WO2019159386A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019159386A1
WO2019159386A1 PCT/JP2018/015283 JP2018015283W WO2019159386A1 WO 2019159386 A1 WO2019159386 A1 WO 2019159386A1 JP 2018015283 W JP2018015283 W JP 2018015283W WO 2019159386 A1 WO2019159386 A1 WO 2019159386A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
heat exchanger
air conditioner
indoor
cleaning
Prior art date
Application number
PCT/JP2018/015283
Other languages
French (fr)
Japanese (ja)
Inventor
智大 加藤
大舘 一夫
弘祐 大西
恒 台坂
啓輔 福原
和真 細川
カヨウ サイ
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to CN201880001827.0A priority Critical patent/CN110337569B/en
Priority to MYPI2018704303A priority patent/MY183860A/en
Priority to ES201890067A priority patent/ES2723373B2/en
Publication of WO2019159386A1 publication Critical patent/WO2019159386A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/10Cleaning by methods involving the use of tools characterised by the type of cleaning tool
    • B08B1/16Rigid blades, e.g. scrapers; Flexible blades, e.g. wipers
    • B08B1/165Scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to an air conditioner.
  • Patent Document 1 describes a “fan cleaning device for removing dust from a fan”.
  • the air conditioner described in Patent Document 1 has a structure in which the blower fan is cleaned by bringing the fan cleaning unit into contact with the blower fan.
  • an object of the present invention is to provide an air conditioner that efficiently cleans a fan cleaning section.
  • an air conditioner includes a refrigeration cycle having a heat exchanger, a blower fan, a fan cleaning unit that cleans the blower fan, and the fan cleaning unit as the blower fan.
  • a controller that selectively contacts both of the heat exchangers, the controller before contacting the fan cleaning unit with the heat exchanger, or the fan cleaning unit to the heat exchanger. It is set as the structure which produces
  • the air conditioner according to the present invention includes a refrigeration cycle having a heat exchanger, a blower fan, a fan cleaning unit for cleaning the blower fan, and the fan cleaning unit for both the blower fan and the heat exchanger.
  • a control unit that selectively contacts the heat exchanger, and the control unit performs an operation of rotating the fan cleaning unit a plurality of times within a range including an angle at which the fan cleaning unit contacts the heat exchanger.
  • an air conditioner that efficiently cleans the fan cleaning section can be provided.
  • an air harmony machine concerning an embodiment of the present invention, it is an explanatory view showing a state under cleaning of an indoor fan. In an air harmony machine concerning an embodiment of the present invention, it is an explanatory view showing an example of arrangement of a cleaning member at the time of operation. It is a flowchart which shows the cleaning process of the cleaning member which the control part of the air conditioner which concerns on embodiment of this invention performs. It is a flowchart which shows another cleaning process of the cleaning member which the control part of the air conditioner which concerns on embodiment of this invention performs. It is explanatory drawing (1) which shows an example of direction of the cleaning member in the case of performing an air-conditioning driving
  • Drawing 1 is an explanatory view of refrigerant circuit Q of air harmony machine 100 concerning an embodiment.
  • the air conditioner 100 has a function of performing the freezing / thawing operation of the indoor heat exchanger 15 will be described.
  • the present invention can also be applied to a case where the air conditioner 100 does not have a function of executing the freezing / thawing operation of the indoor heat exchanger 15.
  • the "freezing / thawing operation” is an operation that lowers the temperature of the heat exchanger, attaches frost (or ice) to the surface of the fins of the heat exchanger, and then increases the temperature of the heat exchanger.
  • the frost is thawed and the dew condensed water (condensed water) is used to drop to remove the dust adhering to the heat exchanger.
  • the solid line arrow of FIG. 1 has shown the flow of the refrigerant
  • the broken line arrow of FIG. 1 has shown the flow of the refrigerant
  • the air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13, and an expansion valve 14.
  • the air conditioner 100 includes an indoor fan 16 and a four-way valve 17 in addition to the above-described configuration.
  • the compressor 11 is a device that compresses a low-temperature and low-pressure gas refrigerant by driving the compressor motor 11a and discharges it as a high-temperature and high-pressure gas refrigerant.
  • the outdoor heat exchanger 12 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 13.
  • the outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12 by driving of the outdoor fan motor 13 a, and is installed in the vicinity of the outdoor heat exchanger 12.
  • the expansion valve 14 is a valve that decompresses the refrigerant condensed in the “condenser” (one of the outdoor heat exchanger 12 and the indoor heat exchanger 15). The refrigerant decompressed by the expansion valve 14 is guided to an “evaporator” (the other of the outdoor heat exchanger 12 and the indoor heat exchanger 15).
  • the indoor heat exchanger 15 performs heat exchange between the refrigerant flowing through the heat transfer tube g (see FIG. 2) and the indoor air sent from the indoor fan 16 (air in the air-conditioning target space). It is a vessel.
  • the indoor fan 16 is a fan that sends room air into the indoor heat exchanger 15 by driving an indoor fan motor 16c (see FIG. 5), and is installed in the vicinity of the indoor heat exchanger 15. More specifically, the indoor fan 16 is installed on the downstream side of the indoor heat exchanger 15 in the air flow when the indoor fan 16 is rotating forward.
  • the four-way valve 17 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100. For example, during the cooling operation (see the broken line arrow in FIG. 1), the compressor 11, the outdoor heat exchanger 12 (condenser), the expansion valve 14, and the indoor heat exchanger 15 (evaporator) are replaced with the four-way valve 17. In the refrigerant circuit Q that is sequentially connected in an annular manner through the refrigerant, the refrigerant circulates in the refrigeration cycle.
  • the compressor 11, the indoor heat exchanger 15 (condenser), the expansion valve 14, and the outdoor heat exchanger 12 (evaporator) are replaced by the four-way valve 17.
  • the refrigerant circuit Q that is sequentially connected in an annular manner through the refrigerant, the refrigerant circulates in the refrigeration cycle.
  • the compressor 11, the outdoor heat exchanger 12, the outdoor fan 13, the expansion valve 14, and the four-way valve 17 are installed in the outdoor unit Uo.
  • the indoor heat exchanger 15 and the indoor fan 16 are installed in the indoor unit Ui.
  • FIG. 2 is a longitudinal sectional view of the indoor unit Ui.
  • FIG. 2 illustrates a state where the indoor fan 16 is not cleaned by the fan cleaning unit 24.
  • the indoor unit Ui includes a dew tray 18, a housing base 19, filters 20 a and 20 b, a front panel 21, left and right wind direction plates 22, and up and down wind directions.
  • a plate 23 and a fan cleaning unit 24 are provided.
  • the indoor heat exchanger 15 has a plurality of fins f and a plurality of heat transfer tubes g penetrating the fins f. Moreover, if it demonstrates from another viewpoint, the indoor heat exchanger 15 has the front side indoor heat exchanger 15a and the back side indoor heat exchanger 15b. The front indoor heat exchanger 15 a is disposed on the front side of the indoor fan 16. On the other hand, the rear indoor heat exchanger 15 b is disposed on the rear side of the indoor fan 16. And the upper end part of the front side indoor heat exchanger 15a and the upper end part of the rear side indoor heat exchanger 15b are connected.
  • the dew receiving tray 18 receives the condensed water of the indoor heat exchanger 15, and is disposed below the indoor heat exchanger 15 (the front indoor heat exchanger 15a in the example shown in FIG. 2).
  • a dew tray provided integrally with the housing base 19 is disposed below the rear indoor heat exchanger 15b.
  • the indoor fan 16 is, for example, a cylindrical cross flow fan, and is disposed in the vicinity of the indoor heat exchanger 15.
  • the indoor fan 16 includes a plurality of fan blades 16a, a partition plate 16b on which these fan blades 16a are installed, and an indoor fan motor 16c as a drive source. (See FIG. 5).
  • the indoor fan 16 is preferably coated with a hydrophilic coating agent.
  • a coating material for example, a material obtained by adding a binder (silicon compound having a hydrolyzable group), butanol, tetrahydrofuran, and an antibacterial agent to isopropyl alcohol-dispersed silica sol which is a hydrophilic material may be used.
  • the coating agent described above also functions as an antistatic agent for the indoor fan 16.
  • the housing base 19 shown in FIG. 2 is a housing in which devices such as the indoor heat exchanger 15 and the indoor fan 16 are installed.
  • the filter 20 a is for removing dust from the air toward the front air inlet h ⁇ b> 1 and is installed on the front side of the indoor heat exchanger 15.
  • the filter 20b removes dust from the air toward the upper air suction port h2, and is installed on the upper side of the indoor heat exchanger 15.
  • the front panel 21 is a panel installed so as to cover the filter 20a on the front side, and is rotatable to the front side with the lower end as an axis.
  • the front panel 21 may be configured not to rotate.
  • the left / right airflow direction plate 22 is a plate-like member that adjusts the flow in the left / right direction of the air blown into the room as the indoor fan 16 rotates.
  • the left and right wind direction plates 22 are disposed in the blowing air path h3 and are rotated in the left and right directions by a left and right wind direction plate motor 25 (see FIG. 5).
  • the vertical wind direction plate 23 is a plate-like member that adjusts the vertical flow of air blown into the room as the indoor fan 16 rotates.
  • the vertical wind direction plate 23 is disposed in the vicinity of the air outlet h4, and is rotated in the vertical direction by the vertical wind direction plate motor 26 (see FIG. 5).
  • the air sucked through the air suction ports h1 and h2 exchanges heat with the refrigerant flowing through the heat transfer tube g of the indoor heat exchanger 15, and the heat-exchanged air is guided to the blowout air path h3.
  • the air flowing through the blowout air path h3 is guided in a predetermined direction by the left and right airflow direction plates 22 and the vertical airflow direction plate 23, and further blown out into the room through the air outlet h4.
  • the indoor heat exchanger 15 is washed away with water after the indoor fan 16 is cleaned using the fan cleaning unit 24 described below.
  • the fan cleaning unit 24 shown in FIG. 2 cleans the indoor fan 16 and is disposed between the indoor heat exchanger 15 and the indoor fan 16. More specifically, the fan cleaning unit 24 is disposed in the recess r of the front indoor heat exchanger 15a that has a ⁇ shape when viewed in a longitudinal section. In the example shown in FIG. 2, an indoor heat exchanger 15 (a lower portion of the front indoor heat exchanger 15 a) is present below the fan cleaning unit 24, and a dew tray 18 is present.
  • FIG. 3 is a perspective view in which a part of the indoor unit Ui is cut away.
  • the fan cleaning unit 24 includes a fan cleaning motor 24c (see FIG. 5) in addition to the shaft portion 24a and the brush 24b shown in FIG.
  • the shaft portion 24a is a rod-like member parallel to the axial direction of the indoor fan 16, and both ends thereof are pivotally supported.
  • the brush 24b is a cleaning member that removes dust adhering to the fan blade 16a, and is installed on the shaft portion 24a.
  • the cleaning member is assumed to be configured by the brush 24b.
  • the cleaning member is not limited to the brush 24b, and may be formed of other articles (for example, a sponge or the like).
  • the fan cleaning motor 24c (see FIG. 5) is a stepping motor, for example, and has a function of rotating the shaft portion 24a by a predetermined angle.
  • the fan cleaning motor 24c may rotate the shaft portion 24a by 360 °.
  • the length of the brush 24b is longer than the longer one of the shortest distance from the center of the shaft portion 24a to the indoor heat exchanger 15 and the shortest distance from the center of the shaft portion 24a to the indoor fan 16. .
  • the brush 24b is configured to be able to selectively contact (contact) both the indoor heat exchanger 15 and the indoor fan 16 as the shaft portion 24a rotates.
  • the fan cleaning motor 24c (see FIG. 5) is driven and the indoor fan so that the brush 24b contacts the indoor fan 16 (see FIG. 7A). 16 is reversely rotated.
  • the fan cleaning motor 24c is driven again, the brush 24b is rotated, and the brush 24b is separated from the indoor fan 16 (see FIG. 2). .
  • the indoor unit Ui has a shaft portion when an operation in which condensed water (condensed water) adheres to the brush 24b, such as a freezing / thawing operation or a cooling operation, is performed.
  • the brush 24b is rotated in the downward direction of 24a (the direction of arrow A1 shown in FIG. 2). That is, the indoor unit Ui (see FIG. 1) rotates the brush 24b in the downward direction of the shaft portion 24a (the direction of the arrow A1 shown in FIG. 2) after the condensed water is generated by the indoor heat exchanger 15 in the refrigeration cycle. It has a configuration to let you.
  • the depth width of the dew tray 18 is relatively short, so that the condensed water (condensed water) adhering to the brush 24b is less likely to scatter when dripping. That is, if the brush 24b is rotated in the upward direction of the shaft portion 24a, the condensed water (condensed water) adhering to the brush 24b flows from the tip side of the brush 24b to the shaft portion 24a side and flows into the shaft portion 24a. It collects and drops from the shaft portion 24a as a relatively large droplet. In this case, the condensed water (condensed water) dripped easily becomes scattered. Therefore, the indoor unit Ui (see FIG.
  • Such a configuration can also obtain the following advantages. That is, in this configuration, condensed water (condensed water) adhering to the brush 24b flows from the shaft 24a side to the tip side of the brush 24b and drops from the tip of the brush 24b. At this time, condensed water (condensed water) is dripped together with dust attached to the brush 24b. Therefore, the indoor unit Ui (see FIG. 1) can efficiently remove dust from the brush 24b.
  • the tip of the brush 24b faces the indoor heat exchanger 15 so that the tip of the brush 24b contacts the front indoor heat exchanger 15a. More preferably, the tip of the brush 24b enters the gap in the front indoor heat exchanger 15a.
  • the indoor fan 16 is in a state where the brush 24b is oriented in the lateral direction (substantially horizontal) except when the indoor fan 16 is being cleaned (including during normal air conditioning operation). It is away from. The reason why the fan cleaning unit 24 is arranged in this way will be described with reference to FIG.
  • FIG. 4 is an explanatory diagram showing the air flow in the vicinity of the fan cleaning unit 24 during the air conditioning operation.
  • the direction of each arrow shown in FIG. 4 has shown the direction through which air flows.
  • the length of each arrow indicates the speed of air flow.
  • the indoor fan 16 rotates forward, and the air that has passed through the gaps between the fins f of the front indoor heat exchanger 15a is directed to the indoor fan 16.
  • the fan cleaning unit 24 is disposed in the recess r with the brush 24b facing in the lateral direction.
  • the direction of the brush 24b is parallel to the direction of air flow.
  • the fan cleaning unit 24 hardly interferes with the air flow.
  • the fan cleaning unit 24 is arranged in the upstream area, not in the middle or downstream area (near the air outlet h4 shown in FIG. 2) of the air flow when the indoor fan 16 is rotating forward.
  • the air flowing in the lateral direction along the brush 24b is accelerated by the fan blade 16a, and the accelerated air is directed to the air outlet h4 (see FIG. 2).
  • the fan cleaning part 24 is arrange
  • FIG. 5 is a functional block diagram of the air conditioner 100.
  • the indoor unit Ui illustrated in FIG. 5 includes a remote control transmission / reception unit 27 and an indoor control circuit 31 in addition to the above-described configuration.
  • the remote controller transmission / reception unit 27 exchanges predetermined information with the remote controller 40.
  • the indoor control circuit 31 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), RAM (Random Access Memory), and electronic circuits such as various interfaces are included. Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the indoor control circuit 31 includes a storage unit 31a and an indoor control unit 31b.
  • the storage unit 31a stores data received via the remote control transmission / reception unit 27, detection values of various sensors (not shown), and the like.
  • the indoor control unit 31b executes the fan cleaning motor 24c, the indoor fan motor 16c, the left / right airflow direction plate motor 25, the up / down airflow direction plate motor 26, and the like based on the data stored in the storage unit 31a.
  • the outdoor unit Uo includes an outdoor control circuit 32 in addition to the configuration described above.
  • the outdoor control circuit 32 includes electronic circuits such as a CPU, a ROM, a RAM, and various interfaces, and is connected to the indoor control circuit 31 via a communication line.
  • the outdoor control circuit 32 includes a storage unit 32a and an outdoor control unit 32b.
  • the storage unit 32a stores data received from the indoor control circuit 31 in addition to a predetermined program.
  • the outdoor control unit 32b controls the compressor motor 11a, the outdoor fan motor 13a, the expansion valve 14, and the like based on the data stored in the storage unit 32a.
  • the indoor control circuit 31 and the outdoor control circuit 32 are collectively referred to as a “control unit 30”.
  • the indoor unit Ui has a function of cleaning the indoor fan 16 by using condensed water (condensate) generated by the indoor heat exchanger 15 by freezing / thawing operation or cooling operation as a cleaning function of the indoor fan 16. ing.
  • the indoor unit Ui also has a function of cleaning the brush 24b by using condensed water (condensed water) generated by the indoor heat exchanger 15 by freezing / thawing operation or cooling operation as a cleaning function of the brush 24b. ing.
  • FIG. 6 is a flowchart showing the cleaning process of the indoor fan 16 executed by the control unit 30 (see FIG. 2 as appropriate).
  • the air-conditioning operation is not performed, and the tip of the brush 24b faces the front indoor heat exchanger 15a (the state shown in FIG. 2). Will be described.
  • the control unit 30 cleans the indoor fan 16 by the fan cleaning unit 24.
  • the cleaning timing of the indoor fan 16 a trigger for starting cleaning of the indoor fan 16
  • FIG. 7A is an explanatory diagram showing a state in which the indoor fan 16 is being cleaned.
  • the indoor heat exchanger 15, the indoor fan 16, and the dew tray 18 are shown, and the other members are not shown.
  • the control unit 30 brings the fan cleaning unit 24 into contact with the indoor fan 16 and rotates (reverses) the indoor fan 16 in the opposite direction to that during normal air conditioning operation.
  • control unit 30 rotates the brush 24b about 180 ° around the shaft portion 24a from the state where the tip of the brush 24b faces the indoor heat exchanger 15 (see FIG. 2), and the tip of the brush 24b is placed indoors. It faces the fan 16 (see FIG. 7A). As a result, the brush 24 b comes into contact with the fan blade 16 a of the indoor fan 16.
  • the indoor heat exchanger 15 (the front indoor heat exchanger 15 a) is located below the contact position K when the fan cleaning unit 24 is in contact with the indoor fan 16. And a dew pan 18 are also present.
  • the tip of the brush 24b bends as the fan blade 16a moves, and the brush 24b is pressed so as to stroke the back of the fan blade 16a.
  • the dust collected near the tip of the fan blade 16a (the end in the radial direction) is removed by the brush 24b.
  • dust tends to accumulate near the tip of the fan blade 16a. This is because during the air-conditioning operation in which the indoor fan 16 is rotating forward (see FIG. 4), air hits the vicinity of the tip of the belly of the fan blade 16a, and dust adheres to the vicinity of the tip. The air hitting the vicinity of the tip of the fan blade 16a passes through the gap between the adjacent fan blades 16a, 16a so as to follow the curved surface of the fan blade 16a.
  • the brush 24b is brought into contact with the fan blade 16a, and the indoor fan 16 is rotated in the reverse direction.
  • the brush 24b comes into contact with the vicinity of the front end of the fan blade 16a, and dust accumulated near both the front and rear ends of the fan blade 16a is integrally removed.
  • most of the dust accumulated in the indoor fan 16 can be removed.
  • the dust j removed from the indoor fan 16 by the brush 24b is lightly pressed against the front indoor heat exchanger 15a by wind pressure. Further, the dust j described above falls on the dew tray 18 along the inclined surface (edge of the fin f) of the front indoor heat exchanger 15a (see the arrow in FIG. 7A). Therefore, the dust j hardly adheres to the back surface of the up-and-down wind direction plate 23 (see FIG. 2) through a minute gap between the indoor fan 16 and the dew tray 18. This can prevent the dust j from being blown into the room during the next air conditioning operation.
  • the control unit 30 may drive the indoor fan 16 at a medium / high speed rotation speed or drive the indoor fan 16 at a low speed rotation speed.
  • the range of the rotational speed in the middle / high speed range of the indoor fan 16 is, for example, 300 min ⁇ 1 or more and less than 1700 min ⁇ 1.
  • the range of the rotational speed in the low speed region of the indoor fan 16 is, for example, 100 min ⁇ 1 or more and less than 300 min ⁇ 1.
  • the indoor fan 16 can be cleaned with low noise.
  • step S102 the control unit 30 moves the brush 24b that is a cleaning member. That is, the control unit 30 rotates the brush 24b about 180 ° around the shaft portion 24a from the state where the tip of the brush 24b faces the indoor fan 16 (see FIG. 7A), and the tip of the brush 24b exchanges heat with the room. It faces the container 15 (see FIG. 7B). Thereby, it is possible to prevent the fan cleaning unit 24 from obstructing the air flow during the subsequent air conditioning operation. As shown in FIG. 7B, when the tip of the brush 24b faces the indoor heat exchanger 15, the brush 24b is more preferably so that the tip of the brush 24b contacts the front indoor heat exchanger 15a. It is preferable that the front end of the air enters the gap in the front indoor heat exchanger 15a.
  • step S103 the control unit 30 sequentially performs freezing and thawing of the indoor heat exchanger 15.
  • the control unit 30 causes the indoor heat exchanger 15 to function as an evaporator, causes the indoor heat exchanger 15 to frost and freeze moisture contained in the air taken into the indoor unit Ui.
  • the process of freezing the indoor heat exchanger 15 is included in the matter of “attaching condensed water” to the indoor heat exchanger 15.
  • the controller 30 When the indoor heat exchanger 15 is frozen, the controller 30 preferably lowers the evaporation temperature of the refrigerant flowing into the indoor heat exchanger 15. That is, the control unit 30 includes the indoor heat exchanger 15 When the indoor heat exchanger 15 is frozen (condensed water is attached), it flows into the indoor heat exchanger 15 so that the evaporation temperature of the refrigerant is lower than that during normal air-conditioning operation. Adjust the refrigerant pressure.
  • control unit 30 reduces the air volume of the indoor unit Ui by reducing the opening degree of the expansion valve 14 (see FIG. 1) or reducing or stopping the rotation speed of the indoor fan 16 at a low pressure.
  • a refrigerant having a low evaporation temperature is caused to flow into the indoor heat exchanger 15. This makes it easier for frost and ice (symbol i shown in FIG. 7B) to grow in the indoor heat exchanger 15, so that the indoor heat exchanger 15 can be washed away with a large amount of water during the subsequent thawing.
  • region located under the fan cleaning part 24 is not a downstream area of the flow of the refrigerant
  • the low-temperature gas-liquid two-phase refrigerant flows at least below (lower side) the fan cleaning unit 24, the thickness of frost and ice adhering to the indoor heat exchanger 15 can be increased. Therefore, the indoor heat exchanger 15 can be washed away with a large amount of water during the subsequent thawing.
  • an area located below the fan cleaning unit 24 is likely to be attached with dust scraped off from the indoor fan 16 by the fan cleaning unit 24.
  • the control unit 30 may close the up-and-down air direction plate 23 (see FIG. 2).
  • the angle of the up-and-down wind direction plate 23 is upward from the horizontal.
  • the control unit 30 defrosts the indoor heat exchanger 15 (step S103 in FIG. 6). For example, the control unit 30 naturally defrosts the indoor heat exchanger 15 at room temperature by maintaining the stopped state of each device. In addition, you may make it melt the frost and ice adhering to the indoor heat exchanger 15 when the control part 30 performs heating operation or ventilation operation.
  • FIG. 7B is an explanatory diagram showing a state in which the indoor heat exchanger 15 is being thawed. As the indoor heat exchanger 15 is thawed, frost and ice adhering to the indoor heat exchanger 15 are melted, and a large amount of water w flows to the dew tray 18 through the fins f. Thereby, the dust j adhering to the indoor heat exchanger 15 during the air conditioning operation can be washed away.
  • the dust j adhering to the front indoor heat exchanger 15a is also washed away and flows down to the dew tray 18 (see the arrow in FIG. 7B).
  • the water w that has flown down to the dew tray 18 in this way is externally connected via a drain hose (not shown) together with dust j (see FIG. 7A) that has fallen directly to the dew tray 18 during cleaning of the indoor fan 16. To be discharged. As described above, there is almost no possibility that a large amount of water flows down from the indoor heat exchanger 15 during thawing and a drain hose (not shown) is clogged with dust j.
  • step S ⁇ b> 103 the controller 30 performs the heating operation or the air blowing operation to dry the interior of the indoor unit Ui. You may let them. Thereby, it is possible to suppress the propagation of bacteria in the indoor heat exchanger 15 and the like.
  • the air conditioner 100 can suppress the dust j from being blown into the room because the fan 16 is cleaned by the fan cleaning unit 24 (step S101 in FIG. 6). Further, since the fan cleaning unit 24 is arranged between the front indoor heat exchanger 15a and the indoor fan 16, the dust j scraped off from the indoor fan 16 by the brush 24b can be guided to the dew tray 18. Further, during cleaning of the indoor fan 16, the control unit 30 rotates the indoor fan 16 in the reverse direction. Thereby, it is possible to prevent the dust j described above from going to the air outlet h4.
  • the brush 24b is in a state of facing sideways (see FIG. 4), so that the air flow is hardly hindered by the influence of the brush 24b.
  • a decrease in the air volume caused by the fan cleaning unit 24 is suppressed during normal air conditioning operation, and the power consumption of the indoor fan 16 is reduced. The increase is also suppressed.
  • the reason why the air volume reduction is suppressed when the fan cleaning unit 24 is on the upstream side is that the area of the air suction ports h1 and h2 is larger than the area of the air outlet h4, and the flow of wind is lower than that on the downstream side. This is because it becomes slower on the upstream side.
  • the air blowing temperature may be lowered during the cooling operation so as to compensate for the performance deterioration of the indoor fan 16, and there is a possibility that dew dripping into the room may occur.
  • the indoor fan 16 is appropriately cleaned, a decrease in the air volume of the indoor fan 16 due to the adhesion of dust is suppressed. Therefore, according to the present embodiment, it is possible to prevent the dripping caused by the dust of the indoor fan 16.
  • the controller 30 sequentially freezes and thaws the indoor heat exchanger 15 (step S103 in FIG. 6), so that the dust j adhering to the indoor heat exchanger 15 is washed away with water w, 18 flows down.
  • the indoor heat exchanger 15 can also be made into a clean state. Therefore, comfortable air conditioning can be performed by the air conditioner 100. Further, it is possible to reduce the user's labor required for cleaning the indoor heat exchanger 15 and the indoor fan 16 and the expense during maintenance.
  • FIG. 8 is a flowchart showing a cleaning process of the brush 24b (cleaning member) executed by the control unit 30 (see FIG. 2 as appropriate). In the flow of FIG. 8, it is assumed that the air conditioning operation is not performed at “START”.
  • the control unit 30 performs contact control of the brush 24b (cleaning member) to the indoor heat exchanger 15.
  • a cleaning timing of the brush 24b a trigger for starting the cleaning process of the brush 24b
  • the control unit 30 may use the cooling operation or the freezing operation as the cleaning timing of the brush 24b, and may clean the fan cleaning unit 24 during the cooling operation or the freezing operation.
  • step S120 the control unit 30 starts the generation operation control of the condensed water. At this time, the control unit 30 performs a freezing / thawing operation, a cooling operation, and the like.
  • step S130 the control unit 30 repeatedly determines whether or not a predetermined time has elapsed, and waits until it is determined that the predetermined time has elapsed ("Yes").
  • step S140 the control unit 30 ends the condensed water generation operation control.
  • step S150 the control unit 30 performs a closing control of the up / down air direction plate 23 or a setting control for setting the up / down air direction plate 23 to a horizontal or higher direction.
  • step S160 the control unit 30 may perform rotation stop control of the indoor fan 16 (blower fan).
  • the process of step S160 it is considered that when the heating operation is performed in step S170 and the brush 24b (cleaning member) is dried, the heat-exchanged air is not blown into the room and the comfort in the room is maintained. It is a thing. Even if the process of step S160 is not performed (that is, even when the rotation of the indoor fan 16 (blower fan) is not stopped), the air conditioner 100 performs the brush 24b (cleaning) in step S170. Member) can be dried. Therefore, the process of step S160 is not essential and can be deleted. Moreover, the process of this step S160 assumes the case where heating operation is performed by step S170. If the heating operation is not performed in step S170, the process in step S160 is deleted.
  • step S170 the control unit 30 starts drying operation control of the brush 24b (cleaning member).
  • the air conditioner 100 can dry the brush 24b (cleaning member) by executing a heating operation using the indoor heat exchanger 15 as a condenser, a blowing operation, or the like.
  • the control unit 30 performs the heating operation will be described.
  • step S180 the control unit 30 repeatedly determines whether or not a predetermined time has elapsed, and waits until the predetermined time has elapsed.
  • step S190 the control unit 30 ends the drying operation control of the brush 24b (cleaning member).
  • step S200 the control unit 30 controls the separation of the brush 24b (cleaning member) from the indoor heat exchanger 15. Thereby, a series of routine processing ends.
  • the temperature of the brush 24b may be raised to a temperature higher than the fungus killing temperature so that the fungi (fungi) can be killed sufficiently to maintain the state for a desired time.
  • the fungus killing temperature is described as being 50 ° C. or higher. This temperature is, for example, 50 ° C. (time: 5 minutes), the temperature for thermal killing of mold (cone of mold) in Table 4 “Heat resistance of mold” published on the following website of the Ministry of Education, Culture, Sports, Science and Technology of Japan. ).
  • the fungal killing temperature is not necessarily limited to 50 ° C. or higher. (home page) http://www.mext.go.jp/b_menu/shingi/chousa/sonota/003/houkoku/08111918/002.htm
  • the above-mentioned desired time may be 5 minutes when the temperature to be held is 50 ° C., for example.
  • the desired time described above can be shorter than 5 minutes when the temperature to be held is higher than 50 ° C.
  • the indoor unit Ui can keep the brush 24b clean because it can kill the fungus (mold) when the temperature of the brush 24b is kept at the fungus killing temperature in steps S170 to S200.
  • FIG. 9 is a flowchart showing another cleaning process of the brush 24b (cleaning member) executed by the control unit 30.
  • step S110a in FIG. 9 corresponds to the process in step S120 in FIG. 8
  • the process in step S120a in FIG. 9 corresponds to the process in step S110 in FIG. That is, the flow of FIG. 9 is obtained by replacing the processes of step S110 and step S120 of FIG.
  • step S110a the control unit 30 starts the generation operation control of the condensed water. At this time, the control unit 30 performs a freezing / thawing operation, a cooling operation, and the like.
  • step S ⁇ b> 120 a the control unit 30 performs contact control of the brush 24 b (cleaning member) to the indoor heat exchanger 15.
  • the fan cleaning unit 24 is preferably within a range of a desired allowable angle ⁇ in the vertical direction with respect to the horizontal direction when an air conditioning operation such as a heating operation or a cooling operation is performed.
  • the orientation of the brush 24b may be maintained.
  • the fan cleaning unit 24 preferably maintains the orientation of the brush 24b as shown in FIG. 10A even during the process of step S110 of FIG. 8 or the process of step S120a of FIG.
  • FIG. 10A is an explanatory diagram illustrating an example of the direction of the brush 24b (cleaning member) when the air-conditioning operation is performed.
  • the indoor unit Ui can keep the direction of the brush 24b of the fan cleaning unit 24 in the direction shown in FIG. Good air conditioning efficiency can be obtained.
  • the shaft portion 24a of the fan cleaning unit 24 is disposed at a position P0 on the side of the bent portion of the front indoor heat exchanger 15a.
  • the brush 24b of the fan cleaning part 24 is hold
  • the fan cleaning unit 24 preferably has the orientation of the brush 24b in a direction parallel to the wind flow when an air conditioning operation such as a heating operation or a cooling operation is performed as shown in FIG. 10B, for example. May be held. Further, the fan cleaning unit 24 may preferably maintain the orientation of the brush 24b as shown in FIG. 10B even during the process of step S110 of FIG.
  • FIG. 10B is an explanatory diagram illustrating another example of the direction of the brush 24b (cleaning member) in the case where the air-conditioning operation is performed or in the cleaning operation of the brush 24b (cleaning member).
  • the direction of the brush 24b is a direction in which the tip of the brush 24b faces upward in the horizontal direction.
  • the direction of the brush 24b is a direction in which the tip of the brush 24b faces downward in the horizontal direction.
  • the brush 24b of the fan cleaning unit 24 is in contact with the fin f in contact with the heat transfer tube g through which the refrigerant in the gas region or the two-phase region flows in the indoor heat exchanger 15. And also in this case, since the indoor unit Ui can keep the direction of the brush 24b in the direction shown in FIG. A relatively good air conditioning efficiency can be obtained.
  • FIG. 11 is an explanatory diagram illustrating still another example of the direction of the brush 24b (cleaning member) when the air-conditioning operation is performed.
  • the condensed water (condensed water) adhering to the brush 24b flows from the shaft 24a side to the tip side of the brush 24b and drops from the tip of the brush 24b. At this time, condensed water (condensed water) is dripped together with dust attached to the brush 24b. Therefore, the indoor unit Ui can efficiently remove dust from the brush 24b.
  • control unit 30 is preferably configured to generate a part of the indoor heat exchanger 15 (e.g.
  • the fan cleaning unit 24 may be disposed obliquely downward so as to flow in the direction of the side portion) or the dew tray 18.
  • the air conditioner 100 can make the fan cleaning part 24 function as a water channel of condensed water.
  • FIG. 12 is an explanatory diagram showing the orientation of the brush 24b (cleaning member) when the cooling operation or the dehumidifying operation is performed.
  • the indoor unit Ui can prevent the condensed water (condensed water) generated by the indoor heat exchanger 15 from dripping along the brush 24b. Thereby, the indoor unit Ui can wash
  • the direction of the fan cleaning unit 24 is set to the horizontal direction or a predetermined angle ⁇ with respect to the horizontal direction. It may be within the range.
  • the fan cleaning unit 24 may be configured so that the direction of the fan cleaning unit 24 is parallel to the wind flow, for example, as illustrated in FIG. 10B even during the cooling operation or the dehumidifying operation. Good.
  • the fan cleaning unit 24 may separate the brush 24b from the front indoor heat exchanger 15a, for example, as shown in FIG. 12 even during the heating operation. That is, the control unit 30 may be configured not to bring the fan cleaning unit 24 into contact with the indoor heat exchanger 15 during heating operation, cooling operation, or dehumidifying operation, for example, as shown in FIG.
  • FIG. 13 is a flowchart illustrating an operation example when the cleaning timing of the indoor fan 16 (blower fan) is changed.
  • step S610 of FIG. 13 the control unit 30 sets the cleaning timing of the indoor fan 16 based on the setting conditions stored in advance in the storage unit 31a (see FIG. 5).
  • the operation condition that the operation time (cumulative operation time) of the indoor fan 16 has reached a desired time will be described as the cleaning timing of the indoor fan 16.
  • the description will be made assuming that the cleaning timing of the indoor fan 16 is changed when the operation time of the indoor fan 16 reaches a preset threshold value.
  • the control unit 30 may use the accumulated rotational speed of the indoor fan 16 or the integrated value of the rotational speed and operating time of the indoor fan 16 instead of the operation time of the indoor fan 16.
  • step S620 when the execution of the air conditioning operation is instructed by the user, the control unit 30 starts the air conditioning operation.
  • step S630 the control unit 30 measures the operation time of the indoor fan 16 (blower fan).
  • step S640 the control unit 30 determines whether or not the operating condition is the cleaning timing of the indoor fan 16 (blower fan).
  • step S640 If it is determined in step S640 that the operating condition is the cleaning timing of the indoor fan 16 (blower fan) (in the case of “Yes”), the process proceeds to step S690. On the other hand, when it is determined in step S640 that the operating condition is not the cleaning timing of the indoor fan 16 (blower fan) (in the case of “No”), in step S650, the control unit 30 causes the indoor fan 16 to It is determined whether or not the operation time of the (fan) has reached a threshold value.
  • step S660 the control unit 30 determines that the operating condition is air conditioning operation. It is determined whether or not the end of the air conditioning operation is instructed by the user.
  • step S660 If it is determined in step S660 that the operating condition is not the end of the air conditioning operation (in the case of “No”), the process returns to step S630. On the other hand, when it is determined in step S660 that the operation condition is the end of the air conditioning operation (in the case of “Yes”), in step S670, the control unit 30 ends the air conditioning operation. Thereby, a series of routine processing ends.
  • step S680 the control unit 30 stores the storage unit 31a (FIG. 5), the cleaning timing of the indoor fan 16 (blower fan) is changed based on the setting conditions stored in advance. Thereby, the control part 30 cleans the indoor fan 16 (blower fan) more frequently than the present frequency, or conversely cleans the indoor fan 16 (blower fan) less frequently than the present frequency. can do. Thereafter, the process proceeds to step S690.
  • step S690 the control unit 30 repeatedly determines whether or not the operating condition is the end of the air conditioning operation, that is, whether or not the user has instructed to stop the air conditioning operation. The process waits until it is determined that the process ends ("Yes").
  • step S700 the control unit 30 ends the air conditioning operation.
  • step S710 the control unit 30 cleans the indoor fan 16 (blower fan). Thereby, a series of routine processing ends.
  • a cleaning timing of the brush 24b (trigger for starting the cleaning process of the brush 24b)
  • the cleaning timing of the brush 24b can be changed according to the operation.
  • FIG. These are the flowcharts which show the operation example in the case of changing the cleaning timing of the brush 24b (cleaning member).
  • step S810 of FIG. 14 the control unit 30 sets the cleaning timing of the brush 24b based on the setting conditions stored in advance in the storage unit 31a (see FIG. 5).
  • the operating condition that the operation time (cumulative operation time) of the indoor fan 16 (blower fan) has reached a desired time is set as the cleaning timing of the brush 24b.
  • the description will be made assuming that the cleaning timing of the brush 24b is changed when the operation time of the indoor fan 16 (blower fan) reaches a preset threshold value.
  • the cleaning timing of the brush 24b is merely an example.
  • the control unit 30 may use the cooling operation or the freezing operation as the cleaning timing of the brush 24b, and may clean the fan cleaning unit 24 during the cooling operation or the freezing operation.
  • step S820 the control part 30 will start an air-conditioning driving
  • step S830 the control unit 30 measures the operating time of the indoor fan 16 (blower fan).
  • step S840 the control unit 30 determines whether or not the operating condition is the cleaning timing of the brush 24b.
  • step S840 If it is determined in step S840 that the operating condition is the cleaning timing of the brush 24b (in the case of “Yes”), the process proceeds to step S890. On the other hand, when it is determined in step S840 that the operation condition is not the cleaning timing of the brush 24b (in the case of “No”), in step S850, the control unit 30 controls the indoor fan 16 (blower fan). It is determined whether or not the operation time has reached a threshold value.
  • step S860 the control unit 30 determines that the operation condition is air conditioning operation. It is determined whether or not the end of the air conditioning operation is instructed by the user.
  • step S860 When it is determined in step S860 that the operation condition is not the end of the air conditioning operation (in the case of “No”), the process returns to step S830. On the other hand, when it is determined in step S860 that the operating condition is the end of the air conditioning operation (in the case of “Yes”), in step S870, the control unit 30 ends the air conditioning operation. Thereby, a series of routine processing ends.
  • step S880 the control unit 30 stores the storage unit 31a (FIG. 5), the cleaning timing of the brush 24b is changed based on the setting conditions stored in advance. Thereby, the control part 30 can clean the brush 24b more frequently than the present frequency, and conversely can clean the brush 24b less frequently than the present frequency. Thereafter, the process proceeds to step S890.
  • step S890 the control unit 30 repeatedly determines whether or not the operating condition is the end of the air conditioning operation, that is, whether or not the user has instructed to stop the air conditioning operation. The process waits until it is determined that the process ends ("Yes").
  • step S900 the control unit 30 ends the air conditioning operation.
  • step S910 the control unit 30 cleans the brush 24b. Thereby, a series of routine processing ends.
  • the indoor unit Ui cleans the brush 24b (cleaning member) of the fan cleaning unit 24 using condensed water (condensed water) generated by the indoor heat exchanger 15 by freezing / thawing operation or cooling operation.
  • condensed water condensed water
  • the frequency of cleaning the fan cleaning unit 24 by contacting the indoor heat exchanger 15 is as small as possible.
  • the amount of dust attached to the fan cleaning unit 24 is smaller than the amount of dust attached to the indoor fan 16 (blower fan). Therefore, the frequency of cleaning the fan cleaning unit 24 in contact with the indoor heat exchanger 15 is preferably less than the frequency of cleaning the indoor fan 16 (blower fan) by the fan cleaning unit 24.
  • the air conditioner 100 can reduce power consumption.
  • the air conditioner 100 includes an indoor fan with a refrigeration cycle having an indoor heat exchanger 15 (heat exchanger), an indoor fan 16 (blower fan), and a brush 24b (cleaning member).
  • the fan cleaning part 24 which cleans 16 and the control part 30 (refer FIG. 5) are provided.
  • the brush 24b is configured to be able to selectively contact both the indoor heat exchanger 15 and the indoor fan 16.
  • the control unit 30 generates contact water (condensed water) generated by the contact heat control (see step S ⁇ b> 110) that causes the brush 24 b to contact the indoor heat exchanger 15.
  • Operation control see step S120
  • the control unit 30 performs freezing before the fan cleaning unit 24 is brought into contact with the indoor heat exchanger 15 or when the fan cleaning unit 24 is brought into contact with the indoor heat exchanger 15. In the cycle, condensed water is generated by the indoor heat exchanger 15.
  • the cleaning member may be a member such as a sponge instead of the brush 24b.
  • the condensed water (condensed water) generated in the indoor heat exchanger 15 may be water that is once frozen and thawed after adhering to the indoor heat exchanger 15 as frost (or ice). Further, the order of the contact control (see step S110 in FIG. 8) and the generation operation control (see step S120 in FIG. 8) may be reversed as in steps S110a and S120a shown in FIG.
  • control unit 30 performs the drying operation after generating condensed water in the indoor heat exchanger 15 in the refrigeration cycle.
  • the drying operation is performed by a heating operation using the indoor heat exchanger 15 as a condenser or a blowing operation (see step S170).
  • step S170 the control unit 30 preferably performs step S11 of FIG. In step S120a of FIG. 9 or FIG. 9, contact control may be performed on the fan cleaning unit 24 to bring the brush 24b into contact with the indoor heat exchanger 15.
  • the control unit 30 preferably moves the vertical wind direction plate 23. It may be closed or set to a horizontal or higher orientation (see step S150), the indoor fan 16 (air blower fan) is stopped (see step S160), or both.
  • Such an air conditioner 100 performs a drying operation in a state in which the air that has passed through the indoor heat exchanger 15 is strongly blown out from the air outlet h4 (see FIG. 2). Therefore, the air conditioner 100 can suppress the condensed water from leaking outside from the air outlet h4 (see FIG. 2), and can keep the indoor air clean.
  • control unit 30 preferably uses the fan cleaning unit 24 as a gas region or a two-phase region in the indoor heat exchanger 15 when performing a drying operation. It is good to be in contact with the fin f that is in contact with the heat transfer tube g through which the refrigerant flows.
  • Such an air conditioner 100 can efficiently raise the temperature of the fan cleaning unit 24 by the heat transmitted from the fins f.
  • heating operation using the indoor heat exchanger 15 as a condenser in step S170 is performed.
  • the control unit 30 preferably directs the fan cleaning unit 24 toward the indoor heat exchanger 15 in order to easily increase the temperature of the fan cleaning unit 24.
  • Such an air conditioner 100 can increase the temperature of the fan cleaning unit 24 with heat transmitted from the fins f so that, for example, fungi (molds) can be sufficiently killed. Thereby, the air conditioner 100 can keep the fan cleaning part 24 clean.
  • control unit 30 may make the fan cleaning unit 24 not contact the indoor heat exchanger 15 during heating operation, cooling operation, or dehumidifying operation.
  • Such an air conditioner 100 can suppress the movement of dust from the indoor heat exchanger 15 to the fan cleaning unit 24 during the heating operation, the cooling operation, or the dehumidifying operation. The amount can be reduced. Further, the air conditioner 100 can prevent the condensed water (condensed water) generated by the indoor heat exchanger 15 from dripping along the brush 24b, so that the indoor heat can be efficiently generated with the condensed water (condensed water). The exchanger 15 can be cleaned.
  • the fan cleaning unit 24 has a structure that rotates around the shaft 24a. As shown in FIG. 10A, the control unit 30 may set the direction of the fan cleaning unit 24 in the horizontal direction or within a predetermined angle range with respect to the horizontal direction during the heating operation, the cooling operation, or the dehumidifying operation.
  • Such an air conditioner 100 can obtain a relatively good air-conditioning efficiency because it can prevent the flow of the wind flowing into the interior.
  • control unit 30 may set the direction of the fan cleaning unit 24 to be parallel to the wind flow during the heating operation, the cooling operation, or the dehumidifying operation. .
  • Such an air conditioner 100 can obtain a relatively good air-conditioning efficiency because it can prevent the flow of the wind flowing into the interior.
  • the control unit 30 may preferably direct the fan cleaning unit 24 obliquely downward so that the tip of the fan cleaning unit 24 is positioned below.
  • the air conditioner 100 causes the condensed water to flow from the front end side of the fan cleaning unit 24 toward a part of the indoor heat exchanger 15 (for example, the lower part) or the dew receiving tray 18 when the condensed water is generated.
  • the fan cleaning unit 24 can function as a water channel for condensed water.
  • Such an air conditioner 100 can cause the dust attached to the fan cleaning unit 24 to fall together with the dew condensation water by causing the fan cleaning unit 24 to function as a water channel for the dew condensation water. Therefore, the air conditioner 100 can clean the fan cleaning unit 24 efficiently.
  • the frequency of cleaning by bringing the fan cleaning unit 24 into contact with the indoor heat exchanger 15 is preferably less than the frequency of cleaning the indoor fan 16 (blower fan) by the fan cleaning unit 24.
  • Such an air conditioner 100 can suppress the generation frequency of condensed water (condensate) used for cleaning the fan cleaning unit 24. Therefore, the air conditioner 100 can reduce power consumption.
  • step S160 the control unit 30 performs operation control to stop the rotation of the indoor fan 16 (blower fan). Good.
  • the air conditioner 100 performs the heating operation in a state where the rotation of the indoor fan 16 is stopped in step S170, the air exchanged heat is not blown into the room and the indoor comfort is maintained. Can do.
  • control unit 30 may preferably change the cleaning timing of the indoor fan 16 (blower fan) according to the operation time of the indoor fan 16 (blower fan). .
  • control unit 30 may preferably change the cleaning timing of the brush 24 b (cleaning member) according to the operation time of the indoor fan 16 (blower fan).
  • such an air conditioner 100 can automatically change the cleaning timing of the brush 24b (cleaning member), it is possible to improve the cleaning efficiency of the brush 24b (cleaning member). Further, in such an air conditioner 100, for example, the brush 24b is less likely to be stained than the indoor fan 16, and therefore the frequency of cleaning the brush 24b by contacting the indoor heat exchanger 15 causes the indoor fan 16 to be cleaned by the fan cleaning unit.
  • the cleaning timing of the brush 24b can be set so as to be less than the frequency of cleaning at 24. Thereby, the air conditioner 100 can set the frequency which cleans the brush 24b in contact with the indoor heat exchanger 15 to a suitable value.
  • the control unit 30 performs contact control (see step S110 in FIG. 8) for bringing the brush 24b into contact with the indoor heat exchanger 15, thereby removing dust attached to the brush 24b from the brush 24b to the indoor heat exchanger. 15 can be moved.
  • Such an air conditioner 100 can move dust from the brush 24b to the indoor heat exchanger 15 by rubbing the dust adhering to the brush 24b onto the indoor heat exchanger 15. Therefore, the air can be efficiently removed from the brush 24b. Can be removed. Moreover, since the air conditioner 100 can drip the dust which moved to the indoor heat exchanger 15 with the dew condensation water which flows along the indoor heat exchanger 15, it can improve cleaning efficiency. In addition, since the indoor heat exchanger 15 is normally grounded, the air conditioner 100 obtains the effect of removing electricity from the brush 24b (that is, the effect of removing electricity from the brush 24b and making it difficult for dust to adhere to the brush 24b). be able to. As a result, the air conditioner 100 can make it difficult for dust to adhere to the brush 24b, and can easily keep the brush 24b clean.
  • control unit 30 When the control unit 30 performs the operation control that the condensed water adheres to the brush 24b and then rotates the brush 24b, the control unit 30 moves the brush 24b in the downward direction of the shaft portion 24a with respect to the fan cleaning unit 24. Rotate.
  • the condensed water adhering to the brush 24b flows from the tip end side of the brush 24b to the shaft portion 24a side and accumulates in the shaft portion 24a, and drops as a relatively large diameter droplet from the shaft portion 24a. Can be suppressed. Therefore, the air conditioner 100 can suppress the dew condensation water from scattering.
  • the fan cleaning part 24 can be wash
  • FIG. 15 is a flowchart illustrating a cleaning process of the fan cleaning unit 24 of the air conditioner according to the first modification.
  • the cleaning process of the fan cleaning unit 24 shown in FIG. 15 is performed at an arbitrary timing.
  • the air conditioner according to the first modification when the processing of the flow shown in FIG. 8 (or FIG. 9) is performed at a desired timing, the ratio is once every several times.
  • the flow process shown in FIG. 15 may be performed.
  • the processing of the flow shown in FIG. 15 may be performed without performing the processing of the flow shown in FIG. 8 (or FIG. 9).
  • the control unit 30 determines whether or not the cleaning timing of the fan cleaning unit 24 has come (step S1010). If it is determined in step S1010 that it is not the cleaning timing (in the case of “No”), the process ends. On the other hand, when it is determined that the cleaning timing has come (in the case of “Yes”), the process proceeds to step S1020. In this case, the control unit 30 rotates the indoor fan 16 (blower fan) in the direction opposite to the direction rotating during the air conditioning operation (step S1020). And the control part 30 performs the operation
  • the dust attached to the fan cleaning unit 24 is rubbed against the indoor exchanger 15 and dropped by bringing the fan cleaning unit 24 into contact with the indoor exchanger 15 a plurality of times. Can do.
  • the air conditioner 100 according to the first modification since the indoor heat exchanger 15 is grounded, the charge removal effect of the brush 24b (that is, the brush 24b is discharged to make it difficult for dust to adhere to the brush 24b. Effect).
  • the air conditioner 100 according to the first modification can make it difficult for dust to adhere to the brush 24b, and can easily keep the brush 24b clean.
  • the air conditioner 100 which concerns on a 1st modification does not produce
  • the indoor fan 16 (blower fan) is rotated in a direction opposite to the direction rotated during the air conditioning operation (see step S1020).
  • the air conditioner according to the first modified example can suppress dust from rising inside the indoor unit Ui and blowing out the dust from the air outlet h4 into the room.
  • FIG. 16A is a side view of the indoor heat exchanger 15 of the air conditioner according to the second modification.
  • FIG. 16B is an inner view of the indoor heat exchanger 15 of the air conditioner according to the second modification.
  • the air conditioner according to the second modification is provided with slits sl in the fins f of the indoor heat exchanger 15.
  • the slit sl is preferably provided at a location where the brush 24b of the fan cleaning unit 24 abuts when the fan cleaning unit 24 rotates.
  • the slits sl are formed by alternately folding the inner surface portions of the fins f with a width of several millimeters on one surface side and the other surface side of the fins f.
  • interval (fin pitch) of the fins f of the indoor heat exchanger 15 may be wider than the thickness of the hair of the brush 24b of the fan cleaning part 24. Even in such a case, the air conditioner according to the second modification can efficiently bring the brush 24b into contact with the fins f of the indoor heat exchanger 15. Thereby, the air conditioner which concerns on a 2nd modification can wash
  • FIG. 17 is a longitudinal sectional view of an indoor unit UAi of an air conditioner according to a third modification.
  • a groove member M having a concave shape in a longitudinal sectional view is installed below the front side indoor heat exchanger 15a.
  • a rib 28 extending upward from the bottom surface of the groove member M is provided in the groove member M.
  • Other points are the same as in the embodiment.
  • the front portion of the rib 28 functions as a dew receiving portion 18 ⁇ / b> A that receives the condensed water of the indoor heat exchanger 15.
  • the rear portion of the rib 28 functions as a dust receiving portion 29 that receives dust dropped from the indoor heat exchanger 15 and the indoor fan 16.
  • the dust receiver 29 is disposed below the indoor heat exchanger 15.
  • an indoor heat exchanger 15 (a lower part of the front indoor heat exchanger 15 a), and a dust receiving unit 29. More specifically, although illustration is omitted, the indoor heat exchanger 15 and the dust receiving part 29 are present below the contact position when the fan cleaning part 24 is in contact with the indoor fan 16. ing. Even if it is such a structure, the effect similar to above-described embodiment is show
  • the indoor heat exchanger 15 is thawed, water flows down to the dew receiving unit 18A and water also flows down to the dust receiving unit 29. Therefore, there is no possibility that the dust collected in the dust receiving portion 29 will be hindered.
  • the upper end of the rib 28 is not in contact with the front indoor heat exchanger 15a, but the present invention is not limited to this. That is, the upper end of the rib 28 may be in contact with the front indoor heat exchanger 15a.
  • FIG. 18 is a schematic perspective view of the indoor fan 16 and the fan cleaning unit 124A provided in the air conditioner according to the fourth modification.
  • the fan cleaning section 124A is provided with a rod-shaped shaft section 124d parallel to the axial direction of the indoor fan 16, a brush 124e installed on the shaft section 124d, and both ends of the shaft section 124d. And a pair of support portions 124f and 124f to be installed.
  • the fan cleaning unit 124A includes a moving mechanism that moves the fan cleaning unit 124A in the axial direction or the like.
  • the length of the fan cleaning section 124A in the direction parallel to the axial direction (longitudinal direction) of the indoor fan 16 is shorter than the axial length of the indoor fan 16 itself.
  • the axial direction (longitudinal direction) of the indoor fan 16 is the left-right direction when viewed from the front of the indoor unit Ui.
  • the fan cleaning unit 124 ⁇ / b> A moves in the axial direction (longitudinal direction) of the indoor fan 16. That is, in the axial direction of the indoor fan 16, the indoor fan 16 is sequentially cleaned for each predetermined area corresponding to the length of the fan cleaning unit 124A.
  • the manufacturing cost of an air conditioner can be reduced by making it the structure which moves 124 A of fan cleaning parts whose length is comparatively short compared with 1st Embodiment.
  • a rod (not shown) extending in parallel with the shaft portion 124d is provided in the vicinity of the fan cleaning portion 124A (for example, above the shaft portion 124d), and a predetermined moving mechanism (not shown) is provided along the rod.
  • the fan cleaning unit 124A may be moved. Further, after the cleaning by the fan cleaning unit 124A, a moving mechanism (not shown) may appropriately rotate or translate the fan cleaning unit 124A so that the fan cleaning unit 124A is retracted from the indoor fan 16.
  • the control unit 30 when the indoor fan 16 is cleaned, the control unit 30 causes the fan cleaning unit 24 to contact the indoor fan 16 to rotate (reversely rotate) the indoor fan 16 in a direction opposite to that during normal air conditioning operation.
  • the control unit 30 may bring the fan cleaning unit 24 into contact with the indoor fan 16 and rotate the indoor fan 16 in the same direction as during normal air-conditioning operation (forward rotation).
  • the brush 24b is brought into contact with the indoor fan 16 and the indoor fan 16 is rotated in the forward direction, so that dust adhering to the vicinity of the tip of the fan blade 16a is effectively removed. Moreover, since the circuit element for reversely rotating the indoor fan 16 becomes unnecessary, the manufacturing cost of the air conditioner 100 can be reduced. Note that the rotational speed when the indoor fan 16 is normally rotated during cleaning may be any of a low speed region, a medium speed region, and a high speed region, as in the embodiment.
  • the configuration in which the brush 24b rotates around the shaft portion 24a of the fan cleaning unit 24 has been described, but the configuration is not limited thereto.
  • the control unit 30 may move the shaft portion 24 a toward the indoor fan 16 and bring the brush 24 b into contact with the indoor fan 16. Then, after the cleaning of the indoor fan 16 is completed, the control unit 30 may retract the shaft portion 24 a and separate the brush 24 b from the indoor fan 16.
  • the configuration in which the fan cleaning unit 24 includes the brush 24b has been described.
  • the configuration is not limited thereto. That is, a sponge or the like may be used as long as the indoor fan 16 can be cleaned.
  • the present invention is not limited thereto.
  • the region whose height is higher than that of the fan cleaning unit 24 is not the downstream region of the flow of the refrigerant flowing through the indoor heat exchanger 15 (that is, the upstream region or the middle region). ) May be used.
  • a region located downstream of the air flow during normal air-conditioning operation and having a height higher than that of the fan cleaning unit 24 is the indoor heat exchanger.
  • the configuration in which the control unit 30 contacts the brush 24b of the fan cleaning unit 24 with the indoor fan 16 during cleaning of the indoor fan 16 is not limited thereto. That is, during cleaning of the indoor fan 16, the control unit 30 may bring the brush 24 b of the fan cleaning unit 24 close to the indoor fan 16. More specifically, the control unit 30 brings the brush 24b close to the indoor fan 16 to such an extent that dust accumulated at the tip of the fan blade 16a and growing to the outside in the radial direction from the tip can be removed. Even with such a configuration, dust accumulated in the indoor fan 16 can be appropriately removed.
  • the indoor heat exchanger 15 may be condensed, and the indoor heat exchanger 15 may be washed with the condensed water (condensed water).
  • the control unit 30 calculates the dew point of the room air based on the temperature of the room air and the relative humidity. And the control part 30 controls the opening degree etc. of the expansion valve 14 so that the temperature of the indoor heat exchanger 15 is below the above-mentioned dew point, and becomes higher than predetermined freezing temperature.
  • the above “freezing temperature” is a temperature at which moisture contained in the indoor air starts to freeze in the indoor heat exchanger 15 when the temperature of the indoor air is lowered. By condensing the indoor heat exchanger 15 in this way, the dust in the indoor heat exchanger 15 can be washed away with the condensed water (condensed water).
  • control unit 30 may condense the indoor heat exchanger 15 by performing a cooling operation or a dehumidifying operation and wash the indoor heat exchanger 15 with the condensed water (condensed water).
  • embodiment demonstrated the structure in which the indoor heat exchanger 15 and the dew tray 18 exist below the fan cleaning part 24, it is not restricted to this. That is, a configuration in which at least one of the indoor heat exchanger 15 and the dew receiving tray 18 exists below the fan cleaning unit 24 may be employed.
  • the dew pan 18 may exist below (directly below) the fan cleaning unit 24.
  • the present invention is not limited thereto. That is, a configuration in which at least one of the indoor heat exchanger 15 and the dust receiving part 29 exists below the fan cleaning part 24 may be employed.
  • the present invention is not limited thereto. That is, a plurality of indoor units connected in parallel may be provided, or a plurality of outdoor units connected in parallel may be provided.
  • the wall-mounted air conditioner 100 has been described, but the present invention can also be applied to other types of air conditioners.
  • the present invention can also be applied to a case where the air conditioner 100 does not have a function of executing the freezing / thawing operation of the indoor heat exchanger 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

This air conditioner is provided with: a heat exchanger (indoor heat exchanger (15)); a fan cleaning part (24) that cleans a blower fan (indoor fan (16)); and a control unit (30) that causes the fan cleaning part to selectively come into contact with both the heat exchanger and the blower fan. The control unit causes the heat exchanger to generate dew condensation water in a refrigeration cycle, before the fan cleaning part comes into contact with the heat exchanger or while the fan cleaning part is in contact with the heat exchanger.

Description

空気調和機Air conditioner
 本発明は、空気調和機に関する。 The present invention relates to an air conditioner.
 空気調和機の送風ファン(室内ファン)を清掃するファン清掃部として、例えば、特許文献1には、「ファンの塵埃を除去するためのファン清掃装置」が記載されている。特許文献1に記載の空気調和機は、ファン清掃部を送風ファンに接触させることにより、送風ファンの清掃を行う構造になっている。 As a fan cleaning unit that cleans a blower fan (indoor fan) of an air conditioner, for example, Patent Document 1 describes a “fan cleaning device for removing dust from a fan”. The air conditioner described in Patent Document 1 has a structure in which the blower fan is cleaned by bringing the fan cleaning unit into contact with the blower fan.
特開2007-71210号公報JP 2007-71210 A
 特許文献1に記載の従来の空気調和機では、送風ファンの清掃を行う度にファン清掃部に塵埃が付着するが、その塵埃の除去は清掃員の人手によって専ら行われていた。そのため、従来の空気調和機は、ファン清掃部を効率よく洗浄する機能を付加されることが望まれていた。 In the conventional air conditioner described in Patent Document 1, dust adheres to the fan cleaning section every time the blower fan is cleaned, but the removal of the dust has been performed exclusively by the hands of the cleaner. Therefore, the conventional air conditioner has been desired to have a function of efficiently cleaning the fan cleaning unit.
 そこで、本発明は、ファン清掃部を効率よく洗浄する空気調和機を提供することを課題とする。 Therefore, an object of the present invention is to provide an air conditioner that efficiently cleans a fan cleaning section.
 前記課題を解決するために、本発明に係る空気調和機は、熱交換器を有する冷凍サイクルと、送風ファンと、前記送風ファンを清掃するファン清掃部と、前記ファン清掃部を前記送風ファンと前記熱交換器の双方に選択的に接触させる制御部と、を備え、前記制御部は、前記ファン清掃部を前記熱交換器に接触させる前、又は、前記ファン清掃部を前記熱交換器に接触させている時に、前記冷凍サイクルに前記熱交換器で結露水を生成させる構成とする。 In order to solve the above problems, an air conditioner according to the present invention includes a refrigeration cycle having a heat exchanger, a blower fan, a fan cleaning unit that cleans the blower fan, and the fan cleaning unit as the blower fan. A controller that selectively contacts both of the heat exchangers, the controller before contacting the fan cleaning unit with the heat exchanger, or the fan cleaning unit to the heat exchanger. It is set as the structure which produces | generates dew condensation water with the said heat exchanger to the said refrigeration cycle when making it contact.
 また、本発明に係る空気調和機は、熱交換器を有する冷凍サイクルと、送風ファンと、前記送風ファンを清掃するファン清掃部と、前記ファン清掃部を前記送風ファンと前記熱交換器の双方に選択的に接触させる制御部と、を備え、前記制御部は、前記ファン清掃部が前記熱交換器に接触する角度を含む範囲で、前記ファン清掃部を回転させる動作を複数回行う構成とする。 The air conditioner according to the present invention includes a refrigeration cycle having a heat exchanger, a blower fan, a fan cleaning unit for cleaning the blower fan, and the fan cleaning unit for both the blower fan and the heat exchanger. A control unit that selectively contacts the heat exchanger, and the control unit performs an operation of rotating the fan cleaning unit a plurality of times within a range including an angle at which the fan cleaning unit contacts the heat exchanger. To do.
 本発明によれば、ファン清掃部を効率よく洗浄する空気調和機を提供できる。 According to the present invention, an air conditioner that efficiently cleans the fan cleaning section can be provided.
本発明の実施形態に係る空気調和機の冷媒回路の説明図である。It is explanatory drawing of the refrigerant circuit of the air conditioner which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和機が備える室内機の縦断面図である。It is a longitudinal cross-sectional view of the indoor unit with which the air conditioner which concerns on embodiment of this invention is provided. 発明の実施形態に係る空気調和機が備える室内機の一部を切り欠いた斜視図である。It is the perspective view which notched some indoor units with which the air harmony machine concerning an embodiment of the invention is provided. 本発明の実施形態に係る空気調和機において、空調運転中におけるファン清掃部付近の空気の流れを示す説明図である。In the air conditioner which concerns on embodiment of this invention, it is explanatory drawing which shows the flow of the air of the fan cleaning part vicinity during an air conditioning driving | operation. 本発明の実施形態に係る空気調和機の機能ブロック図である。It is a functional block diagram of the air conditioner concerning the embodiment of the present invention. 本発明の実施形態に係る空気調和機の制御部が実行する室内ファンの清掃処理を示すフローチャートである。It is a flowchart which shows the cleaning process of the indoor fan which the control part of the air conditioner which concerns on embodiment of this invention performs. 本発明の実施形態に係る空気調和機において、室内ファンの清掃中の状態を示す説明図である。In an air harmony machine concerning an embodiment of the present invention, it is an explanatory view showing a state under cleaning of an indoor fan. 本発明の実施形態に係る空気調和機において、運転時の清掃部材の配置例を示す説明図である。In an air harmony machine concerning an embodiment of the present invention, it is an explanatory view showing an example of arrangement of a cleaning member at the time of operation. 本発明の実施形態に係る空気調和機の制御部が実行する清掃部材の清掃処理を示すフローチャートである。It is a flowchart which shows the cleaning process of the cleaning member which the control part of the air conditioner which concerns on embodiment of this invention performs. 本発明の実施形態に係る空気調和機の制御部が実行する清掃部材の別の清掃処理を示すフローチャートである。It is a flowchart which shows another cleaning process of the cleaning member which the control part of the air conditioner which concerns on embodiment of this invention performs. 空調運転が行われる場合における清掃部材の向きの一例を示す説明図(1)である。It is explanatory drawing (1) which shows an example of direction of the cleaning member in the case of performing an air-conditioning driving | operation. 空調運転が行われる場合における清掃部材の向きの別の例を示す説明図(2)である。It is explanatory drawing (2) which shows another example of direction of the cleaning member in the case of air-conditioning driving | operation. 空調運転が行われる場合における清掃部材の向きのさらに別の例を示す説明図である。It is explanatory drawing which shows another example of direction of the cleaning member in the case where an air-conditioning driving | operation is performed. 冷房運転時又は除湿運転が行われる場合の清掃部材の向きを示す説明図である。It is explanatory drawing which shows direction of the cleaning member at the time of a cooling operation or when a dehumidification operation is performed. 送風ファンの清掃タイミングを変更する場合の動作例を示すフローチャートである。It is a flowchart which shows the operation example in the case of changing the cleaning timing of a ventilation fan. 清掃部材の清掃タイミングを変更する場合の動作例を示すフローチャートである。It is a flowchart which shows the operation example in the case of changing the cleaning timing of the cleaning member. 本発明の第1変形例に係る空気調和機のファン清掃部の清掃処理を示すフローチャートである。It is a flowchart which shows the cleaning process of the fan cleaning part of the air conditioner which concerns on the 1st modification of this invention. 本発明の第2変形例に係る空気調和機の室内熱交換器の側面図である。It is a side view of the indoor heat exchanger of the air conditioner which concerns on the 2nd modification of this invention. 本発明の第2変形例に係る空気調和機の室内熱交換器の内面図である。It is an inner surface figure of the indoor heat exchanger of the air conditioner which concerns on the 2nd modification of this invention. 本発明の第3変形例に係る空気調和機が備える室内機の縦断面図である。It is a longitudinal cross-sectional view of the indoor unit with which the air conditioner which concerns on the 3rd modification of this invention is provided. 本発明の第4変形例に係る空気調和機が備える室内ファン及びファン清掃部の模式的な斜視図である。It is a typical perspective view of the indoor fan and fan cleaning part with which the air harmony machine concerning the 4th modification of the present invention is provided.
≪実施形態≫
<空気調和機の構成>
 図1は、実施形態に係る空気調和機100の冷媒回路Qの説明図である。本実施形態では、空気調和機100が室内熱交換器15の凍結・解凍運転を実行する機能を有する場合を想定して説明する。しかしながら、本発明は、空気調和機100が室内熱交換器15の凍結・解凍運転を実行する機能を有していない場合にも適用することができる。なお、「凍結・解凍運転」とは、熱交換器の温度を下げる運転を行って熱交換器のフィンの表面に霜(若しくは氷)を付着させ、その後に、熱交換器の温度を上げる運転を行って霜を解凍し、解凍された結露水(凝縮水)が落下する勢いを利用して熱交換器に付着した塵埃を流し落とす運転である。
 なお、図1の実線矢印は、暖房運転時における冷媒の流れを示している。
 また、図1の破線矢印は、冷房運転時における冷媒の流れを示している。
 図1に示すように、空気調和機100は、圧縮機11と、室外熱交換器12と、室外ファン13と、膨張弁14と、を備えている。また、空気調和機100は、前記した構成の他に、室内ファン16と、四方弁17と、を備えている。
<Embodiment>
<Configuration of air conditioner>
Drawing 1 is an explanatory view of refrigerant circuit Q of air harmony machine 100 concerning an embodiment. In this embodiment, the case where the air conditioner 100 has a function of performing the freezing / thawing operation of the indoor heat exchanger 15 will be described. However, the present invention can also be applied to a case where the air conditioner 100 does not have a function of executing the freezing / thawing operation of the indoor heat exchanger 15. The "freezing / thawing operation" is an operation that lowers the temperature of the heat exchanger, attaches frost (or ice) to the surface of the fins of the heat exchanger, and then increases the temperature of the heat exchanger. The frost is thawed and the dew condensed water (condensed water) is used to drop to remove the dust adhering to the heat exchanger.
In addition, the solid line arrow of FIG. 1 has shown the flow of the refrigerant | coolant at the time of heating operation.
Moreover, the broken line arrow of FIG. 1 has shown the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation.
As shown in FIG. 1, the air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13, and an expansion valve 14. The air conditioner 100 includes an indoor fan 16 and a four-way valve 17 in addition to the above-described configuration.
 圧縮機11は、圧縮機モータ11aの駆動によって、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器である。
 室外熱交換器12は、その伝熱管(図示せず)を通流する冷媒と、室外ファン13から送り込まれる外気と、の間で熱交換が行われる熱交換器である。
The compressor 11 is a device that compresses a low-temperature and low-pressure gas refrigerant by driving the compressor motor 11a and discharges it as a high-temperature and high-pressure gas refrigerant.
The outdoor heat exchanger 12 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 13.
 室外ファン13は、室外ファンモータ13aの駆動によって、室外熱交換器12に外気を送り込むファンであり、室外熱交換器12の付近に設置されている。
 膨張弁14は、「凝縮器」(室外熱交換器12及び室内熱交換器15の一方)で凝縮した冷媒を減圧する弁である。なお、膨張弁14において減圧された冷媒は、「蒸発器」(室外熱交換器12及び室内熱交換器15の他方)に導かれる。
The outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12 by driving of the outdoor fan motor 13 a, and is installed in the vicinity of the outdoor heat exchanger 12.
The expansion valve 14 is a valve that decompresses the refrigerant condensed in the “condenser” (one of the outdoor heat exchanger 12 and the indoor heat exchanger 15). The refrigerant decompressed by the expansion valve 14 is guided to an “evaporator” (the other of the outdoor heat exchanger 12 and the indoor heat exchanger 15).
 室内熱交換器15は、その伝熱管g(図2参照)を通流する冷媒と、室内ファン16から送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。
 室内ファン16は、室内ファンモータ16c(図5参照)の駆動によって、室内熱交換器15に室内空気を送り込むファンであり、室内熱交換器15の付近に設置されている。より詳しく説明すると、室内ファン16が正回転している場合の空気の流れにおいて、室内ファン16は室内熱交換器15の下流側に設置されている。
The indoor heat exchanger 15 performs heat exchange between the refrigerant flowing through the heat transfer tube g (see FIG. 2) and the indoor air sent from the indoor fan 16 (air in the air-conditioning target space). It is a vessel.
The indoor fan 16 is a fan that sends room air into the indoor heat exchanger 15 by driving an indoor fan motor 16c (see FIG. 5), and is installed in the vicinity of the indoor heat exchanger 15. More specifically, the indoor fan 16 is installed on the downstream side of the indoor heat exchanger 15 in the air flow when the indoor fan 16 is rotating forward.
 四方弁17は、空気調和機100の運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房運転時(図1の破線矢印を参照)には、圧縮機11、室外熱交換器12(凝縮器)、膨張弁14、及び室内熱交換器15(蒸発器)が、四方弁17を介して環状に順次接続されてなる冷媒回路Qにおいて、冷凍サイクルで冷媒が循環する。 The four-way valve 17 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100. For example, during the cooling operation (see the broken line arrow in FIG. 1), the compressor 11, the outdoor heat exchanger 12 (condenser), the expansion valve 14, and the indoor heat exchanger 15 (evaporator) are replaced with the four-way valve 17. In the refrigerant circuit Q that is sequentially connected in an annular manner through the refrigerant, the refrigerant circulates in the refrigeration cycle.
 一方、暖房運転時(図1の実線矢印を参照)には、圧縮機11、室内熱交換器15(凝縮器)、膨張弁14、及び室外熱交換器12(蒸発器)が、四方弁17を介して環状に順次接続されてなる冷媒回路Qにおいて、冷凍サイクルで冷媒が循環する。 On the other hand, during the heating operation (see the solid line arrow in FIG. 1), the compressor 11, the indoor heat exchanger 15 (condenser), the expansion valve 14, and the outdoor heat exchanger 12 (evaporator) are replaced by the four-way valve 17. In the refrigerant circuit Q that is sequentially connected in an annular manner through the refrigerant, the refrigerant circulates in the refrigeration cycle.
 なお、図1に示す例では、圧縮機11、室外熱交換器12、室外ファン13、膨張弁14、及び四方弁17が、室外機Uoに設置されている。一方、室内熱交換器15及び室内ファン16は、室内機Uiに設置されている。 In addition, in the example shown in FIG. 1, the compressor 11, the outdoor heat exchanger 12, the outdoor fan 13, the expansion valve 14, and the four-way valve 17 are installed in the outdoor unit Uo. On the other hand, the indoor heat exchanger 15 and the indoor fan 16 are installed in the indoor unit Ui.
 図2は、室内機Uiの縦断面図である。
 なお、図2では、ファン清掃部24による室内ファン16の清掃が行われていない状態を図示している。室内機Uiは、前記した室内熱交換器15や室内ファン16の他に、露受皿18と、筐体ベース19と、フィルタ20a,20bと、前面パネル21と、左右風向板22と、上下風向板23と、ファン清掃部24と、を備えている。
FIG. 2 is a longitudinal sectional view of the indoor unit Ui.
FIG. 2 illustrates a state where the indoor fan 16 is not cleaned by the fan cleaning unit 24. In addition to the indoor heat exchanger 15 and the indoor fan 16, the indoor unit Ui includes a dew tray 18, a housing base 19, filters 20 a and 20 b, a front panel 21, left and right wind direction plates 22, and up and down wind directions. A plate 23 and a fan cleaning unit 24 are provided.
 室内熱交換器15は、複数のフィンfと、それらのフィンfを貫通する複数の伝熱管gと、を有している。また、別の観点から説明すると、室内熱交換器15は、前側室内熱交換器15aと、後側室内熱交換器15bと、を有している。前側室内熱交換器15aは、室内ファン16の前側に配置されている。一方、後側室内熱交換器15bは、室内ファン16の後側に配置されている。そして、前側室内熱交換器15aの上端部と、後側室内熱交換器15bの上端部と、が接続されている。 The indoor heat exchanger 15 has a plurality of fins f and a plurality of heat transfer tubes g penetrating the fins f. Moreover, if it demonstrates from another viewpoint, the indoor heat exchanger 15 has the front side indoor heat exchanger 15a and the back side indoor heat exchanger 15b. The front indoor heat exchanger 15 a is disposed on the front side of the indoor fan 16. On the other hand, the rear indoor heat exchanger 15 b is disposed on the rear side of the indoor fan 16. And the upper end part of the front side indoor heat exchanger 15a and the upper end part of the rear side indoor heat exchanger 15b are connected.
 露受皿18は、室内熱交換器15の凝縮水を受けるものであり、室内熱交換器15(図2に示す例では、前側室内熱交換器15a)の下方に配置されている。なお、後側室内熱交換器15bの下方には筐体ベース19と一体に設けられた露受皿が配置されている。 The dew receiving tray 18 receives the condensed water of the indoor heat exchanger 15, and is disposed below the indoor heat exchanger 15 (the front indoor heat exchanger 15a in the example shown in FIG. 2). A dew tray provided integrally with the housing base 19 is disposed below the rear indoor heat exchanger 15b.
 室内ファン16は、例えば、円筒状のクロスフローファンであり、室内熱交換器15の付近に配置されている。室内ファン16は、複数のファンブレード16aと、これらのファンブレード16aが設置される仕切板16bと、駆動源である室内ファンモータ16c
(図5参照)と、を備えている。
The indoor fan 16 is, for example, a cylindrical cross flow fan, and is disposed in the vicinity of the indoor heat exchanger 15. The indoor fan 16 includes a plurality of fan blades 16a, a partition plate 16b on which these fan blades 16a are installed, and an indoor fan motor 16c as a drive source.
(See FIG. 5).
 なお、室内ファン16は、親水性のコーティング剤でコーティングされていることが好ましい。このようなコーティング材として、例えば、親水性材料であるイソプロピルアルコール分散シリカゾルに、バインダー(加水分解性基を有するケイ素化合物)、ブタノール、テトラヒドロフラン、及び抗菌剤を添加したものを用いてもよい。 The indoor fan 16 is preferably coated with a hydrophilic coating agent. As such a coating material, for example, a material obtained by adding a binder (silicon compound having a hydrolyzable group), butanol, tetrahydrofuran, and an antibacterial agent to isopropyl alcohol-dispersed silica sol which is a hydrophilic material may be used.
 これによって、室内ファン16の表面に親水性膜が形成されるため、室内ファン16の表面の電気抵抗値が小さくなり、室内ファン16に塵埃が付着しにくくなる。つまり、室内ファン16の駆動中、空気との摩擦に伴う静電気が室内ファン16の表面に生じにくくなるため、室内ファン16への塵埃の付着を抑制できる。このように、前記したコーティング剤は、室内ファン16の帯電防止剤としても機能する。 Thereby, since a hydrophilic film is formed on the surface of the indoor fan 16, the electrical resistance value on the surface of the indoor fan 16 is reduced, and dust is less likely to adhere to the indoor fan 16. In other words, static electricity associated with friction with air is less likely to be generated on the surface of the indoor fan 16 while the indoor fan 16 is being driven, so that the adhesion of dust to the indoor fan 16 can be suppressed. Thus, the coating agent described above also functions as an antistatic agent for the indoor fan 16.
 図2に示す筐体ベース19は、室内熱交換器15や室内ファン16等の機器が設置される筐体である。
 フィルタ20aは、前側の空気吸込口h1に向かう空気から塵埃を除去するものであり、室内熱交換器15の前側に設置されている。
 フィルタ20bは、上側の空気吸込口h2に向かう空気から塵埃を除去するものであり、室内熱交換器15の上側に設置されている。
The housing base 19 shown in FIG. 2 is a housing in which devices such as the indoor heat exchanger 15 and the indoor fan 16 are installed.
The filter 20 a is for removing dust from the air toward the front air inlet h <b> 1 and is installed on the front side of the indoor heat exchanger 15.
The filter 20b removes dust from the air toward the upper air suction port h2, and is installed on the upper side of the indoor heat exchanger 15.
 前面パネル21は、前側のフィルタ20aを覆うように設置されるパネルであり、下端を軸として前側に回動可能になっている。なお、前面パネル21が回動しない構成であってもよい。 The front panel 21 is a panel installed so as to cover the filter 20a on the front side, and is rotatable to the front side with the lower end as an axis. The front panel 21 may be configured not to rotate.
 左右風向板22は、室内ファン16の回転に伴って室内に吹き出される空気の左右方向の流れを調整する板状部材である。左右風向板22は、吹出風路h3に配置され、左右風向板用モータ25(図5参照)によって左右方向に回動するようになっている。
 上下風向板23は、室内ファン16の回転に伴って室内に吹き出される空気の上下方向の流れを調整する板状部材である。上下風向板23は、空気吹出口h4の付近に配置され、上下風向板用モータ26(図5参照)によって上下方向に回動するようになっている。
The left / right airflow direction plate 22 is a plate-like member that adjusts the flow in the left / right direction of the air blown into the room as the indoor fan 16 rotates. The left and right wind direction plates 22 are disposed in the blowing air path h3 and are rotated in the left and right directions by a left and right wind direction plate motor 25 (see FIG. 5).
The vertical wind direction plate 23 is a plate-like member that adjusts the vertical flow of air blown into the room as the indoor fan 16 rotates. The vertical wind direction plate 23 is disposed in the vicinity of the air outlet h4, and is rotated in the vertical direction by the vertical wind direction plate motor 26 (see FIG. 5).
 空気吸込口h1,h2を介して吸い込まれた空気は、室内熱交換器15の伝熱管gを通流する冷媒と熱交換し、熱交換した空気が吹出風路h3に導かれる。この吹出風路h3を通流する空気は、左右風向板22及び上下風向板23によって所定方向に導かれ、さらに、空気吹出口h4を介して室内に吹き出される。 The air sucked through the air suction ports h1 and h2 exchanges heat with the refrigerant flowing through the heat transfer tube g of the indoor heat exchanger 15, and the heat-exchanged air is guided to the blowout air path h3. The air flowing through the blowout air path h3 is guided in a predetermined direction by the left and right airflow direction plates 22 and the vertical airflow direction plate 23, and further blown out into the room through the air outlet h4.
 なお、空気の流れに伴って空気吸込口h1,h2に向かう塵埃の多くは、フィルタ20a,20bで捕集される。しかしながら、細かい塵埃がフィルタ20a,20bを通り抜けて、室内熱交換器15や室内ファン16に付着することがある。したがって、室内熱交換器15や室内ファン16を定期的に清掃することが望ましい。そこで、本実施形態では、次に説明するファン清掃部24を用いて室内ファン16を清掃した後、室内熱交換器15を水で洗い流すようにしている。 Note that most of the dust traveling toward the air suction ports h1 and h2 along with the air flow is collected by the filters 20a and 20b. However, fine dust may pass through the filters 20 a and 20 b and adhere to the indoor heat exchanger 15 and the indoor fan 16. Therefore, it is desirable to periodically clean the indoor heat exchanger 15 and the indoor fan 16. Therefore, in the present embodiment, the indoor heat exchanger 15 is washed away with water after the indoor fan 16 is cleaned using the fan cleaning unit 24 described below.
 図2に示すファン清掃部24は、室内ファン16を清掃するものであり、室内熱交換器15と室内ファン16との間に配置されている。より詳しく説明すると、縦断面視で<字状を呈する前側室内熱交換器15aの凹部rに、ファン清掃部24が配置されている。図2に示す例では、ファン清掃部24の下方に、室内熱交換器15(前側室内熱交換器15aの下部)が存在するとともに、露受皿18が存在している。 The fan cleaning unit 24 shown in FIG. 2 cleans the indoor fan 16 and is disposed between the indoor heat exchanger 15 and the indoor fan 16. More specifically, the fan cleaning unit 24 is disposed in the recess r of the front indoor heat exchanger 15a that has a <shape when viewed in a longitudinal section. In the example shown in FIG. 2, an indoor heat exchanger 15 (a lower portion of the front indoor heat exchanger 15 a) is present below the fan cleaning unit 24, and a dew tray 18 is present.
 図3は、室内機Uiの一部を切り欠いた斜視図である。
 ファン清掃部24は、図3に示す軸部24a及びブラシ24bの他に、ファン清掃用モータ24c(図5参照)を備えている。軸部24aは、室内ファン16の軸方向に平行な棒状の部材であり、その両端が軸支されている。
FIG. 3 is a perspective view in which a part of the indoor unit Ui is cut away.
The fan cleaning unit 24 includes a fan cleaning motor 24c (see FIG. 5) in addition to the shaft portion 24a and the brush 24b shown in FIG. The shaft portion 24a is a rod-like member parallel to the axial direction of the indoor fan 16, and both ends thereof are pivotally supported.
 ブラシ24bは、ファンブレード16aに付着した塵埃を除去する清掃部材であり、軸部24aに設置されている。本実施形態では、清掃部材がブラシ24bで構成されているものとして説明する。しかしながら、清掃部材は、ブラシ24bに限らず、他の物品(例えば、スポンジ等)で構成することもできる。ファン清掃用モータ24c(図5参照)は、例えば、ステッピングモータであり、軸部24aを所定角度だけ回転させる機能を有している。ただし、ファン清掃用モータ24c(図5参照)は、軸部24aを360°回転させるようにしてもよい。 The brush 24b is a cleaning member that removes dust adhering to the fan blade 16a, and is installed on the shaft portion 24a. In the present embodiment, the cleaning member is assumed to be configured by the brush 24b. However, the cleaning member is not limited to the brush 24b, and may be formed of other articles (for example, a sponge or the like). The fan cleaning motor 24c (see FIG. 5) is a stepping motor, for example, and has a function of rotating the shaft portion 24a by a predetermined angle. However, the fan cleaning motor 24c (see FIG. 5) may rotate the shaft portion 24a by 360 °.
 ブラシ24bの長さは、軸部24aの中心から室内熱交換器15までの最短距離と軸部24aの中心から室内ファン16までの最短距離とのうち、いずれか長い方よりも長くなっている。そして、ブラシ24bは、軸部24aが回転することにより、室内熱交換器15と室内ファン16との双方に選択的に当接(接触)することが可能な構成になっている。 The length of the brush 24b is longer than the longer one of the shortest distance from the center of the shaft portion 24a to the indoor heat exchanger 15 and the shortest distance from the center of the shaft portion 24a to the indoor fan 16. . The brush 24b is configured to be able to selectively contact (contact) both the indoor heat exchanger 15 and the indoor fan 16 as the shaft portion 24a rotates.
 ファン清掃部24によって室内ファン16を清掃する際には、室内ファン16にブラシ24bが接触するように(図7A参照)、ファン清掃用モータ24c(図5参照)が駆動されるとともに、室内ファン16が逆回転される。そして、ファン清掃部24による室内ファン16の清掃が終了すると、ファン清掃用モータ24cが再び駆動されてブラシ24bが回動し、室内ファン16からブラシ24bが離間した状態になる(図2参照)。 When the indoor fan 16 is cleaned by the fan cleaning unit 24, the fan cleaning motor 24c (see FIG. 5) is driven and the indoor fan so that the brush 24b contacts the indoor fan 16 (see FIG. 7A). 16 is reversely rotated. When the cleaning of the indoor fan 16 by the fan cleaning unit 24 is completed, the fan cleaning motor 24c is driven again, the brush 24b is rotated, and the brush 24b is separated from the indoor fan 16 (see FIG. 2). .
 なお、本実施形態では、室内機Ui(図1参照)は、例えば凍結・解凍運転や冷房運転のような、ブラシ24bに結露水(凝縮水)が付着する運転を行った場合に、軸部24aの下回り方向(図2に示す矢印A1の方向)にブラシ24bを回転させる構成になっている。つまり、室内機Ui(図1参照)は、冷凍サイクルに室内熱交換器15で結露水を生成させた後、軸部24aの下回り方向(図2に示す矢印A1の方向)にブラシ24bを回転させる構成になっている。これは、露受皿18の奥行き幅が比較的短いため、ブラシ24bに付着した結露水(凝縮水)が滴下する際に飛散し難くするためである。つまり、仮に、軸部24aの上回り方向にブラシ24bを回転させた場合に、ブラシ24bに付着した結露水(凝縮水)は、ブラシ24bの先端側から軸部24a側に流れて軸部24aに溜まり、比較的大径の滴となって軸部24aから滴下する。この場合に滴下した結露水(凝縮水)は、飛散し易くなる。そこで、室内機Ui(図1参照)は、結露水(凝縮水)が飛散することを抑制するために、ブラシ24bに結露水(凝縮水)が付着する運転を行った場合に、軸部24aの下回り方向(図2に示す矢印A1の方向)にブラシ24bを回転させる構成になっている。 In the present embodiment, the indoor unit Ui (see FIG. 1) has a shaft portion when an operation in which condensed water (condensed water) adheres to the brush 24b, such as a freezing / thawing operation or a cooling operation, is performed. The brush 24b is rotated in the downward direction of 24a (the direction of arrow A1 shown in FIG. 2). That is, the indoor unit Ui (see FIG. 1) rotates the brush 24b in the downward direction of the shaft portion 24a (the direction of the arrow A1 shown in FIG. 2) after the condensed water is generated by the indoor heat exchanger 15 in the refrigeration cycle. It has a configuration to let you. This is because the depth width of the dew tray 18 is relatively short, so that the condensed water (condensed water) adhering to the brush 24b is less likely to scatter when dripping. That is, if the brush 24b is rotated in the upward direction of the shaft portion 24a, the condensed water (condensed water) adhering to the brush 24b flows from the tip side of the brush 24b to the shaft portion 24a side and flows into the shaft portion 24a. It collects and drops from the shaft portion 24a as a relatively large droplet. In this case, the condensed water (condensed water) dripped easily becomes scattered. Therefore, the indoor unit Ui (see FIG. 1) has a shaft portion 24a when the operation is performed in which the condensed water (condensed water) adheres to the brush 24b in order to prevent the condensed water (condensed water) from scattering. The brush 24b is rotated in the downward direction (the direction of the arrow A1 shown in FIG. 2).
 このような構成は、以下の長所を得ることもできる。すなわち、この構成では、ブラシ24bに付着した結露水(凝縮水)は、ブラシ24bの軸部24a側から先端側に流れて、ブラシ24bの先端から滴下する。このとき、結露水(凝縮水)は、ブラシ24bに付着した塵埃と一緒に滴下する。そのため、室内機Ui(図1参照)は、ブラシ24bから塵埃を効率よく除去することができる。 Such a configuration can also obtain the following advantages. That is, in this configuration, condensed water (condensed water) adhering to the brush 24b flows from the shaft 24a side to the tip side of the brush 24b and drops from the tip of the brush 24b. At this time, condensed water (condensed water) is dripped together with dust attached to the brush 24b. Therefore, the indoor unit Ui (see FIG. 1) can efficiently remove dust from the brush 24b.
 本実施形態では、室内ファン16の清掃時以外では、図2に示すように、ブラシ24bの先端が室内熱交換器15に臨むようにして、ブラシ24bの先端が前側室内熱交換器15aに接触するように、さらに好ましくは、ブラシ24bの先端が前側室内熱交換器15aの隙間に入り込むようにする。具体的には、室内ファン16の清掃時以外(通常の空調運転中も含む)では、ブラシ24bが横方向(略水平)に向いた状態で、室内ファン16
から離間している。このようにファン清掃部24を配置する理由について、図4を用いて説明する。
In this embodiment, except when cleaning the indoor fan 16, as shown in FIG. 2, the tip of the brush 24b faces the indoor heat exchanger 15 so that the tip of the brush 24b contacts the front indoor heat exchanger 15a. More preferably, the tip of the brush 24b enters the gap in the front indoor heat exchanger 15a. Specifically, the indoor fan 16 is in a state where the brush 24b is oriented in the lateral direction (substantially horizontal) except when the indoor fan 16 is being cleaned (including during normal air conditioning operation).
It is away from. The reason why the fan cleaning unit 24 is arranged in this way will be described with reference to FIG.
 図4は、空調運転中におけるファン清掃部24付近の空気の流れを示す説明図である。
 なお、図4に示す各矢印の向きは、空気の流れる向きを示している。また、各矢印の長さは、空気の流れる速さを示している。
 通常の空調運転時、室内ファン16は正回転し、前側室内熱交換器15aのフィンfの隙間を通り抜けた空気が室内ファン16に向かう。特に、前側室内熱交換器15aの凹部rの付近では、図4に示すように、室内ファン16に向かって横方向(略水平の方向)に空気が流れる。
FIG. 4 is an explanatory diagram showing the air flow in the vicinity of the fan cleaning unit 24 during the air conditioning operation.
In addition, the direction of each arrow shown in FIG. 4 has shown the direction through which air flows. The length of each arrow indicates the speed of air flow.
During normal air conditioning operation, the indoor fan 16 rotates forward, and the air that has passed through the gaps between the fins f of the front indoor heat exchanger 15a is directed to the indoor fan 16. In particular, in the vicinity of the recess r of the front indoor heat exchanger 15a, air flows laterally (substantially horizontal) toward the indoor fan 16, as shown in FIG.
 この凹部rには、前記したように、ブラシ24bが横方向に向いた状態で、ファン清掃部24が配置されている。言い換えると、通常の空調運転時、ブラシ24bの向きは空気の流れの方向に平行になっている。このように、ブラシ24bの延在方向と、空気の流れる方向と、が略平行であるため、ファン清掃部24が空気の流れの妨げになることはほとんどない。 As described above, the fan cleaning unit 24 is disposed in the recess r with the brush 24b facing in the lateral direction. In other words, during normal air conditioning operation, the direction of the brush 24b is parallel to the direction of air flow. Thus, since the extending direction of the brush 24b and the direction in which air flows are substantially parallel, the fan cleaning unit 24 hardly interferes with the air flow.
 また、室内ファン16が正回転している場合の空気の流れの中流域・下流域(図2に示す空気吹出口h4の付近)ではなく、上流域にファン清掃部24が配置されている。そして、ブラシ24bに沿って横方向に通流する空気が、ファンブレード16aによって加速され、加速された空気が空気吹出口h4(図2参照)に向かうようになっている。このように、空気が比較的低速で流れる上流域にファン清掃部24が配置されているため、ファン清掃部24に起因する風量低下を抑制できる。なお、室内ファン16が停止しているときにも、図4と同様の状態でファン清掃部24が維持されてもよい。 Further, the fan cleaning unit 24 is arranged in the upstream area, not in the middle or downstream area (near the air outlet h4 shown in FIG. 2) of the air flow when the indoor fan 16 is rotating forward. The air flowing in the lateral direction along the brush 24b is accelerated by the fan blade 16a, and the accelerated air is directed to the air outlet h4 (see FIG. 2). Thus, since the fan cleaning part 24 is arrange | positioned in the upstream area where air flows at a comparatively low speed, the air volume fall resulting from the fan cleaning part 24 can be suppressed. Even when the indoor fan 16 is stopped, the fan cleaning unit 24 may be maintained in the same state as in FIG.
 図5は、空気調和機100の機能ブロック図である。
 図5に示す室内機Uiは、前記した構成の他に、リモコン送受信部27と、室内制御回路31と、を備えている。
 リモコン送受信部27は、リモコン40との間で所定の情報をやり取りする。
 室内制御回路31は、図示はしないが、CPU(Central Processing Unit)、ROM
(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。
FIG. 5 is a functional block diagram of the air conditioner 100.
The indoor unit Ui illustrated in FIG. 5 includes a remote control transmission / reception unit 27 and an indoor control circuit 31 in addition to the above-described configuration.
The remote controller transmission / reception unit 27 exchanges predetermined information with the remote controller 40.
Although not shown, the indoor control circuit 31 includes a CPU (Central Processing Unit), a ROM
(Read Only Memory), RAM (Random Access Memory), and electronic circuits such as various interfaces are included. Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
 図5に示すように、室内制御回路31は、記憶部31aと、室内制御部31bと、を備えている。
 記憶部31aには、所定のプログラムの他、リモコン送受信部27を介して受信したデータや、各種センサ(図示せず)の検出値等が記憶される。
 室内制御部31bは、記憶部31aに記憶されたデータに基づいて、ファン清掃用モータ24c、室内ファンモータ16c、左右風向板用モータ25、上下風向板用モータ26等を実行する。
As shown in FIG. 5, the indoor control circuit 31 includes a storage unit 31a and an indoor control unit 31b.
In addition to a predetermined program, the storage unit 31a stores data received via the remote control transmission / reception unit 27, detection values of various sensors (not shown), and the like.
The indoor control unit 31b executes the fan cleaning motor 24c, the indoor fan motor 16c, the left / right airflow direction plate motor 25, the up / down airflow direction plate motor 26, and the like based on the data stored in the storage unit 31a.
 室外機Uoは、前記した構成の他に、室外制御回路32を備えている。室外制御回路32は、図示はしないが、CPU、ROM、RAM、各種インタフェース等の電子回路を含んで構成され、通信線を介して室内制御回路31に接続されている。図5に示すように、室外制御回路32は、記憶部32aと、室外制御部32bと、を備えている。 The outdoor unit Uo includes an outdoor control circuit 32 in addition to the configuration described above. Although not illustrated, the outdoor control circuit 32 includes electronic circuits such as a CPU, a ROM, a RAM, and various interfaces, and is connected to the indoor control circuit 31 via a communication line. As shown in FIG. 5, the outdoor control circuit 32 includes a storage unit 32a and an outdoor control unit 32b.
 記憶部32aには、所定のプログラムの他、室内制御回路31から受信したデータ等が記憶される。室外制御部32bは、記憶部32aに記憶されたデータに基づいて、圧縮機モータ11a、室外ファンモータ13a、膨張弁14等を制御する。以下では、室内制御
回路31及び室外制御回路32を一括して「制御部30」という。
The storage unit 32a stores data received from the indoor control circuit 31 in addition to a predetermined program. The outdoor control unit 32b controls the compressor motor 11a, the outdoor fan motor 13a, the expansion valve 14, and the like based on the data stored in the storage unit 32a. Hereinafter, the indoor control circuit 31 and the outdoor control circuit 32 are collectively referred to as a “control unit 30”.
<室内ファンの清掃>
 室内機Uiは、室内ファン16の清掃機能として、凍結・解凍運転や冷房運転によって室内熱交換器15で生成された結露水(凝縮水)を利用して室内ファン16を清掃する機能を有している。また、室内機Uiは、ブラシ24bの清掃機能として、凍結・解凍運転や冷房運転によって室内熱交換器15で生成された結露水(凝縮水)を利用してブラシ24bを清掃する機能も有している。
<Cleaning indoor fans>
The indoor unit Ui has a function of cleaning the indoor fan 16 by using condensed water (condensate) generated by the indoor heat exchanger 15 by freezing / thawing operation or cooling operation as a cleaning function of the indoor fan 16. ing. The indoor unit Ui also has a function of cleaning the brush 24b by using condensed water (condensed water) generated by the indoor heat exchanger 15 by freezing / thawing operation or cooling operation as a cleaning function of the brush 24b. ing.
 以下、図6を参照して、室内ファン16の清掃時の動作について説明する。図6は、制御部30が実行する室内ファン16の清掃処理を示すフローチャートである(適宜、図2を参照)。
 なお、図6のフローにおいて、「START」時は、空調運転が行われておらず、また、ブラシ24bの先端が前側室内熱交換器15aに臨んだ状態(図2に示す状態)であるものとして説明する。
Hereinafter, the operation at the time of cleaning the indoor fan 16 will be described with reference to FIG. FIG. 6 is a flowchart showing the cleaning process of the indoor fan 16 executed by the control unit 30 (see FIG. 2 as appropriate).
In the flow of FIG. 6, at “START”, the air-conditioning operation is not performed, and the tip of the brush 24b faces the front indoor heat exchanger 15a (the state shown in FIG. 2). Will be described.
 図6のステップS101において、制御部30は、ファン清掃部24によって、室内ファン16を清掃する。なお、室内ファン16の清掃タイミング(室内ファン16の清掃を開始するトリガ)として、例えば、前回の室内ファン16の清掃時からの空調運転の積算時間が所定時間に達するという条件が挙げられる。 6, the control unit 30 cleans the indoor fan 16 by the fan cleaning unit 24. In addition, as the cleaning timing of the indoor fan 16 (a trigger for starting cleaning of the indoor fan 16), for example, there is a condition that the accumulated time of the air-conditioning operation from the previous cleaning of the indoor fan 16 reaches a predetermined time.
 図7Aは、室内ファン16の清掃中の状態を示す説明図である。
 なお、図7Aでは、室内熱交換器15、室内ファン16、及び露受皿18を図示し、他の部材については図示を省略している。
 制御部30は、ファン清掃部24を室内ファン16に接触させ、通常の空調運転時とは逆向きに室内ファン16を回転(逆回転)させる。
FIG. 7A is an explanatory diagram showing a state in which the indoor fan 16 is being cleaned.
In FIG. 7A, the indoor heat exchanger 15, the indoor fan 16, and the dew tray 18 are shown, and the other members are not shown.
The control unit 30 brings the fan cleaning unit 24 into contact with the indoor fan 16 and rotates (reverses) the indoor fan 16 in the opposite direction to that during normal air conditioning operation.
 つまり、制御部30は、ブラシ24bの先端が室内熱交換器15に臨んだ状態(図2参照)から、軸部24aを中心にブラシ24bを約180°回動させ、ブラシ24bの先端が室内ファン16に臨むようにする(図7A参照)。これによって、室内ファン16のファンブレード16aにブラシ24bが接触する。 That is, the control unit 30 rotates the brush 24b about 180 ° around the shaft portion 24a from the state where the tip of the brush 24b faces the indoor heat exchanger 15 (see FIG. 2), and the tip of the brush 24b is placed indoors. It faces the fan 16 (see FIG. 7A). As a result, the brush 24 b comes into contact with the fan blade 16 a of the indoor fan 16.
 なお、図7Aの例では、一点鎖線Lで示すように、ファン清掃部24が室内ファン16に接触した状態での接触位置Kの下方に、室内熱交換器15(前側室内熱交換器15a)が存在するとともに、露受皿18も存在している。 In the example of FIG. 7A, as indicated by the alternate long and short dash line L, the indoor heat exchanger 15 (the front indoor heat exchanger 15 a) is located below the contact position K when the fan cleaning unit 24 is in contact with the indoor fan 16. And a dew pan 18 are also present.
 前記したように、室内ファン16は逆回転しているため、ファンブレード16aの移動に伴ってブラシ24bの先端がたわみ、ファンブレード16aの背面をなでるようにブラシ24bが押し付けられる。そして、ファンブレード16aの先端付近(径方向の端部)に溜まった塵埃が、ブラシ24bによって除去される。 As described above, since the indoor fan 16 rotates in the reverse direction, the tip of the brush 24b bends as the fan blade 16a moves, and the brush 24b is pressed so as to stroke the back of the fan blade 16a. The dust collected near the tip of the fan blade 16a (the end in the radial direction) is removed by the brush 24b.
 特に、ファンブレード16aの先端付近には塵埃が溜まりやすい。なぜなら、室内ファン16が正回転している空調運転中(図4参照)、ファンブレード16aの腹の先端付近に空気が当たり、この先端付近に塵埃が付着するからである。ファンブレード16aの先端付近に当たった空気は、ファンブレード16aの腹の曲面に沿うようにして、隣り合うファンブレード16a,16aの間の隙間を通り抜ける。 Especially, dust tends to accumulate near the tip of the fan blade 16a. This is because during the air-conditioning operation in which the indoor fan 16 is rotating forward (see FIG. 4), air hits the vicinity of the tip of the belly of the fan blade 16a, and dust adheres to the vicinity of the tip. The air hitting the vicinity of the tip of the fan blade 16a passes through the gap between the adjacent fan blades 16a, 16a so as to follow the curved surface of the fan blade 16a.
 本実施形態では、前記したように、ファンブレード16aにブラシ24bを接触させ、室内ファン16を逆回転させるようにしている。これによって、ファンブレード16aの背面の先端付近にブラシ24bが接触し、ファンブレード16aの腹・背面の両方の先端
付近に溜まった塵埃が、一体となって除去される。その結果、室内ファン16に溜まった塵埃の大部分を除去できる。
In the present embodiment, as described above, the brush 24b is brought into contact with the fan blade 16a, and the indoor fan 16 is rotated in the reverse direction. As a result, the brush 24b comes into contact with the vicinity of the front end of the fan blade 16a, and dust accumulated near both the front and rear ends of the fan blade 16a is integrally removed. As a result, most of the dust accumulated in the indoor fan 16 can be removed.
 また、室内ファン16を逆回転させることによって、室内機Ui(図2参照)の内部で、正回転時(図4参照)とは逆向きの緩やかな空気の流れが生じる。したがって、室内ファン16から除去された塵埃jが空気吹出口h4(図2参照)には向かわず、図7Aに示すように、前側室内熱交換器15aと室内ファン16との間の隙間を介して、露受皿18に導かれる。 Further, by rotating the indoor fan 16 in the reverse direction, a gentle air flow is generated inside the indoor unit Ui (see FIG. 2) in the direction opposite to the normal rotation (see FIG. 4). Therefore, the dust j removed from the indoor fan 16 does not go to the air outlet h4 (see FIG. 2), and the gap between the front indoor heat exchanger 15a and the indoor fan 16 is interposed as shown in FIG. 7A. Then, it is guided to the dew tray 18.
 より詳しく説明すると、ブラシ24bによって室内ファン16から除去された塵埃jが、風圧で前側室内熱交換器15aに軽く押し付けられる。さらに、前記した塵埃jは、前側室内熱交換器15aの傾斜面(フィンfの縁)に沿って、露受皿18に落下する(図7Aの矢印を参照)。したがって、室内ファン16と露受皿18との間の微少な隙間を介して、上下風向板23(図2参照)の裏面に塵埃jが付着することは、ほとんどない。これによって、次回の空調運転中に塵埃jが室内に吹き出されることを防止できる。 More specifically, the dust j removed from the indoor fan 16 by the brush 24b is lightly pressed against the front indoor heat exchanger 15a by wind pressure. Further, the dust j described above falls on the dew tray 18 along the inclined surface (edge of the fin f) of the front indoor heat exchanger 15a (see the arrow in FIG. 7A). Therefore, the dust j hardly adheres to the back surface of the up-and-down wind direction plate 23 (see FIG. 2) through a minute gap between the indoor fan 16 and the dew tray 18. This can prevent the dust j from being blown into the room during the next air conditioning operation.
 なお、室内ファン16から除去された塵埃jの一部が、露受皿18に落下せずに、前側室内熱交換器15aに付着する可能性もある。このように前側室内熱交換器15aに付着した塵埃jは、後記するステップS103の処理で洗い流される。 Note that a part of the dust j removed from the indoor fan 16 may adhere to the front indoor heat exchanger 15a without falling to the dew tray 18. Thus, the dust j adhering to the front indoor heat exchanger 15a is washed away in the process of step S103 described later.
 また、室内ファン16の清掃中、制御部30は、室内ファン16を中・高速域の回転速度で駆動してもよいし、また、室内ファン16を低速域の回転速度で駆動してもよい。
 室内ファン16の中・高速域の回転速度の範囲は、例えば、300min-1以上かつ1700min-1未満である。このように中・高速域で室内ファン16を回転させることによって、前側室内熱交換器15aの方に塵埃jが向かいやすくなるため、前記したように、上下風向板23(図2参照)の裏面に塵埃jが付着しにくくなる。したがって、次回の空調運転中に塵埃jが室内に吹き出されることを防止できる。
Further, during the cleaning of the indoor fan 16, the control unit 30 may drive the indoor fan 16 at a medium / high speed rotation speed or drive the indoor fan 16 at a low speed rotation speed. .
The range of the rotational speed in the middle / high speed range of the indoor fan 16 is, for example, 300 min−1 or more and less than 1700 min−1. By rotating the indoor fan 16 in the middle / high speed range in this manner, the dust j is easily directed toward the front indoor heat exchanger 15a. Therefore, as described above, the back surface of the vertical wind direction plate 23 (see FIG. 2). It becomes difficult for dust j to adhere to the surface. Therefore, it is possible to prevent the dust j from being blown into the room during the next air conditioning operation.
 また、室内ファン16の低速域の回転速度の範囲は、例えば、100min-1以上かつ300min-1未満である。このように低速域で室内ファン16を回転させることによって、室内ファン16の清掃を低騒音で行うことができる。 The range of the rotational speed in the low speed region of the indoor fan 16 is, for example, 100 min−1 or more and less than 300 min−1. Thus, by rotating the indoor fan 16 in the low speed region, the indoor fan 16 can be cleaned with low noise.
 図6のステップS101の処理が終わった後、ステップS102において制御部30は、清掃部材であるブラシ24bを移動させる。すなわち、制御部30は、ブラシ24bの先端が室内ファン16に臨んだ状態(図7A参照)から、軸部24aを中心にブラシ24bを約180°回動させ、ブラシ24bの先端が室内熱交換器15に臨むようにする(図7B参照)。これによって、その後の空調運転中、ファン清掃部24が空気の流れの妨げになることを防止できる。なお、図7Bに示すように、ブラシ24bの先端が室内熱交換器15に臨むようにする際に、ブラシ24bの先端が前側室内熱交換器15aに接触するように、さらに好ましくは、ブラシ24bの先端が前側室内熱交換器15aの隙間に入り込むようにするとよい。 After the process of step S101 of FIG. 6 is completed, in step S102, the control unit 30 moves the brush 24b that is a cleaning member. That is, the control unit 30 rotates the brush 24b about 180 ° around the shaft portion 24a from the state where the tip of the brush 24b faces the indoor fan 16 (see FIG. 7A), and the tip of the brush 24b exchanges heat with the room. It faces the container 15 (see FIG. 7B). Thereby, it is possible to prevent the fan cleaning unit 24 from obstructing the air flow during the subsequent air conditioning operation. As shown in FIG. 7B, when the tip of the brush 24b faces the indoor heat exchanger 15, the brush 24b is more preferably so that the tip of the brush 24b contacts the front indoor heat exchanger 15a. It is preferable that the front end of the air enters the gap in the front indoor heat exchanger 15a.
 次に、ステップS103において制御部30は、室内熱交換器15の凍結・解凍を順次に行う。まず、制御部30は、室内熱交換器15を蒸発器として機能させ、室内機Uiに取り込まれた空気に含まれる水分を室内熱交換器15に着霜させて凍結させる。なお、室内熱交換器15を凍結させる処理は、室内熱交換器15に「凝縮水を付着させる」という事項に含まれる。 Next, in step S103, the control unit 30 sequentially performs freezing and thawing of the indoor heat exchanger 15. First, the control unit 30 causes the indoor heat exchanger 15 to function as an evaporator, causes the indoor heat exchanger 15 to frost and freeze moisture contained in the air taken into the indoor unit Ui. The process of freezing the indoor heat exchanger 15 is included in the matter of “attaching condensed water” to the indoor heat exchanger 15.
 室内熱交換器15を凍結させているとき、制御部30は、室内熱交換器15に流入する冷媒の蒸発温度を低くすることが好ましい。すなわち、制御部30は、室内熱交換器15
を蒸発器として機能させ、この室内熱交換器15を凍結(凝縮水を付着)させているとき、通常の空調運転時よりも冷媒の蒸発温度が低くなるように、室内熱交換器15に流入する冷媒の圧力を調整する。
When the indoor heat exchanger 15 is frozen, the controller 30 preferably lowers the evaporation temperature of the refrigerant flowing into the indoor heat exchanger 15. That is, the control unit 30 includes the indoor heat exchanger 15
When the indoor heat exchanger 15 is frozen (condensed water is attached), it flows into the indoor heat exchanger 15 so that the evaporation temperature of the refrigerant is lower than that during normal air-conditioning operation. Adjust the refrigerant pressure.
 例えば、制御部30は、膨張弁14(図1参照)の開度を小さくして、又は、室内ファン16の回転数下げて若しくは停止して、室内機Uiの風量を減らすことによって、低圧で蒸発温度が低い冷媒を室内熱交換器15に流入させる。これによって、室内熱交換器15で霜や氷(図7Bに示す符号i)が成長しやすくなるため、その後の解凍中、室内熱交換器15を多量の水で洗い流すことができる。 For example, the control unit 30 reduces the air volume of the indoor unit Ui by reducing the opening degree of the expansion valve 14 (see FIG. 1) or reducing or stopping the rotation speed of the indoor fan 16 at a low pressure. A refrigerant having a low evaporation temperature is caused to flow into the indoor heat exchanger 15. This makes it easier for frost and ice (symbol i shown in FIG. 7B) to grow in the indoor heat exchanger 15, so that the indoor heat exchanger 15 can be washed away with a large amount of water during the subsequent thawing.
 また、室内熱交換器15において、ファン清掃部24の下方に位置する領域は、室内熱交換器15を通流する冷媒の流れの下流域ではない(つまり、上流域又は中流域である)ことが好ましい。これによって、少なくともファン清掃部24の下方(下側)には、低温の気液二相冷媒が流れるため、室内熱交換器15に付着する霜や氷の厚さを厚くすることができる。したがって、その後の解凍中、室内熱交換器15を多量の水で洗い流すことができる。
 なお、室内熱交換器15においてファン清掃部24の下方に位置する領域は、ファン清掃部24によって室内ファン16から掻き落とされた塵埃が付着しやすい。そこで、室内熱交換器15においてファン清掃部24の下方に位置する領域に低温の気液二相冷媒を流すことで、霜や氷が成長しやすくなり、さらに、これらの霜や氷を溶かすことで室内熱交換器15の塵埃を適切に洗い流すことができる。
Moreover, in the indoor heat exchanger 15, the area | region located under the fan cleaning part 24 is not a downstream area of the flow of the refrigerant | coolant which flows through the indoor heat exchanger 15 (that is, it is an upstream area or a midstream area). Is preferred. Thereby, since the low-temperature gas-liquid two-phase refrigerant flows at least below (lower side) the fan cleaning unit 24, the thickness of frost and ice adhering to the indoor heat exchanger 15 can be increased. Therefore, the indoor heat exchanger 15 can be washed away with a large amount of water during the subsequent thawing.
In the indoor heat exchanger 15, an area located below the fan cleaning unit 24 is likely to be attached with dust scraped off from the indoor fan 16 by the fan cleaning unit 24. Therefore, by flowing a low-temperature gas-liquid two-phase refrigerant in a region located below the fan cleaning unit 24 in the indoor heat exchanger 15, it becomes easy for frost and ice to grow, and further to melt these frost and ice. Thus, the dust in the indoor heat exchanger 15 can be washed away appropriately.
 また、室内熱交換器15を蒸発器として機能させ、この室内熱交換器15を凍結(凝縮水を付着)させているとき、制御部30は、上下風向板23(図2参照)を閉じるか、又は、上下風向板23の角度を水平よりも上向きにすることが好ましい。これによって、室内熱交換器15で冷やされた低温の空気が室内に漏れ出ることを抑制し、ユーザにとって快適な状態で室内熱交換器15の凍結等を行うことができる。 In addition, when the indoor heat exchanger 15 functions as an evaporator and the indoor heat exchanger 15 is frozen (condensed water is attached), the control unit 30 may close the up-and-down air direction plate 23 (see FIG. 2). Alternatively, it is preferable that the angle of the up-and-down wind direction plate 23 is upward from the horizontal. Thereby, it is possible to suppress the low-temperature air cooled by the indoor heat exchanger 15 from leaking into the room, and to freeze the indoor heat exchanger 15 in a comfortable state for the user.
 このようにして室内熱交換器15を凍結させた後、制御部30は、室内熱交換器15を解凍する(図6のステップS103)。例えば、制御部30は、各機器の停止状態を維持することで、室内熱交換器15を室温で自然解凍させる。なお、制御部30が暖房運転又は送風運転を行うことによって、室内熱交換器15に付着した霜や氷を溶かすようにしてもよい。 After freezing the indoor heat exchanger 15 in this way, the control unit 30 defrosts the indoor heat exchanger 15 (step S103 in FIG. 6). For example, the control unit 30 naturally defrosts the indoor heat exchanger 15 at room temperature by maintaining the stopped state of each device. In addition, you may make it melt the frost and ice adhering to the indoor heat exchanger 15 when the control part 30 performs heating operation or ventilation operation.
 図7Bは、室内熱交換器15の解凍中の状態を示す説明図である。
 室内熱交換器15が解凍されることで、室内熱交換器15に付着した霜や氷が溶け、フィンfを伝って露受皿18に多量の水wが流れ落ちる。これによって、空調運転中に室内熱交換器15に付着した塵埃jを洗い流すことができる。
FIG. 7B is an explanatory diagram showing a state in which the indoor heat exchanger 15 is being thawed.
As the indoor heat exchanger 15 is thawed, frost and ice adhering to the indoor heat exchanger 15 are melted, and a large amount of water w flows to the dew tray 18 through the fins f. Thereby, the dust j adhering to the indoor heat exchanger 15 during the air conditioning operation can be washed away.
 また、ブラシ24bによる室内ファン16の清掃に伴って、前側室内熱交換器15aに付着した塵埃jも一緒に洗い流され、露受皿18に流れ落ちる(図7Bの矢印を参照)。このようにして露受皿18に流れ落ちた水wは、室内ファン16の清掃中に露受皿18に直接的に落下した塵埃j(図7A参照)とともに、ドレンホース(図示せず)を介して外部に排出される。前記したように、解凍中に室内熱交換器15から多量の水が流れ落ちる、ドレンホース等(図示せず)が塵埃jで詰まるおそれはほとんどない。 Further, along with the cleaning of the indoor fan 16 by the brush 24b, the dust j adhering to the front indoor heat exchanger 15a is also washed away and flows down to the dew tray 18 (see the arrow in FIG. 7B). The water w that has flown down to the dew tray 18 in this way is externally connected via a drain hose (not shown) together with dust j (see FIG. 7A) that has fallen directly to the dew tray 18 during cleaning of the indoor fan 16. To be discharged. As described above, there is almost no possibility that a large amount of water flows down from the indoor heat exchanger 15 during thawing and a drain hose (not shown) is clogged with dust j.
 なお、図6では省略しているが、室内熱交換器15の凍結・解凍(ステップS103)を行った後、制御部30が暖房運転又は送風運転を行うことで、室内機Uiの内部を乾燥させてもよい。これによって、室内熱交換器15等に菌が繁殖することを抑制できる。 Although omitted in FIG. 6, after the indoor heat exchanger 15 is frozen and thawed (step S <b> 103), the controller 30 performs the heating operation or the air blowing operation to dry the interior of the indoor unit Ui. You may let them. Thereby, it is possible to suppress the propagation of bacteria in the indoor heat exchanger 15 and the like.
 係る構成において空気調和機100は、ファン清掃部24によって室内ファン16が清掃されるため(図6のステップS101)、室内に塵埃jが吹き出されることを抑制できる。また、前側室内熱交換器15aと室内ファン16との間にファン清掃部24が配置されるため、室内ファン16からブラシ24bで掻き落とされた塵埃jを露受皿18に導くことができる。
 また、室内ファン16の清掃中、制御部30は、室内ファン16を逆回転させる。これによって、前記した塵埃jが空気吹出口h4に向かうことを防止できる。
In such a configuration, the air conditioner 100 can suppress the dust j from being blown into the room because the fan 16 is cleaned by the fan cleaning unit 24 (step S101 in FIG. 6). Further, since the fan cleaning unit 24 is arranged between the front indoor heat exchanger 15a and the indoor fan 16, the dust j scraped off from the indoor fan 16 by the brush 24b can be guided to the dew tray 18.
Further, during cleaning of the indoor fan 16, the control unit 30 rotates the indoor fan 16 in the reverse direction. Thereby, it is possible to prevent the dust j described above from going to the air outlet h4.
 また、通常の空調運転中、ブラシ24bが横方向に向いた状態であるため(図4参照)、ブラシ24bの影響で空気の流れが妨げられることがほとんどない。さらに、空気の流れの上流域にファン清掃部24が配置されていることと相まって、通常の空調運転中、ファン清掃部24に起因する風量低下が抑制され、また、室内ファン16の消費電力の増加も抑制される。なお、ファン清掃部24が上流側にあると風量低下が抑制される理由は、空気吸込口h1,h2の面積が空気吹出口h4の面積よりも大きくなっており、風の流れが下流側よりも上流側で遅くなるからである。 Also, during normal air conditioning operation, the brush 24b is in a state of facing sideways (see FIG. 4), so that the air flow is hardly hindered by the influence of the brush 24b. Further, coupled with the fan cleaning unit 24 being arranged in the upstream region of the air flow, a decrease in the air volume caused by the fan cleaning unit 24 is suppressed during normal air conditioning operation, and the power consumption of the indoor fan 16 is reduced. The increase is also suppressed. The reason why the air volume reduction is suppressed when the fan cleaning unit 24 is on the upstream side is that the area of the air suction ports h1 and h2 is larger than the area of the air outlet h4, and the flow of wind is lower than that on the downstream side. This is because it becomes slower on the upstream side.
 ちなみに、室内ファン16に多量の塵埃が付着すると、場合によっては、冷房運転中、室内ファン16の性能低下を補うように空気の吹出温度が低くなり、室内への露垂れが生じる可能性がある。これに対して本実施形態では、前記したように、室内ファン16が適切に清掃されるため、塵埃の付着に伴う室内ファン16の風量低下が抑制される。したがって、本実施形態によれば、室内ファン16の塵埃に起因する露垂れを防止できる。 Incidentally, if a large amount of dust adheres to the indoor fan 16, the air blowing temperature may be lowered during the cooling operation so as to compensate for the performance deterioration of the indoor fan 16, and there is a possibility that dew dripping into the room may occur. . In contrast, in the present embodiment, as described above, since the indoor fan 16 is appropriately cleaned, a decrease in the air volume of the indoor fan 16 due to the adhesion of dust is suppressed. Therefore, according to the present embodiment, it is possible to prevent the dripping caused by the dust of the indoor fan 16.
 また、制御部30が室内熱交換器15の凍結・解凍を順次に行うことで(図6のステップS103)、室内熱交換器15に付着していた塵埃jが水wで洗い流され、露受皿18に流れ落ちる。このように本実施形態によれば、室内ファン16を清潔な状態にすることができるとともに、室内熱交換器15も清潔な状態にすることができる。したがって、空気調和機100によって、快適な空調を行うことができる。また、室内熱交換器15や室内ファン16の清掃に要するユーザの手間やメンテナンス時の出費を低減できる。 Further, the controller 30 sequentially freezes and thaws the indoor heat exchanger 15 (step S103 in FIG. 6), so that the dust j adhering to the indoor heat exchanger 15 is washed away with water w, 18 flows down. Thus, according to this embodiment, while being able to make the indoor fan 16 into a clean state, the indoor heat exchanger 15 can also be made into a clean state. Therefore, comfortable air conditioning can be performed by the air conditioner 100. Further, it is possible to reduce the user's labor required for cleaning the indoor heat exchanger 15 and the indoor fan 16 and the expense during maintenance.
<清掃部材(ブラシ)の清掃処理>
 以下、図8を参照して、ブラシ24b(清掃部材)の清掃時の動作について説明する。図8は、制御部30が実行するブラシ24b(清掃部材)の清掃処理を示すフローチャートである(適宜、図2を参照)。
 なお、図8のフローにおいて、「START」時は、空調運転が行われていないものとして説明する。
<Cleaning process of cleaning member (brush)>
Hereinafter, the operation at the time of cleaning the brush 24b (cleaning member) will be described with reference to FIG. FIG. 8 is a flowchart showing a cleaning process of the brush 24b (cleaning member) executed by the control unit 30 (see FIG. 2 as appropriate).
In the flow of FIG. 8, it is assumed that the air conditioning operation is not performed at “START”.
 図8のステップS110において、制御部30は、室内熱交換器15へのブラシ24b(清掃部材)の当接制御を行う。なお、ブラシ24bの清掃タイミング(ブラシ24bの清掃処理を開始するトリガ)として、例えば、前回のブラシ24bの清掃処理時からの空調運転の積算時間が所定時間に達するという条件が挙げられる。ただし、これは一例に過ぎない。制御部30は、例えば、冷房運転や凍結運転をブラシ24bの清掃タイミングとし、冷房運転時や凍結運転時にファン清掃部24の洗浄を行うようにしてもよい。 8, the control unit 30 performs contact control of the brush 24b (cleaning member) to the indoor heat exchanger 15. In addition, as a cleaning timing of the brush 24b (a trigger for starting the cleaning process of the brush 24b), for example, there is a condition that the accumulated time of the air conditioning operation from the previous cleaning process of the brush 24b reaches a predetermined time. However, this is only an example. For example, the control unit 30 may use the cooling operation or the freezing operation as the cleaning timing of the brush 24b, and may clean the fan cleaning unit 24 during the cooling operation or the freezing operation.
 次に、ステップS120において、制御部30は、結露水の生成動作制御を開始する。このとき、制御部30は、凍結・解凍運転や、冷房運転等を実行する。
 次に、ステップS130において、制御部30は、所定時間が経過したか否かの判定を繰り返し行い、所定時間が経過した(“Yes”)と判定されるまで待機する。
Next, in step S120, the control unit 30 starts the generation operation control of the condensed water. At this time, the control unit 30 performs a freezing / thawing operation, a cooling operation, and the like.
Next, in step S130, the control unit 30 repeatedly determines whether or not a predetermined time has elapsed, and waits until it is determined that the predetermined time has elapsed ("Yes").
 ステップS130の判定で所定時間が経過したと判定された場合(“Yes”の場合)に、ステップS140において、制御部30は、結露水の生成動作制御を終了する。
 次に、ステップS150において、制御部30は、上下風向板23の閉鎖制御若しくは上下風向板23の水平以上の向きとする設定制御を行う。
When it is determined in step S130 that the predetermined time has elapsed (in the case of “Yes”), in step S140, the control unit 30 ends the condensed water generation operation control.
Next, in step S150, the control unit 30 performs a closing control of the up / down air direction plate 23 or a setting control for setting the up / down air direction plate 23 to a horizontal or higher direction.
 この後、もしステップS170で暖房運転を行うのであれば、好ましくは、ステップS160において、制御部30は、室内ファン16(送風ファン)の回転停止制御を行うとよい。このステップS160の処理は、ステップS170で暖房運転を行ってブラシ24b(清掃部材)を乾燥させる際に、熱交換された空気が室内に吹き出されないようにして、室内の快適性を保つことを考慮したものである。仮に、このステップS160の処理を行わない場合であっても(つまり、室内ファン16(送風ファン)の回転を停止しない場合であっても)、空気調和機100は、ステップS170でブラシ24b(清掃部材)を乾燥させることができる。そのため、このステップS160の処理は、必須のものではなく、削除することができる。また、このステップS160の処理は、ステップS170で暖房運転を行う場合を想定したものである。もしステップS170で暖房運転を行わないのであれば、ステップS160の処理は、削除される。 Thereafter, if the heating operation is performed in step S170, preferably, in step S160, the control unit 30 may perform rotation stop control of the indoor fan 16 (blower fan). In the process of step S160, it is considered that when the heating operation is performed in step S170 and the brush 24b (cleaning member) is dried, the heat-exchanged air is not blown into the room and the comfort in the room is maintained. It is a thing. Even if the process of step S160 is not performed (that is, even when the rotation of the indoor fan 16 (blower fan) is not stopped), the air conditioner 100 performs the brush 24b (cleaning) in step S170. Member) can be dried. Therefore, the process of step S160 is not essential and can be deleted. Moreover, the process of this step S160 assumes the case where heating operation is performed by step S170. If the heating operation is not performed in step S170, the process in step S160 is deleted.
 次に、ステップS170において、制御部30は、ブラシ24b(清掃部材)の乾燥動作制御を開始する。空気調和機100は、室内熱交換器15を凝縮器とする暖房運転や、送風運転等を実行することで、ブラシ24b(清掃部材)を乾燥させることができる。ここでは、制御部30が暖房運転を実行する場合を想定して説明する。
 次に、ステップS180において、制御部30は、所定時間が経過したか否かの判定を繰り返し行い、所定時間が経過するまで待機する。
Next, in step S170, the control unit 30 starts drying operation control of the brush 24b (cleaning member). The air conditioner 100 can dry the brush 24b (cleaning member) by executing a heating operation using the indoor heat exchanger 15 as a condenser, a blowing operation, or the like. Here, the case where the control unit 30 performs the heating operation will be described.
Next, in step S180, the control unit 30 repeatedly determines whether or not a predetermined time has elapsed, and waits until the predetermined time has elapsed.
 ステップS180の判定で所定時間が経過したと判定された場合(“Yes”の場合)に、ステップS190において、制御部30は、ブラシ24b(清掃部材)の乾燥動作制御を終了する。そして、ステップS200において、制御部30は、室内熱交換器15からのブラシ24b(清掃部材)の離間制御を行う。これにより、一連のルーチンの処理が終了する。 When it is determined in step S180 that the predetermined time has elapsed (in the case of “Yes”), in step S190, the control unit 30 ends the drying operation control of the brush 24b (cleaning member). In step S200, the control unit 30 controls the separation of the brush 24b (cleaning member) from the indoor heat exchanger 15. Thereby, a series of routine processing ends.
 なお、ステップS170乃至ステップS200では、菌類(カビ類)を十分に死滅させることができるように、ブラシ24bの温度を菌類死滅温度以上に上昇させて、その状態を所望時間保つようにするとよい。ここでは、菌類死滅温度が50℃以上であるものとして説明する。この温度は、例えば、日本国文部科学省の以下のホームページに掲載された表4「カビの耐熱性」における、カビ(麹カビの分生子)の熱死滅条件温度の50℃(時間:5分間)を根拠にしている。ただし、菌類死滅温度は、必ずしも50℃以上に限定されない。
 (ホームページ)
 http://www.mext.go.jp/b_menu/shingi/chousa/sonota/003/houkoku/08111918/002.htm
In steps S170 to S200, the temperature of the brush 24b may be raised to a temperature higher than the fungus killing temperature so that the fungi (fungi) can be killed sufficiently to maintain the state for a desired time. Here, the fungus killing temperature is described as being 50 ° C. or higher. This temperature is, for example, 50 ° C. (time: 5 minutes), the temperature for thermal killing of mold (cone of mold) in Table 4 “Heat resistance of mold” published on the following website of the Ministry of Education, Culture, Sports, Science and Technology of Japan. ). However, the fungal killing temperature is not necessarily limited to 50 ° C. or higher.
(home page)
http://www.mext.go.jp/b_menu/shingi/chousa/sonota/003/houkoku/08111918/002.htm
 前記した所望時間は、例えば、保持する温度が50℃である場合に5分間とするとよい。前記した所望時間は、保持する温度が50℃よりも高い場合に5分間よりも短くすることができる。 The above-mentioned desired time may be 5 minutes when the temperature to be held is 50 ° C., for example. The desired time described above can be shorter than 5 minutes when the temperature to be held is higher than 50 ° C.
 室内機Uiは、ステップS170乃至ステップS200でブラシ24bの温度を菌類死滅温度に保持した場合に、菌類(カビ類)を死滅させることができるため、ブラシ24bを清潔に保つことができる。 The indoor unit Ui can keep the brush 24b clean because it can kill the fungus (mold) when the temperature of the brush 24b is kept at the fungus killing temperature in steps S170 to S200.
 図8のフローは、例えば、図9のフローのように変更することができる。図9は、制御部30が実行するブラシ24b(清掃部材)の別の清掃処理を示すフローチャートである。 8 can be changed as shown in the flow of FIG. 9, for example. FIG. 9 is a flowchart showing another cleaning process of the brush 24b (cleaning member) executed by the control unit 30.
 図9のフローは、図8のフローと比較すると、ステップS110とステップS120の処理の代わりに、ステップS110aとステップS120aの処理が行われる点で相違する。図9のステップS110aの処理は、図8のステップS120の処理に相当するものであり、また、図9のステップS120aの処理は、図8のステップS110の処理に相当するものである。つまり、図9のフローは、図8のステップS110とステップS120の処理を入れ替えたものになっている。 9 is different from the flow in FIG. 8 in that steps S110a and S120a are performed instead of steps S110 and S120. The process in step S110a in FIG. 9 corresponds to the process in step S120 in FIG. 8, and the process in step S120a in FIG. 9 corresponds to the process in step S110 in FIG. That is, the flow of FIG. 9 is obtained by replacing the processes of step S110 and step S120 of FIG.
 具体的には、図9のフローでは、ステップS110aにおいて、制御部30は、結露水の生成動作制御を開始する。このとき、制御部30は、凍結・解凍運転や、冷房運転等を実行する。また、図9のフローでは、ステップS120aにおいて、制御部30は、室内熱交換器15へのブラシ24b(清掃部材)の当接制御を行う。 Specifically, in the flow of FIG. 9, in step S110a, the control unit 30 starts the generation operation control of the condensed water. At this time, the control unit 30 performs a freezing / thawing operation, a cooling operation, and the like. In the flow of FIG. 9, in step S <b> 120 a, the control unit 30 performs contact control of the brush 24 b (cleaning member) to the indoor heat exchanger 15.
<清掃部材(ブラシ)の向き>
 ファン清掃部24は、好ましくは、例えば、図10Aに示すように、暖房運転や冷房運転等の空調運転が行われる場合に、水平方向に対して上下方向に所望の許容角度αの範囲内で、ブラシ24bの向きを保持するとよい。また、ファン清掃部24は、好ましくは、図8のステップS110の処理又は図9のステップS120aの処理時でも、図10Aに示すように、ブラシ24bの向きを保持するとよい。図10Aは、空調運転が行われる場合におけるブラシ24b(清掃部材)の向きの一例を示す説明図である。この場合に、室内機Uiは、ファン清掃部24のブラシ24bの向きを図10Aに示す向きに保持することにより、内部に流入する風の流れを妨げないようにすることができるため、比較的良好な空調効率を得ることができる。なお、図10Aに示す例では、ファン清掃部24の軸部24aは、前側室内熱交換器15aの屈曲している箇所の側方の位置P0に配置されている。そして、ファン清掃部24のブラシ24bは、水平方向に対して上下方向に許容角度αの範囲内の向きで保持されている。
<Direction of cleaning member (brush)>
For example, as shown in FIG. 10A, the fan cleaning unit 24 is preferably within a range of a desired allowable angle α in the vertical direction with respect to the horizontal direction when an air conditioning operation such as a heating operation or a cooling operation is performed. The orientation of the brush 24b may be maintained. Further, the fan cleaning unit 24 preferably maintains the orientation of the brush 24b as shown in FIG. 10A even during the process of step S110 of FIG. 8 or the process of step S120a of FIG. FIG. 10A is an explanatory diagram illustrating an example of the direction of the brush 24b (cleaning member) when the air-conditioning operation is performed. In this case, the indoor unit Ui can keep the direction of the brush 24b of the fan cleaning unit 24 in the direction shown in FIG. Good air conditioning efficiency can be obtained. In the example shown in FIG. 10A, the shaft portion 24a of the fan cleaning unit 24 is disposed at a position P0 on the side of the bent portion of the front indoor heat exchanger 15a. And the brush 24b of the fan cleaning part 24 is hold | maintained by the direction in the range of the allowable angle (alpha) to an up-down direction with respect to a horizontal direction.
 なお、室内機Uiの内部では、室内ファン16の中心O(図10B参照)に向かって風が流れる。そのため、室内ファン16の周囲において、室内ファン16の中心Oよりも高い位置だと、上向き方向が空気抵抗の小さい方向となり、一方、室内ファン16の中心Oよりも低い位置だと、下向き方向が空気抵抗の小さい方向となる。そこで、ファン清掃部24は、好ましくは、例えば、図10Bに示すように、暖房運転や冷房運転等の空調運転が行われる場合に、風の流れに対して平行な向きに、ブラシ24bの向きを保持するようにしてもよい。また、ファン清掃部24は、好ましくは、図8のステップS110の処理又は図9のステップS120aの処理時でも、図10Bに示すように、ブラシ24bの向きを保持するようにしてもよい。図10Bは、空調運転が行われる場合やブラシ24b(清掃部材)の清掃運転におけるブラシ24b(清掃部材)の向きの別の例を示す説明図である。この場合のブラシ24bの向きは、例えば、軸部24aの位置が室内ファン16の中心Oよりも高い位置P1であれば、ブラシ24bの先端が水平方向よりも上を向く方向になる。また、この場合のブラシ24bの向きは、例えば、軸部24aの位置が室内ファン16の中心Oよりも低い位置P2であれば、ブラシ24bの先端が水平方向よりも下を向く方向になる。この場合も、ファン清掃部24のブラシ24bは、室内熱交換器15のうちガス域又は二相域の冷媒が流れる伝熱管gに接触しているフィンfに接触される。そして、この場合も、室内機Uiは、ファン清掃部24がブラシ24bの向きを図10Bに示す向きに保持することにより、内部に流入する風の流れを妨げないようにすることができるため、比較的良好な空調効率を得ることができる。 Note that, in the indoor unit Ui, the wind flows toward the center O of the indoor fan 16 (see FIG. 10B). Therefore, when the position is higher than the center O of the indoor fan 16 around the indoor fan 16, the upward direction is a direction with a low air resistance, whereas when the position is lower than the center O of the indoor fan 16, the downward direction is The direction of air resistance is small. Therefore, the fan cleaning unit 24 preferably has the orientation of the brush 24b in a direction parallel to the wind flow when an air conditioning operation such as a heating operation or a cooling operation is performed as shown in FIG. 10B, for example. May be held. Further, the fan cleaning unit 24 may preferably maintain the orientation of the brush 24b as shown in FIG. 10B even during the process of step S110 of FIG. 8 or the process of step S120a of FIG. FIG. 10B is an explanatory diagram illustrating another example of the direction of the brush 24b (cleaning member) in the case where the air-conditioning operation is performed or in the cleaning operation of the brush 24b (cleaning member). In this case, for example, when the position of the shaft portion 24a is higher than the center O of the indoor fan 16, the direction of the brush 24b is a direction in which the tip of the brush 24b faces upward in the horizontal direction. In this case, for example, if the position of the shaft portion 24a is a position P2 lower than the center O of the indoor fan 16, the direction of the brush 24b is a direction in which the tip of the brush 24b faces downward in the horizontal direction. Also in this case, the brush 24b of the fan cleaning unit 24 is in contact with the fin f in contact with the heat transfer tube g through which the refrigerant in the gas region or the two-phase region flows in the indoor heat exchanger 15. And also in this case, since the indoor unit Ui can keep the direction of the brush 24b in the direction shown in FIG. A relatively good air conditioning efficiency can be obtained.
 ただし、ファン清掃部24は、例えば、図11に示すように、仮に軸部24aの位置が室内ファン16の中心Oよりも高い位置P0であっても、ブラシ24bの先端が水平方向よりも下を向くように、ブラシ24bの向きを設定することも可能である。図11は、空調運転が行われる場合におけるブラシ24b(清掃部材)の向きのさらに別の例を示す説明図である。この場合に、ブラシ24bに付着した結露水(凝縮水)は、ブラシ24bの軸部24a側から先端側に流れて、ブラシ24bの先端から滴下する。このとき、結露水(凝縮水)は、ブラシ24bに付着した塵埃と一緒に滴下する。そのため、室内機Uiは、ブラシ24bから塵埃を効率よく除去することができる。 However, in the fan cleaning unit 24, for example, as shown in FIG. 11, even if the position of the shaft part 24a is higher than the center O of the indoor fan 16, the tip of the brush 24b is lower than the horizontal direction. It is also possible to set the orientation of the brush 24b so that it faces the. FIG. 11 is an explanatory diagram illustrating still another example of the direction of the brush 24b (cleaning member) when the air-conditioning operation is performed. In this case, the condensed water (condensed water) adhering to the brush 24b flows from the shaft 24a side to the tip side of the brush 24b and drops from the tip of the brush 24b. At this time, condensed water (condensed water) is dripped together with dust attached to the brush 24b. Therefore, the indoor unit Ui can efficiently remove dust from the brush 24b.
 なお、例えば、図11に示すように、制御部30は、好ましくは、結露水の生成時、結露水がファン清掃部24のブラシ24bの先端側から室内熱交換器15の一部(例えば下側部分)又は露受皿18の方向に流れるように、ファン清掃部24の配置角度を斜め下方向にしてもよい。これにより、空気調和機100は、ファン清掃部24を結露水の水路として機能させることができる。 For example, as shown in FIG. 11, the control unit 30 is preferably configured to generate a part of the indoor heat exchanger 15 (e.g. The fan cleaning unit 24 may be disposed obliquely downward so as to flow in the direction of the side portion) or the dew tray 18. Thereby, the air conditioner 100 can make the fan cleaning part 24 function as a water channel of condensed water.
 また、ファン清掃部24、好ましくは、例えば、図12に示すように、冷房運転時や除湿運転等のような室内熱交換器15を冷却する運転が行われる場合に、前側室内熱交換器15aからブラシ24bを離すようにしてもよい。図12は、冷房運転時又は除湿運転が行われる場合のブラシ24b(清掃部材)の向きを示す説明図である。この場合に、室内機Uiは、室内熱交換器15で生成された結露水(凝縮水)がブラシ24bを伝って滴下させないようにすることができる。これにより、室内機Uiは、結露水(凝縮水)で効率よく室内熱交換器15を洗浄することができる。 Moreover, when the operation | movement which cools the indoor heat exchanger 15 like cooling operation, a dehumidification operation etc. is performed as shown in FIG. 12, for example, as shown in FIG. 12, the front side indoor heat exchanger 15a is performed. The brush 24b may be separated from the brush. FIG. 12 is an explanatory diagram showing the orientation of the brush 24b (cleaning member) when the cooling operation or the dehumidifying operation is performed. In this case, the indoor unit Ui can prevent the condensed water (condensed water) generated by the indoor heat exchanger 15 from dripping along the brush 24b. Thereby, the indoor unit Ui can wash | clean the indoor heat exchanger 15 efficiently with condensed water (condensed water).
 ただし、ファン清掃部24は、冷房運転時や除湿運転であっても、例えば、図10Aに示すように、ファン清掃部24の向きを水平方向とするか、水平方向に対して所定の角度αの範囲内とするようにしてもよい。
 また、ファン清掃部24は、冷房運転時や除湿運転であっても、例えば、図10Bに示すように、ファン清掃部24の向きを風の流れに対して平行な向きとするようにしてもよい。
However, even when the fan cleaning unit 24 is in the cooling operation or the dehumidifying operation, for example, as shown in FIG. 10A, the direction of the fan cleaning unit 24 is set to the horizontal direction or a predetermined angle α with respect to the horizontal direction. It may be within the range.
In addition, the fan cleaning unit 24 may be configured so that the direction of the fan cleaning unit 24 is parallel to the wind flow, for example, as illustrated in FIG. 10B even during the cooling operation or the dehumidifying operation. Good.
 また、ファン清掃部24は、暖房運転時であっても、例えば、図12に示すように、前側室内熱交換器15aからブラシ24bを離すようにしてもよい。つまり、制御部30は、暖房運転、冷房運転又は除湿運転時、例えば、図12に示すように、ファン清掃部24を室内熱交換器15に接触させない状態とするようにしてもよい。 Also, the fan cleaning unit 24 may separate the brush 24b from the front indoor heat exchanger 15a, for example, as shown in FIG. 12 even during the heating operation. That is, the control unit 30 may be configured not to bring the fan cleaning unit 24 into contact with the indoor heat exchanger 15 during heating operation, cooling operation, or dehumidifying operation, for example, as shown in FIG.
<送風ファン(室内ファン)の清掃タイミング>
 前記した実施形態では、室内ファン16の清掃タイミング(室内ファン16の清掃を開始するトリガ)として、前回の室内ファン16の清掃時からの空調運転の積算時間が所定時間に達するという条件を挙げた。しかしながら、例えば、図13に示すように、室内ファン16の清掃タイミングは、運用に応じて変更することができる。図13は、室内ファン16(送風ファン)の清掃タイミングを変更する場合の動作例を示すフローチャートである。
<Cleaning timing of the blower fan (indoor fan)>
In the above-described embodiment, as the cleaning timing of the indoor fan 16 (trigger for starting the cleaning of the indoor fan 16), the condition that the accumulated time of the air-conditioning operation from the previous cleaning of the indoor fan 16 reaches a predetermined time is given. . However, for example, as shown in FIG. 13, the cleaning timing of the indoor fan 16 can be changed according to the operation. FIG. 13 is a flowchart illustrating an operation example when the cleaning timing of the indoor fan 16 (blower fan) is changed.
 以下、図13を参照して、室内ファン16(送風ファン)の清掃タイミングを変更する場合の動作について説明する。ここでは、空気調和機100の利用者が任意のタイミングで、空調運転の実行及び空調運転の停止を空気調和機100に指示するものとして説明する。 Hereinafter, with reference to FIG. 13, an operation when changing the cleaning timing of the indoor fan 16 (blower fan) will be described. Here, a description will be given assuming that the user of the air conditioner 100 instructs the air conditioner 100 to execute the air conditioning operation and stop the air conditioning operation at an arbitrary timing.
 図13のステップS610において、制御部30は、記憶部31a(図5参照)に予め記憶された設定条件に基づいて、室内ファン16の清掃タイミングを設定する。ここでは、室内ファン16の清掃タイミングとして、室内ファン16の運転時間(累積稼働時間)が所望時間に到達したという動作条件が設定されているものとして説明する。また、室内ファン16の運転時間が予め設定された閾値に到達した場合に、室内ファン16の清掃タイミングの変更が行われるものとして説明する。なお、制御部30は、室内ファン16の
運転時間の代わりに、室内ファン16の累積回転数や、室内ファン16の回転速度と稼働時間の積算値等を用いるようにしてもよい。
In step S610 of FIG. 13, the control unit 30 sets the cleaning timing of the indoor fan 16 based on the setting conditions stored in advance in the storage unit 31a (see FIG. 5). Here, the operation condition that the operation time (cumulative operation time) of the indoor fan 16 has reached a desired time will be described as the cleaning timing of the indoor fan 16. Further, the description will be made assuming that the cleaning timing of the indoor fan 16 is changed when the operation time of the indoor fan 16 reaches a preset threshold value. Note that the control unit 30 may use the accumulated rotational speed of the indoor fan 16 or the integrated value of the rotational speed and operating time of the indoor fan 16 instead of the operation time of the indoor fan 16.
 次に、ステップS620において、制御部30は、利用者からの空調運転の実行が指示されると、空調運転を開始する。
 次に、ステップS630において、制御部30は、室内ファン16(送風ファン)の運転時間を計測する。
 次に、ステップS640において、制御部30は、動作条件が室内ファン16(送風ファン)の清掃タイミングになったか否かを判定する。
Next, in step S620, when the execution of the air conditioning operation is instructed by the user, the control unit 30 starts the air conditioning operation.
Next, in step S630, the control unit 30 measures the operation time of the indoor fan 16 (blower fan).
Next, in step S640, the control unit 30 determines whether or not the operating condition is the cleaning timing of the indoor fan 16 (blower fan).
 ステップS640の判定で動作条件が室内ファン16(送風ファン)の清掃タイミングになったと判定された場合(“Yes”の場合)に、処理は、ステップS690に進む。一方、ステップS640の判定で動作条件が室内ファン16(送風ファン)の清掃タイミングになっていないと判定された場合(“No”の場合)に、ステップS650において、制御部30は、室内ファン16(送風ファン)の運転時間が閾値に到達したか否かを判定する。 If it is determined in step S640 that the operating condition is the cleaning timing of the indoor fan 16 (blower fan) (in the case of “Yes”), the process proceeds to step S690. On the other hand, when it is determined in step S640 that the operating condition is not the cleaning timing of the indoor fan 16 (blower fan) (in the case of “No”), in step S650, the control unit 30 causes the indoor fan 16 to It is determined whether or not the operation time of the (fan) has reached a threshold value.
 ステップS650の判定で室内ファン16(送風ファン)の運転時間が閾値に到達していないと判定された場合(“No”の場合)に、ステップS660において、制御部30は、動作条件が空調運転の終了になったか否かを、すなわち、利用者からの空調運転の停止が指示されたか否かを判定する。 When it is determined in step S650 that the operation time of the indoor fan 16 (blower fan) has not reached the threshold (in the case of “No”), in step S660, the control unit 30 determines that the operating condition is air conditioning operation. It is determined whether or not the end of the air conditioning operation is instructed by the user.
 ステップS660の判定で動作条件が空調運転の終了になっていないと判定された場合(“No”の場合)に、処理は、ステップS630に戻る。一方、ステップS660の判定で動作条件が空調運転の終了になったと判定された場合(“Yes”の場合)に、ステップS670において、制御部30は、空調運転を終了する。これにより、一連のルーチンの処理が終了する。 If it is determined in step S660 that the operating condition is not the end of the air conditioning operation (in the case of “No”), the process returns to step S630. On the other hand, when it is determined in step S660 that the operation condition is the end of the air conditioning operation (in the case of “Yes”), in step S670, the control unit 30 ends the air conditioning operation. Thereby, a series of routine processing ends.
 前記したステップS650の判定で室内ファン16(送風ファン)の運転時間が閾値に到達したと判定された場合(“Yes”の場合)に、ステップS680において、制御部30は、記憶部31a(図5参照)に予め記憶された設定条件に基づいて、室内ファン16(送風ファン)の清掃タイミングを変更する。これにより、制御部30は、現在の頻度よりも多い頻度で室内ファン16(送風ファン)を清掃したり、逆に、現在の頻度よりも少ない頻度で室内ファン16(送風ファン)を清掃したりすることができる。この後、処理は、ステップS690に進む。 When it is determined in step S650 that the operation time of the indoor fan 16 (blower fan) has reached the threshold (in the case of “Yes”), in step S680, the control unit 30 stores the storage unit 31a (FIG. 5), the cleaning timing of the indoor fan 16 (blower fan) is changed based on the setting conditions stored in advance. Thereby, the control part 30 cleans the indoor fan 16 (blower fan) more frequently than the present frequency, or conversely cleans the indoor fan 16 (blower fan) less frequently than the present frequency. can do. Thereafter, the process proceeds to step S690.
 ステップS690において、制御部30は、動作条件が空調運転の終了になったか否かを、すなわち、利用者からの空調運転の停止が指示されたか否かの判定を繰り返し行い、動作条件が空調運転の終了になった(“Yes”)と判定されるまで待機する。 In step S690, the control unit 30 repeatedly determines whether or not the operating condition is the end of the air conditioning operation, that is, whether or not the user has instructed to stop the air conditioning operation. The process waits until it is determined that the process ends ("Yes").
 ステップS690の判定で動作条件が空調運転の終了になったと判定された場合(“Yes”の場合)に、ステップS700において、制御部30は、空調運転を終了する。そして、ステップS710において、制御部30は、室内ファン16(送風ファン)の清掃を行う。これにより、一連のルーチンの処理が終了する。 When it is determined in step S690 that the operation condition is the end of the air conditioning operation (in the case of “Yes”), in step S700, the control unit 30 ends the air conditioning operation. In step S710, the control unit 30 cleans the indoor fan 16 (blower fan). Thereby, a series of routine processing ends.
<清掃部材(ブラシ)の清掃タイミング>
 前記した実施形態では、ブラシ24bの清掃タイミング(ブラシ24bの清掃処理を開始するトリガ)として、例えば、前回のブラシ24bの清掃処理時からの空調運転の積算時間が所定時間に達するという条件が挙げられる。しかしながら、例えば、図14に示すように、ブラシ24bの清掃タイミングは、運用に応じて変更することができる。図14
は、ブラシ24b(清掃部材)の清掃タイミングを変更する場合の動作例を示すフローチャートである。
<Cleaning timing of cleaning member (brush)>
In the above-described embodiment, as a cleaning timing of the brush 24b (trigger for starting the cleaning process of the brush 24b), for example, a condition that the accumulated time of the air conditioning operation from the previous cleaning process of the brush 24b reaches a predetermined time. It is done. However, for example, as shown in FIG. 14, the cleaning timing of the brush 24b can be changed according to the operation. FIG.
These are the flowcharts which show the operation example in the case of changing the cleaning timing of the brush 24b (cleaning member).
 以下、図14を参照して、ブラシ24b(清掃部材)の清掃タイミングを変更する場合の動作について説明する。ここでは、空気調和機100の利用者が任意のタイミングで、空調運転の実行及び空調運転の停止を空気調和機100に指示するものとして説明する。 Hereinafter, the operation when changing the cleaning timing of the brush 24b (cleaning member) will be described with reference to FIG. Here, a description will be given assuming that the user of the air conditioner 100 instructs the air conditioner 100 to execute the air conditioning operation and stop the air conditioning operation at an arbitrary timing.
 図14のステップS810において、制御部30は、記憶部31a(図5参照)に予め記憶された設定条件に基づいて、ブラシ24bの清掃タイミングを設定する。ここでは、ブラシ24bの清掃タイミングとして、室内ファン16(送風ファン)の運転時間(累積稼働時間)が所望時間に到達したという動作条件が設定されているものとして説明する。また、室内ファン16(送風ファン)の運転時間が予め設定された閾値に到達した場合に、ブラシ24bの清掃タイミングの変更が行われるものとして説明する。なお、前記したブラシ24bの清掃タイミングは一例に過ぎない。制御部30は、例えば、冷房運転や凍結運転をブラシ24bの清掃タイミングとし、冷房運転時や凍結運転時にファン清掃部24の洗浄を行うようにしてもよい。 In step S810 of FIG. 14, the control unit 30 sets the cleaning timing of the brush 24b based on the setting conditions stored in advance in the storage unit 31a (see FIG. 5). Here, it is assumed that the operating condition that the operation time (cumulative operation time) of the indoor fan 16 (blower fan) has reached a desired time is set as the cleaning timing of the brush 24b. Further, the description will be made assuming that the cleaning timing of the brush 24b is changed when the operation time of the indoor fan 16 (blower fan) reaches a preset threshold value. Note that the cleaning timing of the brush 24b is merely an example. For example, the control unit 30 may use the cooling operation or the freezing operation as the cleaning timing of the brush 24b, and may clean the fan cleaning unit 24 during the cooling operation or the freezing operation.
 次に、ステップS820において、制御部30は、利用者からの空調運転の実行が指示されると、空調運転を開始する。
 次に、ステップS830において、制御部30は、室内ファン16(送風ファン)の運転時間を計測する。
 次に、ステップS840において、制御部30は、動作条件がブラシ24bの清掃タイミングになったか否かを判定する。
Next, in step S820, the control part 30 will start an air-conditioning driving | operation, if execution of the air-conditioning driving | operation is instruct | indicated from a user.
Next, in step S830, the control unit 30 measures the operating time of the indoor fan 16 (blower fan).
Next, in step S840, the control unit 30 determines whether or not the operating condition is the cleaning timing of the brush 24b.
 ステップS840の判定で動作条件がブラシ24bの清掃タイミングになったと判定された場合(“Yes”の場合)に、処理は、ステップS890に進む。一方、ステップS840の判定で動作条件がブラシ24bの清掃タイミングになっていないと判定された場合(“No”の場合)に、ステップS850において、制御部30は、室内ファン16(送風ファン)の運転時間が閾値に到達したか否かを判定する。 If it is determined in step S840 that the operating condition is the cleaning timing of the brush 24b (in the case of “Yes”), the process proceeds to step S890. On the other hand, when it is determined in step S840 that the operation condition is not the cleaning timing of the brush 24b (in the case of “No”), in step S850, the control unit 30 controls the indoor fan 16 (blower fan). It is determined whether or not the operation time has reached a threshold value.
 ステップS850の判定で室内ファン16(送風ファン)の運転時間が閾値に到達していないと判定された場合(“No”の場合)に、ステップS860において、制御部30は、動作条件が空調運転の終了になったか否かを、すなわち、利用者からの空調運転の停止が指示されたか否かを判定する。 When it is determined in step S850 that the operation time of the indoor fan 16 (blower fan) has not reached the threshold (in the case of “No”), in step S860, the control unit 30 determines that the operation condition is air conditioning operation. It is determined whether or not the end of the air conditioning operation is instructed by the user.
 ステップS860の判定で動作条件が空調運転の終了になっていないと判定された場合(“No”の場合)に、処理は、ステップS830に戻る。一方、ステップS860の判定で動作条件が空調運転の終了になったと判定された場合(“Yes”の場合)に、ステップS870において、制御部30は、空調運転を終了する。これにより、一連のルーチンの処理が終了する。 When it is determined in step S860 that the operation condition is not the end of the air conditioning operation (in the case of “No”), the process returns to step S830. On the other hand, when it is determined in step S860 that the operating condition is the end of the air conditioning operation (in the case of “Yes”), in step S870, the control unit 30 ends the air conditioning operation. Thereby, a series of routine processing ends.
 前記したステップS850の判定で室内ファン16(送風ファン)の運転時間が閾値に到達したと判定された場合(“Yes”の場合)に、ステップS880において、制御部30は、記憶部31a(図5参照)に予め記憶された設定条件に基づいて、ブラシ24bの清掃タイミングを変更する。これにより、制御部30は、現在の頻度よりも多い頻度でブラシ24bを清掃したり、逆に、現在の頻度よりも少ない頻度でブラシ24bを清掃したりすることができる。この後、処理は、ステップS890に進む。
 ステップS890において、制御部30は、動作条件が空調運転の終了になったか否かを、すなわち、利用者からの空調運転の停止が指示されたか否かの判定を繰り返し行い、動作条件が空調運転の終了になった(“Yes”)と判定されるまで待機する。
When it is determined in the above-described determination in step S850 that the operation time of the indoor fan 16 (blower fan) has reached the threshold (in the case of “Yes”), in step S880, the control unit 30 stores the storage unit 31a (FIG. 5), the cleaning timing of the brush 24b is changed based on the setting conditions stored in advance. Thereby, the control part 30 can clean the brush 24b more frequently than the present frequency, and conversely can clean the brush 24b less frequently than the present frequency. Thereafter, the process proceeds to step S890.
In step S890, the control unit 30 repeatedly determines whether or not the operating condition is the end of the air conditioning operation, that is, whether or not the user has instructed to stop the air conditioning operation. The process waits until it is determined that the process ends ("Yes").
 ステップS890の判定で動作条件が空調運転の終了になったと判定された場合(“Yes”の場合)に、ステップS900において、制御部30は、空調運転を終了する。そして、ステップS910において、制御部30は、ブラシ24bの清掃を行う。これにより、一連のルーチンの処理が終了する。 When it is determined in step S890 that the operating condition is the end of the air conditioning operation (in the case of “Yes”), in step S900, the control unit 30 ends the air conditioning operation. In step S910, the control unit 30 cleans the brush 24b. Thereby, a series of routine processing ends.
<ファン清掃部を室内熱交換器に接触させて清掃する頻度>
 本実施形態では、室内機Uiは、凍結・解凍運転や冷房運転によって室内熱交換器15で生成された結露水(凝縮水)を利用してファン清掃部24のブラシ24b(清掃部材)を清掃する。しかしながら、結露水の生成にはエネルギーが必要である。そのため、ファン清掃部24を室内熱交換器15に接触させて清掃する頻度は、なるべく少ない方が好ましい。この点について考慮した場合に、ファン清掃部24に付着する塵埃の付着量は、室内ファン16(送風ファン)に付着する塵埃の付着量よりも少ない。そのため、ファン清掃部24を室内熱交換器15に接触させて清掃する頻度は、好ましくは、室内ファン16(送風ファン)をファン清掃部24で清掃する頻度よりも少なくするとよい。これにより、空気調和機100は、消費電力を低減することができる。
<Frequency of cleaning with the fan cleaning unit in contact with the indoor heat exchanger>
In the present embodiment, the indoor unit Ui cleans the brush 24b (cleaning member) of the fan cleaning unit 24 using condensed water (condensed water) generated by the indoor heat exchanger 15 by freezing / thawing operation or cooling operation. To do. However, energy is required to generate condensed water. Therefore, it is preferable that the frequency of cleaning the fan cleaning unit 24 by contacting the indoor heat exchanger 15 is as small as possible. In consideration of this point, the amount of dust attached to the fan cleaning unit 24 is smaller than the amount of dust attached to the indoor fan 16 (blower fan). Therefore, the frequency of cleaning the fan cleaning unit 24 in contact with the indoor heat exchanger 15 is preferably less than the frequency of cleaning the indoor fan 16 (blower fan) by the fan cleaning unit 24. Thereby, the air conditioner 100 can reduce power consumption.
<空気調和機の主な特徴>
 (1)図2に示すように、空気調和機100は、室内熱交換器15(熱交換器)を有する冷凍サイクルと、室内ファン16(送風ファン)と、ブラシ24b(清掃部材)で室内ファン16を清掃するファン清掃部24と、制御部30(図5参照)と、を備えている。ブラシ24bは、室内熱交換器15と室内ファン16との双方に選択的に当接することが可能に構成されている。図8に示すように、制御部30は、室内熱交換器15にブラシ24bを当接させる当接制御(ステップS110参照)と、室内熱交換器15で結露水(凝縮水)を生成する生成動作制御(ステップS120参照)と、を行うことができる。図8と図9に示すように、制御部30は、ファン清掃部24を室内熱交換器15に接触させる前、又は、ファン清掃部24を室内熱交換器15に接触させている時に、冷凍サイクルに室内熱交換器15で結露水を生成させる。
<Main features of the air conditioner>
(1) As shown in FIG. 2, the air conditioner 100 includes an indoor fan with a refrigeration cycle having an indoor heat exchanger 15 (heat exchanger), an indoor fan 16 (blower fan), and a brush 24b (cleaning member). The fan cleaning part 24 which cleans 16 and the control part 30 (refer FIG. 5) are provided. The brush 24b is configured to be able to selectively contact both the indoor heat exchanger 15 and the indoor fan 16. As shown in FIG. 8, the control unit 30 generates contact water (condensed water) generated by the contact heat control (see step S <b> 110) that causes the brush 24 b to contact the indoor heat exchanger 15. Operation control (see step S120) can be performed. As shown in FIGS. 8 and 9, the control unit 30 performs freezing before the fan cleaning unit 24 is brought into contact with the indoor heat exchanger 15 or when the fan cleaning unit 24 is brought into contact with the indoor heat exchanger 15. In the cycle, condensed water is generated by the indoor heat exchanger 15.
 なお、清掃部材は、ブラシ24bの代わりに、スポンジ等の部材であってもよい。
 室内熱交換器15で生成された結露水(凝縮水)は、一旦凍結されて霜(若しくは氷)として室内熱交換器15に付着した後に、解凍された水であってもよい。
 また、当接制御(図8のステップS110参照)と生成動作制御(図8のステップS120参照)の順序は、図9に示すステップS110a,S120aのように、逆の順序であってもよい。
The cleaning member may be a member such as a sponge instead of the brush 24b.
The condensed water (condensed water) generated in the indoor heat exchanger 15 may be water that is once frozen and thawed after adhering to the indoor heat exchanger 15 as frost (or ice).
Further, the order of the contact control (see step S110 in FIG. 8) and the generation operation control (see step S120 in FIG. 8) may be reversed as in steps S110a and S120a shown in FIG.
 このような空気調和機100は、室内熱交換器15で生成された結露水(凝縮水)を利用してブラシ24bを清掃することができるため、ブラシ24bを効率よく洗浄することができる。 Since such an air conditioner 100 can clean the brush 24b using the condensed water (condensate) generated by the indoor heat exchanger 15, the brush 24b can be efficiently cleaned.
 (2)図8と図9に示すように、制御部30は、冷凍サイクルに室内熱交換器15で結露水を生成させた後、乾燥動作を行う。その乾燥動作は、室内熱交換器15を凝縮器とする暖房運転、又は、送風運転によって行われる(ステップS170参照)。 (2) As shown in FIG. 8 and FIG. 9, the control unit 30 performs the drying operation after generating condensed water in the indoor heat exchanger 15 in the refrigeration cycle. The drying operation is performed by a heating operation using the indoor heat exchanger 15 as a condenser or a blowing operation (see step S170).
 このような空気調和機100は、ブラシ24bを効率よく乾燥させることができるため、ブラシ24bを清潔に保つことができる。 Since such an air conditioner 100 can dry the brush 24b efficiently, the brush 24b can be kept clean.
 (3)図8と図9に示すように、冷凍サイクルに室内熱交換器15で結露水を生成させた後、乾燥動作を行う場合において、仮に、ステップS170で室内熱交換器15を凝縮器とする暖房運転を行うのであれば、制御部30は、好ましくは、図8のステップS11
0又は図9のステップS120aにおいて、ファン清掃部24に対して、当接制御を行って、室内熱交換器15にブラシ24bを当接させるとよい。
(3) As shown in FIG. 8 and FIG. 9, if the drying operation is performed after the condensed water is generated by the indoor heat exchanger 15 in the refrigeration cycle, the indoor heat exchanger 15 is temporarily connected to the condenser in step S170. If the heating operation is performed, the control unit 30 preferably performs step S11 of FIG.
In step S120a of FIG. 9 or FIG. 9, contact control may be performed on the fan cleaning unit 24 to bring the brush 24b into contact with the indoor heat exchanger 15.
 このような空気調和機100は、ステップS170で暖房運転を行う際に、室内熱交換器15の熱をブラシ24bに効率よく伝達させることができるため、ブラシ24bを素早く乾燥させることができる。ただし、空気調和機100は、室内熱交換器15にブラシ24bを当接させなくても、ブラシ24bを乾燥させることができる。 Since such an air conditioner 100 can efficiently transfer the heat of the indoor heat exchanger 15 to the brush 24b when performing the heating operation in step S170, the brush 24b can be dried quickly. However, the air conditioner 100 can dry the brush 24b without bringing the brush 24b into contact with the indoor heat exchanger 15.
 (4)図8と図9に示すように、冷凍サイクルに室内熱交換器15で結露水を生成させた後、乾燥動作を行う場合において、制御部30は、好ましくは、上下風向板23を閉じるか若しくは水平以上の向きとするか(ステップS150参照)、室内ファン16(送風ファン)を停止するか(ステップS160参照)、又はその両方を行うとよい。 (4) As shown in FIG. 8 and FIG. 9, in the case where the drying operation is performed after the condensed water is generated by the indoor heat exchanger 15 in the refrigeration cycle, the control unit 30 preferably moves the vertical wind direction plate 23. It may be closed or set to a horizontal or higher orientation (see step S150), the indoor fan 16 (air blower fan) is stopped (see step S160), or both.
 このような空気調和機100は、室内熱交換器15を通過した空気が強い勢いで空気吹出口h4(図2参照)から室内に吹き出すことを抑制した状態で乾燥動作を行う。そのため、空気調和機100は、結露水が空気吹出口h4(図2参照)から外部に漏れ出ることを抑制することができ、室内空気を清潔に保つことができる。 Such an air conditioner 100 performs a drying operation in a state in which the air that has passed through the indoor heat exchanger 15 is strongly blown out from the air outlet h4 (see FIG. 2). Therefore, the air conditioner 100 can suppress the condensed water from leaking outside from the air outlet h4 (see FIG. 2), and can keep the indoor air clean.
 (5)図10A、図10B、又は、図11に示すように、制御部30は、好ましくは、乾燥動作を行う場合、ファン清掃部24を室内熱交換器15のうちガス域又は二相域の冷媒が流れる伝熱管gに接触しているフィンfに接触されるとよい。 (5) As shown in FIG. 10A, FIG. 10B, or FIG. 11, the control unit 30 preferably uses the fan cleaning unit 24 as a gas region or a two-phase region in the indoor heat exchanger 15 when performing a drying operation. It is good to be in contact with the fin f that is in contact with the heat transfer tube g through which the refrigerant flows.
 このような空気調和機100は、フィンfから伝達される熱でファン清掃部24の温度を効率よく上昇させることができる。特に、室内熱交換器15のうちガス域又は二相域の冷媒が流れる伝熱管gは、液域の冷媒が流れる伝熱管gよりも高温となりやすい。そのため、ガス域又は二相域の冷媒が流れる伝熱管gに接触しているフィンfにファン清掃部24を接触させることで、よりファン清掃部24の温度を上昇させることができる。 Such an air conditioner 100 can efficiently raise the temperature of the fan cleaning unit 24 by the heat transmitted from the fins f. In particular, the heat transfer tube g through which the refrigerant in the gas region or the two-phase region of the indoor heat exchanger 15 is likely to be hotter than the heat transfer tube g through which the refrigerant in the liquid region flows. Therefore, the temperature of the fan cleaning unit 24 can be further increased by bringing the fan cleaning unit 24 into contact with the fin f that is in contact with the heat transfer tube g through which the refrigerant in the gas region or the two-phase region flows.
 (6)例えば、図10A、図10B、及び図11に示すように、仮に、図8と図9に示す例において、ステップS170で室内熱交換器15を凝縮器とする暖房運転を行うのであれば、制御部30は、好ましくは、ファン清掃部24の温度を上昇しやすくするため、ファン清掃部24の向きを室内熱交換器15側に向けるとよい。 (6) For example, as shown in FIGS. 10A, 10B, and 11, in the example shown in FIGS. 8 and 9, heating operation using the indoor heat exchanger 15 as a condenser in step S170 is performed. For example, the control unit 30 preferably directs the fan cleaning unit 24 toward the indoor heat exchanger 15 in order to easily increase the temperature of the fan cleaning unit 24.
 このような空気調和機100は、例えば、菌類(カビ類)を十分に死滅させることができるように、フィンfから伝達される熱でファン清掃部24の温度を上昇させることができる。これにより、空気調和機100はファン清掃部24を清潔に保つことができる。 Such an air conditioner 100 can increase the temperature of the fan cleaning unit 24 with heat transmitted from the fins f so that, for example, fungi (molds) can be sufficiently killed. Thereby, the air conditioner 100 can keep the fan cleaning part 24 clean.
 (7)例えば、図12に示すように、制御部30は、暖房運転、冷房運転又は除湿運転時、ファン清掃部24を室内熱交換器15に接触させない状態とするようにしてもよい。 (7) For example, as shown in FIG. 12, the control unit 30 may make the fan cleaning unit 24 not contact the indoor heat exchanger 15 during heating operation, cooling operation, or dehumidifying operation.
 このような空気調和機100は、暖房運転、冷房運転又は除湿運転時、室内熱交換器15からファン清掃部24に塵埃が移動することを抑制することができ、ファン清掃部24の塵埃の付着量を低減することができる。また、空気調和機100は、室内熱交換器15で生成された結露水(凝縮水)がブラシ24bを伝って滴下させないようにすることができるため、結露水(凝縮水)で効率よく室内熱交換器15を洗浄することができる。 Such an air conditioner 100 can suppress the movement of dust from the indoor heat exchanger 15 to the fan cleaning unit 24 during the heating operation, the cooling operation, or the dehumidifying operation. The amount can be reduced. Further, the air conditioner 100 can prevent the condensed water (condensed water) generated by the indoor heat exchanger 15 from dripping along the brush 24b, so that the indoor heat can be efficiently generated with the condensed water (condensed water). The exchanger 15 can be cleaned.
 (8)ファン清掃部24は、軸部24aを中心にして回転する構造になっている。図10Aに示すように、制御部30は、暖房運転、冷房運転又は除湿運転時、ファン清掃部24の向きを水平方向とするか、水平方向に対して所定の角度の範囲内とするとよい。 (8) The fan cleaning unit 24 has a structure that rotates around the shaft 24a. As shown in FIG. 10A, the control unit 30 may set the direction of the fan cleaning unit 24 in the horizontal direction or within a predetermined angle range with respect to the horizontal direction during the heating operation, the cooling operation, or the dehumidifying operation.
 このような空気調和機100は、内部に流入する風の流れを妨げないようにすることができるため、比較的良好な空調効率を得ることができる。 Such an air conditioner 100 can obtain a relatively good air-conditioning efficiency because it can prevent the flow of the wind flowing into the interior.
 (9)又は、図10Bに示すように、制御部30は、暖房運転、冷房運転又は除湿運転時、ファン清掃部24の向きを風の流れに対して平行な向きとするようにしてもよい。 (9) Or, as shown in FIG. 10B, the control unit 30 may set the direction of the fan cleaning unit 24 to be parallel to the wind flow during the heating operation, the cooling operation, or the dehumidifying operation. .
 このような空気調和機100は、内部に流入する風の流れを妨げないようにすることができるため、比較的良好な空調効率を得ることができる。 Such an air conditioner 100 can obtain a relatively good air-conditioning efficiency because it can prevent the flow of the wind flowing into the interior.
 (10)空気調和機100は、ファン清掃部24の下方に室内熱交換器15の一部(例えば下側部分)又は露受皿18を配置している。例えば、図11に示すように、制御部30は、好ましくは、ファン清掃部24の先端が下に位置するようファン清掃部24を斜め下方向に向けてもよい。これにより、空気調和機100は、結露水の生成時、結露水がファン清掃部24の先端側から室内熱交換器15の一部(例えば下側部分)又は露受皿18の方向に流れるように、ファン清掃部24を結露水の水路として機能させることができる。 (10) In the air conditioner 100, a part of the indoor heat exchanger 15 (for example, the lower part) or the dew tray 18 is disposed below the fan cleaning unit 24. For example, as shown in FIG. 11, the control unit 30 may preferably direct the fan cleaning unit 24 obliquely downward so that the tip of the fan cleaning unit 24 is positioned below. Thereby, the air conditioner 100 causes the condensed water to flow from the front end side of the fan cleaning unit 24 toward a part of the indoor heat exchanger 15 (for example, the lower part) or the dew receiving tray 18 when the condensed water is generated. The fan cleaning unit 24 can function as a water channel for condensed water.
 このような空気調和機100は、ファン清掃部24を結露水の水路として機能させることにより、ファン清掃部24に付着した塵埃を結露水と一緒に落下させることができる。そのため、空気調和機100は、ファン清掃部24を効率よく洗浄することができる。 Such an air conditioner 100 can cause the dust attached to the fan cleaning unit 24 to fall together with the dew condensation water by causing the fan cleaning unit 24 to function as a water channel for the dew condensation water. Therefore, the air conditioner 100 can clean the fan cleaning unit 24 efficiently.
 (11)ファン清掃部24を室内熱交換器15に接触させて清掃する頻度は、好ましくは、室内ファン16(送風ファン)をファン清掃部24で清掃する頻度よりも少なくするとよい。 (11) The frequency of cleaning by bringing the fan cleaning unit 24 into contact with the indoor heat exchanger 15 is preferably less than the frequency of cleaning the indoor fan 16 (blower fan) by the fan cleaning unit 24.
 このような空気調和機100は、ファン清掃部24の清掃に利用する結露水(凝縮水)の生成頻度を抑制することができる。そのため、空気調和機100は、消費電力を低減することができる。 Such an air conditioner 100 can suppress the generation frequency of condensed water (condensate) used for cleaning the fan cleaning unit 24. Therefore, the air conditioner 100 can reduce power consumption.
 (12)図8に示すように、もしステップS170で暖房運転を行うのであれば、好ましくは、ステップS160において、制御部30は、室内ファン16(送風ファン)の回転を停止する動作制御を行うとよい。 (12) As shown in FIG. 8, if the heating operation is performed in step S170, preferably, in step S160, the control unit 30 performs operation control to stop the rotation of the indoor fan 16 (blower fan). Good.
 このような空気調和機100は、ステップS170で室内ファン16の回転を停止させた状態で暖房運転を行うため、熱交換された空気が室内に吹き出されないようにして、室内の快適性を保つことができる。 Since the air conditioner 100 performs the heating operation in a state where the rotation of the indoor fan 16 is stopped in step S170, the air exchanged heat is not blown into the room and the indoor comfort is maintained. Can do.
 (13)図13に示すように、制御部30は、好ましくは、室内ファン16(送風ファン)の運転時間に応じて室内ファン16(送風ファン)の清掃のタイミングを変更するようにしてもよい。 (13) As shown in FIG. 13, the control unit 30 may preferably change the cleaning timing of the indoor fan 16 (blower fan) according to the operation time of the indoor fan 16 (blower fan). .
 このような空気調和機100は、室内ファン16(送風ファン)の清掃のタイミングを自動的に変更することができるため、室内ファン16(送風ファン)の洗浄効率を向上させることができる。 Since such an air conditioner 100 can automatically change the cleaning timing of the indoor fan 16 (blower fan), the cleaning efficiency of the indoor fan 16 (blower fan) can be improved.
 (14)図14に示すように、制御部30は、好ましくは、室内ファン16(送風ファン)の運転時間に応じてブラシ24b(清掃部材)の清掃のタイミングを変更するようにしてもよい。 (14) As shown in FIG. 14, the control unit 30 may preferably change the cleaning timing of the brush 24 b (cleaning member) according to the operation time of the indoor fan 16 (blower fan).
 このような空気調和機100は、ブラシ24b(清掃部材)の清掃のタイミングを自動
的に変更することができるため、ブラシ24b(清掃部材)の洗浄効率を向上させることができる。
 また、このような空気調和機100は、例えば、ブラシ24bの方が室内ファン16よりも汚れ難いため、ブラシ24bを室内熱交換器15に接触させて清掃する頻度が室内ファン16をファン清掃部24で清掃する頻度よりも少なくなるように、ブラシ24bの清掃タイミングを設定することができる。これにより、空気調和機100は、ブラシ24bを室内熱交換器15に接触させて清掃する頻度を好適な値に設定することができる。
Since such an air conditioner 100 can automatically change the cleaning timing of the brush 24b (cleaning member), it is possible to improve the cleaning efficiency of the brush 24b (cleaning member).
Further, in such an air conditioner 100, for example, the brush 24b is less likely to be stained than the indoor fan 16, and therefore the frequency of cleaning the brush 24b by contacting the indoor heat exchanger 15 causes the indoor fan 16 to be cleaned by the fan cleaning unit. The cleaning timing of the brush 24b can be set so as to be less than the frequency of cleaning at 24. Thereby, the air conditioner 100 can set the frequency which cleans the brush 24b in contact with the indoor heat exchanger 15 to a suitable value.
 (15)制御部30は、室内熱交換器15にブラシ24bを当接させる当接制御(図8のステップS110参照)を行うことにより、ブラシ24bに付着した塵埃をブラシ24bから室内熱交換器15に移動させることができる。 (15) The control unit 30 performs contact control (see step S110 in FIG. 8) for bringing the brush 24b into contact with the indoor heat exchanger 15, thereby removing dust attached to the brush 24b from the brush 24b to the indoor heat exchanger. 15 can be moved.
 このような空気調和機100は、ブラシ24bに付着した塵埃を室内熱交換器15に擦り付けて、ブラシ24bから室内熱交換器15に塵埃を移動させることができるため、ブラシ24bから塵埃を効率よく除去することができる。
 また、空気調和機100は、室内熱交換器15を伝って流れる結露水とともに、室内熱交換器15に移動した塵埃を滴下させることができるため、洗浄効率を向上させることができる。
 また、通常、室内熱交換器15はアースされているため、空気調和機100は、ブラシ24bの除電効果(すなわち、ブラシ24bを除電して、塵埃がブラシ24bに付着し難くする効果)を得ることができる。その結果、空気調和機100は、塵埃がブラシ24bに付着し難くすることができ、ブラシ24bを清潔に保ち易くすることができる。
Such an air conditioner 100 can move dust from the brush 24b to the indoor heat exchanger 15 by rubbing the dust adhering to the brush 24b onto the indoor heat exchanger 15. Therefore, the air can be efficiently removed from the brush 24b. Can be removed.
Moreover, since the air conditioner 100 can drip the dust which moved to the indoor heat exchanger 15 with the dew condensation water which flows along the indoor heat exchanger 15, it can improve cleaning efficiency.
In addition, since the indoor heat exchanger 15 is normally grounded, the air conditioner 100 obtains the effect of removing electricity from the brush 24b (that is, the effect of removing electricity from the brush 24b and making it difficult for dust to adhere to the brush 24b). be able to. As a result, the air conditioner 100 can make it difficult for dust to adhere to the brush 24b, and can easily keep the brush 24b clean.
 (16)制御部30は、ブラシ24bに結露水が付着する動作制御を行った後に、ブラシ24bを回転移動させる場合に、ファン清掃部24に対して、軸部24aの下回り方向にブラシ24bを回転させる。 (16) When the control unit 30 performs the operation control that the condensed water adheres to the brush 24b and then rotates the brush 24b, the control unit 30 moves the brush 24b in the downward direction of the shaft portion 24a with respect to the fan cleaning unit 24. Rotate.
 このような空気調和機100は、ブラシ24bに付着した結露水がブラシ24bの先端側から軸部24a側に流れて軸部24aに溜まり、比較的大径の滴となって軸部24aから滴下することを抑制することができる。そのため、空気調和機100は、結露水が飛散することを抑制することができる。 In such an air conditioner 100, the condensed water adhering to the brush 24b flows from the tip end side of the brush 24b to the shaft portion 24a side and accumulates in the shaft portion 24a, and drops as a relatively large diameter droplet from the shaft portion 24a. Can be suppressed. Therefore, the air conditioner 100 can suppress the dew condensation water from scattering.
 以上の通り、本実施形態に係る空気調和機100によれば、ファン清掃部24を効率よく洗浄することができる。 As mentioned above, according to the air conditioner 100 which concerns on this embodiment, the fan cleaning part 24 can be wash | cleaned efficiently.
≪変形例≫
 以上、本発明に係る空気調和機100について実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
≪Modification≫
The air conditioner 100 according to the present invention has been described in the above embodiments, but the present invention is not limited to these descriptions, and various modifications can be made.
<第1変形例>
 図15は、第1変形例に係る空気調和機のファン清掃部24の清掃処理を示すフローチャートである。
<First Modification>
FIG. 15 is a flowchart illustrating a cleaning process of the fan cleaning unit 24 of the air conditioner according to the first modification.
 第1変形例では、図15に示すファン清掃部24の清掃処理を任意のタイミングで行う。例えば、第1変形例に係る空気調和機は、図8(若しくは図9)に示すフローの処理を所望のタイミングで行う際に、数回に1回の割合で、図8(若しくは図9)に示すフローの処理の代わりに、図15に示すフローの処理を行うようにしてもよい。又は、図8(若しくは図9)に示すフローの処理を行わずに、図15に示すフローの処理を行うようにしてもよい。 In the first modification, the cleaning process of the fan cleaning unit 24 shown in FIG. 15 is performed at an arbitrary timing. For example, in the air conditioner according to the first modification, when the processing of the flow shown in FIG. 8 (or FIG. 9) is performed at a desired timing, the ratio is once every several times. Instead of the flow process shown in FIG. 15, the flow process shown in FIG. 15 may be performed. Alternatively, the processing of the flow shown in FIG. 15 may be performed without performing the processing of the flow shown in FIG. 8 (or FIG. 9).
 図15に示す例では、制御部30は、ファン清掃部24の清掃タイミングになったか否かを判定する(ステップS1010)。ステップS1010で、清掃タイミングになっていないと判定された場合(“No”の場合)に、処理は終了する。一方、清掃タイミングになったと判定された場合(“Yes”の場合)に、処理はステップS1020に進む。この場合に、制御部30は、空調運転時に回転する方向とは逆方向に室内ファン16(送風ファン)を回転させる(ステップS1020)。そして、制御部30は、ファン清掃部24が室内交換器15に接触する角度を含む範囲で、ファン清掃部24を回転させる動作を複数回行う(ステップS1030)。これにより、処理は終了する。 In the example shown in FIG. 15, the control unit 30 determines whether or not the cleaning timing of the fan cleaning unit 24 has come (step S1010). If it is determined in step S1010 that it is not the cleaning timing (in the case of “No”), the process ends. On the other hand, when it is determined that the cleaning timing has come (in the case of “Yes”), the process proceeds to step S1020. In this case, the control unit 30 rotates the indoor fan 16 (blower fan) in the direction opposite to the direction rotating during the air conditioning operation (step S1020). And the control part 30 performs the operation | movement which rotates the fan cleaning part 24 in multiple times in the range including the angle which the fan cleaning part 24 contacts the indoor exchanger 15 (step S1030). Thereby, the process ends.
 このような第1変形例に係る空気調和機は、ファン清掃部24を室内交換器15に複数回接触させることにより、ファン清掃部24に付着した塵埃を室内交換器15に擦り付けて落下させることができる。また、第1変形例に係る空気調和機100は、室内熱交換器15がアースされているため、ブラシ24bの除電効果(すなわち、ブラシ24bを除電して、塵埃がブラシ24bに付着し難くする効果)を得ることができる。その結果、第1変形例に係る空気調和機100は、塵埃がブラシ24bに付着し難くすることができ、ブラシ24bを清潔に保ち易くすることができる。また、第1変形例に係る空気調和機100は、図8(若しくは図9)に示すフローの処理を行う場合に比べて、結露水を生成しないため、消費電力を低減することができる。 In such an air conditioner according to the first modification, the dust attached to the fan cleaning unit 24 is rubbed against the indoor exchanger 15 and dropped by bringing the fan cleaning unit 24 into contact with the indoor exchanger 15 a plurality of times. Can do. Further, in the air conditioner 100 according to the first modification, since the indoor heat exchanger 15 is grounded, the charge removal effect of the brush 24b (that is, the brush 24b is discharged to make it difficult for dust to adhere to the brush 24b. Effect). As a result, the air conditioner 100 according to the first modification can make it difficult for dust to adhere to the brush 24b, and can easily keep the brush 24b clean. Moreover, since the air conditioner 100 which concerns on a 1st modification does not produce | generate dew condensation water compared with the case where the process of the flow shown in FIG. 8 (or FIG. 9) is performed, it can reduce power consumption.
 なお、第1変形例では、ファン清掃部24を回転させる動作時に、空調運転時に回転する方向とは逆方向に室内ファン16(送風ファン)を回転させる(ステップS1020参照)。これにより、第1変形例に係る空気調和機は、室内機Uiの内部で塵埃が舞い上がり、その塵埃が空気吹出口h4から室内に吹き出されることを抑制することができる。 In the first modification, when the fan cleaning unit 24 is rotated, the indoor fan 16 (blower fan) is rotated in a direction opposite to the direction rotated during the air conditioning operation (see step S1020). Thereby, the air conditioner according to the first modified example can suppress dust from rising inside the indoor unit Ui and blowing out the dust from the air outlet h4 into the room.
<第2変形例>
 図16Aは、第2変形例に係る空気調和機の室内熱交換器15の側面図である。図16Bは、第2変形例に係る空気調和機の室内熱交換器15の内面図である。
<Second Modification>
FIG. 16A is a side view of the indoor heat exchanger 15 of the air conditioner according to the second modification. FIG. 16B is an inner view of the indoor heat exchanger 15 of the air conditioner according to the second modification.
 図16Aに示すように、第2変形例に係る空気調和機は、室内熱交換器15のフィンfにスリットslが設けられている。図16Aに示すように、スリットslは、好ましくは、ファン清掃部24が回転することにより、ファン清掃部24のブラシ24bが当接する箇所に設けられるようにするとよい。図16Bに示す例では、スリットslは、フィンfの内面部分がフィンfの一方の面側と他方の面側とに数mmの幅で交互に折り込まれることによって形成されている。 As shown in FIG. 16A, the air conditioner according to the second modification is provided with slits sl in the fins f of the indoor heat exchanger 15. As shown in FIG. 16A, the slit sl is preferably provided at a location where the brush 24b of the fan cleaning unit 24 abuts when the fan cleaning unit 24 rotates. In the example shown in FIG. 16B, the slits sl are formed by alternately folding the inner surface portions of the fins f with a width of several millimeters on one surface side and the other surface side of the fins f.
 室内熱交換器15のフィンf同士の間隔(フィンピッチ)は、ファン清掃部24のブラシ24bの毛の太さよりも広い場合がある。第2変形例に係る空気調和機は、このような場合であっても、ブラシ24bを効率よく室内熱交換器15のフィンfに接触させることができる。これにより、第2変形例に係る空気調和機は、ファン清掃部24を効率よく洗浄することができる。 The space | interval (fin pitch) of the fins f of the indoor heat exchanger 15 may be wider than the thickness of the hair of the brush 24b of the fan cleaning part 24. Even in such a case, the air conditioner according to the second modification can efficiently bring the brush 24b into contact with the fins f of the indoor heat exchanger 15. Thereby, the air conditioner which concerns on a 2nd modification can wash | clean the fan cleaning part 24 efficiently.
<第3変形例>
 図17は、第3変形例に係る空気調和機の室内機UAiの縦断面図である。
 図17に示す第3変形例では、縦断面視で凹状を呈する溝部材Mが、前側室内熱交換器15aの下方に設置されている。また、溝部材Mの底面から上側に延びるリブ28が、溝部材Mに設置されている。なお、その他の点については実施形態と同様である。
<Third Modification>
FIG. 17 is a longitudinal sectional view of an indoor unit UAi of an air conditioner according to a third modification.
In the third modified example shown in FIG. 17, a groove member M having a concave shape in a longitudinal sectional view is installed below the front side indoor heat exchanger 15a. A rib 28 extending upward from the bottom surface of the groove member M is provided in the groove member M. Other points are the same as in the embodiment.
 図17に示す溝部材Mにおいて、リブ28の前側の部分は、室内熱交換器15の凝縮水を受ける露受部18Aとして機能する。また、溝部材Mにおいて、リブ28の後側の部分は、室内熱交換器15や室内ファン16から落下した塵埃を受ける塵埃受け部29として
機能する。この塵埃受け部29は、室内熱交換器15の下方に配置されている。
In the groove member M shown in FIG. 17, the front portion of the rib 28 functions as a dew receiving portion 18 </ b> A that receives the condensed water of the indoor heat exchanger 15. In the groove member M, the rear portion of the rib 28 functions as a dust receiving portion 29 that receives dust dropped from the indoor heat exchanger 15 and the indoor fan 16. The dust receiver 29 is disposed below the indoor heat exchanger 15.
 さらに、ファン清掃部24の下方には、室内熱交換器15(前側室内熱交換器15aの下部)が存在しているとともに、塵埃受け部29も存在している。より詳しく説明すると、図示は省略するが、ファン清掃部24が室内ファン16に接触した状態での接触位置の下方に、室内熱交換器15が存在しているとともに、塵埃受け部29も存在している。このような構成であっても、前記した実施形態と同様の効果が奏される。
 なお、室内熱交換器15の解凍時には、露受部18Aに水が流れ落ちるとともに、塵埃受け部29にも水が流れ落ちる。したがって、塵埃受け部29に溜まった塵埃の排出に支障が生じるおそれはない。
Further, below the fan cleaning unit 24, there is an indoor heat exchanger 15 (a lower part of the front indoor heat exchanger 15 a), and a dust receiving unit 29. More specifically, although illustration is omitted, the indoor heat exchanger 15 and the dust receiving part 29 are present below the contact position when the fan cleaning part 24 is in contact with the indoor fan 16. ing. Even if it is such a structure, the effect similar to above-described embodiment is show | played.
When the indoor heat exchanger 15 is thawed, water flows down to the dew receiving unit 18A and water also flows down to the dust receiving unit 29. Therefore, there is no possibility that the dust collected in the dust receiving portion 29 will be hindered.
 また、図17に示す例では、リブ28の上端が前側室内熱交換器15aに接触していないが、これに限らない。すなわち、リブ28の上端が前側室内熱交換器15aに接触していてもよい。 In the example shown in FIG. 17, the upper end of the rib 28 is not in contact with the front indoor heat exchanger 15a, but the present invention is not limited to this. That is, the upper end of the rib 28 may be in contact with the front indoor heat exchanger 15a.
<第4変形例>
 図18は、第4変形例に係る空気調和機が備える室内ファン16及びファン清掃部124Aの模式的な斜視図である。
 図18に示す第4変形例では、ファン清掃部124Aが、室内ファン16の軸方向に平行な棒状の軸部124dと、この軸部124dに設置されるブラシ124eと、軸部124dの両端に設置される一対の支持部124f,124fと、を備えている。その他、ファン清掃部124Aは、図示はしないが、ファン清掃部124Aを軸方向等に移動させる移動機構も備えている。
<Fourth Modification>
FIG. 18 is a schematic perspective view of the indoor fan 16 and the fan cleaning unit 124A provided in the air conditioner according to the fourth modification.
In the fourth modification shown in FIG. 18, the fan cleaning section 124A is provided with a rod-shaped shaft section 124d parallel to the axial direction of the indoor fan 16, a brush 124e installed on the shaft section 124d, and both ends of the shaft section 124d. And a pair of support portions 124f and 124f to be installed. In addition, although not shown, the fan cleaning unit 124A includes a moving mechanism that moves the fan cleaning unit 124A in the axial direction or the like.
 図18に示すように、室内ファン16の軸方向(長手方向)と平行な方向におけるファン清掃部124Aの長さは、室内ファン16自体の軸方向の長さよりも短い。なお、室内ファン16の軸方向(長手方向)は、室内機Uiの正面から見て左右方向となる。そして、室内ファン16の清掃中、ファン清掃部124Aが、室内ファン16の軸方向(長手方向)に移動するようになっている。つまり、室内ファン16の軸方向において、ファン清掃部124Aの長さに相当する所定領域ごとに、室内ファン16が順次に清掃されるようになっている。このように、その長さが比較的短いファン清掃部124Aを移動させる構成にすることで、第1実施形態に比べて、空気調和機の製造コストを削減できる。 18, the length of the fan cleaning section 124A in the direction parallel to the axial direction (longitudinal direction) of the indoor fan 16 is shorter than the axial length of the indoor fan 16 itself. The axial direction (longitudinal direction) of the indoor fan 16 is the left-right direction when viewed from the front of the indoor unit Ui. During the cleaning of the indoor fan 16, the fan cleaning unit 124 </ b> A moves in the axial direction (longitudinal direction) of the indoor fan 16. That is, in the axial direction of the indoor fan 16, the indoor fan 16 is sequentially cleaned for each predetermined area corresponding to the length of the fan cleaning unit 124A. Thus, the manufacturing cost of an air conditioner can be reduced by making it the structure which moves 124 A of fan cleaning parts whose length is comparatively short compared with 1st Embodiment.
 なお、軸部124dと平行に延びる棒(図示せず)をファン清掃部124Aの付近(例えば、軸部124dの上側)に設け、所定の移動機構(図示せず)が、この棒に沿ってファン清掃部124Aを移動させるようにしてもよい。また、ファン清掃部124Aによる清掃後、移動機構(図示せず)がファン清掃部124Aを適宜に回動又は平行移動させ、ファン清掃部124Aを室内ファン16から退避させるようにしてもよい。 A rod (not shown) extending in parallel with the shaft portion 124d is provided in the vicinity of the fan cleaning portion 124A (for example, above the shaft portion 124d), and a predetermined moving mechanism (not shown) is provided along the rod. The fan cleaning unit 124A may be moved. Further, after the cleaning by the fan cleaning unit 124A, a moving mechanism (not shown) may appropriately rotate or translate the fan cleaning unit 124A so that the fan cleaning unit 124A is retracted from the indoor fan 16.
 また、実施形態では、室内ファン16の清掃時に、制御部30が、ファン清掃部24を室内ファン16に接触させ、通常の空調運転時とは逆向きに室内ファン16を回転(逆回転)させる処理について説明したが、これに限らない。すなわち、制御部30が、ファン清掃部24を室内ファン16に接触させ、通常の空調運転時と同一の向きに室内ファン16を回転(正回転)させるようにしてもよい。 In the embodiment, when the indoor fan 16 is cleaned, the control unit 30 causes the fan cleaning unit 24 to contact the indoor fan 16 to rotate (reversely rotate) the indoor fan 16 in a direction opposite to that during normal air conditioning operation. Although the process has been described, the present invention is not limited to this. That is, the control unit 30 may bring the fan cleaning unit 24 into contact with the indoor fan 16 and rotate the indoor fan 16 in the same direction as during normal air-conditioning operation (forward rotation).
 このように室内ファン16にブラシ24bを接触させて、室内ファン16を正回転させることで、ファンブレード16aの腹の先端付近に付着した塵埃が効果的に除去される。また、室内ファン16を逆回転させるための回路素子が不要になるため、空気調和機100の製造コストを削減できる。なお、清掃中に室内ファン16を正回転させる際の回転速度は、実施形態と同様に、低速域・中速域・高速域のうちのいずれであってもよい。 As described above, the brush 24b is brought into contact with the indoor fan 16 and the indoor fan 16 is rotated in the forward direction, so that dust adhering to the vicinity of the tip of the fan blade 16a is effectively removed. Moreover, since the circuit element for reversely rotating the indoor fan 16 becomes unnecessary, the manufacturing cost of the air conditioner 100 can be reduced. Note that the rotational speed when the indoor fan 16 is normally rotated during cleaning may be any of a low speed region, a medium speed region, and a high speed region, as in the embodiment.
 また、実施形態では、ファン清掃部24の軸部24aを中心にブラシ24bが回動する構成について説明したが、これに限らない。例えば、室内ファン16を清掃する際には、制御部30が、軸部24aを室内ファン16の方に移動させ、ブラシ24bを室内ファン16に接触させるようにしてもよい。そして、室内ファン16の清掃終了後は、制御部30が、軸部24aを退避させ、ブラシ24bを室内ファン16から離間させるようにしてもよい。 In the embodiment, the configuration in which the brush 24b rotates around the shaft portion 24a of the fan cleaning unit 24 has been described, but the configuration is not limited thereto. For example, when cleaning the indoor fan 16, the control unit 30 may move the shaft portion 24 a toward the indoor fan 16 and bring the brush 24 b into contact with the indoor fan 16. Then, after the cleaning of the indoor fan 16 is completed, the control unit 30 may retract the shaft portion 24 a and separate the brush 24 b from the indoor fan 16.
 また、実施形態では、ファン清掃部24がブラシ24bを備える構成について説明したが、これに限らない。すなわち、室内ファン16を清掃可能な部材であれば、スポンジ等を用いてもよい。 In the embodiment, the configuration in which the fan cleaning unit 24 includes the brush 24b has been described. However, the configuration is not limited thereto. That is, a sponge or the like may be used as long as the indoor fan 16 can be cleaned.
 また、実施形態では、室内熱交換器15において、ファン清掃部24の下方に位置する領域が、冷媒の流れの下流域ではない構成について説明したが、これに限らない。例えば、室内熱交換器15において、その高さがファン清掃部24よりも高い領域が、室内熱交換器15を通流する冷媒の流れの下流域ではない(つまり、上流域又は中流域である)という構成であってもよい。より詳しく説明すると、前側室内熱交換器15aにおいて、通常の空調運転時に空気の流れの下流側に位置する領域であって、その高さがファン清掃部24よりも高い領域は、室内熱交換器15を通流する冷媒の流れの下流域ではないことが好ましい。このような構成によれば、前側室内熱交換器15aにおいて通常の空調運転時に空気の流れの下流側に位置する領域(図2に示す前側室内熱交換器15aの紙面右部)であって、その高さがファン清掃部24よりも高い領域には、室内熱交換器15の凍結に伴って、厚さが厚い霜が付着する。そして、その後に室内熱交換器15を解凍させると、フィンfを伝って多量の水が流れ落ちる。その結果、室内熱交換器15に付着した塵埃(室内ファン16から除去された塵埃を含む)を露受皿18に洗い落とすことができる。 In the embodiment, the configuration in which the region located below the fan cleaning unit 24 in the indoor heat exchanger 15 is not the downstream region of the refrigerant flow has been described, but the present invention is not limited thereto. For example, in the indoor heat exchanger 15, the region whose height is higher than that of the fan cleaning unit 24 is not the downstream region of the flow of the refrigerant flowing through the indoor heat exchanger 15 (that is, the upstream region or the middle region). ) May be used. More specifically, in the front indoor heat exchanger 15a, a region located downstream of the air flow during normal air-conditioning operation and having a height higher than that of the fan cleaning unit 24 is the indoor heat exchanger. It is preferable that it is not the downstream area of the flow of the refrigerant | coolant which flows through 15. According to such a configuration, in the front indoor heat exchanger 15a, the region located on the downstream side of the air flow during normal air conditioning operation (the right side of the front indoor heat exchanger 15a shown in FIG. 2), As the indoor heat exchanger 15 is frozen, thick frost adheres to a region whose height is higher than that of the fan cleaning unit 24. And if the indoor heat exchanger 15 is defrosted after that, a lot of water will flow down along the fin f. As a result, dust adhering to the indoor heat exchanger 15 (including dust removed from the indoor fan 16) can be washed off to the dew tray 18.
 また、実施形態では、室内ファン16の清掃中、制御部30が、ファン清掃部24のブラシ24bを室内ファン16に接触させる構成について説明したが、これに限らない。すなわち、室内ファン16の清掃中、制御部30が、ファン清掃部24のブラシ24bを室内ファン16に近接させるようにしてもよい。より詳しく説明すると、ファンブレード16aの先端に溜まって、この先端よりも径方向外側まで成長した塵埃を除去できる程度まで、制御部30が室内ファン16にブラシ24bを近接させる。このような構成でも、室内ファン16に溜まった塵埃を適切に除去できる。 Further, in the embodiment, the configuration in which the control unit 30 contacts the brush 24b of the fan cleaning unit 24 with the indoor fan 16 during cleaning of the indoor fan 16 is not limited thereto. That is, during cleaning of the indoor fan 16, the control unit 30 may bring the brush 24 b of the fan cleaning unit 24 close to the indoor fan 16. More specifically, the control unit 30 brings the brush 24b close to the indoor fan 16 to such an extent that dust accumulated at the tip of the fan blade 16a and growing to the outside in the radial direction from the tip can be removed. Even with such a configuration, dust accumulated in the indoor fan 16 can be appropriately removed.
 また、各実施形態では、室内熱交換器15の凍結等によって、室内熱交換器15を洗浄する処理について説明したが、これに限らない。例えば、室内熱交換器15を結露させ、その結露水(凝縮水)で室内熱交換器15を洗浄するようにしてもよい。例えば、制御部30は、室内空気の温度及び相対湿に基づいて、室内空気の露点を算出する。そして、制御部30は、室内熱交換器15の温度が、前記した露点以下であり、かつ、所定の凍結温度よりも高くなるように、膨張弁14の開度等を制御する。 Moreover, in each embodiment, although the process which wash | cleans the indoor heat exchanger 15 by freezing etc. of the indoor heat exchanger 15 was demonstrated, it is not restricted to this. For example, the indoor heat exchanger 15 may be condensed, and the indoor heat exchanger 15 may be washed with the condensed water (condensed water). For example, the control unit 30 calculates the dew point of the room air based on the temperature of the room air and the relative humidity. And the control part 30 controls the opening degree etc. of the expansion valve 14 so that the temperature of the indoor heat exchanger 15 is below the above-mentioned dew point, and becomes higher than predetermined freezing temperature.
 前記した「凍結温度」とは、室内空気の温度を低下させたとき、室内空気に含まれる水分が、室内熱交換器15で凍結し始める温度である。このように室内熱交換器15を結露させることによって、その結露水(凝縮水)で室内熱交換器15の塵埃を洗い落とすことができる。 The above “freezing temperature” is a temperature at which moisture contained in the indoor air starts to freeze in the indoor heat exchanger 15 when the temperature of the indoor air is lowered. By condensing the indoor heat exchanger 15 in this way, the dust in the indoor heat exchanger 15 can be washed away with the condensed water (condensed water).
 また、制御部30が、冷房運転や除湿運転を行うことによって、室内熱交換器15を結露させ、その結露水(凝縮水)で室内熱交換器15を洗浄するようにしてもよい。 Further, the control unit 30 may condense the indoor heat exchanger 15 by performing a cooling operation or a dehumidifying operation and wash the indoor heat exchanger 15 with the condensed water (condensed water).
 また、実施形態(図2参照)では、ファン清掃部24の下方に室内熱交換器15及び露
受皿18が存在する構成について説明したが、これに限らない。すなわち、ファン清掃部24の下方に、室内熱交換器15及び露受皿18のうち少なくとも一方が存在している構成であってもよい。例えば、縦断面視で<字状を呈する室内熱交換器15の下部が鉛直方向に延びている構成において、ファン清掃部24の下方(真下)に露受皿18が存在していてもよい。
Moreover, although embodiment (refer FIG. 2) demonstrated the structure in which the indoor heat exchanger 15 and the dew tray 18 exist below the fan cleaning part 24, it is not restricted to this. That is, a configuration in which at least one of the indoor heat exchanger 15 and the dew receiving tray 18 exists below the fan cleaning unit 24 may be employed. For example, in a configuration in which the lower portion of the indoor heat exchanger 15 that is <-shaped in a longitudinal sectional view extends in the vertical direction, the dew pan 18 may exist below (directly below) the fan cleaning unit 24.
 また、図17に示す第3変形例では、ファン清掃部24の下方に室内熱交換器15及び塵埃受け部29が存在する構成について説明したが、これに限らない。すなわち、ファン清掃部24の下方に、室内熱交換器15及び塵埃受け部29のうち少なくとも一方が存在している構成であってもよい。 In the third modification shown in FIG. 17, the configuration in which the indoor heat exchanger 15 and the dust receiving part 29 are present below the fan cleaning part 24 has been described, but the present invention is not limited thereto. That is, a configuration in which at least one of the indoor heat exchanger 15 and the dust receiving part 29 exists below the fan cleaning part 24 may be employed.
 また、実施形態では、室内機Ui(図1参照)及び室外機Uo(同図参照)が一台ずつ設けられる構成について説明したが、これに限らない。すなわち、並列接続された複数台の室内機を設けてもよいし、また、並列接続された複数台の室外機を設けてもよい。
 また、実施形態では、壁掛型の空気調和機100について説明したが、他の種類の空気調和機にも適用することが可能である。
In the embodiment, the configuration in which the indoor unit Ui (see FIG. 1) and the outdoor unit Uo (see the same figure) are provided one by one has been described, but the present invention is not limited thereto. That is, a plurality of indoor units connected in parallel may be provided, or a plurality of outdoor units connected in parallel may be provided.
In the embodiment, the wall-mounted air conditioner 100 has been described, but the present invention can also be applied to other types of air conditioners.
 また、実施形態では、空気調和機100が室内熱交換器15の凍結・解凍運転を実行する機能を有する場合を想定して説明した。しかしながら、本発明は、空気調和機100が室内熱交換器15の凍結・解凍運転を実行する機能を有していない場合にも適用することができる。 In the embodiment, the case where the air conditioner 100 has a function of executing the freezing / thawing operation of the indoor heat exchanger 15 has been described. However, the present invention can also be applied to a case where the air conditioner 100 does not have a function of executing the freezing / thawing operation of the indoor heat exchanger 15.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
 また、本発明は、室内機Uiに限らず、室外機Uoにも適用することができる。
Each embodiment is described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the described configurations. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
In addition, the above-described mechanisms and configurations are those that are considered necessary for the description, and do not necessarily indicate all the mechanisms and configurations on the product.
Moreover, this invention is applicable not only to the indoor unit Ui but the outdoor unit Uo.
 100 空気調和機
 11  圧縮機
 12  室外熱交換器
 13  室外ファン
 14  膨張弁
 15  室内熱交換器(熱交換器)
 15a 前側室内熱交換器
 15b 後側室内熱交換器
 16  室内ファン(送風ファン)
 17  四方弁
 18  露受皿
 22  左右風向板
 23  上下風向板(風向板)
 24,124A  ファン清掃部
 24a,124d 軸部
 24b,124e ブラシ(清掃部材)
 124f 支持部
 28  リブ
 29  塵埃受け部
 30  制御部
 K   接触位置
 Q   冷媒回路
 r   凹部
DESCRIPTION OF SYMBOLS 100 Air conditioner 11 Compressor 12 Outdoor heat exchanger 13 Outdoor fan 14 Expansion valve 15 Indoor heat exchanger (heat exchanger)
15a Front side indoor heat exchanger 15b Rear side indoor heat exchanger 16 Indoor fan (fan)
17 Four-way valve 18 Dew tray 22 Left and right wind direction plate 23 Vertical wind direction plate (wind direction plate)
24, 124A Fan cleaning part 24a, 124d Shaft part 24b, 124e Brush (cleaning member)
124f Supporting portion 28 Rib 29 Dust receiving portion 30 Control portion K Contact position Q Refrigerant circuit r Recessed portion

Claims (16)

  1.  熱交換器を有する冷凍サイクルと、
     送風ファンと、
     前記送風ファンを清掃するファン清掃部と、
     前記ファン清掃部を前記送風ファンと前記熱交換器の双方に選択的に接触させる制御部と、を備え、
     前記制御部は、前記ファン清掃部を前記熱交換器に接触させる前、又は、前記ファン清掃部を前記熱交換器に接触させている時に、前記冷凍サイクルに前記熱交換器で結露水を生成させる
    ことを特徴とする空気調和機。
    A refrigeration cycle having a heat exchanger;
    A blower fan,
    A fan cleaning section for cleaning the blower fan;
    A controller for selectively bringing the fan cleaning unit into contact with both the blower fan and the heat exchanger;
    The control unit generates condensed water in the refrigeration cycle by the heat exchanger before the fan cleaning unit is brought into contact with the heat exchanger or when the fan cleaning unit is brought into contact with the heat exchanger. An air conditioner characterized in that
  2.  請求項1に記載の空気調和機において、
     前記制御部は、前記冷凍サイクルに前記熱交換器で結露水を生成させた後、乾燥動作を行い、
     前記乾燥動作は、前記熱交換器を凝縮器とする運転又は送風運転によって行われる
    ことを特徴とする空気調和機。
    In the air conditioner according to claim 1,
    The control unit performs a drying operation after generating condensed water in the heat exchanger in the refrigeration cycle,
    The air conditioner is characterized in that the drying operation is performed by an operation using the heat exchanger as a condenser or an air blowing operation.
  3.  請求項2に記載の空気調和機において、
     前記制御部は、前記熱交換器を凝縮器とする運転により前記乾燥動作を行う場合、前記ファン清掃部を前記熱交換器に接触させる
    ことを特徴とする空気調和機。
    In the air conditioner according to claim 2,
    The controller is configured to bring the fan cleaning unit into contact with the heat exchanger when performing the drying operation by an operation using the heat exchanger as a condenser.
  4.  請求項2に記載の空気調和機において、
     前記制御部は、前記熱交換器を凝縮器とする運転により前記乾燥動作を行う場合、風向板を閉じるか若しくは水平以上の向きとするか、前記送風ファンを停止するか、又はその両方を行う
    ことを特徴とする空気調和機。
    In the air conditioner according to claim 2,
    When performing the drying operation by the operation using the heat exchanger as the condenser, the control unit closes the wind direction plate or sets it to a horizontal or higher direction, stops the blower fan, or both. An air conditioner characterized by that.
  5.  請求項3に記載の空気調和機において、
     前記熱交換器は伝熱管及びフィンを有し、
     前記制御部は、前記乾燥動作を行う場合、前記ファン清掃部を前記熱交換器のうちガス域又は二相域の冷媒が流れる前記伝熱管に接触している前記フィンに接触させる
    ことを特徴とする空気調和機。
    In the air conditioner according to claim 3,
    The heat exchanger has heat transfer tubes and fins;
    When the controller performs the drying operation, the fan cleaning unit is brought into contact with the fin that is in contact with the heat transfer tube in which a refrigerant in a gas region or a two-phase region flows in the heat exchanger. Air conditioner to do.
  6.  請求項2に記載の空気調和機において、
     前記制御部は、前記熱交換器を凝縮器とする運転により前記乾燥動作を行う場合、前記ファン清掃部を前記熱交換器に向ける
    ことを特徴とする空気調和機。
    In the air conditioner according to claim 2,
    The control unit directs the fan cleaning unit toward the heat exchanger when the drying operation is performed by an operation using the heat exchanger as a condenser.
  7.  請求項1に記載の空気調和機において、
     前記制御部は、暖房運転、冷房運転又は除湿運転時、前記ファン清掃部を前記熱交換器に接触させない状態とする
    ことを特徴とする空気調和機。
    In the air conditioner according to claim 1,
    The said control part makes the said fan cleaning part the state which does not contact the said heat exchanger at the time of heating operation, air_conditionaing | cooling operation, or dehumidification operation, The air conditioner characterized by the above-mentioned.
  8.  請求項7記載の空気調和機において、
     前記ファン清掃部は、軸部を中心にして回転する構造であり、
     暖房運転、冷房運転又は除湿運転時、前記ファン清掃部の向きを水平方向とするか、水平方向に対して所定の角度の範囲内とする
    ことを特徴とする空気調和機。
    The air conditioner according to claim 7,
    The fan cleaning part is a structure that rotates around a shaft part,
    An air conditioner characterized in that, during heating operation, cooling operation, or dehumidifying operation, the direction of the fan cleaning unit is set to a horizontal direction or within a predetermined angle range with respect to the horizontal direction.
  9.  請求項7記載の空気調和機において、
     前記ファン清掃部は、軸部を中心にして回転する構造であり、
     暖房運転、冷房運転又は除湿運転時、前記ファン清掃部の向きを風の流れに対して平行な向きとする
    ことを特徴とする空気調和機。
    The air conditioner according to claim 7,
    The fan cleaning part is a structure that rotates around a shaft part,
    An air conditioner characterized in that, during a heating operation, a cooling operation, or a dehumidifying operation, the direction of the fan cleaning unit is parallel to the wind flow.
  10.  請求項1に記載の空気調和機において、
     前記ファン清掃部の下方に前記熱交換器の一部又は露受皿が配置されており、
     前記制御部は、前記結露水の生成時、前記ファン清掃部の先端が下に位置するよう前記ファン清掃部を斜め下方に向ける
    ことを特徴とする空気調和機。
    In the air conditioner according to claim 1,
    A part of the heat exchanger or a dew tray is disposed below the fan cleaning unit,
    The said control part turns the said fan cleaning part diagonally downward so that the front-end | tip of the said fan cleaning part may be located below at the time of the production | generation of the said dew condensation water, The air conditioner characterized by the above-mentioned.
  11.  請求項1に記載の空気調和機において、
     前記ファン清掃部を前記熱交換器に接触させて清掃する頻度は、前記送風ファンを前記ファン清掃部で清掃する頻度よりも少ない
    ことを特徴とする空気調和機。
    In the air conditioner according to claim 1,
    The air conditioner characterized in that the frequency of cleaning the fan cleaning unit in contact with the heat exchanger is less than the frequency of cleaning the blower fan by the fan cleaning unit.
  12.  熱交換器を有する冷凍サイクルと、
     送風ファンと、
     前記送風ファンを清掃するファン清掃部と、
     前記ファン清掃部を前記送風ファンと前記熱交換器の双方に選択的に接触させる制御部と、を備え、
     前記制御部は、前記ファン清掃部が前記熱交換器に接触する角度を含む範囲で、前記ファン清掃部を回転させる動作を複数回行う
    ことを特徴とする空気調和機。
    A refrigeration cycle having a heat exchanger;
    A blower fan,
    A fan cleaning section for cleaning the blower fan;
    A controller for selectively bringing the fan cleaning unit into contact with both the blower fan and the heat exchanger;
    The said control part performs the operation | movement which rotates the said fan cleaning part in multiple times in the range including the angle which the said fan cleaning part contacts the said heat exchanger, The air conditioner characterized by the above-mentioned.
  13.  請求項12に記載の空気調和機において、
     前記ファン清掃部を回転させる動作時、空調運転時に回転する方向とは逆方向に前記送風ファンを回転させる
    ことを特徴とする空気調和機。
    The air conditioner according to claim 12,
    An air conditioner that rotates the blower fan in a direction opposite to a direction that rotates during an air conditioning operation when the fan cleaning unit is rotated.
  14.  請求項12に記載の空気調和機において、
     前記熱交換器のフィンのピッチは前記ファン清掃部のブラシの毛の太さよりも広く、
     前記熱交換器の前記フィンには、スリットが設けられている
    ことを特徴とする空気調和機。
    The air conditioner according to claim 12,
    The fin pitch of the heat exchanger is wider than the thickness of the brush hair of the fan cleaning unit,
    An air conditioner, wherein the fin of the heat exchanger is provided with a slit.
  15.  請求項1又は請求項12に記載の空気調和機において、
     前記ファン清掃部は、軸部を中心にして清掃部材を回転する構造であり、
     前記制御部は、前記冷凍サイクルに前記熱交換器で結露水を生成させた後、前記軸部の下回り方向に前記清掃部材を回転させる
    ことを特徴とする空気調和機。
    The air conditioner according to claim 1 or 12,
    The fan cleaning part is a structure that rotates a cleaning member around a shaft part,
    The said control part makes the said refrigerating cycle produce | generate dew condensation water with the said heat exchanger, Then, the said cleaning member is rotated in the downward direction of the said axial part, The air conditioner characterized by the above-mentioned.
  16.  請求項1又は請求項12に記載の空気調和機において、
     前記ファン清掃部は、前記送風ファンの長手方向の長さよりも短い長さで、かつ、前記送風ファンの長手方向に移動可能な清掃部材を有する
    ことを特徴とする空気調和機。
    The air conditioner according to claim 1 or 12,
    The fan cleaning unit has a cleaning member that is shorter than the length of the blower fan in the longitudinal direction and is movable in the longitudinal direction of the blower fan.
PCT/JP2018/015283 2018-02-19 2018-04-11 Air conditioner WO2019159386A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880001827.0A CN110337569B (en) 2018-02-19 2018-04-11 Air conditioner
MYPI2018704303A MY183860A (en) 2018-02-19 2018-04-11 Air conditioner
ES201890067A ES2723373B2 (en) 2018-02-19 2018-04-11 Cleaning method of an air conditioner fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-026807 2018-02-19
JP2018026807A JP6387200B1 (en) 2018-02-19 2018-02-19 Air conditioner

Publications (1)

Publication Number Publication Date
WO2019159386A1 true WO2019159386A1 (en) 2019-08-22

Family

ID=63444268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015283 WO2019159386A1 (en) 2018-02-19 2018-04-11 Air conditioner

Country Status (7)

Country Link
JP (1) JP6387200B1 (en)
CN (1) CN110337569B (en)
ES (1) ES2723373B2 (en)
FR (1) FR3078143B1 (en)
MY (1) MY183860A (en)
TW (1) TWI659182B (en)
WO (1) WO2019159386A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986247A (en) * 2019-11-06 2020-04-10 青岛海尔空调器有限总公司 Air conditioner and fan and air duct self-cleaning control method thereof
CN112412834A (en) * 2020-11-23 2021-02-26 安徽朗迪叶轮机械有限公司 Cross-flow fan for air conditioner

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109323330B (en) * 2018-10-30 2021-01-29 青岛海尔空调器有限总公司 Air conditioner indoor unit, control method and control device
CN109855191B (en) * 2018-12-14 2020-07-17 青岛海信日立空调系统有限公司 Multi-split air conditioner and control method thereof
JP6705522B1 (en) 2019-02-27 2020-06-03 ダイキン工業株式会社 Air conditioner
CN109916058B (en) * 2019-03-21 2021-01-29 青岛海尔空调器有限总公司 Self-cleaning control method for air conditioner
CN109990441B (en) * 2019-03-21 2020-12-29 青岛海尔空调器有限总公司 Self-cleaning control method for air conditioner
CN109827246A (en) * 2019-03-26 2019-05-31 广州华凌制冷设备有限公司 Air conditioner indoor unit and air conditioner
JP7148808B2 (en) * 2019-09-02 2022-10-06 ダイキン工業株式会社 air conditioning system
CN113137669A (en) * 2020-01-16 2021-07-20 日立江森自控空调有限公司 Refrigeration cycle system, window type air conditioner and method for operating window type air conditioner
CN112484151B (en) * 2020-11-19 2021-11-05 珠海格力电器股份有限公司 Air conditioner
CN113028519B (en) * 2021-03-26 2022-02-15 上海交通大学 Automatic dust removal device for outdoor unit of air conditioner and control method
CN114526239B (en) * 2021-12-24 2024-04-05 三星(温岭)水泵有限公司 High-stability long-life centrifugal pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267249A (en) * 2001-03-09 2002-09-18 Sharp Corp Fluid-delivering device
JP2008002767A (en) * 2006-06-23 2008-01-10 Toshiba Kyaria Kk Indoor unit of air conditioner
JP2008138913A (en) * 2006-11-30 2008-06-19 Toshiba Kyaria Kk Air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046755B2 (en) * 2006-10-27 2008-02-13 シャープ株式会社 Air conditioner
JP2009058143A (en) * 2007-08-30 2009-03-19 Panasonic Corp Air conditioner
JP2009300030A (en) * 2008-06-16 2009-12-24 Daikin Ind Ltd Air conditioner
CN102072205A (en) * 2010-11-19 2011-05-25 苏州顶裕节能设备有限公司 Cleaning brush of fan
CN106152390B (en) * 2015-04-27 2020-03-06 广东美的制冷设备有限公司 Air conditioner control method and device
CN104930669B (en) * 2015-07-07 2017-10-27 珠海格力电器股份有限公司 Air conditioner operation method
CN106545975A (en) * 2016-12-08 2017-03-29 美的集团武汉制冷设备有限公司 The heat exchanger cleaning control method of air-conditioner and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267249A (en) * 2001-03-09 2002-09-18 Sharp Corp Fluid-delivering device
JP2008002767A (en) * 2006-06-23 2008-01-10 Toshiba Kyaria Kk Indoor unit of air conditioner
JP2008138913A (en) * 2006-11-30 2008-06-19 Toshiba Kyaria Kk Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986247A (en) * 2019-11-06 2020-04-10 青岛海尔空调器有限总公司 Air conditioner and fan and air duct self-cleaning control method thereof
CN112412834A (en) * 2020-11-23 2021-02-26 安徽朗迪叶轮机械有限公司 Cross-flow fan for air conditioner

Also Published As

Publication number Publication date
ES2723373B2 (en) 2023-03-15
MY183860A (en) 2021-03-17
CN110337569B (en) 2020-07-31
ES2723373A1 (en) 2019-08-26
JP6387200B1 (en) 2018-09-05
TW201934929A (en) 2019-09-01
CN110337569A (en) 2019-10-15
FR3078143A1 (en) 2019-08-23
TWI659182B (en) 2019-05-11
FR3078143B1 (en) 2021-03-12
JP2019143841A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6387200B1 (en) Air conditioner
JP6354004B1 (en) Air conditioner
JP6417077B1 (en) Air conditioner
JP6541923B1 (en) Air conditioner
JP6563156B1 (en) Air conditioner
CN111819397A (en) Air conditioner
JP2019143961A (en) Air conditioner
JP6481061B1 (en) Air conditioner
WO2019220489A1 (en) Air conditioner
JP2019200041A (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: P201890067

Country of ref document: ES

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906534

Country of ref document: EP

Kind code of ref document: A1