WO2019159248A1 - Curable resin composition for forming heat-resistant and easily peelable cured resin film, and method for producing same - Google Patents

Curable resin composition for forming heat-resistant and easily peelable cured resin film, and method for producing same Download PDF

Info

Publication number
WO2019159248A1
WO2019159248A1 PCT/JP2018/005038 JP2018005038W WO2019159248A1 WO 2019159248 A1 WO2019159248 A1 WO 2019159248A1 JP 2018005038 W JP2018005038 W JP 2018005038W WO 2019159248 A1 WO2019159248 A1 WO 2019159248A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
curable resin
substituted
unsubstituted
Prior art date
Application number
PCT/JP2018/005038
Other languages
French (fr)
Japanese (ja)
Inventor
幸樹 椿
茂樹 阿波
Original Assignee
大阪有機化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪有機化学工業株式会社 filed Critical 大阪有機化学工業株式会社
Priority to CN201880091524.2A priority Critical patent/CN111936573A/en
Priority to JP2019571852A priority patent/JPWO2019159248A1/en
Priority to KR1020207023970A priority patent/KR102501982B1/en
Priority to PCT/JP2018/005038 priority patent/WO2019159248A1/en
Publication of WO2019159248A1 publication Critical patent/WO2019159248A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the present invention relates to a curable resin composition, and more particularly to a curable resin composition for forming an easily peelable cured resin film, and in particular, can be applied to a substrate such as glass and cured to form a thin film. Then, the present invention relates to a curable resin composition that gives a thin film that can be easily peeled off from a substrate without difficulty. The present invention further relates to a curable resin composition capable of forming a heat-resistant and easily peelable cured resin film having various optical properties.
  • a base film which is an example of a substrate used for a display device such as a display device, is required to be thinner year by year, the heat resistance of the base film is reduced as the thickness is reduced. Therefore, there is a need for a base film material that can withstand firing at a high temperature that can maintain circuit performance.
  • a resin composition as a base film material is applied to another substrate (such as a glass substrate). It is necessary to produce a base film by a method of forming a film by curing by heat curing or the like.
  • circuit components such as metal wiring are sequentially formed in layers, for the purpose of installation of anisotropic conductive film, lamination of printed circuit board wiring, circuit connection, etc.
  • the base film is peeled off from the substrate such as glass together with the layers formed thereon as an integral laminated body to obtain a laminated body as a circuit component.
  • the laminate must be easily peeled off from the substrate such as glass. Otherwise, a large distortion occurs in the laminate due to the load at the time of peeling, thereby causing disconnection of the metal wiring and peeling of the circuit connection, leading to a significant deterioration in the yield of the product.
  • the substrate material even if the substrate material itself withstands heat treatment at a higher temperature than the conventional one in the form of a thin film, if the firing in the process of forming the wiring thereon is performed at a higher temperature, the substrate material and it will be placed. It becomes easy to adhere to the substrate surface. For this reason, as a substrate material, it is not sufficient to endure baking at a higher temperature than the conventional one in a thin film form, and it should not have such characteristics that it can be easily and easily separated from the substrate even after such high temperature baking. Don't be.
  • the present inventors can form a heat-resistant and easily peelable cured resin film having various optical properties when a curable resin composition containing a specific polymer and a crosslinking agent is used. I found.
  • the present inventors have found that the cured resin film of the present invention can withstand firing at a high temperature, can be easily peeled off from the substrate after high-temperature firing, and has better properties (permeability, high-speed curability, etc.). The present invention has been completed.
  • a curable resin composition comprising a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent,
  • A The chain polymer is represented by the formula A1: [Wherein R 1a is selected from the group consisting of hydrogen, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkenyl group; L 1 is selected from the group consisting of a single bond, a substituted or unsubstituted alkylene group, and a substituted or unsubstituted alkenylene group; L 2 is O or NH; R 2a , R 3a , and R 4a are independently selected from the group consisting of hydrogen and substituted or unsubstituted hydrocarbon groups, provided that at least one of R 2a , R 3a , and R 4a is A substituted or unsub
  • the crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof. , Curable resin composition.
  • the chain polymer is represented by the formula A2: [Where R 1a , L 1 and L 2 are as described above, R 5a to R 14a are independently of each other hydrogen, a hydroxy group, and Selected from the group consisting of or together form a ring, provided that at least one of R 5a to R 14a or a substituent of the ring is a hydroxy group, R 15a is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group Selected from the group consisting of ]
  • the chain polymer is represented by the formula A2: [Where
  • L 1 is a curable resin composition according to any one of the above items, wherein L 1 is a substituted or unsubstituted alkylene group.
  • L 1 is a methylene group, The curable resin composition in any one of the said item.
  • the chain polymer is represented by formula A5: [Where R 1a and L 1 are as described in item 1; R 19a is selected from the group consisting of a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group.
  • a curable resin composition according to any one of the above items comprising a monomer unit represented by: (Item 8) L 1 is a curable resin composition according to any one of the above items, wherein L 1 is a substituted or unsubstituted alkylene group. (Item 9) L 1 is a methylene group, The curable resin composition in any one of the said item. (Item 10) The curable resin composition according to any one of the above items, wherein R 19a is a phenyl group. (Item 11) The curable resin composition according to any of the above items, wherein the crosslinking agent is a triazine compound and / or a condensate thereof.
  • (Item 12) The cross-linking agent The curable resin composition according to any one of the above items.
  • (Item 13) L 1 is a curable resin composition according to any one of the above items, which is a single bond.
  • (Item 14) The curable resin composition according to any one of the above items, wherein any two or more of R 5a to R 14a are a hydroxy group and the other is hydrogen.
  • (Item 15) The curable resin composition according to any one of the above items, wherein any one of R 5a to R 14a is a hydroxy group and the other is hydrogen.
  • (Item 16) The curable resin composition according to any one of the above items, wherein R 5a to R 13a are hydrogen and R 14a is a hydroxy group.
  • the cross-linking agent is a fully or partially alkoxymethylated melamine and / or its condensate, a fully or partially alkoxymethylated guanamine and / or its condensate, a complete or partially alkoxymethylated acetoguanamine and / or its condensate, fully or One selected from the group consisting of partially alkoxymethylated benzoguanamine and / or its condensate, fully or partially alkoxymethylated glycoluril and / or its condensate, and fully or partially alkoxymethylated imidazolidinone and / or its condensate
  • the curable resin composition according to any one of the above items.
  • the crosslinking agent is of formula B1: [Wherein R 1b has 1 to 25 carbon atoms, and is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, and Selected from the group consisting of disubstituted amines represented by R 2b to R 7b each independently have 1 to 10 carbon atoms and are selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted alkenyl group.
  • R 8b to R 11b are independently selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted alkenyl group having 1 to 10 carbon atoms.
  • R 12b and R 13b are independently selected from the group consisting of 1 to 10 carbon atoms, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkenyl group;
  • R 14b and R 15b are independently of each other hydrogen or selected from the group consisting of substituted or unsubstituted alkyl groups and substituted or unsubstituted alkenyl groups having 1 to 10 carbon atoms.
  • the acid catalyst is selected from the group consisting of p-toluenesulfonic acid (PTS), dodecylbenzenesulfonic acid, pyridinium-p-toluenesulfonic acid, and thermal acid generator Sun-Aid SI-100L (Sanshin Chemical Industry Co., Ltd.)
  • PTS p-toluenesulfonic acid
  • dodecylbenzenesulfonic acid pyridinium-p-toluenesulfonic acid
  • thermal acid generator Sun-Aid SI-100L Sanshin Chemical Industry Co., Ltd.
  • the curable resin composition according to any of the above items which is a compound or a salt thereof, or a solvate thereof.
  • the curable resin composition according to any one of the above items further comprising at least one of a surfactant, a filler, an additive, and a foaming agent.
  • (Item 36) The curable resin composition according to any one of the above items, further comprising a surfactant.
  • (Item 37) The curable resin composition according to any one of the above items, further comprising a foaming agent.
  • (Item 38) The curable resin composition according to any one of the above items, which has a curability that is cured by heating at 150 ° C. for 1 minute.
  • (Item 39) A cured resin film obtained by curing the curable resin composition of any of the above items.
  • (Item 40) The cured resin film according to the above item, wherein the cured resin film has a transmittance (% T) of 99% or more at 400 nm and b * of 0.1 or less.
  • (Item 48) A method for producing a cured resin film from the curable resin composition of any of the above items, (I) providing the chain polymer with a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group and the crosslinking agent; (Ii) applying the curable resin composition containing the chain polymer and the crosslinking agent on a substrate to form a curable resin composition coating film; (Iii) performing a polymerization reaction in the curable resin composition coating film and curing it to form a cured resin film, Production method. (Item 49) (Iv) The method according to any one of the above items, further comprising the step of peeling the cured resin film formed on the substrate from the substrate.
  • the cross-linking agent consists of fully or partially alkoxymethylated melamine, fully or partially alkoxymethylated guanamine, fully or partially alkoxymethylated acetoguanamine, or fully or partially alkoxymethylated benzoguanamine, and fully or partially alkoxymethylated glycoluril.
  • (Item 52) The method according to any one of the above items, wherein the ratio of the mass of the linear polymer to the mass of the crosslinking agent in the composition is 1: 2 to 1: 0.05.
  • (Item 53) A composition for producing a circuit by a photolithography method, comprising the curable resin composition or cured resin film of any of the above items.
  • (Item 54) A composition for producing a sheet-like flexible electrical / electronic circuit component or a flexible display device, comprising the curable resin composition or cured resin film of any of the above items.
  • compositions for producing an electronic material, a medical material, a health care material, a life science material, or a robot material comprising the curable resin composition or cured resin film of any of the above items.
  • compositions for producing a material such as a catheter, a guide wire, a pharmaceutical container, or a tube, comprising the curable resin composition or cured resin film of any of the above items.
  • (Item 61) Use of the curable resin composition or cured resin film of any of the above items for the production of a sheet-like flexible electrical / electronic circuit component or a flexible display device.
  • (Item 62) Used for synthetic resins, pellets, films, plates, fibers, tubes, rubber, elastomers, etc., motorcycles (bicycles, motorcycles, etc.), automobiles, airplanes, trains, ships, rockets, spacecrafts, transportation, leisure, Furniture (eg, table, chair, desk, shelf, etc.), bedding (eg, bed, hammock, etc.), clothing, protective clothing, sports equipment, bathtub, kitchen, tableware, cooking utensils, containers and packaging materials (food containers, Cosmetic containers, freight containers, waste bins, etc.), architecture (buildings, roads, building parts, etc.), agricultural films, industrial films, water and sewage, paints, cosmetics, electrical industry and electronics industry (electric appliances, computers) Components, printed circuit boards, insulators, conductors, wiring coating materials, power generation elements
  • (Item 63) Use of the curable resin composition or cured resin film of any of the above items for the production of an electronic material, a medical material, a health care material, a life science material, or a robot material.
  • (Item 64) Use of the curable resin composition or cured resin film of any of the above items for the production of materials such as catheters, guide wires, pharmaceutical containers, or tubes.
  • (Item 65) Automobile parts (body panels, bumper bands, rocker panels, side moldings, engine parts, drive parts, transmission parts, steering parts, stabilizer parts, suspension / brake parts, brake parts, shaft parts, pipes, Use of the curable resin composition or cured resin film of any of the above items for the production of tanks, wheels, seats, seat belts, etc.).
  • (Item 66) Use of the curable resin composition or cured resin film of any of the above items for the production of an anti-vibration material for automobiles, paints for automobiles, and synthetic resins for automobiles.
  • (Item 67) A method for producing a circuit by a photolithography method, comprising a step of forming a curable resin composition or a cured resin film of any of the above items by causing a polymerization reaction.
  • (Item 68) A method for producing a sheet-like flexible electrical / electronic circuit component or a flexible display device, wherein a curable resin composition or a cured resin film according to any of the above items is obtained by performing a polymerization reaction. A method comprising the step of forming.
  • a method comprising the step of forming comprising the step of forming.
  • (Item 70) A method for producing an electronic material, a medical material, a health care material, a life science material, or a robot material, wherein the curable resin composition or cured resin according to any one of the above items is caused by performing a polymerization reaction. Forming a film.
  • (Item 71) A method for producing a material such as a catheter, a guide wire, a pharmaceutical container, or a tube, and forming a curable resin composition or a cured resin film according to any of the above items by causing a polymerization reaction.
  • a method comprising the steps of: (Item 72) Automobile parts (body panels, bumper belts, rocker panels, side moldings, engine parts, drive parts, transmission parts, steering parts, stabilizer parts, suspension / brake parts, brake parts, shaft parts, pipes, etc. Tanks, wheels, seats, seat belts, etc.), which comprises a step of forming a curable resin composition or a cured resin film of any of the above items by performing a polymerization reaction. (Item 73) A method for producing a vibration isolator for automobiles, a paint for automobiles, and a synthetic resin for automobiles, wherein a curable resin composition or a cured resin film of any of the above items is formed by performing a polymerization reaction. A method comprising the steps of:
  • a curable resin composition containing a specific polymer and a crosslinking agent has been developed to produce a cured resin film having good properties.
  • a curable resin composition containing a specific polymer and a crosslinking agent has been developed to produce a cured resin film having good properties.
  • heat resistance means that a film obtained by curing a curable resin composition can withstand heating up to 150 ° C., preferably withstands heating at 230 ° C., more preferably heating at 300 ° C. It means that it can withstand and substantially does not cause degradation or other deterioration.
  • the temperature of 230 ° C. is high enough to be used as a baking temperature in the manufacture of an electronic circuit by a photolithography method.
  • the temperature of 300 ° C. is a sufficiently high firing temperature necessary for producing electronic circuits under more severe conditions and for forming a thinner film.
  • an “easy release film” is a film that is formed by applying and curing a substrate, particularly a glass substrate, and can be easily peeled off without damaging the film (ie, without unreasonableness). Some say, “easy peelability” refers to the properties of such a film.
  • the glass substrate include appropriate glass substrates such as a soda glass substrate and a non-alkali glass substrate. A soda glass substrate is a particularly preferred example.
  • “easy peeling heat resistance” means a property having both the above “heat resistance” and “easy peeling property”.
  • the peel force after pre-baking for example, 100 ° C. for 2 minutes
  • the peel force after additional heating for example, 230 ° C. for 1 hour
  • the increase in peel force before and after additional heating is about 500% or less (that is, about 5 times or less of the peel force before heating).
  • fast curing refers to the property of a composition that is cured in a short heating time when the curable resin composition is applied on a substrate and cured by heating. Then, if a film formed by heat curing at 150 ° C. or less for 1 minute or less has easy peelability, it is regarded as having high-speed curability.
  • sputtering process resistance can be used for the main application of the sputtering process (for example, transparent electrode, hard coat, photothermal control, wiring, antireflection film, transparent barrier film, photocatalyst, decoration, etc.). Or having the resistance to this application.
  • a curable resin composition is applied onto a substrate, heated and cured (for example, 150 ° C./15 minutes) to form a cured resin film, and then a photocurable resist is applied as an overcoat material (OC material) on the film.
  • the cured resin film after being applied, pre-baked (for example, 90 ° C./100 seconds), exposed (for example, 20 mW, 100 mJ), post-baked (for example, 230 ° C./30 minutes), and subjected to an ITO sputtering process Means having good peelability.
  • the ITO sputtering process is a method of forming an ITO (In 2 O 3 —SnO 2 (indium tin oxide) film) by a sputtering method known in the art.
  • the ITO sputtering process known in the art is applied to the cured resin film of the present invention.
  • the cured resin film is allowed to stand in a reduced pressure environment for a certain time (for example, 0.5 Pa, 3 hours), and Ar is introduced into the cured resin film (for example, 50 sccm). Then, O 2 is introduced (for example, 50 sccm), and sputtering (for example, pressure: 0.67 Pa, DC power: 110 W) is performed under heating (for example, 90 ° C.)
  • Ar is introduced into the cured resin film
  • O 2 for example, 50 sccm
  • sputtering for example, pressure: 0.67 Pa, DC power: 110 W
  • Each process depends on the ITO composition, the ITO film thickness, and the like. Can be changed.
  • “storage stability” is storage stability of the curable resin composition formed as a solution, and unless otherwise limited, a normal test (storage at 20 ° C. for 9 months or 12 months) and an accelerated test After storage (stored at 50 ° C. for 2 weeks), the solution has no visual turbidity or solidification compared to before storage, and the properties of the solution (viscosity, NV, etc.) and properties at the time of film formation (peeling) Force, transmittance, etc.). “Storage stability” can also be described as “pot life”.
  • the thickness (also referred to as “film thickness”) of the “cured resin film” is not limited.
  • a preferred thickness is 200 to 400 nm, for example, about 300 nm. This is in response to the current demand for thin film in the case of electronic parts, and is a cured resin. Since the performance of the film itself is not limited to this thickness range, the thickness of the cured resin film is arbitrary.
  • “cured resin film” is used synonymously with “cured resin film”.
  • side chain in a chain polymer refers to a structural portion branched from the main chain, and the “main chain” is linked in a one-dimensional direction to repeating monomer units in the polymer structure.
  • the notation “(meth) acrylate” indicates acrylate and methacrylate without distinction.
  • the notation “(meth) acryl” indicates acrylic and methacrylic without distinction
  • “(meth) acrylic acid” indicates acrylic acid and methacrylic acid without distinction.
  • alkyl group refers to a monovalent group formed by losing one hydrogen atom from an aliphatic hydrocarbon (alkane) such as methane, ethane, or propane, and is generally represented by C n H 2n + 1 —. Where n is a positive integer.
  • Alkyl can be linear or branched. Examples of the alkyl group having 1 to 4 carbon atoms (C 1-4 alkyl) include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec- Although a butyl group etc. are mentioned, this invention is not limited only to this illustration.
  • alkyl group having 1 to 6 carbon atoms examples include, for example, an alkyl group having 1 to 4 carbon atoms, a tert-butyl group, a sec-butyl group, an n-pentyl group, an isoamyl group, n -Hexyl group, isohexyl group, cyclohexyl group and the like are mentioned, but the present invention is not limited only to such examples.
  • alkyl group having 1 to 10 carbon atoms examples include an alkyl group having 1 to 6 carbon atoms, an n-octyl group, an n-nonyl group, and an n-decanyl group.
  • the present invention is not limited to such examples.
  • alkenyl group refers to a monovalent group formed by loss of one hydrogen atom from an aliphatic hydrocarbon (alkene) containing at least one double bond such as ethene, propene, or butene. In general, it is represented by C m H 2m ⁇ 1 (where m is an integer of 2 or more).
  • An alkenyl group can be straight or branched. Examples of the alkenyl group having 2 to 6 carbon atoms include an ethenyl group, a 1-propenyl group, a 2-propenyl group, a butenyl group, a pentenyl group, and a hexenyl group. However, the present invention is limited only to such examples.
  • alkenyl group having 2 to 10 carbon atoms examples include an alkenyl group having 2 to 6 carbon atoms, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, and the like, but the present invention is limited only to such examples. Is not to be done.
  • alkylene group refers to a divalent group formed by losing two hydrogen atoms from an aliphatic hydrocarbon (alkane) such as methane, ethane, or propane, and is generally — (C m H 2m )-(Where m is a positive integer).
  • alkane aliphatic hydrocarbon
  • the alkylene group can be linear or branched. Examples of the alkylene group having 1 to 10 carbon atoms include methylene, ethylene, n-propylene, isopropylene, n-butylene, isobutylene, tert-butylene, n-pentene, and n-hexylene.
  • alkylene group having 1 to 6 carbon atoms is preferable, an alkylene group having 1 to 4 carbon atoms is more preferable, a methylene group and an ethylene group are further preferable, and an ethylene group is still more preferable.
  • alkenylene group is a divalent group formed by losing two hydrogen atoms from an aliphatic hydrocarbon (alkene) containing at least one double bond, such as ethenylene, propenylene, and butenylene. And is generally represented by- (C m H 2m-2 )-(where m is an integer of 2 or more).
  • An alkenylene group can be straight or branched.
  • alkenylene group having 2 to 10 carbon atoms examples include ethenylene group, n-propenylene group, isopropenylene group, n-butenylene group, isobutenylene group, n-pentenylene group, n-hexenylene group, isohexenylene group and the like.
  • An alkenylene group having 2 to 6 carbon atoms is preferable, an alkenylene group having 2 to 4 carbon atoms is more preferable, an ethenylene group and an n-propenylene group are further preferable, and an ethenylene group is still more preferable.
  • alkoxy group refers to a monovalent group generated by loss of a hydrogen atom of a hydroxy group of an alcohol, and is generally represented by C n H 2n + 1 O— (where n is 1 or more). Is an integer).
  • alkoxy group having 1 to 6 carbon atoms examples include methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, isobutyloxy group, tert-butyloxy group, sec-butyloxy group, n -Pentyloxy group, isoamyloxy group, n-hexyloxy group, isohexyloxy group and the like can be mentioned, but the present invention is not limited to such examples.
  • haloalkyl group refers to an alkyl group in which one or more hydrogen atoms on the alkyl group are substituted with halogen atoms.
  • Perhaloalkyl refers to an alkyl group in which all hydrogen atoms on the alkyl group are substituted with halogen atoms.
  • haloalkyl group having 1 to 6 carbon atoms examples include trifluoromethyl group, trifluoroethyl group, perfluoroethyl group, trifluoro n-propyl group, perfluoro n-propyl group, trifluoroisopropyl group, perfluoroisopropyl group, Fluoro n-butyl group, perfluoro n-butyl group, trifluoroisobutyl group, perfluoroisobutyl group, trifluoro tert-butyl group, perfluoro tert-butyl group, trifluoro n-pentyl group, perfluoro n-pentyl group, trifluoro n Examples include a -hexyl group and a perfluoro n-hexyl group, but the present invention is not limited to such examples.
  • cycloalkyl group means a monocyclic or polycyclic saturated hydrocarbon group, and includes a bridged structure.
  • C 3-12 cycloalkyl group means a cyclic alkyl group having 3 to 12 carbon atoms.
  • Specific examples of the “C 6-12 cycloalkyl group” include a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, an isobornyl group, and the like.
  • C 3-12 cycloalkyl group a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a C 6-12 cycloalkyl group and the like can be mentioned.
  • C 6-12 cycloalkyl group is used.
  • the “cycloalkenyl group” means a monocyclic or polycyclic unsaturated hydrocarbon group containing a double bond, and includes a bridged structure. Examples include one in which one or more carbon-carbon bonds of the “cycloalkyl group” are double bonds.
  • “C 3-12 cycloalkenyl group” means a cyclic alkenyl group having 3 to 12 carbon atoms.
  • Specific examples of the “C 6-12 cycloalkenyl group” include 1-cyclohexenyl group, 2-cyclohexenyl group, 3-cyclohexenyl group, cycloheptenyl group, cyclooctenyl group, cyclononenyl group and the like. It is done.
  • C 3-12 cycloalkyl group a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a C 6-12 cycloalkenyl group and the like can be mentioned.
  • C 6-12 cycloalkenyl group is used.
  • the “hydrocarbon group” refers to a monovalent group produced by losing one hydrogen atom from a compound composed only of carbon and hydrogen.
  • the hydrocarbon group also includes the above “alkyl group”, “alkenyl group”, “alkylene group”, “alkenylene group”, “cycloalkyl group”, and “cycloalkenyl group”, as well as the following “aromatic group” and “ An alicyclic group "and the like.
  • the hydrocarbon group can be saturated or unsaturated.
  • the hydrocarbon group is classified into a chain hydrocarbon group and a cyclic hydrocarbon group depending on how carbon is bonded, and the cyclic hydrocarbon group is further divided into an alicyclic hydrocarbon group and an aromatic hydrocarbon group.
  • saturated or unsaturated hydrocarbon groups include methyl, ethyl, n-propyl, isopropyl, butyl, pentyl, hexyl, cyclohexyl, dicyclopentadienyl, decalinyl, adamantyl, butenyl, hexenyl, cyclohexenyl, decyl and others
  • Examples include various linear, branched, monocyclic, and condensed cyclic groups within the limit of the number of carbon atoms in the side chain, but are not limited thereto. When each of these groups is not located at the terminal, it may be a divalent or higher group depending on the bonding relationship with other groups.
  • the “aromatic group” refers to a group formed by leaving one hydrogen atom bonded to an aromatic hydrocarbon ring.
  • aromatic hydrocarbon ring For example, from benzene, phenyl group (C 6 H 5 —), from toluene, tolyl group (CH 3 C 6 H 4 —), from xylene, xylyl group ((CH 3 ) 2 C 6 H 3 —), from naphthalene Is derived from a naphthyl group (C 10 H 8 —).
  • the “heteroaromatic group” means a monocyclic or polycyclic heteroatom-containing aromatic group, and the group is the same kind selected from a nitrogen atom, a sulfur atom and an oxygen atom.
  • aromatic group also includes “heteroaromatic group”.
  • aromatic groups include carbocyclic aromatic groups (monocyclic and condensed ring groups) such as phenyl, biphenylyl, naphthyl, and heteroaromatic groups (monocyclic) such as pyridyl, pyrimidinyl, quinolinyl, triazinyl, etc.
  • Group and a condensed ring group when each aromatic group is not located at the terminal, it may be a divalent or higher group depending on the bonding relationship with other groups.
  • a group having a saturated or unsaturated hydrocarbon chain part that forms a ring together with an aromatic ring part is an aromatic group and a saturated or unsaturated hydrocarbon group. Think of it as a combination.
  • alicyclic (group) refers to a moiety (or group) formed by the removal of one hydrogen atom bonded to a non-aromatic ring composed only of carbon and hydrogen.
  • the alicyclic group also includes the above “cycloalkyl group” and “cycloalkenyl group”.
  • the alicyclic group can be saturated or unsaturated. Examples of saturated or unsaturated alicyclic groups include cyclohexyl, dicyclopentadienyl, decalinyl, adamantyl, cyclohexenyl, and various other monocyclic and condensed cyclic groups within the limits of the number of carbon atoms in the side chain. Groups, but not limited to. When each of these groups is not located at the terminal, it may be a divalent or higher group depending on the bonding relationship with other groups.
  • substituted is referring to the replacement of one or more hydrogen radicals in a given structure by a radical of a particular substituent.
  • the number of substituents in a group defined using “substituted (has / was)” is not particularly limited as long as substitution is possible, and is one or more.
  • the description of each group also applies when the group is a part of another group or a substituent.
  • a substituent that does not clearly indicate the term “substituted (has / is)” means a “non-substituted” substituent.
  • the phrase “substituted or unsubstituted” is used interchangeably with the phrase “optionally substituted”.
  • Substituted alkyl group “substituted alkenyl group”, “substituted cycloalkyl group”, “substituted cycloalkenyl group”, “substituted hydrocarbon group”, “substituted aromatic group”, “substituted heteroaromatic group”, “substituted”
  • alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group means an alcoholic secondary or tertiary hydroxy (OH) group or a phenolic hydroxy (OH) group.
  • the group which contains 1 or 2 or more is shown. Therefore, the “alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group” also includes an alcoholic secondary or tertiary hydroxy group or a phenolic hydroxy group itself.
  • Substituted or unsubstituted in “substituted or unsubstituted alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group” means alcoholic secondary or tertiary hydroxy (OH) group or phenol This means that a group containing one or more functional hydroxy (OH) groups is substituted or unsubstituted in a group other than the hydroxy group, and the hydroxy group is substituted. Does not indicate that it is present or unsubstituted.
  • solvate means a compound or a salt thereof further containing a stoichiometric or non-stoichiometric amount of solvent bonded by non-covalent intermolecular forces.
  • solvent water
  • the solvate is a hydrate.
  • “monomer” refers to a compound that polymerizes two or more to form a polymer.
  • the “monomer unit” refers to a monomer that is a unit that forms a polymer.
  • polymer refers to a compound formed by polymerizing a plurality of monomers.
  • homopolymer is a compound formed by polymerization of only one type of monomer
  • copolymer copolymer means two or more types. This is a compound formed by polymerization of the monomer.
  • the polymers described herein include both homopolymers and copolymers.
  • the homopolymer is — [Monomer unit A] n ⁇ (where n ⁇ 2) Described as The copolymer is -[Monomer unit A] n- [monomer unit B] m- (where n ⁇ 1, m ⁇ 1, n + m ⁇ 2)
  • the monomer unit A and the monomer unit B each represent an arbitrary monomer unit, provided that the monomer unit A and the monomer unit B are different from each other.
  • a polymer when a polymer is a chain, it is referred to as a “chain polymer”.
  • “polymer” is used synonymously with “polymer”.
  • crosslinking agent refers to a substance that forms a covalent bond between the same or different polymers and changes physical and chemical properties.
  • N.V. (unit:%) represents a heating residue in the solution (Non Volatile Organic Compound), and is synonymous with the solid concentration in the solution.
  • N. V is measured by a heat residue method known in the art according to standards such as JIS K 5601-1-2.
  • the present invention provides a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group;
  • a curable resin composition comprising a crosslinking agent,
  • the chain polymer is represented by the formula A1: [Wherein R 1a is selected from the group consisting of hydrogen, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkenyl group; L 1 is selected from the group consisting of a single bond, a substituted or unsubstituted alkylene group, and a substituted or unsubstituted alkenylene group; L 2 is O or NH; R 2a , R 3a , and R 4a are independently selected from the group consisting of hydrogen and substituted or unsubstituted hydrocarbon groups, provided that at least one of R 2a , R 3a , and R 4a is A substituted or unsub
  • the crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof.
  • a curable resin composition is provided.
  • L 2 is O.
  • the present invention provides a curable resin comprising a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent.
  • a composition, wherein the chain polymer is of formula A2: [Where R 1a , L 1 and L 2 are as described above, R 5a to R 14a are independently of each other hydrogen, a hydroxy group, and Selected from the group consisting of or together form a ring, provided that at least one of R 5a to R 14a or a substituent of the ring is a hydroxy group, R 15a is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or un
  • L 2 is O.
  • the present invention includes a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent.
  • the present invention includes a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent.
  • a curable resin composition comprising the chain polymer of formula A5: [Wherein R 1a is selected from the group consisting of hydrogen and a substituted or unsubstituted alkyl group; L 1 is selected from the group consisting of a substituted or unsubstituted alkylene group and a substituted or unsubstituted alkenylene group, R 19a is selected from the group consisting of a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group.
  • the crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof.
  • a curable resin composition is provided.
  • L 1 is a substituted or unsubstituted alkylene group, and most preferably L 1 is a methylene group.
  • R 19a is a phenyl group.
  • the crosslinking agent is a triazine compound and / or a condensate thereof. More preferably, the crosslinking agent is It is.
  • the present invention includes a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent.
  • the crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof.
  • a curable resin composition is provided.
  • L 1 is a single bond.
  • any two or more of R 5a to R 14a are a hydroxy group, and the other is hydrogen.
  • any one of R 5a to R 14a is a hydroxy group and the other is hydrogen.
  • R 5a to R 13a are hydrogen and R 14a is a hydroxy group.
  • the crosslinking agent is a glycoluril compound and / or a condensate thereof. More preferably, the crosslinking agent is It is. In the fifth aspect, in another embodiment, preferably, the crosslinking agent is a triazine compound and / or a condensate thereof. More preferably, the crosslinking agent is It is.
  • the curable resin composition of the present invention is cured by heat treatment, it can be said to be a thermosetting resin composition.
  • the chain polymer that is one of the constituent elements of the curable resin composition of the present invention includes a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group.
  • the number of carbon atoms contained in the side chain having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group of the chain polymer is preferably 3 to 30.
  • the number of the hydroxy groups in the side chain having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group can be 1 or 2 or more.
  • the alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group in the side chain is a cured resin formed by coating and curing the curable resin composition of the present invention on a glass substrate.
  • the thin film is a substantially decisive factor for maintaining easy peelability from the substrate even after firing. Further, it is more preferred that the alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group in the side chain is bonded to the alicyclic part of the side chain, and the alicyclic part of the side chain is also a cured resin. This is a decisive factor for maintaining the easy peelability of the thin film.
  • a chain polymer having such a side chain is a suitable crosslinking agent, particularly a triazine compound and / or a condensate thereof, a glycoluril compound and / or a condensate thereof, or an imidazolidinone compound and / or a compound thereof.
  • a heat-resistant easily peelable film can be provided.
  • Preferred examples of the monomer that gives the chain polymer a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group include the following, but are not limited thereto.
  • the chain polymer in the present invention has, in addition to the monomer having the alcoholic secondary or tertiary OH-containing group or the phenolic OH-containing group, a hydroxyl group and a side chain having 1 to 15 (meth) acrylic monomer, vinyl ester monomer, vinyl ether monomer, and at least one of vinyl monomers other than these can be included as an additional monomer unit.
  • Preferable examples of the monomer unit having no hydroxy group include the following, but are not limited thereto.
  • Vinyl esters such as vinyl acetate, butanoic acid vinyl ester, pentanoic acid vinyl ester, hexanoic acid vinyl ester, cyclohexanecarboxylic acid vinyl ester, benzoic acid vinyl ester, cyclopentadienylcarboxylic acid vinyl ester, and nonanoic acid vinyl ester .
  • Vinyl derivatives such as 1-butene, 4-ethoxy-1-butene, 1-pentene, 1-hexene, vinylcyclohexane, styrene, vinyltoluene, 1-nonene and 3-phenylpropene.
  • Maleic anhydride derivatives such as maleic anhydride, methylmaleic anhydride, butylmaleic anhydride, hexylmaleic anhydride, cyclohexylmaleic anhydride, phenylmaleic anhydride, octylmaleic anhydride .
  • Maleimide derivatives such as maleimide, methylmaleimide, ethylmaleimide, butylmaleimide, hexylmaleimide, cyclohexylmaleimide, phenylmaleimide, benzylmaleimide and octylmaleimide.
  • the chain polymer in the present invention may be a homopolymer of monomer units, or may be a copolymer containing two or three or more types of monomer units. At least one of the monomer units in the coalescence is a monomer unit having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group.
  • the copolymer has a monomer unit having a side chain having at least one alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group, and at least one hydroxy group. Not contain additional monomer units.
  • the proportion of the monomer unit having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group in the chain polymer in the present invention is not particularly limited, but is preferably 30 to 100 mol%, more preferably Is from 50 to 100 mol%, more preferably from 60 to 100 mol%, still more preferably from 80 to 100 mol%, particularly preferably from 90 to 100 mol%.
  • the chain polymer is subjected to a polymerization reaction using its raw material monomers in a conventional manner, for example, using a conventional radical polymerization catalyst such as 2,2′-azobisisobutyronitrile (AIBN). Can be manufactured.
  • the weight average molecular weight (Mw) of the chain polymer is usually preferably in the range of 10,000 to 100,000 (measured by gel permeation chromatography), but is not particularly limited to this range. Examples of gel permeation chromatography include methods known in the art using procedures and equipment known in the art.
  • An example of gel permeation chromatography is to prepare a sample by diluting a mixture containing a polymer in an appropriate solvent (eg, tetrahydrofuran) (eg, diluting so that the solid content of the obtained mixture is 0.1% by mass).
  • the diluted solution is injected into a commercially available gel permeation chromatography column maintained at an appropriate temperature (eg, 40 ° C.).
  • the eluent containing the polymer is then extracted by pouring the eluent (eg, tetrahydrofuran) into the gel permeation chromatography column into which the diluent has been injected at an appropriate flow rate (eg, 1 ml / min) and the detector (eg, differential refractive index).
  • the molecular weight of the polymer is measured by a detector.
  • the above conditions can be appropriately selected depending on the type of polymer.
  • the crosslinking agent in the curable resin composition of the present invention a triazine-based crosslinking agent, a glycoluril-based crosslinking agent, or an imidazolidinone-based crosslinking agent is preferable. More specifically, the crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof. Is preferred.
  • crosslinking agents include fully or partially alkoxy (eg methoxy, ethoxy) methylated melamine and / or condensates thereof, fully or partially alkoxy (eg methoxy, ethoxy) methylated guanamine and / or condensates thereof.
  • alkoxy preferably has 1 to 4 carbon atoms.
  • preferred compounds as such a crosslinking agent include, for example, hexamethoxymethyl melamine, hexaethoxymethyl melamine, tetramethoxymethyl methylol melamine, tetramethoxymethyl melamine, hexabutoxymethyl melamine, tetramethoxymethyl guanamine, tetra Methoxymethylacetoguanamine, tetramethoxymethylbenzoguanamine, trimethoxymethylbenzoguanamine, tetraethoxymethylbenzoguanamine, tetramethylolbenzoguanamine, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis ( Butoxymethyl) glycoluril, 4,5-dihydroxy-1,3-dimethoxymethyl-2-imidazolidinone, 4,5-dimethoxy-1,3- Methoxymethyl-2-imidazolidinone, but not limited thereto.
  • the crosslinker is of formula B1: [Wherein R 1b has 1 to 25 carbon atoms, and is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, and Selected from the group consisting of disubstituted amines represented by R 2b to R 7b each independently have 1 to 10 carbon atoms and are selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted alkenyl group. ] And / or a condensate thereof.
  • the crosslinking agent in the present invention is represented by the formula B1:
  • R 1b is a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, and Selected from the group consisting of disubstituted amines represented by R 2b to R 7b are each independently selected from a substituted or unsubstituted alkyl group, A compound and / or a condensate thereof.
  • the crosslinker is of formula B2: [R 8b to R 11b are independently selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted alkenyl group having 1 to 10 carbon atoms. ] And / or a condensate thereof.
  • the crosslinking agent in the present invention is represented by the formula B2:
  • R 8b to R 11b are each independently selected from a substituted or unsubstituted alkyl group, A compound and / or a condensate thereof.
  • the crosslinking agent is of formula B3: [Wherein R 12b and R 13b are independently selected from the group consisting of 1 to 10 carbon atoms, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkenyl group; R 14b and R 15b are independently of each other hydrogen or selected from the group consisting of substituted or unsubstituted alkyl groups and substituted or unsubstituted alkenyl groups having 1 to 10 carbon atoms. ] And / or a condensate thereof.
  • the crosslinking agent in the present invention is represented by the formula B3: R 12b and R 13b are independently of each other selected from substituted or unsubstituted alkyl groups; R 14b and R 15b are independently of each other selected from the group consisting of hydrogen and substituted or unsubstituted alkyl groups; A compound and / or a condensate thereof. More preferably, in formula B3, R 14b and R 15b are independently of each other hydrogen.
  • crosslinking agent in the curable resin composition of the present invention include compounds having the compound names shown in the following structural formulas or listed below and / or condensates thereof: Hexamethoxymethylmelamine; Hexabutoxymethylmelamine; 1,3,4,6-tetrakis (methoxymethyl) glycoluril; 1,3,4,6-tetrakis (butoxymethyl) glycoluril; Tetramethoxymethylbenzoguanamine; 4,5-dihydroxy-1,3-bis (alkoxymethyl) imidazolidin-2-one.
  • the condensate is preferably a polymer of the compound shown above, more preferably a dimer, trimer or higher order polymer of the compound shown above.
  • the cross-linking agent in the curable resin composition of the present invention may be a compound shown above and a condensate thereof, that is, a compound and a polymer of the compound (that is, a dimer, a trimer, or a higher compound). It may be a mixture of the following polymers).
  • the condensate may comprise at least one of a dimer, trimer, and higher order polymer of the compound.
  • the cross-linking agent may have a weight average degree of polymerization of greater than 1 and greater than or equal to 3 for the compounds shown above, preferably greater than 1 and up to 1.8, and more Preferably, it may have a weight average degree of polymerization of 1.3 to 1.8, more preferably 1.5, but is not limited thereto.
  • the weight average polymerization degree in the condensate of the compound is 1, it means that the condensate is the compound itself.
  • the weight average degree of polymerization is an arbitrary numerical value within the above range, and preferably 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1. 8, 1.9, 2, 3, 4 or larger, more preferably 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, Preferably it is 1.5.
  • the mass ratio of the chain polymer to the crosslinking agent in the curable resin composition of the present invention is preferably 1: 0.03 to 1: 2, more preferably 1: 0.05 to 1: 2, 1 : 0.05 to 1: 1, 1: 0.03 to 1: 1, more preferably 1: 0.09 to 1: 1, 1: 0.1 to 1: 0.5, even more preferably 1: 0.09 to 1: 0.3, 1: 0.1 to 1: 0.3.
  • the curable resin composition further contains an acid catalyst.
  • the acid catalyst is included as necessary as a polymerization catalyst in the reaction between the monomer unit and the crosslinking agent.
  • the acid catalyst those conventionally used as polymerization catalysts can be appropriately selected and used.
  • the acid catalyst may be a compound selected from Bronsted acid and / or Lewis acid, or a salt thereof, or a solvate thereof.
  • the acid catalyst examples include dinonylnaphthalenedisulfonic acid, dinonylnaphthalene (mono) sulfonic acid, dodecylbenzenesulfonic acid, dodecylbenzenesulfonic acid, p-toluenesulfonic acid (PTS), phosphoric acid, sulfuric acid, and acetic acid.
  • a compound selected from the group consisting of thermal acid generators such as Sun-Aid SI-100L, SI-150L, SI-110L, SI-60L, and SI-80L (Sanshin Chemical Industry Co., Ltd.) Examples thereof include, but are not limited to, salts thereof and solvates thereof.
  • the acid catalyst is a compound selected from the group consisting of p-toluenesulfonic acid (PTS), dodecylbenzenesulfonic acid, and thermal acid generator Sun-Aid SI-100L (Sanshin Chemical Industry Co., Ltd.), or A salt, or a solvate thereof. More preferably, the acid catalyst is pyridinium-p-toluenesulfonic acid, p-toluenesulfonic acid, or a hydrate thereof.
  • the amount of the acid catalyst can be appropriately determined according to the mass ratio of the chain polymer to the crosslinking agent in the curable resin composition, but is preferably The mass ratio of the chain polymer, the crosslinking agent and the acid catalyst in the curable resin composition is preferably 1: 0.03: 0.05 to 1: 2: 0.1, more preferably 1 : 0.05: 0.05 to 1: 2: 0.1, more preferably 1: 0.09: 0.05 to 1: 1: 0.08.
  • the amount of the acid catalyst can be appropriately determined according to the mass ratio of the chain polymer and the crosslinking agent in the curable resin composition.
  • the curable resin composition can be diluted to an appropriate concentration with a solvent. That is, in the present invention, the curable resin composition further contains a solvent. Unless the boiling point is excessively low or high, a conventional aprotic solvent is used unless there is a problem in forming a uniform coating film by drying after the curable resin composition is applied to a substrate made of glass or the like. It can be selected and used as appropriate. For example, propylene glycol monomethyl ether is a suitable solvent, but is not limited thereto.
  • Dilution with a solvent is for convenience of handling at the time of polymerization reaction of a monomer, application of a curable resin composition to which a crosslinking agent and a catalyst are added, and therefore there is no particular upper limit or lower limit in the degree of dilution.
  • the composition is provided as a solution.
  • the solvent of the solution includes an alcohol.
  • the alcohol comprises a primary alcohol, preferably selected from the group consisting of ethanol, propanol, 1-butanol, 1-propanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol and dodecanol.
  • Primary alcohols more preferably primary alcohols selected from the group consisting of ethanol, propanol, 1-butanol, 1-propanol, and 1-dodecanol, most preferably ethanol.
  • the alcohol is present at 10% by weight or more based on the total amount of the solvent.
  • the curable resin composition of the present invention can further contain at least one of a surfactant, a filler, an additive, and a foaming agent for the purpose of imparting a desired function and improving properties.
  • the surfactant when included, for example, the wettability of the curable resin composition to the substrate is improved, and the thickness of the cured resin film formed by curing the curable resin composition can be reduced or made uniform.
  • the surfactant include anionic surfactants, chaotic surfactants, nonionic surfactants, amphoteric surfactants, and modified silicones. These may be used alone or in combination of two or more. Can be used.
  • the anionic surfactant is preferably polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, alkali salt of styrene-acrylic acid copolymer, sodium alkylnaphthalenesulfonate, sodium alkyldiphenyletherdisulfonate, lauryl sulfate.
  • Polyethanol such as monoethanolamine, triethanolamine lauryl sulfate, ammonium lauryl sulfate, monoethanolamine stearate, sodium stearate, sodium lauryl sulfate, monoethanolamine of styrene-acrylic acid copolymer, polyoxyethylene alkyl ether phosphate Oxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Alkyl ether phosphoric acid esters, polyoxyethylene sorbitan monostearate, and the like of polyethylene glycol monolaurate.
  • chaotic surfactants include alkyl quaternary ammonium salts and their ethylene oxide adducts.
  • Nonionic surfactants include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene alkyl ether, and other ethers.
  • Nonionic surfactant polyoxyethylene oleate, polyoxyethylene distearate, sorbitan laurate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, polyoxyethylene monooleate, polyoxyethylene Ester type such as stearate, acetylene alcohol type nonionic surfactant such as 3,5-dimethyl-1-hexyn-3-ol, 2, 4, , 9-tetramethyl-5-decyne-4,7-diol, such as 3,6-dimethyl-4-octyne-3,6-diol.
  • amphoteric surfactants include alkylbetaines such as alkyldimethylaminoacetic acid betaines, alkylimidazolines, and the like.
  • modified silicone include polyether-modified polysiloxane, carboxy-modified polysiloxane, epoxy-modified polysiloxane, and amino-modified polysiloxane.
  • the hardness and moisture resistance of the cured resin film can be improved, and electrical insulation or electrical conductivity can be imparted or improved.
  • fillers that can impart or improve electrical insulation include metal oxides such as alumina, silicon oxide, beryllium oxide, copper oxide, and cuprous oxide, and metal nitrides such as boron nitride, aluminum nitride, and silicon nitride.
  • metal carbides such as silicon carbide, metal carbonates such as magnesium carbonate, insulating carbon materials such as diamond, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and the like.
  • Examples of the filler that can impart or improve electrical conductivity include carbon materials such as graphite and carbon fiber, and metal materials such as metal silicon, aluminum, and magnesium.
  • a filler capable of imparting or improving electrical insulation or electrical conductivity can be included in the cured resin film for the purpose of improving thermal conductivity.
  • a filler that can impart or improve electrical insulation and a filler that can impart or improve electrical conductivity are combined. Also good.
  • the shape of the filler for example, particles, fine particles, nanoparticles, aggregated particles, wires, rods, needles, plates, irregular shapes, rugby balls, hexahedrons, large particles and fine particles are combined.
  • Various shapes such as composite particles can be applied.
  • fillers may be natural products or synthesized. In the case of a natural product, there are no particular limitations on the production area and the like, which can be selected as appropriate.
  • the purpose of including the filler is not particularly limited, and a filler capable of achieving this purpose can be selected for the purpose of improving characteristics and imparting functions.
  • One type of filler may be included, or two or more types may be used.
  • the weather resistance of the cured resin film can be improved.
  • the additive include an antioxidant and an ultraviolet absorber.
  • the purpose of including the additive is not particularly limited, and a known additive capable of achieving this purpose can be selected for the purpose of improving characteristics and imparting functions.
  • One type of additive may be included, or two or more types may be included.
  • the curable resin composition of the present invention further includes a surfactant.
  • the curable resin composition of the present invention further includes a foaming agent.
  • a foaming agent When a foaming agent is included, the cured resin film formed by curing the curable resin composition can be easily peeled off.
  • a foaming agent a compound that foams by decomposing at a melting temperature or higher, a combination of a compound that reacts with an acid and foams, and an acid can be used.
  • the foaming agent that can be used in the present invention include azo compounds such as azodicarbonamide, barium azodicarboxylate, 2,2′-azobisisobutyronitrile, dimethyl 2,2′-azobis (2-methyl).
  • azo compounds such as 2,2′-azobis (N-butyl-2-methylpropionamide), nitroso compounds such as dinitrosopentamethylenetetramine and trinitrotrimethyltriamine, p, p′-oxybisbenzenesulfonyl
  • hydrazide compounds such as hydrazide, sulfonyl semicarbazide compounds such as p, p′-oxybisbenzenesulfonyl semicarbazide, and toluenesulfonyl semicarbazide.
  • the compound that reacts with an acid and foams may be, for example, an alkali metal carbonate or bicarbonate, for example, sodium, potassium, lithium or rubidium carbonate Or carbonate compounds, such as hydrogencarbonate, are mentioned,
  • an acid the acid containing organic acid, acidic sodium phosphate, or potassium, and a mixture thereof are mentioned.
  • the organic acid include citric acid, tartaric acid, succinic acid, fumaric acid, and a mixture thereof.
  • the curable resin composition of the present invention has the above “high-speed curability” and is heated at 150 ° C. or less, preferably 90 ° C., 100 ° C., 110 ° C., 120 ° C., 130 ° C., 140 ° C. or 150 ° C. Curing within a few minutes at temperature, preferably 10 seconds, 20 seconds, 30 seconds, 40 seconds, 50 seconds, 1 minute or 2 minutes heating time, more preferably by heating at 150 ° C. for 1 minute
  • the formed film has easy peelability.
  • the curable resin composition of the present invention has the above “storage stability”, and the curable resin composition formed as a solution can be used at a suitable temperature (for example, 20 ° C. or 50 ° C.) for a long time.
  • a suitable temperature for example, 20 ° C. or 50 ° C.
  • the solution does not change after the normal test (stored at 20 ° C. for 9 months or 12 months) and the accelerated test (stored at 50 ° C. for 2 weeks) compared to before storage.
  • the present invention provides a cured resin film obtained by curing the curable resin composition of (2-1).
  • the present invention provides an easily peelable cured resin film obtained by curing the curable resin composition of (2-1) above onto a substrate surface in a film shape.
  • the cured resin film formed from the curable resin composition of the present invention is heat-resistant in the above-mentioned meaning of “heat resistance” and also has easy peelability after heat treatment in a temperature range that is heat-resistant.
  • the cured resin film formed from the curable resin composition of the present invention has the “easy peelability”.
  • the peel force after pre-baking is 10 N / mm 2 or less, 1 N / Mm 2 or less, 0.5 N / mm 2 or less, or 0.1 N / mm 2 or less.
  • the cured resin film formed from the curable resin composition of the present invention has the “easy peeling heat resistance”.
  • the peeling force after pre-baking for example, at 100 ° C. for 2 minutes
  • additional heating for example, 230
  • the increase in peel strength before and after additional heating is about 500% or less, about 450% or less, about 400% or less, about 350% or less, about 300% or less, 250% or less, about 200% or less, about 150% or less, about 100% or less, or about 50% or less.
  • the conditions for additional heating can be appropriately changed according to the curable resin composition and the formed cured resin film. More specifically, in a cured resin film formed by applying and heating a curable resin composition to a glass substrate, the peeling force after pre-baking (for example, at 100 ° C. for 2 minutes) and additional heating (for example, When compared with the peel force after 1 hour at 230 ° C., the increase in peel force before and after additional heating is 1 N / mm 2 or less, 0.5 N / mm 2 or less, or 0.1 N / mm 2 or less.
  • the cured resin film formed from the curable resin composition of the present invention has the “sputter process resistance”. Specifically, a curable resin composition is applied on a substrate, heated and cured (for example, 150 ° C./15 minutes) to form a cured resin film, and then an overcoat material (OC material) is formed on the film. A photo-curable resist was applied, pre-baked (for example, 90 ° C./100 seconds), exposed (for example, 20 mW, 100 mJ), further post-baked (for example, 230 ° C./30 minutes), and an ITO sputtering process was performed. It means that the later cured resin film has easy peelability.
  • a curable resin composition is applied on a substrate, heated and cured (for example, 150 ° C./15 minutes) to form a cured resin film, and then an overcoat material (OC material) is formed on the film.
  • a photo-curable resist was applied, pre-baked (for example, 90 ° C./100 seconds), exposed
  • the ITO sputtering process is a method of forming an ITO (In 2 O 3 —SnO 2 (indium tin oxide) film) by a sputtering method known in the art.
  • a cured resin film is installed in a sputtering apparatus, the inside of the apparatus is decompressed (for example, 0.5 Pa), and air is introduced into the apparatus (for example, 50 sccm).
  • O 2 is introduced (for example, 50 sccm), the inside of the apparatus is heated (for example, 90 ° C.), and sputtering (for example, pressure: 0.67 Pa, DC power: 110 W) is performed.
  • the above conditions for pre-baking, exposure, and post-baking are examples, and the cured resin film is used. Known processes in certain fields can be applied.
  • the curable resin composition of the present invention typically contains a chain polymer, a crosslinking agent, and, if necessary, an acid catalyst, a surfactant, a filler, an additive, and a foaming agent, and these are dissolved in a solvent.
  • the obtained solution is applied onto a glass substrate (preferably soda lime glass), and cured by heat treatment (100 ° C. to 230 ° C., 1 minute or longer), whereby a film thickness of several hundred nm (preferably about 200 nm to An easily peelable cured resin film having a thickness of about 300 nm can be formed as a transparent thin film.
  • a glass substrate preferably soda lime glass
  • heat treatment 100 ° C. to 230 ° C., 1 minute or longer
  • a film thickness of several hundred nm preferably about 200 nm to An easily peelable cured resin film having a thickness of about 300 nm can be formed as a transparent thin film.
  • the mechanism is that the side chain hydroxy group of the chain polymer and
  • a known coating method can be used. Examples thereof include spin coating, spinless coating, die coating, spray coating, roll coating, screen coating, slit coating, dip coating, and gravure coating. Preferably, spin coating is used.
  • the thin film formed on the substrate can withstand heating up to 150 ° C., preferably withstand heating (firing) at 230 ° C., and more preferably withstand heating (firing) at 300 ° C.
  • the thin film formed from the curable resin composition of the present invention has easy peelability even after heating at such a temperature. Since it can be subjected to a circuit manufacturing process including a firing step, it is advantageous for maintaining the characteristics of the circuit and can be easily and easily peeled off from the substrate even after the circuit is manufactured. For this reason, as a base film having excellent characteristics, it can be widely used for the production of various sheet-like flexible electric / electronic circuit components. For example, it can also be used for the production of flexible display devices.
  • the cured resin film of the present invention preferably has heat resistance that withstands heating (baking) at 230 ° C. to 300 ° C. for a certain time (several seconds to several hours or more).
  • the heat resistance is preferably 230 ° C. to 300 ° C. for 8 hours or more.
  • the cured resin film of the present invention can be produced by the method described in [3] Method for producing a cured resin film below.
  • the peeling force of the cured resin film of the present invention can be measured, for example, by the following measuring method.
  • the curable resin composition of the present invention is typically prepared as a solution in which a chain polymer, a cross-linking agent, and, if necessary, an acid catalyst is further dissolved in a solvent, on a glass substrate (preferably soda lime glass). And cured by heat treatment (100 ° C. to 230 ° C., 1 minute or longer) to produce a cured resin film on the glass substrate.
  • TENSILON RTG-1310 (A & D Co., Ltd.) is used as the measuring device
  • UR-100ND type is used as the load cell.
  • Nichiban tape (24 mm width) is affixed to the cured resin film on the glass substrate, and the magnitude of the force (peeling force) required for peeling while pulling at a constant speed of 300 mm / min at a peeling angle of 90 ° with respect to the glass substrate is described above. Measure with the instrument.
  • the cured resin film of the present invention preferably has a peeling force on a soda glass substrate or a non-alkali glass substrate of 0.5 N / mm 2 or less.
  • the cured resin film of the present invention more preferably has a peeling force on a soda glass substrate or an alkali-free glass substrate of 0.1 N / mm 2 or less.
  • the cured resin film of the present invention more preferably has a peel strength on a soda glass substrate or a non-alkali glass substrate of 0.09 N / mm 2 or less.
  • Preferred values of peel strength in the substrate made of soda glass 0.5 N / mm 2 or less, 0.4 N / mm 2 or less, 0.3 N / mm 2 or less, 0.2 N / mm 2 or less, 0.1 N / mm 2 or less, 0.09 N / mm 2 or less, 0.08 N / mm 2 or less, 0.07 N / mm 2 or less, 0.06 N / mm 2 or less, 0.05 N / mm 2 or less, 0.04 N / mm 2 hereinafter, 0.03 N / mm 2 or less, 0.02 N / mm 2 or less, 0.01 N / mm 2 or less.
  • Preferred values of peel strength in the substrate made of alkali-free glass 0.5 N / mm 2 or less, 0.4 N / mm 2 or less, 0.3 N / mm 2 or less, 0.2 N / mm 2 or less, 0.1 N / mm 2 or less, 0.09 N / mm 2 or less, 0.08 N / mm 2 or less, 0.07 N / mm 2 or less, 0.06 N / mm 2 or less, 0.05 N / mm 2 or less, 0.04 N / mm 2 below, 0.03 N / mm 2 or less, 0.02 N / mm 2 or less, 0.01 N / mm 2 or less.
  • the cured resin film is It can be regarded as easily peelable.
  • the film thickness of the cured resin film of the present invention is, for example, a part of the cured resin film of the present invention applied on the glass substrate is scraped with a knife or razor to expose the glass substrate, and the cured resin remaining from the surface of the glass substrate. It can be measured by measuring the height to the surface of the resin film with a measuring device. As the measuring device, a stylus type step thickness meter (for example, TP-10, manufactured by KLA-Tencor Corporation) can be used.
  • the thickness of the cured resin film of the present invention is preferably 200 to 400 nm, more preferably 200 nm, 250 nm, or 300 nm, but is not limited thereto.
  • the transmittance of the cured resin film of the present invention can be measured, for example, by the following measuring method.
  • V-660 JASCO Corporation
  • transmittance (% T) Get The transmittance of the cured resin film of the present invention shows the whiteness / smoothness of the film, and is preferably 95% or more, and more preferably 99% or more.
  • L *, a *, and b * values in the CIELAB space can be measured as optical characteristics of the cured resin film of the present invention.
  • b * represents the yellowness of the film, and is preferably 0.2 or less, more preferably 0.1 or less.
  • the liquid viscosity of the curable resin composition prepared as the solution of the present invention can be measured by the following method. That is, the viscosity of the solution can be measured using a viscometer such as ELD (Tokyo Keiki Co., Ltd.) as a measuring device.
  • the viscosity of the curable resin composition of the present invention is preferably 3 mPa ⁇ s (cps) or less, more preferably 2.5 mPa ⁇ s or less, 2.4 mPa ⁇ s or less, 2.3 mPa ⁇ s or less, 2 .2 mPa ⁇ s or less, or 2.1 mPa ⁇ s or less.
  • the present invention provides a method for producing a cured resin film from the curable resin composition according to (2-1), (I) providing a chain polymer with a side chain having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group and a crosslinking agent; (Ii) applying the curable resin composition containing the chain polymer and the crosslinking agent on a substrate to form a curable resin composition coating film; (Iii) performing a polymerization reaction in the curable resin composition coating film and curing it to form a cured resin film, A manufacturing method is provided.
  • the manufacturing method further includes the step of (iv) peeling the cured resin film formed on the substrate from the substrate.
  • the production method further includes (i ′) polymerizing at least one raw material monomer to produce the chain polymer before step (i).
  • Examples of the method for polymerizing the monomer include a bulk polymerization method, a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, and the like, but the present invention is not limited to such examples.
  • the bulk polymerization method and the solution polymerization method are preferable.
  • the polymerization of the monomer can be performed by a method such as a radical polymerization method, a living radical polymerization method, an anionic polymerization method, a cationic polymerization method, an addition polymerization method, a polycondensation method, or the like.
  • the monomer when the monomer is polymerized by a solution polymerization method, for example, the monomer can be polymerized by dissolving the monomer in a solvent and adding a polymerization initiator to the solution while stirring the obtained solution.
  • the monomer can be polymerized by dissolving the initiator in a solvent and adding the monomer to the solution while stirring the resulting solution.
  • the solvent is preferably an organic solvent compatible with the monomer.
  • a chain transfer agent may be used to adjust the molecular weight.
  • the chain transfer agent can be used usually by mixing with a monomer.
  • Examples of the chain transfer agent include 2- (dodecylthiocarbonothioylthio) -2-methylpropionic acid, 2- (dodecylthiocarbonothioylthio) propionic acid, methyl 2- (dodecylthiocarbonothioylthio)- 2-methylpropionate, 2- (dodecylthiocarbonothioylthio) -2-methylpropionic acid 3-azido-1-propanol ester, 2- (dodecylthiocarbonothioylthio) -2-methylpropionic acid pentafluoro
  • Examples include mercaptan group-containing compounds such as phenyl ester, lauryl mercaptan, dodecyl mercaptan, and thioglycerol, and inorganic
  • a polymerization initiator When the monomer is polymerized, it is preferable to use a polymerization initiator.
  • the polymerization initiator include a thermal polymerization initiator, a photopolymerization initiator, a redox polymerization initiator, an ATRP (atom transfer radical polymerization) initiator, an ICAR ATRP initiator, an ARGET ATRP initiator, and a RAFT (reversible addition-cleavage).
  • ATRP atom transfer radical polymerization
  • ICAR ATRP initiator an ARGET ATRP initiator
  • RAFT reversible addition-cleavage
  • Chain transfer polymerization) agent NMP (polymerization via nitroxide) agent, polymer polymerization initiator and the like.
  • thermal polymerization initiators examples include azo polymerization initiators such as azoisobutyronitrile, methyl azoisobutyrate, and azobisdimethylvaleronitrile, and peroxide polymerization initiations such as benzoyl peroxide, potassium persulfate, and ammonium persulfate. Although an agent etc. are mentioned, this invention is not limited only to this illustration. These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the thermal polymerization initiator is preferably about 0.01 parts by weight to about 20 parts by weight per 100 parts by weight of all monomers.
  • photopolymerization initiator examples include 2-oxoglutaric acid, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl [4- (methylthio) phenyl]- 2-morpholinopropan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl 1 -Propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide
  • these polymerization initiators may be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator is preferably about 0.01 parts by weight to about 20 parts by weight per 100 parts by weight of all monomers.
  • redox polymerization initiators such as hydrogen peroxide and iron (II) salts, persulfates and sodium hydrogen sulfite, and ATRP using an alkyl halide under a metal catalyst.
  • polymer polymerization initiator Atom transfer radical polymerization initiator, ICAR ATRP initiator or ARGET ATRP initiator using metal and nitrogen-containing ligand, RAFT (reversible addition-cleavage chain transfer polymerization) agent, NMP (polymerization via nitroxide) agent
  • polymer polymerization initiators such as polydimethylsiloxane unit-containing polymer azo polymerization initiator and polyethylene glycol unit-containing polymer azo polymerization initiator, but the present invention is not limited to such examples. . These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator is preferably about 0.01 parts by weight to about 20 parts by weight per 100 parts by weight of the total monomers.
  • electron beam polymerization is performed by irradiating the monomer with an electron beam.
  • the polymerization reaction temperature and atmosphere when the monomer is polymerized There are no particular limitations on the polymerization reaction temperature and atmosphere when the monomer is polymerized. Usually, the polymerization reaction temperature is about 50 ° C to about 120 ° C.
  • the atmosphere during the polymerization reaction is preferably an inert gas atmosphere such as nitrogen gas, for example.
  • the polymerization reaction time of the monomer varies depending on the polymerization reaction temperature and the like and cannot be determined unconditionally, but is usually about 3 to 20 hours.
  • the substrate in step (ii) in the production method is preferably a glass substrate, more preferably soda glass (also referred to as soda lime glass) or alkali-free glass (for example, EAGLE- XG, Corning), and more preferably soda glass.
  • soda glass also referred to as soda lime glass
  • alkali-free glass for example, EAGLE- XG, Corning
  • a known coating method can be used as a method of applying the curable resin composition in step (ii) of the manufacturing method to the substrate.
  • examples include, but are not limited to, spin coating, die coating, spray coating, roll coating, screen coating, slit coating, dip coating, gravure coating and the like.
  • spin coating Preferably, it can be applied using spin coating.
  • the composition further comprises an acid catalyst.
  • the curable resin composition coating film contains an acid catalyst, so that the acid catalyst functions as a polymerization catalyst in the polymerization reaction in step (iii) and promotes the reaction. Because you can. Therefore, in another embodiment, step (i) in the above production method further includes the step of providing an acid catalyst.
  • step (iii) in the production method further includes a step of heat-treating the curable resin composition coating film.
  • the temperature of the heat treatment is preferably 100 ° C. to 300 ° C., more preferably 150 ° C. to 300 ° C.
  • the heat treatment time is preferably 1 minute or more, more preferably 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours. However, it is not limited to these. Particularly preferred heat treatment time is 10 minutes to 2 hours.
  • the cured resin film produced by the above production method has the characteristics of the cured resin film of (2-2) and can be obtained as an easily peelable film, more preferably an easily peelable heat resistant film.
  • the curable resin composition or cured resin film of the present invention is used for synthetic resins, pellets, films, plates, fibers, tubes, rubber, elastomers, etc., and is used for two-wheeled vehicles (bicycles, motorcycles, etc.), automobiles, airplanes.
  • the curable resin composition or cured resin film of the present invention can be used for electronic materials, medical materials, healthcare materials, life science materials, robot materials, and the like.
  • the curable resin composition or cured resin film of the present invention can be used as a material for, for example, a catheter, a guide wire, a pharmaceutical container, a tube and the like.
  • the curable resin composition or cured resin film of the present invention is used for automobile parts (body panels, bumper bands, rocker panels, side moldings, engine parts, drive parts, conductive parts, steering device parts, stabilizer parts, suspension / brake device parts. Brake parts, shaft parts, pipes, tanks, wheels, seats, seat belts, etc.).
  • the polymer of the present invention can be used for an anti-vibration material for automobiles, paints for automobiles, synthetic resins for automobiles, and the like.
  • the curable resin composition or cured resin film of the present invention is used particularly for display devices such as display devices (for example, liquid crystal display devices).
  • Display devices such as liquid crystal display devices are widely used in ticket machines, ATMs, portable terminals such as smartphones, computers, and other various electric and electronic devices.
  • the screens of these display devices are generally rigid flat plates.
  • a flexible display device having a screen that can be deformed to some extent has been developed to reflect the expansion of potential uses of the display device.
  • it is required to be able to produce a fine circuit and be transparent and as thin and light as possible.
  • a photolithography method is used to form a metal film on the base film, coating a photoresist film, pre-baking, circuit pattern exposure, resist Processes such as development by development, rinsing, baking, etching, and photoresist removal are combined according to the purpose and method, and repeated to produce a circuit.
  • an anisotropic conductive film (ACF) is disposed between and on the layers thus produced, if necessary, and a printed wiring board is disposed on a necessary portion thereon, and is heated and pressurized.
  • ACF anisotropic conductive film
  • firing is desirably performed at a sufficiently high temperature (around 230 ° C.), but the upper limit of the firing temperature is limited by the heat resistance level of the base film.
  • the baking in each step cannot be performed unless the region is on the low-temperature side below the limit that the base film can withstand.
  • the wiring produced by low-temperature firing using them is a conventional one using ITO. Since the characteristics are inferior to those of the wiring, it is not technically preferable.
  • the base film is required to be thinner year by year, the heat resistance of the base film decreases as the thickness is reduced.
  • the upper limit of the heat treatment temperature is currently reduced to about 100 ° C, and the circuit performance is maintained assuming that the upper limit of the temperature that can withstand the heat treatment of the base film is further lowered due to further thinning demand in the future.
  • a resin composition as a base film material is applied to another substrate (such as a glass substrate). It is necessary to produce a base film by a method of forming a film by curing by heat curing or the like.
  • circuit components such as metal wiring are sequentially formed in layers, for the purpose of installation of anisotropic conductive film, lamination of printed circuit board wiring, circuit connection, etc.
  • the base film is peeled off from the substrate such as glass together with the layers formed thereon as an integral laminated body to obtain a laminated body as a circuit component.
  • the laminate must be easily peeled off from the substrate such as glass. Otherwise, a large distortion occurs in the laminate due to the load at the time of peeling, thereby causing disconnection of the metal wiring and peeling of the circuit connection, leading to a significant deterioration in the yield of the product.
  • the substrate material even if the substrate material itself withstands heat treatment at a higher temperature than the conventional one in the form of a thin film, if the firing in the process of forming the wiring thereon is performed at a higher temperature, the substrate material and it will be placed. It becomes easy to adhere to the substrate surface. For this reason, as a substrate material, it is not sufficient to endure baking at a higher temperature than the conventional one in a thin film form, and it should not have such characteristics that it can be easily and easily separated from the substrate even after such high temperature baking. Don't be.
  • the base film is very thin as described above, the resin material for forming the base film is very thin and uniform without being bounced to the substrate when applied to the substrate (glass substrate, etc.). It must be of a nature that allows it to spread (eg, has wettability). On the other hand, such an affinity for the substrate is one of the factors that can cause easy adhesion to the substrate in the firing step, and thus can easily lose the peelability.
  • a curable resin thin film can be formed by applying an extremely thin curable resin composition to the surface of a substrate (glass, etc.) and cured by heating, and a circuit is formed thereon by patterning or the like.
  • ⁇ Method and Material> The methods and materials used in the examples, test examples and comparative examples were as follows unless otherwise specified.
  • ⁇ Gel permeation chromatography> A mixture containing the polymer was diluted with tetrahydrofuran so that the solid content of the mixture was 0.1% by mass to prepare a sample, and a gel permeation chromatography column (TSK GEL 5000HXL, TSK GEL A total of 3000 HXL (manufactured by Tosoh Corporation; trade name) were injected in this order in series (5000 HXL upstream)).
  • the eluent containing the polymer is extracted by pouring tetrahydrofuran as an eluent at 1 ml / min into the gel permeation chromatography column into which the diluent has been injected.
  • the molecular weight was measured.
  • MX-270 1,3,4,6-tetrakis (methoxymethyl) glycoluril, trade name Nicalac MW-270, ( Sanwa Chemical Co., Ltd.
  • Polymer A-2 was prepared in the same manner as in Production Example 1, except that 3-benzoyloxy-2-hydroxypropyl methacrylate was used as a monomer. Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 22,000.
  • Polymer A-3 was prepared in the same manner as in Production Example 1 except that 4-benzoyloxy-3-hydroxycyclohexylmethyl methacrylate was used as a monomer. Got. It was 32,000 when the weight average molecular weight (MW) of this polymer was measured by the gel permeation chromatography.
  • a polymer A-4 was prepared in the same manner as in Example 1 except that 1,3-adamantyldiol monomethacrylate was used as a monomer. Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 18,000.
  • Polymer A-5 was prepared in the same manner as in Production Example 1 except that 2-hydroxycyclohexyl methacrylate was used as a monomer. Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 36,000.
  • Polymer A-6 was prepared in the same manner as in Production Example 1 except that 4-hydroxycyclohexyl methacrylate was used as a monomer. Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 33,000.
  • Polymer A-7 was prepared in the same manner as in Production Example 1 except that 4-hydroxyphenyl methacrylate was used as a monomer. Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 30,000.
  • Polymer A-8 was prepared in the same manner as in Production Example 1 except that 4- (4-methoxyphenylpropenoyl) oxy-3-hydroxycyclohexylmethyl methacrylate was used as a monomer. Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 27,700.
  • Polymer A-9 was prepared in the same manner as in Production Example 1 except that 4-adamantanecarboxycarboxy-3-hydroxycyclohexylmethyl methacrylate was used as a monomer. Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 31,700.
  • Polymer A-10 was prepared in the same manner as in Production Example 1 except that 2-hydroxyethyl methacrylate was used as a monomer. Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 42,000.
  • Polymer A-11 was prepared in the same manner as in Production Example 1 except that 4- (hydroxymethyl) cyclohexylmethyl acrylate was used as a monomer. Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 18,000.
  • the curable resin composition of the present invention was produced as follows.
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethyl ether
  • Peeling force (N / mm 2 ): TENSILON RTG-1310 (A & D Co., Ltd.) as a measuring device and UR-100N-D type as a load cell. Measurement is performed on a cured resin thin film on a glass substrate by Nichiban A tape (24 mm width) was affixed, and the magnitude of the force required for peeling (peeling force) was measured with the above apparatus while pulling at a constant speed of 300 mm / min at a peeling angle of 90 ° with respect to the glass substrate. In each example and each comparative example, the transmittance was not measured for those not peeled off from the glass substrate.
  • V-660 (JASCO Corporation) was used as a measuring device, and the light transmittance of 400 to 700 nm wavelength light with respect to an equivalent glass substrate was measured.
  • Table 1 to Table 3 show the following.
  • the curable resin films containing chain polymers having side chains having alcoholic secondary or tertiary OH-containing groups or phenolic OH-containing groups shown in Examples 1 to 35 are shown in Comparative Examples 1 to 6. Compared to a curable resin film that does not contain a chain polymer with a side chain having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group, it has high peel resistance and high-speed curability. I understand.
  • the crosslinking agent is a triazine compound and / or a condensate thereof, and a glycoluril compound and / or It can be seen that those selected from the group consisting of the condensates have high easy-to-peel heat resistance and high-speed curability.
  • the present invention can be applied to a substrate such as glass very thinly, and can be formed into a very thin cured resin thin film by drying and curing after coating.
  • a curable resin composition that has durability at a high temperature of 300 ° C. and can be easily peeled off from a substrate even after being exposed to such a high temperature, it is useful for the production of film-type electrical / electronic circuit components. is there.

Abstract

Disclosed herein is a curable resin composition that is capable of being applied to a surface of a glass substrate to form a cured resin thin film, withstands firing at 230°C to 300°C, inclusive, and can easily be peeled off the substrate without effort. Said composition is a curable resin composition containing a cross-linking agent and a chained polymer comprising an alcoholic secondary or tertiary OH-comprising group or a phenolic OH-comprising group, wherein: (a) the chained polymer comprises a monomer unit represented by formula A1 (where R1a, L1, L2, R2a, R3a, and R4a are as disclosed in the description); and (b) the cross-linking agent is selected from the group consisting of triazine compounds and/or condensates thereof, glycoluril compounds and/or condensates thereof, and imidazolidinone compounds and/or condensates thereof.

Description

耐熱性且つ易剥離性の硬化樹脂膜を形成するための硬化性樹脂組成物及びその製造方法Curable resin composition for forming heat-resistant and easily peelable cured resin film and method for producing the same
 本発明は、硬化性樹脂組成物、より詳しくは易剥離性の硬化樹脂膜を形成するための硬化性樹脂組成物に関し、特にガラス等の基板上に塗布し硬化させて薄膜へと成膜でき、その後基板から無理なく容易に剥離することができる薄膜を与える硬化性樹脂組成物に関する。本発明はさらに、種々の光学性質を有する耐熱性且つ易剥離性の硬化樹脂膜を形成することが可能な硬化性樹脂組成物に関する。 The present invention relates to a curable resin composition, and more particularly to a curable resin composition for forming an easily peelable cured resin film, and in particular, can be applied to a substrate such as glass and cured to form a thin film. Then, the present invention relates to a curable resin composition that gives a thin film that can be easily peeled off from a substrate without difficulty. The present invention further relates to a curable resin composition capable of forming a heat-resistant and easily peelable cured resin film having various optical properties.
 ディスプレイ装置等の表示装置に使用する基板の一例であるベースフィルムは、年々薄型化が求められているが、薄型化に伴ってベースフィルムの耐熱性は低下する。このため、回路の性能を維持できる高い温度での焼成に耐えるベースフィルム材料が求められている。 Although a base film, which is an example of a substrate used for a display device such as a display device, is required to be thinner year by year, the heat resistance of the base film is reduced as the thickness is reduced. Therefore, there is a need for a base film material that can withstand firing at a high temperature that can maintain circuit performance.
 また、薄型化に伴いベースフィルムは、300nm程度の非常に薄い膜を用いることが望まれており、そのためには、他の基板(ガラス基板等)にベースフィルム材料である樹脂組成物を塗布し熱硬化等により硬化させて成膜する方法で、ベースフィルムを作製することが必要となる。ガラス等の基板に形成されたこの極めて薄いベースフィルム上で、金属配線等の回路構成要素を順次層状に形成し、異方性導電膜の設置、プリント基板配線の積層、回路接続等も目的に応じて行い、絶縁保護膜の積層を行った後、ガラス等の基板からベースフィルムをその上に形成された各層と共に一体の積層体として剥がせば、回路部品としての積層体が得られる。 In addition, as the thickness of the base film decreases, it is desired to use a very thin film of about 300 nm. For this purpose, a resin composition as a base film material is applied to another substrate (such as a glass substrate). It is necessary to produce a base film by a method of forming a film by curing by heat curing or the like. On this extremely thin base film formed on a substrate such as glass, circuit components such as metal wiring are sequentially formed in layers, for the purpose of installation of anisotropic conductive film, lamination of printed circuit board wiring, circuit connection, etc. Then, after the insulating protective film is laminated, the base film is peeled off from the substrate such as glass together with the layers formed thereon as an integral laminated body to obtain a laminated body as a circuit component.
 ここで、ガラス等の基板からの積層体の引き剥がしは、無理なく容易に行えるものでなければならない。さもなければ、引き剥がす際の負荷により積層体に大きな歪みが生じ、それにより金属配線の断線や回路接続の剥離が生じて、製品の著しい歩留まり悪化を招くからである。 Here, the laminate must be easily peeled off from the substrate such as glass. Otherwise, a large distortion occurs in the laminate due to the load at the time of peeling, thereby causing disconnection of the metal wiring and peeling of the circuit connection, leading to a significant deterioration in the yield of the product.
 特に、基板材料自体は薄膜状において従来のものより高い温度での熱処理に耐えるとしても、その上に配線を作製する工程での焼成がその分高い温度で行われると、基板材料とそれが載っている基板表面とは固着し易くなる。このため、基板材料としては、薄膜状において従来のものより高温での焼成に耐えるだけでは不十分であり、そのような高温焼成後も基板から無理なく容易に剥離できるという特性のものでなければならない。 In particular, even if the substrate material itself withstands heat treatment at a higher temperature than the conventional one in the form of a thin film, if the firing in the process of forming the wiring thereon is performed at a higher temperature, the substrate material and it will be placed. It becomes easy to adhere to the substrate surface. For this reason, as a substrate material, it is not sufficient to endure baking at a higher temperature than the conventional one in a thin film form, and it should not have such characteristics that it can be easily and easily separated from the substrate even after such high temperature baking. Don't be.
国際公開第2015/016532号International Publication No. 2015/016532 特開平9-105896号公報JP-A-9-105896 特許5200538号公報Japanese Patent No. 5200538
 本発明者らは、特定のポリマーおよび架橋剤を含む硬化性樹脂組成物を用いた場合に、種々の光学性質を有する耐熱性且つ易剥離性の硬化樹脂膜を形成することが可能であることを見いだした。本発明者らは、本発明の硬化樹脂膜が高い温度での焼成に耐え、高温焼成後に基板から容易に剥離でき、さらに良好な性質(透過性、及び高速硬化性など)を有することを見出し、本発明を完成させた。 The present inventors can form a heat-resistant and easily peelable cured resin film having various optical properties when a curable resin composition containing a specific polymer and a crosslinking agent is used. I found. The present inventors have found that the cured resin film of the present invention can withstand firing at a high temperature, can be easily peeled off from the substrate after high-temperature firing, and has better properties (permeability, high-speed curability, etc.). The present invention has been completed.
 例えば、本発明は以下の項目を提供する。
 (項目1)
 アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた鎖状ポリマーと、架橋剤とを含んでなる硬化性樹脂組成物であって、
 (a) 該鎖状ポリマーが、式A1:
Figure JPOXMLDOC01-appb-C000013

〔ここに
 R1aは水素、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれ、
 Lは単結合、置換又は非置換アルキレン基、及び置換又は非置換アルケニレン基よりなる群から選ばれ、
 LはO又はNHであり、
 R2a、R3a、及びR4aは、互いに独立して、水素、及び置換又は非置換炭化水素基よりなる群から選ばれ、ただしR2a、R3a、及びR4aのうち少なくとも1つは、置換又は非置換のアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基であるか、あるいは、R2a、R3a、及びR4aのうちの少なくとも2つが一緒になって、アルコール性第二級又は第三級OH又はフェノール性OHを含有する、置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、置換又は非置換ヘテロ芳香族基、あるいはこれらを含む多環を形成する。〕
で示されるモノマー単位を含んでなるものであり、
 (b)該架橋剤が、トリアジン系化合物及び/又はその縮合体、グリコールウリル系化合物及び/又はその縮合体、並びにイミダゾリジノン系化合物及び/又はその縮合体
よりなる群から選ばれるものである、
硬化性樹脂組成物。
 (項目2)
 該鎖状ポリマーが、式A2:
Figure JPOXMLDOC01-appb-C000014

〔ここに
 R1a、LおよびLは上記項目に記載のとおりであり、
 R5a~R14aは、互いに独立して、水素、ヒドロキシ基、及び
Figure JPOXMLDOC01-appb-C000015

よりなる群から選ばれ、又は一緒になって環を形成し、ただしR5a~R14a又は該環の置換基のうちの少なくとも1つがヒドロキシ基であり、
 R15aは置換又は非置換アルキル基、置換又は非置換アルケニル基、置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、及び置換又は非置換ヘテロ芳香族基よりなる群から選ばれる。〕
で示されるモノマー単位を含んでなるものである、上記項目の硬化性樹脂組成物。
 (項目3)
 該鎖状ポリマーが、式A2:
Figure JPOXMLDOC01-appb-C000016

〔ここに
 R1aおよびLは項目1に記載のとおりであり、
 R5a~R14aは、互いに独立して、水素、ヒドロキシ基、及び
Figure JPOXMLDOC01-appb-C000017

よりなる群から選ばれ、又は一緒になって環を形成し、ただしR5a~R14a又は該環の置換基のうちの少なくとも1つがヒドロキシ基であり、
 R15aは置換又は非置換アルキル基、置換又は非置換アルケニル基、置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、及び置換又は非置換ヘテロ芳香族基よりなる群から選ばれる。〕
で示されるモノマー単位を含んでなるものである、上記項目の何れかの硬化性樹脂組成物。
 (項目4)
 Lは置換又は非置換アルキレン基、及び置換又は非置換アルケニレン基よりなる群から選ばれる、上記項目の何れかの硬化性樹脂組成物。
 (項目5)
 Lは置換又は非置換アルキレン基である、上記項目の何れかの硬化性樹脂組成物。
 (項目6)
 Lはメチレン基である、上記項目の何れかの硬化性樹脂組成物。
 (項目7)
 該鎖状ポリマーが、式A5:
Figure JPOXMLDOC01-appb-C000018

〔ここに
 R1aおよびLは項目1に記載のとおりであり、
 R19aは置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、及び置換又は非置換ヘテロ芳香族基よりなる群から選ばれる
よりなる群から選ばれる。〕
で示されるモノマー単位を含んでなるものである、上記項目の何れかの硬化性樹脂組成物。
 (項目8)
 Lは置換又は非置換アルキレン基である、上記項目の何れかの硬化性樹脂組成物。
 (項目9)
 Lはメチレン基である、上記項目の何れかの硬化性樹脂組成物。
 (項目10)
 R19aはフェニル基である、上記項目の何れかの硬化性樹脂組成物。
 (項目11)
 該架橋剤が、トリアジン系化合物及び/又はその縮合体である、上記項目の何れかの硬化性樹脂組成物。
 (項目12)
 該架橋剤が、
Figure JPOXMLDOC01-appb-C000019

である、上記項目の何れかの硬化性樹脂組成物。
 (項目13)
 Lは単結合である、上記項目の何れかの硬化性樹脂組成物。
 (項目14)
 R5a~R14aのいずれか2つ以上がヒドロキシ基であり、他が水素である、上記項目の何れかの硬化性樹脂組成物。
 (項目15)
 R5a~R14aのいずれか一つがヒドロキシ基であり、他が水素である、上記項目の何れかの硬化性樹脂組成物。
 (項目16)
 R5a~R13aは水素であり、R14aはヒドロキシ基である、上記項目の何れかの硬化性樹脂組成物。
 (項目17)
 該架橋剤が、グリコールウリル系化合物及び/又はその縮合体である、上記項目の何れかの硬化性樹脂組成物。
 (項目18)
 該架橋剤が、
Figure JPOXMLDOC01-appb-C000020

である、上記項目の何れかの硬化性樹脂組成物。
 (項目19)
 該架橋剤が、
Figure JPOXMLDOC01-appb-C000021

である、上記項目の何れかの硬化性樹脂組成物。
 (項目20)
 該組成物は溶液として提供される、上記項目の何れかの硬化性樹脂組成物。
 (項目21)
 該溶液の溶媒はアルコールを含む、上記項目の硬化性樹脂組成物。
 (項目22)
 該アルコールは一級アルコールを含む、上記項目の硬化性樹脂組成物。
 (項目23)
 該アルコールはエタノールを含む、上記項目の硬化性樹脂組成物。
 (項目24)
 該アルコールは該溶媒の全量に対して10重量%以上で存在する、上記項目の何れかの硬化性樹脂組成物。
 (項目25)
 該架橋剤が、完全又は部分アルコキシメチル化メラミン及び/又はその縮合体、完全又は部分アルコキシメチル化グアナミン及び/又はその縮合体、完全又は部分アルコキシメチル化アセトグアナミン及び/又はその縮合体、完全又は部分アルコキシメチル化ベンゾグアナミン及び/又はその縮合体、完全又は部分アルコキシメチル化グリコールウリル及び/又はその縮合体、並びに完全又は部分アルコキシメチル化イミダゾリジノン及び/又はその縮合体からなる群より選ばれるものである、上記項目の何れかの硬化性樹脂組成物。
 (項目26)
 該架橋剤が、式B1:
Figure JPOXMLDOC01-appb-C000022

〔ここに
 R1bは、炭素原子1~25個を有し、置換又は非置換アルキル基、置換又は非置換アルケニル基、置換又は非置換芳香族基、置換又は非置換ヘテロ芳香族基、及び
Figure JPOXMLDOC01-appb-C000023

で示される二置換アミンよりなる群から選ばれ、
 R2b~R7bは、互いに独立して、炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれる。〕
で示される化合物及び/又はその縮合体、
式B2:
Figure JPOXMLDOC01-appb-C000024

〔ここにR8b~R11bは、互いに独立して、炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれる。〕
で示される化合物及び/又はその縮合体、並びに
式B3:
Figure JPOXMLDOC01-appb-C000025

〔ここに
 R12b及びR13bが、互いに独立して、炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれ、
 R14b及びR15bが、互いに独立して、水素であるか、又は炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれる。〕
で示される化合物及び/又はその縮合体
よりなる群より選ばれるものである、上記項目の何れかの硬化性樹脂組成物。
 (項目27)
 該縮合体が、式B1、式B2、又は式B3で示される該化合物の重合体を含む、上記項目の何れかの硬化性樹脂組成物。
 (項目28)
 該縮合体が、式B1、式B2、又は式B3で示される該化合物の二量体、三量体、およびより高次の重合体の少なくとも一つを含む、上記項目の何れかの硬化性樹脂組成物。
 (項目29)
 該架橋剤が、式B1、式B2、又は式B3で示される該化合物について、1.3から1.8までの重量平均重合度をそれぞれ有するものである、上記項目の何れかの硬化性樹脂組成物。
 (項目30)
 R1bが、置換又は非置換芳香族基、及び
Figure JPOXMLDOC01-appb-C000026

で示される二置換アミンよりなる群から選ばれ、R2b~R13bが、互いに独立して、置換又は非置換アルキル基であり、R14b及びR15bが、互いに独立して、水素である、上記項目の何れかの硬化性樹脂組成物。
 (項目31)
 該組成物中における該直鎖状ポリマーの質量と該架橋剤の質量の比が、1:2~1:0.05である、上記項目の何れかの硬化性樹脂組成物。
 (項目32)
 更に酸触媒を含むものである、上記項目の何れかの硬化性樹脂組成物。
 (項目33)
 該酸触媒が、ブレンステッド酸及び/又はルイス酸から選ばれる化合物、若しくはその塩、又はその溶媒和物である、上記項目の何れかの硬化性樹脂組成物。
 (項目34)
 該酸触媒が、p-トルエンスルホン酸(PTS)、ドデシルベンゼンスルホン酸、ピリジニウム-p-トルエンスルホン酸、及び熱酸発生剤サンエイドSI-100L(三新化学工業(株))よりなる群から選ばれる化合物、若しくはその塩、又はその溶媒和物である、上記項目の何れかの硬化性樹脂組成物。
 (項目35)
 更に、界面活性剤、フィラー、添加剤、および発泡剤の少なくとも一つを含む、上記項目の何れかの硬化性樹脂組成物。
 (項目36)
 更に、界面活性剤を含む、上記項目の何れかの硬化性樹脂組成物。
 (項目37)
 更に、発泡剤を含む、上記項目の何れかの硬化性樹脂組成物。
 (項目38)
 150℃で1分の加熱により硬化される硬化性を有する、上記項目の何れかの硬化性樹脂組成物。
 (項目39)
 上記項目の何れかの硬化性樹脂組成物を硬化させてなる、硬化樹脂膜。
 (項目40)
 該硬化樹脂膜は400nmで99%以上の透過率(%T)および0.1以下のb*を有する、上記項目の硬化樹脂膜。
 (項目41)
 230℃~300℃の耐熱性を有する、上記項目の何れかの硬化樹脂膜。
 (項目42)
 230℃~260℃で1~2時間、耐熱性を有する、上記項目の何れかの硬化樹脂膜。
 (項目43)
 230℃で8時間以上、耐熱性を有する、上記項目の何れかの硬化樹脂膜。
 (項目44)
 230℃で1~2時間、耐熱性を有する、上記項目の何れかの硬化樹脂膜。
 (項目45)
 上記項目の何れかの硬化性樹脂組成物を基板表面に膜状に硬化させてなる、易剥離性硬化樹脂膜。
 (項目46)
 0.5N/mm以下のソーダガラス製の基板又は無アルカリガラス製の基板における剥離力を有する、上記項目の何れかの硬化樹脂膜。
 (項目47)
 0.1N/mm以下のソーダガラス製の基板又は無アルカリガラス製の基板における剥離力を有する、上記項目の何れかの硬化樹脂膜。
 (項目48)
 上記項目の何れかの硬化性樹脂組成物からの硬化樹脂膜の製造方法であって、
 (i)アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた該鎖状ポリマーと該架橋剤とを準備するステップと、
 (ii)該鎖状ポリマーと該架橋剤とを含む該硬化性樹脂組成物を基板上に塗布し硬化性樹脂組成物塗膜を形成するステップと、
 (iii)該硬化性樹脂組成物塗膜において重合反応を行わせ硬化させることにより硬化樹脂膜とするステップとを含む、
製造方法。
 (項目49)
 (iv)該基板上に形成されている該硬化樹脂膜を該基板から剥離するステップを更に含む、上記項目の何れかの製造方法。
 (項目50)
 該鎖状ポリマーを構成するモノマー単位におけるアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有するモノマー単位の占める割合が30~100モル%である、上記項目の何れかの製造方法。
 (項目51)
 該架橋剤が、完全又は部分アルコキシメチル化メラミン、完全又は部分アルコキシメチル化グアナミン、完全又は部分アルコキシメチル化アセトグアナミン、又は完全又は部分アルコキシメチル化ベンゾグアナミン、及び完全又は部分アルコキシメチル化グリコールウリルからなる群より選ばれるものである、上記項目の何れかの製造方法。
 (項目52)
 該組成物中の該直鎖状ポリマーの質量と該架橋剤の質量の比が、1:2~1:0.05である、上記項目の何れかの製造方法。
 (項目53)上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を含む、フォトリソグラフィ法による回路の作製のための組成物。
 (項目54)上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を含む、シート状のフレキシブルな電気・電子回路部品又はフレキシブルなディスプレイ装置の作製のための組成物。
 (項目55)上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を含む、合成樹脂、ペレット、フィルム、プレート、繊維、チューブ、ゴム、エラストマー等に使用され、二輪車(自転車、オートバイなど)、自動車、飛行機、電車、船、ロケット、宇宙船、運送、レジャー、家具(例えば、テーブル、いす、机、棚など)、寝具(例えば、ベッド、ハンモックなど)、衣服、防護服、スポーツ用品、浴槽、キッチン、食器、調理用具、容器及び包装材(食品用容器、化粧品用容器、貨物用コンテナ、ごみ箱など)、建築(建造物、道路、建築部品など)、農業フィルム、工業フィルム、上下水道、塗料、化粧料、電機産業及び電子産業分野(電化製品、コンピュータ用部品、プリント基板、絶縁体、導電体、配線被膜材、発電素子、スピーカー、マイクロフォン、ノイズキャンセラ、トランスデューサなど)、光通信ケーブル、医療用材料及び器具(カテーテル、ガイドワイヤー、人工血管、人工筋肉、人工臓器、透析膜、内視鏡など)、小型ポンプ、アクチュエータ、ロボット材料(産業用ロボットなどに使用されるセンサ)、エネルギー生成装置及びプラント(太陽光発電、風力発電など)の作製のための組成物。
 (項目56)上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を含む、電子材料、医療材料、ヘルスケア材料、ライフサイエンス材料、又はロボット材料の作製のための組成物。
 (項目57)上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を含む、カテーテル、ガイドワイヤー、医薬品用容器、又はチューブなどの材料の作製のための組成物。
 (項目58)上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を含む、自動車部品(車体パネル、バンパー帯、ロッカーパネル、サイドモール、エンジン部品、駆動部品、伝導部品、操縦装置部品、スタビライザー部品、懸架・制動装置部品、ブレーキ部品、シャフト部品、パイプ類、タンク類、車輪、シート、シートベルトなど)の作製のための組成物。
 (項目59)上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を含む、自動車用防振材、自動車用塗料、自動車用合成樹脂の作製のための組成物。
 (項目60)フォトリソグラフィ法による回路の作製のための、上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜の使用。
 (項目61)シート状のフレキシブルな電気・電子回路部品又はフレキシブルなディスプレイ装置の作製のための、上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜の使用。
 (項目62)合成樹脂、ペレット、フィルム、プレート、繊維、チューブ、ゴム、エラストマー等に使用され、二輪車(自転車、オートバイなど)、自動車、飛行機、電車、船、ロケット、宇宙船、運送、レジャー、家具(例えば、テーブル、いす、机、棚など)、寝具(例えば、ベッド、ハンモックなど)、衣服、防護服、スポーツ用品、浴槽、キッチン、食器、調理用具、容器及び包装材(食品用容器、化粧品用容器、貨物用コンテナ、ごみ箱など)、建築(建造物、道路、建築部品など)、農業フィルム、工業フィルム、上下水道、塗料、化粧料、電機産業及び電子産業分野(電化製品、コンピュータ用部品、プリント基板、絶縁体、導電体、配線被膜材、発電素子、スピーカー、マイクロフォン、ノイズキャンセラ、トランスデューサなど)、光通信ケーブル、医療用材料及び器具(カテーテル、ガイドワイヤー、人工血管、人工筋肉、人工臓器、透析膜、内視鏡など)、小型ポンプ、アクチュエータ、ロボット材料(産業用ロボットなどに使用されるセンサ)、エネルギー生成装置及びプラント(太陽光発電、風力発電など)の作製のための、上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜の使用。
 (項目63)電子材料、医療材料、ヘルスケア材料、ライフサイエンス材料、又はロボット材料の作製のための、上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜の使用。
 (項目64)カテーテル、ガイドワイヤー、医薬品用容器、又はチューブなどの材料の作製のための、上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜の使用。
 (項目65)自動車部品(車体パネル、バンパー帯、ロッカーパネル、サイドモール、エンジン部品、駆動部品、伝導部品、操縦装置部品、スタビライザー部品、懸架・制動装置部品、ブレーキ部品、シャフト部品、パイプ類、タンク類、車輪、シート、シートベルトなど)の作製のための、上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜の使用。
 (項目66)自動車用防振材、自動車用塗料、自動車用合成樹脂の作製のための、上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜の使用。
 (項目67)フォトリソグラフィ法による回路を作製する方法であって、重合反応を行わせることにより上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を形成する工程を含む、方法。
 (項目68)シート状のフレキシブルな電気・電子回路部品又はフレキシブルなディスプレイ装置を作製する方法であって、重合反応を行わせることにより上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を形成する工程を含む、方法。
 (項目69)合成樹脂、ペレット、フィルム、プレート、繊維、チューブ、ゴム、エラストマー等に使用され、二輪車(自転車、オートバイなど)、自動車、飛行機、電車、船、ロケット、宇宙船、運送、レジャー、家具(例えば、テーブル、いす、机、棚など)、寝具(例えば、ベッド、ハンモックなど)、衣服、防護服、スポーツ用品、浴槽、キッチン、食器、調理用具、容器及び包装材(食品用容器、化粧品用容器、貨物用コンテナ、ごみ箱など)、建築(建造物、道路、建築部品など)、農業フィルム、工業フィルム、上下水道、塗料、化粧料、電機産業及び電子産業分野(電化製品、コンピュータ用部品、プリント基板、絶縁体、導電体、配線被膜材、発電素子、スピーカー、マイクロフォン、ノイズキャンセラ、トランスデューサなど)、光通信ケーブル、医療用材料及び器具(カテーテル、ガイドワイヤー、人工血管、人工筋肉、人工臓器、透析膜、内視鏡など)、小型ポンプ、アクチュエータ、ロボット材料(産業用ロボットなどに使用されるセンサ)、エネルギー生成装置及びプラント(太陽光発電、風力発電など)を作製する方法であって、重合反応を行わせることにより上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を形成する工程を含む、方法。
 (項目70)電子材料、医療材料、ヘルスケア材料、ライフサイエンス材料、又はロボット材料を作製する方法であって、重合反応を行わせることにより上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を形成する工程を含む、方法。
 (項目71)カテーテル、ガイドワイヤー、医薬品用容器、又はチューブなどの材料を作製する方法であって、重合反応を行わせることにより上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を形成する工程を含む、方法。
 (項目72)自動車部品(車体パネル、バンパー帯、ロッカーパネル、サイドモール、エンジン部品、駆動部品、伝導部品、操縦装置部品、スタビライザー部品、懸架・制動装置部品、ブレーキ部品、シャフト部品、パイプ類、タンク類、車輪、シート、シートベルトなど)を作製する方法であって、重合反応を行わせることにより上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を形成する工程を含む、方法。
 (項目73)自動車用防振材、自動車用塗料、自動車用合成樹脂を作製する方法であって、重合反応を行わせることにより上記項目の何れかの硬化性樹脂組成物又は硬化樹脂膜を形成する工程を含む、方法。
For example, the present invention provides the following items.
(Item 1)
A curable resin composition comprising a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent,
(A) The chain polymer is represented by the formula A1:
Figure JPOXMLDOC01-appb-C000013

[Wherein R 1a is selected from the group consisting of hydrogen, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkenyl group;
L 1 is selected from the group consisting of a single bond, a substituted or unsubstituted alkylene group, and a substituted or unsubstituted alkenylene group;
L 2 is O or NH;
R 2a , R 3a , and R 4a are independently selected from the group consisting of hydrogen and substituted or unsubstituted hydrocarbon groups, provided that at least one of R 2a , R 3a , and R 4a is A substituted or unsubstituted alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group, or at least two of R 2a , R 3a , and R 4a taken together to form an alcohol A substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, which contains a secondary or tertiary OH or phenolic OH, Or the polycycle containing these is formed. ]
Comprising a monomer unit represented by
(B) The crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof. ,
Curable resin composition.
(Item 2)
The chain polymer is represented by the formula A2:
Figure JPOXMLDOC01-appb-C000014

[Where R 1a , L 1 and L 2 are as described above,
R 5a to R 14a are independently of each other hydrogen, a hydroxy group, and
Figure JPOXMLDOC01-appb-C000015

Selected from the group consisting of or together form a ring, provided that at least one of R 5a to R 14a or a substituent of the ring is a hydroxy group,
R 15a is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group Selected from the group consisting of ]
A curable resin composition according to the above item, comprising a monomer unit represented by
(Item 3)
The chain polymer is represented by the formula A2:
Figure JPOXMLDOC01-appb-C000016

[Where R 1a and L 1 are as described in item 1;
R 5a to R 14a are independently of each other hydrogen, a hydroxy group, and
Figure JPOXMLDOC01-appb-C000017

Selected from the group consisting of or together form a ring, provided that at least one of R 5a to R 14a or a substituent of the ring is a hydroxy group,
R 15a is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group Selected from the group consisting of ]
A curable resin composition according to any one of the above items, comprising a monomer unit represented by:
(Item 4)
L 1 is a curable resin composition according to any one of the above items, selected from the group consisting of a substituted or unsubstituted alkylene group and a substituted or unsubstituted alkenylene group.
(Item 5)
L 1 is a curable resin composition according to any one of the above items, wherein L 1 is a substituted or unsubstituted alkylene group.
(Item 6)
L 1 is a methylene group, The curable resin composition in any one of the said item.
(Item 7)
The chain polymer is represented by formula A5:
Figure JPOXMLDOC01-appb-C000018

[Where R 1a and L 1 are as described in item 1;
R 19a is selected from the group consisting of a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group. ]
A curable resin composition according to any one of the above items, comprising a monomer unit represented by:
(Item 8)
L 1 is a curable resin composition according to any one of the above items, wherein L 1 is a substituted or unsubstituted alkylene group.
(Item 9)
L 1 is a methylene group, The curable resin composition in any one of the said item.
(Item 10)
The curable resin composition according to any one of the above items, wherein R 19a is a phenyl group.
(Item 11)
The curable resin composition according to any of the above items, wherein the crosslinking agent is a triazine compound and / or a condensate thereof.
(Item 12)
The cross-linking agent
Figure JPOXMLDOC01-appb-C000019

The curable resin composition according to any one of the above items.
(Item 13)
L 1 is a curable resin composition according to any one of the above items, which is a single bond.
(Item 14)
The curable resin composition according to any one of the above items, wherein any two or more of R 5a to R 14a are a hydroxy group and the other is hydrogen.
(Item 15)
The curable resin composition according to any one of the above items, wherein any one of R 5a to R 14a is a hydroxy group and the other is hydrogen.
(Item 16)
The curable resin composition according to any one of the above items, wherein R 5a to R 13a are hydrogen and R 14a is a hydroxy group.
(Item 17)
The curable resin composition according to any one of the above items, wherein the crosslinking agent is a glycoluril compound and / or a condensate thereof.
(Item 18)
The cross-linking agent
Figure JPOXMLDOC01-appb-C000020

The curable resin composition according to any one of the above items.
(Item 19)
The cross-linking agent
Figure JPOXMLDOC01-appb-C000021

The curable resin composition according to any one of the above items.
(Item 20)
The curable resin composition according to any one of the above items, wherein the composition is provided as a solution.
(Item 21)
The curable resin composition according to the above item, wherein the solvent of the solution contains alcohol.
(Item 22)
The curable resin composition according to the above item, wherein the alcohol comprises a primary alcohol.
(Item 23)
The curable resin composition according to the above item, wherein the alcohol comprises ethanol.
(Item 24)
The curable resin composition according to any one of the above items, wherein the alcohol is present in an amount of 10% by weight or more based on the total amount of the solvent.
(Item 25)
The cross-linking agent is a fully or partially alkoxymethylated melamine and / or its condensate, a fully or partially alkoxymethylated guanamine and / or its condensate, a complete or partially alkoxymethylated acetoguanamine and / or its condensate, fully or One selected from the group consisting of partially alkoxymethylated benzoguanamine and / or its condensate, fully or partially alkoxymethylated glycoluril and / or its condensate, and fully or partially alkoxymethylated imidazolidinone and / or its condensate The curable resin composition according to any one of the above items.
(Item 26)
The crosslinking agent is of formula B1:
Figure JPOXMLDOC01-appb-C000022

[Wherein R 1b has 1 to 25 carbon atoms, and is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, and
Figure JPOXMLDOC01-appb-C000023

Selected from the group consisting of disubstituted amines represented by
R 2b to R 7b each independently have 1 to 10 carbon atoms and are selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted alkenyl group. ]
And / or a condensate thereof,
Formula B2:
Figure JPOXMLDOC01-appb-C000024

[R 8b to R 11b are independently selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted alkenyl group having 1 to 10 carbon atoms. ]
And / or a condensate thereof, and Formula B3:
Figure JPOXMLDOC01-appb-C000025

[Wherein R 12b and R 13b are independently selected from the group consisting of 1 to 10 carbon atoms, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkenyl group;
R 14b and R 15b are independently of each other hydrogen or selected from the group consisting of substituted or unsubstituted alkyl groups and substituted or unsubstituted alkenyl groups having 1 to 10 carbon atoms. ]
A curable resin composition according to any one of the above items, wherein the curable resin composition is selected from the group consisting of a compound represented by:
(Item 27)
The curable resin composition according to any one of the above items, wherein the condensate comprises a polymer of the compound represented by formula B1, formula B2, or formula B3.
(Item 28)
The curability of any of the preceding items, wherein the condensate comprises at least one of a dimer, trimer, and higher order polymer of the compound of formula B1, formula B2, or formula B3 Resin composition.
(Item 29)
The curable resin according to any one of the above items, wherein the crosslinking agent has a weight average degree of polymerization of 1.3 to 1.8 for the compound represented by formula B1, formula B2, or formula B3, respectively. Composition.
(Item 30)
R 1b is a substituted or unsubstituted aromatic group, and
Figure JPOXMLDOC01-appb-C000026

R 2b to R 13b are each independently a substituted or unsubstituted alkyl group, and R 14b and R 15b are each independently hydrogen. The curable resin composition of any of the above items.
(Item 31)
The curable resin composition according to any one of the above items, wherein the ratio of the mass of the linear polymer to the mass of the crosslinking agent in the composition is 1: 2 to 1: 0.05.
(Item 32)
The curable resin composition according to any one of the above items, further comprising an acid catalyst.
(Item 33)
The curable resin composition according to any one of the above items, wherein the acid catalyst is a compound selected from Bronsted acid and / or Lewis acid, or a salt thereof, or a solvate thereof.
(Item 34)
The acid catalyst is selected from the group consisting of p-toluenesulfonic acid (PTS), dodecylbenzenesulfonic acid, pyridinium-p-toluenesulfonic acid, and thermal acid generator Sun-Aid SI-100L (Sanshin Chemical Industry Co., Ltd.) The curable resin composition according to any of the above items, which is a compound or a salt thereof, or a solvate thereof.
(Item 35)
The curable resin composition according to any one of the above items, further comprising at least one of a surfactant, a filler, an additive, and a foaming agent.
(Item 36)
The curable resin composition according to any one of the above items, further comprising a surfactant.
(Item 37)
The curable resin composition according to any one of the above items, further comprising a foaming agent.
(Item 38)
The curable resin composition according to any one of the above items, which has a curability that is cured by heating at 150 ° C. for 1 minute.
(Item 39)
A cured resin film obtained by curing the curable resin composition of any of the above items.
(Item 40)
The cured resin film according to the above item, wherein the cured resin film has a transmittance (% T) of 99% or more at 400 nm and b * of 0.1 or less.
(Item 41)
The cured resin film according to any one of the above items, having heat resistance of 230 ° C. to 300 ° C.
(Item 42)
The cured resin film according to any one of the above items, which has heat resistance at 230 ° C. to 260 ° C. for 1 to 2 hours.
(Item 43)
The cured resin film according to any one of the above items, which has heat resistance at 230 ° C. for 8 hours or more.
(Item 44)
The cured resin film according to any one of the above items, which has heat resistance at 230 ° C. for 1 to 2 hours.
(Item 45)
An easily peelable cured resin film obtained by curing the curable resin composition of any of the above items on a substrate surface in a film shape.
(Item 46)
The cured resin film according to any one of the above items, which has a peeling force on a soda glass substrate or an alkali-free glass substrate of 0.5 N / mm 2 or less.
(Item 47)
The cured resin film according to any one of the above items, having a peeling force on a soda glass substrate or a non-alkali glass substrate of 0.1 N / mm 2 or less.
(Item 48)
A method for producing a cured resin film from the curable resin composition of any of the above items,
(I) providing the chain polymer with a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group and the crosslinking agent;
(Ii) applying the curable resin composition containing the chain polymer and the crosslinking agent on a substrate to form a curable resin composition coating film;
(Iii) performing a polymerization reaction in the curable resin composition coating film and curing it to form a cured resin film,
Production method.
(Item 49)
(Iv) The method according to any one of the above items, further comprising the step of peeling the cured resin film formed on the substrate from the substrate.
(Item 50)
Any of the above items, wherein the proportion of monomer units having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group in the monomer units constituting the chain polymer is 30 to 100 mol% Production method.
(Item 51)
The cross-linking agent consists of fully or partially alkoxymethylated melamine, fully or partially alkoxymethylated guanamine, fully or partially alkoxymethylated acetoguanamine, or fully or partially alkoxymethylated benzoguanamine, and fully or partially alkoxymethylated glycoluril. The production method of any of the above items, which is selected from the group.
(Item 52)
The method according to any one of the above items, wherein the ratio of the mass of the linear polymer to the mass of the crosslinking agent in the composition is 1: 2 to 1: 0.05.
(Item 53) A composition for producing a circuit by a photolithography method, comprising the curable resin composition or cured resin film of any of the above items.
(Item 54) A composition for producing a sheet-like flexible electrical / electronic circuit component or a flexible display device, comprising the curable resin composition or cured resin film of any of the above items.
(Item 55) Used for synthetic resins, pellets, films, plates, fibers, tubes, rubber, elastomers, etc., including curable resin compositions or cured resin films of any of the above items, and motorcycles (bicycles, motorcycles, etc.) Cars, airplanes, trains, ships, rockets, spacecraft, transportation, leisure, furniture (eg, tables, chairs, desks, shelves, etc.), bedding (eg, beds, hammocks, etc.), clothes, protective clothing, sports equipment, Bathtub, kitchen, tableware, cooking utensils, containers and packaging materials (food containers, cosmetic containers, cargo containers, trash cans, etc.), architecture (buildings, roads, building parts, etc.), agricultural films, industrial films, water and sewage systems , Paints, cosmetics, electrical industry and electronics industry (electric appliances, computer parts, printed circuit boards, insulators, conductors, wiring coating materials, power generation elements, Car, microphone, noise canceller, transducer, etc.), optical communication cable, medical materials and instruments (catheter, guide wire, artificial blood vessel, artificial muscle, artificial organ, dialysis membrane, endoscope, etc.), small pump, actuator, robot material (Sensors used in industrial robots, etc.), energy generators, and compositions for producing plants (solar power, wind power, etc.).
(Item 56) A composition for producing an electronic material, a medical material, a health care material, a life science material, or a robot material, comprising the curable resin composition or cured resin film of any of the above items.
(Item 57) A composition for producing a material such as a catheter, a guide wire, a pharmaceutical container, or a tube, comprising the curable resin composition or cured resin film of any of the above items.
(Item 58) An automobile part (body panel, bumper band, rocker panel, side molding, engine part, driving part, conduction part, steering part, etc.) containing the curable resin composition or cured resin film of any of the above items Stabilizer parts, suspension / brake device parts, brake parts, shaft parts, pipes, tanks, wheels, seats, seat belts, etc.).
(Item 59) A composition for producing an anti-vibration material for automobiles, a paint for automobiles, and a synthetic resin for automobiles, comprising the curable resin composition or cured resin film of any of the above items.
(Item 60) Use of the curable resin composition or cured resin film of any of the above items for the production of a circuit by a photolithography method.
(Item 61) Use of the curable resin composition or cured resin film of any of the above items for the production of a sheet-like flexible electrical / electronic circuit component or a flexible display device.
(Item 62) Used for synthetic resins, pellets, films, plates, fibers, tubes, rubber, elastomers, etc., motorcycles (bicycles, motorcycles, etc.), automobiles, airplanes, trains, ships, rockets, spacecrafts, transportation, leisure, Furniture (eg, table, chair, desk, shelf, etc.), bedding (eg, bed, hammock, etc.), clothing, protective clothing, sports equipment, bathtub, kitchen, tableware, cooking utensils, containers and packaging materials (food containers, Cosmetic containers, freight containers, waste bins, etc.), architecture (buildings, roads, building parts, etc.), agricultural films, industrial films, water and sewage, paints, cosmetics, electrical industry and electronics industry (electric appliances, computers) Components, printed circuit boards, insulators, conductors, wiring coating materials, power generation elements, speakers, microphones, noise cancellers, transducers Etc.), optical communication cables, medical materials and instruments (catheters, guide wires, artificial blood vessels, artificial muscles, artificial organs, dialysis membranes, endoscopes, etc.), small pumps, actuators, robot materials (industrial robots, etc.) Sensor), energy generator and plant (solar power generation, wind power generation, etc.), the use of the curable resin composition or cured resin film of any of the above items.
(Item 63) Use of the curable resin composition or cured resin film of any of the above items for the production of an electronic material, a medical material, a health care material, a life science material, or a robot material.
(Item 64) Use of the curable resin composition or cured resin film of any of the above items for the production of materials such as catheters, guide wires, pharmaceutical containers, or tubes.
(Item 65) Automobile parts (body panels, bumper bands, rocker panels, side moldings, engine parts, drive parts, transmission parts, steering parts, stabilizer parts, suspension / brake parts, brake parts, shaft parts, pipes, Use of the curable resin composition or cured resin film of any of the above items for the production of tanks, wheels, seats, seat belts, etc.).
(Item 66) Use of the curable resin composition or cured resin film of any of the above items for the production of an anti-vibration material for automobiles, paints for automobiles, and synthetic resins for automobiles.
(Item 67) A method for producing a circuit by a photolithography method, comprising a step of forming a curable resin composition or a cured resin film of any of the above items by causing a polymerization reaction.
(Item 68) A method for producing a sheet-like flexible electrical / electronic circuit component or a flexible display device, wherein a curable resin composition or a cured resin film according to any of the above items is obtained by performing a polymerization reaction. A method comprising the step of forming.
(Item 69) Used for synthetic resins, pellets, films, plates, fibers, tubes, rubber, elastomers, etc., motorcycles (bicycles, motorcycles, etc.), automobiles, airplanes, trains, ships, rockets, spacecrafts, transportation, leisure, Furniture (eg, table, chair, desk, shelf, etc.), bedding (eg, bed, hammock, etc.), clothing, protective clothing, sports equipment, bathtub, kitchen, tableware, cooking utensils, containers and packaging materials (food containers, Cosmetic containers, freight containers, waste bins, etc.), architecture (buildings, roads, building parts, etc.), agricultural films, industrial films, water and sewage, paints, cosmetics, electrical industry and electronics industry (electric appliances, computers) Components, printed circuit boards, insulators, conductors, wiring coating materials, power generation elements, speakers, microphones, noise cancellers, transducers Etc.), optical communication cables, medical materials and instruments (catheters, guide wires, artificial blood vessels, artificial muscles, artificial organs, dialysis membranes, endoscopes, etc.), small pumps, actuators, robot materials (industrial robots, etc.) Sensor), energy generation device, and plant (solar power generation, wind power generation, etc.), wherein a curable resin composition or a cured resin film of any of the above items is obtained by performing a polymerization reaction. A method comprising the step of forming.
(Item 70) A method for producing an electronic material, a medical material, a health care material, a life science material, or a robot material, wherein the curable resin composition or cured resin according to any one of the above items is caused by performing a polymerization reaction. Forming a film.
(Item 71) A method for producing a material such as a catheter, a guide wire, a pharmaceutical container, or a tube, and forming a curable resin composition or a cured resin film according to any of the above items by causing a polymerization reaction. A method comprising the steps of:
(Item 72) Automobile parts (body panels, bumper belts, rocker panels, side moldings, engine parts, drive parts, transmission parts, steering parts, stabilizer parts, suspension / brake parts, brake parts, shaft parts, pipes, etc. Tanks, wheels, seats, seat belts, etc.), which comprises a step of forming a curable resin composition or a cured resin film of any of the above items by performing a polymerization reaction.
(Item 73) A method for producing a vibration isolator for automobiles, a paint for automobiles, and a synthetic resin for automobiles, wherein a curable resin composition or a cured resin film of any of the above items is formed by performing a polymerization reaction. A method comprising the steps of:
 本発明により、良好な性質を有する硬化樹脂膜を作製するための、特定のポリマーおよび架橋剤を含む硬化性樹脂組成物が開発された。この硬化性樹脂組成物を加熱処理することにより、耐熱性且つ易剥離性であり、さらに他の良好な性質(透過性、及び高速硬化性など)を有する、硬化樹脂膜の形成が達成された。 According to the present invention, a curable resin composition containing a specific polymer and a crosslinking agent has been developed to produce a cured resin film having good properties. By heat-treating this curable resin composition, formation of a cured resin film that is heat-resistant and easily peelable and has other good properties (such as permeability and high-speed curability) was achieved. .
 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。本明細書に記載される化合物名は、ChemDraw Professionalなどのソフトウェアに従って命名され得る。特定の例においては、一般名が使用され得、この一般名は、当業者によって一般的に理解されるのと同じ意味を有する。本明細書に示された化合物名は、必ずしもIUPAC命名法に従うものではない。 Hereinafter, the present invention will be described while showing the best mode. Throughout this specification, it should be understood that the singular forms also include the plural concept unless specifically stated otherwise. Thus, it should be understood that singular articles (eg, “a”, “an”, “the”, etc. in the case of English) also include the plural concept unless otherwise stated. In addition, it is to be understood that the terms used in the present specification are used in the meaning normally used in the art unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control. The compound names described herein can be named according to software such as ChemDraw Professional. In certain instances, a generic name may be used, which has the same meaning as commonly understood by one of ordinary skill in the art. The compound names given herein do not necessarily follow IUPAC nomenclature.
 〔1〕用語の定義 [1] Definition of terms
 本明細書において、「耐熱性」とは、硬化性樹脂組成物を硬化させて得られる膜について、150℃までの加熱に耐え、好ましくは230℃の加熱に耐え、さらに好ましくは300℃の加熱に耐えることができ、実質的に分解その他の劣化を起こさないことをいう。なお、230℃という温度は、フォトリソグラフィ法による電子回路の作製において、焼成温度として用いるのに十分な高温である。さらに300℃という温度は、より過酷な条件における電子回路の作製において、またより薄い膜を形成するために必要となる焼成温度として十分な高温である。 In this specification, “heat resistance” means that a film obtained by curing a curable resin composition can withstand heating up to 150 ° C., preferably withstands heating at 230 ° C., more preferably heating at 300 ° C. It means that it can withstand and substantially does not cause degradation or other deterioration. Note that the temperature of 230 ° C. is high enough to be used as a baking temperature in the manufacture of an electronic circuit by a photolithography method. Furthermore, the temperature of 300 ° C. is a sufficiently high firing temperature necessary for producing electronic circuits under more severe conditions and for forming a thinner film.
 本明細書において、「易剥離膜」とは、基板、特にガラス基板への塗布・硬化により形成された膜が、基板から膜を破損することなしに(即ち無理なく)容易に剥がせるものであることをいい、「易剥離性」とはそのような膜の性質をいう。ガラス基板としては、例えば、ソーダガラス製の基板、無アルカリガラス製の基板等、適宜のガラス基板が挙げられる。ソーダガラス製の基板は特に好ましい一例である。 In this specification, an “easy release film” is a film that is formed by applying and curing a substrate, particularly a glass substrate, and can be easily peeled off without damaging the film (ie, without unreasonableness). Some say, "easy peelability" refers to the properties of such a film. Examples of the glass substrate include appropriate glass substrates such as a soda glass substrate and a non-alkali glass substrate. A soda glass substrate is a particularly preferred example.
 本明細書において、「易剥離耐熱性」とは、上記「耐熱性」と「易剥離性」を併せ持った性質をいう。特に、ガラス基板への塗布・加熱処理により形成された硬化樹脂膜において、プリベーク(例えば、100℃で2分間)後の剥離力と、追加加熱(例えば、230℃で1時間)後の剥離力とを比較すると、追加加熱前後の剥離力の増加が約500%以下(すなわち、加熱前の剥離力の約5倍以下)であることをいう。 In this specification, “easy peeling heat resistance” means a property having both the above “heat resistance” and “easy peeling property”. In particular, in a cured resin film formed by applying and heating to a glass substrate, the peel force after pre-baking (for example, 100 ° C. for 2 minutes) and the peel force after additional heating (for example, 230 ° C. for 1 hour) And the increase in peel force before and after additional heating is about 500% or less (that is, about 5 times or less of the peel force before heating).
 本明細書において、「高速硬化性」とは、硬化性樹脂組成物が基板上に塗布され、加熱されて硬化する際に、短い加熱時間で硬化される組成物の性質をいい、本明細書では、150℃以下で1分以内の加熱硬化によって形成された膜が易剥離性を有すれば、高速硬化性ありとみなす。 In the present specification, “fast curing” refers to the property of a composition that is cured in a short heating time when the curable resin composition is applied on a substrate and cured by heating. Then, if a film formed by heat curing at 150 ° C. or less for 1 minute or less has easy peelability, it is regarded as having high-speed curability.
 本明細書において、「スパッタプロセス耐性」とは、スパッタプロセスの主な用途(例えば、透明電極、ハードコート、光熱制御、配線、反射防止フィルム、透明バリア膜、光触媒、装飾など)に使用され得るか、又はこの用途に対する耐性を有するという性質である。硬化性樹脂組成物を基板上に塗布し、加熱硬化して(例えば、150℃/15分)硬化樹脂膜を形成後、その膜の上にオーバーコート材(OC材)として光硬化性レジストを塗布し、プリベーク(例えば、90℃/100秒)し、露光(例えば、20mW、100mJ)し、さらにポストベーク(例えば、230℃/30分)し、ITOスパッタプロセスを行った後の硬化樹脂膜が良好な剥離性を有することをいう。ITOスパッタプロセスは当該分野で公知のスパッタ法によってITO(In-SnO(酸化インジウムスズ)膜を形成する方法であり、当該分野において公知のITOスパッタプロセスが本発明の硬化樹脂膜に対して実施され得る。ITOスパッタプロセスの一例としては、硬化樹脂膜を減圧環境に一定時間静置(例えば、0.5Pa、3時間)し、硬化樹脂膜に対してArを導入(例えば50sccm)し、Oを導入(例えば50sccm)し、加熱下(例えば90℃)でスパッタリング(例えば圧力:0.67Pa,DCパワー:110W)を行う。各工程はITOの組成やITOの膜厚等により変更されうる。 In this specification, “sputtering process resistance” can be used for the main application of the sputtering process (for example, transparent electrode, hard coat, photothermal control, wiring, antireflection film, transparent barrier film, photocatalyst, decoration, etc.). Or having the resistance to this application. A curable resin composition is applied onto a substrate, heated and cured (for example, 150 ° C./15 minutes) to form a cured resin film, and then a photocurable resist is applied as an overcoat material (OC material) on the film. The cured resin film after being applied, pre-baked (for example, 90 ° C./100 seconds), exposed (for example, 20 mW, 100 mJ), post-baked (for example, 230 ° C./30 minutes), and subjected to an ITO sputtering process Means having good peelability. The ITO sputtering process is a method of forming an ITO (In 2 O 3 —SnO 2 (indium tin oxide) film) by a sputtering method known in the art. The ITO sputtering process known in the art is applied to the cured resin film of the present invention. As an example of the ITO sputtering process, the cured resin film is allowed to stand in a reduced pressure environment for a certain time (for example, 0.5 Pa, 3 hours), and Ar is introduced into the cured resin film (for example, 50 sccm). Then, O 2 is introduced (for example, 50 sccm), and sputtering (for example, pressure: 0.67 Pa, DC power: 110 W) is performed under heating (for example, 90 ° C.) Each process depends on the ITO composition, the ITO film thickness, and the like. Can be changed.
 本明細書において、「保存安定性」とは、溶液として形成した硬化性樹脂組成物の保存性であり、特に限定しない限り、通常の試験(20℃で9カ月又は12カ月保存)及び加速試験(50℃で2週間保存)の後に、保存前と比べて溶液に視覚的に白濁・固化などがなく、また溶液の性質(粘度、又はN.V.など)、成膜時の性質(剥離力、又は透過率など)に大きな変化がないことをいう。「保存安定性」は、「ポットライフ」としても記載され得る。 In the present specification, “storage stability” is storage stability of the curable resin composition formed as a solution, and unless otherwise limited, a normal test (storage at 20 ° C. for 9 months or 12 months) and an accelerated test After storage (stored at 50 ° C. for 2 weeks), the solution has no visual turbidity or solidification compared to before storage, and the properties of the solution (viscosity, NV, etc.) and properties at the time of film formation (peeling) Force, transmittance, etc.). “Storage stability” can also be described as “pot life”.
 本明細書において、「硬化樹脂膜」についてその厚み(「膜厚」とも称される)は限定されない。回路作製のためのベースフィルムとして使用する場合に好ましい厚みは200~400nm、例えば約300nmであるが、これは、電子部品とする場合における現在の薄膜化の要請に対応したものであり、硬化樹脂膜自体の性能はこの厚み範囲に限定されるものでないから、硬化樹脂膜の厚みは、任意である。本明細書において、「硬化樹脂薄膜」は、「硬化樹脂膜」と同義に用いられる。 In this specification, the thickness (also referred to as “film thickness”) of the “cured resin film” is not limited. When used as a base film for circuit fabrication, a preferred thickness is 200 to 400 nm, for example, about 300 nm. This is in response to the current demand for thin film in the case of electronic parts, and is a cured resin. Since the performance of the film itself is not limited to this thickness range, the thickness of the cured resin film is arbitrary. In this specification, “cured resin film” is used synonymously with “cured resin film”.
 本明細書において、鎖状ポリマーにおける「側鎖」の語は、主鎖から分枝した構造部分をいい、「主鎖」とは、ポリマーの構造中における反復するモノマー単位の一次元方向に連結している原子よりなる鎖をいう。従って、例えばポリマーが(メタ)アクリレートの重合体である場合、各モノマーにおいてエステル結合の形成に与っている部分である「-COO-」は、「側鎖」の一部に含まれる。なお、「(メタ)アクリレート」の表記は、アクリレート及びメタクリレートを区別なく示す。同様に、「(メタ)アクリル」の表記は、アクリル及びメタクリルを区別なく示し、「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸を区別なく示す。 In this specification, the term “side chain” in a chain polymer refers to a structural portion branched from the main chain, and the “main chain” is linked in a one-dimensional direction to repeating monomer units in the polymer structure. A chain of atoms that are attached. Therefore, for example, when the polymer is a polymer of (meth) acrylate, “—COO—”, which is a portion that contributes to the formation of an ester bond in each monomer, is included in a part of the “side chain”. The notation “(meth) acrylate” indicates acrylate and methacrylate without distinction. Similarly, the notation “(meth) acryl” indicates acrylic and methacrylic without distinction, and “(meth) acrylic acid” indicates acrylic acid and methacrylic acid without distinction.
 本明細書において「アルキル基」とは、メタン、エタン、プロパンのような脂肪族炭化水素(アルカン)から水素原子が一つ失われて生ずる1価の基をいい、一般にC2n+1-で表される(ここで、nは正の整数である)。アルキルは、直鎖又は分枝鎖であり得る。炭素原子数1~4のアルキル(C1~4アルキル)基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。炭素原子数1~6のアルキル(C1~6アルキル)基としては、例えば、炭素原子数1~4のアルキル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、イソアミル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。炭素原子数1~10のアルキル(C1~10アルキル)基としては、例えば、炭素原子数1~6のアルキル基、n-オクチル基、n-ノニル基、n-デカニル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In the present specification, the “alkyl group” refers to a monovalent group formed by losing one hydrogen atom from an aliphatic hydrocarbon (alkane) such as methane, ethane, or propane, and is generally represented by C n H 2n + 1 —. Where n is a positive integer. Alkyl can be linear or branched. Examples of the alkyl group having 1 to 4 carbon atoms (C 1-4 alkyl) include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec- Although a butyl group etc. are mentioned, this invention is not limited only to this illustration. Examples of the alkyl group having 1 to 6 carbon atoms (C 1-6 alkyl) include, for example, an alkyl group having 1 to 4 carbon atoms, a tert-butyl group, a sec-butyl group, an n-pentyl group, an isoamyl group, n -Hexyl group, isohexyl group, cyclohexyl group and the like are mentioned, but the present invention is not limited only to such examples. Examples of the alkyl group having 1 to 10 carbon atoms (C 1-10 alkyl) include an alkyl group having 1 to 6 carbon atoms, an n-octyl group, an n-nonyl group, and an n-decanyl group. The present invention is not limited to such examples.
 本明細書において「アルケニル基」とは、エテン、プロペン、ブテンのような二重結合を少なくとも一つ含有する脂肪族炭化水素(アルケン)から水素原子が一つ失われて生ずる1価の基をいい、一般にC2m-1で表される(ここで、mは2以上の整数である)。アルケニル基は、直鎖又は分枝鎖であり得る。炭素原子数2~6のアルケニル基としては、例えば、エテニル基、1-プロペニル基、2-プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。炭素原子数2~10のアルケニル基としては、例えば、炭素原子数2~6のアルケニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 As used herein, the term “alkenyl group” refers to a monovalent group formed by loss of one hydrogen atom from an aliphatic hydrocarbon (alkene) containing at least one double bond such as ethene, propene, or butene. In general, it is represented by C m H 2m−1 (where m is an integer of 2 or more). An alkenyl group can be straight or branched. Examples of the alkenyl group having 2 to 6 carbon atoms include an ethenyl group, a 1-propenyl group, a 2-propenyl group, a butenyl group, a pentenyl group, and a hexenyl group. However, the present invention is limited only to such examples. Is not to be done. Examples of the alkenyl group having 2 to 10 carbon atoms include an alkenyl group having 2 to 6 carbon atoms, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, and the like, but the present invention is limited only to such examples. Is not to be done.
 本明細書において「アルキレン基」とは、メタン、エタン、プロパンのような脂肪族炭化水素(アルカン)から水素原子が二つ失われて生ずる2価の基をいい、一般に-(C2m)-で表される(ここで、mは正の整数である)。アルキレン基は、直鎖又は分枝鎖であり得る。炭素原子数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、tert-ブチレン基、n-ペンテン基、n-ヘキシレン基、イソヘキシレン基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。炭素原子数1~6のアルキレン基が好ましく、炭素原子数1~4のアルキレン基がより好ましく、メチレン基及びエチレン基が更に好ましく、エチレン基が更に一層好ましい。 In the present specification, the “alkylene group” refers to a divalent group formed by losing two hydrogen atoms from an aliphatic hydrocarbon (alkane) such as methane, ethane, or propane, and is generally — (C m H 2m )-(Where m is a positive integer). The alkylene group can be linear or branched. Examples of the alkylene group having 1 to 10 carbon atoms include methylene, ethylene, n-propylene, isopropylene, n-butylene, isobutylene, tert-butylene, n-pentene, and n-hexylene. Group, isohexylene group and the like are mentioned, but the present invention is not limited only to such illustration. An alkylene group having 1 to 6 carbon atoms is preferable, an alkylene group having 1 to 4 carbon atoms is more preferable, a methylene group and an ethylene group are further preferable, and an ethylene group is still more preferable.
 本明細書において「アルケニレン基」とは、エテニレン、プロペニレン、ブテニレンのような、二重結合を少なくとも一つ含有する脂肪族炭化水素(アルケン)から水素原子が二つ失われて生ずる2価の基をいい、一般に-(C2m-2)-で表される(ここで、mは2以上の整数である)。アルケニレン基は、直鎖又は分枝鎖であり得る。炭素原子数2~10のアルケニレン基としては、例えば、エテニレン基、n-プロペニレン基、イソプロペニレン基、n-ブテニレン基、イソブテニレン基、n-ペンテニレン基、n-ヘキセニレン基、イソヘキセニレン基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。炭素原子数2~6のアルケニレン基が好ましく、炭素原子数2~4のアルケニレン基がより好ましく、エテニレン基及びn-プロペニレン基が更に好ましく、エテニレン基が更に一層好ましい。 In the present specification, the “alkenylene group” is a divalent group formed by losing two hydrogen atoms from an aliphatic hydrocarbon (alkene) containing at least one double bond, such as ethenylene, propenylene, and butenylene. And is generally represented by- (C m H 2m-2 )-(where m is an integer of 2 or more). An alkenylene group can be straight or branched. Examples of the alkenylene group having 2 to 10 carbon atoms include ethenylene group, n-propenylene group, isopropenylene group, n-butenylene group, isobutenylene group, n-pentenylene group, n-hexenylene group, isohexenylene group and the like. However, the present invention is not limited to such examples. An alkenylene group having 2 to 6 carbon atoms is preferable, an alkenylene group having 2 to 4 carbon atoms is more preferable, an ethenylene group and an n-propenylene group are further preferable, and an ethenylene group is still more preferable.
 本明細書において「アルコキシ基」とは、アルコール類のヒドロキシ基の水素原子が失われて生ずる1価の基をいい、一般にC2n+1O-で表される(ここで、nは1以上の整数である)。炭素原子数1~6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、sec-ブチルオキシ基、n-ペンチルオキシ基、イソアミルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In the present specification, the “alkoxy group” refers to a monovalent group generated by loss of a hydrogen atom of a hydroxy group of an alcohol, and is generally represented by C n H 2n + 1 O— (where n is 1 or more). Is an integer). Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, isobutyloxy group, tert-butyloxy group, sec-butyloxy group, n -Pentyloxy group, isoamyloxy group, n-hexyloxy group, isohexyloxy group and the like can be mentioned, but the present invention is not limited to such examples.
 本明細書において「ハロアルキル基」とは、上記アルキル基上の1個若しくは複数個の水素原子がハロゲン原子で置換されているアルキル基をいう。また、「ペルハロアルキル」は、上記アルキル基上の全ての水素原子がハロゲン原子で置換されているアルキル基をいう。炭素数1~6のハロアルキル基としては、例えば、トリフルオロメチル基、トリフルオロエチル基、ペルフルオロエチル基、トリフルオロn-プロピル基、ペルフルオロn-プロピル基、トリフルオロイソプロピル基、ペルフルオロイソプロピル基、トリフルオロn-ブチル基、ペルフルオロn-ブチル基、トリフルオロイソブチル基、ペルフルオロイソブチル基、トリフルオロtert-ブチル基、ペルフルオロtert-ブチル基、トリフルオロn-ペンチル基、ペルフルオロn-ペンチル基、トリフルオロn-ヘキシル基、ペルフルオロn-ヘキシル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In the present specification, the “haloalkyl group” refers to an alkyl group in which one or more hydrogen atoms on the alkyl group are substituted with halogen atoms. “Perhaloalkyl” refers to an alkyl group in which all hydrogen atoms on the alkyl group are substituted with halogen atoms. Examples of the haloalkyl group having 1 to 6 carbon atoms include trifluoromethyl group, trifluoroethyl group, perfluoroethyl group, trifluoro n-propyl group, perfluoro n-propyl group, trifluoroisopropyl group, perfluoroisopropyl group, Fluoro n-butyl group, perfluoro n-butyl group, trifluoroisobutyl group, perfluoroisobutyl group, trifluoro tert-butyl group, perfluoro tert-butyl group, trifluoro n-pentyl group, perfluoro n-pentyl group, trifluoro n Examples include a -hexyl group and a perfluoro n-hexyl group, but the present invention is not limited to such examples.
 本明細書において「シクロアルキル基」とは、単環又は多環式飽和炭化水素基を意味し、架橋された構造のものも含まれる。例えば、「C3-12シクロアルキル基」とは炭素原子数が3~12の環状アルキル基を意味する。具体例として、「C6-12シクロアルキル基」の場合には、シクロへキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基、イソボルニル基等が挙げられる。「C3-12シクロアルキル基」の場合には、シクロプロピル基、シクロブチル基、シクロペンチル基、C6-12シクロアルキル基等が挙げられる。好ましくは、「C6-12シクロアルキル基」が挙げられる。 In the present specification, the “cycloalkyl group” means a monocyclic or polycyclic saturated hydrocarbon group, and includes a bridged structure. For example, “C 3-12 cycloalkyl group” means a cyclic alkyl group having 3 to 12 carbon atoms. Specific examples of the “C 6-12 cycloalkyl group” include a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, an isobornyl group, and the like. In the case of “C 3-12 cycloalkyl group”, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a C 6-12 cycloalkyl group and the like can be mentioned. Preferably, “C 6-12 cycloalkyl group” is used.
 本明細書において「シクロアルケニル基」とは、二重結合を含む単環又は多環式不飽和炭化水素基を意味し、架橋された構造のものも含まれる。上記「シクロアルキル基」の炭素間結合の1つ以上が二重結合になったものが挙げられる。例えば、「C3-12シクロアルケニル基」とは炭素原子数が3~12の環状アルケニル基を意味する。具体例として、「C6-12シクロアルケニル基」の場合には、1-シクロへキセニル基、2-シクロへキセニル基、3-シクロへキセニル基、シクロヘプテニル基、シクロオクテニル基、シクロノネニル基等が挙げられる。「C3-12シクロアルキル基」の場合には、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、C6-12シクロアルケニル基等が挙げられる。好ましくは、「C6-12シクロアルケニル基」が挙げられる。 In the present specification, the “cycloalkenyl group” means a monocyclic or polycyclic unsaturated hydrocarbon group containing a double bond, and includes a bridged structure. Examples include one in which one or more carbon-carbon bonds of the “cycloalkyl group” are double bonds. For example, “C 3-12 cycloalkenyl group” means a cyclic alkenyl group having 3 to 12 carbon atoms. Specific examples of the “C 6-12 cycloalkenyl group” include 1-cyclohexenyl group, 2-cyclohexenyl group, 3-cyclohexenyl group, cycloheptenyl group, cyclooctenyl group, cyclononenyl group and the like. It is done. In the case of “C 3-12 cycloalkyl group”, a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a C 6-12 cycloalkenyl group and the like can be mentioned. Preferably, “C 6-12 cycloalkenyl group” is used.
 本明細書において「炭化水素基」とは、炭素と水素のみから構成される化合物から水素原子が一つ失われて生ずる1価の基をいう。炭化水素基はまた、上記「アルキル基」、「アルケニル基」、「アルキレン基」、「アルケニレン基」、「シクロアルキル基」、及び「シクロアルケニル基」、並びに下記「芳香族基」、及び「脂環式基」などを包含する。炭化水素基は飽和又は不飽和であり得る。炭化水素基は、炭素の結合の仕方によって、鎖式炭化水素基と環式炭化水素基に分類され、環式炭化水素基は更に脂環式炭化水素基と芳香族炭化水素基に分けられる。飽和又は不飽和の炭化水素基の例としては、メチル、エチル、n-プロピル、イソプロピル、ブチル、ペンチル、ヘキシル、シクロヘキシル、ジシクロペンタジエニル、デカリニル、アダマンチル、ブテニル、ヘキセニル、シクロヘキセニル、デシルその他、側鎖の炭素原子数の限度範囲内で種々の直鎖状、分枝鎖状、単環状、縮合環状の基が挙げられるが、これらに限定されない。それらの各基は、末端に位置していない場合には、他の基との結合関係に応じて2価以上の基であってよい。 In the present specification, the “hydrocarbon group” refers to a monovalent group produced by losing one hydrogen atom from a compound composed only of carbon and hydrogen. The hydrocarbon group also includes the above “alkyl group”, “alkenyl group”, “alkylene group”, “alkenylene group”, “cycloalkyl group”, and “cycloalkenyl group”, as well as the following “aromatic group” and “ An alicyclic group "and the like. The hydrocarbon group can be saturated or unsaturated. The hydrocarbon group is classified into a chain hydrocarbon group and a cyclic hydrocarbon group depending on how carbon is bonded, and the cyclic hydrocarbon group is further divided into an alicyclic hydrocarbon group and an aromatic hydrocarbon group. Examples of saturated or unsaturated hydrocarbon groups include methyl, ethyl, n-propyl, isopropyl, butyl, pentyl, hexyl, cyclohexyl, dicyclopentadienyl, decalinyl, adamantyl, butenyl, hexenyl, cyclohexenyl, decyl and others Examples include various linear, branched, monocyclic, and condensed cyclic groups within the limit of the number of carbon atoms in the side chain, but are not limited thereto. When each of these groups is not located at the terminal, it may be a divalent or higher group depending on the bonding relationship with other groups.
 本明細書において「芳香族基」とは、芳香族炭化水素の環に結合する水素原子が1個離脱して生ずる基をいう。例えば、ベンゼンからはフェニル基(C-)、トルエンからはトリル基(CH-)、キシレンからはキシリル基((CH-)、ナフタレンからはナフチル基(C10-)が誘導される。また、本明細書において「ヘテロ芳香族基」とは、単環式若しくは多環式のヘテロ原子含有芳香族基を意味し、該基は、窒素原子、硫黄原子及び酸素原子から選択される同種又は異種のヘテロ原子を1個以上(例えば1~4個)含む。上記「芳香族基」はまた「ヘテロ芳香族基」を包含する。芳香族基の例としては、フェニル、ビフェニリル、ナフチル等のような炭素環式芳香族基(単環基及び縮合環基)、及びピリジル、ピリミジニル、キノリニル、トリアジニル等のヘテロ芳香族基(単環基及び縮合環基)が挙げられ、各芳香族基について、末端に位置していない場合には、他の基との結合関係に応じて2価以上の基であってよい。なお本明細書において、芳香環部分と共に環を形成する飽和又は不飽和の炭化水素鎖部分とを有する基(例えば、テトラヒドロナフチル又はジヒドロナフチル)は、芳香族基と飽和又は不飽和の炭化水素基との結合と捉える。 In the present specification, the “aromatic group” refers to a group formed by leaving one hydrogen atom bonded to an aromatic hydrocarbon ring. For example, from benzene, phenyl group (C 6 H 5 —), from toluene, tolyl group (CH 3 C 6 H 4 —), from xylene, xylyl group ((CH 3 ) 2 C 6 H 3 —), from naphthalene Is derived from a naphthyl group (C 10 H 8 —). In the present specification, the “heteroaromatic group” means a monocyclic or polycyclic heteroatom-containing aromatic group, and the group is the same kind selected from a nitrogen atom, a sulfur atom and an oxygen atom. Alternatively, it contains one or more (for example, 1 to 4) heterogeneous heteroatoms. The above “aromatic group” also includes “heteroaromatic group”. Examples of aromatic groups include carbocyclic aromatic groups (monocyclic and condensed ring groups) such as phenyl, biphenylyl, naphthyl, and heteroaromatic groups (monocyclic) such as pyridyl, pyrimidinyl, quinolinyl, triazinyl, etc. Group and a condensed ring group), and when each aromatic group is not located at the terminal, it may be a divalent or higher group depending on the bonding relationship with other groups. In the present specification, a group having a saturated or unsaturated hydrocarbon chain part that forms a ring together with an aromatic ring part (for example, tetrahydronaphthyl or dihydronaphthyl) is an aromatic group and a saturated or unsaturated hydrocarbon group. Think of it as a combination.
 本明細書において「脂環式(基)」とは、炭素と水素のみから構成された芳香族性を持たない環に結合する水素原子が1個離脱して生ずる部分(又は基)をいう。脂環式基はまた、上記「シクロアルキル基」及び「シクロアルケニル基」を包含する。脂環式基は飽和又は不飽和であり得る。飽和又は不飽和の脂環式基の例としては、シクロヘキシル、ジシクロペンタジエニル、デカリニル、アダマンチル、シクロヘキセニル、その他、側鎖の炭素原子数の限度範囲内で種々の単環状、縮合環状の基が挙げられるが、これらに限定されない。それらの各基は、末端に位置していない場合には、他の基との結合関係に応じて2価以上の基であってよい。 As used herein, “alicyclic (group)” refers to a moiety (or group) formed by the removal of one hydrogen atom bonded to a non-aromatic ring composed only of carbon and hydrogen. The alicyclic group also includes the above “cycloalkyl group” and “cycloalkenyl group”. The alicyclic group can be saturated or unsaturated. Examples of saturated or unsaturated alicyclic groups include cyclohexyl, dicyclopentadienyl, decalinyl, adamantyl, cyclohexenyl, and various other monocyclic and condensed cyclic groups within the limits of the number of carbon atoms in the side chain. Groups, but not limited to. When each of these groups is not located at the terminal, it may be a divalent or higher group depending on the bonding relationship with other groups.
 通常、用語「置換(されている/された)」は、特定の置換基のラジカルによる、所与の構造における1つ以上の水素ラジカルとの置き換えのことを指す。本明細書において、「置換(されている/された)」を用いて定義される基における置換基の数は、置換可能であれば特に制限はなく、1又は複数である。また、特に指示した場合を除き、各々の基の説明はその基が他の基の一部分又は置換基である場合にも該当する。また、本明細書において、「置換(されている/された)」なる用語を特に明示していない置換基については、「非置換」の置換基を意味する。更に、本明細書において、句「置換又は非置換(の)」は、句「置換されていてもよい」と互換的に使用されることが認識される。 Usually, the term “substituted” is referring to the replacement of one or more hydrogen radicals in a given structure by a radical of a particular substituent. In the present specification, the number of substituents in a group defined using “substituted (has / was)” is not particularly limited as long as substitution is possible, and is one or more. In addition, unless otherwise specified, the description of each group also applies when the group is a part of another group or a substituent. In addition, in the present specification, a substituent that does not clearly indicate the term “substituted (has / is)” means a “non-substituted” substituent. Further, it is recognized herein that the phrase “substituted or unsubstituted” is used interchangeably with the phrase “optionally substituted”.
 「置換アルキル基」、「置換アルケニル基」、「置換シクロアルキル基」、「置換シクロアルケニル基」、「置換炭化水素基」、「置換芳香族基」、「置換ヘテロ芳香族基」、「置換アルキレン基」、「置換アルケニレン基」、及び「置換又は非置換のアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基」を含む本明細書中に記載の基上の置換基の例としては、ハロゲン、ヒドロキシ基、C1~10アルキル基、C1~10アルコキシ基、C2~10アルケニル基、C6-12シクロアルキル基、C6-12シクロアルケニル基、C1~10ハロアルキル基、C2~10ハロアルケニル基、C6~18炭化水素基、C6~18芳香族基、C6~18ヘテロ芳香族基、C6~12芳香族基で置換されたC1~10アルキル基、C6~12炭化水素基で置換されたC1~10アルキル基、C6~12芳香族基で置換されたC2~10アルケニル基、C6~12炭化水素基で置換されたC2~10アルケニル基、-CN、オキソ基(=O)、-O(CHO-、-OC(CHO-、-OCHO-、-O-、エステル基(-COO-又は-O-CO-)、C6~12炭化水素基で置換されたエステル基、C6~12芳香族基で置換されたエステル基、エステル基で置換されたC6~18炭化水素基、エステル基で置換されたC1~10アルキル基、C1~6アルキレン基、C2~6アルケニレン基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。上記置換基の好ましい例としては、ヒドロキシ基、C6~18炭化水素基、C1~10アルキル基、C6~12芳香族基で置換されたC1~10アルキル基、C6~12炭化水素基で置換されたC1~10アルキル基、エステル基で置換されたC6~18炭化水素基、エステル基で置換されたC1~10アルキル基、エステル基(-COO-又は-O-CO-)、C6~12炭化水素基で置換されたエステル基、C6~12芳香族基で置換されたエステル基、C2~10アルケニル基、C6~12芳香族基で置換されたC2~10アルケニル基、C6~12炭化水素基で置換されたC2~10アルケニル基、C1~10アルコキシ基、C6-12シクロアルキル基、C6-12シクロアルケニル基が挙げられ、より具体的な例としては、ベンゾイルオキシ基、フェニル基、シクロヘキシル基、シクロヘキセニル基、アダマンチル基、ヒドロキシ基で置換されたアダマンチル基が挙げられる。 “Substituted alkyl group”, “substituted alkenyl group”, “substituted cycloalkyl group”, “substituted cycloalkenyl group”, “substituted hydrocarbon group”, “substituted aromatic group”, “substituted heteroaromatic group”, “substituted” Substituents on groups described herein including "alkylene groups", "substituted alkenylene groups", and "substituted or unsubstituted alcoholic secondary or tertiary OH-containing groups or phenolic OH-containing groups" Examples of are halogen, hydroxy group, C 1-10 alkyl group, C 1-10 alkoxy group, C 2-10 alkenyl group, C 6-12 cycloalkyl group, C 6-12 cycloalkenyl group, C 1- 10 haloalkyl group, C 2 ~ 10 haloalkenyl group, C 6 ~ 18 hydrocarbon group, C 6 ~ 18 aromatic group, C 6 ~ 18 heteroaromatic group, C 1 substituted with C 6 ~ 12 aromatic group to 10 A Kill group, C 6 ~ 12 C 1 ~ 10 alkyl group substituted with a hydrocarbon group, C 2 ~ 10 alkenyl group substituted with C 6 ~ 12 aromatic group, substituted with C 6 ~ 12 hydrocarbon radicals C 2-10 alkenyl group, —CN, oxo group (═O), —O (CH 2 ) 2 O—, —OC (CH 3 ) 2 O—, —OCH 2 O—, —O—, ester group ( -COO- or -O-CO -), C 6 ~ 12 -substituted ester group with a hydrocarbon group, C 6 ~ 12 aromatic-substituted ester group in group, C 6 ~ 18 carbon substituted with an ester group hydrogen group, C 1 ~ 10 alkyl group substituted with an ester group, C 1 ~ 6 alkylene group, and C 2 ~ 6 alkenylene group, the present invention is not limited only to those exemplified. Preferred examples of the substituent group, hydroxy group, C 6 ~ 18 hydrocarbon group, C 1 ~ 10 alkyl group, C 1 ~ 10 alkyl group substituted with a C 6 ~ 12 aromatic group, C 6 ~ 12 carbon C 1 ~ 10 alkyl group substituted with a hydrogen group, ~ C 6 substituted with an ester group 18 hydrocarbon group, C 1 ~ 10 alkyl group substituted with an ester group, an ester group (-COO- or -O- CO -), substituted with C 6 ~ 12-substituted ester group with a hydrocarbon group, C 6 ~ 12 aromatic-substituted ester group with a group, C 2 ~ 10 alkenyl group, C 6 ~ 12 aromatic group C 2 ~ 10 alkenyl group, C 6 ~ 12 C 2 ~ 10 alkenyl group substituted with a hydrocarbon group, C 1 ~ 10 alkoxy group, C 6-12 cycloalkyl group includes a C 6-12 cycloalkenyl group , With more specific examples Te is benzoyloxy group, a phenyl group, a cyclohexyl group, cyclohexenyl group, adamantyl group, an adamantyl group substituted by a hydroxy group.
 本明細書において、「アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基」は、アルコール性第二級又は第三級ヒドロキシ(OH)基又はフェノール性ヒドロキシ(OH)基を1個又は2個以上含有する基を示す。したがって、「アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基」は、アルコール性第二級又は第三級ヒドロキシ基又はフェノール性ヒドロキシ基そのものも包含する。「置換又は非置換のアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基」における「置換又は非置換」は、アルコール性第二級又は第三級ヒドロキシ(OH)基又はフェノール性ヒドロキシ(OH)基を1個又は2個以上含有する基において該ヒドロキシ基以外の基の部分が置換されているか又は非置換であることを表しているのであって、該ヒドロキシ基が置換されているか又は非置換であることを表すのではない。 In the present specification, “alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group” means an alcoholic secondary or tertiary hydroxy (OH) group or a phenolic hydroxy (OH) group. The group which contains 1 or 2 or more is shown. Therefore, the “alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group” also includes an alcoholic secondary or tertiary hydroxy group or a phenolic hydroxy group itself. “Substituted or unsubstituted” in “substituted or unsubstituted alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group” means alcoholic secondary or tertiary hydroxy (OH) group or phenol This means that a group containing one or more functional hydroxy (OH) groups is substituted or unsubstituted in a group other than the hydroxy group, and the hydroxy group is substituted. Does not indicate that it is present or unsubstituted.
 本明細書において、「溶媒和物」は、特に断らない限り、非共有分子間力により結合した定比又は不定比の量の溶媒を更に含む化合物又はその塩を意味する。溶媒が水の場合、該溶媒和物は水和物である。 In the present specification, unless otherwise specified, “solvate” means a compound or a salt thereof further containing a stoichiometric or non-stoichiometric amount of solvent bonded by non-covalent intermolecular forces. When the solvent is water, the solvate is a hydrate.
 本明細書において、「溶剤」は「溶媒」と同義に用いられる。 In this specification, “solvent” is used synonymously with “solvent”.
 本明細書において、「モノマー」とは、それが2個以上重合してポリマーを生ずる化合物をいう。「モノマー単位」とは、ポリマーを形成する単位となるモノマーを称する。 In this specification, “monomer” refers to a compound that polymerizes two or more to form a polymer. The “monomer unit” refers to a monomer that is a unit that forms a polymer.
 本明細書において、「ポリマー」とは、複数のモノマーが重合することによってできた化合物をいう。本明細書において、「ホモポリマー(単独重合体)」とは、1種のみのモノマーが重合することによってできた化合物であり、「コポリマー(共重合体)」とは、2種もしくは2種超のモノマーが重合することによってできた化合物である。本明細書に記載のポリマーは、ホモポリマー及びコポリマーの両方を含む。ポリマーを構造式にて記載する場合、ホモポリマーは、
 -[モノマー単位A]- (式中、n≧2)
として記載され、
コポリマーは、
 -[モノマー単位A]-[モノマー単位B]- (式中、n≧1、m≧1、但し、n+m≧2)
として記載され、モノマー単位A及びモノマー単位Bは、それぞれ任意のモノマー単位を示し、但し、モノマー単位A及びモノマー単位Bは互いに異なる。本明細書において、ポリマーが鎖状である場合、「鎖状ポリマー」という。本明細書において、「重合体」は「ポリマー」と同義に用いられる。
In the present specification, “polymer” refers to a compound formed by polymerizing a plurality of monomers. In the present specification, “homopolymer” (homopolymer) is a compound formed by polymerization of only one type of monomer, and “copolymer” (copolymer) means two or more types. This is a compound formed by polymerization of the monomer. The polymers described herein include both homopolymers and copolymers. When the polymer is described by a structural formula, the homopolymer is
— [Monomer unit A] n − (where n ≧ 2)
Described as
The copolymer is
-[Monomer unit A] n- [monomer unit B] m- (where n ≧ 1, m ≧ 1, n + m ≧ 2)
The monomer unit A and the monomer unit B each represent an arbitrary monomer unit, provided that the monomer unit A and the monomer unit B are different from each other. In this specification, when a polymer is a chain, it is referred to as a “chain polymer”. In the present specification, “polymer” is used synonymously with “polymer”.
 本明細書において、「架橋剤」とは、同じ又は異なるポリマー間における共有結合性連結を形成し、物理的、化学的性質を変化させる物質のことをいう。 In this specification, “crosslinking agent” refers to a substance that forms a covalent bond between the same or different polymers and changes physical and chemical properties.
 本明細書において、「N.V.」(単位:%)は溶液における加熱残分(Non Volatile Organic Compound)を示し、溶液中の固体濃度と同義である。N.VはJIS K 5601-1-2などの規格に従う当該分野で公知の加熱残分法により測定される。 In the present specification, “N.V.” (unit:%) represents a heating residue in the solution (Non Volatile Organic Compound), and is synonymous with the solid concentration in the solution. N. V is measured by a heat residue method known in the art according to standards such as JIS K 5601-1-2.
 本明細書において「又は」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「若しくは」も同様である。本明細書において「2つの値の範囲内」と明記した場合、その範囲には2つの値自体も含む。したがって、範囲を示す「X~Y」は「X以上、Y以下」を意味する。また、特に注釈のない限り、「重量」と「質量」、「重量%」又は「wt%」と「質量%」はそれぞれ同義語として扱う。「約」との表現は、特に断らない限り、10%の許容度を有し、測定値である場合は、有効数字又は表示されている数字の1桁下の桁を四捨五入して得られる任意の範囲の数値をいう。 In this specification, “or” is used when “at least one or more” of the items listed in the sentence can be adopted. The same applies to “or”. In this specification, when “within the range of two values” is specified, the range includes the two values themselves. Therefore, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise noted, “weight” and “mass”, “wt%” or “wt%” and “mass%” are treated as synonyms. Unless otherwise specified, the expression “about” has a tolerance of 10%, and in the case of a measured value, it is an arbitrary value obtained by rounding off significant digits or one digit below the displayed number. A value in the range of.
 〔2〕好ましい実施形態の説明
 以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。また、本発明の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
[2] Description of Preferred Embodiments Hereinafter, preferred embodiments of the present invention will be described. The embodiments provided below are provided for a better understanding of the present invention, and it is understood that the scope of the present invention should not be limited to the following description. Therefore, it is obvious that those skilled in the art can make appropriate modifications within the scope of the present invention with reference to the description in the present specification. It will also be appreciated that the following embodiments of the invention may be used alone or in combination.
 (2-1)硬化性樹脂組成物
 第一の局面において、本発明は、アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた鎖状ポリマーと、架橋剤とを含んでなる硬化性樹脂組成物であって、
 (a) 該鎖状ポリマーが、式A1:
Figure JPOXMLDOC01-appb-C000027

〔ここに
 R1aは水素、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれ、
 Lは単結合、置換又は非置換アルキレン基、及び置換又は非置換アルケニレン基よりなる群から選ばれ、
 LはO又はNHであり、
 R2a、R3a、及びR4aは、互いに独立して、水素、及び置換又は非置換炭化水素基よりなる群から選ばれ、ただしR2a、R3a、及びR4aのうち少なくとも1つは、置換又は非置換のアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基であるか、あるいは、R2a、R3a、及びR4aのうちの少なくとも2つが一緒になって、アルコール性第二級又は第三級OH又はフェノール性OHを含有する、置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、置換又は非置換ヘテロ芳香族基、あるいはこれらを含む多環である。〕
で示されるモノマー単位を含んでなるものであり、
 (b)該架橋剤が、トリアジン系化合物及び/又はその縮合体、グリコールウリル系化合物及び/又はその縮合体、並びにイミダゾリジノン系化合物及び/又はその縮合体
よりなる群から選ばれるものである、硬化性樹脂組成物を提供する。
(2-1) Curable resin composition In the first aspect, the present invention provides a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group; A curable resin composition comprising a crosslinking agent,
(A) The chain polymer is represented by the formula A1:
Figure JPOXMLDOC01-appb-C000027

[Wherein R 1a is selected from the group consisting of hydrogen, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkenyl group;
L 1 is selected from the group consisting of a single bond, a substituted or unsubstituted alkylene group, and a substituted or unsubstituted alkenylene group;
L 2 is O or NH;
R 2a , R 3a , and R 4a are independently selected from the group consisting of hydrogen and substituted or unsubstituted hydrocarbon groups, provided that at least one of R 2a , R 3a , and R 4a is A substituted or unsubstituted alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group, or at least two of R 2a , R 3a , and R 4a taken together to form an alcohol A substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, which contains a secondary or tertiary OH or phenolic OH, Or it is a polycycle containing these. ]
Comprising a monomer unit represented by
(B) The crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof. A curable resin composition is provided.
 上記第一の局面において好ましくは、式A1において、LはOである。 Preferably in the first aspect, in formula A1, L 2 is O.
 第二の局面において、本発明は、アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた鎖状ポリマーと、架橋剤とを含んでなる硬化性樹脂組成物であって、該鎖状ポリマーが、式A2:
Figure JPOXMLDOC01-appb-C000028

〔ここに
 R1a、LおよびLは上記に記載のとおりであり、
 R5a~R14aは、互いに独立して、水素、ヒドロキシ基、及び
Figure JPOXMLDOC01-appb-C000029

よりなる群から選ばれ、又は一緒になって環を形成し、ただしR5a~R14a又は該環の置換基のうちの少なくとも1つがヒドロキシ基であり、
 R15aは置換又は非置換アルキル基、置換又は非置換アルケニル基、置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、及び置換又は非置換ヘテロ芳香族基よりなる群から選ばれる。〕
で示されるモノマー単位を含んでなるものであり、
 (b)該架橋剤が、トリアジン系化合物及び/又はその縮合体、グリコールウリル系化合物及び/又はその縮合体、並びにイミダゾリジノン系化合物及び/又はその縮合体
よりなる群から選ばれるものである、硬化性樹脂組成物を提供する。
In a second aspect, the present invention provides a curable resin comprising a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent. A composition, wherein the chain polymer is of formula A2:
Figure JPOXMLDOC01-appb-C000028

[Where R 1a , L 1 and L 2 are as described above,
R 5a to R 14a are independently of each other hydrogen, a hydroxy group, and
Figure JPOXMLDOC01-appb-C000029

Selected from the group consisting of or together form a ring, provided that at least one of R 5a to R 14a or a substituent of the ring is a hydroxy group,
R 15a is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group Selected from the group consisting of ]
Comprising a monomer unit represented by
(B) The crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof. A curable resin composition is provided.
 上記第二の局面において好ましくは、式A2において、LはOである。 In the second aspect described above, preferably, in Formula A2, L 2 is O.
 第三の局面において、より好ましくは、本発明は、アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた鎖状ポリマーと、架橋剤とを含んでなる硬化性樹脂組成物であって、該鎖状ポリマーが、式A2:

〔ここに
 R1aは水素、及び置換又は非置換アルキル基よりなる群から選ばれ、
 Lは置換又は非置換アルキレン基、及び置換又は非置換アルケニレン基よりなる群から選ばれ、
 R5a~R14aは、互いに独立して、水素、ヒドロキシ基、及び
Figure JPOXMLDOC01-appb-C000031

よりなる群から選ばれ、ただしR5a~R14a又は該環の置換基のうちの少なくとも1つがヒドロキシ基であり、
 R15aは置換又は非置換アルキル基、置換又は非置換アルケニル基、置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、及び置換又は非置換ヘテロ芳香族基よりなる群から選ばれる。〕
で示されるモノマー単位を含んでなるものであり、
 (b)該架橋剤が、トリアジン系化合物及び/又はその縮合体、グリコールウリル系化合物及び/又はその縮合体、並びにイミダゾリジノン系化合物及び/又はその縮合体よりなる群から選ばれるものである、硬化性樹脂組成物を提供する。
 上記第三の局面において、更に好ましくは、Lは置換又は非置換アルキレン基であり、最も好ましくは、Lはメチレン基である。
In the third aspect, more preferably, the present invention includes a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent. A curable resin composition having the formula A2:

[Wherein R 1a is selected from the group consisting of hydrogen and a substituted or unsubstituted alkyl group;
L 1 is selected from the group consisting of a substituted or unsubstituted alkylene group and a substituted or unsubstituted alkenylene group,
R 5a to R 14a are independently of each other hydrogen, a hydroxy group, and
Figure JPOXMLDOC01-appb-C000031

Wherein R 5a to R 14a or at least one of the substituents on the ring is a hydroxy group,
R 15a is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group Selected from the group consisting of ]
Comprising a monomer unit represented by
(B) The crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof. A curable resin composition is provided.
In the third aspect, more preferably, L 1 is a substituted or unsubstituted alkylene group, and most preferably, L 1 is a methylene group.
 第四の局面において、より好ましくは、本発明は、アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた鎖状ポリマーと、架橋剤とを含んでなる硬化性樹脂組成物であって、該鎖状ポリマーが、式A5:
Figure JPOXMLDOC01-appb-C000032

〔ここに
 R1aは水素、及び置換又は非置換アルキル基よりなる群から選ばれ、
 Lは置換又は非置換アルキレン基、及び置換又は非置換アルケニレン基よりなる群から選ばれ、
 R19aは置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、及び置換又は非置換ヘテロ芳香族基よりなる群から選ばれる
よりなる群から選ばれる。〕
で示されるモノマー単位を含んでなるものであり、
 (b)該架橋剤が、トリアジン系化合物及び/又はその縮合体、グリコールウリル系化合物及び/又はその縮合体、並びにイミダゾリジノン系化合物及び/又はその縮合体よりなる群から選ばれるものである、硬化性樹脂組成物を提供する。
 上記第四の局面において、好ましくは、式A5において、Lは置換又は非置換アルキレン基であり、最も好ましくは、Lはメチレン基である。
 上記第四の局面において、好ましくは、式A5において、R19aはフェニル基である。
 上記第四の局面において、好ましくは、該架橋剤が、トリアジン系化合物及び/又はその縮合体である。さらに好ましくは、該架橋剤が、
Figure JPOXMLDOC01-appb-C000033

である。
In the fourth aspect, more preferably, the present invention includes a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent. A curable resin composition comprising the chain polymer of formula A5:
Figure JPOXMLDOC01-appb-C000032

[Wherein R 1a is selected from the group consisting of hydrogen and a substituted or unsubstituted alkyl group;
L 1 is selected from the group consisting of a substituted or unsubstituted alkylene group and a substituted or unsubstituted alkenylene group,
R 19a is selected from the group consisting of a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group. ]
Comprising a monomer unit represented by
(B) The crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof. A curable resin composition is provided.
In the fourth aspect, preferably, in Formula A5, L 1 is a substituted or unsubstituted alkylene group, and most preferably L 1 is a methylene group.
In the fourth aspect, preferably, in Formula A5, R 19a is a phenyl group.
In the fourth aspect, preferably, the crosslinking agent is a triazine compound and / or a condensate thereof. More preferably, the crosslinking agent is
Figure JPOXMLDOC01-appb-C000033

It is.
 第五の局面において、より好ましくは、本発明は、アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた鎖状ポリマーと、架橋剤とを含んでなる硬化性樹脂組成物であって、該鎖状ポリマーが、式A2:
Figure JPOXMLDOC01-appb-C000034

〔ここに
 R1aは水素、及び置換又は非置換アルキル基よりなる群から選ばれ、
 Lは単結合、及び置換又は非置換アルキレン基よりなる群から選ばれ、
 R5a~R14aは、互いに独立して、水素、及びヒドロキシ基
よりなる群から選ばれ、ただしR5a~R14a又は該環の置換基のうちの少なくとも1つがヒドロキシ基である。〕
で示されるモノマー単位を含んでなるものであり、
 (b)該架橋剤が、トリアジン系化合物及び/又はその縮合体、グリコールウリル系化合物及び/又はその縮合体、並びにイミダゾリジノン系化合物及び/又はその縮合体よりなる群から選ばれるものである、硬化性樹脂組成物を提供する。
 上記第五の局面において、好ましくは、式A2において、Lは単結合である。
 上記第五の局面において、一実施形態では、好ましくは、式A2において、R5a~R14aのいずれか2つ以上がヒドロキシ基であり、他が水素である。別の実施形態では、好ましくは、R5a~R14aのいずれか一つがヒドロキシ基であり、他が水素である。さらなる実施形態では、好ましくは、R5a~R13aは水素であり、R14aはヒドロキシ基である。
 上記第五の局面において、一実施形態では、好ましくは、該架橋剤が、グリコールウリル系化合物及び/又はその縮合体である。さらに好ましくは、該架橋剤が、
Figure JPOXMLDOC01-appb-C000035

である。
 上記第五の局面において、別の実施形態では、好ましくは、該架橋剤が、トリアジン系化合物及び/又はその縮合体である。さらに好ましくは、該架橋剤が、
Figure JPOXMLDOC01-appb-C000036

である。
In the fifth aspect, more preferably, the present invention includes a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent. A curable resin composition having the formula A2:
Figure JPOXMLDOC01-appb-C000034

[Wherein R 1a is selected from the group consisting of hydrogen and a substituted or unsubstituted alkyl group;
L 1 is selected from the group consisting of a single bond and a substituted or unsubstituted alkylene group,
R 5a to R 14a are independently selected from the group consisting of hydrogen and a hydroxy group, provided that at least one of R 5a to R 14a or a substituent on the ring is a hydroxy group. ]
Comprising a monomer unit represented by
(B) The crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof. A curable resin composition is provided.
In the fifth aspect, preferably, in Formula A2, L 1 is a single bond.
In the fifth aspect, in one embodiment, preferably, in Formula A2, any two or more of R 5a to R 14a are a hydroxy group, and the other is hydrogen. In another embodiment, preferably any one of R 5a to R 14a is a hydroxy group and the other is hydrogen. In a further embodiment, preferably R 5a to R 13a are hydrogen and R 14a is a hydroxy group.
In the fifth aspect, in one embodiment, preferably, the crosslinking agent is a glycoluril compound and / or a condensate thereof. More preferably, the crosslinking agent is
Figure JPOXMLDOC01-appb-C000035

It is.
In the fifth aspect, in another embodiment, preferably, the crosslinking agent is a triazine compound and / or a condensate thereof. More preferably, the crosslinking agent is
Figure JPOXMLDOC01-appb-C000036

It is.
 本発明の硬化性樹脂組成物は、加熱処理により硬化するため、熱硬化性樹脂組成物であるともいえる。 Since the curable resin composition of the present invention is cured by heat treatment, it can be said to be a thermosetting resin composition.
 本発明の硬化性樹脂組成物の構成要素の1つである鎖状ポリマーは、アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備える。 The chain polymer that is one of the constituent elements of the curable resin composition of the present invention includes a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group.
 本発明において鎖状ポリマーのアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖に含まれる炭素原子数は、好ましくは3~30個である。アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖における当該ヒドロキシ基の個数は、1個又は2個以上であることができる。 In the present invention, the number of carbon atoms contained in the side chain having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group of the chain polymer is preferably 3 to 30. The number of the hydroxy groups in the side chain having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group can be 1 or 2 or more.
 本発明において、側鎖におけるアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基は、本発明の硬化性樹脂組成物をガラス基板上に塗布し硬化させて成膜した硬化樹脂薄膜が、焼成後にも基板からの易剥離性を維持できるための実質上決定的な要素である。更に、側鎖におけるアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基が側鎖の脂環式部分に結合したものが更に好ましく、側鎖の脂環式部分も、硬化樹脂薄膜の易剥離性を維持できるための事実上決定的な要素である。このような側鎖を備えた鎖状ポリマーは、適切な架橋剤、特にトリアジン系化合物及び/若しくはその縮合体、グリコールウリル系化合物及び/若しくはその縮合体、又はイミダゾリジノン系化合物及び/若しくはその縮合体の何れかとの樹脂組成物とし、薄膜の形態で硬化させたとき、耐熱性の易剥離膜を与えることができる。 In the present invention, the alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group in the side chain is a cured resin formed by coating and curing the curable resin composition of the present invention on a glass substrate. The thin film is a substantially decisive factor for maintaining easy peelability from the substrate even after firing. Further, it is more preferred that the alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group in the side chain is bonded to the alicyclic part of the side chain, and the alicyclic part of the side chain is also a cured resin. This is a decisive factor for maintaining the easy peelability of the thin film. A chain polymer having such a side chain is a suitable crosslinking agent, particularly a triazine compound and / or a condensate thereof, a glycoluril compound and / or a condensate thereof, or an imidazolidinone compound and / or a compound thereof. When it is made into a resin composition with any of the condensates and cured in the form of a thin film, a heat-resistant easily peelable film can be provided.
 鎖状ポリマーにアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を与えるモノマーの好ましい例としては次のものが挙げられるが、それらに限定されない。
 2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(シクロヘキシルカルボニルオキシ)プロピル(メタ)アクリレート、3-ベンゾイルオキシ-2-ヒドロキシプロピル(メタ)アクリレート、4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシルメチル(メタ)アクリレート、1、3-アダマンチルジオールモノ(メタ)アクリレート、及び2-ヒドロキシシクロヘキシル(メタ)アクリレート、4-ウンデカノイルオキシ-3-ヒドロキシシクロヘキシルメチル(メタ)アクリレート、4-ブタノイルオキシ-3-ヒドロキシシクロヘキシルメチル(メタ)アクリレート等の(メタ)アクリレート。
Preferred examples of the monomer that gives the chain polymer a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group include the following, but are not limited thereto.
2-hydroxypropyl (meth) acrylate, 2-hydroxy-3- (cyclohexylcarbonyloxy) propyl (meth) acrylate, 3-benzoyloxy-2-hydroxypropyl (meth) acrylate, 4-benzoyloxy-3-hydroxycyclohexylmethyl (Meth) acrylate, 1,3-adamantyldiol mono (meth) acrylate, and 2-hydroxycyclohexyl (meth) acrylate, 4-undecanoyloxy-3-hydroxycyclohexylmethyl (meth) acrylate, 4-butanoyloxy- (Meth) acrylates such as 3-hydroxycyclohexylmethyl (meth) acrylate;
 本発明における鎖状ポリマーは、上記のアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有するモノマーに加えて、ヒドロキシ基を有さず側鎖の炭素原子数が1~15である、(メタ)アクリル系モノマー、ビニルエステル系モノマー、ビニルエーテル系モノマー、及びこれら以外のビニル系モノマーの何れか少なくとも1種を、追加のモノマー単位として含んでなるものであることができる。 The chain polymer in the present invention has, in addition to the monomer having the alcoholic secondary or tertiary OH-containing group or the phenolic OH-containing group, a hydroxyl group and a side chain having 1 to 15 (meth) acrylic monomer, vinyl ester monomer, vinyl ether monomer, and at least one of vinyl monomers other than these can be included as an additional monomer unit.
 上記のヒドロキシ基を有しないモノマー単位の好ましい例としては、次のものが挙げられるが、それらに限定されない。
 (1)メチル(メタ)アクリレート、プロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、ブチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ペンチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、オクチル(メタ)アクリレート、ベンジル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、グリシジル(メタ)アクリレート等の(メタ)アクリレート。
 (2)酢酸ビニルエステル、ブタン酸ビニルエステル、ペンタン酸ビニルエステル、ヘキサン酸ビニルエステル、シクロヘキサンカルボン酸ビニルエステル、安息香酸ビニルエステル、シクロペンタジエニルカルボン酸ビニルエステル、ノナン酸ビニルエステル等のビニルエステル。
 (3)プロピルビニルエーテル、ブチルビニルエーテル、エトキシエチルビニルエーテル、グリシジルビニルエーテル、ペンチルビニルエーテル、テトラヒドロフルフリルビニルエーテル、シクロヘキシルビニルエーテル、フェニルビニルエーテル、シクロペンタジエニルビニルエーテル、オクチルビニルエーテル、ベンジルビニルエーテル、2-(ビニルオキシ)エチルジメチルアミン、3-(ビニルオキシ)プロピルジメチルアミン等のビニルエーテル。
 (4)1-ブテン、4-エトキシ-1-ブテン、1-ペンテン、1-ヘキセン、ビニルシクロヘキサン、スチレン、ビニルトルエン、1-ノネン、3-フェニルプロペン等のビニル誘導体。
 (5)マレイン酸無水物、メチルマレイン酸無水物、ブチルマレイン酸無水物、ヘキシルマレイン酸無水物、シクロヘキシルマレイン酸無水物、フェニルマレイン酸無水物、オクチルマレイン酸無水物等のマレイン酸無水物誘導体。
 (6)マレイミド、メチルマレイミド、エチルマレイミド、ブチルマレイミド、ヘキシルマレイミド、シクロヘキシルマレイミド、フェニルマレイミド、ベンジルマレイミド、オクチルマレイミド等のマレイミド誘導体。
Preferable examples of the monomer unit having no hydroxy group include the following, but are not limited thereto.
(1) Methyl (meth) acrylate, propyl (meth) acrylate, glycidyl (meth) acrylate, butyl (meth) acrylate, ethoxyethyl (meth) acrylate, pentyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, cyclohexyl ( (Meth) acrylate, phenyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, octyl (meth) acrylate, benzyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylamino (Meth) acrylates such as propyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, and glycidyl (meth) acrylate.
(2) Vinyl esters such as vinyl acetate, butanoic acid vinyl ester, pentanoic acid vinyl ester, hexanoic acid vinyl ester, cyclohexanecarboxylic acid vinyl ester, benzoic acid vinyl ester, cyclopentadienylcarboxylic acid vinyl ester, and nonanoic acid vinyl ester .
(3) Propyl vinyl ether, butyl vinyl ether, ethoxyethyl vinyl ether, glycidyl vinyl ether, pentyl vinyl ether, tetrahydrofurfuryl vinyl ether, cyclohexyl vinyl ether, phenyl vinyl ether, cyclopentadienyl vinyl ether, octyl vinyl ether, benzyl vinyl ether, 2- (vinyloxy) ethyldimethylamine , Vinyl ethers such as 3- (vinyloxy) propyldimethylamine.
(4) Vinyl derivatives such as 1-butene, 4-ethoxy-1-butene, 1-pentene, 1-hexene, vinylcyclohexane, styrene, vinyltoluene, 1-nonene and 3-phenylpropene.
(5) Maleic anhydride derivatives such as maleic anhydride, methylmaleic anhydride, butylmaleic anhydride, hexylmaleic anhydride, cyclohexylmaleic anhydride, phenylmaleic anhydride, octylmaleic anhydride .
(6) Maleimide derivatives such as maleimide, methylmaleimide, ethylmaleimide, butylmaleimide, hexylmaleimide, cyclohexylmaleimide, phenylmaleimide, benzylmaleimide and octylmaleimide.
 本発明における鎖状ポリマーはモノマー単位の単独重合体であってもよいし、2種又は3種又はそれより多くの種類のモノマー単位を含む共重合体であってもよいが、ただし、共重合体の該モノマー単位の少なくとも1種は、アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えたモノマー単位である。好ましくは、該共重合体は、少なくとも1種のアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えたモノマー単位と、少なくとも1種のヒドロキシ基を有さない追加のモノマー単位を含む。 The chain polymer in the present invention may be a homopolymer of monomer units, or may be a copolymer containing two or three or more types of monomer units. At least one of the monomer units in the coalescence is a monomer unit having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group. Preferably, the copolymer has a monomer unit having a side chain having at least one alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group, and at least one hydroxy group. Not contain additional monomer units.
 本発明における鎖状ポリマー中、アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有するモノマー単位が占める割合は、特に限定されないが、好ましくは30~100モル%、より好ましくは50~100モル%、より好ましくは60~100モル%、更に好ましくは80~100モル%、特に好ましくは90~100モル%である。 The proportion of the monomer unit having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group in the chain polymer in the present invention is not particularly limited, but is preferably 30 to 100 mol%, more preferably Is from 50 to 100 mol%, more preferably from 60 to 100 mol%, still more preferably from 80 to 100 mol%, particularly preferably from 90 to 100 mol%.
 本発明において鎖状ポリマーは、その原料モノマーを用いて、常法で、例えば、2,2’-アゾビスイソブチロニトリル(AIBN)等の慣用のラジカル重合触媒を用いて、重合反応を行わせることにより、製造することができる。鎖状ポリマーの重量平均分子量(Mw)は、10000~100000の範囲(ゲル浸透クロマトグラフィーによる測定)であることが通常好ましいが、特にこの範囲に限定されるものではない。ゲル浸透クロマトグラフィーとしては、当該分野で公知の手順及び装置を用いた、当該分野で公知の方法が挙げられる。ゲル浸透クロマトグラフィーの一例としては、ポリマーを含む混合物を適切な溶媒(例えばテトラヒドロフラン)に希釈してサンプルを調製し(例えば得られた混合物の固形分が0.1質量%となるように希釈)、希釈液を適切な温度(例えば40℃)に保持した市販のゲル浸透クロマトグラフィーカラムに注入する。次いで、希釈液が注入されたゲル浸透クロマトグラフィーカラムに溶離液(例えばテトラヒドロフラン)を適切な流速(例えば1ml/分)で注ぐことによりポリマーを含む溶離液を抽出し、検出器(例えば示差屈折率検出器)によりポリマーの分子量を測定する。ポリマーの種類に応じて、上記条件は適宜選択することができる。 In the present invention, the chain polymer is subjected to a polymerization reaction using its raw material monomers in a conventional manner, for example, using a conventional radical polymerization catalyst such as 2,2′-azobisisobutyronitrile (AIBN). Can be manufactured. The weight average molecular weight (Mw) of the chain polymer is usually preferably in the range of 10,000 to 100,000 (measured by gel permeation chromatography), but is not particularly limited to this range. Examples of gel permeation chromatography include methods known in the art using procedures and equipment known in the art. An example of gel permeation chromatography is to prepare a sample by diluting a mixture containing a polymer in an appropriate solvent (eg, tetrahydrofuran) (eg, diluting so that the solid content of the obtained mixture is 0.1% by mass). The diluted solution is injected into a commercially available gel permeation chromatography column maintained at an appropriate temperature (eg, 40 ° C.). The eluent containing the polymer is then extracted by pouring the eluent (eg, tetrahydrofuran) into the gel permeation chromatography column into which the diluent has been injected at an appropriate flow rate (eg, 1 ml / min) and the detector (eg, differential refractive index). The molecular weight of the polymer is measured by a detector. The above conditions can be appropriately selected depending on the type of polymer.
 本発明の硬化性樹脂組成物における架橋剤としては、トリアジン系架橋剤、グリコールウリル系架橋剤、又はイミダゾリジノン系架橋剤が好ましい。より具体的には、架橋剤が、トリアジン系化合物及び/又はその縮合体、グリコールウリル系化合物及び/又はその縮合体、並びにイミダゾリジノン系化合物及び/又はその縮合体よりなる群から選ばれるものが好ましい。これらの架橋剤の好ましい具体例としては、完全又は部分アルコキシ(例えばメトキシ、エトキシ)メチル化メラミン及び/又はその縮合体、完全又は部分アルコキシ(例えばメトキシ、エトキシ)メチル化グアナミン及び/又はその縮合体、完全又は部分アルコキシ(例えばメトキシ、エトキシ)メチル化アセトグアナミン及び/又はその縮合体、完全又は部分アルコキシメチル化ベンゾグアナミン及び/又はその縮合体、完全又は部分アルコキシ(例えばメトキシ、エトキシ)メチル化グリコールウリル及び/又はその縮合体、完全又は部分アルコキシメチル化イミダゾリジノン及び/又はその縮合体が挙げられる。ここに「アルコキシ」は、炭素原子数1~4であることが好ましい。そのような架橋剤として好ましい化合物として、より具体的には、例えば、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、テトラメトキシメチルメチロールメラミン、テトラメトキシメチルメラミン、ヘキサブトキシメチルメラミン、テトラメトキシメチルグアナミン、テトラメトキシメチルアセトグアナミン、テトラメトキシメチルベンゾグアナミン、トリメトキシメチルベンゾグアナミン、テトラエトキシメチルベンゾグアナミン、テトラメチロールベンゾグアナミン、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、4,5-ジヒドロキシ-1,3-ジメトキシメチル-2-イミダゾリジノン、4,5-ジメトキシ-1,3-ジメトキシメチル-2-イミダゾリジノン等が挙げられるが、これらに限定されない。 As the crosslinking agent in the curable resin composition of the present invention, a triazine-based crosslinking agent, a glycoluril-based crosslinking agent, or an imidazolidinone-based crosslinking agent is preferable. More specifically, the crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof. Is preferred. Preferred examples of these crosslinking agents include fully or partially alkoxy (eg methoxy, ethoxy) methylated melamine and / or condensates thereof, fully or partially alkoxy (eg methoxy, ethoxy) methylated guanamine and / or condensates thereof. Fully or partially alkoxy (eg methoxy, ethoxy) methylated acetoguanamine and / or condensates thereof, fully or partially alkoxymethylated benzoguanamine and / or condensates thereof, fully or partially alkoxy (eg methoxy, ethoxy) methylated glycoluril And / or condensates thereof, fully or partially alkoxymethylated imidazolidinone and / or condensates thereof. Here, “alkoxy” preferably has 1 to 4 carbon atoms. More specifically, preferred compounds as such a crosslinking agent include, for example, hexamethoxymethyl melamine, hexaethoxymethyl melamine, tetramethoxymethyl methylol melamine, tetramethoxymethyl melamine, hexabutoxymethyl melamine, tetramethoxymethyl guanamine, tetra Methoxymethylacetoguanamine, tetramethoxymethylbenzoguanamine, trimethoxymethylbenzoguanamine, tetraethoxymethylbenzoguanamine, tetramethylolbenzoguanamine, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis ( Butoxymethyl) glycoluril, 4,5-dihydroxy-1,3-dimethoxymethyl-2-imidazolidinone, 4,5-dimethoxy-1,3- Methoxymethyl-2-imidazolidinone, but not limited thereto.
 一実施形態において、好ましくは、該架橋剤が、式B1:
Figure JPOXMLDOC01-appb-C000037

 
〔ここに
 R1bは、炭素原子1~25個を有し、置換又は非置換アルキル基、置換又は非置換アルケニル基、置換又は非置換芳香族基、置換又は非置換ヘテロ芳香族基、及び
Figure JPOXMLDOC01-appb-C000038

 
で示される二置換アミンよりなる群から選ばれ、
 R2b~R7bは、互いに独立して、炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれる。〕
で示される化合物及び/又はその縮合体
よりなる群より選ばれるものである。
In one embodiment, preferably the crosslinker is of formula B1:
Figure JPOXMLDOC01-appb-C000037


[Wherein R 1b has 1 to 25 carbon atoms, and is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, and
Figure JPOXMLDOC01-appb-C000038


Selected from the group consisting of disubstituted amines represented by
R 2b to R 7b each independently have 1 to 10 carbon atoms and are selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted alkenyl group. ]
And / or a condensate thereof.
 より好ましくは、本発明における該架橋剤が、式B1において、
 R1bは、置換又は非置換アルキル基、置換又は非置換芳香族基、及び
Figure JPOXMLDOC01-appb-C000039

 
で示される二置換アミンよりなる群から選ばれ、
 R2b~R7bは、互いに独立して、置換又は非置換アルキル基から選ばれる、
化合物及び/又はその縮合体である。
More preferably, the crosslinking agent in the present invention is represented by the formula B1:
R 1b is a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, and
Figure JPOXMLDOC01-appb-C000039


Selected from the group consisting of disubstituted amines represented by
R 2b to R 7b are each independently selected from a substituted or unsubstituted alkyl group,
A compound and / or a condensate thereof.
 別の実施形態において、好ましくは、該架橋剤が、式B2:
Figure JPOXMLDOC01-appb-C000040

 
〔ここにR8b~R11bは、互いに独立して、炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれる。〕
で示される化合物及び/又はその縮合体
よりなる群より選ばれるものである。
In another embodiment, preferably the crosslinker is of formula B2:
Figure JPOXMLDOC01-appb-C000040


[R 8b to R 11b are independently selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted alkenyl group having 1 to 10 carbon atoms. ]
And / or a condensate thereof.
 より好ましくは、本発明における該架橋剤が、式B2において、
 R8b~R11bは、互いに独立して、置換又は非置換アルキル基から選ばれる、
化合物及び/又はその縮合体である。
More preferably, the crosslinking agent in the present invention is represented by the formula B2:
R 8b to R 11b are each independently selected from a substituted or unsubstituted alkyl group,
A compound and / or a condensate thereof.
 更に別の実施形態において、好ましくは、該架橋剤が、式B3:
Figure JPOXMLDOC01-appb-C000041

 
〔ここに
 R12b及びR13bが、互いに独立して、炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれ、
 R14b及びR15bが、互いに独立して、水素であるか、又は炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれる。〕
で示される化合物及び/又はその縮合体
よりなる群より選ばれるものである。
In yet another embodiment, preferably the crosslinking agent is of formula B3:
Figure JPOXMLDOC01-appb-C000041


[Wherein R 12b and R 13b are independently selected from the group consisting of 1 to 10 carbon atoms, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkenyl group;
R 14b and R 15b are independently of each other hydrogen or selected from the group consisting of substituted or unsubstituted alkyl groups and substituted or unsubstituted alkenyl groups having 1 to 10 carbon atoms. ]
And / or a condensate thereof.
 より好ましくは、本発明における該架橋剤が、式B3において、
 R12b及びR13bが、互いに独立して、置換又は非置換アルキル基から選ばれ、
 R14b及びR15bが、互いに独立して、水素、及び置換又は非置換アルキル基よりなる群から選ばれる、
化合物及び/又はその縮合体である。
 更に好ましくは、式B3において、R14b及びR15bが、互いに独立して、水素である。
More preferably, the crosslinking agent in the present invention is represented by the formula B3:
R 12b and R 13b are independently of each other selected from substituted or unsubstituted alkyl groups;
R 14b and R 15b are independently of each other selected from the group consisting of hydrogen and substituted or unsubstituted alkyl groups;
A compound and / or a condensate thereof.
More preferably, in formula B3, R 14b and R 15b are independently of each other hydrogen.
 本発明の硬化性樹脂組成物における架橋剤のさらなる好ましい具体例としては、以下の構造式に示される又は以下に列挙した化合物名の化合物及び/又はその縮合体が挙げられる:
Figure JPOXMLDOC01-appb-C000042

 
 ヘキサメトキシメチルメラミン;
 ヘキサブトキシメチルメラミン;
 1,3,4,6-テトラキス(メトキシメチル)グリコールウリル;
 1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル;
 テトラメトキシメチルベンゾグアナミン;
 4,5-ジヒドロキシ-1,3-ビス(アルコキシメチル)イミダゾリジン-2-オン。
Further preferred specific examples of the crosslinking agent in the curable resin composition of the present invention include compounds having the compound names shown in the following structural formulas or listed below and / or condensates thereof:
Figure JPOXMLDOC01-appb-C000042


Hexamethoxymethylmelamine;
Hexabutoxymethylmelamine;
1,3,4,6-tetrakis (methoxymethyl) glycoluril;
1,3,4,6-tetrakis (butoxymethyl) glycoluril;
Tetramethoxymethylbenzoguanamine;
4,5-dihydroxy-1,3-bis (alkoxymethyl) imidazolidin-2-one.
 該縮合体としては、好ましくは上記に示される化合物の重合体が挙げられ、より好ましくは上記に示される化合物の二量体、三量体又はより高次の重合体が挙げられる。本発明の硬化性樹脂組成物における架橋剤は、上記に示される化合物及びその縮合体であってよく、すなわち、化合物と該化合物の重合体(すなわち、二量体、三量体、又はより高次の重合体)の混合物であってもよい。別の実施形態では、該縮合体が、該化合物の二量体、三量体、およびより高次の重合体の少なくとも一つを含んでもよい。別の観点からは、該架橋剤が、上記に示される該化合物について1より大きく3又はそれより大きい重量平均重合度を有するものであってもよく、好ましくは1より大きく1.8まで、より好ましくは1.3から1.8まで、更に好ましくは1.5の重量平均重合度を有するものであってもよいが、これらに限定されない。なお、該化合物の該縮合体における重量平均重合度が1である場合、その縮合体はその化合物そのものであることを意味する。該重量平均重合度は上記の範囲内の任意の数値であり、好ましくは、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、3、4又はそれより大きい値であり、より好ましくは、1.3、1.4、1.5、1.6、1.7、1.8であり、更に好ましくは1.5である。 The condensate is preferably a polymer of the compound shown above, more preferably a dimer, trimer or higher order polymer of the compound shown above. The cross-linking agent in the curable resin composition of the present invention may be a compound shown above and a condensate thereof, that is, a compound and a polymer of the compound (that is, a dimer, a trimer, or a higher compound). It may be a mixture of the following polymers). In another embodiment, the condensate may comprise at least one of a dimer, trimer, and higher order polymer of the compound. From another point of view, the cross-linking agent may have a weight average degree of polymerization of greater than 1 and greater than or equal to 3 for the compounds shown above, preferably greater than 1 and up to 1.8, and more Preferably, it may have a weight average degree of polymerization of 1.3 to 1.8, more preferably 1.5, but is not limited thereto. When the weight average polymerization degree in the condensate of the compound is 1, it means that the condensate is the compound itself. The weight average degree of polymerization is an arbitrary numerical value within the above range, and preferably 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1. 8, 1.9, 2, 3, 4 or larger, more preferably 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, Preferably it is 1.5.
 本発明の硬化性樹脂組成物における鎖状ポリマーと架橋剤との質量の比は、好ましくは、1:0.03~1:2、より好ましくは、1:0.05~1:2、1:0.05~1:1、1:0.03~1:1、更に好ましくは1:0.09~1:1、1:0.1~1:0.5、更により好ましくは1:0.09~1:0.3、1:0.1~1:0.3である。 The mass ratio of the chain polymer to the crosslinking agent in the curable resin composition of the present invention is preferably 1: 0.03 to 1: 2, more preferably 1: 0.05 to 1: 2, 1 : 0.05 to 1: 1, 1: 0.03 to 1: 1, more preferably 1: 0.09 to 1: 1, 1: 0.1 to 1: 0.5, even more preferably 1: 0.09 to 1: 0.3, 1: 0.1 to 1: 0.3.
 本発明において、硬化性樹脂組成物は、更に酸触媒を含む。該酸触媒はモノマー単位と架橋剤との反応における重合触媒として、必要に応じて含まれる。該酸触媒は、重合触媒として慣用のものを適宜選んで用いることができる。該酸触媒は、ブレンステッド酸及び/又はルイス酸から選ばれる化合物、若しくはその塩、又はその溶媒和物であってもよい。該酸触媒としては、例えば、ジノニルナフタレンジスルホン酸、ジノニルナフタレン(モノ)スルホン酸、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、p-トルエンスルホン酸(PTS)、リン酸、硫酸、及び酢酸などのプロトン酸、並びにサンエイドSI-100L、SI-150L、SI-110L、SI-60L、及びSI-80L(三新化学工業(株))などの熱酸発生剤よりなる群から選ばれる化合物、若しくはその塩、又はその溶媒和物が挙げられるが、これらに限定されない。好ましくは、該酸触媒は、p-トルエンスルホン酸(PTS)、ドデシルベンゼンスルホン酸、及び熱酸発生剤サンエイドSI-100L(三新化学工業(株))よりなる群から選ばれる化合物、若しくはその塩、又はその溶媒和物である。より好ましくは、該酸触媒はピリジニウム-p-トルエンスルホン酸、p-トルエンスルホン酸、又はその水和物である。 In the present invention, the curable resin composition further contains an acid catalyst. The acid catalyst is included as necessary as a polymerization catalyst in the reaction between the monomer unit and the crosslinking agent. As the acid catalyst, those conventionally used as polymerization catalysts can be appropriately selected and used. The acid catalyst may be a compound selected from Bronsted acid and / or Lewis acid, or a salt thereof, or a solvate thereof. Examples of the acid catalyst include dinonylnaphthalenedisulfonic acid, dinonylnaphthalene (mono) sulfonic acid, dodecylbenzenesulfonic acid, dodecylbenzenesulfonic acid, p-toluenesulfonic acid (PTS), phosphoric acid, sulfuric acid, and acetic acid. Or a compound selected from the group consisting of thermal acid generators such as Sun-Aid SI-100L, SI-150L, SI-110L, SI-60L, and SI-80L (Sanshin Chemical Industry Co., Ltd.) Examples thereof include, but are not limited to, salts thereof and solvates thereof. Preferably, the acid catalyst is a compound selected from the group consisting of p-toluenesulfonic acid (PTS), dodecylbenzenesulfonic acid, and thermal acid generator Sun-Aid SI-100L (Sanshin Chemical Industry Co., Ltd.), or A salt, or a solvate thereof. More preferably, the acid catalyst is pyridinium-p-toluenesulfonic acid, p-toluenesulfonic acid, or a hydrate thereof.
 本発明の硬化性樹脂組成物が酸触媒を更に含む場合、該酸触媒の量は、硬化性樹脂組成物における鎖状ポリマーと架橋剤との質量の比に応じて適宜決定され得るが、好ましくは、硬化性樹脂組成物における鎖状ポリマーと架橋剤と酸触媒との質量の比は、好ましくは、1:0.03:0.05~1:2:0.1、より好ましくは、1:0.05:0.05~1:2:0.1、更に好ましくは、1:0.09:0.05~1:1:0.08である。あるいは、本発明の硬化性樹脂組成物が酸触媒を更に含む場合、該酸触媒の量は、硬化性樹脂組成物における鎖状ポリマーと架橋剤との質量の比に応じて適宜決定され得るが、溶媒を含む全重量に対して、好ましくは0.5重量、0.45重量%、0.4重量%、0.35重量%、0.3重量%、0.25重量%、0.2重量%、0.15重量%、又は0.10重量%であり、より好ましくは、0.3重量%又は0.25重量%である。 When the curable resin composition of the present invention further contains an acid catalyst, the amount of the acid catalyst can be appropriately determined according to the mass ratio of the chain polymer to the crosslinking agent in the curable resin composition, but is preferably The mass ratio of the chain polymer, the crosslinking agent and the acid catalyst in the curable resin composition is preferably 1: 0.03: 0.05 to 1: 2: 0.1, more preferably 1 : 0.05: 0.05 to 1: 2: 0.1, more preferably 1: 0.09: 0.05 to 1: 1: 0.08. Alternatively, when the curable resin composition of the present invention further includes an acid catalyst, the amount of the acid catalyst can be appropriately determined according to the mass ratio of the chain polymer and the crosslinking agent in the curable resin composition. , Preferably 0.5 wt., 0.45 wt.%, 0.4 wt.%, 0.35 wt.%, 0.3 wt.%, 0.25 wt. % By weight, 0.15% by weight, or 0.10% by weight, and more preferably 0.3% by weight or 0.25% by weight.
 本発明において、硬化性樹脂組成物は、溶剤により適宜の濃度に希釈されたものであることができる。すなわち、本発明において、硬化性樹脂組成物は、更に溶剤を含む。沸点が過度に低い又は高い等により硬化性樹脂組成物をガラス製等の基板に硬化性樹脂組成物を塗布した後の乾燥による均一な塗膜形成に不都合がない限り、慣用の非プロトン溶媒を適宜選んで用いることができる。例えば、プロピレングリコールモノメチルエーテルは適した溶剤であるが、これに限定されない。溶剤による希釈は、モノマーの重合反応時や、架橋剤、触媒を加えた硬化性樹脂組成物の塗布時等における取扱いの便のためであるから、希釈度合いに特段の上限、下限はない。 In the present invention, the curable resin composition can be diluted to an appropriate concentration with a solvent. That is, in the present invention, the curable resin composition further contains a solvent. Unless the boiling point is excessively low or high, a conventional aprotic solvent is used unless there is a problem in forming a uniform coating film by drying after the curable resin composition is applied to a substrate made of glass or the like. It can be selected and used as appropriate. For example, propylene glycol monomethyl ether is a suitable solvent, but is not limited thereto. Dilution with a solvent is for convenience of handling at the time of polymerization reaction of a monomer, application of a curable resin composition to which a crosslinking agent and a catalyst are added, and therefore there is no particular upper limit or lower limit in the degree of dilution.
 本発明において、一実施形態では、該組成物は溶液として提供される。好ましくは、該溶液の溶媒はアルコールを含む。より好ましくは、該アルコールは一級アルコールを含み、好ましくは、エタノール、プロパノール、1-ブタノール、1-プロパノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール及びドデカノールからなる群から選択される一級アルコールを含み、より好ましくは、エタノール、プロパノール、1-ブタノール、1-プロパノール、及び1-ドデカノールからなる群から選択される一級アルコールを含み、最も好ましくは、エタノールを含む。好ましくは、該アルコールは該溶媒の全量に対して10重量%以上で存在する。理論に束縛されることを望まないが、アルコールにより保存安定性が向上するからである。 In the present invention, in one embodiment, the composition is provided as a solution. Preferably, the solvent of the solution includes an alcohol. More preferably, the alcohol comprises a primary alcohol, preferably selected from the group consisting of ethanol, propanol, 1-butanol, 1-propanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol and dodecanol. Primary alcohols, more preferably primary alcohols selected from the group consisting of ethanol, propanol, 1-butanol, 1-propanol, and 1-dodecanol, most preferably ethanol. Preferably, the alcohol is present at 10% by weight or more based on the total amount of the solvent. Although it is not desired to be bound by theory, the storage stability is improved by alcohol.
 本発明の硬化性樹脂組成物は、所望の機能の付与や特性の向上を目的として、更に、界面活性剤、フィラー、添加剤、および発泡剤の少なくとも一つを含めることができる。 The curable resin composition of the present invention can further contain at least one of a surfactant, a filler, an additive, and a foaming agent for the purpose of imparting a desired function and improving properties.
 界面活性剤を含む場合、例えば、硬化性樹脂組成物の基板に対する濡れ性が向上し、硬化性樹脂組成物を硬化させて形成される硬化樹脂膜の厚みを薄くしたり均一にしたりできる。界面活性剤としては、アニオン性界面活性剤、カオチン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤、および変性シリコーン等が挙げられ、これらは単独で、または2種以上を混合して用いることができる。
 アニオン性界面活性剤としては、好ましくは、ポリオキシエチレンアルキルエーテル硫酸塩、ドデシルベンゼンスルホン酸ナトリウム、スチレン-アクリル酸共重合体のアルカリ塩、アルキルナフタレンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ラウリル硫酸モノエタノールアミン、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ステアリン酸モノエタノールアミン、ステアリン酸ナトリウム、ラウリル硫酸ナトリウム、スチレン-アクリル酸共重合体のモノエタノールアミン、ポリオキシエチレンアルキルエーテルリン酸エステルなどのポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンソルビタンモノステアレート、ポリエチレングリコールモノラウレートなどが挙げられる。
 カオチン性界面活性剤としては、アルキル四級アンモニウム塩やそれらのエチレンオキサイド付加物などが挙げられる。
 ノニオン性界面活性剤、としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンアルキルエーテル等のエーテル系ノニオン性界面活性剤、ポリオキシエチレンオレイン酸エステル、ポリオキシエチレンジステアリン酸エステル、ソルビタンラウレート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタンセスキオレエート、ポリオキシエチレンモノオレエート、ポリオキシエチレンステアレート等のエステル系、3,5-ジメチル-1-ヘキシン-3-オール等のアセチレンアルコール系ノニオン性界面活性剤、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、3,6-ジメチル-4-オクチン-3,6-ジオールなどが挙げられる。
 両性界面活性剤としては、アルキルジメチルアミノ酢酸ベタインなどのアルキルベタイン、アルキルイミダゾリンなどが挙げられる。
 変性シリコーンとしては、ポリエーテル変性ポリシロキサン、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン及びアミノ変性ポリシロキサンなどが挙げられる。
When the surfactant is included, for example, the wettability of the curable resin composition to the substrate is improved, and the thickness of the cured resin film formed by curing the curable resin composition can be reduced or made uniform. Examples of the surfactant include anionic surfactants, chaotic surfactants, nonionic surfactants, amphoteric surfactants, and modified silicones. These may be used alone or in combination of two or more. Can be used.
The anionic surfactant is preferably polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, alkali salt of styrene-acrylic acid copolymer, sodium alkylnaphthalenesulfonate, sodium alkyldiphenyletherdisulfonate, lauryl sulfate. Polyethanol such as monoethanolamine, triethanolamine lauryl sulfate, ammonium lauryl sulfate, monoethanolamine stearate, sodium stearate, sodium lauryl sulfate, monoethanolamine of styrene-acrylic acid copolymer, polyoxyethylene alkyl ether phosphate Oxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Alkyl ether phosphoric acid esters, polyoxyethylene sorbitan monostearate, and the like of polyethylene glycol monolaurate.
Examples of chaotic surfactants include alkyl quaternary ammonium salts and their ethylene oxide adducts.
Nonionic surfactants include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene alkyl ether, and other ethers. Nonionic surfactant, polyoxyethylene oleate, polyoxyethylene distearate, sorbitan laurate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, polyoxyethylene monooleate, polyoxyethylene Ester type such as stearate, acetylene alcohol type nonionic surfactant such as 3,5-dimethyl-1-hexyn-3-ol, 2, 4, , 9-tetramethyl-5-decyne-4,7-diol, such as 3,6-dimethyl-4-octyne-3,6-diol.
Examples of amphoteric surfactants include alkylbetaines such as alkyldimethylaminoacetic acid betaines, alkylimidazolines, and the like.
Examples of the modified silicone include polyether-modified polysiloxane, carboxy-modified polysiloxane, epoxy-modified polysiloxane, and amino-modified polysiloxane.
 フィラーを含む場合、例えば硬化樹脂膜の硬度や耐湿性を向上させたり、電気絶縁性又は電気伝導性を付与したり向上させたりすることできる。電気絶縁性を付与したり向上させたりすることできるフィラーとしては、アルミナ、酸化ケイ素、酸化ベリリウム、酸化銅、亜酸化銅などの金属酸化物、窒化ホウ素、窒化アルミニウム、窒化ケイ素などの金属窒化物、炭化ケイ素などの金属炭化物、炭酸マグネシウムなどの金属炭酸塩、ダイヤモンドなどの絶縁性炭素材料、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物などを例示することができる。電気伝導性を付与したり向上させたりすることできるフィラーとして、黒鉛、炭素繊維などの炭素材料、金属ケイ素、アルミニウム、マグネシウムなどの金属材料を例示することができる。電気絶縁性又は電気伝導性を付与したり向上させたりすることできるフィラーは、熱伝導性の向上を目的として硬化樹脂膜に含ませることもできる。熱伝導性の向上を目的としてフィラーを添加する場合には、電気絶縁性を付与したり向上させたりすることできるフィラーと、電気伝導性を付与したり向上させたりすることできるフィラーとを組み合わせてもよい。フィラーの形状については、例えば粒子状、微粒子状、ナノ粒子、凝集粒子状、ワイヤ状、ロッド状、針状、板状、不定形、ラグビーボール状、六面体状、大粒子と微小粒子とが複合化した複合粒子状など種々の形状のものを適応可能である。また、これらフィラーは天然物であってもよいし、合成されたものであってもよい。天然物の場合、産地などには特に限定はなく、適宜選択することができる。なお、フィラーを含ませる目的は特に限定されず、特性の向上や機能の付与を目的として、この目的を達成できるフィラーを選択できる。含まれるフィラーの種類は1種類でもよく、2種類以上でもよい。 When the filler is included, for example, the hardness and moisture resistance of the cured resin film can be improved, and electrical insulation or electrical conductivity can be imparted or improved. Examples of fillers that can impart or improve electrical insulation include metal oxides such as alumina, silicon oxide, beryllium oxide, copper oxide, and cuprous oxide, and metal nitrides such as boron nitride, aluminum nitride, and silicon nitride. Examples thereof include metal carbides such as silicon carbide, metal carbonates such as magnesium carbonate, insulating carbon materials such as diamond, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and the like. Examples of the filler that can impart or improve electrical conductivity include carbon materials such as graphite and carbon fiber, and metal materials such as metal silicon, aluminum, and magnesium. A filler capable of imparting or improving electrical insulation or electrical conductivity can be included in the cured resin film for the purpose of improving thermal conductivity. When adding a filler for the purpose of improving thermal conductivity, a filler that can impart or improve electrical insulation and a filler that can impart or improve electrical conductivity are combined. Also good. As for the shape of the filler, for example, particles, fine particles, nanoparticles, aggregated particles, wires, rods, needles, plates, irregular shapes, rugby balls, hexahedrons, large particles and fine particles are combined. Various shapes such as composite particles can be applied. These fillers may be natural products or synthesized. In the case of a natural product, there are no particular limitations on the production area and the like, which can be selected as appropriate. The purpose of including the filler is not particularly limited, and a filler capable of achieving this purpose can be selected for the purpose of improving characteristics and imparting functions. One type of filler may be included, or two or more types may be used.
 添加剤を含む場合、例えば硬化樹脂膜の耐候性などを向上させることができる。添加剤としては、酸化防止剤や紫外線吸収剤などが挙げられる。添加剤を含ませる目的は特に限定されず、特性の向上や機能の付与を目的として、この目的を達成できる公知の添加剤を選択できる。含まれる添加剤の種類は1種類でもよく、2種類以上でもよい。 When an additive is included, for example, the weather resistance of the cured resin film can be improved. Examples of the additive include an antioxidant and an ultraviolet absorber. The purpose of including the additive is not particularly limited, and a known additive capable of achieving this purpose can be selected for the purpose of improving characteristics and imparting functions. One type of additive may be included, or two or more types may be included.
 一実施形態では、好ましくは、本発明の硬化性樹脂組成物は、更に、界面活性剤を含む。別の実施形態では、好ましくは、本発明の硬化性樹脂組成物は、更に、発泡剤を含む。発泡剤を含む場合、硬化性樹脂組成物を硬化させて形成される硬化樹脂膜をはがしやすくできる。好ましい発泡剤としては、溶融温度以上で分解することで発泡する化合物や、酸と反応して発泡する化合物と酸との組み合わせなどを用いることができる。本発明において使用されうる発泡剤としては、例えば、アゾ系化合物のアゾジカルボンアミド、バリウムアゾジカルボキシレート、2,2’-アゾビスイソブチロニトリル、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド等のアゾ化合物、ジニトロソペンタメチレンテトラミン、トリニトロトリメチルトリアミン等のニトロソ化合物、p,p’-オキシビスベンゼンスルホニルヒドラジド等のヒドラジド系化合物、p,p’-オキシビスベンゼンスルホニルセミカルバジド等のスルホニルセミカルバジド系化合物、トルエンスルホニルセミカルバジド等が挙げられる。
 酸と反応して発泡する化合物と酸との組み合わせにおいて、酸と反応して発泡する化合物としては、例えば、アルカリ金属炭酸塩または炭酸水素塩、例えば、ナトリウム、カリウム、リチウムまたはルビジウムの、炭酸塩または炭酸水素酸塩等の炭酸塩化合物が挙げられ、酸としては、有機酸、酸性リン酸ナトリウム、またはカリウムを含む酸、およびこれらの混合物が挙げられる。有機酸としては、例えば、クエン酸、酒石酸、コハク酸、フマル酸、またはこれらの混合物等が挙げられる。
In one embodiment, preferably, the curable resin composition of the present invention further includes a surfactant. In another embodiment, preferably, the curable resin composition of the present invention further includes a foaming agent. When a foaming agent is included, the cured resin film formed by curing the curable resin composition can be easily peeled off. As a preferable foaming agent, a compound that foams by decomposing at a melting temperature or higher, a combination of a compound that reacts with an acid and foams, and an acid can be used. Examples of the foaming agent that can be used in the present invention include azo compounds such as azodicarbonamide, barium azodicarboxylate, 2,2′-azobisisobutyronitrile, dimethyl 2,2′-azobis (2-methyl). Propionate), azo compounds such as 2,2′-azobis (N-butyl-2-methylpropionamide), nitroso compounds such as dinitrosopentamethylenetetramine and trinitrotrimethyltriamine, p, p′-oxybisbenzenesulfonyl Examples include hydrazide compounds such as hydrazide, sulfonyl semicarbazide compounds such as p, p′-oxybisbenzenesulfonyl semicarbazide, and toluenesulfonyl semicarbazide.
In the combination of an acid and a compound that reacts with an acid and an acid, the compound that reacts with an acid and foams may be, for example, an alkali metal carbonate or bicarbonate, for example, sodium, potassium, lithium or rubidium carbonate Or carbonate compounds, such as hydrogencarbonate, are mentioned, As an acid, the acid containing organic acid, acidic sodium phosphate, or potassium, and a mixture thereof are mentioned. Examples of the organic acid include citric acid, tartaric acid, succinic acid, fumaric acid, and a mixture thereof.
 本発明の硬化性樹脂組成物は、上記「高速硬化性」を有し、150℃以下で、好ましくは、90℃、100℃、110℃、120℃、130℃、140℃又は150℃の加熱温度で、数分以内、好ましくは、10秒、20秒、30秒、40秒、50秒、1分、又は2分の加熱時間の加熱、より好ましくは、150℃で1分の加熱により硬化された膜が易剥離性を有する。 The curable resin composition of the present invention has the above “high-speed curability” and is heated at 150 ° C. or less, preferably 90 ° C., 100 ° C., 110 ° C., 120 ° C., 130 ° C., 140 ° C. or 150 ° C. Curing within a few minutes at temperature, preferably 10 seconds, 20 seconds, 30 seconds, 40 seconds, 50 seconds, 1 minute or 2 minutes heating time, more preferably by heating at 150 ° C. for 1 minute The formed film has easy peelability.
 本発明の硬化性樹脂組成物は、上記「保存安定性」を有し、溶液として形成した硬化性樹脂組成物が、例えば、適切な温度(例えば、20℃、又は50℃など)で長期間(例えば、1週間、2週間、3週間、4週間、1カ月、2カ月、3カ月、4カ月、6カ月、9カ月、12カ月、又は14カ月など)保存した後に、保存前と比べて溶液に視覚的に白濁・固化などがなく、また溶液の性質(粘度、又はN.V.など)、成膜時の性質(剥離力、又は透過率など)に大きな変化がない。好ましくは、特に限定しない限り、通常の試験(20℃で9カ月又は12カ月保存)及び加速試験(50℃で2週間保存)後に、保存前と比べて溶液に上記変化がない。 The curable resin composition of the present invention has the above “storage stability”, and the curable resin composition formed as a solution can be used at a suitable temperature (for example, 20 ° C. or 50 ° C.) for a long time. (For example, 1 week, 2 weeks, 3 weeks, 4 weeks, 1 month, 2 months, 3 months, 4 months, 6 months, 9 months, 12 months, or 14 months, etc.) There is no visual turbidity or solidification of the solution, and there is no significant change in the properties of the solution (viscosity, NV, etc.) and the properties during film formation (peeling force, transmittance, etc.). Preferably, unless otherwise specified, the solution does not change after the normal test (stored at 20 ° C. for 9 months or 12 months) and the accelerated test (stored at 50 ° C. for 2 weeks) compared to before storage.
 (2-2)硬化樹脂膜
 一局面において、本発明は、上記(2-1)の硬化性樹脂組成物を硬化させてなる硬化樹脂膜を提供する。
(2-2) Cured Resin Film In one aspect, the present invention provides a cured resin film obtained by curing the curable resin composition of (2-1).
 別の局面において、本発明は、上記(2-1)の硬化性樹脂組成物を基板表面に膜状に硬化させてなる、易剥離性硬化樹脂膜を提供する。 In another aspect, the present invention provides an easily peelable cured resin film obtained by curing the curable resin composition of (2-1) above onto a substrate surface in a film shape.
 本発明の硬化性樹脂組成物から形成される硬化樹脂膜は、上記「耐熱性」の意味において耐熱性であると共に、耐熱性である温度範囲での加熱処理の後も易剥離性を有する。 The cured resin film formed from the curable resin composition of the present invention is heat-resistant in the above-mentioned meaning of “heat resistance” and also has easy peelability after heat treatment in a temperature range that is heat-resistant.
 好ましくは、本発明の硬化性樹脂組成物から形成される硬化樹脂膜は、上記「易剥離性」を有する。具体的には、硬化性樹脂組成物のガラス基板への塗布・加熱処理により形成された硬化樹脂膜において、プリベーク(例えば、100℃で2分間)後の剥離力が10N/mm以下、1N/mm以下、0.5N/mm以下、又は0.1N/mm以下である。 Preferably, the cured resin film formed from the curable resin composition of the present invention has the “easy peelability”. Specifically, in a cured resin film formed by applying and heating a curable resin composition to a glass substrate, the peel force after pre-baking (for example, at 100 ° C. for 2 minutes) is 10 N / mm 2 or less, 1 N / Mm 2 or less, 0.5 N / mm 2 or less, or 0.1 N / mm 2 or less.
 好ましくは、本発明の硬化性樹脂組成物から形成される硬化樹脂膜は、上記「易剥離耐熱性」を有する。具体的には、硬化性樹脂組成物のガラス基板への塗布・加熱処理により形成された硬化樹脂膜において、プリベーク(例えば、100℃で2分間)後の剥離力と、追加加熱(例えば、230℃で1時間)後の剥離力とを比較すると、追加加熱前後の剥離力の増加は、約500%以下、約450%以下、約400%以下、約350%以下、約300%以下、約250%以下、約200%以下、約150%以下、約100%以下、又は約50%以下である。追加加熱の条件(加熱温度および加熱時間)は、硬化性樹脂組成物及び形成される硬化樹脂膜に応じて、適宜変更することができる。より具体的には、硬化性樹脂組成物のガラス基板への塗布・加熱処理により形成された硬化樹脂膜において、プリベーク(例えば、100℃で2分間)後の剥離力と、追加加熱(例えば、230℃で1時間)後の剥離力とを比較すると、追加加熱前後の剥離力の増加は、1N/mm以下、0.5N/mm以下、又は0.1N/mm以下である。 Preferably, the cured resin film formed from the curable resin composition of the present invention has the “easy peeling heat resistance”. Specifically, in a cured resin film formed by applying and heating a curable resin composition to a glass substrate, the peeling force after pre-baking (for example, at 100 ° C. for 2 minutes) and additional heating (for example, 230 When compared with the peel strength after 1 hour at a temperature, the increase in peel strength before and after additional heating is about 500% or less, about 450% or less, about 400% or less, about 350% or less, about 300% or less, 250% or less, about 200% or less, about 150% or less, about 100% or less, or about 50% or less. The conditions for additional heating (heating temperature and heating time) can be appropriately changed according to the curable resin composition and the formed cured resin film. More specifically, in a cured resin film formed by applying and heating a curable resin composition to a glass substrate, the peeling force after pre-baking (for example, at 100 ° C. for 2 minutes) and additional heating (for example, When compared with the peel force after 1 hour at 230 ° C., the increase in peel force before and after additional heating is 1 N / mm 2 or less, 0.5 N / mm 2 or less, or 0.1 N / mm 2 or less.
 好ましくは、本発明の硬化性樹脂組成物から形成される硬化樹脂膜は、上記「スパッタプロセス耐性」を有する。具体的には、硬化性樹脂組成物を基板上に塗布し、加熱硬化して(例えば、150℃/15分)硬化樹脂膜を形成後、その膜の上にオーバーコート材(OC材)として光硬化性レジストを塗布し、プリベーク(例えば、90℃/100秒)し、露光(例えば、20mW、100mJ)し、さらにポストベーク(例えば、230℃/30分)し、ITOスパッタプロセスを行った後の硬化樹脂膜が易剥離性を有することをいう。ITOスパッタプロセスは当該分野で公知のスパッタ法によってITO(In-SnO(酸化インジウムスズ)膜を形成する方法であり、当該分野において公知のITOスパッタプロセスが本発明の硬化樹脂膜に対して実施され得る。ITOスパッタプロセスの一例としては、硬化樹脂膜をスパッタ装置に設置し、装置内を減圧(例えば、0.5Pa)し、装置内に空気を導入(例えば50sccm)し、装置内にOを導入(例えば50sccm)し、装置内を加熱(例えば90℃)してスパッタリング(例えば圧力:0.67Pa,DCパワー:110W)を行う。各工程はITOの組成やITOの膜厚等により変更されうる。また、プリベーク、露光、およびポストベークの上記条件は一例であり、当該硬化樹脂膜が用いられる分野における公知のプロセスが適用されうる。 Preferably, the cured resin film formed from the curable resin composition of the present invention has the “sputter process resistance”. Specifically, a curable resin composition is applied on a substrate, heated and cured (for example, 150 ° C./15 minutes) to form a cured resin film, and then an overcoat material (OC material) is formed on the film. A photo-curable resist was applied, pre-baked (for example, 90 ° C./100 seconds), exposed (for example, 20 mW, 100 mJ), further post-baked (for example, 230 ° C./30 minutes), and an ITO sputtering process was performed. It means that the later cured resin film has easy peelability. The ITO sputtering process is a method of forming an ITO (In 2 O 3 —SnO 2 (indium tin oxide) film) by a sputtering method known in the art. As an example of the ITO sputtering process, a cured resin film is installed in a sputtering apparatus, the inside of the apparatus is decompressed (for example, 0.5 Pa), and air is introduced into the apparatus (for example, 50 sccm). O 2 is introduced (for example, 50 sccm), the inside of the apparatus is heated (for example, 90 ° C.), and sputtering (for example, pressure: 0.67 Pa, DC power: 110 W) is performed. The above conditions for pre-baking, exposure, and post-baking are examples, and the cured resin film is used. Known processes in certain fields can be applied.
 本発明の硬化性樹脂組成物は、代表的に、鎖状ポリマー、架橋剤、並びに必要に応じて更に酸触媒、界面活性剤、フィラー、添加剤、及び発泡剤を含み、これらを溶剤に溶解した溶液をガラス基板(好ましくは、ソーダライムガラス)上に塗布し、加熱処理(100℃~230℃、1分間以上)して硬化させることにより、数百nm膜厚(好ましくは、約200nm~約300nmの膜厚)の易剥離性硬化樹脂膜を透明な薄膜として成膜することができる。理論に束縛されることを望まないが、機構としては、鎖状ポリマーの側鎖のヒドロキシ基と架橋剤が加熱により架橋する際の硬化収縮で剥離しやすい膜となる。
Figure JPOXMLDOC01-appb-C000043
The curable resin composition of the present invention typically contains a chain polymer, a crosslinking agent, and, if necessary, an acid catalyst, a surfactant, a filler, an additive, and a foaming agent, and these are dissolved in a solvent. The obtained solution is applied onto a glass substrate (preferably soda lime glass), and cured by heat treatment (100 ° C. to 230 ° C., 1 minute or longer), whereby a film thickness of several hundred nm (preferably about 200 nm to An easily peelable cured resin film having a thickness of about 300 nm can be formed as a transparent thin film. Although not wishing to be bound by theory, the mechanism is that the side chain hydroxy group of the chain polymer and the crosslinking agent are easily peeled off due to curing shrinkage when crosslinked by heating.
Figure JPOXMLDOC01-appb-C000043
 該ガラス基板へ塗布する方法としては、公知のコーティング方法を使用することができる。例えば、スピンコーティング、スピンレスコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、スクリーンコーティング、スリットコーティング、ディップコーティング、及びグラビアコーティングなどを挙げることができる。好ましくは、スピンコーティングが挙げられる。 As a method of applying to the glass substrate, a known coating method can be used. Examples thereof include spin coating, spinless coating, die coating, spray coating, roll coating, screen coating, slit coating, dip coating, and gravure coating. Preferably, spin coating is used.
 こうして基板上に成膜された薄膜は、150℃までの加熱に耐え、好ましくは230℃の加熱(焼成)にも耐え、さらに好ましくは、300℃の加熱(焼成)にも耐えることができる。加えて、本発明の硬化性樹脂組成物により形成した薄膜は、そのような温度での加熱後も易剥離性を有しているため、薄膜であるにも拘わらず従来に比べて高温での焼成ステップを含んだ回路作製プロセスに付すことができるため回路の特性保持に有利であり、且つ回路作製後にも基板から無理なく容易に剥離することができる。このため、優れた特徴のベースフィルムとして、シート状のフレキシブルな種々の電気・電子回路部品の作製に幅広く用いることができ、例えばフレキシブルなディスプレイ装置等の作製にも利用することができる。 Thus, the thin film formed on the substrate can withstand heating up to 150 ° C., preferably withstand heating (firing) at 230 ° C., and more preferably withstand heating (firing) at 300 ° C. In addition, the thin film formed from the curable resin composition of the present invention has easy peelability even after heating at such a temperature. Since it can be subjected to a circuit manufacturing process including a firing step, it is advantageous for maintaining the characteristics of the circuit and can be easily and easily peeled off from the substrate even after the circuit is manufactured. For this reason, as a base film having excellent characteristics, it can be widely used for the production of various sheet-like flexible electric / electronic circuit components. For example, it can also be used for the production of flexible display devices.
 本発明の硬化樹脂膜は、好ましくは、230℃~300℃の加熱(焼成)で一定の時間(数秒~数時間以上など)の加熱に耐える、耐熱性を有する。一実施形態では、好ましくは、230℃~300℃で8時間以上、耐熱性を有する。別の実施形態では、好ましくは、230℃~260℃で1~2時間、耐熱性を有する。さらなる実施形態では、より好ましくは、230℃で8時間以上、耐熱性を有する。さらなる別の実施形態では、より好ましくは、230℃で1~2時間、耐熱性を有する。さらなる別の実施形態では、より好ましくは、300℃で1時間、耐熱性を有する。さらなる別の実施形態では、より好ましくは、300℃で30分、耐熱性を有する。 The cured resin film of the present invention preferably has heat resistance that withstands heating (baking) at 230 ° C. to 300 ° C. for a certain time (several seconds to several hours or more). In one embodiment, the heat resistance is preferably 230 ° C. to 300 ° C. for 8 hours or more. In another embodiment, preferably heat resistant at 230 ° C. to 260 ° C. for 1-2 hours. In a further embodiment, more preferably, it has heat resistance at 230 ° C. for 8 hours or more. In still another embodiment, more preferably, it has heat resistance at 230 ° C. for 1-2 hours. In yet another embodiment, more preferably it is heat resistant at 300 ° C. for 1 hour. In yet another embodiment, more preferably it is heat resistant at 300 ° C. for 30 minutes.
 本発明の硬化樹脂膜は、下記〔3〕硬化樹脂膜の製造方法に記載の方法によって、製造することができる。 The cured resin film of the present invention can be produced by the method described in [3] Method for producing a cured resin film below.
 本発明の硬化樹脂膜の剥離力は、例えば以下の測定方法により測定することができる。本発明の硬化性樹脂組成物を、代表的に、鎖状ポリマー、架橋剤、及び必要に応じて更に酸触媒を溶剤に溶解した溶液として準備し、ガラス基板(好ましくは、ソーダライムガラス)上に塗布し、加熱処理(100℃~230℃、1分間以上)して硬化させることにより、ガラス基板上に硬化樹脂膜を作製する。測定装置として例えば、TENSILON RTG-1310((株)エー・アンド・デイ)、ロードセルとしてUR-100N-D型を用いる。ガラス基板上の硬化樹脂膜にニチバンテープ(24mm幅)を貼り付け、ガラス基板に対し剥離角度90°にて300mm/分の一定速度で引きながら剥離に要する力(剥離力)の大きさを上記装置で計測する。 The peeling force of the cured resin film of the present invention can be measured, for example, by the following measuring method. The curable resin composition of the present invention is typically prepared as a solution in which a chain polymer, a cross-linking agent, and, if necessary, an acid catalyst is further dissolved in a solvent, on a glass substrate (preferably soda lime glass). And cured by heat treatment (100 ° C. to 230 ° C., 1 minute or longer) to produce a cured resin film on the glass substrate. For example, TENSILON RTG-1310 (A & D Co., Ltd.) is used as the measuring device, and UR-100ND type is used as the load cell. Nichiban tape (24 mm width) is affixed to the cured resin film on the glass substrate, and the magnitude of the force (peeling force) required for peeling while pulling at a constant speed of 300 mm / min at a peeling angle of 90 ° with respect to the glass substrate is described above. Measure with the instrument.
 本発明の硬化樹脂膜は、好ましくは、0.5N/mm以下のソーダガラス製の基板又は無アルカリガラス製の基板における剥離力を有する。本発明の硬化樹脂膜は、より好ましくは、0.1N/mm以下のソーダガラス製の基板又は無アルカリガラス製の基板における剥離力を有する。本発明の硬化樹脂膜は、更に好ましくは、0.09N/mm以下のソーダガラス製の基板又は無アルカリガラス製の基板における剥離力を有する。ソーダガラス製の基板における剥離力の好ましい値としては、0.5N/mm以下、0.4N/mm以下、0.3N/mm以下、0.2N/mm以下、0.1N/mm以下、0.09N/mm以下、0.08N/mm以下、0.07N/mm以下、0.06N/mm以下、0.05N/mm以下、0.04N/mm以下、0.03N/mm以下、0.02N/mm以下、0.01N/mm以下である。無アルカリガラス製の基板における剥離力の好ましい値としては、0.5N/mm以下、0.4N/mm以下、0.3N/mm以下、0.2N/mm以下、0.1N/mm以下、0.09N/mm以下、0.08N/mm以下、0.07N/mm以下、0.06N/mm以下、0.05N/mm以下、0.04N/mm以下、0.03N/mm以下、0.02N/mm以下、0.01N/mm以下である。ソーダガラス製の基板又は無アルカリガラス製の基板における該剥離力がソーダガラス製の基板又は無アルカリガラス製の基板における該剥離力が0.5N/mm以下である場合、該硬化樹脂膜は易剥離性であるとみなすことができる。 The cured resin film of the present invention preferably has a peeling force on a soda glass substrate or a non-alkali glass substrate of 0.5 N / mm 2 or less. The cured resin film of the present invention more preferably has a peeling force on a soda glass substrate or an alkali-free glass substrate of 0.1 N / mm 2 or less. The cured resin film of the present invention more preferably has a peel strength on a soda glass substrate or a non-alkali glass substrate of 0.09 N / mm 2 or less. Preferred values of peel strength in the substrate made of soda glass, 0.5 N / mm 2 or less, 0.4 N / mm 2 or less, 0.3 N / mm 2 or less, 0.2 N / mm 2 or less, 0.1 N / mm 2 or less, 0.09 N / mm 2 or less, 0.08 N / mm 2 or less, 0.07 N / mm 2 or less, 0.06 N / mm 2 or less, 0.05 N / mm 2 or less, 0.04 N / mm 2 hereinafter, 0.03 N / mm 2 or less, 0.02 N / mm 2 or less, 0.01 N / mm 2 or less. Preferred values of peel strength in the substrate made of alkali-free glass, 0.5 N / mm 2 or less, 0.4 N / mm 2 or less, 0.3 N / mm 2 or less, 0.2 N / mm 2 or less, 0.1 N / mm 2 or less, 0.09 N / mm 2 or less, 0.08 N / mm 2 or less, 0.07 N / mm 2 or less, 0.06 N / mm 2 or less, 0.05 N / mm 2 or less, 0.04 N / mm 2 below, 0.03 N / mm 2 or less, 0.02 N / mm 2 or less, 0.01 N / mm 2 or less. When the peel force on the soda glass substrate or non-alkali glass substrate is 0.5 N / mm 2 or less when the peel force on the soda glass substrate or non-alkali glass substrate is 0.5 N / mm 2 or less, the cured resin film is It can be regarded as easily peelable.
 本発明の硬化樹脂膜の膜厚は、例えば、ガラス基板上に塗布した本発明の硬化樹脂膜の一部をナイフや剃刀などで削り取ってガラス基板を露出させ、ガラス基板の表面から残存する硬化樹脂膜の表面までの高さを測定装置で測定することにより測定できる。測定装置としては、触針式段差膜厚計(たとえば、TP-10、KLA-Tencor Corporation社製)を用いることができる。本発明の硬化樹脂膜の膜厚は、好ましくは、200~400nm、より好ましくは200nm、250nm、又は300nmが挙げられるが、これらに限定されない。 The film thickness of the cured resin film of the present invention is, for example, a part of the cured resin film of the present invention applied on the glass substrate is scraped with a knife or razor to expose the glass substrate, and the cured resin remaining from the surface of the glass substrate. It can be measured by measuring the height to the surface of the resin film with a measuring device. As the measuring device, a stylus type step thickness meter (for example, TP-10, manufactured by KLA-Tencor Corporation) can be used. The thickness of the cured resin film of the present invention is preferably 200 to 400 nm, more preferably 200 nm, 250 nm, or 300 nm, but is not limited thereto.
 本発明の硬化樹脂膜の透過率は、例えば、以下の測定方法により測定することができる。測定装置としてV-660((株)日本分光)を用い、本発明の硬化樹脂膜を塗布したガラス基板に対する400~700nmの波長光の光透過度を測定することにより、透過率(%T)を得る。本発明の硬化樹脂膜の透過率は膜の白味/にごりぐあいを示し、好ましくは、95%以上であり、より好ましくは、99%以上である。さらに、本発明の硬化樹脂膜の光学特性として、CIELAB空間におけるL*、a*、b*値を測定することができる。本発明の硬化樹脂膜のb*は膜の黄色味を表し、好ましくは、0.2以下、より好ましくは0.1以下が挙げられる。 The transmittance of the cured resin film of the present invention can be measured, for example, by the following measuring method. By using V-660 (JASCO Corporation) as a measuring device and measuring the light transmittance of light having a wavelength of 400 to 700 nm with respect to the glass substrate coated with the cured resin film of the present invention, transmittance (% T) Get. The transmittance of the cured resin film of the present invention shows the whiteness / smoothness of the film, and is preferably 95% or more, and more preferably 99% or more. Furthermore, L *, a *, and b * values in the CIELAB space can be measured as optical characteristics of the cured resin film of the present invention. In the cured resin film of the present invention, b * represents the yellowness of the film, and is preferably 0.2 or less, more preferably 0.1 or less.
 本発明の溶液として調合された硬化性樹脂組成物の液体粘度を次に示す方法により測定することができる。即ち、測定装置としてELD((株)東京計器)などの粘度計を用い、溶液の粘度を測定することができる。本発明の硬化性樹脂組成物の粘度としては、好ましくは、3mPa・s(cps)以下、より好ましくは、2.5mPa・s以下、2.4mPa・s以下、2.3mPa・s以下、2.2mPa・s以下、又は2.1mPa・s以下が挙げられる。 The liquid viscosity of the curable resin composition prepared as the solution of the present invention can be measured by the following method. That is, the viscosity of the solution can be measured using a viscometer such as ELD (Tokyo Keiki Co., Ltd.) as a measuring device. The viscosity of the curable resin composition of the present invention is preferably 3 mPa · s (cps) or less, more preferably 2.5 mPa · s or less, 2.4 mPa · s or less, 2.3 mPa · s or less, 2 .2 mPa · s or less, or 2.1 mPa · s or less.
 〔3〕硬化樹脂膜の製造方法
 一局面において、本発明は、上記(2-1)の硬化性樹脂組成物からの硬化樹脂膜の製造方法であって、
 (i)アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた鎖状ポリマーと架橋剤とを準備するステップと、
 (ii)該鎖状ポリマーと該架橋剤とを含む該硬化性樹脂組成物を基板上に塗布し硬化性樹脂組成物塗膜を形成するステップと、
 (iii)該硬化性樹脂組成物塗膜において重合反応を行わせ硬化させることにより硬化樹脂膜とするステップとを含む、
製造方法を提供する。
[3] Method for Producing Cured Resin Film In one aspect, the present invention provides a method for producing a cured resin film from the curable resin composition according to (2-1),
(I) providing a chain polymer with a side chain having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group and a crosslinking agent;
(Ii) applying the curable resin composition containing the chain polymer and the crosslinking agent on a substrate to form a curable resin composition coating film;
(Iii) performing a polymerization reaction in the curable resin composition coating film and curing it to form a cured resin film,
A manufacturing method is provided.
 上記製造方法は、(iv)該基板上に形成されている該硬化樹脂膜を該基板から剥離するステップを更に含む。 The manufacturing method further includes the step of (iv) peeling the cured resin film formed on the substrate from the substrate.
 上記製造方法は、下記実施例に記載の方法及び/又は当業者に公知の同様の方法にて実施される。 The above production method is carried out by the methods described in the following examples and / or similar methods known to those skilled in the art.
 一実施形態において、上記製造方法は、ステップ(i)の前に、(i’)少なくとも1種の原料モノマーを重合させて該鎖状ポリマーを製造するステップを更に含む。 In one embodiment, the production method further includes (i ′) polymerizing at least one raw material monomer to produce the chain polymer before step (i).
 モノマーを重合させる方法としては、例えば、塊状重合法、溶液重合法、乳化重合法、懸濁重合法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの重合法のなかでは、塊状重合法及び溶液重合法が好ましい。 Examples of the method for polymerizing the monomer include a bulk polymerization method, a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, and the like, but the present invention is not limited to such examples. Among these polymerization methods, the bulk polymerization method and the solution polymerization method are preferable.
 また、モノマーの重合は、例えば、ラジカル重合法、リビングラジカル重合法、アニオン重合法、カチオン重合法、付加重合法、重縮合法などの方法によって行うことができる。 In addition, the polymerization of the monomer can be performed by a method such as a radical polymerization method, a living radical polymerization method, an anionic polymerization method, a cationic polymerization method, an addition polymerization method, a polycondensation method, or the like.
 モノマーを溶液重合法によって重合させる場合には、例えば、モノマーを溶媒に溶解させ、得られた溶液を攪拌しながら重合開始剤を当該溶液に添加することによってモノマーを重合させることができるほか、重合開始剤を溶媒に溶解させ、得られた溶液を撹拌しながらモノマーを当該溶液に添加することによってモノマーを重合させることができる。溶媒は、モノマーと相溶する有機溶媒であることが好ましい。 When the monomer is polymerized by a solution polymerization method, for example, the monomer can be polymerized by dissolving the monomer in a solvent and adding a polymerization initiator to the solution while stirring the obtained solution. The monomer can be polymerized by dissolving the initiator in a solvent and adding the monomer to the solution while stirring the resulting solution. The solvent is preferably an organic solvent compatible with the monomer.
 モノマーを重合させる際には、分子量を調整するために連鎖移動剤を用いてもよい。連鎖移動剤は、通常、モノマーと混合することによって用いることができる。連鎖移動剤としては、例えば、2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロピオン酸、2-(ドデシルチオカルボノチオイルチオ)プロピオン酸、メチル2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロピオネート、2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロピオン酸3-アジド-1-プロパノールエステル、2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロピオン酸ペンタフルオロフェニルエステル、ラウリルメルカプタン、ドデシルメルカプタン、チオグリセロールなどのメルカプタン基含有化合物、次亜リン酸ナトリウム、亜硫酸水素ナトリウムなどの無機塩などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの連鎖移動剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。連鎖移動剤の量は、特に限定されないが、通常、全モノマーの100重量部あたり約0.01重量部~約10重量部であればよい。 When the monomer is polymerized, a chain transfer agent may be used to adjust the molecular weight. The chain transfer agent can be used usually by mixing with a monomer. Examples of the chain transfer agent include 2- (dodecylthiocarbonothioylthio) -2-methylpropionic acid, 2- (dodecylthiocarbonothioylthio) propionic acid, methyl 2- (dodecylthiocarbonothioylthio)- 2-methylpropionate, 2- (dodecylthiocarbonothioylthio) -2-methylpropionic acid 3-azido-1-propanol ester, 2- (dodecylthiocarbonothioylthio) -2-methylpropionic acid pentafluoro Examples include mercaptan group-containing compounds such as phenyl ester, lauryl mercaptan, dodecyl mercaptan, and thioglycerol, and inorganic salts such as sodium hypophosphite and sodium bisulfite, but the present invention is not limited to such examples. Absent. These chain transfer agents may be used alone or in combination of two or more. The amount of the chain transfer agent is not particularly limited, but is usually about 0.01 to about 10 parts by weight per 100 parts by weight of the total monomers.
 モノマーを重合させる際には、重合開始剤を用いることが好ましい。重合開始剤としては、例えば、熱重合開始剤、光重合開始剤、レドックス重合開始剤、ATRP(原子移動ラジカル重合)開始剤、ICAR ATRP開始剤、ARGET ATRP開始剤、RAFT(可逆的付加-開裂連鎖移動重合)剤、NMP(ニトロキシドを介した重合)剤、高分子重合開始剤などが挙げられる。これらの重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 When the monomer is polymerized, it is preferable to use a polymerization initiator. Examples of the polymerization initiator include a thermal polymerization initiator, a photopolymerization initiator, a redox polymerization initiator, an ATRP (atom transfer radical polymerization) initiator, an ICAR ATRP initiator, an ARGET ATRP initiator, and a RAFT (reversible addition-cleavage). Chain transfer polymerization) agent, NMP (polymerization via nitroxide) agent, polymer polymerization initiator and the like. These polymerization initiators may be used alone or in combination of two or more.
 熱重合開始剤としては、例えば、アゾイソブチロニトリル、アゾイソ酪酸メチル、アゾビスジメチルバレロニトリルなどのアゾ系重合開始剤、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウムなどの過酸化物系重合開始剤などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Examples of thermal polymerization initiators include azo polymerization initiators such as azoisobutyronitrile, methyl azoisobutyrate, and azobisdimethylvaleronitrile, and peroxide polymerization initiations such as benzoyl peroxide, potassium persulfate, and ammonium persulfate. Although an agent etc. are mentioned, this invention is not limited only to this illustration. These polymerization initiators may be used alone or in combination of two or more.
 重合開始剤として熱重合開始剤を用いる場合、当該熱重合開始剤の量は、全モノマーの100重量部あたり、通常、約0.01重量部~約20重量部であることが好ましい。 When a thermal polymerization initiator is used as the polymerization initiator, the amount of the thermal polymerization initiator is preferably about 0.01 parts by weight to about 20 parts by weight per 100 parts by weight of all monomers.
 光重合開始剤としては、例えば、2-オキソグルタル酸、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-メチル[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ベンゾフェノン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル1-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシドなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Examples of the photopolymerization initiator include 2-oxoglutaric acid, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl [4- (methylthio) phenyl]- 2-morpholinopropan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl 1 -Propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide However, the present invention is not limited to such examples. These polymerization initiators may be used alone or in combination of two or more.
 重合開始剤として光重合開始剤を用いる場合、当該光重合開始剤の量は、全モノマーの100重量部あたり、通常、約0.01重量部~約20重量部であることが好ましい。 When a photopolymerization initiator is used as the polymerization initiator, the amount of the photopolymerization initiator is preferably about 0.01 parts by weight to about 20 parts by weight per 100 parts by weight of all monomers.
 本発明において使用可能な他の重合開始剤としては、例えば、過酸化水素と鉄(II)塩、過硫酸塩と亜硫酸水素ナトリウムなどのレドックス重合開始剤、金属触媒下でハロゲン化アルキルを用いるATRP(原子移動ラジカル重合)開始剤、金属と窒素含有配位子を用いるICAR ATRP開始剤やARGET ATRP開始剤、RAFT(可逆的付加-開裂連鎖移動重合)剤、NMP(ニトロキシドを介した重合)剤、ポリジメチルシロキサンユニット含有高分子アゾ重合開始剤、ポリエチレングリコールユニット含有高分子アゾ重合開始剤などの高分子重合開始剤などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Other polymerization initiators that can be used in the present invention include, for example, redox polymerization initiators such as hydrogen peroxide and iron (II) salts, persulfates and sodium hydrogen sulfite, and ATRP using an alkyl halide under a metal catalyst. (Atom transfer radical polymerization) initiator, ICAR ATRP initiator or ARGET ATRP initiator using metal and nitrogen-containing ligand, RAFT (reversible addition-cleavage chain transfer polymerization) agent, NMP (polymerization via nitroxide) agent And polymer polymerization initiators such as polydimethylsiloxane unit-containing polymer azo polymerization initiator and polyethylene glycol unit-containing polymer azo polymerization initiator, but the present invention is not limited to such examples. . These polymerization initiators may be used alone or in combination of two or more.
 重合開始剤として上記使用可能な重合開始剤を用いる場合、当該重合開始剤の量は、全モノマーの100重量部あたり、通常、約0.01重量部~約20重量部であることが好ましい。 When the usable polymerization initiator is used as the polymerization initiator, the amount of the polymerization initiator is preferably about 0.01 parts by weight to about 20 parts by weight per 100 parts by weight of the total monomers.
 一実施形態では、モノマーに電子線を照射することにより、電子線重合が行われる。 In one embodiment, electron beam polymerization is performed by irradiating the monomer with an electron beam.
 モノマーを重合させる際の重合反応温度及び雰囲気については、特に限定がない。通常、重合反応温度は、約50℃~約120℃である。重合反応時の雰囲気は、例えば、窒素ガスなどの不活性ガス雰囲気であることが好ましい。また、モノマーの重合反応時間は、重合反応温度などによって異なるので一概には決定することができないが、通常、約3~20時間である。 There are no particular limitations on the polymerization reaction temperature and atmosphere when the monomer is polymerized. Usually, the polymerization reaction temperature is about 50 ° C to about 120 ° C. The atmosphere during the polymerization reaction is preferably an inert gas atmosphere such as nitrogen gas, for example. In addition, the polymerization reaction time of the monomer varies depending on the polymerization reaction temperature and the like and cannot be determined unconditionally, but is usually about 3 to 20 hours.
 一実施形態において、上記製造方法におけるステップ(ii)における該基板は、好ましくは、ガラス基板であり、より好ましくは、ソーダガラス(ソーダライムガラスとも称される)又は無アルカリガラス(例えば、EAGLE-XG、コーニング社)であり、更に好ましくは、ソーダガラスである。 In one embodiment, the substrate in step (ii) in the production method is preferably a glass substrate, more preferably soda glass (also referred to as soda lime glass) or alkali-free glass (for example, EAGLE- XG, Corning), and more preferably soda glass.
 一実施形態において、上記製造方法におけるステップ(ii)における該硬化性樹脂組成物を該基板へ塗布する方法としては、公知のコーティング方法を使用することができる。例えば、スピンコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、スクリーンコーティング、スリットコーティング、ディップコーティング、グラビアコーティングなどを挙げることができるがこれらに限定されない。好ましくは、スピンコーティングを使用して塗布することができる。 In one embodiment, a known coating method can be used as a method of applying the curable resin composition in step (ii) of the manufacturing method to the substrate. Examples include, but are not limited to, spin coating, die coating, spray coating, roll coating, screen coating, slit coating, dip coating, gravure coating and the like. Preferably, it can be applied using spin coating.
 別の実施形態において、上記製造方法におけるステップ(ii)において、好ましくは、該組成物が更に酸触媒を含む。理論に束縛されることを望まないが、該硬化性樹脂組成物塗膜が酸触媒を含むことによって、酸触媒がステップ(iii)での重合反応において重合触媒として機能し、反応を促進することができるからである。したがって、別の実施形態において、上記製造方法におけるステップ(i)が、酸触媒を準備するステップを更に含む。 In another embodiment, preferably, in step (ii) of the above production method, the composition further comprises an acid catalyst. Although not wishing to be bound by theory, the curable resin composition coating film contains an acid catalyst, so that the acid catalyst functions as a polymerization catalyst in the polymerization reaction in step (iii) and promotes the reaction. Because you can. Therefore, in another embodiment, step (i) in the above production method further includes the step of providing an acid catalyst.
 別の実施形態において、上記製造方法におけるステップ(iii)が、該硬化性樹脂組成物塗膜を加熱処理するステップを更に含む。該加熱処理の温度としては、好ましくは、100℃~300℃、より好ましくは、150℃~300℃が挙げられる。該加熱処理の時間としては、好ましくは1分間以上、より好ましくは、10分間、20分間、30分間、40分間、50分間、1時間、2時間、3時間、4時間、5時間、6時間などが挙げられるがこれらに限定されない。特に好ましい該加熱処理の時間は、10分間から2時間が挙げられる。 In another embodiment, step (iii) in the production method further includes a step of heat-treating the curable resin composition coating film. The temperature of the heat treatment is preferably 100 ° C. to 300 ° C., more preferably 150 ° C. to 300 ° C. The heat treatment time is preferably 1 minute or more, more preferably 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours. However, it is not limited to these. Particularly preferred heat treatment time is 10 minutes to 2 hours.
 上記製造方法によって製造された硬化樹脂膜は、上記(2-2)の硬化樹脂膜の特徴を有し、易剥離膜、より好ましくは易剥離耐熱性の膜として得ることができる。 The cured resin film produced by the above production method has the characteristics of the cured resin film of (2-2) and can be obtained as an easily peelable film, more preferably an easily peelable heat resistant film.
 〔4〕用途
 本発明の硬化性樹脂組成物又は硬化樹脂膜は、合成樹脂、ペレット、フィルム、プレート、繊維、チューブ、ゴム、エラストマー等に使用され、二輪車(自転車、オートバイなど)、自動車、飛行機、電車、船、ロケット、宇宙船、運送、レジャー、家具(例えば、テーブル、いす、机、棚など)、寝具(例えば、ベッド、ハンモックなど)、衣服、防護服、スポーツ用品、浴槽、キッチン、食器、調理用具、容器及び包装材(食品用容器、化粧品用容器、貨物用コンテナ、ごみ箱など)、建築(建造物、道路、建築部品など)、農業フィルム、工業フィルム、上下水道、塗料、化粧料、電機産業及び電子産業分野(電化製品、コンピュータ用部品、プリント基板、絶縁体、導電体、配線被膜材、発電素子、スピーカー、マイクロフォン、ノイズキャンセラ、トランスデューサなど)、光通信ケーブル、医療用材料及び器具(カテーテル、ガイドワイヤー、人工血管、人工筋肉、人工臓器、透析膜、内視鏡など)、小型ポンプ、アクチュエータ、ロボット材料(産業用ロボットなどに使用されるセンサ)、エネルギー生成装置及びプラント(太陽光発電、風力発電など)など幅広い分野に応用できる。
[4] Applications The curable resin composition or cured resin film of the present invention is used for synthetic resins, pellets, films, plates, fibers, tubes, rubber, elastomers, etc., and is used for two-wheeled vehicles (bicycles, motorcycles, etc.), automobiles, airplanes. , Train, ship, rocket, spacecraft, transportation, leisure, furniture (eg, table, chair, desk, shelf, etc.), bedding (eg, bed, hammock, etc.), clothing, protective clothing, sports equipment, bathtub, kitchen, Tableware, cooking utensils, containers and packaging materials (food containers, cosmetic containers, freight containers, waste bins, etc.), architecture (buildings, roads, building parts, etc.), agricultural films, industrial films, water and sewage, paints, makeup Materials, electrical industry and electronics industry (electric appliances, computer parts, printed circuit boards, insulators, conductors, wiring coating materials, power generation elements, speakers, micros Phones, noise cancellers, transducers, etc.), optical communication cables, medical materials and instruments (catheters, guide wires, artificial blood vessels, artificial muscles, artificial organs, dialysis membranes, endoscopes, etc.), small pumps, actuators, robot materials (industrial) It can be applied to a wide range of fields such as sensors used for industrial robots), energy generators and plants (solar power generation, wind power generation, etc.).
 本発明の硬化性樹脂組成物又は硬化樹脂膜は、電子材料、医療材料、ヘルスケア材料、ライフサイエンス材料、又はロボット材料などに使用され得る。本発明の硬化性樹脂組成物又は硬化樹脂膜は、例えば、カテーテル、ガイドワイヤー、医薬品用容器、チューブなどの材料として使用され得る。 The curable resin composition or cured resin film of the present invention can be used for electronic materials, medical materials, healthcare materials, life science materials, robot materials, and the like. The curable resin composition or cured resin film of the present invention can be used as a material for, for example, a catheter, a guide wire, a pharmaceutical container, a tube and the like.
 本発明の硬化性樹脂組成物又は硬化樹脂膜は、自動車部品(車体パネル、バンパー帯、ロッカーパネル、サイドモール、エンジン部品、駆動部品、伝導部品、操縦装置部品、スタビライザー部品、懸架・制動装置部品、ブレーキ部品、シャフト部品、パイプ類、タンク類、車輪、シート、シートベルトなど)に使用され得る。本発明のポリマーは、自動車用防振材、自動車用塗料、自動車用合成樹脂などに使用され得る。 The curable resin composition or cured resin film of the present invention is used for automobile parts (body panels, bumper bands, rocker panels, side moldings, engine parts, drive parts, conductive parts, steering device parts, stabilizer parts, suspension / brake device parts. Brake parts, shaft parts, pipes, tanks, wheels, seats, seat belts, etc.). The polymer of the present invention can be used for an anti-vibration material for automobiles, paints for automobiles, synthetic resins for automobiles, and the like.
 本発明の硬化性樹脂組成物又は硬化樹脂膜は、特に、ディスプレイ装置(例えば、液晶ディスプレイ装置)等の表示装置に使用される。 The curable resin composition or cured resin film of the present invention is used particularly for display devices such as display devices (for example, liquid crystal display devices).
 液晶ディスプレイ装置等の表示装置は、券売機、ATM、スマートフォン等の携帯型端末、コンピュータその他の種々の電気・電子機器に幅広く用いられている。それらのディスプレイ装置のスクリーンは、一般に強直な平板状である。これに対し、表示装置の潜在的用途の拡大を反映して、ある程度の変形が可能なスクリーンを備えた、フレキシブルなディスプレイ装置の開発が行われている。曲げることができる回路を構成する基板としては、樹脂製のベースフィルムがあるが、ディスプレイ装置のスクリーン中で用いる場合、微細な回路が作製でき且つ透明で可能な限り薄く軽いことが求められる。 Display devices such as liquid crystal display devices are widely used in ticket machines, ATMs, portable terminals such as smartphones, computers, and other various electric and electronic devices. The screens of these display devices are generally rigid flat plates. On the other hand, a flexible display device having a screen that can be deformed to some extent has been developed to reflect the expansion of potential uses of the display device. As a substrate constituting a circuit that can be bent, there is a resin base film. However, when it is used in a screen of a display device, it is required to be able to produce a fine circuit and be transparent and as thin and light as possible.
 樹脂ベースフィルム上への種々の微細な電気・電子回路の作製では、例えば、フォトリソグラフィ法が用いられ、ベースフィルムへ上の金属膜形成、フォトレジスト膜のコーティング、プリベーク、回路パターンの露光、レジスト溶解による現像、リンス、焼成、エッチング、フォトレジスト除去等の工程が、目的と手法に応じて組み合わされ、反復されて回路が作製される。更に、このようにして作製される層の間や層上に、必要に応じて異方性導電膜(ACF)が配置され、その上の必要部位にプリント配線基板が配置され、加熱、加圧により、異方性導電膜を介してプリント配線基板と金属配線との間での回路接続がなされる。こうして積層体として回路全体が作製されるには、一般に何回かの焼成ステップが含まれる。回路の性能のためには焼成は十分な高さの温度(230℃付近)で行うことが望ましいが、ベースフィルムの耐熱性のレベルよって焼成可能温度の上限が制約を受ける。即ち、ベースフィルムが耐える限度以下の低温側の領域でなければ、各ステップでの焼成を行うことができない。そのような低温域で焼成のできる金属配線として、他の材料(銀ナノ粒子等)を用いることが可能ではあるものの、それらを用いた低温焼成により作製される配線は、ITOを用いた従来の配線に比べて特性が劣るため、技術上好ましくない。 In the production of various fine electric and electronic circuits on a resin base film, for example, a photolithography method is used to form a metal film on the base film, coating a photoresist film, pre-baking, circuit pattern exposure, resist Processes such as development by development, rinsing, baking, etching, and photoresist removal are combined according to the purpose and method, and repeated to produce a circuit. Further, an anisotropic conductive film (ACF) is disposed between and on the layers thus produced, if necessary, and a printed wiring board is disposed on a necessary portion thereon, and is heated and pressurized. Thus, the circuit connection between the printed wiring board and the metal wiring is made through the anisotropic conductive film. In order to produce the entire circuit as a laminated body in this manner, generally, several firing steps are included. For circuit performance, firing is desirably performed at a sufficiently high temperature (around 230 ° C.), but the upper limit of the firing temperature is limited by the heat resistance level of the base film. In other words, the baking in each step cannot be performed unless the region is on the low-temperature side below the limit that the base film can withstand. Although it is possible to use other materials (silver nanoparticles, etc.) as the metal wiring that can be fired in such a low temperature region, the wiring produced by low-temperature firing using them is a conventional one using ITO. Since the characteristics are inferior to those of the wiring, it is not technically preferable.
 しかも、ベースフィルムは、年々薄型化が求められているが、薄型化に伴ってベースフィルムの耐熱性は低下する。その結果、現在では熱処理温度の上限が100℃程度まで低下しており、今後更なる薄型要望によりベースフィルムの加熱処理に耐え得る温度の上限が更に低下することを想定すると、回路の性能を維持できる温度での焼成に対応し得るベースフィルム材料が見当たらない、という問題がある。 Moreover, although the base film is required to be thinner year by year, the heat resistance of the base film decreases as the thickness is reduced. As a result, the upper limit of the heat treatment temperature is currently reduced to about 100 ° C, and the circuit performance is maintained assuming that the upper limit of the temperature that can withstand the heat treatment of the base film is further lowered due to further thinning demand in the future. There is a problem that there is no base film material that can be fired at a possible temperature.
 このため、より高い温度に耐えるベースフィルム材料が求められている。 Therefore, there is a demand for a base film material that can withstand higher temperatures.
 また、薄型化に伴いベースフィルムは、300nm程度の非常に薄い膜を用いることが望まれており、そのためには、他の基板(ガラス基板等)にベースフィルム材料である樹脂組成物を塗布し熱硬化等により硬化させて成膜する方法で、ベースフィルムを作製することが必要となる。ガラス等の基板に形成されたこの極めて薄いベースフィルム上で、金属配線等の回路構成要素を順次層状に形成し、異方性導電膜の設置、プリント基板配線の積層、回路接続等も目的に応じて行い、絶縁保護膜の積層を行った後、ガラス等の基板からベースフィルムをその上に形成された各層と共に一体の積層体として剥がせば、回路部品としての積層体が得られる。 In addition, as the thickness of the base film decreases, it is desired to use a very thin film of about 300 nm. For this purpose, a resin composition as a base film material is applied to another substrate (such as a glass substrate). It is necessary to produce a base film by a method of forming a film by curing by heat curing or the like. On this extremely thin base film formed on a substrate such as glass, circuit components such as metal wiring are sequentially formed in layers, for the purpose of installation of anisotropic conductive film, lamination of printed circuit board wiring, circuit connection, etc. Then, after the insulating protective film is laminated, the base film is peeled off from the substrate such as glass together with the layers formed thereon as an integral laminated body to obtain a laminated body as a circuit component.
 ここで、ガラス等の基板からの積層体の引き剥がしは、無理なく容易に行えるものでなければならない。さもなければ、引き剥がす際の負荷により積層体に大きな歪みが生じ、それにより金属配線の断線や回路接続の剥離が生じて、製品の著しい歩留まり悪化を招くからである。 Here, the laminate must be easily peeled off from the substrate such as glass. Otherwise, a large distortion occurs in the laminate due to the load at the time of peeling, thereby causing disconnection of the metal wiring and peeling of the circuit connection, leading to a significant deterioration in the yield of the product.
 特に、基板材料自体は薄膜状において従来のものより高い温度での熱処理に耐えるとしても、その上に配線を作製する工程での焼成がその分高い温度で行われると、基板材料とそれが載っている基板表面とは固着し易くなる。このため、基板材料としては、薄膜状において従来のものより高温での焼成に耐えるだけでは不十分であり、そのような高温焼成後も基板から無理なく容易に剥離できるという特性のものでなければならない。 In particular, even if the substrate material itself withstands heat treatment at a higher temperature than the conventional one in the form of a thin film, if the firing in the process of forming the wiring thereon is performed at a higher temperature, the substrate material and it will be placed. It becomes easy to adhere to the substrate surface. For this reason, as a substrate material, it is not sufficient to endure baking at a higher temperature than the conventional one in a thin film form, and it should not have such characteristics that it can be easily and easily separated from the substrate even after such high temperature baking. Don't be.
 更には、上記のようにベースフィルムは非常に薄いものであるため、これを形成するための樹脂材料は、基板(ガラス基板等)に塗布したとき、基板に弾かれることなく極めて薄く一様に拡がることのできる性質のもの(例えば、濡れ性を有するもの)でなければならない。基板に対するこのような親和性は、その反面、焼成工程で、基板との固着をもたらし得るため、易剥離性を失わせ得る要因の1つでもある。 Furthermore, since the base film is very thin as described above, the resin material for forming the base film is very thin and uniform without being bounced to the substrate when applied to the substrate (glass substrate, etc.). It must be of a nature that allows it to spread (eg, has wettability). On the other hand, such an affinity for the substrate is one of the factors that can cause easy adhesion to the substrate in the firing step, and thus can easily lose the peelability.
 本発明は、硬化性樹脂組成物を基板(ガラス等)の表面に極めて薄く塗布して、加熱硬化させることにより硬化樹脂薄膜を成膜でき、その上にパターニング等により回路を作製する工程での焼成において230℃~300℃の高温に耐え、しかもそのような高温に曝された後も基板から無理なく容易に剥離することのできる、硬化性樹脂組成物及び硬化樹脂膜を提供することにより、上記に列挙した用途などの幅広い分野に応用することができる。 In the present invention, a curable resin thin film can be formed by applying an extremely thin curable resin composition to the surface of a substrate (glass, etc.) and cured by heating, and a circuit is formed thereon by patterning or the like. By providing a curable resin composition and a cured resin film that can withstand high temperatures of 230 ° C. to 300 ° C. in firing and can be easily and easily peeled off from a substrate even after being exposed to such high temperatures, It can be applied to a wide range of fields such as those listed above.
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 References such as scientific literature, patents, and patent applications cited in this specification are incorporated herein by reference in their entirety to the same extent as if they were specifically described.
 以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明及び以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したものではない。したがって、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。 As described above, the present invention has been described by showing preferred embodiments for easy understanding. Hereinafter, the present invention will be described based on examples. However, the above description and the following examples are provided for illustrative purposes only and are not provided for the purpose of limiting the present invention. Accordingly, the scope of the invention is not limited to the embodiments or examples specifically described herein, but is limited only by the claims.
 以下、実施例を参照して本発明を更に詳細に説明するが、本発明がそれらの実施例に限定されることは意図しない。そして各実施例に開示された技術的手段を適宜組み合わせて得られる実施例も、本発明の範囲に含まれるものとする。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not intended to be limited to these examples. Examples obtained by appropriately combining technical means disclosed in each example are also included in the scope of the present invention.
<方法および材料>
 本実施例、試験例及び比較例において使用した方法および材料は、特に断りがない限り、以下のものを使用した。
<ゲル浸透クロマトグラフィー>
ポリマーを含む混合物を、テトラヒドロフランに混合物の固形分が0.1質量%となるように希釈してサンプルを調製し、希釈液を40℃に保持したゲル浸透クロマトグラフィーカラム(TSK GEL 5000HXL、TSK GEL 3000HXL(東ソー(株)製;商品名) の合計2本をこの順で直列に接続(5000HXLが上流))に注入した。次いで、希釈液が注入されたゲル浸透クロマトグラフィーカラムに溶離液としてテトラヒドロフランを1ml/分で注ぐことによりポリマーを含む溶離液を抽出し、示差屈折率検出器(東ソー(株)製)によりポリマーの分子量を測定した。
<架橋剤>
MW-30:ヘキサメトキシメチルメラミン、商品名ニカラックMW-30、(株)三和ケミカル
MX-270:1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、商品名ニカラックMW-270、(株)三和ケミカル
BX-4500:テトラメトキシメチルベンゾグアナミン、商品名ニカラックBX-4500、(株)三和ケミカル
<酸触媒>p-トルエンスルホン酸ピリジニウム、(株)東京化成工業
<溶剤> プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10
<Method and Material>
The methods and materials used in the examples, test examples and comparative examples were as follows unless otherwise specified.
<Gel permeation chromatography>
A mixture containing the polymer was diluted with tetrahydrofuran so that the solid content of the mixture was 0.1% by mass to prepare a sample, and a gel permeation chromatography column (TSK GEL 5000HXL, TSK GEL A total of 3000 HXL (manufactured by Tosoh Corporation; trade name) were injected in this order in series (5000 HXL upstream)). Next, the eluent containing the polymer is extracted by pouring tetrahydrofuran as an eluent at 1 ml / min into the gel permeation chromatography column into which the diluent has been injected. The molecular weight was measured.
<Crosslinking agent>
MW-30: Hexamethoxymethylmelamine, trade name Nicarak MW-30, Sanwa Chemical Co., Ltd. MX-270: 1,3,4,6-tetrakis (methoxymethyl) glycoluril, trade name Nicalac MW-270, ( Sanwa Chemical Co., Ltd. BX-4500: Tetramethoxymethyl benzoguanamine, trade name Nicalac BX-4500, Sanwa Chemical Co., Ltd. <acid catalyst> pyridinium p-toluenesulfonate, Tokyo Chemical Industry Co., Ltd. <solvent> propylene glycol monomethyl Ether (PGME) / ethanol = 90/10
<重合体>
硬化性樹脂組成物の構成要素を形成する重合体は以下の製造例に記載のように製造した。
<Polymer>
The polymer forming the constituent elements of the curable resin composition was produced as described in the following production examples.
〔製造例1〕 重合体A-1の製造
 次式(1-1)、
Figure JPOXMLDOC01-appb-C000044

の2-ヒドロキシプロピルメタクリレートをモノマーとして用い、その100質量部をプロピレングリコールモノメチルエーテル(PGME)に30質量%になるように溶解させた。得られた溶液に窒素ガスを吹き込みながら80℃まで昇温し2,2’-アゾビスイソブチロニトリル(AIBN)をモノマー総量に対して5モル%添加した後、80℃で8時間反応を行って重合体A-1
Figure JPOXMLDOC01-appb-C000045

を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、25,000であった。
[Production Example 1] Production of polymer A-1 The following formula (1-1):
Figure JPOXMLDOC01-appb-C000044

2-hydroxypropyl methacrylate was used as a monomer, and 100 parts by mass thereof was dissolved in propylene glycol monomethyl ether (PGME) so as to be 30% by mass. The resulting solution was heated to 80 ° C. while blowing nitrogen gas, 5 mol% of 2,2′-azobisisobutyronitrile (AIBN) was added to the total amount of monomers, and then reacted at 80 ° C. for 8 hours. Go to polymer A-1
Figure JPOXMLDOC01-appb-C000045

Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 25,000.
〔製造例2〕 重合体A-2の製造
 次式(1-2)、
Figure JPOXMLDOC01-appb-C000046

 
の3-ベンゾイルオキシ-2-ヒドロキシプロピルメタクリレートをモノマーとして用いた以外は製造例1と同様にして、重合体A-2
Figure JPOXMLDOC01-appb-C000047

を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、22,000であった。
[Production Example 2] Production of polymer A-2 The following formula (1-2):
Figure JPOXMLDOC01-appb-C000046


Polymer A-2 was prepared in the same manner as in Production Example 1, except that 3-benzoyloxy-2-hydroxypropyl methacrylate was used as a monomer.
Figure JPOXMLDOC01-appb-C000047

Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 22,000.
〔製造例3〕 重合体A-3の製造
 次式(1-3)、
Figure JPOXMLDOC01-appb-C000048

の4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシルメチルメタクリレートをモノマーとして用いた以外は製造例1と同様にして、重合体A-3
Figure JPOXMLDOC01-appb-C000049

を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、32,000であった。
[Production Example 3] Production of polymer A-3 The following formula (1-3):
Figure JPOXMLDOC01-appb-C000048

Polymer A-3 was prepared in the same manner as in Production Example 1 except that 4-benzoyloxy-3-hydroxycyclohexylmethyl methacrylate was used as a monomer.
Figure JPOXMLDOC01-appb-C000049

Got. It was 32,000 when the weight average molecular weight (MW) of this polymer was measured by the gel permeation chromatography.
〔製造例4〕 重合体A-4の製造
 次式(1-4)、
Figure JPOXMLDOC01-appb-C000050

の1,3-アダマンチルジオールモノメタクリレートをモノマーとして用いた以外は実施例1と同様にして、重合体A-4
Figure JPOXMLDOC01-appb-C000051

を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、18,000であった。
[Production Example 4] Production of polymer A-4 The following formula (1-4):
Figure JPOXMLDOC01-appb-C000050

A polymer A-4 was prepared in the same manner as in Example 1 except that 1,3-adamantyldiol monomethacrylate was used as a monomer.
Figure JPOXMLDOC01-appb-C000051

Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 18,000.
〔製造例5〕 重合体A-5の製造
 次式(1-5)、
Figure JPOXMLDOC01-appb-C000052

の2-ヒドロキシシクロヘキシルメタクリレートをモノマーとして用いた以外は製造例1と同様にして、重合体A-5
Figure JPOXMLDOC01-appb-C000053

を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、36,000であった。
[Production Example 5] Production of polymer A-5 The following formula (1-5):
Figure JPOXMLDOC01-appb-C000052

Polymer A-5 was prepared in the same manner as in Production Example 1 except that 2-hydroxycyclohexyl methacrylate was used as a monomer.
Figure JPOXMLDOC01-appb-C000053

Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 36,000.
〔製造例6〕 重合体A-6の製造
 次式(1-6)、
Figure JPOXMLDOC01-appb-C000054

の4-ヒドロキシシクロヘキシルメタクリレートをモノマーとして用いた以外は製造例1と同様にして、重合体A-6
Figure JPOXMLDOC01-appb-C000055

を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、33,000であった。
[Production Example 6] Production of polymer A-6 The following formula (1-6):
Figure JPOXMLDOC01-appb-C000054

Polymer A-6 was prepared in the same manner as in Production Example 1 except that 4-hydroxycyclohexyl methacrylate was used as a monomer.
Figure JPOXMLDOC01-appb-C000055

Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 33,000.
〔製造例7〕 重合体A-7の製造
 次式(1-7)、
Figure JPOXMLDOC01-appb-C000056

の4-ヒドロキシフェニルメタクリレートをモノマーとして用いた以外は製造例1と同様にして、重合体A-7
Figure JPOXMLDOC01-appb-C000057

を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、30,000であった。
[Production Example 7] Production of polymer A-7 The following formula (1-7):
Figure JPOXMLDOC01-appb-C000056

Polymer A-7 was prepared in the same manner as in Production Example 1 except that 4-hydroxyphenyl methacrylate was used as a monomer.
Figure JPOXMLDOC01-appb-C000057

Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 30,000.
〔製造例8〕 重合体A-8の製造
 次式(1-8)、
Figure JPOXMLDOC01-appb-C000058

の4-(4-メトキシフェニルプロペノイル)オキシ-3-ヒドロキシシクロヘキシルメチルメタクリレートをモノマーとして用いた以外は製造例1と同様にして、重合体A-8
Figure JPOXMLDOC01-appb-C000059

 
を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、27,700であった。
[Production Example 8] Production of polymer A-8 The following formula (1-8):
Figure JPOXMLDOC01-appb-C000058

Polymer A-8 was prepared in the same manner as in Production Example 1 except that 4- (4-methoxyphenylpropenoyl) oxy-3-hydroxycyclohexylmethyl methacrylate was used as a monomer.
Figure JPOXMLDOC01-appb-C000059


Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 27,700.
〔製造例9〕 重合体A-9の製造
 次式(1-9)、
Figure JPOXMLDOC01-appb-C000060

の4-アダマンタンカルボキシオキシ-3-ヒドロキシシクロヘキシルメチルメタクリレートをモノマーとして用いた以外は製造例1と同様にして、重合体A-9
Figure JPOXMLDOC01-appb-C000061

を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、31,700であった。
[Production Example 9] Production of polymer A-9 The following formula (1-9):
Figure JPOXMLDOC01-appb-C000060

Polymer A-9 was prepared in the same manner as in Production Example 1 except that 4-adamantanecarboxycarboxy-3-hydroxycyclohexylmethyl methacrylate was used as a monomer.
Figure JPOXMLDOC01-appb-C000061

Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 31,700.
〔製造例10〕 重合体A-10の製造
 次式(1-10)、
Figure JPOXMLDOC01-appb-C000062

の2-ヒドロキシエチルメタクリレートをモノマーとして用いた以外は製造例1と同様にして、重合体A-10
Figure JPOXMLDOC01-appb-C000063

を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、42,000であった。
[Production Example 10] Production of polymer A-10 The following formula (1-10):
Figure JPOXMLDOC01-appb-C000062

Polymer A-10 was prepared in the same manner as in Production Example 1 except that 2-hydroxyethyl methacrylate was used as a monomer.
Figure JPOXMLDOC01-appb-C000063

Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 42,000.
〔製造例11〕 重合体A-11の製造
 次式(1-11)、
Figure JPOXMLDOC01-appb-C000064

の4-(ヒドロキシメチル)シクロヘキシルメチルアクリレートをモノマーとして用いた以外は製造例1と同様にして、重合体A-11
Figure JPOXMLDOC01-appb-C000065

を得た。ゲル浸透クロマトグラフィーによりこの重合体の重量平均分子量(MW)を測定したところ、18,000であった。
[Production Example 11] Production of polymer A-11 The following formula (1-11):
Figure JPOXMLDOC01-appb-C000064

Polymer A-11 was prepared in the same manner as in Production Example 1 except that 4- (hydroxymethyl) cyclohexylmethyl acrylate was used as a monomer.
Figure JPOXMLDOC01-appb-C000065

Got. When the weight average molecular weight (MW) of this polymer was measured by gel permeation chromatography, it was 18,000.
 本発明の硬化性樹脂組成物を以下に示すようにして製造した。 The curable resin composition of the present invention was produced as follows.
[実施例1]
 重合体A-1の45質量部、架橋剤として次式(B-1)、
Figure JPOXMLDOC01-appb-C000066

のヘキサメトキシメチルメラミン(ニカラックMW-30、(株)三和ケミカル)の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 1]
45 parts by mass of the polymer A-1, the following formula (B-1) as a crosslinking agent:
Figure JPOXMLDOC01-appb-C000066

50 parts by mass of hexamethoxymethylmelamine (Nicarac MW-30, Sanwa Chemical Co., Ltd.) and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst, propylene glycol monomethyl ether (PGME) / ethanol = 90 The composition was obtained as a solution (NV = 5%).
[実施例2]
 重合体A-1の45質量部、架橋剤として次式(B-2)、
Figure JPOXMLDOC01-appb-C000067

の1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(ニカラックMX-270、(株)三和ケミカル)の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 2]
45 parts by mass of the polymer A-1, the following formula (B-2) as a crosslinking agent:
Figure JPOXMLDOC01-appb-C000067

50 parts by mass of 1,3,4,6-tetrakis (methoxymethyl) glycoluril (Nicarac MX-270, Sanwa Chemical Co., Ltd.) and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst, It was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例3]
 重合体A-1の45質量部、架橋剤として次式(B-3)、
Figure JPOXMLDOC01-appb-C000068

のテトラメトキシメチルベンゾグアナミン(ニカラックBX-4500、(株)三和ケミカル)の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 3]
45 parts by mass of the polymer A-1, the following formula (B-3) as a crosslinking agent:
Figure JPOXMLDOC01-appb-C000068

Of tetramethoxymethyl benzoguanamine (Nicarac BX-4500, Sanwa Chemical Co., Ltd.) and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst, propylene glycol monomethyl ether (PGME) / ethanol = 90 The composition was obtained as a solution (NV = 5%).
[実施例4]
 重合体A-2の45質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 4]
45 parts by mass of the polymer A-2, 50 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例5]
 重合体A-2の45質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 5]
45 parts by mass of polymer A-2, 50 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例6]
 重合体A-2の45質量部、架橋剤テトラメトキシメチルベンゾグアナミン(式(B-3))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 6]
45 parts by mass of the polymer A-2, 50 parts by mass of the cross-linking agent tetramethoxymethylbenzoguanamine (formula (B-3)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例7]
 重合体A-3の45質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 7]
45 parts by mass of polymer A-3, 50 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例8]
 重合体A-3の45質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 8]
45 parts by mass of polymer A-3, 50 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例9]
 重合体A-3の45質量部、架橋剤テトラメトキシメチルベンゾグアナミン(式(B-3))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 9]
45 parts by mass of polymer A-3, 50 parts by mass of the cross-linking agent tetramethoxymethylbenzoguanamine (formula (B-3)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例10]
 重合体A-4の45質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 10]
45 parts by mass of polymer A-4, 50 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例11]
 重合体A-4の45質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 11]
45 parts by mass of polymer A-4, 50 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例12]
 重合体A-4の45質量部、架橋剤テトラメトキシメチルベンゾグアナミン(式(B-3))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 12]
45 parts by mass of polymer A-4, 50 parts by mass of the cross-linking agent tetramethoxymethylbenzoguanamine (formula (B-3)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例13]
 重合体A-5の45質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 13]
45 parts by mass of polymer A-5, 50 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例14]
 重合体A-5の45質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 14]
45 parts by mass of polymer A-5, 50 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例15]
 重合体A-5の45質量部、架橋剤テトラメトキシメチルベンゾグアナミン(式(B-3))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 15]
45 parts by mass of polymer A-5, 50 parts by mass of the cross-linking agent tetramethoxymethylbenzoguanamine (formula (B-3)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例16]
 重合体A-6の45質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 16]
45 parts by mass of polymer A-6, 50 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例17]
 重合体A-6の45質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 17]
45 parts by mass of polymer A-6, 50 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例18]
 重合体A-6の45質量部、架橋剤テトラメトキシメチルベンゾグアナミン(式(B-3))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 18]
45 parts by mass of polymer A-6, 50 parts by mass of the cross-linking agent tetramethoxymethylbenzoguanamine (formula (B-3)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例19]
 重合体A-7の45質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 19]
45 parts by mass of polymer A-7, 50 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例20]
 重合体A-7の45質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 20]
45 parts by mass of polymer A-7, 50 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例21]
 重合体A-7の45質量部、架橋剤テトラメトキシメチルベンゾグアナミン(式(B-3))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 21]
45 parts by mass of polymer A-7, 50 parts by mass of the cross-linking agent tetramethoxymethylbenzoguanamine (formula (B-3)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例22]
 重合体A-8の45質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 22]
45 parts by mass of polymer A-8, 50 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例23]
 重合体A-8の45質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 23]
45 parts by mass of polymer A-8, 50 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例24]
 重合体A-8の45質量部、架橋剤テトラメトキシメチルベンゾグアナミン(式(B-3))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 24]
45 parts by mass of polymer A-8, 50 parts by mass of the cross-linking agent tetramethoxymethylbenzoguanamine (formula (B-3)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例25]
 重合体A-9の45質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 25]
45 parts by mass of polymer A-9, 50 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例26]
 重合体A-9の45質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 26]
45 parts by mass of polymer A-9, 50 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例27]
 重合体A-9の45質量部、架橋剤テトラメトキシメチルベンゾグアナミン(式(B-3))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 27]
45 parts by mass of polymer A-9, 50 parts by mass of the cross-linking agent tetramethoxymethylbenzoguanamine (formula (B-3)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例28]
 重合体A-1の30質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の65質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 28]
30 parts by mass of the polymer A-1, 65 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例29]
 重合体A-1の70質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の25質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 29]
70 parts by mass of the polymer A-1, 25 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例30]
 重合体A-1の30質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の65質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 30]
30 parts by mass of polymer A-1, 65 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例31]
 重合体A-1の70質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の25質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 31]
70 parts by mass of polymer A-1, 25 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例32]
 重合体A-2の30質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の65質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 32]
30 parts by mass of polymer A-2, 65 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例33]
 重合体A-2の70質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の25質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 33]
70 parts by mass of polymer A-2, 25 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例34]
 重合体A-2の30質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の65質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 34]
30 parts by mass of polymer A-2, 65 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[実施例35]
 重合体A-2の70質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の25質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Example 35]
70 parts by mass of polymer A-2, 25 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[比較例1]
 重合体A-10の45質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Comparative Example 1]
45 parts by mass of polymer A-10, 50 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[比較例2]
 重合体A-10の45質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Comparative Example 2]
45 parts by mass of polymer A-10, 50 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[比較例3]
 重合体A-10の45質量部、架橋剤テトラメトキシメチルベンゾグアナミン(式(B-3))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Comparative Example 3]
45 parts by mass of polymer A-10, 50 parts by mass of the cross-linking agent tetramethoxymethylbenzoguanamine (formula (B-3)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[比較例4]
 重合体A-11の45質量部、架橋剤ヘキサメトキシメチルメラミン(式(B-1))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Comparative Example 4]
45 parts by mass of polymer A-11, 50 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[比較例5]
 重合体A-11の45質量部、架橋剤1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(式(B-2))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Comparative Example 5]
45 parts by mass of polymer A-11, 50 parts by mass of crosslinking agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril (formula (B-2)), and pyridinium p-toluenesulfonate as a polymerization catalyst Was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[比較例6]
 重合体A-11の45質量部、架橋剤テトラメトキシメチルベンゾグアナミン(式(B-3))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Comparative Example 6]
45 parts by mass of polymer A-11, 50 parts by mass of the cross-linking agent tetramethoxymethylbenzoguanamine (formula (B-3)), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[比較例7]
 重合体A-1の45質量部、架橋剤トルエンンジイソシアネート(TDI、三井化学(株))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Comparative Example 7]
45 parts by mass of polymer A-1, 50 parts by mass of cross-linking agent toluene diisocyanate (TDI, Mitsui Chemicals), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[比較例8]
 重合体A-1の45質量部、架橋剤イソホロンジイソシアネート(IPDI、三井化学(株))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Comparative Example 8]
45 parts by mass of polymer A-1, 50 parts by mass of cross-linking agent isophorone diisocyanate (IPDI, Mitsui Chemicals), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether (PGME). ) / Ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[比較例9]
 重合体A-1の45質量部、架橋剤ヘキサメチレンジイソシアネート(HDI、三井化学(株))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Comparative Example 9]
45 parts by mass of polymer A-1, 50 parts by mass of cross-linking agent hexamethylene diisocyanate (HDI, Mitsui Chemicals), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst were mixed with propylene glycol monomethyl ether ( It was dissolved in a solution of (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[比較例10]
 重合体A-1の45質量部、架橋剤1,3-ビス(イソシアネートメチル)ベンゼン(タケネート500、三井化学(株))の50質量部、及び重合触媒としてp-トルエンスルホン酸ピリジニウムの5質量部を、プロピレングリコールモノメチルエーテル(PGME)/エタノール=90/10の溶液に溶解させて、組成物を溶液として得た(N.V.=5%)。
[Comparative Example 10]
45 parts by mass of polymer A-1, 50 parts by mass of crosslinking agent 1,3-bis (isocyanatemethyl) benzene (Takenate 500, Mitsui Chemicals), and 5 parts by mass of pyridinium p-toluenesulfonate as a polymerization catalyst A part was dissolved in a solution of propylene glycol monomethyl ether (PGME) / ethanol = 90/10 to obtain a composition as a solution (NV = 5%).
[測定実施例1]剥離力および透過率の評価
 上記の各実施例及び各比較例の組成物を、0.7mmのソーダガラス上にそれぞれスピンコーティングにより塗布し、100℃で2分加熱した後、150℃で5分加熱し、そして230℃で2時間、230℃で8時間、260℃で2時間または300℃で30分間加熱処理して、約300nmの膜厚を成膜した。あるいは、上記の各実施例及び各比較例の組成物を、0.7mmのソーダガラス上にそれぞれスピンコーティングにより塗布し、100℃で30秒加熱して、約300nmの膜厚を成膜した。そして各々でガラス基板上に作製された硬化樹脂薄膜について、透過率(λ=400nm)およびそれらをガラス基板から剥離させるのに要する力の大きさ(剥離力)について評価した剥離力、透過率の測定方法を以下に示し、剥離力と透過率の測定結果を表1~表3に示す。
[Measurement Example 1] Evaluation of Peeling Force and Transmittance After the compositions of the above Examples and Comparative Examples were each applied by spin coating on 0.7 mm soda glass and heated at 100 ° C. for 2 minutes. The film was heated at 150 ° C. for 5 minutes, and heat-treated at 230 ° C. for 2 hours, 230 ° C. for 8 hours, 260 ° C. for 2 hours, or 300 ° C. for 30 minutes to form a film having a thickness of about 300 nm. Alternatively, the compositions of the above Examples and Comparative Examples were each applied by spin coating on 0.7 mm soda glass and heated at 100 ° C. for 30 seconds to form a film thickness of about 300 nm. And about the cured resin thin film produced on the glass substrate in each, the transmittance | permeability ((lambda) = 400nm) and the peeling force and the transmittance | permeability which evaluated about the magnitude | size (peeling force) required to peel them from a glass substrate The measurement method is shown below, and the measurement results of peel strength and transmittance are shown in Tables 1 to 3.
剥離力(N/mm):測定装置としてTENSILON RTG-1310((株)エー・アンド・デイ),ロードセルとしてUR-100N-D型を用い,測定は,ガラス基板上の硬化樹脂薄膜にニチバンテープ(24mm幅)を貼り付け,ガラス基板に対し剥離角度90°にて300mm/分の一定速度で引きながら剥離に要する力(剥離力)の大きさを上記装置で計測することにより行った。なお、各実施例および各比較例において、ガラス基板から剥離しなかったものについては透過率を測定しなかった。 Peeling force (N / mm 2 ): TENSILON RTG-1310 (A & D Co., Ltd.) as a measuring device and UR-100N-D type as a load cell. Measurement is performed on a cured resin thin film on a glass substrate by Nichiban A tape (24 mm width) was affixed, and the magnitude of the force required for peeling (peeling force) was measured with the above apparatus while pulling at a constant speed of 300 mm / min at a peeling angle of 90 ° with respect to the glass substrate. In each example and each comparative example, the transmittance was not measured for those not peeled off from the glass substrate.
透過率(%):測定装置として、V-660((株)日本分光)、を用い、同等のガラス基板に対する400~700nmの波長光の光透過度を測定した。 Transmittance (%): V-660 (JASCO Corporation) was used as a measuring device, and the light transmittance of 400 to 700 nm wavelength light with respect to an equivalent glass substrate was measured.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 表1~表3より以下のことがわかる。 Table 1 to Table 3 show the following.
 実施例1~35に示すアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた鎖状ポリマーを含む硬化性樹脂膜は、比較例1~6に示すアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた鎖状ポリマーを含まない硬化性樹脂膜に比べて、易剥離耐熱性及び高速硬化性が高いことがわかる。 The curable resin films containing chain polymers having side chains having alcoholic secondary or tertiary OH-containing groups or phenolic OH-containing groups shown in Examples 1 to 35 are shown in Comparative Examples 1 to 6. Compared to a curable resin film that does not contain a chain polymer with a side chain having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group, it has high peel resistance and high-speed curability. I understand.
 また、架橋剤が、トリアジン系化合物及び/又はその縮合体、並びにグリコールウリル系化合物及び/又はその縮合体よりなる群から選ばれるものである実施例1~35は、架橋剤としてイソシアネートを用いた比較例7~10に比べて、易剥離耐熱性が高いことがわかる。特に、同一の鎖状ポリマーを含み、架橋剤が異なる実施例1~3と比較例7~10を比較すると、架橋剤がトリアジン系化合物及び/又はその縮合体、並びにグリコールウリル系化合物及び/又はその縮合体よりなる群から選ばれるものは、易剥離耐熱性及び高速硬化性が高いことがわかる。 In Examples 1 to 35 in which the crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, and glycoluril compounds and / or condensates thereof, isocyanate was used as the crosslinking agent. Compared with Comparative Examples 7 to 10, it can be seen that the heat resistance to easy peeling is high. In particular, when Examples 1 to 3 and Comparative Examples 7 to 10 containing the same chain polymer and different crosslinking agents are compared, the crosslinking agent is a triazine compound and / or a condensate thereof, and a glycoluril compound and / or It can be seen that those selected from the group consisting of the condensates have high easy-to-peel heat resistance and high-speed curability.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願及び他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified by using the preferred embodiments of the present invention, but it is understood that the scope of the present invention should be interpreted only by the scope of the claims. Patents, patent applications, and other references cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. It is understood.
 本発明は、ガラス等の基板に極めて薄く塗布でき、塗布後に乾燥し硬化させることにより極めて薄い硬化樹脂薄膜を成膜でき、その上にパターニング等により回路を作製する工程での焼成において230℃~300℃の高温に耐久性を有し、しかもそのような高温にさらされた後も基板から無理なく剥離することのできる硬化性樹脂組成物として、フィルム型電気・電子回路部品の製造に有用である。 The present invention can be applied to a substrate such as glass very thinly, and can be formed into a very thin cured resin thin film by drying and curing after coating. As a curable resin composition that has durability at a high temperature of 300 ° C. and can be easily peeled off from a substrate even after being exposed to such a high temperature, it is useful for the production of film-type electrical / electronic circuit components. is there.

Claims (50)

  1.  アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた鎖状ポリマーと、架橋剤とを含んでなる硬化性樹脂組成物であって、
     (a) 該鎖状ポリマーが、式A1:
    Figure JPOXMLDOC01-appb-C000001

    〔ここに
     R1aは水素、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれ、
     Lは単結合、置換又は非置換アルキレン基、及び置換又は非置換アルケニレン基よりなる群から選ばれ、
     LはO又はNHであり、
     R2a、R3a、及びR4aは、互いに独立して、水素、及び置換又は非置換炭化水素基よりなる群から選ばれ、ただしR2a、R3a、及びR4aのうち少なくとも1つは、置換又は非置換のアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基であるか、あるいは、R2a、R3a、及びR4aのうちの少なくとも2つが一緒になって、アルコール性第二級又は第三級OH又はフェノール性OHを含有する、置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、置換又は非置換ヘテロ芳香族基、あるいはこれらを含む多環を形成する。〕
    で示されるモノマー単位を含んでなるものであり、
     (b)該架橋剤が、トリアジン系化合物及び/又はその縮合体、グリコールウリル系化合物及び/又はその縮合体、並びにイミダゾリジノン系化合物及び/又はその縮合体
    よりなる群から選ばれるものである、
    硬化性樹脂組成物。
    A curable resin composition comprising a chain polymer having a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group, and a crosslinking agent,
    (A) The chain polymer is represented by the formula A1:
    Figure JPOXMLDOC01-appb-C000001

    [Wherein R 1a is selected from the group consisting of hydrogen, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkenyl group;
    L 1 is selected from the group consisting of a single bond, a substituted or unsubstituted alkylene group, and a substituted or unsubstituted alkenylene group;
    L 2 is O or NH;
    R 2a , R 3a , and R 4a are independently selected from the group consisting of hydrogen and substituted or unsubstituted hydrocarbon groups, provided that at least one of R 2a , R 3a , and R 4a is A substituted or unsubstituted alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group, or at least two of R 2a , R 3a , and R 4a taken together to form an alcohol A substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, which contains a secondary or tertiary OH or phenolic OH, Or the polycycle containing these is formed. ]
    Comprising a monomer unit represented by
    (B) The crosslinking agent is selected from the group consisting of triazine compounds and / or condensates thereof, glycoluril compounds and / or condensates thereof, and imidazolidinone compounds and / or condensates thereof. ,
    Curable resin composition.
  2.  該鎖状ポリマーが、式A2:
    Figure JPOXMLDOC01-appb-C000002

    〔ここに
     R1aおよびLは請求項1に記載のとおりであり、
     R5a~R14aは、互いに独立して、水素、ヒドロキシ基、及び
    Figure JPOXMLDOC01-appb-C000003

    よりなる群から選ばれ、又は一緒になって環を形成し、ただしR5a~R14a又は該環の置換基のうちの少なくとも1つがヒドロキシ基であり、
     R15aは置換又は非置換アルキル基、置換又は非置換アルケニル基、置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、及び置換又は非置換ヘテロ芳香族基よりなる群から選ばれる。〕
    で示されるモノマー単位を含んでなるものである、請求項1の硬化性樹脂組成物。
    The chain polymer is represented by the formula A2:
    Figure JPOXMLDOC01-appb-C000002

    [Wherein R 1a and L 1 are as defined in claim 1;
    R 5a to R 14a are independently of each other hydrogen, a hydroxy group, and
    Figure JPOXMLDOC01-appb-C000003

    Selected from the group consisting of or together form a ring, provided that at least one of R 5a to R 14a or a substituent of the ring is a hydroxy group,
    R 15a is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group Selected from the group consisting of ]
    The curable resin composition of Claim 1 which comprises the monomer unit shown by these.
  3.  Lは置換又は非置換アルキレン基、及び置換又は非置換アルケニレン基よりなる群から選ばれる、請求項1又は2の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein L 1 is selected from the group consisting of a substituted or unsubstituted alkylene group and a substituted or unsubstituted alkenylene group.
  4.  Lは置換又は非置換アルキレン基である、請求項1~3の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 3, wherein L 1 is a substituted or unsubstituted alkylene group.
  5.  Lはメチレン基である、請求項1~4の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, wherein L 1 is a methylene group.
  6.  該鎖状ポリマーが、式A5:
    Figure JPOXMLDOC01-appb-C000004

    〔ここに
     R1aおよびLは請求項1に記載のとおりであり、
     R19aは置換又は非置換シクロアルキル基、置換又は非置換シクロアルケニル基、置換又は非置換芳香族基、及び置換又は非置換ヘテロ芳香族基よりなる群から選ばれる
    よりなる群から選ばれる。〕
    で示されるモノマー単位を含んでなるものである、請求項1~5の何れかの硬化性樹脂組成物。
    The chain polymer is represented by formula A5:
    Figure JPOXMLDOC01-appb-C000004

    [Wherein R 1a and L 1 are as defined in claim 1;
    R 19a is selected from the group consisting of a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted heteroaromatic group. ]
    The curable resin composition according to any one of claims 1 to 5, which comprises a monomer unit represented by:
  7.  Lは置換又は非置換アルキレン基である、請求項6の硬化性樹脂組成物。 The curable resin composition according to claim 6, wherein L 1 is a substituted or unsubstituted alkylene group.
  8.  Lはメチレン基である、請求項6又は7の硬化性樹脂組成物。 L 1 is a methylene group, according to claim 6 or 7 curable resin composition.
  9.  R19aはフェニル基である、請求項6~8の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 6 to 8, wherein R 19a is a phenyl group.
  10.  該架橋剤が、トリアジン系化合物及び/又はその縮合体である、請求項1~9の何れかの硬化性樹脂組成物。 10. The curable resin composition according to claim 1, wherein the crosslinking agent is a triazine compound and / or a condensate thereof.
  11.  該架橋剤が、
    Figure JPOXMLDOC01-appb-C000005

    である、請求項1~10の何れかの硬化性樹脂組成物。
    The cross-linking agent
    Figure JPOXMLDOC01-appb-C000005

    The curable resin composition according to any one of claims 1 to 10, wherein
  12.  Lは単結合である、請求項1又は2の硬化性樹脂組成物。 L 1 is a single bond, The curable resin composition of Claim 1 or 2.
  13.  R5a~R14aのいずれか2つ以上がヒドロキシ基であり、他が水素である、請求項2~5、又は12の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 2 to 5 or 12, wherein any two or more of R 5a to R 14a are hydroxy groups and the other is hydrogen.
  14.  R5a~R14aのいずれか一つがヒドロキシ基であり、他が水素である、請求項2~5、又は12の何れかの硬化性樹脂組成物。 13. The curable resin composition according to claim 2, wherein any one of R 5a to R 14a is a hydroxy group and the other is hydrogen.
  15.  R5a~R13aは水素であり、R14aはヒドロキシ基である、請求項2~5、又は12の何れかの硬化性樹脂組成物。 The curable resin composition according to claim 2, wherein R 5a to R 13a are hydrogen and R 14a is a hydroxy group.
  16.  該架橋剤が、グリコールウリル系化合物及び/又はその縮合体である、請求項1~9又は12~15の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 9, or 12 to 15, wherein the crosslinking agent is a glycoluril compound and / or a condensate thereof.
  17.  該架橋剤が、
    Figure JPOXMLDOC01-appb-C000006

    である、請求項1~9又は12~15の硬化性樹脂組成物。
    The cross-linking agent
    Figure JPOXMLDOC01-appb-C000006

    The curable resin composition according to claim 1 to 9 or 12 to 15.
  18.  該架橋剤が、
    Figure JPOXMLDOC01-appb-C000007

    である、請求項1~10又は12~15の硬化性樹脂組成物。
    The cross-linking agent
    Figure JPOXMLDOC01-appb-C000007

    The curable resin composition according to claim 1 to 10 or 12 to 15.
  19.  該組成物は溶液として提供される、請求項1~18の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 18, wherein the composition is provided as a solution.
  20.  該溶液の溶媒はアルコールを含む、請求項19の硬化性樹脂組成物。 The curable resin composition according to claim 19, wherein the solvent of the solution contains alcohol.
  21.  該アルコールは一級アルコールを含む、請求項20の硬化性樹脂組成物。 The curable resin composition according to claim 20, wherein the alcohol comprises a primary alcohol.
  22.  該アルコールはエタノールを含む、請求項20の硬化性樹脂組成物。 The curable resin composition according to claim 20, wherein the alcohol contains ethanol.
  23.  該アルコールは該溶媒の全量に対して10重量%以上で存在する、請求項20~22の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 20 to 22, wherein the alcohol is present in an amount of 10% by weight or more based on the total amount of the solvent.
  24.  該架橋剤が、完全又は部分アルコキシメチル化メラミン及び/又はその縮合体、完全又は部分アルコキシメチル化グアナミン及び/又はその縮合体、完全又は部分アルコキシメチル化アセトグアナミン及び/又はその縮合体、完全又は部分アルコキシメチル化ベンゾグアナミン及び/又はその縮合体、完全又は部分アルコキシメチル化グリコールウリル及び/又はその縮合体、並びに完全又は部分アルコキシメチル化イミダゾリジノン及び/又はその縮合体からなる群より選ばれるものである、請求項1~23の何れかの硬化性樹脂組成物。 The cross-linking agent is a fully or partially alkoxymethylated melamine and / or its condensate, a fully or partially alkoxymethylated guanamine and / or its condensate, a complete or partially alkoxymethylated acetoguanamine and / or its condensate, fully or One selected from the group consisting of partially alkoxymethylated benzoguanamine and / or its condensate, fully or partially alkoxymethylated glycoluril and / or its condensate, and fully or partially alkoxymethylated imidazolidinone and / or its condensate The curable resin composition according to any one of claims 1 to 23.
  25.  該架橋剤が、式B1:
    Figure JPOXMLDOC01-appb-C000008

    〔ここに
     R1bは、炭素原子1~25個を有し、置換又は非置換アルキル基、置換又は非置換アルケニル基、置換又は非置換芳香族基、置換又は非置換ヘテロ芳香族基、及び
    Figure JPOXMLDOC01-appb-C000009

    で示される二置換アミンよりなる群から選ばれ、
     R2b~R7bは、互いに独立して、炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれる。〕
    で示される化合物及び/又はその縮合体、
    式B2:
    Figure JPOXMLDOC01-appb-C000010

    〔ここにR8b~R11bは、互いに独立して、炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれる。〕
    で示される化合物及び/又はその縮合体、並びに
    式B3:
    Figure JPOXMLDOC01-appb-C000011

    〔ここに
     R12b及びR13bが、互いに独立して、炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれ、
     R14b及びR15bが、互いに独立して、水素であるか、又は炭素原子1~10個を有し、置換又は非置換アルキル基、及び置換又は非置換アルケニル基よりなる群から選ばれる。〕
    で示される化合物及び/又はその縮合体
    よりなる群より選ばれるものである、請求項1~24の何れかの硬化性樹脂組成物。
    The crosslinking agent is of formula B1:
    Figure JPOXMLDOC01-appb-C000008

    [Wherein R 1b has 1 to 25 carbon atoms, and is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, and
    Figure JPOXMLDOC01-appb-C000009

    Selected from the group consisting of disubstituted amines represented by
    R 2b to R 7b each independently have 1 to 10 carbon atoms and are selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted alkenyl group. ]
    And / or a condensate thereof,
    Formula B2:
    Figure JPOXMLDOC01-appb-C000010

    [R 8b to R 11b are independently selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted alkenyl group having 1 to 10 carbon atoms. ]
    And / or a condensate thereof, and Formula B3:
    Figure JPOXMLDOC01-appb-C000011

    [Wherein R 12b and R 13b are independently selected from the group consisting of 1 to 10 carbon atoms, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkenyl group;
    R 14b and R 15b are independently of each other hydrogen or selected from the group consisting of substituted or unsubstituted alkyl groups and substituted or unsubstituted alkenyl groups having 1 to 10 carbon atoms. ]
    The curable resin composition according to any one of claims 1 to 24, which is selected from the group consisting of a compound represented by the formula (1) and / or a condensate thereof.
  26.  該縮合体が、式B1、式B2、又は式B3で示される該化合物の重合体を含む、請求項1~25の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 25, wherein the condensate comprises a polymer of the compound represented by formula B1, formula B2, or formula B3.
  27.  該縮合体が、式B1、式B2、又は式B3で示される該化合物の二量体、三量体、およびより高次の重合体の少なくとも一つを含む、請求項1~25の何れかの硬化性樹脂組成物。 The condensate comprises at least one of a dimer, trimer, and higher order polymer of the compound represented by formula B1, formula B2, or formula B3. Curable resin composition.
  28.  該架橋剤が、式B1、式B2、又は式B3で示される該化合物について、1.3から1.8までの重量平均重合度をそれぞれ有するものである、請求項1~27の何れかの硬化性樹脂組成物。 The crosslinking agent according to any one of claims 1 to 27, wherein the crosslinking agent has a weight average degree of polymerization of 1.3 to 1.8 for the compound represented by formula B1, formula B2, or formula B3, respectively. Curable resin composition.
  29.  R1bが、置換又は非置換芳香族基、及び
    Figure JPOXMLDOC01-appb-C000012

    で示される二置換アミンよりなる群から選ばれ、R2b~R13bが、互いに独立して、置換又は非置換アルキル基であり、R14b及びR15bが、互いに独立して、水素である、請求項25~28の何れかの硬化性樹脂組成物。
    R 1b is a substituted or unsubstituted aromatic group, and
    Figure JPOXMLDOC01-appb-C000012

    R 2b to R 13b are each independently a substituted or unsubstituted alkyl group, and R 14b and R 15b are each independently hydrogen. The curable resin composition according to any one of claims 25 to 28.
  30.  該組成物中における該直鎖状ポリマーの質量と該架橋剤の質量の比が、1:2~1:0.05である、請求項1~29の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 29, wherein a ratio of a mass of the linear polymer to a mass of the crosslinking agent in the composition is 1: 2 to 1: 0.05.
  31.  更に酸触媒を含むものである、請求項1~30の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 30, further comprising an acid catalyst.
  32.  該酸触媒が、ブレンステッド酸及び/又はルイス酸から選ばれる化合物、若しくはその塩、又はその溶媒和物である、請求項31の硬化性樹脂組成物。 32. The curable resin composition according to claim 31, wherein the acid catalyst is a compound selected from Bronsted acid and / or Lewis acid, or a salt thereof, or a solvate thereof.
  33.  更に、界面活性剤、フィラー、添加剤、および発泡剤の少なくとも一つを含む、請求項1~32の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 32, further comprising at least one of a surfactant, a filler, an additive, and a foaming agent.
  34.  更に、界面活性剤を含む、請求項1~32の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 32, further comprising a surfactant.
  35.  更に、発泡剤を含む、請求項1~32の何れかの硬化性樹脂組成物。 The curable resin composition according to claim 1, further comprising a foaming agent.
  36.  150℃で1分の加熱により硬化される硬化性を有する、請求項1~35の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 35, which has a curability that is cured by heating at 150 ° C for 1 minute.
  37.  請求項1~36の何れかの硬化性樹脂組成物を硬化させてなる、硬化樹脂膜。 A cured resin film obtained by curing the curable resin composition according to any one of claims 1 to 36.
  38.  該硬化樹脂膜は400nmで99%以上の透過率(%T)および0.1以下のb*を有する、請求項37の硬化樹脂膜。 The cured resin film according to claim 37, wherein the cured resin film has a transmittance (% T) of 99% or more at 400 nm and a b * of 0.1 or less.
  39.  230℃~300℃の耐熱性を有する、請求項37の硬化樹脂膜。 The cured resin film according to claim 37, having heat resistance of 230 ° C to 300 ° C.
  40.  230℃~260℃で1~2時間、耐熱性を有する、請求項39の硬化樹脂膜。 40. The cured resin film according to claim 39, which has heat resistance at 230 ° C. to 260 ° C. for 1 to 2 hours.
  41.  230℃で8時間以上、耐熱性を有する、請求項39の硬化樹脂膜。 The cured resin film according to claim 39, which has heat resistance at 230 ° C for 8 hours or more.
  42.  230℃で1~2時間、耐熱性を有する、請求項39の硬化樹脂膜。 The cured resin film according to claim 39, which has heat resistance at 230 ° C for 1 to 2 hours.
  43.  請求項1~36の何れかの硬化性樹脂組成物を基板表面に膜状に硬化させてなる、易剥離性硬化樹脂膜。 An easily peelable cured resin film obtained by curing the curable resin composition according to any one of claims 1 to 36 on the surface of a substrate.
  44.  0.5N/mm以下のソーダガラス製の基板又は無アルカリガラス製の基板における剥離力を有する、請求項37~43の何れかの硬化樹脂膜。 The cured resin film according to any one of claims 37 to 43, which has a peeling force on a soda glass substrate or a non-alkali glass substrate of 0.5 N / mm 2 or less.
  45.  0.1N/mm以下のソーダガラス製の基板又は無アルカリガラス製の基板における剥離力を有する、請求項37~44の何れかの硬化樹脂膜。 The cured resin film according to any one of claims 37 to 44, which has a peeling force on a soda glass substrate or a non-alkali glass substrate of 0.1 N / mm 2 or less.
  46.  請求項1~36の何れかの硬化性樹脂組成物からの硬化樹脂膜の製造方法であって、
     (i)アルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有する側鎖を備えた該鎖状ポリマーと該架橋剤とを準備するステップと、
     (ii)該鎖状ポリマーと該架橋剤とを含む該硬化性樹脂組成物を基板上に塗布し硬化性樹脂組成物塗膜を形成するステップと、
     (iii)該硬化性樹脂組成物塗膜において重合反応を行わせ硬化させることにより硬化樹脂膜とするステップとを含む、
    製造方法。
    A method for producing a cured resin film from the curable resin composition according to any one of claims 1 to 36, comprising:
    (I) providing the chain polymer with a side chain having an alcoholic secondary or tertiary OH-containing group or a phenolic OH-containing group and the crosslinking agent;
    (Ii) applying the curable resin composition containing the chain polymer and the crosslinking agent on a substrate to form a curable resin composition coating film;
    (Iii) performing a polymerization reaction in the curable resin composition coating film and curing it to form a cured resin film,
    Production method.
  47.  (iv)該基板上に形成されている該硬化樹脂膜を該基板から剥離するステップを更に含む、請求項46の製造方法。 (Iv) The manufacturing method according to claim 46, further comprising a step of peeling the cured resin film formed on the substrate from the substrate.
  48.  該鎖状ポリマーを構成するモノマー単位におけるアルコール性第二級又は第三級OH含有基又はフェノール性OH含有基を有するモノマー単位の占める割合が30~100モル%である、請求項46又は47の製造方法。 The proportion of the monomer unit having an alcoholic secondary or tertiary OH-containing group or phenolic OH-containing group in the monomer unit constituting the chain polymer is 30 to 100 mol%. Production method.
  49.  該架橋剤が、完全又は部分アルコキシメチル化メラミン、完全又は部分アルコキシメチル化グアナミン、完全又は部分アルコキシメチル化アセトグアナミン、又は完全又は部分アルコキシメチル化ベンゾグアナミン、及び完全又は部分アルコキシメチル化グリコールウリルからなる群より選ばれるものである、請求項46~48の何れかの製造方法。 The cross-linking agent consists of fully or partially alkoxymethylated melamine, fully or partially alkoxymethylated guanamine, fully or partially alkoxymethylated acetoguanamine, or fully or partially alkoxymethylated benzoguanamine, and fully or partially alkoxymethylated glycoluril. The production method according to any one of claims 46 to 48, which is selected from the group.
  50.  該組成物中の該直鎖状ポリマーの質量と該架橋剤の質量の比が、1:2~1:0.05である、請求項46~49の何れかの製造方法。 The production method according to any one of claims 46 to 49, wherein the ratio of the mass of the linear polymer to the mass of the crosslinking agent in the composition is 1: 2 to 1: 0.05.
PCT/JP2018/005038 2018-02-14 2018-02-14 Curable resin composition for forming heat-resistant and easily peelable cured resin film, and method for producing same WO2019159248A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880091524.2A CN111936573A (en) 2018-02-14 2018-02-14 Curable resin composition for forming heat-resistant and easily peelable cured resin film, and method for producing same
JP2019571852A JPWO2019159248A1 (en) 2018-02-14 2018-02-14 A curable resin composition for forming a heat-resistant and easily peelable curable resin film and a method for producing the same.
KR1020207023970A KR102501982B1 (en) 2018-02-14 2018-02-14 Curable resin composition for forming a heat-resistant and easily peelable cured resin film and method for producing the same
PCT/JP2018/005038 WO2019159248A1 (en) 2018-02-14 2018-02-14 Curable resin composition for forming heat-resistant and easily peelable cured resin film, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005038 WO2019159248A1 (en) 2018-02-14 2018-02-14 Curable resin composition for forming heat-resistant and easily peelable cured resin film, and method for producing same

Publications (1)

Publication Number Publication Date
WO2019159248A1 true WO2019159248A1 (en) 2019-08-22

Family

ID=67619778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005038 WO2019159248A1 (en) 2018-02-14 2018-02-14 Curable resin composition for forming heat-resistant and easily peelable cured resin film, and method for producing same

Country Status (4)

Country Link
JP (1) JPWO2019159248A1 (en)
KR (1) KR102501982B1 (en)
CN (1) CN111936573A (en)
WO (1) WO2019159248A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11212263A (en) * 1997-10-02 1999-08-06 Dainippon Printing Co Ltd Photosensitive resin composition
JP2001174984A (en) * 1999-10-06 2001-06-29 Shin Etsu Chem Co Ltd Resist material and pattern forming method
JP2010010491A (en) * 2008-06-27 2010-01-14 Jsr Corp Structure with insulating film and method of manufacturing the same, resin composition, and electronic component
JP2010066489A (en) * 2008-09-10 2010-03-25 Jsr Corp Positive radiation-sensitive resin composition and resist pattern forming method using the same
JP2013073125A (en) * 2011-09-28 2013-04-22 Jsr Corp Composition for resist underlay film formation, pattern formation method and polymer
JP2015151549A (en) * 2014-04-14 2015-08-24 大日本印刷株式会社 Thermosetting composition having photo-aligning property, alignment layer, substrate with alignment layer, retardation plate, and device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1008623A (en) 1972-02-11 1977-04-19 Gould Inc. Process and apparatus for manufacture of an electrode
JP3203166B2 (en) 1995-10-13 2001-08-27 シャープ株式会社 Jig for manufacturing liquid crystal display element and method for manufacturing liquid crystal display element using the same
JP5450114B2 (en) * 2010-01-08 2014-03-26 富士フイルム株式会社 Pattern forming method, chemically amplified resist composition, and resist film
JP5593075B2 (en) * 2010-01-13 2014-09-17 富士フイルム株式会社 Pattern forming method, pattern, chemically amplified resist composition, and resist film
JP5707281B2 (en) * 2010-08-27 2015-04-30 富士フイルム株式会社 Pattern forming method and rinsing liquid used in the method
KR102091894B1 (en) 2012-05-03 2020-03-20 제넨테크, 인크. Pyrazole aminopyridine derivatives as lrrk2 modulators
JP2016033945A (en) * 2014-07-31 2016-03-10 住友化学株式会社 Composition and organic thin film transistor arranged by use thereof
JP2018072358A (en) * 2015-03-02 2018-05-10 富士フイルム株式会社 Active light sensitive or radiation sensitive resin composition, and active light sensitive or radiation sensitive film
DE102015013540A1 (en) * 2015-10-19 2017-04-20 Trimet Aluminium Se aluminum alloy
KR102442826B1 (en) * 2016-08-19 2022-09-13 오사카 유키가가쿠고교 가부시키가이샤 Curable resin composition for easy release film formation and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11212263A (en) * 1997-10-02 1999-08-06 Dainippon Printing Co Ltd Photosensitive resin composition
JP2001174984A (en) * 1999-10-06 2001-06-29 Shin Etsu Chem Co Ltd Resist material and pattern forming method
JP2010010491A (en) * 2008-06-27 2010-01-14 Jsr Corp Structure with insulating film and method of manufacturing the same, resin composition, and electronic component
JP2010066489A (en) * 2008-09-10 2010-03-25 Jsr Corp Positive radiation-sensitive resin composition and resist pattern forming method using the same
JP2013073125A (en) * 2011-09-28 2013-04-22 Jsr Corp Composition for resist underlay film formation, pattern formation method and polymer
JP2015151549A (en) * 2014-04-14 2015-08-24 大日本印刷株式会社 Thermosetting composition having photo-aligning property, alignment layer, substrate with alignment layer, retardation plate, and device

Also Published As

Publication number Publication date
KR20200120645A (en) 2020-10-21
KR102501982B1 (en) 2023-02-20
JPWO2019159248A1 (en) 2021-01-28
CN111936573A (en) 2020-11-13

Similar Documents

Publication Publication Date Title
JP6237030B2 (en) Curable resin composition, cured product and laminate
JP2010144046A (en) Release agent and release sheet
JP2017088853A5 (en)
JP6967662B2 (en) A hard coat film, an article having a hard coat film, an image display device, and a method for manufacturing the hard coat film.
JP2017119749A (en) Protective film for transparent conductive film and laminate
TW202104464A (en) Polymers for display devices
JP2009263527A (en) (meth)acrylic-modified siloxane compound and curable composition containing it
TW201038702A (en) Irradiation-cured type adhesive composition for optical member and adhesion type optical member
KR102442826B1 (en) Curable resin composition for easy release film formation and manufacturing method thereof
WO2019159248A1 (en) Curable resin composition for forming heat-resistant and easily peelable cured resin film, and method for producing same
CN109790391B (en) Curable resin composition for forming easily peelable film and method for producing same
WO2018103265A1 (en) Polyacrylate leveling agent,preparation method and use thereof
TWI773733B (en) Curable resin composition for forming heat-resistant and easily peelable cured resin film and method for producing the same
JP7078316B2 (en) Polyimide precursor composition, polyimide film and flexible device manufactured using it
WO2022004746A1 (en) Laminate, production method for laminate, laminate-containing surface protective film for image display device, and article and image display device provided with laminate
JP4984508B2 (en) Transparent composite, glass fiber cloth surface treatment method, and transparent composite production method
JP6894835B2 (en) Active energy ray-curable composition and cured product
TWI681018B (en) Resin composition for coating
JP5098163B2 (en) Transparent composite, glass fiber cloth surface treatment method, and transparent composite production method
KR101967486B1 (en) Resin composition for release film comprising itaconic acid ester with long alkyl side chain
JP2006241440A (en) Maleimide-based copolymer, method for producing the same, polymer composition and molded product
JP6432265B2 (en) Adhesive composition for laminated sheet
JP7140342B2 (en) Polyimide precursor composition, method for producing the same, and polyimide film using the same
KR20240001251A (en) Curable resin composition, hard coat film, and method for producing hard coat film
JP2020084067A (en) Resin composition and sheet using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906186

Country of ref document: EP

Kind code of ref document: A1