WO2019157847A1 - 一种全反射显示装置、胶框组件 - Google Patents

一种全反射显示装置、胶框组件 Download PDF

Info

Publication number
WO2019157847A1
WO2019157847A1 PCT/CN2018/116773 CN2018116773W WO2019157847A1 WO 2019157847 A1 WO2019157847 A1 WO 2019157847A1 CN 2018116773 W CN2018116773 W CN 2018116773W WO 2019157847 A1 WO2019157847 A1 WO 2019157847A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
strip
light
assembly
frame
Prior art date
Application number
PCT/CN2018/116773
Other languages
English (en)
French (fr)
Inventor
梁菲
杜景军
孙凌宇
陈秀云
刘淼
王征
盖欣
董飞
方立宇
侯婷琇
尹大根
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/474,736 priority Critical patent/US11391990B2/en
Publication of WO2019157847A1 publication Critical patent/WO2019157847A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a total reflection display device and a bezel assembly.
  • the total reflection display device has attracted attention as a new type of display device.
  • the display can be realized only by using ambient light, thereby reducing the power consumption of the display device during display to a certain extent, which is in line with the user's
  • the display device has low power consumption and long standby time requirements.
  • the ambient light is weak (for example, at night)
  • the total reflection display device has a problem that the display effect is poor.
  • the related art proposes a scheme of adding a front optical system to a total reflection display device, wherein the front optical system includes a light-emitting diode (LED) and is placed on the display side of the display panel.
  • the front optical system includes a light-emitting diode (LED) and is placed on the display side of the display panel.
  • a light guide plate (LGP) or the like is placed.
  • Embodiments of the present disclosure provide a plastic frame assembly and a total reflection display device, which can improve problems in the related art.
  • a bezel assembly for cooperating with a total reflection display assembly to form a total reflection display device, the total reflection display assembly having a display surface for presenting an image, wherein the bezel assembly includes:
  • a first frame strip for mating with one side of the display component to support the display component
  • a light source disposed on the first frame strip for emitting light
  • An optical path adjusting component disposed on the first frame strip
  • the first frame strip includes a first portion and a second portion that are connected to each other, wherein the first portion and/or the second portion accommodates the light source and the optical path adjusting component such that when the plastic frame assembly is After the total reflection display assembly is assembled, the first portion can protrude from the side of the display assembly beyond the display surface, and the light emitted by the light source is adjusted by the optical path adjusting component to be irradiated to the display component Display area.
  • the first portion and the display surface or the second portion of the display assembly enclose a gap opening toward a side of the display assembly, the light path adjusting member and the light source being disposed within the gap.
  • a surface of the first portion opposite to the display surface and away from the display component includes an inclined surface, and the inclined surface is formed by a plane of a display surface of the display component.
  • the angle ranges from [60°, 90°); the light source is disposed on the inclined surface.
  • the first portion and the second portion form a light tunnel for transmitting light, the first end of the light tunnel being located on a side wall of the first portion facing the display assembly, and the second end being located In the second portion, the light source is located at a second end of the optical channel, and the optical path adjusting component is located at a first end of the optical channel.
  • the optical channel includes an optical cavity and a reflective layer overlying a surface of the optical cavity, wherein an opening of the optical cavity is located on a side of the first portion that faces one side of the display assembly
  • the optical cavity extends from the opening toward a bottom end of the second portion.
  • the first portion has an extension extending in a first direction from a position at which the optical path adjusting member is fixed, and a surface of the extending portion opposite to the display surface is for reflecting light emitted from the light source ;
  • the first direction is a direction in which the non-display area of the display component points to the display area.
  • the frame assembly further includes at least one second frame strip, the upper end of the second frame strip will exceed the display surface of the display assembly after the frame assembly is assembled with the display assembly, An angle between a sidewall of the upper end portion of the second frame strip adjacent to the display component and the display surface is an acute angle, and a sidewall of the upper end portion of the second frame strip adjacent to the display component is used for a reflection The light emitted by the light source.
  • a sidewall of the upper end portion of the second bezel adjacent to the display assembly is a concave curved surface.
  • the optical path adjusting component is a lens strip, and an angle formed by the lens strip and a display surface of the display component is an obtuse angle on a light outgoing side of the lens strip;
  • the lens strip is an arch shape that rises in a first direction; or the lens strip includes a first sub-lens strip and a second sub-lens strip on the side of the first sub-lens strip away from the display assembly,
  • the first sub-lens strip is an arch that rises in a second direction
  • the second sub-lens strip is an arch that rises in the first direction;
  • the second direction is opposite to the first direction.
  • the angle formed by the lens strip and the display surface of the display unit ranges from (90°, 120°).
  • the optical path adjusting component is a lens strip, and the angle formed by the lens strip and the display surface of the display component is greater than or equal to 90° on the light exiting side of the lens strip;
  • the light-emitting surface of the lens strip is divided into a first strip-shaped area, a second strip-shaped area and a third strip-shaped area in a third direction, and the light-emitting surface of the lens strip has a plurality of strips in a portion of the first strip-shaped area a first micro-structure, the light-emitting surface of the lens strip is a curved surface convex in a first direction in a portion of the second strip-shaped region, and the light-emitting surface of the lens strip has a portion in the third strip-shaped region a plurality of strip-shaped second microstructures; wherein the first microstructures are used to deflect a portion of the incident light rays in a third direction, and the second microstructures are used to deflect a portion of the incident light rays in a fourth direction;
  • the first direction is a direction in which the non-display area of the display component points to the display area;
  • the third direction is a direction in which the back side of the display component is directed to the light-emitting surface;
  • the fourth direction and the third direction The opposite direction.
  • the angle formed by the lens strip and the display surface of the display unit ranges from [90°, 120°].
  • the first microstructure includes a plane having an angle range of [0, 60°] with respect to a thickness direction of the lens strip, and further includes contacting the adjacent plane and protruding toward the third direction a curved surface;
  • the second microstructure includes a plane having an angle range of [0, 60°] with respect to a thickness direction of the lens strip, and further comprising contacting the adjacent plane and convex toward the fourth direction The surface.
  • the light incident surface of the lens strip is composed of a plurality of convex hemispherical surfaces; or, the light incident surface of the lens strip is composed of a plurality of strip-shaped curved surfaces that are convex toward the first direction or the second direction;
  • the number of the first frame bars is one; or
  • the number of the first frame strips is two, and the two first frame strips are located on opposite sides of the display component.
  • the first frame bar matches the short side of the rectangular display component
  • the two first frame bars mate with the two short sides of the rectangular display assembly.
  • a total reflection display device comprising:
  • a total reflection display assembly having a display surface for presenting an image
  • FIG. 1(a) is a top plan view of a total reflection display device according to an embodiment of the present disclosure
  • 1(b) is a top plan view 2 of a total reflection display device according to an embodiment of the present disclosure
  • 1(c) is a top plan view 3 of a total reflection display device according to an embodiment of the present disclosure
  • 1(d) is a top plan view 4 of a total reflection display device according to an embodiment of the present disclosure
  • Figure 2 is a cross-sectional view taken along line A-A' of Figure 1 (a);
  • Figure 3 is a cross-sectional view taken along line BB' of Figure 1 (b);
  • Figure 4 is an enlarged view of the area C of Figure 2;
  • Figure 5 is an enlarged view of the area D of Figure 3;
  • Figure 6 is an enlarged view of the area C of Figure 2;
  • Figure 7 is an enlarged view of the D area of Figure 3;
  • Figure 8 is a cross-sectional view 2 of the arrow A-A' in Figure 1 (a);
  • Figure 9 is an enlarged view of the area E in Figure 8.
  • Figure 10 is an enlarged view of the area C of Figure 2;
  • Figure 11 is an enlarged view of the area C of Figure 2;
  • Figure 12 (a) is an enlarged view of the area F of Figure 11;
  • Figure 12 (b) is a simulation diagram when the structure shown in Figure 12 (a) is used for a total reflection device;
  • Figure 13 (a) is an enlarged view of the F region of Figure 11;
  • Figure 13 (b) is a simulation view of the structure shown in Figure 13 (a) for use in a total reflection device;
  • FIG. 14(a) is a schematic structural diagram of a lens strip according to an embodiment of the present disclosure.
  • Fig. 14 (b) is a simulation diagram when the structure shown in Fig. 14 (a) is used for a total reflection device.
  • 10-display panel 11-front light guide; 12-light emitting diode; 20-frame; 21-first frame; 211-first part; 212-second part; 22-second frame; ; 23 - optical channel; 24 - extension; 31 - optical path adjustment component; 311 - first sub-lens strip; 312 - second sub-lens strip; 32 - light source; 40 - backplane; 41 - circuit board; a strip-shaped region; 511 - first microstructure; 52 - second strip region; 53 - third strip region; 531 - second microstructure; 54 - light incident surface of the lens strip; 100 - display assembly.
  • an embodiment of the present disclosure provides a plastic frame assembly for supporting a display panel, and a light source and an optical path adjusting component are disposed on the plastic frame assembly such that the plastic frame assembly After being assembled with the total reflection panel, the light emitted by the light source is adjusted by the optical path adjusting component and then irradiated to the display panel, thereby improving the uniformity of the light even when the ambient light is relatively weak.
  • the bezel assembly in the present disclosure is used in conjunction with a total reflection panel, the specific structure of the bezel assembly is described in conjunction with a total reflection display device in the following embodiments.
  • the total reflection display device includes the display assembly 100 and the side of the display assembly 100 as shown in FIGS. 1( a ), 1 (b), 1 (c), 1 (d), 2, 3, and 8 .
  • Each of the frame 20 is located on one side of the display assembly 100.
  • the frame 20 includes at least one first frame strip 21.
  • the first frame strip 21 is fixedly provided with a light source 32 and an optical path adjusting component 31.
  • the optical path adjusting component 31 is beyond the display surface of the display assembly 100, and the light emitted by the light source 32 can be adjusted by the optical path adjusting component 31 to illuminate the display area of the display assembly 100.
  • the light emitted from the light source 32 is adjusted by the optical path adjusting element 31 and then irradiated to the display area of the display unit 100, and then reflected by the reflective layer in the display unit 100 and then emitted from the display unit 100 to realize display.
  • the display assembly 100 includes a display panel including an array substrate and a counter substrate, and the display panel may be a liquid crystal display panel.
  • the total reflection display device further includes a circuit for causing the display assembly 100 to implement a display screen and the like.
  • a backplane 40 for further fixing the display assembly 100 wherein the circuit is integrated on the circuit board 41, the circuit board 41 is fixed to the backboard 40 by an adhesive layer, and the display assembly 100 is adhered
  • the junction layer is fixed in the frame 20 formed by the plurality of frame strips.
  • the display surface of the display unit 100 refers to the surface on the display side of the display unit 100.
  • the light emitted from the light source 32 can be adjusted by the optical path adjusting component 31 and then irradiated to the entire display area of the display component 100, or can be irradiated to a part of the display area, as long as the light reflected by the reflective layer in the display component 100 can be It is sufficient to emit an area for displaying a screen from the display unit 100.
  • the area for displaying the screen may be the entire display area or a partial display area.
  • the optical path adjusting component 31 may be a lens strip, and the lens strip may diverge to the light, and the light emitted by the light source 32 is radiated to the lens strip, and is radiated to the display area of the display component 100 after being dispersed by the lens strip.
  • the light emitted from the light source 32 is adjusted by the optical path adjusting component 31 and then irradiated to the entire display area of the display assembly 100, and passes through the reflective layer in the display assembly 100. After being reflected, it is emitted from the entire display area of the display assembly 100; or the light emitted from the light source 32 is adjusted by the optical path adjusting component 31 to be irradiated to a portion of the display area in the display assembly 100, and then passed through the reflective layer in the display assembly 100. After reflection, it is emitted from the entire display area of the display assembly 100.
  • the frame 20 may be a plastic frame, and the material thereof is the same as that of the back plate 40, and may be, for example, polycarbonate (PC), acrylonitrile-butadiene-styrene (Acrylonitrile Butadiene Styrene). ABS) or the like; the frame 20 may be a structure for fixing the light source 32 and the optical path adjusting member 31 other than the plastic frame.
  • PC polycarbonate
  • ABS acrylonitrile-butadiene-styrene
  • ABS acrylonitrile Butadiene Styrene
  • the frame 20 when the frame 20 is a plastic frame, as shown in FIGS. 1(a) and 1(b), the frame 20 may include four complete frame bars; as shown in FIGS. 1(c) and 1(d).
  • the frame 20 may also include three complete frame strips and a partially broken frame strip, wherein the portion of the flexible printed circuit (FPC) in the display assembly 100 that is broken in the frame strip is bent.
  • the flexible circuit board is used to connect the circuit board 41 and the display component 100 described above, and the circuit board 41 may be a flexible circuit board or a printed circuit board (PCB).
  • the plastic frame when the frame 20 is a structure for fixing the light source 32 and the light path adjusting component 31 except for the plastic frame, the plastic frame includes two frame strips on opposite sides of the display component 100, and the frame 20 includes the display component. 100 two frame strips 21 on the other sides, or one frame strip 21 on either side of the other sides of the display assembly 100.
  • the light source 32 may include a plurality of Cold Cathode Fluorescent Lamps (CCFLs), and may also include a plurality of LEDs.
  • CCFLs Cold Cathode Fluorescent Lamps
  • the frame 20 may include one, two, three, and four first frame bars 21.
  • the first frame strip 21 is located on the short side of the display assembly 100;
  • the frame 20 includes two first frame strips 21, for example, the two first frame strips 21 are respectively located on the two short sides of the display assembly 100 to further enhance the uniformity of the overall display effect.
  • the light is emitted from the LED and then projected to the total reflection panel through the optical path adjusting component, and the reflective structure on the non-light source side of the plastic frame component can utilize the light and ambient light emitted by the panel multiple times to increase the total reflection display.
  • the overall brightness of the device and the uniformity of the light achieve the effect of low power consumption and improved display effect of the total reflection device.
  • the total reflection display device provided by the embodiment of the present disclosure provides the light path adjusting component 31 and the light source 32 on the first frame 21 and the optical path adjusting component 31 beyond the display surface of the display component 100.
  • the light source 32 The emitted light is irradiated to the display area of the display unit 100 after being adjusted by the optical path adjusting element 31; thereafter, the reflective layer in the display unit 100 reflects the light, and the light reflected by the reflective layer is emitted from the display unit 100. Improve the uniformity of the display to improve the display.
  • each of the frame strips 21 of the present disclosure is disposed on one side of the display assembly 100, it is not disposed in the same layer as the front light guide plate 11 in the related art.
  • the display surface of the display assembly 100 is displayed, and thus, the present disclosure facilitates the thin design of the total reflection display device as compared with the related art.
  • the light source 32 and the optical path adjusting member 31 are disposed along the extending direction of the first bezel 21.
  • the light source 32 may be a light bar or a plurality of individual light emitting units arranged in at least one row.
  • the light emitted from the optical path adjusting member 31 can be more uniformly illuminated to the display area of the display unit 100 for display.
  • the first frame strip 21 is comprised of a joined first portion 211 and a second portion 212, wherein the first portion 211 extends beyond the display surface of the display assembly 100; the first portion 211 and the display assembly
  • the display surface or second portion 212 of 100 encloses a gap opening toward the side of the display assembly 100, and the optical path adjusting member 31 and the light source 32 are disposed in the gap.
  • first, the first portion 211 and the second portion 212 of the first frame strip 21 are generally of a unitary structure.
  • the light source 32 is located outside the optical path adjusting element 31 as shown in FIGS. 2, 3, 4 and 5.
  • “outer side” is a relative concept, for example, the non-display area of the display assembly 100 is located outside the display area of the display assembly 100.
  • the first portion 211 and the display surface of the display assembly 100 or the second portion 212 encloses a gap opening toward the side of the display assembly 100
  • the display surface or the second portion 212 of the assembly 100 encloses a void facing inwardly, wherein “opening inward” means: opening on the inside surface of the bezel, where “inside” is also a relative concept.
  • the display area of the display assembly 100 is located inside the non-display area of the display assembly 100.
  • the counter substrate of the display assembly 100 is located on the upper side of the array substrate of the display assembly 100; the array substrate of the display assembly 100 is located on the lower side of the counter substrate of the display assembly 100.
  • the light source 32 may be fixed to the first portion 211 of the first frame strip 21; as shown in FIGS. 3 and 5, the light source 32 may be fixed to the second portion of the first frame strip 21. 212, the light source 32 is disposed in the gap, and the light emitted by the light source 32 can be adjusted by the optical path adjusting component 31 and incident on the display area of the display assembly 100.
  • the optical path adjusting member 31 is located in a space in which the opening of the first portion 211 and the display surface of the display assembly 100 faces the side of the display assembly 100, that is, the first portion 211 is on the display assembly 100.
  • the upper orthographic projection has an overlapping portion with the display assembly 100.
  • the overlapping portion is located in the non-display area of the display assembly 100.
  • the structure is simple and easy to form, and it is easy to stably set the optical path adjusting member 31.
  • the surface of the gap opposite to the display surface and away from the display assembly 100 includes an inclined surface, and the angle formed by the inclined surface and the plane of the display surface of the display assembly 100 The value ranges from [60°, 90°); the light source 32 is disposed on the inclined surface.
  • the back surface of the light source 32 is disposed on the inclined surface.
  • a common illumination range is -30° to 30°, so that the inclined surface and the display assembly 100 are The upper surface forms an angle, the angle ranges from [60°, 90°), and the light source 32 is disposed on the inclined surface, so that the light emitted by the light source 32 can be tilted downward.
  • the light path adjusting component 31 is irradiated to the display area of the display unit 100 as much as possible, which is advantageous for improving the light utilization efficiency and further improving the display brightness of the display unit 100.
  • the light source 32 is located at the upper end of the inclined surface.
  • a part of the light emitted by the light source 32 is irradiated to the lower surface of the gap and absorbed, and therefore, compared with the light source 32 disposed at the lower end and the intermediate position of the inclined surface,
  • the light source 32 is disposed at the upper end of the inclined surface, so that the light emitted by the light source 32 can be irradiated to the display area of the display component 100 through the optical path adjusting component 31 to the greatest extent, which is beneficial to improving the light utilization rate and maximizing the display of the display component 100.
  • the first bezel 21 is composed of a connected first portion 211 and a second portion 212, wherein the first portion 211 is beyond the display surface of the display assembly 100; the first bezel 21 is provided with a light path 23 for transmitting light, the first end of the light channel 23 is located on a side wall of the first portion 211 facing the display assembly 100, the second end is located in the second portion 212 of the first frame strip 21; and the light source 32 is located in the light channel At the second end of the 23, the optical path adjusting element 31 is located at the first end of the optical channel 23.
  • first, the first portion 211 and the second portion 212 of the first frame strip 21 are generally of a unitary structure.
  • the specific structure of the optical channel 23 is not limited as long as it can reflect the light emitted from the light source 32 at the second end of the optical channel 23 back and forth in the optical channel 23, and finally after being adjusted by the optical path adjusting component 31 at the first end. It illuminates the display area of the display unit 100.
  • the optical channel 23 may be an optical fiber for transmitting light, or may be composed of an optical cavity and a reflective layer covering the surface of the optical cavity.
  • the light tunnel 23 includes: an optical cavity and a reflective layer covering the surface of the optical cavity, wherein the opening of the optical cavity is located on a side wall of the first portion 211 facing the display assembly 100, and the optical cavity is The opening extends toward the bottom end of the second portion 212 of the first bezel 21, wherein the optical path adjusting member 31 is located at the open position of the optical cavity, and the light source 32 is located at the bottom end of the second portion 212.
  • the bottom end of the second portion 212 refers to the lowermost end of the second portion 212.
  • the first portion 211 includes a light for enclosing light.
  • the portion of the first end of the passage 23 further includes a portion for fixing the optical path adjusting member 31.
  • the light emitted from the light source 32 can be approximated as a plurality of point light sources, the light emitted from the light source 32 cannot be uniformly irradiated onto the optical path adjusting member 31, and therefore, is disposed in the first frame 21
  • the light channel 23 for transmitting light can cause the light emitted by the light source 32 to be reflected back and forth in the light channel 23, and finally irradiated to the optical path adjusting component 31 at the first end in the form of a surface light source, and the illumination is adjusted by the optical path adjusting component 31.
  • the uniformity of the overall display effect can be improved.
  • the first portion 211 has an extending portion 24 extending from the position of the fixed optical path adjusting member 31 in the first direction, and the surface of the extending portion 24 opposite to the display surface and close to the display assembly 100 is reflective.
  • the first direction is the direction in which the non-display area of the display component 100 points to the display area, that is, the direction from the outside to the inside in FIG. 10 (FIG. 10 only the optical path adjusting component and the light source are disposed in the first part and the second part) Part of the enclosed void is taken as an example).
  • the first portion 211 may include a reflective material, or a reflective layer may be disposed on the surface of the extending portion 24 opposite to the display surface and adjacent to the display assembly 100 such that the extending portion 24 is opposite to the display surface. And the surface near the display assembly 100 can reflect light.
  • the first direction is the inward direction indicated in FIG.
  • the light emitted from the optical path adjusting component 31 includes the outgoing light upward with respect to the direction of the incident light.
  • a portion of the display unit 100 will not be illuminated to be utilized, and thus is reflected from the optical path adjusting member 31 by causing the surface of the extending portion 24 opposite to the display surface and close to the surface of the display assembly 100 to reflect light.
  • the outgoing light that is emitted upward in the direction of the incident light increases the light utilization efficiency.
  • the frame 20 further includes at least one second frame strip 22, the upper end portion 221 of the second frame strip 22 extends beyond the display surface of the display assembly 100, and the upper end of the second frame strip 22
  • the angle between the side wall of the portion 221 adjacent to the display assembly 100 and the display surface is an acute angle, and the side wall of the upper end portion 221 of the second bezel 22 adjacent to the display assembly 100 can reflect light.
  • the frame 20 includes four frame bars. If one of the frames 20 is the first frame 21, the number of the second frame 22 may be one or two. If the two frame bars in the frame 20 are the first frame bar 21, the number of the second frame bar 22 may be one or two; if the three frame bars in the frame 20 are the first frame bar 21 The number of the second frame 22 may be one.
  • the shape of the side wall of the upper end portion 221 of the second frame strip 22 close to the display unit 100 is not limited as long as the angle between it and the display surface is an acute angle.
  • the side wall of the upper end portion 221 of the second frame strip 22 adjacent to the display assembly 100 is an inclined plane; or, as shown in FIG. 8, the upper end portion of the second frame strip 22 is shown in FIG.
  • the sidewall of the 221 near the display assembly 100 is a concave curved surface.
  • the upper end portion 221 of the second frame strip 22 may include a reflective material, or a reflective layer may be disposed on the sidewall of the upper end portion 221 of the second bezel 22 adjacent to the display assembly 100 such that the second frame strip 22 is The side walls of the upper end portion 221 that are adjacent to the display assembly 100 can reflect light.
  • the optical fiber adjusting component 31 and the upper end portion 221 of the second frame strip 22 of the light source 32 are adjacent to the sidewall of the display assembly 100, and reflect light reflected from the reflective layer in the display assembly 100, and The ambient light is utilized to cause a portion of the reflected light to be re-injected into the display area of the display assembly 100, thereby reducing power consumption.
  • a 2.27-inch total reflection display device can reduce power consumption by 35%.
  • the optical path adjusting member 31 is a lens strip, and the angle formed by the lens strip and the display surface of the display unit 100 on the light exiting side of the lens strip is an obtuse angle; As shown in FIG. 12(a), the lens strip is arched in a first direction; or, as shown in FIG. 13(a), the lens strip includes the first sub-lens strip 311 and is located away from the first sub-lens strip 311.
  • the first sub-lens strip 311 is an arch that rises in a second direction
  • the second sub-lens strip 312 is an arch that rises in a first direction
  • the direction is a direction in which the non-display area of the display component 100 is directed to the display area
  • the second direction is opposite to the first direction (FIG. 11 is only provided in the gap surrounded by the first part and the second part by the lens strip) example).
  • the lens strip does not necessarily come into contact with the display surface of the display unit 100.
  • the lens strip is only in contact with the first portion 211 and the second portion 212 of the first bezel 21; as shown in FIG. 5, one end of the lens strip is in contact with the first portion 211, and the other end is connected to the display assembly 100.
  • the display surface is in direct contact.
  • the first portion 211 of the first bezel 21 may further include an extension portion in direct contact with the display surface of the display assembly 100, and the lens strip is disposed on the extension portion and the first portion. Between 211, the lens strip is also not in direct contact with the display surface of display assembly 100.
  • the angle formed by the lens strip and the display surface of the display unit 100 is an obtuse angle
  • the angle formed by the lens strip and the display surface of the display assembly 100 is an obtuse angle, which means that on the light-emitting side of the lens strip, the portion at the uppermost end of the lens strip and the portion at the lowermost end
  • the line connecting the display surface of the display unit 100 is an obtuse angle.
  • the first direction is the inward direction indicated in FIGS. 12(a) and 13(a)
  • the second direction is the outward direction indicated in FIGS. 12(a) and 13(a).
  • the intensity of the received light emitted from the lens strip is greater due to the portion of the display area of the display assembly 100 that is closer to the first frame strip 21.
  • the shape of the lens shown in FIG. 12(a) is an inwardly curved lens strip.
  • the simulation result is as shown in FIG. 12(b), so that the light emitted from the portion located on the lower side of the arch structure can be irradiated as much as possible to the portion in the middle of the display area of the display unit 100;
  • the light emitted from the portion on the upper side of the shape is irradiated to the surface of the extending portion 24 opposite to the display surface and close to the display assembly 100, and is reflected by the surface of the extending portion 24 opposite to the display surface and close to the surface of the display assembly 100.
  • the portion of the display area of the display component 100 that is farther away from the first frame strip 21 is irradiated as much as possible, thereby improving the uniformity of the overall display effect of the display component 100 on the basis of improving the light utilization efficiency, as shown in FIG. 12(b).
  • the display area of the display assembly 100 only dark areas exist at the position of the near light source 32.
  • the first sub-lens strip 311 and the second sub-lens strip 312 shown in FIG. 13(a) are included.
  • the light emitted from the first sub-lens strip 311 can be irradiated as much as possible to the position of the near-light source 32 and the portion located in the middle of the display area of the display unit 100.
  • the light emitted from the second sub-lens strip 312 is irradiated onto the surface of the extending portion 24 opposite to the display surface and close to the display assembly 100, and is reflected by the surface of the extending portion 24 opposite to the display surface and close to the surface of the display assembly 100.
  • the portion of the display area of the display component 100 that is farther away from the first frame strip 21 is irradiated as much as possible, thereby improving the uniformity of the overall display effect of the display component 100 on the basis of improving the light utilization efficiency, with respect to FIG. 12
  • the arched lens strip shown in (a), as shown in Fig. 13(b), allows the dark area to move toward a position close to the light source 32.
  • the angle formed by the lens strip and the display surface of the display unit 100 ranges from (90°, 120°).
  • the angle formed by the lens strip and the display surface of the display unit 100 ranges from (90°, 120°), which means that the lens strip is located on the light-emitting side of the lens strip.
  • the angle between the uppermost portion and the lowermost portion and the display surface of the display assembly 100 ranges from (90°, 120°).
  • the angle formed by the lens strip and the display surface of the display unit 100 ranges from (90°, 120°), which further improves the uniformity of the overall display effect.
  • the optical path adjusting component 31 is a lens strip.
  • the angle formed by the lens strip and the display surface of the display assembly 100 is greater than or equal to 90°; the light emitting surface of the lens strip Divided into a first strip-shaped region 51, a second strip-shaped region 52 and a third strip-shaped region 53 in a third direction, the light-emitting surface of the lens strip has a plurality of strip-shaped first micro-sections in a portion of the first strip-shaped region 51
  • the structure 511, the light-emitting surface of the lens strip is a curved surface that is convex in the first direction in the portion of the second strip 52, and the light-emitting surface of the lens strip has a plurality of strip-shaped second micro in the portion of the third strip 53 Structure 531; wherein the first microstructure 511 is for deflecting a portion of the incident light toward the third direction, and the second microstructure 531 is for deflect
  • the lens strip does not necessarily contact the display surface of the display unit 100.
  • the lens strip is only in contact with the first portion 211 and the second portion 212 of the first bezel 21; as shown in FIG. 5, one end of the lens strip is in contact with the first portion 211, and the other end is connected to the display assembly 100.
  • the display surface is in direct contact.
  • the first portion 211 of the first bezel 21 may further include an extension portion in direct contact with the display surface of the display assembly 100, and the lens strip is disposed on the extension portion and the first portion. Between 211, the lens strip is also not in direct contact with the upper surface of display assembly 100.
  • the angle formed by the lens strip and the display surface of the display assembly 100 is greater than or equal to 90
  • the surface parallel to the display surface of the display assembly 100 has an angle with the lens strip of greater than or equal to 90°.
  • the angle formed by the lens strip and the upper surface of the display assembly 100 is greater than or equal to 90°, which means that at the light-emitting side of the lens strip, the uppermost portion of the lens strip is located at the lowermost end.
  • the line of the portion is formed at an angle greater than or equal to 90° to the display surface of the display assembly 100.
  • the first direction is the inward direction indicated in FIG. 14(a)
  • the third direction is the upward direction indicated in FIG. 14(a)
  • the fourth direction is FIG. 14(a).
  • “deflection in the third direction” in the "first microstructure 511 for deflecting partially incident light rays in the third direction” means that the outgoing direction of the light incident on the first microstructure 511 is relative to the incident The direction of incidence of light to the first microstructure 511 is more biased toward the third direction; the “deflection of the second microstructure 531 for deflecting partially incident light toward the fourth direction” means: incident to the first The exit direction of the light of a microstructure 511 is more biased toward the fourth direction with respect to the incident direction of the light incident on the first microstructure 511.
  • the intensity of the received light emitted from the lens strip is greater due to the portion of the display area of the display assembly 100 that is closer to the first frame strip 21.
  • the portion of the light incident from the first microstructure 511 is deflected in the third direction, and the intensity of the light received in the portion of the display region that is closer to the light source 32 can be reduced, and the other portion of the light remains from the first microstructure 511.
  • the portion of the extension portion 24 opposite to the display surface and close to the display assembly 100 may be reflected to illuminate a portion in the middle of the display area of the display assembly 100 and a portion farther from the first frame strip 21;
  • the shaped area 52 can function to smoothly transition the brightness of the middle portion of the display area; deflecting a portion of the light incident from the second microstructure 531 toward the fourth direction, so that the portion of the light can be illuminated as much as possible to the display of the display assembly 100. a portion located in the middle of the region and a portion farther from the first frame strip 21, thereby improving the uniformity of the overall display effect of the display assembly 100 on the basis of improving light utilization efficiency.
  • (B) the display assembly such that the display area 100 in FIG. 14, there is no dark areas.
  • the angle formed by the lens strip and the display surface of the display unit 100 ranges from [90°, 120°].
  • the angle formed by the lens strip and the display surface of the display unit 100 ranges from [90°, 120°], which means that the lens strip is located on the light-emitting side of the lens strip.
  • the angle between the uppermost portion and the lowermost portion and the display surface of the display unit 100 ranges from [90°, 120°].
  • the angle formed by the lens strip and the display surface of the display unit 100 on the light-emitting side of the lens strip ranges from [90°, 120°], which further improves the uniformity of the overall display effect.
  • the first microstructure 511 includes a plane having an angle range of [0°, 60°] with respect to the thickness direction of the lens strip, and further includes contacting the adjacent planes and a convex surface in a third direction;
  • the second microstructure 531 includes a plane having an angle range of [0°, 60°] with respect to a thickness direction of the lens strip, and further includes contacting the adjacent plane and in a fourth direction
  • the convex curved surface only the structure in which the angle between the plane and the thickness direction of the lens strip is 0° is shown).
  • the first microstructure 511 includes a plurality of parallel-arranged ridges (e.g., a quarter cylinder), and the third microstructure 531 includes a plurality of parallel-arranged ridges (e.g., a quarter cylinder).
  • the light incident on the plane of the first microstructure 511 may be irradiated to a portion of the display region that is closer to the light source 32 after being emitted from the lens strip, and is incident on the first microstructure 511.
  • the light of the convex surface in the three directions can reduce the intensity of the light received by the portion closer to the light source 32 in the display region after being emitted from the lens strip.
  • the extension portion 24 is opposite to the display surface.
  • the surface of the display assembly 100 can reflect light
  • the light emitted from the curved surface convex in the third direction can also be reflected by the surface of the extending portion 24 opposite to the display surface and close to the display assembly 100, thereby illuminating A portion located in the middle of the display area of the display assembly 100 and a portion farther from the first frame strip 21.
  • the light incident on the plane of the second microstructure 531 may be opposite to the display surface through the extension portion 24, and Reflecting near the surface of the display assembly 100, thereby illuminating the portion in the middle of the display area of the display assembly 100 and the portion farther from the first frame strip 21, incident on the second microstructure 531 protruding in the fourth direction
  • the light of the curved surface is emitted from the lens strip, and is irradiated to a portion in the middle of the display region of the display unit 100 and a portion far from the first frame strip 21.
  • the light incident surface 54 of the lens strip is composed of a plurality of hemispherical surfaces that are convex toward the first direction or the second direction; or, the light incident surface 54 of the lens strip is composed of a plurality of strips, It is composed of a curved surface that is convex in the first direction or in the second direction.
  • the light incident surface 54 of the lens strip can be made uniform by making the light incident surface 54 of the lens strip a hemispherical surface or a curved surface. The action, in turn, causes light to be incident on the lens strip from all directions.
  • An embodiment of the present disclosure provides a plastic frame assembly including the bezel 20 and the optical path adjusting component 31 of any of the foregoing embodiments.
  • the plastic frame assembly may further include the light source 32 of any of the foregoing embodiments to provide light to the plastic frame assembly, and the light emitted from the light source 32 may be irradiated onto the optical path adjusting component 31 and adjusted through the optical path. Element 31 is adjusted.
  • the embodiment of the present disclosure provides a plastic frame assembly by providing an optical path adjusting component 31 on the first frame 21 of the plastic frame assembly, wherein the optical path adjusting component 31 has an adjustment effect on the light when the plastic frame component is applied to the whole
  • each of the frame assemblies can be located on one side of the display assembly 100 of the total reflection display device, so that the light is adjusted by the optical path adjusting member 31 and then irradiated to the display area of the display assembly 100.
  • the reflective layer in the display assembly 100 reflects the light, and the light reflected by the reflective layer is then emitted from the display assembly 100 and used as a display screen; since each of the bezel assemblies is disposed on the display assembly 100 The side is not disposed on the display surface of the display assembly 100 like the front light guide plate 11 of the related art, and therefore, the present disclosure facilitates the thinning of the total reflection display device compared to the related art. design.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

一种全反射显示装置、胶框组件,涉及显示技术领域。一种胶框组件,用于与全反射显示组件(100)配合形成全反射显示装置,该全反射显示组件(100)具有一用于呈现图像的显示面,其中该胶框组件包括:第一框条(21),用于与该显示组件(100)的一侧边配合,以支撑该显示装置;光源(32),设置在该第一框条(21)上,用于发出光;光路调整元件(31),设置在该第一框条(21)上;其中,该第一框条(21)包括相互连接的第一部分(211)和第二部分(212),其中该第一部分(211)和/或第二部分(212)容置该光源(32)和该光路调整元件(31),使得当该胶框组件与该全反射显示组件(100)装配后该第一部分(211)能够从该显示组件(100)的侧边突出超过该显示面,并使得该光源(32)发出的光经过该光路调整元件(31)调整后照射到该显示组件(100)的显示区域。

Description

一种全反射显示装置、胶框组件 技术领域
本公开涉及显示技术领域,尤其涉及一种全反射显示装置、胶框组件。
背景技术
随着显示技术的发展,以及户外穿戴需求量的迅速增加,户外显示技术受到越来越多的关注。
全反射显示装置作为新型显示装置而备受关注,在环境光足够亮的情况下,仅利用环境光即可实现显示,从而在一定程度上降低了显示装置显示时的功耗,这符合用户对显示装置具有低功耗及长待机时间的要求。然而,当环境光较弱时(例如晚上),全反射显示装置存在显示效果差的问题。
为解决上述问题,相关技术提出了在全反射显示装置中添加前置光学系统的方案,其中,前置光学系统包括发光二极管(Light-Emitting Diode,简称LED)和平铺于显示面板显示侧的前置导光板(light guide plate,简称LGP)等。
发明内容
本公开的实施例提供一种胶框组件及全反射显示装置、,可改善相关技术中的问题。
为达到上述目的,本公开的实施例采用如下技术方案:
根据一个方面,提供了一种胶框组件,用于与全反射显示组件配合形成全反射显示装置,所述全反射显示组件具有一用于呈现图像的显示面,其中所述胶框组件包括:
第一框条,用于与所述显示组件的一侧边配合,以支撑所述显示组件;
光源,设置在所述第一框条上,用于发出光;
光路调整元件,设置在所述第一框条上;
其中,所述第一框条包括相互连接的第一部分和第二部分,其中所述第一部分和/或第二部分容置所述光源和所述光路调整元件,使得当所述胶框组件与所述全反射显示组件装配后所述第一部分能够从所述显示组件的侧边突出超过所述显示面,并使得所述光源发出的光经过所述光路调整元件调整后照射到所述显示组件的显示区域。
例如,所述第一部分与所述显示组件的显示面或所述第二部分围成开口朝向所述显示组件一侧的空隙,所述光路调整元件和所述光源设置在所述空隙内。
例如,在所述空隙中,所述第一部分的与所述显示面相对、且远离所述显示组件的表面包含一倾斜面,所述倾斜面与所述显示组件的显示面所在平面所构成的角度的取值范围为[60°,90°);所述光源设置在所述倾斜面上。
例如,所述第一部分和所述第二部分形成用于传输光线的光通道,所述光通道的第一端位于所述第一部分的朝向所述显示组件一侧的侧壁,第二端位于所述第二部分中;所述光源位于所述光通道的第二端,所述光路调整元件位于所述光通道的第一端。
例如,所述光通道包括:光学腔体以及覆盖在所述光学腔体的表面的反射层,其中,所述光学腔体的开口位于所述第一部分的朝向所述显示组件一侧的侧壁,所述光学腔体从所述开口朝向所述第二部分的底端延伸。
例如,所述第一部分具有从固定所述光路调整元件的位置起向第一方向伸出的延伸部,所述延伸部中与所述显示面相对的表面用于反射从所述光源发出的光线;
其中,所述第一方向为所述显示组件的非显示区域指向显示区域的方向。
例如,所述胶框组件还包括至少一个第二框条,在所述胶框组件与所述显示组件装配后所述第二框条的上端部将超出所述显示组件的显示面,所述第二框条的上端部中靠近所述显示组件的侧壁与所述显示面的夹角为锐角,且所述第二框条的上端部中靠近所述显示组件的侧壁用于反射所述光源发出的光线。
例如,所述第二框条的上端部的靠近所述显示组件的侧壁为凹陷的曲面。
例如,所述光路调整元件为透镜条,在所述透镜条的出光侧,所述透镜条与所述显示组件的显示面所构成的角度为钝角;
所述透镜条为向第一方向耸起的拱形;或者,所述透镜条包括第一子透镜条和位于所述第一子透镜条远离所述显示组件侧的第二子透镜条,所述第一子透镜条为向第二方向耸起的拱形,所述第二子透镜条为向所述第一方向耸起的拱形;
所述第二方向与所述第一方向相反。
例如,在所述透镜条的出光侧,所述透镜条与所述显示组件的显示面所构成的角度的取值范围为(90°,120°]。
例如,所述光路调整元件为透镜条,在所述透镜条的出光侧,所述透镜条与所述显示组件的显示面所构成的角度大于或等于90°;
所述透镜条的出光面沿第三方向分为第一条形区、第二条形区和第三条形区,所述透镜条的出光面在第一条形区的部分具有多个条状的第一微结构,所述透镜条的出光面在第二条形区的部分为向第一方向凸起的曲面,所述透镜条的出光面在所述第三条形区的部分具有多个条状的第二微结构;其中,所述第一微结构用于使部分入射的光线向第三方向偏转,所述第二微结构用于使部分入射的光线向第四方向偏转;
其中,所述第一方向为所述显示组件的非显示区域指向显示区域的方向;所述第三方向为所述显示组件的背面指向出光面的方向;所述第四方向与所述第三方向相反。
例如,在所述透镜条的出光侧,所述透镜条与所述显示组件的显示面所构成的角度的取值范围为[90°,120°]。
例如,所述第一微结构包括与所述透镜条的厚度方向具有[0,60°]夹角范围的平面,还包括与相邻的所述平面接触、且向所述第三方向凸起的曲面;所述第二微结构包括与所述透镜条的厚度方向具有[0,60°]夹角范围的平面,还包括与相邻的所述平面接触、且向所述第四方向凸起的曲面。
例如,所述透镜条的入光面由多个凸起的半球面构成;或者,透镜条的入光面由多个条状的、向第一方向或向第二方向凸起的曲面构成;
其中,所述第二方向与所述第一方向相反。
例如,所述第一框条的数量为一个;或者
所述第一框条的数量为两个,两个第一框条位于所述显示组件相对两侧。
例如,如果所述显示组件为矩形显示组件,则所述第一框条与矩形显示组件的短边匹配;或者
两个第一框条与矩形显示组件的两个短边配合。
根据另一个方面,提供了一种全反射显示装置,包括:
全反射显示组件,具有一用于呈现图像的显示面;以及
如上所述的胶框组件。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅 是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1(a)为本公开实施例提供的一种全反射显示装置的俯视示意图一;
图1(b)为本公开实施例提供的一种全反射显示装置的俯视示意图二;
图1(c)为本公开实施例提供的一种全反射显示装置的俯视示意图三;
图1(d)为本公开实施例提供的一种全反射显示装置的俯视示意图四;
图2为图1(a)中A-A'向的剖视示意图一;
图3为图1(b)中B-B'向的剖视示意图;
图4为图2中C区域的放大图一;
图5为图3中D区域的放大图一;
图6为图2中C区域的放大图二;
图7为图3中D区域的放大图二;
图8为图1(a)中A-A'向的剖视示意图二;
图9为图8中E区域的放大图;
图10为图2中C区域的放大图三;
图11为图2中C区域的放大图四;
图12(a)为图11中F区域的放大图一;
图12(b)为图12(a)所示的结构用于全反射装置时的模拟图;
图13(a)为图11中F区域的放大图二;
图13(b)为图13(a)所示的结构用于全反射装置时的模拟图;
图14(a)为本公开实施例提供的一种透镜条的结构示意图;
图14(b)为图14(a)所示的结构用于全反射装置时的模拟图。
附图标记:
10-显示面板;11-前置导光板;12-发光二极管;20-边框;21-第一框条;211-第一部分;212-第二部分;22-第二框条;221-上端部;23-光通道;24-延伸部;31-光路调整元件;311-第一子透镜条;312-第二子透镜条;32-光源;40-背板;41-电路板;51-第一条形区;511-第一微结构;52-第二条形区;53-第三条形区;531-第二微结构;54-透镜条的入光面;100-显示组件。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
相关技术中的前置光学系统,光线通过LED发出,到达前置LGP,再进入到面板内由反射层反射后射出。由于LED混光距离短,且进入面板的光线大角度数量多,整体显示效果均一性低,hotspot严重。
针对相关技术中存在的问题,本公开实施例提供一种胶框组件,该胶框组件用于支撑显示面板,并且在该胶框组件上设置有光源和光路调整元件,以使得当胶框组件与全反射面板装配后,并光源发出的光经过光路调整元件调整后照射到所述显示面板,从而即使在环境光比较弱的情况下仍然能够提升光线的均一性。
由于本公开中的胶框组件是与全反射面板配合使用的,因而在以下的实施例中结合全反射显示装置来描述胶框组件的具体结构。
本公开实施例提供的全反射显示装置如图1(a)、1(b)、1(c)、1(d)、2、3、8所示,包括显示组件100和位于显示组件100侧面的边框20,边框20的每个框条位于显示组件100的一侧,边框20至少包括一个第一框条21,第一框条21上固定设置有光源32和光路调整元件31,光路调整元件31超出显示组件100的显示面,且光源32发出的光可经过光路调整元件31调整后照射到显示组件100的显示区域。
此处,光源32发出的光经过光路调整元件31调整后照射到显示组件100的显示区域,之后,经显示组件100中的反射层反射,再从显示组件100射出,即可实现显示。
其中,显示组件100包括显示面板,显示面板包括阵列基板和对盒基板,所述显示面板可以是液晶显示面板;此外,全反射显示装置还包括用于使显示组件100实现显示画面等功能的电路、以及对显示组件100起进一步固定作用的背板40,其中,所述电路集成于电路板41上,所述电路板41通过粘结层固定于所述背板40上,显示组件100通过粘结层固定于多个框条形成的边框20中。
需要说明的是,第一,如图2、3、4所示,显示组件100的显示面,即为显示组 件100的上表面,是指:显示组件100的显示侧的表面。
第二,从光源32发出的光可经过光路调整元件31调整后照射到显示组件100的整个显示区域,也可以照射到部分显示区域,只要经显示组件100中的反射层反射后的光,可从显示组件100中用于显示画面的区域射出即可。其中,用于显示画面的区域可以是整个显示区域,也可以是部分显示区域。
其中光路调整元件31可以是透镜条,所述透镜条可以对光起到发散作用,光源32发出的光照到所述透镜条,经过所述透镜条发散后照射到显示组件100的显示区域。
示例的,当显示组件100的整个显示区域均用于显示画面时,从光源32发出的光经过光路调整元件31调整后照射到显示组件100的整个显示区域,并经显示组件100中的反射层反射后,再从显示组件100的整个显示区域射出;或者,从光源32发出的光经过光路调整元件31调整后照射到显示组件100中的部分显示区域,之后,经显示组件100中的反射层反射后,再从显示组件100的整个显示区域射出。
第三,所述边框20可以是胶框,其材料与背板40相同,例如可以是聚碳酸酯(Polycarbonate,简称PC)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,简称ABS)等;所述边框20也可以是除胶框以外的、用于固定光源32和光路调整元件31的结构。
示例的,所述边框20为胶框时,如图1(a)、1(b)所示,边框20可以包括四个完整的框条;如图1(c)、1(d)所示,边框20也可以包括三个完整的框条和一个部分断开的框条,其中,显示组件100中的柔性电路板(Flexible Printed Circuit,简称FPC)在框条中断开的部分发生弯折,所述柔性电路板用于连接上文所述的电路板41与显示组件100,所述电路板41可以是柔性电路板,也可以是印制电路板(Printed Circuit Board,简称PCB)。
示例的,所述边框20为除胶框以外的、用于固定光源32和光路调整元件31的结构时,胶框包括位于显示组件100相对两侧的两个框条,边框20包括位于显示组件100其他两侧的两个框条21、或位于显示组件100其他两侧中任一侧的一个框条21。
第四,光源32可以包括多个冷阴极荧光灯管(Cold Cathode Fluorescent Lamp,简称CCFL),也可以包括多个LED。
第五,所述边框20可以包含一个、两个、三个、四个第一框条21。当边框20包含一个或两个第一框条21时,为了使光源32、光路调整元件31的尺寸足够小,以降低成本,第一框条21位于显示组件100的短边;在此基础上,当边框20包含两个第一框条21时,例如两个第一框条21分别位于显示组件100的两个短边,以进一步起到提升整体显示效果的均一性的作用。
本公开实施例提供的胶框组件,光线由LED发出后经过光路调整元件投射至全反射面板,胶框组件非光源侧的反射结构可以多次利用面板出射的光线和环境光,增加全反射显示装置的整体亮度和光线的均一性,达到全反射装置低功耗和显示效果提升的效果。
另外,本公开实施例提供的全反射显示装置,通过在第一框条21上设置光路调整元件31和光源32、并使光路调整元件31超出显示组件100的显示面,这样一来,光源32发出的光经过光路调整元件31的调整后,可照射到显示组件100的显示区域;之后,显示组件100中的反射层对光进行反射,经反射层反射的光再从显示组件100中射出,提高显示的均一性,进而提升显示效果。
另外,在正常显示画面的基础上,由于本公开的每个框条21设置在显示组件100的一侧,并不会如相关技术中的前置导光板11一样,平铺一整层设置在显示组件100的显示面,因此,相较于相关技术,本公开有利于全反射显示装置的薄型化设计。
例如,光源32和光路调整元件31沿第一框条21的延伸方向设置。
需要说明的是,光源32可以是灯条,也可以是排成至少一排的多个单独的发光单元。
本公开实施例通过使光源32和光路调整元件31沿第一框条21的延伸方向设置,可以使从光路调整元件31射出的光更加均匀地照到显示组件100的显示区域,以进行显示。
例如,如图2、3、4、5所示,第一框条21由连接的第一部分211和第二部分212组成,其中第一部分211超出显示组件100的显示面;第一部分211与显示组件100的显示面或第二部分212围成开口朝向显示组件100一侧的空隙,光路调整元件31和光源32设置在所述空隙内。
需要说明的是,第一,第一框条21的第一部分211和第二部分212通常是一体结构。
第二,由于光源32发出的光经过光路调整元件31调整后,射到显示组件100的显示区域,因此,如图2、3、4、5所示,光源32位于光路调整元件31的外侧,其中,“外侧”是一相对的概念,例如,显示组件100的非显示区域位于显示组件100的显示区域的外侧。
如图2、3、4、5所示,“第一部分211与显示组件100的显示面或第二部分212围成开口朝向显示组件100一侧的空隙”也可理解为“第一部分211与显示组件100的显示面或第二部分212围成开口朝内的空隙”,其中,“开口朝内”,是指:在框条的内侧表面开口,此处,“内侧”也是一相对的概念,例如,显示组件100的显示区域位于显示组件100的非显示区域的内侧。
同样的,后文出现的“上”、“下”也是相对的概念。例如,显示组件100的对盒基板位于显示组件100的阵列基板的上侧;显示组件100的阵列基板位于显示组件100的对盒基板的下侧。
第三,如图2和图4所示,光源32可以固定于第一框条21的第一部分211;如图3和图5所示,光源32可以固定于第一框条21的第二部分212,对此不作限定,只要光源32设置在所述间隙内,且光源32发出的光可经过光路调整元件31调整并射到显示组件100的显示区域即可。
第四,如图3和图5所示,光路调整元件31位于第一部分211与显示组件100的显示面围成的开口朝向显示组件100一侧的空隙内,即,第一部分211在显示组件100上的正投影,与显示组件100具有重叠部分,此处,为了避免第一框条21遮挡显示画面,例如,所述重叠部分位于显示组件100的非显示区域。
本公开实施例中,仅需在第一框条21的内侧表面开口,以形成第一部分211,进而使第一部分211与显示组件100的上表面或第二部分212围成开口朝向显示组件100一侧的空隙,并将光路调整元件31和光源32设置在所述空隙内,结构简单易形成,且便于稳固地设置光路调整元件31。
进一步的,如图6和图7所示,所述空隙中与显示面相对、且远离显示组件100的表面包含一倾斜面,所述倾斜面与显示组件100的显示面所在平面所构成的角度的取值范围为[60°,90°);光源32设置在所述倾斜面上。
此处,通常是光源32的背面设置在倾斜面上。
本公开实施例中,由于常用的光源32例如LED,发出的光具有指向性、及一定 照射范围,常见的照射范围为-30°~30°,因此,使所述倾斜面与显示组件100的上表面构成一夹角,所述夹角的取值范围为[60°,90°),并使光源32设置在所述倾斜面上,这样一来,可以使光源32发出的光向下倾斜0°~30°,以尽可能多地经过光路调整元件31照射到显示组件100的显示区域,有利于提高光线利用率,进而提高显示组件100的显示亮度。
进一步的,如图6和图7所示,光源32位于所述倾斜面的上端。
本公开实施例中,由于光源32发出的光中的一部分,会照射到所述空隙的下表面并被吸收,因此,相较于将光源32设置在所述倾斜面的下端和中间位置,将光源32设置在所述倾斜面的上端,可使光源32发出的光最大程度通过光路调整元件31照射到显示组件100的显示区域,有利于提高光线利用率,并最大程度提高显示组件100的显示亮度。
例如,如图8和图9所示,第一框条21由连接的第一部分211和第二部分212组成,其中第一部分211超出显示组件100的显示面;第一框条21内设置有用于传输光线的光通道23,光通道23的第一端位于第一部分211的朝向显示组件100一侧的侧壁,第二端位于第一框条21的第二部分212中;光源32位于光通道23的第二端,光路调整元件31位于光通道23的第一端。
需要说明的是,第一,第一框条21的第一部分211和第二部分212通常是一体结构。
第二,不对光通道23的具体结构进行限定,只要其可以使位于光通道23第二端的光源32发出的光在光通道23中来回反射,最终经位于第一端的光路调整元件31调整后,照射到显示组件100的显示区域即可。例如光通道23可以是用于传输光线的光纤,也可以由光学腔体以及覆盖在光学腔体的表面上的反射层构成。
此处,例如光通道23包括:光学腔体以及覆盖在光学腔体的表面的反射层,其中,光学腔体的开口位于第一部分211的朝向显示组件100一侧的侧壁,光学腔体从开口朝向第一框条21的第二部分212的底端延伸,其中,光路调整元件31位于光学腔体的开口位置,光源32位于第二部分212的底端。第二部分212的底端是指:第二部分212的最下端。
第三,考虑到光路调整元件31位于光通道23的第一端,且第一框条21对光路调整元件31起固定作用,因此,如图9所示,第一部分211包括用于围成光通道23 的第一端的部分,还包括用于固定光路调整元件31的部分。
本公开实施例中,由于从光源32发出的光可近似看作多个点光源,因此,光源32发出的光不能均匀的照射到光路调整元件31上,因此,在第一框条21内设置用于传输光线的光通道23,可以使光源32发出的光在光通道23中来回反射,最终以面光源的形式照射到位于第一端的光路调整元件31上,经光路调整元件31调整照射到显示组件100的显示区域,可以提升整体显示效果的均一性。
例如,如图10所示,第一部分211具有从固定光路调整元件31的位置起向第一方向伸出的延伸部24,延伸部24中与显示面相对、且靠近显示组件100的表面可反射光线;其中,第一方向为显示组件100的非显示区域指向显示区域的方向,即图10中从外到内的方向(图10仅以光路调整元件和光源均设置在由第一部分与第二部分围成的空隙内为例)。
需要说明的是,第一,第一部分211可包括反射材料,或者,延伸部24中与显示面相对、且靠近显示组件100的表面设置有反射层,以使得延伸部24中与显示面相对、且靠近显示组件100的表面可反射光线。
第二,第一方向即为图10中所指示的向内的方向。
本公开实施例中,由于光线经过光路调整元件31调整后,从光路调整元件31调整射出,而从光路调整元件31射出的光线中,包括相对于入射光方向向上的出射光,这部分光线中的一部分将不能照射到显示组件100的显示区域以被利用,因此,通过使延伸部24中与显示面相对、且靠近显示组件100的表面具有反射光线的作用,以反射从光路调整元件31中射出的、相对于入射光方向向上的出射光,进而提高光线利用率。
例如,如图2、3、8所示,所述边框20还包括至少一个第二框条22,第二框条22的上端部221超出显示组件100的显示面,第二框条22的上端部221中靠近显示组件100的侧壁与显示面的夹角为锐角,且第二框条22的上端部221中靠近显示组件100的侧壁可反射光线。
需要说明的是,第一,以边框20包括四个框条为例,若边框20中的一个框条为第一框条21,则第二框条22的个数可以是一个、两个、三个;若边框20中的两个框条为第一框条21,则第二框条22的个数可以是一个、两个;若边框20中的三个框条为第一框条21,则第二框条22的个数可以是一个。
第二,不对第二框条22的上端部221中靠近显示组件100的侧壁的形状进行限定,只要其与显示面的夹角为锐角即可。例如,如图2和图3所示,第二框条22的上端部221中靠近显示组件100的侧壁为一倾斜的平面;或者,如图8所示,第二框条22的上端部221中靠近显示组件100的侧壁为一凹陷的曲面。
第三,第二框条22的上端部221可包括反射材料,或者,第二框条22的上端部221中靠近显示组件100的侧壁上设置有反射层,以使得第二框条22的上端部221中靠近显示组件100的侧壁可反射光线。
本公开实施例中,未设置光路调整元件31和光源32的第二框条22的上端部221中靠近显示组件100的侧壁,可反射从显示组件100中的反射层反射出的光、以及环境光,以使反射后的部分光线再次射入显示组件100的显示区域被利用,从而可减小功耗,以2.27寸的全反射显示装置为例,可减小35%的功耗。
例如,如图11、12(a)、13(a)所示,光路调整元件31为透镜条,在透镜条的出光侧,透镜条与显示组件100的显示面所构成的角度为钝角;如图12(a)所示,透镜条为向第一方向耸起的拱形;或者,如图13(a)所示,透镜条包括第一子透镜条311和位于第一子透镜条311远离显示组件100侧的第二子透镜条312,第一子透镜条311为向第二方向耸起的拱形,第二子透镜条312为向第一方向耸起的拱形;其中,第一方向为所述显示组件100的非显示区域指向显示区域的方向;所述第二方向与所述第一方向相反(图11仅以透镜条设置在第一部分与第二部分围成的空隙中为例)。
需要说明的是,第一,在透镜条的出光侧,虽然透镜条与显示组件100的显示面所构成的角度为钝角,但透镜条并不一定与显示组件100的显示面接触。如图4、9所示,透镜条仅与第一框条21的第一部分211和第二部分212接触;如图5所示,透镜条的一端与第一部分211接触、另一端与显示组件100的显示面直接接触,当然,对于图5的结构,第一框条21的第一部分211还可以包括与显示组件100的显示面直接接触的延伸部分,透镜条设置于所述延伸部分与第一部分211之间,这样一来,透镜条也未与显示组件100的显示面直接接触。
至于“透镜条与显示组件100的显示面所构成的角度为钝角”,可以看作:与显示组件100的显示面平行的表面,与透镜条所构成的角度为钝角。
第二,在透镜条的出光侧,透镜条与显示组件100的显示面所构成的角度为钝角,是指:在透镜条的出光侧,透镜条中位于最上端的部分与位于最下端的部分的连线, 与显示组件100的显示面所构成的夹角为钝角。
第三,第一方向即为图12(a)和13(a)中所指示的向内的方向,第二方向即为图12(a)和13(a)中所指示的向外的方向。
本公开实施例中,由于显示组件100的显示区域中,距离第一框条21越近的部分,接收到的从透镜条射出的光的强度越大。
基于此,在所述延伸部24中与显示面相对、且靠近显示组件100的表面可反射光线的情况下,对于图12(a)所示的形状为向内侧耸起的拱形的透镜条,其模拟结果如图12(b)所示,可以使从拱形结构中位于下侧的部分射出的光,尽可能多地照射到显示组件100的显示区域中位于中间的部分;使从拱形结构中位于上侧的部分射出的光照射到延伸部24中与显示面相对、且靠近显示组件100的表面,经延伸部24中与显示面相对、且靠近显示组件100的表面反射后,尽可能多地照射到显示组件100的显示区域中距离第一框条21较远的部分,从而在提高光线利用率的基础上,提升显示组件100整体显示效果的均一性,如图12(b)所示,使得显示组件100的显示区域中,仅在近光源32的位置存在暗区。
在所述延伸部24中与显示面相对、且靠近显示组件100的表面可反射光线的情况下,对于图13(a)所示的包括第一子透镜条311和第二子透镜条312的透镜条,其模拟结果如图13(b)所示,可以使从第一子透镜条311射出的光,尽可能多地照射到显示组件100的显示区域中近光源32位置和位于中间的部分;使从第二子透镜条312射出的光照射到延伸部24中与显示面相对、且靠近显示组件100的表面,经延伸部24中与显示面相对、且靠近显示组件100的表面反射后,尽可能多地照射到显示组件100的显示区域中距离第一框条21较远的部分,从而在提高光线利用率的基础上,提升显示组件100整体显示效果的均一性,相对于图12(a)所示的拱形透镜条,如图13(b)所示,可使得暗区向靠近光源32的位置移动。
例如,在透镜条的出光侧,透镜条与显示组件100的显示面所构成的角度的取值范围为(90°,120°]。
此处,在透镜条的出光侧,透镜条与显示组件100的显示面所构成的角度的取值范围为(90°,120°],是指:在透镜条的出光侧,透镜条中位于最上端的部分与位于最下端的部分的连线,与显示组件100的显示面所构成的角度的取值范围为(90°,120°]。
本公开实施例中,在透镜条的出光侧,透镜条与显示组件100的显示面所构成的 角度的取值范围为(90°,120°],可进一步提升整体显示效果的均一性。
例如,如图14(a)所示,光路调整元件31为透镜条,在透镜条的出光侧,透镜条与显示组件100的显示面所构成的角度大于或等于90°;透镜条的出光面沿第三方向分为第一条形区51、第二条形区52和第三条形区53,透镜条的出光面在第一条形区51的部分具有多个条状的第一微结构511,透镜条的出光面在第二条形区52的部分为向第一方向凸起的曲面,透镜条的出光面在第三条形区53的部分具有多个条状的第二微结构531;其中,第一微结构511用于使部分入射的光线向第三方向偏转,第二微结构531用于使部分入射的光线向第四方向偏转。
需要说明的是,第一,在透镜条的出光侧,虽然透镜条与显示组件100的显示面所构成的角度大于或等于90°,但透镜条并不一定与显示组件100的显示面接触。如图4、9所示,透镜条仅与第一框条21的第一部分211和第二部分212接触;如图5所示,透镜条的一端与第一部分211接触、另一端与显示组件100的显示面直接接触,当然,对于图5的结构,第一框条21的第一部分211还可以包括与显示组件100的显示面直接接触的延伸部分,透镜条设置于所述延伸部分与第一部分211之间,这样一来,透镜条也未与显示组件100的上表面直接接触。
至于“透镜条与显示组件100的显示面所构成的角度大于或等于90°”,可以看作:与显示组件100的显示面平行的表面,与透镜条所构成的角度大于或等于90°。
第二,在透镜条的出光侧,透镜条与显示组件100的上表面所构成的角度大于或等于90°,是指:在透镜条的出光侧,透镜条中位于最上端的部分与位于最下端的部分的连线,与显示组件100的显示面所构成的夹角大于或等于90°。
第三,第一方向即为图14(a)中所指示的向内的方向,第三方向即为图14(a)中所指示的向上的方向,第四方向即为图14(a)中所指示的向内的方向。
第四,“第一微结构511用于使部分入射的光线向第三方向偏转”中的“向第三方向偏转”是指:入射到第一微结构511的光线的出射方向,相对于入射到第一微结构511的光线入射方向更偏向第三方向;“第二微结构531用于使部分入射的光线向第四方向偏转”中的“向第四方向偏转”是指:入射到第一微结构511的光线的出射方向,相对于入射到第一微结构511的光线入射方向更偏向第四方向。
本公开实施例中,由于显示组件100的显示区域中,距离第一框条21越近的部分,接收到的从透镜条射出的光的强度越大。
基于此,使部分从第一微结构511入射的光线向第三方向偏转,可以降低显示区域中距离光源32较近的部分所接收到的光的强度,另一部分光线仍从第一微结构511射入显示区域中近光源32的部分,在此基础上,在所述延伸部24中与显示面相对、且靠近显示组件100的表面可反射光线的情况下,向第三方向偏转的光线还可经延伸部24中与显示面相对、且靠近显示组件100的表面反射,从而照射到显示组件100的显示区域中位于中间的部分、及距离第一框条21较远的部分;第二条形区52可以起到使显示区域中间部分亮度平滑过渡的作用;使部分从第二微结构531入射的光线向第四方向偏转,可使该部分光线尽可能多地照射到显示组件100的显示区域中位于中间的部分、及距离第一框条21较远的部分,从而在提高光线利用率的基础上,提升显示组件100整体显示效果的均一性,如图14(b)所示,使得显示组件100的显示区域中,不存在暗区。
例如,在透镜条的出光侧,透镜条与显示组件100的显示面所构成的角度的取值范围为[90°,120°]。
此处,在透镜条的出光侧,透镜条与显示组件100的显示面所构成的角度的取值范围为[90°,120°],是指:在透镜条的出光侧,透镜条中位于最上端的部分与位于最下端的部分的连线,与显示组件100显示面所构成的角度的取值范围为[90°,120°]。
本公开实施例中,在透镜条的出光侧,使透镜条与显示组件100的显示面所构成的角度的取值范围为[90°,120°],可进一步提升整体显示效果的均一性。
例如,如图14(a)所示,第一微结构511包括与透镜条的厚度方向具有[0°,60°]夹角范围的平面,还包括与相邻的所述平面接触、且向第三方向凸起的曲面;第二微结构531包括与透镜条的厚度方向具有[0°,60°]夹角范围的平面,还包括与相邻的所述平面接触、且向第四方向凸起的曲面(图中仅画出所述平面与透镜条的厚度方向所成的夹角为0°的结构)。换句话说,第一微结构511包括多个平行设置脊(例如四分之一圆柱体),第三微结构531包括多个平行设置的脊(例如四分之一圆柱体)。
本公开实施例中,入射到第一微结构511的所述平面的光,从透镜条出射后,可照射到显示区域中距离光源32较近的部分,入射到第一微结构511的向第三方向凸起的曲面的光,从透镜条出射后,可以降低显示区域中距离光源32较近的部分所接收到的光的强度,在此基础上,在延伸部24中与显示面相对、且靠近显示组件100的表面可反射光线的情况下,从向第三方向凸起的曲面出射的光,还可以经延伸部 24中与显示面相对、且靠近显示组件100的表面反射,从而照射到显示组件100的显示区域中位于中间的部分、及距离第一框条21较远的部分。在延伸部24中与显示面相对、且靠近显示组件100的表面可反射光线的情况下,入射到第二微结构531的所述平面的光,可以经延伸部24中与显示面相对、且靠近显示组件100的表面反射,从而照射到显示组件100的显示区域中位于中间的部分、及距离第一框条21较远的部分,入射到第二微结构531的向第四方向凸起的曲面的光从透镜条出射后,可照射到显示组件100的显示区域中位于中间的部分、及距离第一框条21较远的部分。基于上述,可在提高光线利用率的基础上,提升显示组件100整体显示效果的均一性,其模拟结果可参考图14(b)。
例如,如图14所示,透镜条的入光面54由多个向第一方向或向第二方向凸起的半球面构成;或者,透镜条的入光面54由多个条状的、向第一方向或向第二方向凸起的曲面构成。
本公开实施例中,由于入射到透镜条的光线多为准直光,因此,通过使透镜条的入光面54为半球面或曲面,可以使透镜条的入光面54起到匀光的作用,进而使光线从各个方向入射到透镜条。
本公开实施例提供一种胶框组件,包括前述任一实施例所述的边框20和光路调整元件31。
其中,所述胶框组件还可以包括前述任一实施例所述的光源32,从而为所述胶框组件提供光线,从光源32发出的光可照射到光路调整元件31上,并经过光路调整元件31调整。
本公开实施例提供一种胶框组件,通过在胶框组件的第一框条21上设置光路调整元件31,其中,光路调整元件31对光线具有调整作用,当所述胶框组件应用于全反射显示装置时,可使胶框组件中的每个框条位于全反射显示装置的显示组件100的一侧,从而使光线经光路调整元件31调整后照射到显示组件100的显示区域,之后,显示组件100中的反射层对光进行反射,经反射层反射的光再从显示组件100中射出,并用作显示画面;由于所述胶框组件中的每个框条设置在显示组件100的一侧,并不会如相关技术中的前置导光板11一样,平铺一整层设置在显示组件100的显示面,因此,相较于相关技术,本公开有利于全反射显示装置的薄型化设计。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任 何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种胶框组件,用于与全反射显示组件配合形成全反射显示装置,所述全反射显示组件具有一用于呈现图像的显示面,其中所述胶框组件包括:
    第一框条,用于与所述显示组件的一侧边配合,以支撑所述显示组件;
    光源,设置在所述第一框条上,用于发出光;
    光路调整元件,设置在所述第一框条上;
    其中,所述第一框条包括相互连接的第一部分和第二部分,其中所述第一部分和/或第二部分容置所述光源和所述光路调整元件,使得当所述胶框组件与所述全反射显示组件装配后所述第一部分能够从所述显示组件的侧边突出超过所述显示面,并使得所述光源发出的光经过所述光路调整元件调整后照射到所述显示组件的显示区域。
  2. 根据权利要求1所述的胶框组件,所述第一部分与所述显示组件的显示面或所述第二部分围成开口朝向所述显示组件一侧的空隙,所述光路调整元件和所述光源设置在所述空隙内。
  3. 根据权利要求2所述的胶框组件,在所述空隙中,所述第一部分的与所述显示面相对、且远离所述显示组件的表面包含一倾斜面,所述倾斜面与所述显示组件的显示面所在平面所构成的角度的取值范围为[60°,90°);所述光源设置在所述倾斜面上。
  4. 根据权利要求1所述的胶框组件,所述第一部分和所述第二部分形成用于传输光线的光通道,所述光通道的第一端位于所述第一部分的朝向所述显示组件一侧的侧壁,第二端位于所述第二部分中;所述光源位于所述光通道的第二端,所述光路调整元件位于所述光通道的第一端。
  5. 根据权利要求4所述的胶框组件,所述光通道包括:光学腔体以及覆盖在所述光学腔体的表面的反射层,其中,所述光学腔体的开口位于所述第一部分的朝向所述显示组件一侧的侧壁,所述光学腔体从所述开口朝向所述第二部分的底端延伸。
  6. 根据权利要求1所述的胶框组件,所述第一部分具有从固定所述光路调整元件的位置起向第一方向伸出的延伸部,所述延伸部中与所述显示面相对的表面用于反射从所述光源发出的光线;
    其中,所述第一方向为所述显示组件的非显示区域指向显示区域的方向。
  7. 根据权利要求1所述的胶框组件,所述胶框组件还包括至少一个第二框条,在所述胶框组件与所述显示组件装配后所述第二框条的上端部将超出所述显示组件的显示面,所述第二框条的上端部中靠近所述显示组件的侧壁与所述显示面的夹角为锐角,且所述第二框条的上端部中靠近所述显示组件的侧壁用于反射所述光源发出的光线。
  8. 根据权利要求7所述的胶框组件,所述第二框条的上端部的靠近所述显示组件的侧壁为凹陷的曲面。
  9. 根据权利要求6所述的胶框组件,所述光路调整元件为透镜条,在所述透镜条的出光侧,所述透镜条与所述显示组件的显示面所构成的角度为钝角;
    所述透镜条为向第一方向耸起的拱形;或者,所述透镜条包括第一子透镜条和位于所述第一子透镜条远离所述显示组件侧的第二子透镜条,所述第一子透镜条为向第二方向耸起的拱形,所述第二子透镜条为向所述第一方向耸起的拱形;
    所述第二方向与所述第一方向相反。
  10. 根据权利要求9所述的胶框组件,在所述透镜条的出光侧,所述透镜条与所述显示组件的显示面所构成的角度的取值范围为(90°,120°]。
  11. 根据权利要求1或6所述的胶框组件,所述光路调整元件为透镜条,在所述透镜条的出光侧,所述透镜条与所述显示组件的显示面所构成的角度大于或等于90°;
    所述透镜条的出光面沿第三方向分为第一条形区、第二条形区和第三条形区,所述透镜条的出光面在第一条形区的部分具有多个条状的第一微结构,所述透镜条的出光面在第二条形区的部分为向第一方向凸起的曲面,所述透镜条的出光面在所述第三条形区的部分具有多个条状的第二微结构;其中,所述第一微结构用于使部分入射的光线向第三方向偏转,所述第二微结构用于使部分入射的光线向第四方向偏转;
    其中,所述第一方向为所述显示组件的非显示区域指向显示区域的方向;所述第三方向为所述显示组件的背面指向出光面的方向;所述第四方向与所述第三方向相反。
  12. 根据权利要求11所述的胶框组件,在所述透镜条的出光侧,所述透镜条与 所述显示组件的显示面所构成的角度的取值范围为[90°,120°]。
  13. 根据权利要求11所述的胶框组件,所述第一微结构包括与所述透镜条的厚度方向具有[0,60°]夹角范围的平面,还包括与相邻的所述平面接触、且向所述第三方向凸起的曲面;所述第二微结构包括与所述透镜条的厚度方向具有[0,60°]夹角范围的平面,还包括与相邻的所述平面接触、且向所述第四方向凸起的曲面。
  14. 根据权利要求11所述的胶框组件,所述透镜条的入光面由多个凸起的半球面构成;或者,透镜条的入光面由多个条状的、向第一方向或向第二方向凸起的曲面构成;
    其中,所述第二方向与所述第一方向相反。
  15. 根据权利要求1所述的胶框组件,所述第一框条的数量为一个;或者
    所述第一框条的数量为两个,两个第一框条位于所述显示组件相对两侧。
  16. 根据权利要求15所述的胶框组件,如果所述显示组件为矩形显示组件,则所述第一框条与矩形显示组件的短边匹配;或者
    两个第一框条与矩形显示组件的两个短边配合。
  17. 一种全反射显示装置,包括:
    全反射显示组件,具有一用于呈现图像的显示面;以及
    如权利要求1-16中任一项所述的胶框组件。
PCT/CN2018/116773 2018-02-13 2018-11-21 一种全反射显示装置、胶框组件 WO2019157847A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/474,736 US11391990B2 (en) 2018-02-13 2018-11-21 Total reflection display device and plastic frame component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150701.1 2018-02-13
CN201810150701.1A CN108319054B (zh) 2018-02-13 2018-02-13 一种全反射显示装置、边框组件

Publications (1)

Publication Number Publication Date
WO2019157847A1 true WO2019157847A1 (zh) 2019-08-22

Family

ID=62903801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116773 WO2019157847A1 (zh) 2018-02-13 2018-11-21 一种全反射显示装置、胶框组件

Country Status (3)

Country Link
US (1) US11391990B2 (zh)
CN (1) CN108319054B (zh)
WO (1) WO2019157847A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319054B (zh) * 2018-02-13 2020-08-25 京东方科技集团股份有限公司 一种全反射显示装置、边框组件
CN110441941A (zh) * 2019-08-21 2019-11-12 数字王国空间(北京)传媒科技有限公司 一种显示模组与头戴显示装置
CN112748607B (zh) * 2019-10-31 2022-10-21 南京瀚宇彩欣科技有限责任公司 显示装置
CN112505967B (zh) * 2020-12-09 2023-06-02 宁波视睿迪光电有限公司 光学透镜、补光装置和液晶显示模组
CN115356876B (zh) * 2022-08-29 2024-06-11 北京京东方显示技术有限公司 一种前置光源及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300850A (ja) * 2005-04-25 2006-11-02 Citizen Miyota Co Ltd 時計の照明構造
CN102436085A (zh) * 2011-12-06 2012-05-02 友达光电股份有限公司 一种液晶显示装置
CN102980105A (zh) * 2012-12-04 2013-03-20 京东方科技集团股份有限公司 一种背光模组及显示装置
CN104834048A (zh) * 2015-05-14 2015-08-12 北京京东方茶谷电子有限公司 一种显示面板、多面显示结构和显示装置
CN205581476U (zh) * 2016-05-10 2016-09-14 北京京东方显示技术有限公司 一种背光模组及显示装置
CN108319054A (zh) * 2018-02-13 2018-07-24 京东方科技集团股份有限公司 一种全反射显示装置、边框组件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992718B1 (en) * 1998-08-31 2006-01-31 Matsushita Electric Industrial Co., Ltd. Illuminating apparatus, display panel, view finder, video display apparatus, and video camera mounting the elements
KR100597805B1 (ko) * 1999-12-22 2006-07-06 삼성전자주식회사 직하방식의 액정표시장치
CN2593229Y (zh) * 2002-12-17 2003-12-17 统宝光电股份有限公司 液晶显示器的光源模块
KR20160079425A (ko) * 2014-12-26 2016-07-06 삼성전자주식회사 디스플레이 장치
CN104819409A (zh) * 2015-03-30 2015-08-05 南京菱亚汽车技术研究院 一种液晶显示背光模组结构
CN204807877U (zh) * 2015-06-26 2015-11-25 昆山龙腾光电有限公司 反射式液晶显示装置
TWM526084U (zh) * 2016-04-25 2016-07-21 Young Lighting Technology Inc 顯示裝置
US10459146B2 (en) * 2016-06-13 2019-10-29 Innolux Corporation Display device with backlight module and method for manufacturing the same
KR20180034007A (ko) * 2016-09-27 2018-04-04 삼성전자주식회사 디스플레이 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300850A (ja) * 2005-04-25 2006-11-02 Citizen Miyota Co Ltd 時計の照明構造
CN102436085A (zh) * 2011-12-06 2012-05-02 友达光电股份有限公司 一种液晶显示装置
CN102980105A (zh) * 2012-12-04 2013-03-20 京东方科技集团股份有限公司 一种背光模组及显示装置
CN104834048A (zh) * 2015-05-14 2015-08-12 北京京东方茶谷电子有限公司 一种显示面板、多面显示结构和显示装置
CN205581476U (zh) * 2016-05-10 2016-09-14 北京京东方显示技术有限公司 一种背光模组及显示装置
CN108319054A (zh) * 2018-02-13 2018-07-24 京东方科技集团股份有限公司 一种全反射显示装置、边框组件

Also Published As

Publication number Publication date
CN108319054A (zh) 2018-07-24
CN108319054B (zh) 2020-08-25
US20210349353A1 (en) 2021-11-11
US11391990B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2019157847A1 (zh) 一种全反射显示装置、胶框组件
KR101167301B1 (ko) 액정표시장치용 백라이트 유닛
KR101693655B1 (ko) 백라이트 유닛 및 이를 포함하는 액정표시장치
KR100814559B1 (ko) 백라이트 장치 및 액정 표시 장치
US20070189032A1 (en) Backlight system
JP2002231037A (ja) 点状光源を具える照明装置
US9222664B2 (en) Backlight unit and display device
JPH10326517A (ja) 背面照光装置
US20040184258A1 (en) Surface lighting device with closed oblique reflector
US20080137366A1 (en) Light guide plate and backlight module including the same
TWI343489B (en) Optical plate and backlight module using the same
KR20130063773A (ko) 백라이트 유닛, 이를 이용한 디스플레이 장치 및 이를 포함하는 조명 시스템
KR20140123432A (ko) 백라이트 유닛 및 이를 포함하는 액정표시장치
KR101651888B1 (ko) 백라이트 장치
JP2010108601A (ja) 面状光源及び液晶表示装置
WO2013088594A1 (ja) バックライト装置および液晶表示装置
US7594744B2 (en) Backlight module
KR101096765B1 (ko) 백라이트 어셈블리 및 이를 포함하는 액정 표시 장치
JP2002222605A (ja) 面発光装置
KR100815902B1 (ko) 백라이트 유닛
KR20120043600A (ko) 백 라이트 유닛
KR20210148528A (ko) 네로우 베젤을 갖는 백라이트 장치
KR102415255B1 (ko) 백라이트 장치
KR101347163B1 (ko) 액정표시장치
KR20030081727A (ko) 필드 시퀀셜 컬러 액정표시장치용 백라이트 유닛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.12.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18906218

Country of ref document: EP

Kind code of ref document: A1