WO2019157892A1 - 信号接收方法、装置及设备 - Google Patents

信号接收方法、装置及设备 Download PDF

Info

Publication number
WO2019157892A1
WO2019157892A1 PCT/CN2019/071194 CN2019071194W WO2019157892A1 WO 2019157892 A1 WO2019157892 A1 WO 2019157892A1 CN 2019071194 W CN2019071194 W CN 2019071194W WO 2019157892 A1 WO2019157892 A1 WO 2019157892A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain signal
time domain
label
rbs
frequency domain
Prior art date
Application number
PCT/CN2019/071194
Other languages
English (en)
French (fr)
Inventor
陈曦
邹志强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19754683.1A priority Critical patent/EP3745760B1/en
Publication of WO2019157892A1 publication Critical patent/WO2019157892A1/zh
Priority to US16/991,602 priority patent/US11337213B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a signal receiving method, apparatus, and device.
  • the spectrum resource is a non-renewable resource.
  • a spectrum resource allocation strategy is to allocate a certain amount of spectrum of a suitable frequency band for different communication services.
  • the network standard is a global mobile communication system (GSM) signal communication service that allocates the spectrum of the A mega 900 MHz band
  • the network standard is a long term evolution (LTE) signal communication service.
  • Multi-system spectrum sharing means that signals of multiple network standards share a spectrum for transmission.
  • the LTE signal and the GSM signal share a spectrum transmission.
  • the LTE signal is transmitted according to an orthogonal frequency division multiplexing (OFDM) technology.
  • OFDM orthogonal frequency division multiplexing
  • the transmission mechanism of the OFDM technology is that the transmitting device sends the time domain signal, and after receiving the time domain signal, the receiving device receives the time domain signal. Performing a fast Fourier transform (FFT) operation on the time domain signal to convert the time domain signal into a frequency domain signal, and then performing demodulation and the like on the obtained frequency domain signal.
  • FFT fast Fourier transform
  • each subcarrier of an OFDM signal such as an LTE signal is orthogonal to each other. Therefore, after the FFT is converted, there is no interference between the signals, and the obtained frequency domain signal is as shown in FIG.
  • other non-OFDM signals such as GSM signals (referred to as heterogeneous signals in the embodiment of the present application)
  • the corresponding signals at the truncation will be spread out of the spectrum that should be occupied, and The roll-off is slower, as shown in Figure 2. This phenomenon is called spectrum leakage.
  • the frequency domain signal obtained by the FFT operation has a serious spectrum leakage, which causes the heterogeneous signal to occupy other spectrum, thereby generating a certain degree of the signal at the occupied spectrum. Interference, which in turn reduces the reception performance of the OFDM signal.
  • the embodiment of the present application provides a signal receiving method, apparatus, and device, to solve the problem of serious spectrum leakage caused by multi-standard spectrum sharing when transmitting signals by using OFDM technology.
  • an embodiment of the present application provides a signal receiving method, including: receiving a time domain signal sent by a sending device; and copying the time domain signal to obtain an N time domain signal, where N is greater than or equal to 2 And less than or equal to a total number of resource blocks (RBs) in a resource block group (RBG) corresponding to the time domain signal; configuring N window functions, the N window functions and the The N-channel time domain signals are in one-to-one correspondence, wherein the window lengths corresponding to the N window functions are greater than or equal to 0, and are less than or equal to the length of the Cyclic Prefix (CP) preset by the time domain signal.
  • CP Cyclic Prefix
  • the window lengths corresponding to the N window functions are all different; each time domain signal in the N time domain signals is subjected to an operation according to a corresponding window function, and an N channel windowed time domain signal is obtained;
  • the N-channel windowed time domain signal obtains an N-channel frequency domain signal, wherein the RBs in the RBG are satisfied in the N-channel frequency domain signals: sequentially arranged according to the label size, and the label refers to the RB.
  • the interference point refers to a frequency point at which interference occurs; and a plurality of RBs are selected from each of the frequency domain signals of the N frequency domain signals, wherein the RBs selected from each of the frequency domain signals are from other paths.
  • the RBs selected in the frequency domain signal are not repeated, and the distance between the RB selected from the frequency domain signal having a longer window length and the RB corresponding to the interference point is smaller than the RB selected from the frequency domain signal having a shorter window length.
  • the distance of the RB corresponding to the interference point sequentially arranging the selected RBs according to the size of the label to obtain a target frequency domain signal.
  • the receiving device after receiving the time domain signal, copies a time domain signal into N paths, and only configures a window function for each of the N time domain signals to add a time domain signal.
  • N windows After the time domain signal is converted into the N frequency domain signals, the window lengths corresponding to the N window functions are different, and the longer the window length, the better the interference suppression effect on the spectrum leakage, and therefore, the difference may be different.
  • the frequency domain signals corresponding to the window length the RB with the best performance is selected, and finally, the selected RBs are sequentially arranged according to the label size to obtain the final frequency domain signal.
  • adding multiple windows for one time domain signal not only breaks the limitation caused by adding one window to performance optimization, but also can more accurately balance the performance of each RB.
  • selecting the best performing RB based on different window lengths and combining the selected optimal RBs to obtain the target frequency domain signal can improve the performance of the signal as a whole.
  • the RB in the RB wherein the RB that is not configured in the RBG includes: an RB corresponding to a missing label between the smallest label and the largest label in the label, an RB corresponding to the smallest label-1, and a label
  • the RB corresponding to the largest label +1; the RB not configured in the RBG is determined as the RB corresponding to the interference point.
  • the determining the RB corresponding to the interference point includes: determining a frequency point number of the interference point; determining a label of the corresponding RB according to the frequency point number And determining, by the RB corresponding to the label, an RB corresponding to the interference point.
  • the best performing RB can be selected from the N frequency domain signals according to the correspondence between the interference size and the window length. . Based on this, first, the RB corresponding to the interference point can be determined.
  • the base station Before the sending device sends the time domain signal, the base station usually needs to schedule the spectrum resource carrying the corresponding information and the transmitted signal.
  • the RB corresponding to the interference point can be determined in two ways. With this implementation, the RB with the highest interference strength in the frequency domain signal can be determined, and further, the implementation basis is selected for selecting the RB with the best performance.
  • the selecting the selected RBs in sequence according to the label size to obtain the target frequency domain signal specifically, including: the RB corresponding to the interference point
  • the RBs are sequentially arranged according to the label size to obtain a target frequency domain signal.
  • the selecting, by the label size, the selected RBs, the method includes: when the interference intensity corresponding to the interference point is greater than a preset threshold, The RBs corresponding to the interference points and the RBs other than the RB adjacent RBs corresponding to the interference points are sequentially arranged according to the label size to obtain a target frequency domain signal.
  • the RB corresponding to the interference point is usually not carried with any information. Based on this, the receiving device can directly delete the RBs corresponding to the interference points when the selected RBs are combined, and sequentially arrange only the RBs other than the RBs corresponding to the interference points according to the label size. If the interference is large, the RBs corresponding to the interference points and the RBs other than the RB adjacent to the interference point may be sequentially arranged according to the label size to obtain the target frequency domain signal.
  • the number of RBs in the target frequency domain signal can be reduced, thereby reducing the overhead occupied by analyzing the target frequency domain signal.
  • the method further includes Determining a total bandwidth of the time domain signal; calculating a total number of RBs in the RBG based on a total bandwidth of the time domain signal.
  • the time domain signal and the frequency domain signal are expressions of two dimensions of the same signal, and in the time domain, one RB is one time slot, and in the frequency domain, one RB is 12 subcarriers. Based on this, after receiving the time domain signal, the receiving device may determine the total number of RBs in the RBG corresponding to the time domain signal according to the total bandwidth of the time domain signal.
  • the N maximum may be the total number of RBs.
  • the signal performance can be optimized as a whole.
  • an embodiment of the present application provides a signal receiving apparatus, including a module for performing the method steps in the first aspect and the implementation manners of the first aspect.
  • the embodiment of the present application further provides a signal receiving device, including a transceiver, a processor, and a memory.
  • the transceiver, the processor and the memory can be connected by a bus system.
  • the memory is for storing a program, instruction or code
  • the processor is for executing a program, instruction or code in the memory, completing the first aspect, or the method of any one of the possible aspects of the first aspect.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform any aspect of the first aspect or the first aspect. The method in .
  • the receiving device after receiving the time domain signal sent by the sending device, copies the received time domain signal into N paths, and respectively adds the N time domain signals.
  • N windows with different window lengths According to the principle of window length and interference caused by spectrum leakage, the longer the window length, the better the effect of suppressing interference.
  • the receiving device selects the RBs that are subject to interference from the frequency domain signals with long window lengths, that is, corresponding to the interference points.
  • the RB having a smaller RB distance selects an RB having a smaller interference from a frequency domain signal having a shorter window length, that is, an RB having a larger RB distance corresponding to the interference point, and further, combining the selected RBs to obtain a target Frequency domain signal. It can be seen that the scheme adds N windows of different window lengths for one time domain signal, and then selects RBs from frequency domain signals of different window lengths according to the relationship between interference intensity and window length, thereby ensuring the finally obtained frequency.
  • each RB receives the least interference due to the spectrum leakage, so that in the scenario where the multi-standard signal shares the spectrum and at least one standard signal adopts the OFDM transmission technology, the interference caused by the spectrum leakage can be effectively suppressed. Optimize the reception performance of the signal.
  • FIG. 1 is a schematic diagram of a frequency domain signal according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a frequency domain signal according to a second embodiment of the present disclosure.
  • FIG. 3 is a flowchart of a method for receiving a signal according to an embodiment of the present application.
  • Figure 5 is a schematic view showing the arrangement of RBs in the embodiment shown in Figure 4;
  • FIG. 6 is a flowchart of operations of a second implementation manner of signal receiving according to an embodiment of the present disclosure
  • Figure 7 is a schematic view showing the arrangement of RBs in the embodiment shown in Figure 6;
  • FIG. 8 is a schematic structural diagram of a signal receiving apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a signal receiving apparatus according to an embodiment of the present disclosure.
  • a commonly used method is that after receiving the time domain signal, the receiving device windowes the time domain signal before performing the FFT operation on the time domain signal.
  • a window function is set, the number of sampling points corresponding to the window function (ie, the window length) is W, and each sampling point corresponds to the window coefficient w.
  • the interference is suppressed by adding a window to the time domain signal, and the longer the window length corresponding to the corresponding window function is, the better the suppression effect on the interference is, and the shorter the window length corresponding to the corresponding window function is, the worse the suppression effect on the interference is.
  • OFDM symbols are usually defined as units of time domain.
  • the transmitting device usually transmits the same time domain signal through multiple transmission paths, due to multiple The transmission delays of the transmission paths are different. Therefore, the OFDM symbols transmitted to the receiving device at different times by different transmission paths are different, which causes interference between symbols. This phenomenon is called inter symbol interference (ISI).
  • ISI inter symbol interference
  • a transmitting device adds a CP between OFDM symbols of a time domain signal before transmitting a time domain signal, and the CP can form a guard interval between symbols, so that OFDM of two different transmission paths The symbol, when arriving at the receiving device, one OFDM symbol falls within the guard interval of the other OFDM symbol, thereby eliminating the effect between the two OFDM symbols.
  • the length P of the CP is usually greater than the maximum multipath delay.
  • the window length W corresponding to the window function generally refers to the length of the preset CP and the length of the multipath delay extension. Generally, the window length W does not exceed the length P of the CP.
  • the value of the multipath delay spread. The value of the multipath delay spread is the difference between the maximum transmission delay and the minimum transmission delay.
  • the window length W is long, the suppression effect on interference is better, but the window length W is longer to introduce ISI, thereby causing interference to the signal on the other hand, and if the window length W If it is shorter, the suppression effect on interference is poor. It can be seen that the commonly used signal receiving method suppresses the interference, and it is difficult to achieve a desired effect. Therefore, in order to solve the problem, those skilled in the art have studied the present application.
  • FIG. 3 is a flowchart of a method for receiving a signal according to an embodiment of the present disclosure.
  • the method 300 shown in FIG. 3 can effectively suppress interference caused by spectrum leakage, thereby optimizing signal receiving performance.
  • the method 300 includes the following steps:
  • Step S301 Receive a time domain signal sent by the sending device.
  • the OFDM technology is implemented in the embodiment of the present application.
  • both the sending device and the receiving device are devices capable of supporting the OFDM technology.
  • the solution is applicable to a scenario in which a base station sends a time domain signal to a terminal, and is also applicable to a scenario in which a terminal sends a time domain signal to a base station. Therefore, in this embodiment, the sending device may be a base station or a terminal, and when the sending device is In the terminal, the receiving device is a base station, and when the sending device is a base station, the receiving device is a terminal, which is not limited in this embodiment of the present application.
  • the time domain signal in the embodiment of the present application is an OFDM signal and a heterogeneous signal carried on the same frequency spectrum, wherein the OFDM signal refers to an OFDM-based signal.
  • the heterogeneous signal refers to a signal different from the OFDM signal, and a signal based on other transmission technologies, such as a GSM based signal, and a universal mobile communication system based on code division multiple access (CDMA) technology. (universal mobile telecommunications system, UMTS) signal.
  • CDMA code division multiple access
  • UMTS universal mobile telecommunications system
  • Numerology is a parameter used by the communication system. Communication systems (such as 5G) can support a variety of numerologies.
  • the numerology can be defined by one or more of the following parameter information: subcarrier spacing, CP, time unit, bandwidth, and so on.
  • numerology can be defined by subcarrier spacing and CP.
  • the time domain signal may include at least one heterogeneous signal.
  • Step S302 copying the time domain signal to obtain an N time domain signal.
  • the sending device when the sending device sends a time domain signal to the receiving device, it is usually only sent by one channel signal, because one time domain signal can only set a window function correspondingly, and the operation is performed according to the window function (ie, only one window can be added),
  • the addition of a window not only does not inhibit the interference, but also greatly limits the performance of the signal.
  • the receiving device after receiving the time domain signal, the receiving device adds multiple windows to the same time domain signal, so that the signal performance can be further optimized.
  • the receiving device copies the time domain signal from one way to N way, and further, may be the N Each time domain signal in the time domain signal is windowed, thereby achieving the effect of adding multiple windows to the same time domain signal.
  • N is minimum.
  • a resource block (RB) is generally used as a component of a frequency domain signal, and a frequency domain signal can be regarded as a resource block group (RBG), and the RBG includes multiple RB, each RB carries part of the information.
  • RBG resource block group
  • each RB carries part of the information.
  • Nmax may be the total number of RBs included in the time domain signal.
  • the time domain signal and the frequency domain signal are expressions of two dimensions of the same signal, and in the time domain, one RB is one time slot, and in the frequency domain, one RB is 12 subcarriers. Based on this, after receiving the time domain signal, the receiving device may determine the total number of RBs in the RBG corresponding to the time domain signal according to the total bandwidth of the time domain signal.
  • the expression parameters of the RB in the time domain and the frequency domain are well-known technologies, and are not described in detail in the embodiments of the present application.
  • Step S303 configuring N window functions.
  • Step S302 after copying the same time domain signal into N paths, the receiving device can configure the window function corresponding to the N time domain signals to obtain N window functions.
  • the embodiment of the present application is to add a plurality of windows to the time domain signal to further optimize the performance of the signal. Therefore, the window lengths corresponding to the N window functions are different, that is, the number of sampling points corresponding to the N window functions are both Not the same.
  • the performance is completely different.
  • the spectrum leakage causes a large interference
  • the RB corresponds to the longest window.
  • the limitation condition of the set window length can be relaxed, so as to accommodate the window length corresponding to the best RB performance, and further, the overall performance of the signal is optimized.
  • the window length corresponding to the N window functions may be 0, and the maximum may be the length of the preset CP.
  • the CP is preset by the sending device, and the length of the CP complies with the requirements of the sending protocol, which is not detailed in the embodiment of the present application.
  • the window length does not exceed the length of the CP minus the value of the multipath delay spread.
  • the window length is long.
  • the ISI can be introduced into the signal.
  • the interference suppression and the introduced ISI can be well balanced. Therefore, in the embodiment of the present application, the window length can exceed the length of the CP minus the multipath delay. Extended value.
  • N is greater than or equal to 2 and less than or equal to the length of the preset CP.
  • the window length of each time domain signal in the N time domain signal may be Flexible settings. For example, when N is 2, the longer window length may be 2/3 of the preset CP length, and the shorter window length may be 1/4 of the preset CP length.
  • the shortest window length can be set to 0, and other window lengths can be set by the preset CP length/N as the length unit.
  • the receiving device can flexibly configure each window length. Specifically, the embodiment of the present application does not limit this.
  • the window function includes a rectangular window function, a Hanning window function, a Hamming window function, and a Gaussian window function.
  • the N window functions may be the same window function, for example, a Hamming window function. It can also be a variety of different window functions.
  • the N window functions are typically the same window function in order to clearly distinguish the interference suppression effects of different window lengths on the RB. Specifically, the embodiments of the present application are not described in detail.
  • Step S304 performing an operation on each time domain signal in the N time domain signals according to a corresponding window function to obtain an N channel windowed time domain signal.
  • the operation is performed on each time domain signal in the N time domain signals according to the corresponding window function, and the N channel windowed time domain signal is obtained.
  • the process of performing the operation according to the window function is described in the related art, and the embodiments of the present application are not described in detail herein.
  • the embodiment of the present application not only breaks the limitation caused by adding a window to performance optimization, but also can more accurately balance the performance of each RB, thereby improving the overall performance of the signal by adding multiple windows for one time domain signal. .
  • Step S305 converting the N-channel windowed time domain signals respectively to obtain N-channel frequency domain signals.
  • the OFDM technology is used to convert the time domain signal into the frequency domain signal, and the FFT operation is usually used. Based on this, in the embodiment of the present application, the FFT operation is performed on the N-channel windowed time domain signal to obtain the N-channel frequency domain signal. . Specifically, the FFT operation is a technique that is familiar to those skilled in the art, and the embodiments of the present application are not described in detail.
  • one form of the frequency domain signal is an RBG composed of RBs arranged in order from low frequency to high frequency
  • the base station sets an identification number in the corresponding RBG for each RB when scheduling resources, and usually, a low frequency band
  • the RB identification number is smaller than the RB identification number of the high frequency band, so the RBs are arranged in order from low frequency to high frequency, that is, the RBs are sequentially arranged according to the label size, so the RBs in the RBG are in the frequency domain. Satisfied in the signal, arranged in order according to the size of the label.
  • the contents of the N time domain signals are completely the same, after the same operation is performed, the contents of the obtained N frequency domain signals are completely the same. Specifically, the number of RBs in the N-channel frequency domain signal, the labeling and arrangement of each RB, and the information carried by each RB are the same. However, since the window lengths of the N-channel windowed time domain signals are different, the interference of the same RB in different frequency domain signals is different.
  • Step S306 determining an RB corresponding to the interference point.
  • the interference point refers to a frequency point that interferes with the signal.
  • the content of the N-channel frequency domain signals is completely the same, and the corresponding interference of each RB in the N-channel frequency domain signals is different.
  • the receiving device may select the best performance from the N frequency domain signals, and then select the selected RB according to the RBG.
  • the sequence is combined to obtain the final frequency domain signal, that is, the target frequency domain signal of the embodiment of the present application.
  • the receiving device may first determine the RB corresponding to the interference point.
  • the RB corresponding to the interference point is the location with the strongest interference, and the closer the RB distance corresponding to the interference point is, the stronger the interference is, and the farther the RB distance corresponding to the interference point is, the more interference is received. weak. It can be seen that determining the RB corresponding to the interference point is a key link for accurately selecting the RB in the embodiment of the present application.
  • the base station Before the sending device sends the time domain signal, the base station usually needs to schedule the spectrum resource carrying the corresponding information and the transmitted signal. Therefore, the frequency of the interference may be determined in advance, and then the RB is configured in combination with the interference frequency.
  • the RB corresponding to the interference point can be determined by using the following two methods in the embodiment of the present application.
  • Manner 1 Generally, after determining the interference frequency point, the base station sets the RB corresponding to the interference frequency point to be empty when the RB is configured, or does not use the corresponding RB to send information, and the RBs are sequentially arranged according to the label size, so If an RB in the RBG does not carry any information, or is not configured in the RBG, the label of the RB carrying the information in the RBG will not be consecutive.
  • the receiving device may identify the label of each RB in the RBG, determine the RB that is not configured in the RBG according to the label, and further determine the RB that is not configured in the RBG.
  • the RBs that are not configured in the RBG include: RBs corresponding to the missing labels between the smallest label and the largest label in the label.
  • the RB corresponding to the label adjacent to the smallest label in the label and the RB corresponding to the label adjacent to the largest label are generally determined as the interference point. Therefore, in this embodiment, the RBs that are not configured in the RBG further include: RBs corresponding to the smallest label-1, and RBs corresponding to the largest label +1.
  • the determining mode is applicable to the base station and the terminal.
  • the frequency point number corresponding to the interference point can be determined by calculation, and then the label of the corresponding RB can be determined according to the frequency point number.
  • the RB corresponding to the label is the RB corresponding to the interference point.
  • the base station has the function of scheduling spectrum resources, and therefore, the information of the interference frequency point can be known, and the terminal does not have the function of scheduling the spectrum resource, and usually requests the configured RB information from the base station, and therefore, the terminal cannot The information of the interference frequency is directly known, so the second method is only applicable to the scenario where the receiving device is a base station.
  • Step S307 selecting a plurality of RBs from each of the frequency domain signals of the N frequency domain signals.
  • each RB in the frequency domain signal different window lengths have different balancing effects on the interference suppression effect and the ISI.
  • the receiving device can correspond to the frequency of the N window lengths for each RB.
  • the one with the best performance is selected, that is, one RB with the smallest ISI and the best interference suppression effect is selected. Therefore, in the embodiment of the present application, each RB may only be derived from one of the N frequency domain signals. The domain signal, therefore, the RB selected from each of the frequency domain signals does not overlap with the RB selected from the other frequency domain signals.
  • the RB corresponding to the interference point is the position with the strongest interference, and the closer the RB with the strongest distance interference is, the stronger the interference is, and the farther the distance is the strongest.
  • the interference received by the RB is weaker, and the longer the window length, the better the suppression of interference. Therefore, when the RB is selected, the receiving device can select the RB with strong interference in the frequency domain signal with a long window length, that is, select the RB corresponding to the interference point in the frequency domain signal with a long window length.
  • the RB selects the RB that is weakly interfered in the frequency domain signal with a short window length, that is, selects the RB that is farther from the RB corresponding to the interference point in the frequency domain signal with a shorter window length.
  • the frequency domain signals having longer window lengths are selected from the frequency domain signals with shorter window lengths.
  • the RBs adjacent to the RB corresponding to the interference point are selected from the frequency domain signals with long window lengths, and the RBs corresponding to the interference points are farther away.
  • a number of RBs at the left and right ends are selected from frequency domain signals having a short window length.
  • the receiving device can be flexibly operated, and the embodiment of the present application does not limit this.
  • the number of RBs selected in the frequency domain signal with a long window length may be 18, and the RB selected in the frequency domain signal with a short window length may be 12
  • the number of RBs selected in the frequency domain signal of each window length may be six.
  • the number of RBs selected in the frequency domain signal of each window length may be one.
  • Step S308 sequentially arranging the selected RBs according to the size of the label to obtain a target frequency domain signal.
  • the receiving device After receiving the frequency domain signal, the receiving device needs to perform a demodulation operation on the frequency domain signal, for example, performing channel equalization, constellation demapping, and channel decoding on the frequency domain signal, and finally acquiring the signal content, and
  • the demodulation operation is usually the inverse of the modulation operation, and therefore the integrity of the frequency domain signal should be guaranteed. Based on this, after selecting the RB, the receiving device can sequentially arrange the selected RBs according to the label size to obtain the target frequency domain signal.
  • the receiving device can directly delete the RBs corresponding to the interference points when the selected RBs are combined, and sequentially arrange only the RBs other than the RBs corresponding to the interference points according to the label size.
  • the interference when the interference strength corresponding to the interference point is greater than a preset threshold, the interference may be The RBs corresponding to the points and the RBs other than the RB adjacent to the interference point are sequentially arranged in accordance with the label size to obtain a target frequency domain signal.
  • the preset threshold base station can be flexibly set according to requirements, and the embodiment of the present application does not limit this.
  • the embodiment can reduce the number of RBs in the target frequency domain signal, thereby reducing the overhead occupied by parsing the target frequency domain signal.
  • the foregoing is only an alternative implementation scenario in a scenario where the RB with a strong interference strength does not carry any information.
  • the receiving device may also First, the RB carrying information corresponding to the interference point is determined. Further, the RB corresponding to the best performing interference point is selected according to step S307, and the combining operation is performed on the RB corresponding to the selected interference point according to step S308.
  • the receiving device can add N windows for the time domain signal, and the window lengths of the N windows are different, so that the best performing RB can be selected based on different window lengths, and The selected optimal RB combinations are obtained to obtain the target frequency domain signal. Therefore, the technical solution of the embodiment of the present application breaks the limitation of signal performance improvement of only one window by adding multiple windows, and can better balance the interference suppression effect and ISI of each RB, as a whole. Improve signal performance.
  • FIG. 4 is a flowchart of operation of signal reception provided by an embodiment of the present application.
  • the operation procedure 400 in this embodiment uses the base station as the receiving device, and the signal sharing the spectrum includes the LTE signal and the GSM signal. It is assumed that the value of N is 2 in this embodiment, and the RBG corresponding to the signal includes 25 RBs in total, and the labels of the 25 RBs are 0 to 24, respectively.
  • the time domain signal 401 is copied to obtain a time domain signal 4011 and a time domain signal 4012.
  • the contents of the time domain signal 4011, the time domain signal 4012, and the time domain signal 401 are identical.
  • the base station sets a window function for the time domain signal 4011 and the time domain signal 4012, respectively, and operates the time domain signal 4011 and the time domain signal 4012 according to the respective window functions to respectively window the time domain signal 4011 and the time domain signal 4012. .
  • the window length of the base station for the time domain signal 4011 is 2S/3, and the base station is the window for the time domain signal 4012 windowing. The length is S/5.
  • the base station performs an FFT operation on the windowed time domain signal 4011, converts the windowed time domain signal 4011 into a frequency domain signal 4011, and performs an FFT operation on the windowed time domain signal 4012, which will be windowed.
  • the subsequent time domain signal 4012 is converted to a frequency domain signal 4022.
  • the content of the frequency domain signal 4021 and the frequency domain signal 4022 are the same, that is, the frequency domain signal 4021 and the frequency domain signal 4022 both include RBs of labels 0 to 24, and 25 RBs are in the frequency domain signal 4021 and the frequency domain signal 4022.
  • the arrangement in the same is the same, and the information carried by each RB in the frequency domain signal 4021 and the frequency domain signal 4022 is also the same.
  • the base station may calculate the frequency point number of the interference frequency point according to the frequency spectrum of the transmission time domain signal 401, and further obtain the RB corresponding to the interference point according to the frequency point number, for example, in combination with the RB row shown in FIG. Schematic diagram of the cloth structure, the RB corresponding to the interference point is an RB numbered 12. Based on this, the base station can determine the interference received by each RB and the size of the ISI according to the two window lengths 2S/3 and S/5, and further, select the RB from the frequency domain signal 4021 or the frequency domain signal 4022. Specifically, for example, it is calculated that 7 RBs are respectively continuous around the RB with the label 12 shown in FIG.
  • the interference and ISI are the smallest when the window length is 2S/3, and the window length is S/5.
  • the ISI is small, even 0, the interference is large. Therefore, the RBs of the numbers 5 to 11 and the RBs of the numbers 13 to 19 are selected from the frequency domain signal 4021.
  • the interference is small or even 0 when the window length is 2S/3, but the ISI is large, and the window length is S. Both the /5-time interference and the ISI are minimal, and therefore, the RBs of the labels 0 to 4, and the RBs of the numbers 20 to 24 are selected in the frequency domain signal 4022.
  • the RBs selected from the frequency domain signal 4021 and the frequency domain signal 4022 are arranged in the order of 0 to 24 to obtain the target frequency domain signal 402. Then, the base station can parse and acquire the target frequency domain signal 402. To the content of the signal.
  • the RB corresponding to the interference point may be arbitrarily, for example, the RB corresponding to the interference point is labeled 23 RB.
  • the interference frequency may be greater than one, and correspondingly, the RB corresponding to the interference point is also greater than one.
  • the interference intensity at each interference point may be different.
  • the base station's selection of RBs is based on interference strength and ISI strength.
  • the RBs of the labels 11 to 13 can be set to carry no information at the time of scheduling. Based on this, when the eNB selects the RB, the RBs other than the labels 11 to 13 can be sequentially arranged according to the label size to obtain the target frequency domain signal 402.
  • the base station can select the RBs of the label 11 to the label 13 from the frequency domain signal 4021 according to the above selection process, and then sequentially arrange all the selected RBs according to the label size. .
  • the embodiments of the present application are not described again.
  • FIG. 6 is a flowchart of operations of a second implementation manner of signal receiving according to an embodiment of the present application.
  • the terminal is used as the receiving device, and the signal sharing the spectrum includes the LTE signal and the GSM signal.
  • the value of N is 3 in the embodiment, and the RBG corresponding to the signal includes 30 RBs in total, and the labels of the 30 RBs are label 0, label 2 to label 14, label 17, label 20, and label 21 To the number 34.
  • the terminal after receiving the time domain signal 501 sent by the base station, the terminal copies the time domain signal 501 to obtain the time domain signal 5011, the time domain signal 5012, and the time domain signal 5013, and then The time domain signal 5011, the time domain signal 5012, and the time domain signal 5013 set a window function, and then perform operations on the time domain signal 5011, the time domain signal 5012, and the time domain signal 5013 according to corresponding window functions, respectively, to the time domain signal 5011.
  • the time domain signal 5012 and the time domain signal 5013 are windowed.
  • the CP length M of the time domain signal 501, the window length of the window for the time domain signal 5011 is 4M/5, and the window length for the time domain signal 5012 is M/2, which is windowed for the time domain signal 5013.
  • the window length is M/4.
  • the terminal since the terminal does not have the scheduling function, the terminal usually knows from the base station about the configuration information of the RB, and the configuration information of the RB includes the label of the configured RB and different labels. Information carried by the RB. Based on this, the terminal uses the RBs that are not configured in the RBG as the RBs corresponding to the interference points, for example, RBs corresponding to the numbers -1, 1, 1, 15, 16, 18, 19, and 35. With reference to the present embodiment, the consecutive reference numerals include the reference numerals 2 to 14, and the reference numerals 21 to 34.
  • the RBs with the label 1 and the RB labels 15 are the interference points.
  • two consecutive RBs located at two ends of the labels 2 to 14, and 21 to 34 can be 4M from the window length.
  • /5 of the frequency domain signals are selected. That is, as shown in FIG. 7, for the RBs of the numbers 2 to 14, the labels 2 and 3, and the labels 13 and 14 are selected from the frequency domain signal 5021; the RBs for the labels 21 to 34, the label 21 and Reference numeral 22, and RBs corresponding to reference numerals 33 and 34, are selected from the frequency domain signal 5021.
  • the second, fourth and fifth RBs can be selected from the frequency domain signals having a window length of M/2, respectively, from the labels 2 to 14, and the labels 21 to 34, respectively. That is, as shown in FIG. 7, for the RBs of the numbers 2 to 14, the reference numerals 4, 5 and 6, and the numerals 10, 11 and 12 are selected from the frequency domain signal 5022; The RBs of 34, 23, 24 and 25, and RBs corresponding to 30, 31 and 32 are selected from the frequency domain signal 5022. Since the RBs located at the centers of the labels 2 to 14, and the labels 21 to 34, respectively, the RB distance corresponding to the interference point is the farthest, and therefore, it can be selected from the frequency domain signals whose window length is M/4. That is, as shown in FIG. 7, for the RBs of the reference numerals 2 to 14, the reference numerals 7, 8 and 9 and the RBs for the labels 21 to 34, the RBs corresponding to the labels 26 to 29, the frequency domain signal Choose from 5023.
  • the foregoing is only an optional implementation manner of the present application.
  • the number of RBs selected from the same frequency domain signal may be Not the same.
  • the embodiment of the present application does not limit this according to the performance selection of the RB.
  • the RBs whose labels are discontinuous are also closer to the RBs corresponding to the interference points, the RBs whose labels are not consecutive may be selected from the frequency domain signals having the longest window length, that is, the labels 0, 17 and 20
  • the corresponding RB can be selected from the frequency domain signal 5021.
  • the terminal may sequentially arrange the selected RBs according to the label size, and finally obtain the target frequency domain signal 502.
  • the operational procedure 500 is not limited to terminal use, and is equally applicable when the receiving device is a base station.
  • the operational flow 400 and the operational flow 500 are merely optional examples of the present application.
  • the OFDM signal includes not only signals supporting OFDM technology,
  • LTE signals also include signals that support the same or similar techniques as OFDM technology, such as 5G signals and Wireless Fidelity (WiFi) signals.
  • the heterogeneous signal can be, but is not limited to, a GSM signal, a CDMA signal, and a signal of Numerology different from the OFDM signal.
  • the embodiment of the present application can add multiple windows to one time domain signal by adding a window with different window lengths for the N time domain signals, thereby breaking the limitation of signal performance improvement of only one window.
  • the window lengths of the N windows are all different, and the receiving device selects RBs from the frequency domain signals of different window lengths according to the relationship between the interference intensity and the window length, and combines the selected RBs. The final frequency domain signal is obtained, thereby ensuring the best performance of each RB, thereby not only effectively suppressing the interference caused by spectrum leakage, but also improving the performance of the signal as a whole.
  • FIG. 8 is a schematic diagram of a signal receiving apparatus 800 according to an embodiment of the present application.
  • the signal receiving device 800 can be used to perform the methods corresponding to FIGS. 3, 4, and 6.
  • the signal receiving apparatus 800 includes a receiving module 801, a copying module 802, a configuration module 803, an arithmetic module 804, a converting module 805, a determining module 806, a selecting module 807, and a combining module 808.
  • the receiving module 801 can be configured to receive a time domain signal sent by the sending device.
  • the copying module 802 can be configured to copy the time domain signal to obtain an N time domain signal, where N is greater than or equal to 2, and is less than or equal to a total number of RBs in the RBG corresponding to the time domain signal.
  • the configuration module 803 can be configured to configure N window functions, where the N window functions are in one-to-one correspondence with the N time domain signals, wherein the window lengths corresponding to the N window functions are greater than or equal to 0. And, the length of the CP that is less than or equal to the preset time domain signal, and the window lengths corresponding to the N window functions are different.
  • the operation module 804 can be configured to perform an operation on each of the N time domain signals according to a corresponding window function to obtain an N channel windowed time domain signal.
  • the conversion module 805 can be configured to separately convert the N-channel windowed time domain signals to obtain N-channel frequency domain signals, wherein the RBs in the RBG are satisfied in the N-channel frequency domain signals: according to the label size Arranged sequentially, the label refers to the identification number of the RB in the RBG.
  • the determining module 806 can be configured to determine an RB corresponding to the interference point, where the interference point refers to a frequency point that generates interference.
  • the selecting module 807 can be configured to select, from the frequency domain signals of the N frequency domain signals, a plurality of RBs, wherein the RBs selected from each of the frequency domain signals are selected from the other frequency domain signals.
  • the RB is not repeated, and the distance between the RB selected from the frequency domain signal having a long window length and the RB corresponding to the interference point is smaller than the RB selected from the frequency domain signal having a shorter window length corresponding to the interference point.
  • the distance of the RB can be configured to sequentially arrange the selected RBs according to the label size to obtain a target frequency domain signal.
  • the receiving module 801 can be implemented by a transceiver
  • the copying module 802, the configuration module 803, the computing module 804, the converting module 805, the determining module 806, the selecting module 807, and the combining module 808 can be implemented by a processor.
  • the signal receiving device 900 may include a processor 901, a transceiver 902, and a memory 903.
  • the memory 903 can be used to store a program/code pre-installed at the time of shipment of the signal receiving device 900, and can also store a code or the like for execution of the processor 901.
  • the signal receiving device 900 of the embodiment of the present application may correspond to a base station or a terminal in the method 300, where the transceiver 902 is configured to perform reception of a time domain signal in the method 300, and the processor 901 is configured to perform the method in the method 300. Other than the reception of time domain signals. I will not repeat them here.
  • the embodiment of the present application further provides a computer storage medium, wherein the computer storage medium is stored in any device, and the program may be executed, and the program may be implemented, including FIG. 3 and FIG. Figure 6 provides some or all of the steps of the signal receiving method.
  • the storage medium in any device may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the transceiver may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a read-only memory (read-only) Memory, ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); the memory may also include a combination of the above types of memory.
  • bus interface which may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor and various circuits of memory represented by the memory.
  • the bus interface can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver provides a unit for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in an ASIC, and the ASIC may be disposed in the UE. Alternatively, the processor and the storage medium may also be located in different components in the UE.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be taken by the embodiment of the present application.
  • the implementation process constitutes any qualification.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

本申请实施例公开了一种信号接收方法、装置及设备,所述方法包括:接收发送设备发送的时域信号;复制所述时域信号,得到N路时域信号;配置N个窗函数,所述N个窗函数与所述N路时域信号一一对应;对所述N路时域信号中的每路时域信号按照相对应的窗函数执行运算,得到N路加窗时域信号;分别转换所述N路加窗时域信号,得到N路频域信号;确定干扰点对应的RB;从所述N路频域信号的每路频域信号中选择若干个RB;按照标号大小顺次排列所选择的RB,得到目标频域信号。本申请实施例的技术方案,在多制式信号共享频谱,且至少有一种制式信号采用OFDM传输技术的场景下,能够有效的抑制频谱泄露所造成干扰,进而,优化信号的接收性能。

Description

信号接收方法、装置及设备
本申请要求在2018年2月13日提交中国专利局、申请号为201810149641.1、发明名称为“信号接收方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信号接收方法、装置及设备。
背景技术
作为承载和传输信号的电磁波,频谱资源是不可再生资源,基于此,为了便于管理频谱资源,一种频谱资源的配置策略是,为不同通信业务分配一定量的合适频段的频谱。例如,为网络制式是全球移动通信系统(global system for mobile communications,GSM)的信号通信业务分配A兆900MHZ频段的频谱,为网络制式是长期演进(long term evolution,LTE)的信号通信业务分配B兆1800MHZ频段的频谱,其中,A和B是正整数。
然而,随着技术发展,人们日常的通信业务量大幅增长,导致固定分配的频谱资源越发紧缺,所以,为了提高频谱资源的利用率,目前采用多制式频谱共享的方式传输信号。多制式频谱共享指的是,多种网络制式的信号共用一段频谱进行传输。例如,LTE信号和GSM信号共用一段频谱传输。
需要说明的是,通常,LTE信号基于正交频分复用(orthogonal frequency division multiplexing,OFDM)技术传输,OFDM技术的传输机制是,发送设备发送时域信号,接收设备接收到该时域信号后,对该时域信号执行快速傅里叶变换(fast Fourier transformation,FFT)运算,以将该时域信号转换为频域信号,然后,对所得到的频域信号执行解调等操作。其中,基于OFDM技术将时域信号转换为频域信号的机制中,首先需要对所接收的时域信号,使用矩形窗进行截断,进而再对所截断的时域信号执行FFT运算。
基于此,如LTE信号等OFDM信号的各子载波之间相互正交,因此,信号经过FFT变换后,相互之间不会有干扰,得到的频域信号如图1所示。然而,如GSM信号等其他非OFDM信号(本申请实施例中称为异制式信号),在受到矩形窗截断并经过FFT变换后,截断处的相应信号会扩散到应当占用的频谱之外,而且滚降得较为缓慢,如图2所示,这种现象称为频谱泄露。
由此可见,当OFDM信号与异制式信号共享频谱,经FFT运算得到的频域信号,存在严重的频谱泄露,导致异制式信号占用了其他频谱,从而对所占用频谱处的信号产生一定程度的干扰,进而降低了OFDM信号的接收性能。
发明内容
本申请实施例提供了一种信号接收方法、装置及设备,以解决当采用OFDM技术传输信号时,采用多制式频谱共享造成严重频谱泄露的问题。
第一方面,本申请实施例提供了一种信号接收方法,该方法包括:接收发送设备发送的时域信号;复制所述时域信号,得到N路时域信号,其中,N大于或等于2,且小于或等于所述时域信号对应的资源块组(Resource block group,RBG)中资源块(Resource block,RB)的总数量;配置N个窗函数,所述N个窗函数与所述N路时域信号一一对应,其中,所述N个窗函数对应的窗长均大于或等于0,且,小于或等于所述时域信号预设的循环前缀(Cyclic Prefix,CP)的长度,所述N个窗函数对应的窗长均不相同;对所述N路时域信号中的每路时域信号按照相对应的窗函数执行运算,得到N路加窗时域信号;分别转换所述N路加窗时域信号,得到N路频域信号,其中,所述RBG中的RB在所述N路频域信号中均满足:按照标号大小顺次排列,所述标号是指RB在所述RBG中的标识号;确定干扰点对应的RB,其中,所述干扰点是指产生干扰的频点;从所述N路频域信号的每路频域信号中选择若干个RB,其中,从每路频域信号中选择的RB与从其他路频域信号中选择的RB不重复,且,从窗长较长的频域信号中选择的RB与所述干扰点对应的RB的距离,小于从窗长较短的频域信号中选择的RB与所述干扰点对应的RB的距离;按照标号大小顺次排列所选择的RB,得到目标频域信号。
即,本申请实施例中,接收设备在接收到时域信号之后,通过将时域信号复制成N路,仅对应该N路时域信号分别配置一个窗函数的方式,为一个时域信号加N个窗。在将时域信号转换得到N路频域信号之后,由于该N个窗函数对应的窗长各不相同,并且,窗长越长对频谱泄露造成的干扰抑制效果越好,因此,可以在不同窗长对应的频域信号中,选择性能最优的RB,最后,将所选择的RB按照标号大小顺次排列,得到最终的频域信号。
由此可见,采用本实现方式,为一个时域信号加多个窗,不仅打破了加一个窗对性能优化造成的限制,而且能够更精确的平衡每个RB的性能。此外,基于不同的窗长选择性能最好的RB,并将所选择的各个性能最优的RB组合,得到目标频域信号,能够从整体上提高信号的性能。
结合第一方面,在第一方面第一种可能的实现方式中,所述确定干扰点对应的RB,包括:识别所述RBG中各个RB的标号;根据所述标号确定未配置在所述RBG中的RB,其中,所述未配置在所述RBG中的RB包括:所述标号中最小标号至最大标号之间缺少的标号对应的RB,标号为最小标号-1对应的RB,以及标号为最大标号+1对应的RB;将所述未配置在所述RBG中的RB确定为所述干扰点对应的RB。
结合第一方面,在第一方面第二种可能的实现方式中,所述确定干扰点对应的RB,包括:确定所述干扰点的频点号;根据所述频点号确定相应RB的标号;将所述标号对应的RB确定为所述干扰点对应的RB。
由于频域信号中每个RB对应不同窗长时,其性能不同,因此,本申请实施例中,可以按照干扰大小与窗长的对应关系,从N路频域信号中选择性能最优的RB。基于此,首先,可以确定干扰点对应的RB。
具体的,在发送设备发送时域信号之前,基站通常需要调度承载相应信息的频谱资源及所传输的信号,根据基站的功能以及调度规则,可以通过两种方式确定干扰点对应的RB。采用本实现方式,能够确定频域信号中干扰强度最大的RB,进而,为选择性能最佳的RB奠定实施基础。
结合第一方面,在第一方面第三种可能的实现方式中,所述按照标号大小顺次排列所 选择的RB,得到目标频域信号,具体包括:将所述干扰点对应的RB之外的RB按照标号大小顺次排列,得到目标频域信号。
结合第一方面,在第一方面第四种可能的实现方式中,所述按照标号大小顺次排列所选择的RB,具体包括:当所述干扰点对应的干扰强度大于预设阈值时,将所述干扰点对应的RB,以及与所述干扰点对应的RB相邻RB之外的RB按照标号大小顺次排列,得到目标频域信号。
具体的,为了设置保护间隔,降低干扰对有用信息的干扰,在配置RB时,通常配置干扰点对应的RB不携带任何信息。基于此,接收设备在组合所选择的RB时,可以直接删除干扰点对应的RB,仅将干扰点对应的RB之外的RB按照标号大小顺次排列。若干扰较大,甚至可以将干扰点对应的RB以及与干扰点对应的RB相邻RB之外的RB,按照标号大小顺次排列,得到目标频域信号。
由此可见,采用本实现方式,能够减少目标频域信号中RB的数量,从而能够减少解析目标频域信号所占用的开销。
结合第一方面,在第一方面第五种可能的实现方式中,在接收发送设备发送的时域信号之后,在复制所述时域信号,得到N路时域信号之前,所述方法还包括:确定所述时域信号的总带宽;根据所述时域信号的总带宽计算所述RBG中RB的总数量。
具体的,时域信号和频域信号是同一信号两个维度的表达,而在时域上,一个RB是一个时隙,在频域上,一个RB是12个子载波。基于此,接收设备在接收到时域信号之后,可以根据该时域信号的总带宽,确定该时域信号对应的RBG中RB的总数量。
由于本领域中,通常将RB作为频域信号的组成单元,因此,在确定对信号的干扰时,可以具体到确定对某个RB的干扰,基于此,N最大可以是RB的总数量。而采用本实现方式,在确定对信号的干扰时,可以具体到确定对某个RB的干扰,进而,能够从整体上优化信号性能。
第二方面,本申请实施例提供了一种信号接收装置,包括用于执行第一方面及第一方面各实现方式中的方法步骤的模块。
第三方面,本申请实施例还提供了一种信号接收设备,包括收发器,处理器以及存储器。其中,收发器、处理器以及存储器之间可以通过总线系统相连。该存储器用于存储程序、指令或代码,处理器用于执行存储器中的程序、指令或代码,完成第一方面,或第一方面的任意一种可能的设计中的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面任意可能的设计中的方法。
为解决现有技术的问题,本申请实施例中,接收设备在接收到发送设备发送的时域信号之后,将所接收的时域信号复制成N路,并分别为该N路时域信号加N个窗长不等的窗。根据窗长与抑制频谱泄露造成的干扰的原理可知,窗长越长,抑制干扰的效果越好。基于此,在将加窗后的N路时域信号分别转换为N路频域信号之后,接收设备从窗长较长的频域信号中,选择受到干扰较大的RB,即与干扰点对应的RB距离较小的RB,从窗长较短的频域信号中选择受到干扰较小的RB,即与干扰点对应的RB距离较大的RB,进而,将所选择的RB组合,得到目标频域信号。由此可见,本方案通过为一个时域信号加N个不同窗 长的窗,然后,根据干扰强度与窗长的关系,从不同窗长的频域信号中选择RB,能够保证最终得到的频域信号中,每个RB因频谱泄露受到的干扰均最小,从而在多制式信号共享频谱,且至少有一种制式信号采用OFDM传输技术的场景下,能够有效的抑制频谱泄露所造成干扰,进而,优化信号的接收性能。
附图说明
图1为本申请实施例提供的频域信号的示意图;
图2为本申请实施例提供的第二种实施方式的频域信号的示意图;
图3为本申请实施例提供的信号接收方法的方法流程图;
图4为本申请实施例提供的信号接收的操作流程图;
图5为图4所示的实施例中RB的排布结构示意图;
图6为本申请实施例提供的信号接收的第二种实施方式的操作流程图;
图7为图6所示的实施例中RB的排布结构示意图;
图8为本申请实施例提供的信号接收装置的结构示意图;
图9为本申请实施例提供的信号接收设备的结构示意图。
具体实施方式
有鉴于FFT运算的性质,为了抑制频谱泄露造成的干扰,一种常用的方法是,接收设备在接收到时域信号之后,在对该时域信号执行FFT运算之前,为该时域信号加窗。
以所接收的时域信号是y(x1)为例,其中,x1=0,…,X+P-1,X是FFT的采样点数,P是预设的循环前缀(Cyclic Prefix,CP)的长度。设置窗函数,所述窗函数对应的采样点数(即窗长)是W,并且,每个采样点对应窗系数w。使用窗函数与时域信号y(x1)进行点乘等运算,该运算即为对时域信号y(x1)加窗,时域信号y(x1)加窗后得到信号z(x2),其中,x2=0,…,X-1。具体的,当x2=0,…,X-W-1时,z(x2)满足z(x2)=y(x2+P),当x2=X-W,…,X-1时,z(x2)满足z(x2)=w(x2+W-X)*y(x2+P-X)+(1-w(x2+W-X))*y(x2+P)。
其中,通过为时域信号加窗的方式抑制干扰,相应窗函数对应的窗长越长,对干扰的抑制效果越好,相应窗函数对应的窗长越短,对干扰的抑制效果越差。
基于此,需要指出的是,在时域的概念中,通常将OFDM符号定义为时域的单位,在时域信号传输时,发送设备通常通过多条传输路径传输同一时域信号,由于多条传输路径的传输延时各不相同,因此,造成不同传输路径在同一时间传输到接收设备的OFDM符号不同,从而导致符号间相互干扰,该现象称为符号间干扰(inter symbol interference,ISI)。为了消除ISI,一种常用的做法是,发送设备在发送时域信号之前,在时域信号的OFDM符号间添加CP,该CP可以形成符号之间的保护间隔,使得两个不同传输路径的OFDM符号,在到达接收设备时,一个OFDM符号落在另一个OFDM符号的保护间隔中,从而消除两个OFDM符号之间的影响。基于此,CP的长度P通常大于最大多径时延。
而为了避免引入ISI,在设置窗函数时,窗函数对应的窗长W通常参考预先设置的CP的长度P和多径时延扩展的长度,一般的,窗长W不超过CP的长度P减去多径时延扩展的值。其中,多径时延扩展的值是最大传输时延和最小传输时延的差值。
综合上述关于加窗的描述,虽然窗长W较长时,对干扰的抑制效果较好,但是,窗长W较长会引入ISI,从而在另一方面对信号产生干扰,而若窗长W较短,则对干扰的抑制 效果较差。由此可见,常用的信号接收方法对干扰的抑制,很难达到较为理想的效果,所以,为了解决该问题,本领域技术人员研究得到本申请。
下面结合附图,对本申请实施例进行描述。
参见图3,图3为本申请实施例提供的信号接收方法的方法流程图,图3所示的方法300能够有效的抑制频谱泄露所造成干扰,从而优化信号的接收性能。具体的,所述方法300包括以下步骤:
步骤S301,接收发送设备发送的时域信号。
其中,根据本方案的实施场景可知,本申请实施例以OFDM技术为实施前提,基于此,本申请实施例中,发送设备和接收设备均是能够支持OFDM技术的设备。
进一步的,本方案适用于基站向终端发送时域信号的场景,也适用于终端向基站发送时域信号的场景,因此,本申请实施例中,发送设备可以是基站或者终端,当发送设备是终端时,接收设备即为基站,当发送设备是基站时,接收设备即为终端,本申请实施例对此不做限制。
需要说明的是,根据对现有技术的描述可知,本申请实施例中的时域信号,是承载在同一频谱上的OFDM信号和异制式信号,其中,所述OFDM信号是指基于OFDM技术的网络信号。所述异制式信号是指与所述OFDM信号不同Numerology的信号,以及基于其它传输技术的信号,如基于GSM信号,和基于码分多址(code division multiple access,CDMA)技术的通用移动通信系统(universal mobile telecommunications system,UMTS)信号。其中,Numerology为通信系统所采用的参数。通信系统(例如5G)可以支持多种numerologies。numerology可以通过以下参数信息中的一个或多个定义:子载波间隔,CP,时间单位,带宽等。例如,numerology可以由子载波间隔和CP来定义。具体的,所述时域信号可以包括至少一种异制式信号。
步骤S302,复制所述时域信号,得到N路时域信号。
其中,发送设备向接收设备发送一个时域信号时,通常仅通过一路信号发送,由于一路时域信号仅能对应设置一个窗函数,并根据该窗函数执行运算(即只能加一个窗),而加一个窗的方式,不但对干扰的抑制效果达不到理想状态,并且,对信号性能的进一步优化带来很大限制。基于此,本申请实施例中,接收设备在接收到时域信号之后,对同一个时域信号加多个窗,从而能够进一步优化信号性能。为了能够为同一个时域信号加多个窗,本申请实施例中,接收设备在接收到一路该时域信号之后,将所述时域信号由一路复制成N路,进而,可以为该N路时域信号中的每路时域信号加窗,从而实现为同一个时域信号加多个窗的效果。
需要说明的是,一方面,相对于现有技术为一个时域信号加一个窗,本申请实施例中,至少应当为一个时域信号加两个窗,所以,本申请实施例中,N最小可以是2。另一方面,本领域中,通常将资源块(resource block,RB)作为频域信号的组成单元,一个频域信号可以视为一个资源块组(resource block group,RBG),该RBG包括多个RB,每个RB携带部分信息。基于此,在确定对信号的干扰时,可以具体到确定对某个RB的干扰,同样的,在确定抑制干扰的效果时,也可以具体到确定对某个RB的干扰抑制效果。有鉴于此,结合加窗与抑制干扰的关系,本申请实施例中,N最大可以是时域信号所包括的RB的总数量。
其中,时域信号和频域信号是同一信号两个维度的表达,而在时域上,一个RB是一个时隙,在频域上,一个RB是12个子载波。基于此,接收设备在接收到时域信号之后,可以根据该时域信号的总带宽,确定该时域信号对应的RBG中RB的总数量。具体的,RB在时域上和频域上的表达参数,是本领域技术人员所熟知的技术,本申请实施例不再详述。
步骤S303,配置N个窗函数。
接步骤S302,在将同一个时域信号复制成N路之后,接收设备可对应该N路时域信号一一配置窗函数,得到N个窗函数。由于本申请实施例为一个时域信号加多个窗的目的在于,以进一步优化信号的性能,因此,该N个窗函数对应的窗长均不相同即,N个窗函数对应的采样点数均不相同。
进一步的,需要指出的是,同一个RB对应不同的窗长时,性能完全不相同,例如,某RB对应最短的窗长时,频谱泄露产生的干扰较大,而该RB对应最长的窗长时,虽然频谱泄露产生的干扰较小,但是却有较大的ISI。有鉴于此,本申请实施例中,可以放宽设定窗长的限制条件,从而容纳不同RB性能最佳时对应的窗长,进而,优化信号的整体性能。具体的,本申请实施例中,N个窗函数对应的窗长最小可以是0,最大可以是预设CP的长度。其中,CP由发送设备预先设置,并且,CP的长度符合发送协议的规定,本申请实施例不再详述。
需要说明的是,根据对现有技术的描述可知,为了避免引入ISI,窗长不超过CP的长度减去多径时延扩展的值,但是,在本申请实施例中,虽然窗长较长的信号会引入ISI,但在窗长较短的信号中,干扰抑制和引入的ISI能够得到很好的平衡,因此,本申请实施例中,窗长可以超过CP的长度减去多径时延扩展的值。
进一步的,根据对步骤S302的描述可知,N大于等于2,且小于等于预设CP的长度,基于此,当N是不同数量时,N路时域信号中每路时域信号的窗长可以灵活设置。例如,当N是2时,较长的窗长可以是预设CP长度的2/3,较短的窗长可以是预设CP长度的1/4。当N是RB总数量时,可以将最短的窗长设置为0,其他窗长可以以预设CP长度/N为长度单位,等差设置。当N大于2小于RB总数量时,接收设备可以灵活配置每个窗长,具体的,本申请实施例对此不做限制。
此外,窗函数包括矩形窗函数、汉宁窗函数、海明窗函数以及高斯窗函数多种,本申请实施例,所述N个窗函数可以是相同的窗函数,例如是海明窗函数,也可以分别是多种不同的窗函数。在一个可选实施例中,为了明确区别不同窗长对RB的干扰抑制作用,所述N个窗函数通常是相同的窗函数。具体的,本申请实施例不再详述。
步骤S304,对所述N路时域信号中的每路时域信号按照相对应的窗函数执行运算,得到N路加窗时域信号。
接上述步骤的描述,在为N路时域信号一一设置窗函数之后,按照相应窗函数分别对N路时域信号中的每路时域信号执行运算,得到N路加窗时域信号。具体的,按照窗函数执行运算的过程参见现有技术的相关描述,本申请实施例此处不再详述。
由此可见,本申请实施例通过为一个时域信号加多个窗,不仅打破了加一个窗对性能优化造成的限制,而且能够更精确的平衡每个RB的性能,进而提高信号的整体性能。
步骤S305,分别转换所述N路加窗时域信号,得到N路频域信号。
其中,采用OFDM技术将时域信号转换为频域信号,通常采用FFT运算,基于此,本 申请实施例中,分别对N路加窗后的时域信号执行FFT运算,得到N路频域信号。具体的,FFT运算是本领域技术人员较为熟悉的技术,本申请实施例不再详述。
其中,频域信号的一种表现形式是,从低频到高频顺序排列的RB组成的RBG,而基站在调度资源时,为每个RB设置在相应RBG中的标识号,并且,通常低频带的RB标识号比高频带的RB标识号小,所以将各个RB按照从低频到高频的顺序排列,也即将RB按照标号大小顺次排布,所以,所述RBG中的RB在频域信号中满足,按照标号大小顺次排列。
需要说明的是,由于N路时域信号的内容完全相同,因此,在执行同样的运算之后,得到的N路频域信号的内容也完全相同。具体的,N路频域信号中RB的数量、各个RB的标号、排布,以及每个RB携带的信息均相同。然而,由于N路加窗时域信号的窗长各不相同,因此,同一个RB在不同频域信号中的干扰不同。
步骤S306,确定干扰点对应的RB。
其中,本申请实施例中,干扰点是指对信号产生干扰的频点。
根据对上述步骤的描述可知,N路频域信号的内容完全相同,而每个RB在N路频域信号中对应的干扰均不相同。基于此,本申请实施例中,针对频域信号中的每个RB,接收设备均可以从该N路频域信号中,选择性能最优的,然后,将所选择的RB按照在RBG中的顺序组合,得到最终的频域信号,即本申请实施例的目标频域信号。
基于此,在选择RB之前,接收设备可以首先确定干扰点对应的RB。其中,干扰点对应的RB是干扰最强的位置,并且,与干扰点对应的RB距离越近的RB,受到的干扰越强,与干扰点对应的RB距离越远的RB,受到的干扰越弱。由此可见,确定干扰点对应的RB,是本申请实施例准确选择RB的关键环节。
具体的,在发送设备发送时域信号之前,基站通常需要调度承载相应信息的频谱资源及所传输的信号,因此,可以预先确定产生干扰的频点,然后,结合干扰频点配置RB,所以,本申请实施例至少可以通过以下两种方式确定干扰点对应的RB。
方式一:通常,基站在确定干扰频点之后,在配置RB时,将干扰频点对应的RB设置为空,或者,不使用相应RB发送信息,而RB通常按照标号大小顺次排布,因此,若RBG中某个RB不携带任何信息,或者未配置在该RBG中,那么,该RBG中携带信息的RB的标号将不再连续。
基于此,本申请实施例中,接收设备可以识别所述RBG中各个RB的标号,根据所述标号确定未配置在所述RBG中的RB,进而,将未配置在所述RBG中的RB确定为干扰点对应的RB。其中,未配置在所述RBG中的RB包括:所述标号中最小标号至最大标号之间缺少的标号对应的RB。
此外,需要指出的是,本申请实施例中,通常默认将所述标号中最小标号之前相邻的标号对应的RB,以及最大标号之后相邻的标号对应的RB确定为干扰点。因此,本实施例中,未配置在所述RBG中的RB还包括:标号为最小标号-1对应的RB,以及标号为最大标号+1对应的RB。
其中,该确定方式适用于基站和终端。
方式二:由于基站已经预知待传输的信号和所使用的频谱,因此,当接收设备是基站时,可以通过计算确定干扰点对应的频点号,进而,可以根据频点号确定相应RB的标号,该标号对应的RB即为干扰点对应的RB。
需要说明的是,目前,基站具有调度频谱资源的功能,因此,能够获知干扰频点的信息,而终端不具备调度频谱资源的功能,通常从基站请求所配置的RB的信息,因此,终端无法直接获知干扰频点的信息,所以,方式二仅适用于接收设备是基站的场景。
步骤S307,从所述N路频域信号的每路频域信号中选择若干个RB。
其中,基于上述描述,针对频域信号中的每个RB,不同窗长对其干扰抑制效果和ISI具有不同的平衡作用,基于此,对应每个RB,接收设备可以从N个窗长对应频域信号中,选择性能最优的一个,即,选择出ISI最小且干扰抑制效果最好的一个RB,因此,本申请实施例中,每个RB可以仅出自N路频域信号中的一路频域信号,所以,从每路频域信号中选择的RB与从其他路频域信号中选择的RB不重复。
具体的,根据对步骤S306的描述可知,干扰点对应的RB是干扰最强的位置,并且,距离干扰最强的位置越近的RB受到的干扰越强,距离干扰最强的位置越远的RB受到的干扰越弱,而窗长越长对干扰的抑制作用越好。因此,接收设备在选择RB时,可以在窗长较长的频域信号中选择受到干扰较强的RB,即,在窗长较长的频域信号中选择与干扰点对应的RB较近的RB,在窗长较短的频域信号中选择受到干扰较弱的RB,即,在窗长较短的频域信号中选择与干扰点对应的RB较远的RB。
例如,当确定未配置在RBG中的标号对应的RB之后,识别因未配置在RBG中RB的标号切断形成的连续标号,位于连续标号两端的若干个RB,从窗长较长的频域信号中选择,位于连续标号中心的若干个RB,从窗长较短的频域信号中选择。再如,当根据频点号确定干扰点对应的RB时,干扰点对应的RB两侧相邻的若干个RB,从窗长较长的频域信号中选择,距离干扰点对应的RB较远的左右两端的若干RB,从窗长较短的频域信号中选择。
需要说明的是,在每个窗长对应的频域信号中选择多少个RB,取决于RB的总数量和N的具体值,当N的值小于RB的总数量时,至少在一个窗长对应的频域信号中选择的RB数量大于1,当N的值等于RB的总数量时,可以在每个窗长对应的频域信号中选择一个RB。具体的,接收设备可以灵活操作,本申请实施例对此不做限制。
例如,当N是2,RBG中共包括30个RB时,在窗长较长的频域信号中选择的RB,可以是18个,在窗长较短的频域信号中选择的RB,可以是12个。再如,当N是5,RBG中共包括30个RB时,在每个窗长的频域信号中选择的RB,均可以是6个。再如,当N是30,RBG中共包括30个RB时,在每个窗长的频域信号中选择的RB,均可以是1个。
步骤S308,按照标号大小顺次排列所选择的RB,得到目标频域信号。
其中,接收设备在获取到频域信号之后,需对频域信号进行解调操作,例如包括,对频域信号进行信道均衡,星座解映射和信道译码等操作,最终获取到信号内容,而解调操作通常是调制操作的逆运算,因此,应当保证频域信号的完整性。基于此,在选择RB之后,接收设备可以按照标号大小顺次排列所选择的RB,得到目标频域信号。
需要说明的是,为了设置保护间隔,降低干扰对有用信息的干扰,在配置RB时,通常配置干扰点对应的RB不携带任何信息。基于此,接收设备在组合所选择的RB时,可以直接删除干扰点对应的RB,仅将干扰点对应的RB之外的RB按照标号大小顺次排列。
进一步的,若干扰较大,仅干扰点对应的RB不携带任何信息,基站可能对其他RB的干扰依然较大,有鉴于此,当干扰点对应的干扰强度大于预设阈值时,可以将干扰点对应的RB以及与干扰点对应的RB相邻RB之外的RB,按照标号大小顺次排列,得到目标频域 信号。其中,预设阈值基站可以按照需求灵活设定,本申请实施例对此不做限制。
由此可见,本实施例能够减少目标频域信号中RB的数量,从而能够降低解析目标频域信号所占用的开销。
当然,上述仅是在干扰强度较大的RB不携带任何信息的场景下的可选实施方式,在另一种可选实施方式中,若干扰强度较大的RB携带有信息,接收设备还可以先确定干扰点对应的RB携带信息,进而,按照步骤S307选择性能最佳的干扰点对应的RB,并按照步骤S308对所选择的干扰点对应的RB执行组合操作。
综上可知,本申请实施例中,接收设备能够为时域信号加N个窗,且N个窗的窗长均不相同,从而,能够基于不同的窗长选择性能最好的RB,并将所选择的各个性能最优的RB组合,得到目标频域信号。由此可见,本申请实施例的技术方案,通过加多个窗,打破了仅一个窗对信号性能提升的限制,而且,能够更好的平衡每个RB的干扰抑制效果和ISI,从整体上提高信号的性能。
为了使本领域技术人员更加清楚、详细的了解本方案,下面通过具体实施例的形式,对方案进行描述。
参见图4,图4是本申请实施例提供的信号接收的操作流程图。其中,本实施例所述的操作流程400,以基站作为接收设备,假设共享频谱的信号包括LTE信号和GSM信号。假设本实施例中,N的值是2,信号对应的RBG共包括25个RB,该25个RB的标号分别是0至24。
当基站接收到终端发送的时域信号401之后,将时域信号401复制,得到时域信号4011和时域信号4012。其中,时域信号4011、时域信号4012和时域信号401的内容完全相同。
然后,基站分别为时域信号4011和时域信号4012设置窗函数,并分别按照相应窗函数对时域信号4011和时域信号4012运算,以分别对时域信号4011和时域信号4012加窗。具体的,假设终端为时域信号401设置的CP长度为S,那么,本实施例中,基站为时域信号4011加窗的窗长是2S/3,基站为时域信号4012加窗的窗长是S/5。
进而,基站对加窗后的时域信号4011执行FFT运算,将加窗后的时域信号4011转换为频域信号4021,并且,对加窗后的时域信号4012执行FFT运算,将加窗后的时域信号4012转换为频域信号4022。其中,频域信号4021和频域信号4022的内容相同,即,频域信号4021和频域信号4022均包括标号0至24的RB,并且,25个RB在频域信号4021和频域信号4022中的排布均相同,每个RB在频域信号4021和频域信号4022中所承载的信息也相同。
其中,本实施例中,基站可以根据发送时域信号401的频谱,计算得到干扰频点的频点号,进而,根据频点号得到干扰点对应的RB,例如结合图5所示的RB排布结构示意图,干扰点对应的RB是标号为12的RB。基于此,基站可以根据两个窗长2S/3和S/5,确定每个RB所受到的干扰以及ISI的大小,进而,从频域信号4021或频域信号4022中选择RB。具体的,例如,经计算,以图5中示出的标号是12的RB为中心左右分别连续7个RB,在窗长为2S/3时干扰和ISI最小,而在窗长为S/5时虽然ISI较小,甚至为0,但是干扰却较大,因此,标号5至标号11的RB,以及标号13至标号19的RB,从频域信号4021中选择。基于同样的道理,由于标号0至标号4的RB,以及标号20至标号24的RB,在窗长为2S/3时干扰虽小,甚至为0,但是ISI较大,而在窗长为S/5时干扰和ISI均最小, 因此,在频域信号4022中选择标号0至标号4的RB,以及标号20至标号24的RB。
最后,将从频域信号4021和频域信号4022中选择的RB,按照标号0至标号24的顺序排布,得到目标频域信号402,然后,基站可以对目标频域信号402进行解析,获取到信号的内容。
需要指出的是,上述描述仅为本申请的一个可选实施例,对本申请实施例不构成限制,在操作流程400中,干扰点对应的RB可以任意,例如干扰点对应的RB是标号为23的RB。另外,干扰频点可能大于1个,相应的,干扰点对应的RB也大于1个。进一步的,当干扰点对应的RB大于1个时,每个干扰点处的干扰强度可以不同。但是,无论干扰点的个数有多少,强度为多少,基站对RB的选择均是基于干扰强度和ISI强度。
此外,在本实施例中,由于基站预先已知标号12的RB为干扰点对应的RB,因此,在调度时,可以设置标号11至标号13的RB不携带任何信息。基于此,基站在选择RB时,可以将标号11至标号13之外的RB按照标号大小顺次排列,得到目标频域信号402。
当然,若标号11至标号13的RB携带有用信号,基站可以按照上述选择的过程,从频域信号4021中选择标号11至标号13的RB,然后,按照标号大小顺次排列全部所选择的RB。具体的,本申请实施例不再赘述。
图6为本申请实施例提供的信号接收的第二种实施方式的操作流程图。本实施例所述的操作流程500,以终端作为接收设备,假设共享频谱的信号包括LTE信号和GSM信号。具体的,假设本实施例中,N的值是3,信号对应的RBG共包括30个RB,该30个RB的标号是标号0,标号2至标号14,标号17,标号20,以及标号21至标号34。
与操作流程400相似的,本实施例中,终端接收到基站发送的时域信号501之后,复制时域信号501,得到时域信号5011、时域信号5012和时域信号5013,然后,分别为时域信号5011、时域信号5012和时域信号5013设置窗函数,然后按照相对应的窗函数对时域信号5011、时域信号5012和时域信号5013分别执行运算,以对时域信号5011、时域信号5012和时域信号5013加窗。假设,时域信号501的CP长度M,终端为时域信号5011加窗的窗长是4M/5,为时域信号5012加窗的窗长是M/2,为时域信号5013加窗的窗长是M/4。然后,分别对加窗后的时域信号5011、时域信号5012和时域信号5013执行FFT运算,将时域信号5011转换为频域信号5021,将时域信号5012转换为频域信号5022,将时域信号5013转换为频域信号5023。
根据上述对确定干扰点对应的RB的描述可知,由于终端不具备调度功能,因此,关于RB的配置信息,终端通常从基站获知,而RB的配置信息包括所配置的RB的标号,以及不同标号的RB所携带的信息。基于此,终端将未配置在RBG中的RB作为干扰点对应的RB,例如是标号-1、标号1、标号15、标号16、标号18、标号19以及标号35对应的RB。结合本实施例,连续的标号包括标号2至标号14,以及标号21至标号34,那么,针对标号2至标号14对应的RB,标号是1的RB和标号是15的RB是干扰点对应的RB;针对标号21至标号34对应的RB,标号是20和标号是35的RB是干扰点对应的RB。
有鉴于选择RB的规则,结合图7所示的RB的排布示意图,本实施例中,位于标号2至标号14,以及标号21至标号34两端的连续两个RB,可以从窗长是4M/5的频域信号中选择。即,图7中示出的,针对标号2至标号14的RB,标号2和标号3,以及标号13和标号14从频域信号5021中选择;针对标号21至标号34的RB,标号21和标号22,以及 标号33和标号34对应的RB,从频域信号5021中选择。分别位于标号2至标号14,以及标号21至标号34两端向中心方向,第三个、第四和第五个RB,可以从窗长是M/2的频域信号中选择。即,图7中示出的,针对标号2至标号14的RB,标号4、标号5和标号6,以及标号10、标号11和标号12,从频域信号5022中选择;针对标号21至标号34的RB,标号23、标号24和标号25,以及标号30、标号31和标号32对应的RB,从频域信号5022中选择。由于分别位于标号2至标号14,以及标号21至标号34中心的RB,与干扰点对应的RB距离最远,因此,可以从窗长是M/4的频域信号中选择。即,图7中示出的,针对标号2至标号14的RB,标号7、标号8和标号9,以及针对标号21至标号34的RB,标号26至标号29对应的RB,从频域信号5023中选择。
当然,上述仅为本申请的一种可选实施方式,在另一种实施方式中,标号3至标号14,和标号21至标号34中,从同一个频域信号中选择的RB的数量可以不相同。例如,从频域信号5021中选择时,针对标号3至标号14,可以从两端选择连续的2个RB,而针对标号21至标号34,可以从两端选择连续的3个RB。具体的,根据RB的性能选择,本申请实施例对此不做限制。
进一步的,由于标号不连续的RB与干扰点对应的RB距离也较近,所以,标号不连续的RB可以从窗长最长的频域信号中选择,即,标号0、标号17和标号20对应的RB,可以从频域信号5021中选择。
与操作流程400相似的,本实施例中,终端在完成RB的选择之后,可以将所选择的RB按照标号大小顺次排列,最终得到目标频域信号502。
当然,操作流程500并不仅限于终端使用,当接受设备是基站时,同样适用。
需要指出的是,所述操作流程400和所述操作流程500,仅是本申请实施例为了方便本领域技术人员理解,所列举的两个可以示例,对本申请实施例并不构成限制,上述操作过程中,任意数值更改形成的实施方式,均属于本申请的保护范围。
此外,所述操作流程400和所述操作流程500仅是本申请的可选示例,所述方法300以及所述操作流程400和所述操作流程500中,OFDM信号不仅包括支持OFDM技术的信号,例如LTE信号,还包括支持与OFDM技术原理相同或者相似其他技术的信号,例如,5G信号和无线保真(Wireless Fidelity,WiFi)信号。而异制式信号可以但不限于是GSM信号,CDMA信号,以及与所述OFDM信号不同Numerology的信号。
综合上述可知,本申请实施例通过为N路时域信号加不同窗长的窗,能够实现对一个时域信号加多个窗,从而打破了仅一个窗对信号性能提升的限制。另外,本申请实施例中,N个窗的窗长均不相同,并且,接收设备根据干扰强度与窗长的关系,从不同窗长的频域信号中选择RB,并将所选择的RB组合得到最终的频域信号,从而能够保证每个RB的性能均最好,进而不仅能够有效的抑制频谱泄露所造成干扰,而且还能够从整体上提高信号的性能。
与方法300相对应的,参见图8,图8是本申请实施例提供的一种信号接收装置800的示意图。该信号接收装置800可以用于执行图3、图4和图6所对应的方法。如图8所示,该信号接收装置800包括接收模块801、复制模块802、配置模块803、运算模块804、转换模块805、确定模块806、选择模块807和组合模块808。
其中,该接收模块801,可以用于接收发送设备发送的时域信号。该复制模块802, 可以用于复制所述时域信号,得到N路时域信号,其中,N大于或等于2,且小于或等于所述时域信号对应的RBG中RB的总数量。该配置模块803,可以用于配置N个窗函数,所述N个窗函数与所述N路时域信号一一对应,其中,所述N个窗函数对应的窗长均大于或等于0,且,小于或等于所述时域信号预设的CP的长度,所述N个窗函数对应的窗长均不相同。该运算模块804,可以用于对所述N路时域信号中的每路时域信号按照相对应的窗函数执行运算,得到N路加窗时域信号。该转换模块805,可以用于分别转换所述N路加窗时域信号,得到N路频域信号,其中,所述RBG中的RB在所述N路频域信号中均满足:按照标号大小顺次排列,所述标号是指RB在所述RBG中的标识号。该确定模块806,可以用于确定干扰点对应的RB,其中,所述干扰点是指产生干扰的频点。该选择模块807,可以用于从所述N路频域信号的每路频域信号中选择若干个RB,其中,从每路频域信号中选择的RB与从其他路频域信号中选择的RB不重复,且,从窗长较长的频域信号中选择的RB与所述干扰点对应的RB的距离,小于从窗长较短的频域信号中选择的RB与所述干扰点对应的RB的距离。该组合模块808,可以用于按照标号大小顺次排列所选择的RB,得到目标频域信号。
具体内容可以参考方法300实施例中相关部分的描述,此处不再赘述。
应理解,以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,接收模块801可以由收发器实现,复制模块802、配置模块803、运算模块804、转换模块805、确定模块806、选择模块807和组合模块808可以由处理器实现。如图9所示,信号接收设备900可以包括处理器901、收发器902和存储器903。其中,存储器903可以用于存储信号接收设备900出厂时预装的程序/代码,也可以存储用于处理器901执行时的代码等。
应理解,本申请实施例的信号接收设备900可对应于方法300中的基站或者终端,其中收发器902用于执行方法300中时域信号的接收,处理器901用于执行方法300中所述除了时域信号接收以外的其它处理。在此不再赘述。
具体实现中,对应信号接收设备,本申请实施例还提供一种计算机存储介质,其中,设置在任意设备中计算机存储介质可存储有程序,该程序执行时,可实施包括图3、图4和图6提供的信号接收方法的部分或全部步骤。任意设备中的存储介质均可为磁碟、光盘、只读存储记忆体(read-only memory,简称:ROM)或随机存储记忆体(random access memory,简称:RAM)等。
本申请实施例中,收发器可以是有线收发器,无线收发器或其组合。有线收发器例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发器例如可以为无线局域网收发器,蜂窝网络收发器或其组合。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器 也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
图9中还可以包括总线接口,总线接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器提供用于在传输介质上与各种其他设备通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
本领域技术任何还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于UE中。可选地,处理器和存储媒介也可以设置于UE中的不同的部件中。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、 服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种信号接收方法,其特征在于,所述方法包括:
    接收发送设备发送的时域信号;
    复制所述时域信号,得到N路时域信号,其中,N大于或等于2,且小于或等于所述时域信号对应的资源块组RBG中资源块RB的总数量;
    配置N个窗函数,所述N个窗函数与所述N路时域信号一一对应,其中,所述N个窗函数对应的窗长均大于或等于0,且,小于或等于所述时域信号预设的循环前缀CP的长度,所述N个窗函数对应的窗长均不相同;
    对所述N路时域信号中的每路时域信号按照相对应的窗函数执行运算,得到N路加窗时域信号;
    分别转换所述N路加窗时域信号,得到N路频域信号,其中,所述RBG中的RB在所述N路频域信号中均满足:按照标号大小顺次排列,所述标号是指RB在所述RBG中的标识号;
    确定干扰点对应的RB,其中,所述干扰点是指产生干扰的频点;
    从所述N路频域信号的每路频域信号中选择若干个RB,其中,从每路频域信号中选择的RB与从其他路频域信号中选择的RB不重复,且,从窗长较长的频域信号中选择的RB与所述干扰点对应的RB的距离,小于从窗长较短的频域信号中选择的RB与所述干扰点对应的RB的距离;
    按照标号大小顺次排列所选择的RB,得到目标频域信号。
  2. 如权利要求1所述的方法,其特征在于,所述确定干扰点对应的RB,包括:
    识别所述RBG中各个RB的标号;
    根据所述标号确定未配置在所述RBG中的RB,其中,所述未配置在所述RBG中的RB包括:所述标号中最小标号至最大标号之间缺少的标号对应的RB,标号为最小标号-1对应的RB,以及标号为最大标号+1对应的RB;
    将所述未配置在所述RBG中的RB确定为所述干扰点对应的RB。
  3. 如权利要求1所述的方法,其特征在于,所述确定干扰点对应的RB,包括:
    确定所述干扰点的频点号;
    根据所述频点号确定相应RB的标号;
    将所述标号对应的RB确定为所述干扰点对应的RB。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述按照标号大小顺次排列所选择的RB,得到目标频域信号,具体包括:
    将所述干扰点对应的RB之外的RB按照标号大小顺次排列,得到目标频域信号。
  5. 如权利要求1至3中任一项所述的方法,其特征在于,所述按照标号大小顺次排列所选择的RB,具体包括:
    当所述干扰点对应的干扰强度大于预设阈值时,将所述干扰点对应的RB,以及与所述干扰点对应的RB相邻RB之外的RB按照标号大小顺次排列,得到目标频域信号。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,在接收发送设备发送的时域信号之后,在复制所述时域信号,得到N路时域信号之前,所述方法还包括:
    确定所述时域信号的总带宽;
    根据所述时域信号的总带宽计算所述RBG中RB的总数量。
  7. 一种信号接收装置,其特征在于,所述装置包括:
    接收模块,用于接收发送设备发送的时域信号;
    复制模块,用于复制所述时域信号,得到N路时域信号,其中,N大于或等于2,且小于或等于所述时域信号对应的资源块组RBG中资源块RB的总数量;
    配置模块,用于配置N个窗函数,所述N个窗函数与所述N路时域信号一一对应,其中,所述N个窗函数对应的窗长均大于或等于0,且,小于或等于所述时域信号预设的循环前缀CP的长度,所述N个窗函数对应的窗长均不相同;
    运算模块,用于对所述N路时域信号中的每路时域信号按照相对应的窗函数执行运算,得到N路加窗时域信号;
    转换模块,用于分别转换所述N路加窗时域信号,得到N路频域信号,其中,所述RBG中的RB在所述N路频域信号中均满足:按照标号大小顺次排列,所述标号是指RB在所述RBG中的标识号;
    确定模块,用于确定干扰点对应的RB,其中,所述干扰点是指产生干扰的频点;
    选择模块,用于从所述N路频域信号的每路频域信号中选择若干个RB,其中,从每路频域信号中选择的RB与从其他路频域信号中选择的RB不重复,且,从窗长较长的频域信号中选择的RB与所述干扰点对应的RB的距离,小于从窗长较短的频域信号中选择的RB与所述干扰点对应的RB的距离;
    组合模块,用于按照标号大小顺次排列所选择的RB,得到目标频域信号。
  8. 如权利要求7所述的装置,其特征在于,
    所述确定模块,具体用于识别所述RBG中各个RB的标号;根据所述标号确定未配置在所述RBG中的RB,其中,所述未配置在所述RBG中的RB包括:所述标号中最小标号至最大标号之间缺少的标号对应的RB,标号为最小标号-1对应的RB,以及标号为最大标号+1对应的RB;将所述未配置在所述RBG中的RB确定为所述干扰点对应的RB。
  9. 如权利要求7所述的装置,其特征在于,
    所述确定模块,具体用于确定所述干扰点的频点号;根据所述频点号确定相应RB的标号;将所述标号对应的RB确定为所述干扰点对应的RB。
  10. 如权利要求7所述的装置,其特征在于,
    所述组合模块,具体用于将所述干扰点对应的RB之外的RB按照标号大小顺次排列,得到目标频域信号。
  11. 如权利要求7所述的装置,其特征在于,
    所述组合模块,具体用于当所述干扰点对应的干扰强度大于预设阈值时,将所述干扰点对应的RB,以及与所述干扰点对应的RB相邻RB之外的RB按照标号大小顺次排列,得到目标频域信号。
  12. 如权利要求7至11中任一项所述的装置,其特征在于,所述装置还包括计算模块,其中,
    所述确定模块,还用于确定所述时域信号的总带宽;
    所述计算模块,用于根据所述时域信号的总带宽计算所述RBG中RB的总数量。
  13. 一种信号接收设备,其特征在于,包括:处理器和存储器,其中,所述存储器内存储有所述处理器能够执行的操作指令,所述处理器读取所述存储器内的操作指令用于实现权利要求1至6中任意一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至6中任一项所述的方法。
  15. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至6中任一项所述的方法。
  16. 一种通信设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,实现如权利要求1至6中任一项所述的方法。
  17. 一种装置,其特征在于,所述装置包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行如权利要求1至6中任一项所述的方法。
PCT/CN2019/071194 2018-02-13 2019-01-10 信号接收方法、装置及设备 WO2019157892A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19754683.1A EP3745760B1 (en) 2018-02-13 2019-01-10 Signal receiving method, apparatus, and device
US16/991,602 US11337213B2 (en) 2018-02-13 2020-08-12 Signal receiving method, apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810149641.1A CN110149636B (zh) 2018-02-13 2018-02-13 信号接收方法、装置及设备
CN201810149641.1 2018-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/991,602 Continuation US11337213B2 (en) 2018-02-13 2020-08-12 Signal receiving method, apparatus, and device

Publications (1)

Publication Number Publication Date
WO2019157892A1 true WO2019157892A1 (zh) 2019-08-22

Family

ID=67588813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071194 WO2019157892A1 (zh) 2018-02-13 2019-01-10 信号接收方法、装置及设备

Country Status (4)

Country Link
US (1) US11337213B2 (zh)
EP (1) EP3745760B1 (zh)
CN (1) CN110149636B (zh)
WO (1) WO2019157892A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136654A (zh) * 2007-06-06 2008-03-05 中兴通讯股份有限公司 一种消除通信系统中窄带干扰的方法及装置
CN105450561A (zh) * 2014-09-28 2016-03-30 联想(北京)有限公司 一种信息处理方法及电子设备
CN105516032A (zh) * 2014-09-23 2016-04-20 华为技术有限公司 自适应窄带干扰消除方法和装置
WO2016155503A1 (zh) * 2015-03-30 2016-10-06 索尼公司 无线通信系统以及无线通信系统中的装置和方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1782596A4 (en) * 2004-07-01 2012-11-14 Texas Instruments Inc TIME-RANGE WINDOW TECHNOLOGY OF A MULTI-BAND-OFDM SYSTEM FOR ENHANCING SPECTRAL SCULPTURING
JP2007202081A (ja) * 2006-01-30 2007-08-09 Sony Corp Ofdm復調装置及び方法
WO2008038769A1 (fr) * 2006-09-29 2008-04-03 Ntt Docomo, Inc. dispositif de transmission et procédé de configuration de trame de transmission
US8009750B2 (en) 2007-12-21 2011-08-30 Qualcomm, Incorporated Receiver window shaping in OFDM to mitigate narrowband interference
JP2009224922A (ja) * 2008-03-14 2009-10-01 Fujitsu Ltd ピーク抑圧装置、無線送信装置及び窓関数生成装置
US8472868B2 (en) * 2009-05-06 2013-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for MIMO repeater chains in a wireless communication network
US8693305B2 (en) * 2009-08-24 2014-04-08 Qualcomm Incorporated Method and apparatus for detecting OFDM signals in the presence of frequency orthogonal OFDM interferers
US20130016765A1 (en) * 2011-07-13 2013-01-17 Qualcomm Incorporated Selection of window length based on multiple metrics
CN102291363B (zh) * 2011-09-21 2014-07-16 北京理工大学 一种用于ofdm系统的信道估计及数据检测方法
US8694306B1 (en) * 2012-05-04 2014-04-08 Kaonyx Labs LLC Systems and methods for source signal separation
US8873655B2 (en) * 2013-01-10 2014-10-28 Intel Corporation Sending information at a band edge within an orthogonal frequency-division multiplexing (OFDM) symbol
US9288094B2 (en) 2013-12-18 2016-03-15 Intel Corporation Adaptive channel prediction and mitigating interference in OFDM systems
CN105847209B (zh) * 2015-01-16 2020-09-29 北京三星通信技术研究有限公司 基于滤波器组多载波调制的通信方法和装置
GB2539130B (en) * 2015-06-04 2017-10-25 Imagination Tech Ltd Channel centering at an OFDM receiver
KR102547119B1 (ko) * 2016-01-05 2023-06-23 삼성전자주식회사 무선 통신 시스템에서 간섭 제어를 위한 방법 및 장치
CN105827560B (zh) * 2016-03-14 2019-01-18 中国科学院微电子研究所 应用于宽带ofdm电力线通信系统的噪声抑制方法
CN107306238B (zh) 2016-04-21 2021-03-02 北京三星通信技术研究有限公司 载波调制信号的接收、发送方法及相应接收机与发射机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136654A (zh) * 2007-06-06 2008-03-05 中兴通讯股份有限公司 一种消除通信系统中窄带干扰的方法及装置
CN105516032A (zh) * 2014-09-23 2016-04-20 华为技术有限公司 自适应窄带干扰消除方法和装置
CN105450561A (zh) * 2014-09-28 2016-03-30 联想(北京)有限公司 一种信息处理方法及电子设备
WO2016155503A1 (zh) * 2015-03-30 2016-10-06 索尼公司 无线通信系统以及无线通信系统中的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3745760A4

Also Published As

Publication number Publication date
US20200374876A1 (en) 2020-11-26
EP3745760A1 (en) 2020-12-02
CN110149636A (zh) 2019-08-20
CN110149636B (zh) 2021-08-13
EP3745760A4 (en) 2021-03-24
US11337213B2 (en) 2022-05-17
EP3745760B1 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
US11476991B2 (en) Demodulation reference signal transmission method, network device and computer-readable storage medium
IL264474B2 (en) Information transmission method and information transmission device
RU2567864C1 (ru) Способы и устройство для эффективного использования спектра в развертываниях расширяемой несущей
JP7233366B2 (ja) 情報伝送方法、端末装置及びネットワーク装置
EP3729898A1 (en) Managing pdcch blind searches in new radio unlicensed band scenario
US20210298025A1 (en) Methods and devices for determining downlink resource set and sending resource position information
IL267415B (en) A method for transmitting data, a network device and a terminal device
US11395317B2 (en) Information sending and receiving method, and information sending and receiving apparatus
US10834016B2 (en) Communications method and device
WO2021218497A9 (zh) 确定方法、装置、通信节点及存储介质
US20200413406A1 (en) Bandwidth part configuration method, network device, and terminal
RU2748942C2 (ru) Способ конфигурации ресурсов управляющего канала, базовая станция и терминальное устройство
US20230112049A1 (en) Communication method and apparatus for open radio access network (o-ran)
WO2019157892A1 (zh) 信号接收方法、装置及设备
CN112804177A (zh) Ofdm时域加窗方法及装置
WO2022193895A1 (zh) 信道状态信息报告方法、信道状态信息接收方法、通信节点及存储介质
CN110890953A (zh) 使用免授权频段的通信方法和通信装置
CN109729567A (zh) 一种消息处理方法和接入点设备以及消息处理设备
JP7068351B2 (ja) 時間領域リソース情報の指示方法及び装置
JP7291829B2 (ja) 時間領域リソース情報の指示方法及び装置
CN115515242B (zh) 搜索空间配置方法、物理下行控制信道搜索方法及装置
WO2022206245A1 (zh) 带宽配置方法、传输方法、通信节点及存储介质
WO2022042698A1 (zh) 数据发送方法及装置、存储介质、电子装置
US20240357594A1 (en) Method performed by network node
WO2022237276A1 (zh) 信息传输方法、装置、通信节点及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754683

Country of ref document: EP

Effective date: 20200826