WO2019157976A1 - 注水处理方法、注水处理装置及其应用 - Google Patents

注水处理方法、注水处理装置及其应用 Download PDF

Info

Publication number
WO2019157976A1
WO2019157976A1 PCT/CN2019/074191 CN2019074191W WO2019157976A1 WO 2019157976 A1 WO2019157976 A1 WO 2019157976A1 CN 2019074191 W CN2019074191 W CN 2019074191W WO 2019157976 A1 WO2019157976 A1 WO 2019157976A1
Authority
WO
WIPO (PCT)
Prior art keywords
water injection
light source
source array
ultraviolet
water
Prior art date
Application number
PCT/CN2019/074191
Other languages
English (en)
French (fr)
Inventor
陈道毅
乔杨
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Priority to EP19755223.5A priority Critical patent/EP3753907A4/en
Publication of WO2019157976A1 publication Critical patent/WO2019157976A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3227Units with two or more lamps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/328Having flow diverters (baffles)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Definitions

  • the invention relates to the technical field of water injection, in particular to a water injection treatment method, a water injection treatment device and an application thereof.
  • water injection equipment In the field of oil exploitation, water injection equipment is often used to inject water in accordance with quality requirements into the oil layer to maintain or increase the pressure of the oil layer, thereby achieving higher oil recovery; in the field of ship transportation, water injection equipment is often used to meet quality requirements. The water is injected into the ship to keep the ship stable; in the field of water treatment, water is often injected into a specific container through water injection equipment to achieve water purification.
  • microorganisms such as saprophytic bacteria, iron bacteria and sulfate-reducing bacteria may cause corrosion of the water injection equipment and the corresponding pipelines, which may lead to pipeline blockage and potential safety hazards; in addition, microorganisms may seriously affect water quality.
  • a first aspect of the present invention provides a water injection processing method, the method comprising:
  • the water injection is irradiated with a predetermined irradiation dose using ultraviolet light having a wavelength of 280 nm.
  • the irradiating the water with a preset irradiation dose by using ultraviolet light having a wavelength of 280 nm comprises:
  • the water injection is irradiated with a preset irradiation dose using ultraviolet light having a wavelength of 280 nm emitted from the UVB tube.
  • the preset irradiation dose is 15 mJ/cm 2 .
  • a second aspect of the present invention provides a water injection processing apparatus comprising:
  • the illumination processing chamber is located between the water injection input port and the water injection output port, and the ultraviolet lamp is disposed in the illumination processing chamber
  • the ultraviolet lamp is used to emit ultraviolet light having a wavelength of 280 nm, and the water is irradiated with a preset irradiation dose.
  • the ultraviolet lamp is an ultraviolet LED lamp; the ultraviolet LED lamp includes at least one surface light source array plate, and the at least one surface light source array plate has a plate surface for guiding water injection to the water injection output port.
  • the surface of the board is an ultraviolet light emitting surface.
  • the at least one surface light source array plate is a plurality of surface light source array plates, and each of the surface light source array plates is disposed in parallel with each other.
  • the at least one surface light source array board includes an intermediate layer light source array panel and a side layer light source array panel disposed on both sides of the intermediate layer light source array panel, and the intermediate layer light source array panel is disposed in the illumination processing
  • the side layer light source array plate is disposed on a plate body near a side of the water injection input port for guiding water injection along the side layer light source array plate away from the middle layer light source array plate A flow guiding portion that flows on one side of the plate surface.
  • the flow guiding portion is disposed obliquely adjacent to the water injection input port and the intermediate layer light source array plate.
  • a third aspect of the present invention provides a water injection treatment system including a water injection pipeline, and further comprising a water injection treatment device as described above, wherein the water injection treatment device is disposed on the water injection pipe.
  • the water injection processing device is disposed at a water injection end position of the water injection pipeline.
  • the water injection treatment method, the water injection treatment device and the application thereof provided by the invention use the ultraviolet light with a wavelength of 280 nm to irradiate the water injection with a preset irradiation dose, so as to facilitate the economic and efficiency of the treatment of water injection with maximum balance. It can achieve better microbial inactivation effect, relatively low energy consumption, and good friendliness to the ecological environment.
  • Fig. 1 is a flow chart showing a water injection processing method according to an embodiment of the present invention.
  • Figure 2 is a graph showing the inactivation rate of saprophytic bacteria by ultraviolet LED lamps at different wavelengths.
  • Figure 3 is a graph showing the rate of inactivation of iron bacteria by ultraviolet LED lamps at different wavelengths.
  • Figure 4 is a graph showing the inactivation rate of sulfate-reducing bacteria by ultraviolet LED lamps at different wavelengths.
  • Figure 5 is a graph showing the energy consumption per unit logistic inactivation rate of saprophytic bacteria, iron bacteria and sulfate-reducing bacteria by ultraviolet LED lamps at different wavelengths.
  • Fig. 6 is a graph showing the inactivation rate of inactivated saprophytic bacteria of ultraviolet LED lamps with a wavelength of 280 nm under the influence of different particle concentrations.
  • Fig. 7 is a schematic structural view of a water injection processing apparatus according to an embodiment of the present invention.
  • Fig. 8 is a schematic structural view of a water injection processing apparatus according to a first embodiment of the present invention.
  • Fig. 9 is a schematic structural view of a water injection processing apparatus according to a second embodiment of the present invention.
  • Fig. 10 is a schematic view showing the flow direction of the ultraviolet LED lamp and the water injection in the second embodiment of the present invention.
  • Fig. 11 is a schematic structural view of a water injection processing system according to an embodiment of the present invention.
  • Water injection treatment device 1 2, 3, 42 Water injection input 11, 21, 31 Illumination processing chamber 12, 22, 32 Water injection outlet 13, 23, 33 UV lamp 14, 24, 34 Intermediate level light source array board 341 Side layer light source array board 342
  • the invention provides a water injection processing device and a water injection processing system, which can be widely applied.
  • FIG. 1 is a flowchart of a water injection processing method according to an embodiment of the present invention, the method includes:
  • Step 101 Irradiating the water injection with a preset irradiation dose by using ultraviolet light having a wavelength of 280 nm.
  • the ultraviolet light having a wavelength of 280 nm is irradiated with water at a preset irradiation dose, thereby maximizing the balance of economy and high efficiency, achieving better microbial inactivation effect, and relatively low energy consumption.
  • the friendship with the ecological environment is better.
  • the irradiation of water injection can be carried out by the following specific methods:
  • the water injection is irradiated with ultraviolet light having a wavelength of 280 nm emitted from the ultraviolet LED lamp; and/or the water injection is irradiated with ultraviolet light having a wavelength of 280 nm emitted from the UVB lamp.
  • the preset irradiation dose is 15 mJ/cm 2 , and the inactivation effect on microorganisms is better at the irradiation dose, and the corresponding energy consumption is not high.
  • the microorganisms that cause corrosion to the water injection equipment and the corresponding pipelines are mainly saprophytic bacteria, iron bacteria and sulfate reducing bacteria. Therefore, it is now 10 5 -10 6 cfu/mL (containing per ml of sample).
  • the total number of bacterial communities) concentration of saprophytic bacteria, iron bacteria, sulfate-reducing bacteria water samples as an example to illustrate the principles and advantages of the present invention.
  • the water sample with a bacterial load of 10 5 -10 6 cfu/mL was sterilized using an ultraviolet LED having a wavelength of 255, 280, and 350 nm, and the average radiant intensity of the water sample was 51 uW/cm 2 .
  • Figure 2 and Figure 4 show the inactivation rate of the sacrificial bacteria, iron bacteria and sulfate-reducing bacteria in the UV LED disinfection device, respectively.
  • Figure 5 shows the unit logarithm of three different wavelength UV LED lamps. Comparison of energy consumption rate of inactivation rate. The test results using 255 nm UV LED lamp, 280 nm UV LED lamp and 350 nm UV LED lamp as illumination sources are shown in Fig. 2, Fig. 3 and Fig. 4, respectively, and compared.
  • the 255 nm ultraviolet radiation dose of 15 mJ/cm 2 has better sterilization performance than the 280 nm ultraviolet LED lamp in most cases, the 255 nm ultraviolet LED lamp has high cost and low power conversion efficiency, and the 280 nm ultraviolet LED is low.
  • the unit logarithmic inactivation rate of the lamp consumes significantly less than 255 nanometers, maximizing economics and efficiency.
  • the degree of reactivation of microorganisms after 280 nm UV LED lamp irradiation was significantly weakened, which improved the defects of bio-resurrection after UV disinfection.
  • the concentration of particulate matter in water is the most important factor affecting the disinfection effect of ultraviolet light.
  • the water sample of saprophytic bacteria with a bacterial load of 10 5 -10 6 cfu/mL different concentrations of particulate matter were added, and the water sample was disinfected by 280 nm ultraviolet LED.
  • Figure 6 shows the ultraviolet light with a wavelength of 280 nm under the influence of particle concentration.
  • Inactivation rate map of inactivated saprophytic bacteria by LED lamps It can be seen from Fig. 6 that the test results of several fixed value values of the particulate matter are given, and compared with the inactivation rate diagram of the unadded particulate matter. It can be seen that the invention is less affected by the low concentration of particulate matter, and the effect of the particulate matter of the concentration below 30 mg/L on the inactivation rate of the 280 nm ultraviolet LED lamp is within 10%.
  • the irradiation of microorganisms with 280 nm ultraviolet light can maximize the economical and high efficiency, and the relatively better inactivation rate can be achieved, while the cost is not high, and the operation and maintenance cost is low. And can be easily promoted on a large scale.
  • the water injection processing device 1 includes a water injection input port 11, a light processing chamber 12, and a water injection output port 13 for communicating with a water injection pipe (not shown) to allow water injection into the water inlet.
  • the water injection output port 13 is configured to be connected to a water injection pipe (not shown) downstream of the water injection treatment device 1 for the treated water injection to flow out of the illumination processing chamber 12.
  • the water injection processing device 1 can process the water injection by the water injection treatment method described above.
  • An ultraviolet lamp 14 is disposed in the illumination processing chamber 12, and the ultraviolet lamp 14 is disposed between the water injection input port 11 and the water injection output port 13.
  • the ultraviolet light emitted by the ultraviolet lamp 14 has a wavelength of 280 nm.
  • the ultraviolet light of the wavelength is used to irradiate the water to achieve better microbial inactivation effect, and the eco-friendly environment is better, and the maintenance cost is low, which can be widely applied.
  • the ultraviolet lamp can emit ultraviolet light of different wavelengths according to the difference of its own material.
  • an ultraviolet LED lamp can be selected as the ultraviolet lamp. Since the deep ultraviolet light with a wavelength range of 255 nm to 265 nm has a high coincidence with the DNA absorption peak, the UV lamp has the best inactivation effect on microorganisms. However, due to the manufacturing technology and its own material limitation, the shorter wavelength ultraviolet LED The higher the lamp cost, the shorter the life and the lower the power conversion efficiency; while the long-wave UV lamp in the UVB/UVA range is economical, the inactivation effect on microorganisms is poor. Considering the economical and high efficiency of engineering application, the present invention selects a 280 nm ultraviolet LED lamp as the light source of the disinfection device.
  • the water injection processing device 2 includes a water injection input port 21, an illumination processing chamber 22, and a water injection output port 23, and the ultraviolet lamp 24 disposed in the illumination processing chamber 22 is an ultraviolet LED lamp, and the ultraviolet LED lamp device The wavelength of the emitted ultraviolet light is 280 nm.
  • the ultraviolet LED lamp comprises a surface light source array plate
  • the surface light source array plate has a plate surface for guiding water injection to the water injection output port
  • the plate surface is an ultraviolet light emitting surface.
  • the ultraviolet light having a wavelength of 280 nm is emitted from the surface of the surface light source array plate
  • the water flow flowing through the surface of the plate can be uniformly irradiated. Since the ultraviolet LED lamp is a surface light source, after the irradiation area is increased, the water is injected. The irradiation efficiency of the microorganisms is increased, thereby increasing the inactivation efficiency of the microorganisms.
  • the ultraviolet LED may include at least one surface light source array plate, and when the number of the surface light source array plates is greater than one, the respective surface light source array plates may be disposed in parallel with each other.
  • a plurality of ultraviolet LED lamp beads are disposed on the surface of the surface light source array plate to form a surface light source after being energized.
  • the surface of the surface of the surface light source array plate can be used to emit ultraviolet light, that is, the surface of the surface of the surface light source array plate can realize the function of the foregoing surface.
  • the water injection processing device 3 specifically includes a water injection input port 31, a light processing chamber 32, and a water injection output port 33.
  • the ultraviolet lamp 24 disposed in the illumination processing chamber 32 is an ultraviolet LED lamp, and the ultraviolet light emitted by the ultraviolet LED lamp has a wavelength of 280 nm.
  • the difference from the first embodiment is that:
  • the ultraviolet LED lamp of the embodiment includes an intermediate layer light source array plate 341 and a side layer light source array plate 342 disposed on both sides of the intermediate layer light source array plate 341, and the intermediate layer light source array plate 341 is disposed on the illumination
  • the side layer light source array plate 342 is provided on the plate body near the water injection input port 31 for guiding water injection along the side layer light source array plate away from the middle A flow guiding portion 343 on which a plate surface on one side of the layer light source array plate 341 flows.
  • the setting of the three-layer light source array plate can increase the area of water injection by ultraviolet light irradiation and improve the inactivation efficiency of microorganisms.
  • the arranged flow guiding portion 343 structure can facilitate guiding the water injection water flow to the corresponding plate surface for ultraviolet light illumination, and reinforcing the side layer light source array plate 342 located away from the intermediate layer light source array plate 341. The fluidity of the water injection on one side.
  • the flow guiding portion 343 is disposed obliquely adjacent to the water injection input port 31 and the intermediate layer light source array plate 341.
  • the number of the side surface light source array plates can be increased according to specific conditions to achieve corresponding inactivation efficiency against microorganisms.
  • FIG. 10 it is a schematic diagram of the flow direction of the ultraviolet LED lamp and the water injection in the second embodiment of the present invention.
  • the water injection water inlet flows into the illumination processing chamber (not shown)
  • the water injection is conducted at the flow guiding portion 343 to form a four-side water source array plate along the upper side.
  • the upper plate surface and the lower plate surface of the 342, and the upper plate surface and the lower plate surface of the lower side layer light source array plate 342 flow toward the water injection output port (not shown).
  • the upper side layer light source array board and the lower side layer light source array board are mirror-symmetrical structures with respect to the middle layer light source array board 341.
  • the water injection treatment system 4 provided in the present embodiment includes a water injection line 41 and a water injection treatment device 42 which can employ any of the water injection treatment device 1, the water injection treatment device 2, and the water injection treatment device 3 as described above. A structure.
  • the water injection treatment device 42 is disposed on the water injection line 41.
  • the water injection processing device 42 is provided at a water injection end position of the water injection pipe 41.
  • the water injection end of the water injection pipeline 41 is filled with water, and when the water injection treatment device 42 passes through the water injection treatment device 42, the ultraviolet light having the ultraviolet light wavelength of 280 nm is irradiated by the water injection treatment device 42. Water injection to achieve sterilization.
  • the water injection treatment system 4 can be a subsea water injection treatment system, a ship ballast water treatment system, a living production water treatment water injection treatment system, and the like.
  • the subsea water injection treatment system is applied to the field of oil exploitation, that is, the water that meets the quality requirement is injected into the oil layer through the subsea water injection treatment system to maintain or increase the oil layer pressure, thereby achieving higher oil recovery.
  • the ship ballast water treatment system is applied to the field of ship transportation, that is, the ship's ballast water treatment system is used to inject water that meets the quality requirements into the ship to maintain the stability of the ship.
  • the living production water treatment water injection treatment system is applied to the field of water treatment, that is, water is injected into a specific container by the domestic production water treatment water injection treatment system to achieve water purification.

Abstract

本发明提供一种注水处理方法、注水处理装置及其应用,涉及注水相关技术领域,其中,所述注水处理方法包括:利用波长为280纳米的紫外光以预设照射剂量对注水进行照射。利用本发明,可实现最大程度上平衡对注水进行处理的经济性与高效性。

Description

注水处理方法、注水处理装置及其应用 技术领域
本发明涉及注水相关技术领域,尤其涉及一种注水处理方法、注水处理装置及其应用。
背景技术
在石油开采领域,常利用注水设备把符合质量要求的水注入油层中,以保持或提高油层压力,从而实现更高的石油采收率;在船舶运输领域,也常利用注水设备把符合质量要求的水注入船上,以保持船舶的稳定;在水处理领域,也常通过注水设备将水注入到特定的容器中,以实现水的净化。
在注水系统运行过程中,腐生菌、铁细菌和硫酸盐还原菌等微生物的存在可能引起注水设备及相应管路的腐蚀,可能导致管道堵塞,存在安全隐患;此外,微生物也会严重影响水质。
发明内容
鉴于此,有必要提供一种注水处理方法、注水处理装置及其应用,以利于实现最大程度上平衡对注水进行处理的经济性与高效性。
本发明第一方面提供一种注水处理方法,所述方法包括:
利用波长为280纳米的紫外光以预设照射剂量对注水进行照射。
进一步的,所述利用波长为280纳米的紫外光以预设照射剂量对注水进行照射包括:
利用紫外LED灯发出的波长为280纳米的紫外光以预设照射剂量对注水进行照射;和/或
利用UVB灯管发出的波长为280纳米的紫外光以预设照射剂量对注水进行照射。
进一步的,所述预设照射剂量为15mJ/cm 2
本发明第二方面提供一种注水处理装置,包括:
注水输入口、光照处理腔室、注水输出口以及紫外灯,所述光照处理腔室位于所述注水输入口与所述注水输出口之间,所述紫外灯设于所述光照处理腔室中,所述紫外灯用于发射波长为280纳米的紫外光,并以预设照射剂量对注水进行照射。
进一步的,所述紫外灯为紫外LED灯;所述紫外LED灯包括至少一个面光源阵列板,所述至少一个面光源阵列板均具有用于引导注水流向所述注水输出口的板面,所述板面为紫外光出射面。
进一步的,所述至少一个面光源阵列板为多个面光源阵列板,每个所述面光源阵列板相互平行设置。
进一步的,所述至少一个面光源阵列板包括中间层面光源阵列板及设于所述中间层面光源阵列板两侧的侧边层面光源阵列板,所述中间层面光源阵列板设于所述光照处理腔室的中部位置处,所述侧边层面光源阵列板在靠近所述注水输入口一侧的板体上设有用于引导注水沿所述侧边层面光源阵列板远离所述中间层面光源阵列板一侧的板面流动的导流部。
进一步的,所述导流部沿靠近所述注水输入口及所述中间层面光源阵列板倾斜设置。
本发明第三方面还提供一种注水处理系统,包括注水管路,还包括如上所述的注水处理装置,所述注水处理装置设于所述注水管路上。
进一步的,所述注水处理装置设于所述注水管路的注水端位置处。
本发明提供的注水处理方法、注水处理装置及其应用,利用波长为280纳米的紫外光以预设照射剂量对注水进行照射,以利于实现最大程度上平衡对注水进行处理的经济性与高效性,可实现较佳的微生物灭活效果,能耗相 对较低,同时对生态环境的友好度较好。
附图说明
图1是本发明一实施方式的注水处理方法的流程图。
图2是不同波长下的紫外LED灯对腐生菌的灭活速率图。
图3是不同波长下的紫外LED灯对铁细菌的灭活速率图。
图4是不同波长下的紫外LED灯对硫酸盐还原菌的灭活速率图。
图5是不同波长下的紫外LED灯对腐生菌、铁细菌及硫酸盐还原菌的单位对数灭活率能耗图。
图6是不同颗粒物浓度影响下波长280纳米的紫外LED灯灭活腐生菌的灭活速率图。
图7是本发明一实施方式的注水处理装置的结构示意图。
图8是本发明第一具体实施方式的注水处理装置的结构示意图。
图9是本发明第二具体实施方式的注水处理装置的结构示意图。
图10是本发明第二具体实施方式中的紫外LED灯及注水流向示意图。
图11是本发明一实施方式的注水处理系统的结构示意图。
符号说明
注水处理装置 1、2、3、42
注水输入口 11、21、31
光照处理腔室 12、22、32
注水输出口 13、23、33
紫外灯 14、24、34
中间层面光源阵列板 341
侧边层面光源阵列板 342
导流部 343
注水处理系统 4
注水管路 41
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
本发明提供一种注水处理装置及注水处理系统,可大规模推广应用。
参见图1,是本发明一实施方式的注水处理方法的流程图,所述方法包括:
步骤101:利用波长为280纳米的紫外光以预设照射剂量对注水进行照射。
本实施方式中,利用波长为280纳米的紫外光以预设照射剂量对注水进行照射,可最大程度平衡了经济性与高效性,能够实现较佳的微生物灭活效果,且能耗相对较低,同时对生态环境的友好度较好。
本实施方式中,可通过如下具体方式实施对注水的照射:
利用紫外LED灯发出的波长为280纳米的紫外光对注水进行照射;和/ 或,利用UVB灯管发出的波长为280纳米的紫外光对注水进行照射。
本实施方式中,所述预设照射剂量为15mJ/cm 2,在该照射剂量下,对微生物的灭活效果较佳,且相应的能耗不高。
可以理解的是,对注水设备及相应的管路造成腐蚀等影响的微生物主要为腐生菌、铁细菌及硫酸盐还原菌,因此,现以10 5-10 6cfu/mL(每毫升样品中含有的细菌群落总数)浓度的腐生菌、铁细菌、硫酸盐还原菌水样为例说明本发明的原理及优势。使用波长255、280、350纳米的紫外LED对细菌负荷为10 5-10 6cfu/mL的水样进行消毒,水样接受的平均辐射强度为51uW/cm 2
图2、图3以及图4分别给出了紫外LED消毒装置对腐生菌、铁细菌以及硫酸盐还原菌的灭活速率图;而图5给出了三种不同波长紫外LED灯的单位对数灭活率能耗对比图。图2、图3以及图4中分别给出了使用255纳米紫外LED灯、280纳米紫外LED灯和350纳米紫外LED灯作为照射光源的测试结果,并进行了对比。可见,虽然15mJ/cm 2的255纳米紫外线照射剂量绝大多数情况下比280纳米紫外LED灯具有更优异的灭菌性能,但255纳米紫外LED灯造价高,功率转换效率低,280纳米紫外LED灯的单位对数灭活率能耗显著低于255纳米,从而最大程度平衡了经济性与高效性。此外,280纳米紫外LED灯照射后微生物的复活程度明显减弱,改善了紫外消毒后生物易复活的缺陷。
可以理解的是,水中颗粒物浓度是影响紫外光消毒效果的最主要因素。在细菌负荷为10 5-10 6cfu/mL的腐生菌水样中,添加不同浓度的颗粒物,采用280纳米紫外LED对水样进行消毒,图6给出了颗粒物浓度影响下波长280纳米的紫外LED灯灭活腐生菌的灭活速率图。由图6可知,给出了几种颗粒物固定值取值情况下的测试结果,并与未添加颗粒物的灭活速率图进行了对比。可见,本发明受低浓度颗粒物的影响较小,30mg/L以下浓度的颗粒物对280纳米紫外LED灯灭活率的影响在10%之内。
综合图2至图6可知,利用280纳米的紫外光对微生物进行照射,可最 大程度平衡了经济性与高效性,即可实现相对较佳的灭活率,同时成本不高,运营维护成本低,且可易于大规模推广应用。
参见图7,是本发明一实施方式的注水处理装置的结构示意图,所述注水处理装置1可应用于注水处理系统。如图7所示,注水处理装置1包括注水输入口11、光照处理腔室12及注水输出口13,注水输入口11用于与注水管路(图未示)连通,以使注水流入所述光照处理腔室12中;注水输出口13用于与在所述注水处理装置1下游的注水管路(图未示)连接,以供被处理后的注水流出所述光照处理腔室12。
本实施方式中,所述注水处理装置1可采用前述的注水处理方法对注水进行处理。
在所述光照处理腔室12中设有紫外灯14,且所述紫外灯14设于注水输入口11与注水输出口13之间,所述紫外灯14发出的紫外光波长为280纳米,以利用该波长的紫外光对注水进行照射处理,实现较佳的微生物灭活效果,同时对生态环境的友好度较好,且维护成本较低,可大规模推广应用。
可以理解的是,紫外灯可根据自身材料的差异发射出不同波长的紫外光,本实施方式中,可选用紫外LED灯作为紫外灯。由于波长范围为255纳米至265纳米的深紫外光与DNA吸收峰重合度较高,此时紫外灯对微生物的灭活效果最佳,然而由于制造技术及自身材料限制,波长越短的紫外LED灯造价越高、寿命越短且功率转换效率越低;而UVB/UVA范围的长波紫外灯虽然经济性较高,但对微生物的灭活效果较差。综合考虑工程应用的经济性与高效性,本发明选用280纳米的紫外LED灯作为消毒装置的光源。
参见图8,是本发明第一具体实施方式的注水处理装置的结构示意图。本具体实施方式中,注水处理装置2包括注水输入口21、光照处理腔室22及注水输出口23,而设于光照处理腔室22中的紫外灯24为紫外LED灯,且紫外LED灯所述发出的紫外光波长为280纳米。
本具体实施方式中,所述紫外LED灯包括一个面光源阵列板,所述面光 源阵列板具有用于引导注水流向所述注水输出口的板面,且所述板面为紫外光出射面。波长为280纳米的紫外光自所述面光源阵列板的板面出射时,可对流经板面的注水水流进行均匀照射,由于紫外LED灯为面光源,因而在照射面积增大后,对注水中的微生物的照射效率提高,从而提升对微生物的灭活效率。
可以理解的是,所述紫外LED可包括至少一个面光源阵列板,而在所述面光源阵列板的数量大于一时,各个面光源阵列板可相互平行设置。
可以理解的是,在所述面光源阵列板的板面上设有多个紫外LED灯珠,以在通电后形成面光源。
可以理解的是,所述面光源阵列板两侧的板面均可用于出射紫外光,也即所述面光源阵列板两侧的板面均能够实现前述板面的功能。
参见图9,是本发明第二具体实施方式的注水处理装置的结构示意图。本具体实施方式中,注水处理装置3具体包括注水输入口31、光照处理腔室32及注水输出口33。
本具体实施方式中,设于所述光照处理腔室32中的紫外灯24为紫外LED灯,且紫外LED灯所述发出的紫外光波长为280纳米。与第一具体实施方式不同之处在于:
本具体实施方式的紫外LED灯包括中间层面光源阵列板341及设于所述中间层面光源阵列板341两侧的侧边层面光源阵列板342,所述中间层面光源阵列板341设于所述光照处理腔室32的中部位置处,所述侧边层面光源阵列板342在靠近所述注水输入口31一侧的板体上设有用于引导注水沿所述侧边层面光源阵列板远离所述中间层面光源阵列板341一侧的板面流动的导流部343。
三层面光源阵列板的设置,可增大紫外光照射注水的面积,提升对微生物的灭活效率。与此同时,设置的导流部343结构可利于将注水水流引导至相应的板面上进行紫外光光照,且加强位于远离所述中间层面光源阵列板341 的所述侧边层面光源阵列板342一侧的注水的流动性。
本具体实施方式中,所述导流部343沿靠近所述注水输入口31及所述中间层面光源阵列板341倾斜设置。
可以理解的是,可视具体情况增加所述侧边面光源阵列板的个数,以达到相应的对微生物的灭活效率。
参见图10,是本发明第二具体实施方式中的紫外LED灯及注水流向示意图。注水自注水输入口(图未示出)流入光照处理腔室(图未示出)后,在导流部343对注水进行导流,从而形成四股注水分别沿上侧的侧边层面光源阵列板342的上板面及下板面、下侧的侧边层面光源阵列板342的上板面及下板面流向注水输出口(图未示出)。
本具体实施方式中,上侧的侧边层面光源阵列板与下侧的侧边层面光源阵列板相对中间层面光源阵列板341互为镜像对称结构。
参见图11,是本发明一实施方式的注水处理系统4的结构示意图。本实施方式提供的注水处理系统4,包括注水管路41及注水处理装置42,所述注水处理装置42可以采用如上所述的注水处理装置1、注水处理装置2以及注水处理装置3中的任意一种结构。所述注水处理装置42设于所述注水管路41上。
本实施方式中,所述注水处理装置42设于所述注水管路41的注水端位置处。在注水处理系统4运作时,注水管路41的注水端输入注水,在注水途经所述注水处理装置42时,利用所述注水处理装置42中的、紫外光波长为280纳米的紫外灯照射途经的注水,实现杀菌消毒。
可以理解的是,所述注水处理系统4可为海下注水处理系统、船舶压载水处理系统以及生活生产水处理注水处理系统等。所述海下注水处理系统应用于石油开采领域,即通过所述海下注水处理系统将符合质量要求的水注入油层中,以保持或提高油层压力,从而实现更高的石油采收率。所述船舶压载水处理系统应用于船舶运输领域,即通过所述船舶压载水处理系统将符合 质量要求的水注入船上,以保持船舶的稳定。所述生活生产水处理注水处理系统应用于水处理领域,即通过所述生活生产水处理注水处理系统将水注入到特定的容器中,以实现水的净化。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。系统、装置或终端权利要求中陈述的多个单元、模块或装置也可以由同一个单元、模块或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种注水处理方法,其特征在于,所述方法包括:
    利用波长为280纳米的紫外光以预设照射剂量对注水进行照射。
  2. 如权利要求1所述的注水处理方法,其特征在于,所述利用波长为280纳米的紫外光以预设照射剂量对注水进行照射包括以下一种或两种:
    利用紫外LED灯发出的波长为280纳米的紫外光以预设照射剂量对注水进行照射;
    利用UVB灯管发出的波长为280纳米的紫外光以预设照射剂量对注水进行照射。
  3. 如权利要求1所述的注水处理方法,其特征在于,所述预设照射剂量为15mJ/cm 2
  4. 一种注水处理装置,其特征在于,包括:
    注水输入口、光照处理腔室、注水输出口以及紫外灯,所述光照处理腔室位于所述注水输入口与所述注水输出口之间,所述紫外灯设于所述光照处理腔室中,所述紫外灯用于发射波长为280纳米的紫外光,并以预设照射剂量对注水进行照射。
  5. 如权利要求4所述的注水处理装置,其特征在于,所述紫外灯为紫外LED灯;
    所述紫外LED灯包括至少一个面光源阵列板,所述至少一个面光源阵列板均具有用于引导注水流向所述注水输出口的板面,所述板面为紫外光出射面。
  6. 如权利要求5所述的注水处理装置,其特征在于,所述至少一个面光源阵列板为多个面光源阵列板,每个所述面光源阵列板相互平行设置。
  7. 如权利要求6所述的注水处理装置,其特征在于,所述至少一个面光源阵列板包括中间层面光源阵列板及设于所述中间层面光源阵列板两侧的侧 边层面光源阵列板,所述中间层面光源阵列板设于所述光照处理腔室的中部位置处,所述侧边层面光源阵列板在靠近所述注水输入口一侧的板体上设有用于引导注水沿所述侧边层面光源阵列板远离所述中间层面光源阵列板一侧的板面流动的导流部。
  8. 如权利要求7所述的注水处理装置,其特征在于,所述导流部沿靠近所述注水输入口及所述中间层面光源阵列板倾斜设置。
  9. 一种注水处理系统,包括注水管路,其特征在于,还包括如权利要求4-8任一项所述的注水处理装置,所述注水处理装置设于所述注水管路上。
  10. 如权利要求9所述的注水处理系统,其特征在于,所述注水处理系统为海下注水处理系统、船舶压载水处理系统以及生活生产水处理注水处理系统中的其中一种,所述注水处理装置设于所述注水管路的注水端位置处。
PCT/CN2019/074191 2018-02-13 2019-01-31 注水处理方法、注水处理装置及其应用 WO2019157976A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19755223.5A EP3753907A4 (en) 2018-02-13 2019-01-31 INJECTION WATER TREATMENT PROCESS, INJECTION WATER TREATMENT DEVICE AND APPLICATION OF THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150134.XA CN108217829A (zh) 2018-02-13 2018-02-13 注水处理方法、注水处理装置及海下注水处理系统
CN201810150134.X 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019157976A1 true WO2019157976A1 (zh) 2019-08-22

Family

ID=62661892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074191 WO2019157976A1 (zh) 2018-02-13 2019-01-31 注水处理方法、注水处理装置及其应用

Country Status (3)

Country Link
EP (1) EP3753907A4 (zh)
CN (1) CN108217829A (zh)
WO (1) WO2019157976A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO345906B1 (en) * 2017-08-29 2021-10-04 Vetco Gray Scandinavia As Subsea biofouling formation prevention device, use of a subsea biofouling formation prevention device and a process for subsea operation of a seawater or an oil-water mixture
CN108217829A (zh) * 2018-02-13 2018-06-29 清华大学深圳研究生院 注水处理方法、注水处理装置及海下注水处理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2793055Y (zh) * 2005-06-10 2006-07-05 黑龙江省瓦茨环保机电设备有限责任公司 油田专用紫外线物理杀菌设备
CN102115227A (zh) * 2009-12-31 2011-07-06 上海广茂达光艺科技股份有限公司 明渠式紫外水体消毒装置
CN104692488A (zh) * 2015-02-09 2015-06-10 广东美的制冷设备有限公司 深紫外净化加湿器、饮用水系统及其深紫外灭菌组件
CN205367796U (zh) * 2016-01-13 2016-07-06 刘钰 紫外线杀菌装置
CN207525010U (zh) * 2018-02-13 2018-06-22 清华大学深圳研究生院 注水处理装置及海下注水处理系统
CN108217829A (zh) * 2018-02-13 2018-06-29 清华大学深圳研究生院 注水处理方法、注水处理装置及海下注水处理系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030170151A1 (en) * 2002-03-08 2003-09-11 Hunter Charles Eric Biohazard treatment systems
CN101696046A (zh) * 2009-10-27 2010-04-21 杨红梅 一种紫外线杀菌装置
US20120228236A1 (en) * 2009-11-04 2012-09-13 Hawkins Ii R Thomas Photochemical purification of fluids
KR20120030748A (ko) * 2010-09-20 2012-03-29 한국해양대학교 산학협력단 자외선 발광다이오드를 이용한 선박 평형수 처리장치의 살균효율 향상방법 및 그 방법을 이용한 선박 평형수 처리장치
US10207936B2 (en) * 2016-02-19 2019-02-19 Silanna UV Technologies Pte Ltd Ultraviolet reactor with planar light source
CN107417019A (zh) * 2017-09-13 2017-12-01 中冶华天工程技术有限公司 一种油田采出水处理工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2793055Y (zh) * 2005-06-10 2006-07-05 黑龙江省瓦茨环保机电设备有限责任公司 油田专用紫外线物理杀菌设备
CN102115227A (zh) * 2009-12-31 2011-07-06 上海广茂达光艺科技股份有限公司 明渠式紫外水体消毒装置
CN104692488A (zh) * 2015-02-09 2015-06-10 广东美的制冷设备有限公司 深紫外净化加湿器、饮用水系统及其深紫外灭菌组件
CN205367796U (zh) * 2016-01-13 2016-07-06 刘钰 紫外线杀菌装置
CN207525010U (zh) * 2018-02-13 2018-06-22 清华大学深圳研究生院 注水处理装置及海下注水处理系统
CN108217829A (zh) * 2018-02-13 2018-06-29 清华大学深圳研究生院 注水处理方法、注水处理装置及海下注水处理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3753907A4 *

Also Published As

Publication number Publication date
EP3753907A1 (en) 2020-12-23
EP3753907A4 (en) 2021-10-20
CN108217829A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
US20170320755A1 (en) Systems and methods for fluid treatment with homogeneous distribution of ultraviolet light
US20100178201A1 (en) In-line treatment of liquids and gases by light irradiation
WO2019157976A1 (zh) 注水处理方法、注水处理装置及其应用
WO2002009774A1 (en) Ultraviolet fluid disinfection system and method
CN109002688B (zh) 基于臭氧消毒/紫外线消毒/氯消毒的水处理方法
US20100300982A1 (en) Apparatus and method for ballast water treatment
CN102674603A (zh) 紫外-过硫酸盐联合水体消毒方法
KR102434945B1 (ko) 자외선 물 살균 방법 및 이를 이용한 물 살균 장치
CN201442894U (zh) 新型紫外消毒装置
JP5276855B2 (ja) 紫外線水処理設備及びその紫外線照射量制御装置
KR100883123B1 (ko) 무동력 와류발생장치를 이용한 고효율 관로형 자외선소독장치
CN105692775A (zh) 一种超声波-微波-紫外联合辐照进行水消毒的方法
CN203229444U (zh) 一体化污水处理设备
CN207525010U (zh) 注水处理装置及海下注水处理系统
WO2020004272A1 (ja) 水処理システム
RU196216U1 (ru) Установка для очистки сточных вод от красителей
CN201777912U (zh) 一种灯管交错排布的紫外线消毒装置
CN201777911U (zh) 一种灯管垂直排布的紫外线消毒装置
CN106219839A (zh) 一种紫外光去除水中卤代硝基甲烷的水处理方法
RU167563U1 (ru) Установка для очистки сточных вод от трудноокисляемых органических соединений
CN208378673U (zh) 一种有机高氨氮废水处理一体化设备
Valenti Lighting the way to improve disinfection
CN104692486B (zh) 一种紫外线流体处理器
Lebedev et al. Testing combined application of ultraviolet and ultrasonic disinfection of wastewater
CN206502634U (zh) 明渠式紫外线消毒器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019755223

Country of ref document: EP

Effective date: 20200914