路25と、電極13bと直流電源24の低圧側端との間に接続されたキャパシタ21とを備える。 As shown in FIG. 3, the drive unit 20 includes a DC power source 24 that outputs a DC voltage E, and a limiting resistor 22 connected between the high-voltage side end of the DC power source 24 and the electrode 13b. The drive unit 20 further includes a MOSFET 23 connected between the electrode 13 a and the low-voltage side end of the DC power supply 24, a pulse drive circuit 25 that drives the MOSFET 23, and an electrode 13 b and the low-voltage side end of the DC power supply 24. And a capacitor 21 connected to.
 MOSFET23は、発熱体11に流す電流I1をオンオフ制御するスイッチング素子の一例である。図3では、スイッチング素子としてn型のMOSFET23を用いる構成例を示している。MOSFET23のソースは、例えば接地される。MOSFET23のドレインは、発熱体11の電極13aに接続される。 The MOSFET 23 is an example of a switching element that performs on / off control of a current I1 that flows through the heating element 11. FIG. 3 shows a configuration example using an n-type MOSFET 23 as a switching element. The source of the MOSFET 23 is grounded, for example. The drain of the MOSFET 23 is connected to the electrode 13 a of the heating element 11.
 キャパシタ21は、発熱体11とMOSFET23との直列回路に並列に接続される。キャパシタ21は、容量値C1を有する。キャパシタ21の容量値C1は、例えば10uF以上100uF以下である。キャパシタ21は、例えば電解コンデンサ又はセラミックコンデンサである。 The capacitor 21 is connected in parallel to a series circuit of the heating element 11 and the MOSFET 23. Capacitor 21 has a capacitance value C1. The capacitance value C1 of the capacitor 21 is, for example, 10 uF or more and 100 uF or less. The capacitor 21 is, for example, an electrolytic capacitor or a ceramic capacitor.
 制限抵抗22は、直流電源24からの発熱体11に流れる電流を制限する抵抗素子の一例である。制限抵抗22は、抵抗値R2を有する。制限抵抗22の抵抗値R2は、例えば発熱体11の抵抗値R1よりも大きい。抵抗値R2は、例えば50Ω以上5kΩ以下である。 The limiting resistor 22 is an example of a resistance element that limits a current flowing from the DC power source 24 to the heating element 11. The limiting resistor 22 has a resistance value R2. The resistance value R2 of the limiting resistor 22 is larger than the resistance value R1 of the heating element 11, for example. The resistance value R2 is, for example, not less than 50Ω and not more than 5 kΩ.
 直流電源24は、制限抵抗22の他端に直流電圧Eを供給する。直流電源24は、各種の電源回路及び/又はバッテリ等で構成される。各種の電源回路は、例えばAC/DCコンバータ、DC/DCコンバータ、レギュレータ、バッテリを含む。直流電圧Eは、例えば5Vである。 The DC power supply 24 supplies a DC voltage E to the other end of the limiting resistor 22. The DC power supply 24 is composed of various power supply circuits and / or batteries. Various power supply circuits include, for example, an AC / DC converter, a DC / DC converter, a regulator, and a battery. The DC voltage E is, for example, 5V.
 パルス駆動回路25は、例えば予め設定された周期及びデューティ比等に基づいて、オン電圧Von又はオフ電圧Voffを示すパルス信号Spを生成する(図6参照)。パルス駆動回路25は、パルス信号Spを用いて、MOSFET23をオンオフ制御する。パルス信号Spのオン電圧Vonは、MOSFET23のしきい値電圧よりも大きい。オフ電圧Voffは、当該しきい値電圧よりも小さい。パルス駆動回路25は、MOSFET23のゲートに接続される。パルス駆動回路25は、発振器などを含む。 The pulse drive circuit 25 generates a pulse signal Sp indicating the on voltage Von or the off voltage Voff based on, for example, a preset cycle and duty ratio (see FIG. 6). The pulse drive circuit 25 performs on / off control of the MOSFET 23 using the pulse signal Sp. The on voltage Von of the pulse signal Sp is larger than the threshold voltage of the MOSFET 23. The off voltage Voff is smaller than the threshold voltage. The pulse drive circuit 25 is connected to the gate of the MOSFET 23. The pulse drive circuit 25 includes an oscillator and the like.
2.動作
 本実施形態に係る音波発生装置1の動作について以下説明する。
2-1.駆動部の動作
 本実施形態に係る音波発生装置1の駆動部20が音波源10を駆動する動作について、図3~5を用いて説明する。以下では、図3の構成例の駆動部20による動作の一例を説明する。
2. Operation The operation of the sound wave generator 1 according to this embodiment will be described below.
2-1. Operation of Drive Unit The operation of the drive unit 20 of the sound wave generator 1 according to this embodiment driving the sound wave source 10 will be described with reference to FIGS. Below, an example of the operation | movement by the drive part 20 of the structural example of FIG. 3 is demonstrated.
 MOSFET23がオフしているとき、発熱体11には電流が流れないので、発熱体11は発熱しない。このとき、直流電源24からの直流電圧が、制限抵抗22を介してキャパシタ21に印加され、キャパシタ21は充電される。MOSFET23がオンしたときは、直流電源24、制限抵抗22、発熱体11、及びMOSFET23の閉回路が形成されるが、制限抵抗22の抵抗値R2が大きいので、直流電源24から発熱体11への電流は、ほとんど流れない。このとき、キャパシタ21が放電され、キャパシタ21から発熱体11への電流が流れて、発熱体11は発熱する。MOSFET23を連続してオンオフすることにより、発熱体11の周囲の空気が加熱される状態と、加熱されない状態とを連続して作り出して空気の膨張、収縮を発生させる。これにより、音波を発生させる。 When the MOSFET 23 is off, no current flows through the heating element 11, so the heating element 11 does not generate heat. At this time, a DC voltage from the DC power supply 24 is applied to the capacitor 21 via the limiting resistor 22 and the capacitor 21 is charged. When the MOSFET 23 is turned on, the DC power source 24, the limiting resistor 22, the heating element 11, and the closed circuit of the MOSFET 23 are formed. However, since the resistance value R2 of the limiting resistor 22 is large, the DC power source 24 is connected to the heating element 11. Almost no current flows. At this time, the capacitor 21 is discharged, a current flows from the capacitor 21 to the heating element 11, and the heating element 11 generates heat. By continuously turning on and off the MOSFET 23, a state in which the air around the heating element 11 is heated and a state in which the air is not heated are continuously generated to generate expansion and contraction of the air. Thereby, a sound wave is generated.
 本実施形態の駆動部20において、パルス駆動回路25は、MOSFET23のゲートにパルス信号Spを出力して、MOSFET23をパルス駆動する。MOSFET23は、パルス信号Spがオン電圧Vonを示すときにオン(導通)し、パルス信号Spがオフ電圧Voffを示すときにオフ(非導通)する。 In the drive unit 20 of the present embodiment, the pulse drive circuit 25 outputs the pulse signal Sp to the gate of the MOSFET 23 to drive the MOSFET 23 in a pulse manner. The MOSFET 23 is turned on (conductive) when the pulse signal Sp indicates the on voltage Von, and is turned off (non-conductive) when the pulse signal Sp indicates the off voltage Voff.
 音波発生装置1の駆動部20は、MOSFET23がオフしているときに、キャパシタ21を充電する。図4に、MOSFET23のオフ状態における音波発生装置1の等価回路を示す。直流電源24は、直流電圧Eを制限抵抗22に供給する。この際、制限抵抗22に電流I2が流れることにより、時刻tにおけるキャパシタ21の充電電圧V(t)は、増大する。キャパシタ21の充電電圧V(t)は、制限抵抗22の電流I2が流れなくなる満充電の状態において、V(t)=Eに到る。 The drive unit 20 of the sound wave generator 1 charges the capacitor 21 when the MOSFET 23 is off. FIG. 4 shows an equivalent circuit of the sound wave generator 1 when the MOSFET 23 is in the OFF state. The DC power supply 24 supplies a DC voltage E to the limiting resistor 22. At this time, as the current I2 flows through the limiting resistor 22, the charging voltage V (t) of the capacitor 21 at time t increases. The charging voltage V (t) of the capacitor 21 reaches V (t) = E in a fully charged state where the current I2 of the limiting resistor 22 stops flowing.
 また、駆動部20は、MOSFET23がオンしているときに、キャパシタ21を放電して、音波源10の発熱体11に電流I1を流す。図5に、MOSFET23のオン状態における音波発生装置1の等価回路を示す。なお、図5の等価回路では、制限抵抗22の抵抗値R2の設定に基づき、図3の電流I2を無視している。 Further, the drive unit 20 discharges the capacitor 21 and causes the current I1 to flow through the heating element 11 of the acoustic wave source 10 when the MOSFET 23 is on. FIG. 5 shows an equivalent circuit of the sound wave generator 1 when the MOSFET 23 is on. In the equivalent circuit of FIG. 5, the current I2 of FIG. 3 is ignored based on the setting of the resistance value R2 of the limiting resistor 22.
 図5に示すように、MOSFET23がオン状態の期間中に、キャパシタ21の充電電圧V(t)が発熱体11に印加され、発熱体11に電流I1が流れる。発熱体11は、電流I1の大きさに応じて発熱する。キャパシタ21においては、発熱体11に電流を供給することによって充電電圧V(t)が減少する。 As shown in FIG. 5, during the period in which the MOSFET 23 is on, the charging voltage V (t) of the capacitor 21 is applied to the heating element 11 and a current I1 flows through the heating element 11. The heating element 11 generates heat according to the magnitude of the current I1. In the capacitor 21, the charging voltage V (t) is reduced by supplying current to the heating element 11.
 以上の駆動部20の動作によると、MOSFET23をオンすると放電するキャパシタ21の充放電によって、発熱体11を発熱させる電流I1を流して、音波源10を駆動することができる。ここで、本実施形態では、直流電源24からの電流I2が発熱体11を発熱させる電流I1に対して無視できる程度に、大きい抵抗値R2が制限抵抗22に設定される。これにより、例えばMOSFET23が故障によって常にオン状態になった場合においても、発熱体11が過熱状態になることを回避して、音波発生装置1の安全性を向上できる。 According to the operation of the drive unit 20 described above, the sound wave source 10 can be driven by causing the current I1 that generates heat from the heating element 11 to flow by charging / discharging of the capacitor 21 that is discharged when the MOSFET 23 is turned on. Here, in the present embodiment, the limiting resistor 22 is set to a resistance value R2 that is so large that the current I2 from the DC power supply 24 can be ignored with respect to the current I1 that causes the heating element 11 to generate heat. Thereby, for example, even when the MOSFET 23 is always turned on due to a failure, the heating element 11 can be prevented from being overheated, and the safety of the sound wave generator 1 can be improved.
 なお、制限抵抗22の抵抗値R2は、必ずしも電流I2が無視できる程度に大きくなくてもよい。制限抵抗22の抵抗値R2は、例えば発熱体11の抵抗値R1を基準として設定可能であり、抵抗値R1よりも大きい程度であってもよい。 Note that the resistance value R2 of the limiting resistor 22 does not necessarily have to be so large that the current I2 can be ignored. For example, the resistance value R2 of the limiting resistor 22 can be set on the basis of the resistance value R1 of the heating element 11, and may be larger than the resistance value R1.
2-2.音波の発生方法について
 以上の駆動部20の動作によって音波発生装置1が音波を発生させる方法について、図6を用いて説明する。
2-2. About the generation method of a sound wave The method in which the sound wave generator 1 generates a sound wave by operation | movement of the above drive part 20 is demonstrated using FIG.
 図6は、音波発生装置1における音波の発生方法を説明するためのタイミングチャートである。図6(a)は、MOSFET23におけるパルス信号Spの入力タイミングを示す。図6(b)は、音波源10による音波の出力タイミングを示す。 FIG. 6 is a timing chart for explaining a sound wave generation method in the sound wave generator 1. FIG. 6A shows the input timing of the pulse signal Sp in the MOSFET 23. FIG. 6B shows the output timing of sound waves from the sound source 10.
 MOSFET23のゲートに入力されるパルス信号Spは、図6(a)に示すように、時刻t1前に、オフ電圧Voffを示している。このとき、キャパシタ21は、満充電近傍の状態にある(図4参照)。 The pulse signal Sp input to the gate of the MOSFET 23 indicates the off voltage Voff before time t1, as shown in FIG. 6 (a). At this time, the capacitor 21 is in a state near full charge (see FIG. 4).
 時刻t1において、パルス信号Spはオン電圧Vonに立上がり(図6(a))、MOSFET23がオンする。すると、キャパシタ21は、放電を開始して、電流I1を発熱体11に流す(図5参照)。このとき、発熱体11の温度が上昇し、発熱体11は周囲の空気を加熱する。これにより、音波源10近傍の空気が熱膨張し、空気の圧力(即ち音圧)は、図6(b)に示すように定常値P0から上昇する。 At time t1, the pulse signal Sp rises to the on voltage Von (FIG. 6 (a)), and the MOSFET 23 is turned on. Then, the capacitor 21 starts discharging, and causes the current I1 to flow through the heating element 11 (see FIG. 5). At this time, the temperature of the heating element 11 rises, and the heating element 11 heats the surrounding air. As a result, the air in the vicinity of the sound wave source 10 is thermally expanded, and the pressure of the air (that is, the sound pressure) increases from the steady value P0 as shown in FIG. 6B.
 MOSFET23がオンしている期間Ton(以下「パルス幅Ton」という場合がある)の間、キャパシタ21の放電及び発熱体11に対する電流I1の供給は継続される。当該期間Tonの経過中に、音波源10近傍の空気の温度変化は安定化し、音圧は定常値P0に戻る(図6(b))。 During the period Ton during which the MOSFET 23 is on (hereinafter sometimes referred to as “pulse width Ton”), the discharge of the capacitor 21 and the supply of the current I1 to the heating element 11 are continued. During the passage of the period Ton, the temperature change of the air near the sound source 10 is stabilized, and the sound pressure returns to the steady value P0 (FIG. 6B).
 時刻t1からパルス幅Tonだけ後の時刻t2において、パルス信号Spはオフ電圧Voffに立下がり(図6(a))、MOSFET23がオフする。すると、キャパシタ21は放電を停止し、発熱体11に対する電流I1の供給が停止される。このとき、発熱体11は発熱しなくなり、温度の低下に伴って空気を冷却する。これにより、音波源10近傍の空気が収縮し、図6(b)に示すように、音圧が定常値P0から低下する。その後、音圧は定常値P0に戻る。 At time t2 after the pulse width Ton from time t1, the pulse signal Sp falls to the off voltage Voff (FIG. 6A), and the MOSFET 23 is turned off. Then, the capacitor 21 stops discharging, and the supply of the current I1 to the heating element 11 is stopped. At this time, the heating element 11 does not generate heat and cools the air as the temperature decreases. As a result, the air in the vicinity of the sound wave source 10 contracts, and the sound pressure decreases from the steady value P0 as shown in FIG. Thereafter, the sound pressure returns to the steady value P0.
 以上のように、パルス信号Spのパルス幅Tonの期間に応じて、音圧の低下及び上昇が生じることにより、当該期間Tonを1周期とする、単パルスの音波が形成される(図6(b))。 As described above, when the sound pressure decreases and increases according to the period of the pulse width Ton of the pulse signal Sp, a single-pulse sound wave having the period Ton as one cycle is formed (FIG. 6 ( b)).
 また、MOSFET23がオフしている期間Toff(以下「パルス間隔Toff」という場合がある)の間に、キャパシタ21は充電される。時刻t2からパルス幅Toffだけ後の時刻t3において、パルス信号Spは再度、立上がる(図6(a))。これにより、上記と同様の単パルスの音波が、パルス間隔Toffをあけて繰り返し形成される。 Further, the capacitor 21 is charged during the period Toff (hereinafter sometimes referred to as “pulse interval Toff”) in which the MOSFET 23 is off. At time t3, which is after the pulse width Toff from time t2, the pulse signal Sp rises again (FIG. 6 (a)). As a result, a single-pulse sound wave similar to the above is repeatedly formed with a pulse interval Toff.
 以上のように、本実施形態の音波発生装置1によると、パルス信号Spのパルス幅Ton及びパルス間隔Toffに応じて、図6(b)に示すように、単パルスの音波をパルス周期Tp(=Toff+Ton)毎に発生させることができる。 As described above, according to the sound wave generator 1 of the present embodiment, a single-pulse sound wave is converted into a pulse period Tp () as shown in FIG. 6B according to the pulse width Ton and the pulse interval Toff of the pulse signal Sp. = Toff + Ton).
2-3.回路定数について
 上述のように音波を発生させる音波発生装置1において、パルス幅Ton及びパルス間隔Toff等は、駆動部20の各種回路定数(図3)を適宜、調整することにより、種々の値に設定可能である。以下、パルス幅Ton及びパルス間隔Toffと、回路定数との間の関係について説明する。
2-3. Circuit Constants In the sound wave generator 1 that generates sound waves as described above, the pulse width Ton, the pulse interval Toff, and the like can be set to various values by appropriately adjusting various circuit constants (FIG. 3) of the drive unit 20. It can be set. Hereinafter, the relationship between the pulse width Ton and the pulse interval Toff and the circuit constant will be described.
 パルス幅Tonと回路定数との間の関係は、制限抵抗22の抵抗値R2が充分に大きい場合(図5参照)、キャパシタ21の放電開始時の充電電圧V(t1)及び放電停止時の充電電圧V(t2)に基づいて(図6)、次式のように表される。
V(t2)=V(t1)×exp[-Ton/(C1×R1)]  …(1)
The relationship between the pulse width Ton and the circuit constant is that when the resistance value R2 of the limiting resistor 22 is sufficiently large (see FIG. 5), the charging voltage V (t1) at the start of discharging the capacitor 21 and the charging at the stop of discharging. Based on the voltage V (t2) (FIG. 6), it is expressed as the following equation.
V (t2) = V (t1) × exp [−Ton / (C1 × R1)] (1)
 本実施形態の音波発生装置1によると、各種仕様に応じて適宜、回路定数C1,R1を調整することにより、所望のパルス幅Tonを用いることができる。 According to the sound wave generator 1 of the present embodiment, a desired pulse width Ton can be used by adjusting the circuit constants C1 and R1 as appropriate according to various specifications.
 例えば、キャパシタ21の放電停止時の充電電圧V(t2)として、放電開始時の充電電圧V(t1)の90%以上を確保する場合を考える。この場合、V(t2)≧0.9V(t1)より、パルス幅Tonは、次式の範囲内で設定できる。
Ton≦-C1×R1×ln(0.9)≒0.1×C1×R1  …(11)
For example, consider a case in which 90% or more of the charging voltage V (t1) at the start of discharging is secured as the charging voltage V (t2) at the time when discharging of the capacitor 21 is stopped. In this case, from V (t2) ≧ 0.9V (t1), the pulse width Ton can be set within the range of the following equation.
Ton ≦ −C1 × R1 × ln (0.9) ≈0.1 × C1 × R1 (11)
 上式(11)の場合、例えば発熱体11に流した電流I1を停止する時刻t2(図6参照)前後における電流I1の変化量を、時刻t1前後における電流I1の変化量の90%以上に確保することができる。 In the case of the above equation (11), for example, the amount of change in current I1 before and after time t2 (see FIG. 6) when the current I1 flowing through the heating element 11 is stopped is 90% or more of the amount of change in current I1 before and after time t1. Can be secured.
 また、例えば、上式(11)の場合よりも大幅な放電においてキャパシタ21を使用する観点から、放電停止時の充電電圧V(t2)を、放電開始時の充電電圧V(t1)の50%以上とする場合を考える。この場合、上記と同様に式(1)から、パルス幅Tonは、次式の範囲内で設定できる。
Ton≦-C1×R1×ln(0.5)≒0.7×C1×R1  …(12)
Further, for example, from the viewpoint of using the capacitor 21 in a discharge that is significantly larger than that in the case of the above formula (11), the charging voltage V (t2) at the time of stopping discharging is set to 50% of the charging voltage V (t1) at the time of starting discharging. Consider the case above. In this case, the pulse width Ton can be set within the range of the following equation from the equation (1) as described above.
Ton ≦ −C1 × R1 × ln (0.5) ≈0.7 × C1 × R1 (12)
 具体的に、駆動部20の回路定数がC1=30uFで且つR1=1Ωに設定されている場合、式(11)によると、パルス幅Tonは3マイクロ秒以下になる。また、式(12)によると、パルス幅Tonは21マイクロ秒以下になる。 Specifically, when the circuit constant of the drive unit 20 is set to C1 = 30 uF and R1 = 1Ω, the pulse width Ton is 3 microseconds or less according to the equation (11). Further, according to the equation (12), the pulse width Ton is 21 microseconds or less.
 また、パルス間隔Toffと回路定数との間の関係は、キャパシタ21の充電を開始する時刻t2に、制限抵抗22を介して電流I2=(E-V(t2))/R2が流れることから(図4参照)、パルス間隔Toffだけ後の時刻t3における電流I2に基づき(図6)、次式のように表される。
I2=(E-V(t2))/R2×exp[-Toff/(C1×R2)]  …(2)
Further, the relationship between the pulse interval Toff and the circuit constant is that current I2 = (EV (t2)) / R2 flows through the limiting resistor 22 at time t2 when charging of the capacitor 21 starts ( Based on the current I2 at time t3 after the pulse interval Toff (see FIG. 4), it is expressed as the following equation.
I2 = (EV (t2)) / R2 × exp [−Toff / (C1 × R2)] (2)
 上式(2)によると、パルス間隔Toffは、制限抵抗22の抵抗値R2に対して相関関係を有する。本実施形態によると、回路定数R2,C1を調整することにより、所望のパルス間隔Toffを用いることができる。 According to the above equation (2), the pulse interval Toff has a correlation with the resistance value R2 of the limiting resistor 22. According to this embodiment, a desired pulse interval Toff can be used by adjusting the circuit constants R2 and C1.
 例えば、時刻t3において充電を終了する際の電流I2が、充電開始時(t2)の10%以下に到るようにキャパシタ21を充電する場合を考える。この場合、パルス間隔Toffは、次式の範囲内で設定できる。
Toff≧-C1×R2×ln(0.1)≒2.3×C1×R2  …(21)
For example, consider a case where the capacitor 21 is charged so that the current I2 when charging ends at time t3 reaches 10% or less of the charging start time (t2). In this case, the pulse interval Toff can be set within the range of the following equation.
Toff ≧ −C1 × R2 × ln (0.1) ≈2.3 × C1 × R2 (21)
 上式(21)の場合、例えば時刻t2から時刻t3までのパルス間隔Toffの期間中にキャパシタ21を満充電近傍にまで充電でき、キャパシタ21を効率良く使用することができる。 In the case of the above equation (21), for example, the capacitor 21 can be charged to near full charge during the pulse interval Toff from time t2 to time t3, and the capacitor 21 can be used efficiently.
 上式(21)によると、駆動部20の回路定数がR2=50Ωで且つC1=30uFに設定されている場合、パルス間隔Toffは3.45ミリ秒以上になる。また、制限抵抗22の抵抗値R2を500Ωに増やすと、パルス間隔Toffは34.5ミリ秒以上になる。さらに、抵抗値R2を5kΩに増やすと、パルス間隔Toffは345ミリ秒以上になる。 According to the above equation (21), when the circuit constant of the drive unit 20 is set to R2 = 50Ω and C1 = 30 uF, the pulse interval Toff is 3.45 milliseconds or more. Further, when the resistance value R2 of the limiting resistor 22 is increased to 500Ω, the pulse interval Toff becomes 34.5 milliseconds or more. Further, when the resistance value R2 is increased to 5 kΩ, the pulse interval Toff becomes 345 milliseconds or more.
2-3-1.シミュレーション結果について
 以上のように制限抵抗22の抵抗値R2を変化させた場合における音波発生装置1のシミュレーション結果について、図7~図11を用いて説明する。
2-3-1. Simulation Results The simulation results of the sound wave generator 1 when the resistance value R2 of the limiting resistor 22 is changed as described above will be described with reference to FIGS.
 図7は、制限抵抗22の抵抗値R2を50Ωに設定した音波発生装置1のシミュレーション結果を示す波形図である。 FIG. 7 is a waveform diagram showing a simulation result of the sound wave generator 1 in which the resistance value R2 of the limiting resistor 22 is set to 50Ω.
 図7のシミュレーションは、以下のシミュレーション条件において行った。即ち、回路定数R2=50Ω,C1=30uF,R1=1Ωを設定すると共に、直流電圧E=5Vを設定した。さらに、パルス幅Tonは10マイクロ秒に設定し、パルス周期Tpは100ミリ秒に設定した。この際、パルス間隔Toff(略100ミリ秒)は、上述した条件式(21)の範囲内になっている。 The simulation in FIG. 7 was performed under the following simulation conditions. That is, the circuit constants R2 = 50Ω, C1 = 30 uF, R1 = 1Ω and the DC voltage E = 5V were set. Furthermore, the pulse width Ton was set to 10 microseconds, and the pulse period Tp was set to 100 milliseconds. At this time, the pulse interval Toff (approximately 100 milliseconds) is within the range of the conditional expression (21) described above.
 図7(a)は、R2=50Ωのシミュレーションにおけるキャパシタ21の充電電圧V(t)を示す。また、図7(b)は、制限抵抗22の電流I2を示す。図7(c)は、発熱体11の電流I1を示す。 FIG. 7A shows the charging voltage V (t) of the capacitor 21 in the simulation of R2 = 50Ω. FIG. 7B shows the current I2 of the limiting resistor 22. FIG. 7C shows the current I1 of the heating element 11.
 図7のシミュレーションによると、キャパシタ21の充電電圧V(t)は、図7(a)に示すように、パルス周期Tpの間に満充電V(t)=5Vに到っている。これに応じて、図7(b)に示すように、制限抵抗22の電流I2は、パルス幅Tonのタイミング(即ち放電時)にピーク値として28mAを有する。このとき、発熱体11の電流I1のピーク値は、図7(c)に示すように、5Aになっている。 According to the simulation of FIG. 7, the charging voltage V (t) of the capacitor 21 reaches full charge V (t) = 5 V during the pulse period Tp as shown in FIG. 7A. Accordingly, as shown in FIG. 7B, the current I2 of the limiting resistor 22 has a peak value of 28 mA at the timing of the pulse width Ton (that is, during discharge). At this time, the peak value of the current I1 of the heating element 11 is 5A as shown in FIG.
 以上の図7のシミュレーション条件から、制限抵抗22の抵抗値R2を増大させた場合のシミュレーション結果を図8,9に示す。 FIGS. 8 and 9 show the simulation results when the resistance value R2 of the limiting resistor 22 is increased from the above simulation conditions of FIG.
 図8は、制限抵抗22の抵抗値R2を500Ωに設定した音波発生装置1のシミュレーション結果を示す波形図である。なお、パルス間隔Toffの条件式(21)は、この場合も満たされている。 FIG. 8 is a waveform diagram showing a simulation result of the sound wave generator 1 in which the resistance value R2 of the limiting resistor 22 is set to 500Ω. Note that the conditional expression (21) of the pulse interval Toff is also satisfied in this case.
 図8(a),8(b),8(c)は、それぞれR2=500Ωのシミュレーションにおけるキャパシタ21の充電電圧V(t)、制限抵抗22の電流I2、及び発熱体11の電流I1を示す。 FIGS. 8A, 8B, and 8C show the charging voltage V (t) of the capacitor 21, the current I2 of the limiting resistor 22, and the current I1 of the heating element 11 in the simulation of R2 = 500Ω, respectively. .
 図8のシミュレーションによると、キャパシタ21の充電電圧V(t)は、図7(a)と同様に、V(t)=5Vに到っている(図8(a))。一方、制限抵抗22の電流I2のピーク値は、図7(b)の場合から2.8mAに減少している(図8(b))。発熱体11の電流I1については、図7(c)と同様のピーク値5Aが得られている(図8(c))。 According to the simulation of FIG. 8, the charging voltage V (t) of the capacitor 21 reaches V (t) = 5 V as in FIG. 7A (FIG. 8A). On the other hand, the peak value of the current I2 of the limiting resistor 22 is reduced to 2.8 mA from the case of FIG. 7B (FIG. 8B). For the current I1 of the heating element 11, the same peak value 5A as in FIG. 7C is obtained (FIG. 8C).
 図9は、制限抵抗22の抵抗値R2を5kΩに設定した音波発生装置1のシミュレーション結果を示す波形図である。この場合、パルス間隔Tonの条件式(21)は、満たされてない。 FIG. 9 is a waveform diagram showing a simulation result of the sound wave generator 1 in which the resistance value R2 of the limiting resistor 22 is set to 5 kΩ. In this case, the conditional expression (21) of the pulse interval Ton is not satisfied.
 図9(a),9(b),9(c)は、それぞれR2=5kΩのシミュレーションにおけるキャパシタ21の充電電圧V(t)、制限抵抗22の電流I2、及び発熱体11の電流I1を示す。 9 (a), 9 (b), and 9 (c) show the charging voltage V (t) of the capacitor 21, the current I2 of the limiting resistor 22, and the current I1 of the heating element 11 in the simulation of R2 = 5 kΩ, respectively. .
 図9のシミュレーションによると、キャパシタ21の充電電圧V(t)は、図9(a)に示すように3.9V未満になっている。また、図9(b)に示すように、制限抵抗22の電流I2のピーク値は、図7(b),8(b)の場合から450uAにまで減少している。また、図9(c)に示すように、発熱体11の電流I1のピーク値は、図7(c),8(c)の場合から4.0A未満に減少している。 According to the simulation of FIG. 9, the charging voltage V (t) of the capacitor 21 is less than 3.9V as shown in FIG. 9 (a). Further, as shown in FIG. 9B, the peak value of the current I2 of the limiting resistor 22 is reduced to 450 uA from the cases of FIGS. 7B and 8B. Further, as shown in FIG. 9C, the peak value of the current I1 of the heating element 11 is reduced to less than 4.0 A from the cases of FIGS. 7C and 8C.
 以上の図7~9のシミュレーション結果によると、R2≧50Ωにおいて、制限抵抗22の電流I2のピーク値は、電流I1のような発熱体11を発熱させる値から充分に小さくなっていることが確認できる(図7(b),図8(b),図9(b))。よって、本実施形態の音波発生装置1によると、MOSFET23が常時オンになるような誤動作があったとしても、制限抵抗22により、過電流による発熱体11への影響を低減できることが確認された。 According to the simulation results of FIGS. 7 to 9, it is confirmed that the peak value of the current I2 of the limiting resistor 22 is sufficiently smaller than the value of the heating element 11 that generates heat, such as the current I1, when R2 ≧ 50Ω. (Fig. 7 (b), Fig. 8 (b), Fig. 9 (b)). Therefore, according to the sound wave generator 1 of the present embodiment, it was confirmed that the influence of the overcurrent on the heating element 11 can be reduced by the limiting resistor 22 even if there is a malfunction in which the MOSFET 23 is always turned on.
 一方、R2=5kΩにおける図9のシミュレーションにおいては、シミュレーションに用いたパルス間隔Toffが上述の式(21)を満たさないことから、キャパシタ21が充分に充電される前に放電を開始する結果になった(図9(a))。なお、R2=5kΩの場合においても、パルス間隔Toffを適切に設定することにより(式(21)参照)、キャパシタ21を充分に充電させる動作を実現可能である。 On the other hand, in the simulation of FIG. 9 at R2 = 5 kΩ, since the pulse interval Toff used for the simulation does not satisfy the above-described equation (21), the discharge starts before the capacitor 21 is sufficiently charged. (FIG. 9A). Even in the case of R2 = 5 kΩ, an operation for sufficiently charging the capacitor 21 can be realized by appropriately setting the pulse interval Toff (see Expression (21)).
 図10は、音波発生装置1における発熱体11の電流I1と制限抵抗22の抵抗値R2との関係を例示するグラフである。 FIG. 10 is a graph illustrating the relationship between the current I1 of the heating element 11 and the resistance value R2 of the limiting resistor 22 in the sound wave generator 1.
 図10では、図7~9と同様のシミュレーション条件から制限抵抗22の抵抗値R2を変化させた場合における電流I1のピーク値の数値計算の結果を示している。当該電流I1のピーク値は、キャパシタ21の放電時に発熱体11に流す電流I1に対応している。 FIG. 10 shows the result of numerical calculation of the peak value of the current I1 when the resistance value R2 of the limiting resistor 22 is changed under the same simulation conditions as in FIGS. The peak value of the current I1 corresponds to the current I1 that flows through the heating element 11 when the capacitor 21 is discharged.
 図10によると、制限抵抗22の抵抗値R2が1kΩに到るまで、発熱体11に流す電流I1のピーク値が低減していない。このことから、音波源10からの音波の出力に影響させずに、制限抵抗22を適用可能であることが確認された。 According to FIG. 10, the peak value of the current I1 flowing through the heating element 11 is not reduced until the resistance value R2 of the limiting resistor 22 reaches 1 kΩ. From this, it was confirmed that the limiting resistor 22 can be applied without affecting the output of the sound wave from the sound wave source 10.
 図11は、音波発生装置1における制限抵抗22の電流I2と抵抗値R2との関係を例示するグラフである。 FIG. 11 is a graph illustrating the relationship between the current I2 of the limiting resistor 22 and the resistance value R2 in the sound wave generator 1.
 図11では、図7~9と同様のシミュレーション条件から制限抵抗22の抵抗値R2を変化させたシミュレーションにおいて、キャパシタ21の放電時に制限抵抗22に流れる電流I2のピーク値の計算結果を示している。また、図11では、C1=30uFの場合に加えて、キャパシタ21の容量値C1を10uF及び100uFに変更した場合の計算結果を示す。 FIG. 11 shows the calculation result of the peak value of the current I2 flowing through the limiting resistor 22 when the capacitor 21 is discharged in a simulation in which the resistance value R2 of the limiting resistor 22 is changed under the same simulation conditions as in FIGS. . FIG. 11 shows a calculation result when the capacitance value C1 of the capacitor 21 is changed to 10 uF and 100 uF in addition to the case of C1 = 30 uF.
 図11において、同一の抵抗値R2における制限抵抗22の電流I2は、キャパシタ21の容量値C1が大きい程、小さくなっている。また、制限抵抗22の抵抗値R2を大きくするほど、当該電流I2は小さくなり、異なる容量値C1間の電流I2の違いは収束している。 In FIG. 11, the current I2 of the limiting resistor 22 at the same resistance value R2 decreases as the capacitance value C1 of the capacitor 21 increases. Further, as the resistance value R2 of the limiting resistor 22 is increased, the current I2 is decreased, and the difference in the current I2 between the different capacitance values C1 is converged.
 例えば、直流電源24の内部抵抗を0.1Ωとした場合に、直流電源24から流れる電流I2が、制限抵抗22を用いない場合(図中でR2=0.1Ω)の5%以下にする条件を考える。図11によると、当該条件は、抵抗値R2を100Ω以上にすることにより達成できる。このことから、制限抵抗22の抵抗値R2は、直流電源24の内部抵抗の1000倍以上であってもよい。 For example, when the internal resistance of the DC power supply 24 is 0.1Ω, the current I2 flowing from the DC power supply 24 is 5% or less of the case where the limiting resistor 22 is not used (R2 = 0.1Ω in the figure). think of. According to FIG. 11, the condition can be achieved by setting the resistance value R2 to 100Ω or more. Therefore, the resistance value R2 of the limiting resistor 22 may be 1000 times or more the internal resistance of the DC power supply 24.
3.まとめ
 以上のように、本実施形態に係る音波発生装置1は、音波源10と、MOSFET23と、キャパシタ21と、制限抵抗22とを備える。音波源10は、直流電源24から供給される電流により発熱して音波を発生する。制限抵抗22は、直流電源24と音波源10の間に挿入され、直流電源24から音波源10に流入する電流を制限する。MOSFET23は、音波源10に直列に接続され、オン/オフして音波源10を流れる電流の流入/遮断を制御する。キャパシタ21は、音波源10とMOSFET23の直列回路に並列に接続される。
3. Summary As described above, the sound wave generator 1 according to this embodiment includes the sound wave source 10, the MOSFET 23, the capacitor 21, and the limiting resistor 22. The sound wave source 10 generates heat by generating heat due to the current supplied from the DC power supply 24. The limiting resistor 22 is inserted between the DC power supply 24 and the sound wave source 10 and limits the current flowing from the DC power supply 24 to the sound wave source 10. The MOSFET 23 is connected in series with the sound wave source 10 and is turned on / off to control inflow / cutoff of a current flowing through the sound wave source 10. The capacitor 21 is connected in parallel to the series circuit of the sound wave source 10 and the MOSFET 23.
 また、本実施形態に係る音波発生装置1において、音波源10と、MOSFET23と、キャパシタ21と、制限抵抗22とを備える。音波源10は、直流電源24から供給される電流I1により発熱して、音波を発生する。MOSFET23は、オン/オフして音波源10に流れる電流I1の流入/遮断を制御する。キャパシタ21は、MOSFET23がオフしたときに直流電源24により充電されて、MOSFET23がオンしたときに充電による電流I1を音波源10に供給する。制限抵抗22は、MOSFET23がオンしたときに音波源10に流れる電流を制限する。 Further, the sound wave generator 1 according to the present embodiment includes the sound wave source 10, the MOSFET 23, the capacitor 21, and the limiting resistor 22. The sound wave source 10 generates heat by generating heat by the current I1 supplied from the DC power supply 24. The MOSFET 23 controls ON / OFF of the current I1 flowing into the sound wave source 10 by turning on / off. The capacitor 21 is charged by the DC power supply 24 when the MOSFET 23 is turned off, and supplies the current I1 due to charging to the sound wave source 10 when the MOSFET 23 is turned on. The limiting resistor 22 limits the current flowing through the sound wave source 10 when the MOSFET 23 is turned on.
 以上の音波発生装置1によると、MOSFET23がオンしたままになったとしても、制限抵抗22によって、音波源10に流れる電流が制限される。これにより、音波発生装置1において、電流に応じた発熱によって音波を発生する際の安全性を向上することができる。 According to the sound wave generator 1 described above, even if the MOSFET 23 remains on, the current flowing through the sound wave source 10 is limited by the limiting resistor 22. Thereby, in the sound wave generator 1, the safety | security at the time of generating a sound wave by the heat_generation | fever according to an electric current can be improved.
 例えば、MOSFET23が故障してドレインとソースとの間が短絡した場合に、制限抵抗22が音波源10に流れる電流を制限することによって、音波源10の過剰な発熱を抑制することができる。さらに、制限抵抗22によると、MOSFET23が短絡した場合でも、音波発生装置1の消費電流を制限することができる。このため、電流容量の小さい安価な電源を、直流電源24として使用することができる。本実施形態によると、消費電流が制限された音波発生装置を提供することができる。 For example, when the MOSFET 23 fails and the drain and the source are short-circuited, the limiting resistor 22 limits the current flowing through the sound source 10, thereby suppressing excessive heat generation of the sound source 10. Further, the limiting resistor 22 can limit the current consumption of the sound wave generator 1 even when the MOSFET 23 is short-circuited. For this reason, an inexpensive power source having a small current capacity can be used as the DC power source 24. According to the present embodiment, it is possible to provide a sound wave generator with limited current consumption.
 また、本実施形態に係る音波発生装置1において、制限抵抗22の抵抗値R2は、音波源10の抵抗値R1よりも大きい。これにより、電流に応じた発熱によって音波を発生する際の安全性をより向上することができる。制限抵抗22の抵抗値R2は、例えば音波源10の抵抗値R1の50倍以上であってもよいし、100倍以上であってもよい。 Further, in the sound wave generator 1 according to the present embodiment, the resistance value R2 of the limiting resistor 22 is larger than the resistance value R1 of the sound wave source 10. Thereby, the safety | security at the time of generating a sound wave by the heat_generation | fever according to an electric current can be improved more. The resistance value R2 of the limiting resistor 22 may be, for example, 50 times or more than the resistance value R1 of the sound source 10, or 100 times or more.
 本実施形態に係る音波発生装置1において、音波源10は、MOSFET23とキャパシタ21とに接続される。制限抵抗22の一端は、音波源10とキャパシタ21との間に接続される。制限抵抗22の他端には、直流電源24から直流電圧Eが供給される。 In the sound wave generator 1 according to this embodiment, the sound wave source 10 is connected to the MOSFET 23 and the capacitor 21. One end of the limiting resistor 22 is connected between the sound wave source 10 and the capacitor 21. A DC voltage E is supplied from the DC power source 24 to the other end of the limiting resistor 22.
 以上の構成によると、キャパシタ21は、MOSFET23をオフしたときに充電される。キャパシタ21は、MOSFET23がオンしたときに充電による電流を音波源10に供給する。同時に、制限抵抗22は、MOSFET23がオンしたときに、直流電源24から音波源10に流れる電流を制限する。これにより、音波発生装置1の安全性を向上することができる。 According to the above configuration, the capacitor 21 is charged when the MOSFET 23 is turned off. The capacitor 21 supplies a current due to charging to the sound wave source 10 when the MOSFET 23 is turned on. At the same time, the limiting resistor 22 limits the current flowing from the DC power supply 24 to the sound wave source 10 when the MOSFET 23 is turned on. Thereby, the safety | security of the sound wave generator 1 can be improved.
 本実施形態に係る音波発生装置1において、MOSFET23をパルス駆動するパルス駆動回路25をさらに備える。これにより、例えば単パルスの音波を形成することができる。また、パルス幅及びパルス周期を変更することによって、様々な音波を発生することができる。 The sound wave generator 1 according to this embodiment further includes a pulse driving circuit 25 that drives the MOSFET 23 in pulses. Thereby, for example, a single-pulse sound wave can be formed. Various sound waves can be generated by changing the pulse width and the pulse period.
 本実施形態に係る音波発生装置1において、音波源10は、発熱体11と、断熱層14と、発熱体11及び断熱層14が積層された基板12とを備える。発熱体11は、電流を流すことによって発熱する。断熱層14は、発熱体11からの熱を断熱する。これにより、音波発生装置1は、発熱体11からの熱を、基板12とは反対側の空気に効率良く伝導させることができる。 In the sound wave generator 1 according to the present embodiment, the sound wave source 10 includes a heating element 11, a heat insulating layer 14, and a substrate 12 on which the heating element 11 and the heat insulating layer 14 are laminated. The heating element 11 generates heat when a current flows. The heat insulating layer 14 insulates heat from the heating element 11. Thereby, the sound wave generator 1 can efficiently conduct the heat from the heating element 11 to the air on the side opposite to the substrate 12.
 (他の実施形態)
 上記の実施形態1では、音波発生装置1の駆動部20について、図3の構成例を説明した。音波発生装置1の駆動部20は、図3の構成例に限らず、種々の回路構成を有してもよい。例えば、駆動部20のスイッチング素子はn型のMOSFET23に限らず、p型のMOSFETであってもよい。この場合、駆動部20における接続関係の高圧側と低圧側は適宜、反転される。
(Other embodiments)
In the first embodiment, the configuration example of FIG. 3 has been described for the drive unit 20 of the sound wave generator 1. The drive unit 20 of the sound wave generator 1 is not limited to the configuration example of FIG. 3 and may have various circuit configurations. For example, the switching element of the drive unit 20 is not limited to the n-type MOSFET 23 but may be a p-type MOSFET. In this case, the high-pressure side and the low-pressure side of the connection relationship in the drive unit 20 are appropriately reversed.
 また、駆動部20のスイッチング素子はMOSFETに限らず、例えばIGBT(絶縁ゲートバイポーラトランジスタ)であってもよい。また、図3の構成例では、駆動部20におけるMOSFET23等の各部が接地される例を説明したが、これに限らず、駆動部20の各部は適宜、各種の電位に接続されてもよい。 Further, the switching element of the drive unit 20 is not limited to the MOSFET, but may be, for example, an IGBT (insulated gate bipolar transistor). In the configuration example of FIG. 3, an example in which each part such as the MOSFET 23 in the drive unit 20 is grounded has been described. However, the configuration is not limited thereto, and each part of the drive unit 20 may be connected to various potentials as appropriate.
 また、上記の各実施形態の音波発生装置1は、直流電源24及びパルス駆動回路25を備えたが、これに限らず、音波発生装置1は、直流電源24及び/又はパルス駆動回路25を備えなくてもよい。この場合、直流電圧E及び/又はパルス信号Spは、外部から音波発生装置1に供給される。 Moreover, although the sound wave generator 1 of each said embodiment was provided with the DC power supply 24 and the pulse drive circuit 25, it is not restricted to this, The sound wave generator 1 is provided with the DC power supply 24 and / or the pulse drive circuit 25. It does not have to be. In this case, the DC voltage E and / or the pulse signal Sp is supplied to the sound wave generator 1 from the outside.
 また、上記の各実施形態では、パルス信号Spの周期が予め設定される例を説明した。パルス信号Spのパルス幅等は、音波発生装置1の外部の制御回路から設定されてもよい。 In each of the above embodiments, the example in which the cycle of the pulse signal Sp is set in advance has been described. The pulse width of the pulse signal Sp and the like may be set from a control circuit outside the sound wave generator 1.
 上記の各実施形態では、音波発生装置1の駆動部20におけるキャパシタ21の例としてセラミックコンデンサを挙げたが、音鳴き対策がされたセラミックコンデンサを用いてもよい。 In each of the embodiments described above, a ceramic capacitor is used as an example of the capacitor 21 in the driving unit 20 of the sound wave generator 1. However, a ceramic capacitor in which noise reduction measures are taken may be used.
 上記の各実施形態では、音波発生装置1の回路定数の具体的な値を例示したが、適宜別の回路定数の値が用いられてもよい。 In the above embodiments, specific values of the circuit constants of the sound wave generator 1 are exemplified, but values of other circuit constants may be used as appropriate.

Claims (6)

  1.  直流電源から供給される電流により発熱して音波を発生する音波源と、
     前記直流電源と前記音波源の間に挿入され、前記直流電源から前記音波源に流入する電流を制限する抵抗素子と、
     前記音波源に直列に接続され、オン/オフして前記音波源を流れる電流の流入/遮断を制御するスイッチング素子と、
     前記音波源とスイッチング素子の直列回路に並列に接続されたキャパシタと、
    を備えた熱励起型の音波発生装置。
    A sound source that generates heat waves by generating heat from a current supplied from a DC power source;
    A resistance element that is inserted between the direct current power source and the sound wave source and restricts a current flowing from the direct current power source to the sound wave source;
    A switching element connected in series to the acoustic wave source and controlling on / off of current flowing through the acoustic wave source by turning on / off;
    A capacitor connected in parallel to a series circuit of the acoustic wave source and the switching element;
    A thermal excitation type sound wave generator comprising:
  2.  前記抵抗素子の抵抗値は、前記音波源の抵抗値よりも大きい
    請求項1に記載の熱励起型の音波発生装置。
    The thermal excitation type sound wave generator according to claim 1, wherein a resistance value of the resistance element is larger than a resistance value of the sound wave source.
  3.  前記抵抗素子に接続された直流電源をさらに備える
    請求項1又は2に記載の熱励起型の音波発生装置。
    The thermal excitation type sound wave generator according to claim 1, further comprising a direct current power source connected to the resistance element.
  4.  前記スイッチング素子をパルス駆動するパルス駆動回路をさらに備える
    請求項1~3のいずれか1項に記載の熱励起型の音波発生装置。
    The thermal excitation type sound wave generator according to any one of claims 1 to 3, further comprising a pulse driving circuit for driving the switching element in pulses.
  5.  前記音波源は、電流を流すことにより発熱する発熱体と、前記発熱体からの熱を断熱する断熱層と、前記発熱体及び前記断熱層が積層された基板とを備える
    請求項1~4のいずれか1項に記載の熱励起型の音波発生装置。
    The sound wave source includes: a heating element that generates heat when an electric current flows; a heat insulating layer that insulates heat from the heating element; and a substrate on which the heating element and the heat insulating layer are stacked. The thermal excitation type sound wave generator according to any one of the preceding claims.
  6.  直流電源から供給される電流により発熱して音波を発生する音波源と、
     オン/オフして前記音波源に流れる電流の流入/遮断を制御するスイッチング素子と、
     前記スイッチング素子がオフしたときに前記直流電源により充電されて、前記スイッチング素子がオンしたときに前記充電による電流を前記音波源に供給するキャパシタと、
     前記スイッチング素子がオンしたときに前記音波源に流れる電流を制限する抵抗素子と
    を備えた熱励起型の音波発生装置。
    A sound source that generates heat waves by generating heat from a current supplied from a DC power source;
    A switching element for controlling on / off of current flowing into the sound wave source by turning on / off;
    A capacitor that is charged by the DC power supply when the switching element is turned off, and that supplies a current from the charging to the sound wave source when the switching element is turned on;
    A thermal excitation type sound wave generator comprising: a resistance element that limits a current flowing through the sound wave source when the switching element is turned on.
PCT/JP2018/030482 2018-02-13 2018-08-17 Thermal excitation type sound wave generation device WO2019159395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500253A JPWO2019159395A1 (en) 2018-02-13 2018-08-17 Thermal excitation type sound wave generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018023392 2018-02-13
JP2018-023392 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159395A1 true WO2019159395A1 (en) 2019-08-22

Family

ID=67619851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030482 WO2019159395A1 (en) 2018-02-13 2018-08-17 Thermal excitation type sound wave generation device

Country Status (2)

Country Link
JP (1) JPWO2019159395A1 (en)
WO (1) WO2019159395A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668906A (en) * 1985-07-11 1987-05-26 Ekstrand John P Switched resistor regulator
WO2012020600A1 (en) * 2010-08-10 2012-02-16 株式会社村田製作所 Soundwave source and ultrasound generation device
JP2016120462A (en) * 2014-12-25 2016-07-07 Smk株式会社 Impact generation actuator, touch panel and driving method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668906A (en) * 1985-07-11 1987-05-26 Ekstrand John P Switched resistor regulator
WO2012020600A1 (en) * 2010-08-10 2012-02-16 株式会社村田製作所 Soundwave source and ultrasound generation device
JP2016120462A (en) * 2014-12-25 2016-07-07 Smk株式会社 Impact generation actuator, touch panel and driving method

Also Published As

Publication number Publication date
JPWO2019159395A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP4482913B2 (en) Solenoid valve and solenoid valve drive circuit
US20120055455A1 (en) Method for energizing an HF resonant circuit which has an igniter as a component for igniting a fuel-air mixture in a combustion chamber
JP4650688B2 (en) Insulated gate transistor drive circuit device
JP5023252B2 (en) Solenoid valve and solenoid valve drive circuit
JP6442889B2 (en) Ignition control device for internal combustion engine
JP6445331B2 (en) Ignition device
KR101937755B1 (en) Ionizer
JP4548484B2 (en) Synchronous rectification forward converter
WO2019159395A1 (en) Thermal excitation type sound wave generation device
JP6470066B2 (en) Ignition device
JP2009243418A (en) Injector drive circuit for fuel injection device of internal combustion engine
JP2019500743A (en) Piezoelectric transformer drive circuit and method for driving the piezoelectric transformer
JP2016164407A (en) Ignition device for internal combustion engine
Valenta et al. Piezoelectric transformer for high-side MOSFET driver supplying
JP2019002360A (en) Semiconductor device
KR20180062367A (en) Green car heating system
KR102001073B1 (en) PTC heater
JP6566718B2 (en) Ignition device for internal combustion engine
JP2019164947A (en) Power supply device for plasma apparatus
TW434994B (en) Piezoelectric transducing inverter
JP2014017962A (en) Semiconductor device with starting circuit
JP6275182B2 (en) Power supply device and static eliminator
JPS5864077A (en) Electrostrictive element driving circuit
JP4893477B2 (en) Ignition device for internal combustion engine
JP5728350B2 (en) Switch element drive circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500253

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906395

Country of ref document: EP

Kind code of ref document: A1