WO2019157840A1 - 光曲面快速定位装置 - Google Patents

光曲面快速定位装置 Download PDF

Info

Publication number
WO2019157840A1
WO2019157840A1 PCT/CN2018/113910 CN2018113910W WO2019157840A1 WO 2019157840 A1 WO2019157840 A1 WO 2019157840A1 CN 2018113910 W CN2018113910 W CN 2018113910W WO 2019157840 A1 WO2019157840 A1 WO 2019157840A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light blocking
receiver
angle
positioning device
Prior art date
Application number
PCT/CN2018/113910
Other languages
English (en)
French (fr)
Inventor
谭光
王兆广
刘勇
Original Assignee
灵踪科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 灵踪科技(深圳)有限公司 filed Critical 灵踪科技(深圳)有限公司
Priority to US16/463,512 priority Critical patent/US11378640B2/en
Publication of WO2019157840A1 publication Critical patent/WO2019157840A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • G01S1/703Details
    • G01S1/7032Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2201/00Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters
    • G01S2201/01Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters adapted for specific applications or environments
    • G01S2201/02Indoor positioning, e.g. in covered car-parks, mining facilities, warehouses

Definitions

  • the invention relates to the field of spatial positioning technology, in particular to a light curved surface rapid positioning device.
  • Positioning and tracking is an important supporting technology in emerging applications such as robots and large-space virtual reality.
  • robots need to accurately position and ensure that they do not go wrong when assembling and transporting materials and products.
  • Entertainment robot groupings may need to work together to perform certain actions with the help of precise positions.
  • the main optical positioning technology has low precision, small coverage area and high cost, and can only reach the position of meters or decimeters. Due to the blockage of buildings, satellite signals cannot provide location services indoors, and the accuracy is not up to standard and the positioning is slow.
  • a light curved surface rapid positioning device comprising a transmitter and a receiver, the transmitter capable of transmitting an optical signal to the receiver, the receiver being capable of receiving an optical signal emitted by the transmitter, the light curved surface being quickly positioned
  • the device determines a position of the receiver according to the optical signal received by the receiver, and the transmitter includes:
  • a light emitting device capable of emitting light signals of at least two flicker frequencies
  • each of the light blocking zones comprises a fixed angle light blocking section and a variable angle light blocking section, wherein the fixed angle light blocking section and the location
  • the portion between the start of the light blocking area is a light transmitting area
  • a portion between the fixed angle light blocking section and the variable angle light blocking section is a light transmitting area
  • the fixed angle light blocking section is The arc angle corresponding to the arc length on the latitude line of the cover body is the same, and the central angle corresponding to the arc length of the variable angle light blocking section on the latitude line of the cover body increases with the latitude of the cover body.
  • the number of the flicker frequency species is the same as the number of the light blocking regions.
  • the plurality of sets of the light blocking regions are equally spaced on the cover.
  • the orthographic projection of the fixed angle light blocking segment on the bottom surface circle of the cover body is a fan shape, and the angles of the central angles corresponding to the fixed angle light blocking segments of the different light blocking regions are different.
  • the orthographic projection of the variable angle light blocking section on the circle bottom surface is surrounded by two curved sides and a straight edge, wherein one of the curved edges is the cover
  • the center of the circle of the bottom surface of the body is the center of the circle, and the other of the curved sides and the line of the line intersect at the center of the circle of the bottom surface.
  • the other curved edge is convex or concave toward the first curved edge.
  • the transmitter is provided with at least a controller, a driving device, a base and a rotating base;
  • the controller is connected to the driving device to control the operation of the driving device
  • the driving device is connected to the rotating base, and drives the rotating base to rotate at a constant speed at a predetermined angular velocity;
  • the rotating base is fixedly connected to the cover body, and when the rotating base rotates, the cover body can be synchronously rotated.
  • the transmitter is further provided with a rotation detecting unit that detects a rotation angle of the rotation of the seat, and the controller controls the light emission according to the detection result of the rotation detecting unit
  • the device has different blinking frequencies during the time interval in which the adjacent light blocking regions are swept.
  • the rotation detecting unit includes a photocoupler and a light blocking plate, and the optical coupler is provided with a notch;
  • the light blocking plate is located at a rotating seat position corresponding to the optical coupler, and the light blocking plate can pass through the notch of the optical coupler when the rotating base rotates.
  • the receiver is provided with at least a receiving single chip, a light sensor and a wireless module;
  • the light sensor receives an optical signal emitted by the transmitter
  • the receiving single chip is connected to the optical sensor, and processes the information that the optical sensor receives the optical signal;
  • the wireless module is connected to the receiving single chip microcomputer, receives the information processing result of the receiving single chip microcomputer, and sends the result to the server.
  • the light curved surface rapid positioning device and method provided by the invention can accurately position the receiver, and the receiver can be placed on the surface of the object to receive the light signal of the transmitter, which can perform accurate indoor positioning, and enables the robot to be accurate in an intelligent production environment. Auxiliary assembly, transportation of materials and products.
  • the light curved surface rapid positioning device of the invention can perform multiple positioning after one rotation, which can make the positioning faster.
  • FIG. 1 is a schematic view of a light curved surface rapid positioning device according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a transmitter of the light curved surface rapid positioning device of FIG. 1;
  • Figure 3 is a bottom plan view of the cover of the transmitter of Figure 2;
  • Figure 4 is a schematic view of the receiver of Figure 1;
  • Figure 5 is a schematic diagram 1 of a light surface positioning algorithm
  • Figure 6 is a schematic diagram 2 of the optical surface positioning algorithm
  • Figure 7 is a polar coordinate area diagram of the emitter projection of Figure 1 formed on the ground;
  • Figure 8 is a schematic diagram 3 of the optical surface positioning algorithm.
  • a light curved surface rapid positioning device will be described more fully hereinafter with reference to the accompanying drawings.
  • a preferred embodiment of a light curved surface rapid positioning device is given in the drawings.
  • the light curved surface rapid positioning device can be implemented in many different forms and is not limited to the embodiments described herein. Rather, the purpose of providing these embodiments is to make the disclosure of the light curved surface rapid positioning device more thorough and comprehensive.
  • FIG. 1 is a schematic diagram of a light curved surface rapid positioning device in an embodiment, the light curved surface rapid positioning device comprising a transmitter 10 and a receiver 30, the transmitter 10 for transmitting a signal, and the receiver 30 for The signal transmitted by the transmitter 10 is received and the position of the self can be determined based on the received signal.
  • the transmitter 10 includes a base 111, a controller 112, a driving device 113, a rotation detecting unit 114, a cover 115, a light emitting device 116, and a rotating base 117.
  • the illumination device 116 is configured to emit an optical signal of a predetermined blinking frequency, and the illumination device 116 is capable of emitting optical signals of at least two blinking frequencies.
  • the illumination device 116 can be an LED light, a CFL light, or other light that can be received by the light sensor 303.
  • the illumination device 116 is an LED light.
  • the LED lamp is located at a center of the bottom surface of the cover 115.
  • the light-emitting device 116 is disposed on the base 111.
  • the base 111 has a cylindrical mounting portion, and the mounting portion faces a side surface of the cover 115 and The bottom surface of the cover 115 is circularly coplanar, and the light-emitting device 116 is disposed on a side surface of the mounting portion facing the cover 115 and coincides with a circular center position of the bottom surface.
  • the driving device 113 is connected to the controller 112 and is located inside the base 111.
  • the driving device 113 is connected to the rotating base 117, and is capable of driving the rotating base 117 to rotate at a constant angular speed at a predetermined angular velocity.
  • the controller 112 controls the drive unit 113 to cause the drive unit 113 to operate in a predetermined manner.
  • the driving device 113 is not limited in fixed position, and only needs to be able to rotate the rotating base 117 for rotation.
  • the driving device 113 surrounds the cylindrical mounting portion to drive the rotating base to rotate.
  • the rotation detecting unit 114 is for detecting a rotational position of the rotating base 117.
  • the rotation detecting unit 114 generates a corresponding detection signal when the rotating base 117 rotates for a complete rotation period, and transmits the detection signal to the controller 112, and the controller 112 according to the The detection signal controls the illumination device 116 to switch between the first flicker frequency and the second flicker frequency optical signal.
  • the controller 112 controls the optical signals of adjacent rotation periods to blink at different frequencies.
  • the rotation detecting unit 114 includes a photocoupler 1141 and a light blocking piece 1142.
  • the optical coupler 1141 is disposed on the base 111, and the light blocking piece 1142 is disposed on the rotating base 117 and can rotate as the rotating base 117 rotates.
  • the optical coupler 1141 is provided with a notch 1143 facing the rotating base 117.
  • the position of the light blocking piece 1142 corresponds to the notch 1143 on the optical coupler 1141, that is, the light blocking piece 1142 can pass through the notch 1143 but not with the rotating seat 117.
  • the optical coupler 1141 is in contact.
  • the optical signal of the optical coupler 1141 passes through the notch 1143.
  • the controller 112 controls the light-emitting device 116 to perform frequency switching.
  • the rotation detecting unit 114 is disposed on the rotating seat 117 corresponding to the adjacent side of each light blocking area 20.
  • the rotating base 117 is fixedly connected to the cover 115, and the rotating base 117 can rotate the cover 115 synchronously when the rotating base 117 rotates.
  • the swivel mount 117 can be selected as a disk, ring or other annular structure.
  • the rotating base 117 has an annular shape.
  • the cover 115 is substantially hollow and hemispherical, and a hemispherical space is formed inside.
  • the cover 115 may be a hollow semi-ellipsoidal cover, a hollow semi-spherical spherical cover, a hollow partial ellipsoid or a spherical ball combined with a bottom planar disk cover, or other hollow convex structures.
  • the cover 115 is a semi-spherical spherical cover.
  • a light blocking area 20 is formed on the spherical surface of the cover 115, and the light blocking area 20 includes a fixed angle light blocking section and a variable angle light blocking section.
  • the fixed angle light blocking section and the variable angle light blocking section are opaque portions on the spherical surface of the cover 115, and the other upper portion of the spherical surface of the cover 115 is a light transmitting portion, that is, the light emitting device 116 An optical signal can pass through the light transmissive portion.
  • the spherical surface is divided into four equal parts, including a first light blocking area 21, a second light blocking area 22, a third light blocking area 23, and a fourth light blocking area 24, and the light emitting device 116 is in each place.
  • the optical signals that the light blocking region 20 emits at the blinking frequency are different.
  • the first light blocking area 21 includes a first fixed angle light blocking section 210 and a first variable angle light blocking section 220;
  • the second light blocking area 22 includes a second fixed angle light blocking section and a second variable angle light blocking section;
  • the third light blocking area 23 includes a third fixed angle light blocking section and a third variable angle light blocking section;
  • the fourth light blocking area 24 includes a fourth fixed angle light blocking section and a fourth variable angle light blocking section.
  • the light blocking area 20 of the present invention is not limited to four, and may be other numbers, for example, two, three, five, six, seven, eight, and the like.
  • the number of types of flicker frequencies of the light-emitting device 116 corresponds to the number of light-blocking regions 20 in the cover 115.
  • the blinking frequency of the light-emitting device 116 corresponding to the first light-blocking region 21 is 10K
  • the blinking frequency of the light-emitting device 116 corresponding to the second light-blocking region 22 is 15K.
  • the blinking frequency of the light-emitting device 116 corresponding to the third light-blocking region 23 is 20K
  • the blinking frequency of the light-emitting device 116 corresponding to the fourth light-blocking region 24 is 25KHz.
  • the receiver 30 determines the horizontal angle through which the cover 115 is rotated by the different blinking frequencies of the illumination device 116.
  • the orthographic projection of the variable angle light blocking section on the bottom surface circle of the cover body 115 is surrounded by two curved sides and a straight side, wherein the first curved side 222 is one of the curved sides to
  • the center of the circle of the bottom surface of the cover 115 is the center of the circle, and another curved edge and a straight edge intersect at the center of the circle of the bottom surface and respectively intersect the two ends of the first curved edge 222.
  • the other curved edge projects toward the first curved edge 222.
  • the cover 115 includes a light blocking area 20, and different angles of a central angle of the fixed angle light blocking sections of the light blocking area 20 are different.
  • the specific shape of the first fixed-angle light-blocking section 210 of the first light-blocking zone 21 is described below as an example.
  • the orthographic projection of the first fixed-angle light-blocking section 210 on the bottom circle of the cover 115 is a fan shape, the center of the arcuate edge of the sector coincides with the center of the bottom circle, and the corresponding angle of the central angle is 4 degrees. It can be understood that the angle corresponding to the arc of the sector may be other degrees, for example, 8 degrees. , 12 degrees, 16 degrees, etc.
  • the first fixed angle light blocking section 210 has the same central angle corresponding to the arc length on any latitude line of the cover 115, so it is called a fixed angle light blocking section.
  • the angles of the central angles of the respective fixed angle light blocking sections are different, and the remaining shapes are the same, and therefore will not be described again.
  • a variable angle light blocking segment is disposed between each adjacent fixed angle light blocking segment, and the fixed angular light blocking segment is in one-to-one correspondence with the variable angular light blocking segment.
  • the duration of the shadow of each of the fixed-angle light blocking segments sweeping through the receiver 30 is also fixed, so that the shadow of each of the fixed-angle light blocking segments can be used once.
  • the time swept by the receiver 30 determines which fixed angle stop section has been swept.
  • the angle of the adjacent light blocking area between the orthographic projection areas of the bottom circle is 10 degrees, and it can be understood that the adjacent light blocking area is in the orthographic projection area of the bottom circle.
  • the interval angle may be other values, such as 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, and the like.
  • the orthographic projection of the variable angle light blocking section on the bottom surface circle of the cover 115 is composed of two curved sides and one straight side.
  • the specific shape of the first fixed-angle light blocking section 210 is illustrated by taking the first fixed-angle light blocking section 210 as an example.
  • the first variable-angle light blocking section 220 includes a first curved edge 222 and a second curved shape.
  • the edge 221 and the first straight edge 223, the first curved edge 222 and the center of the bottom circle are the center of the circle, and the second curved edge 221 and the first straight edge 223 intersect the bottom surface
  • the center of the circle intersects the two ends of the first curved edge 222, respectively.
  • the second curved side 221 is a partial arc
  • the first straight side 223 is a straight line.
  • the second curved edge 221 is a circular arc of a circle, and the circumference of the circle passes through the center of the bottom circle. If the diameter of the circle is less than or equal to the radius of the bottom circle, the point on the circumference of the circle that is farthest from the center of the bottom circle is an inscribed point, and the circle between the inscribed point and the center of the bottom circle The arc is the second curved edge 221.
  • variable angle light blocking section has different arc angles corresponding to arc lengths on any latitude line of the cover 115, so it is called a variable angle light blocking section, and more specifically, the variable angle light blocking section
  • the central angle of the arc length of the segment on the latitude line of the cover 115 decreases as the latitude of the cover 115 increases.
  • Each of the variable angle light blocking segments has the same shape and will not be described again.
  • the orthographic projection of the first light blocking area 21 in the bottom circle is in the [0°, 90°] interval
  • the second light blocking area 22 is orthographically projected on the bottom surface circle.
  • the orthographic projection of the third light blocking region 23 at the bottom surface circle is located in the [180°, 270°] interval
  • the fourth light blocking region is positive at the bottom surface circle
  • the projection is located in the interval [270°, 360°];
  • the fixed angle light blocking section corresponding to the first light blocking area 21 is 16° at a central angle corresponding to the projection of the bottom surface circle, and the second light blocking area 22 a corresponding central angle of the fixed angle light blocking segment corresponding to the projection of the bottom surface circle is 4°, and the corresponding fixed angle light blocking segment of the third light blocking region 23 is at a center corresponding to the projection of the bottom surface circle
  • the angle of 12°, the fixed angle light blocking section corresponding to the fourth light blocking area 24 is 8° at a central angle corresponding to the projection of
  • variable angle light blocking section is not limited to the illustrated embodiment.
  • curvature of the variable angle light blocking section on the latitude line of the cover 115 increases with the increase of the latitude of the cover 115, and the second curved edge 221 faces away from the first arc.
  • the shaped edge 222 is raised.
  • the second curved edge 221 and the first straight edge 223 may be replaced with any other suitable shape of the edge, as long as the variable angular light blocking segment meets the latitude line of the cover 115.
  • the central angle corresponding to the upper arc length may decrease or increase as the latitude of the cover 115 increases.
  • the latitude of the cover 115 described in the above embodiment is the reference position of the surface of the cover 115, and the surface latitude of the cover 115 is from the apex of the cover 115 (the vertical between the surface of the cover 115 and the bottom circle) The distance from the largest point gradually decreases toward the bottom circle.
  • FIG. 1 A schematic diagram of the receiver 30 in one embodiment is shown in FIG.
  • the receiver 30 includes a receiving microcontroller 301, a wireless module 302, and a light sensor 303.
  • the optical sensor 303 is capable of receiving the optical signal emitted by the illumination device 116 of the transmitter 10, and after being analog-to-digital converted, is transmitted to the receiving microcontroller 301.
  • the receiving microcontroller 301 calculates the vertical angle, the horizontal angle and the final position of the light sensor 303 with respect to the light emitting device 116 according to the optical signal data and the preset information, and transmits the calculation result to the wireless module 302; the wireless module 302 can The result of the calculation is transferred to the remote monitor or server.
  • the wireless module 302 can be a Bluetooth, GPRS, EDGE, WiFi, 2G, 3G, 4G, 5G communication device or other wireless transmission device.
  • the preset information of the receiver 30 is the circular radius 411 of the bottom surface of the cover 115, the circular diameter 412 corresponding to the shorter curved edge of the variable angle blocking section, the rotating seat rotation speed, and the fixed angle blocking light.
  • the sampling frequency Rate and the rotating seat rotation speed Rev are obtained by collecting the optical signal from the light sensor, and the reference width is the reference width of the fixed angle light blocking section 210. Shadow width.
  • the point Q in FIG. 6 is the intersection of the connection between the light-emitting device 116 and the light sensor 303 in the receiver 30 and the cover 115, so that:
  • Rshade is the radius 411 of the bottom surface of the cover 115;
  • Rcut is the circle diameter 412 where the second curved edge of the variable angle light blocking section is located.
  • the Rcut cos(Pi/16)*Rshade;
  • Rsense is the latitude line of the cover 115 where the Q point is located to form a radius 413 of the circle;
  • ShadowLen is the shadow width 414 of the variable angle light blocking segment, that is, the number of samples sampled by the receiver 30 during the time interval in which the shadow sweeps through the receiver 30;
  • r is the horizontal distance 421 between the light emitting device 116 and the receiver 30;
  • H is the vertical height difference 422 between the transmitter and receiver 30.
  • variable angle blocker shadow width ShadowLen and the rotation perimeter PeriodLen are obtained, and the above formula is substituted to obtain the vertical angle ⁇ .
  • FIG. 7 is a polar coordinate area diagram of the emitter of FIG. 1 projected on the ground.
  • the horizontal angle ⁇ is an angle formed by the polar coordinate center to the rotational starting point straight line 423 and the polar coordinate center to the receiver 30 straight line 420.
  • the manner of determining the horizontal angle of the present embodiment will be described in detail below with reference to the accompanying drawings.
  • the receiver 30 detects the flicker frequency, collects the optical signal emitted by the transmitter, and rotates the optical signal emitted by the transmitter by 3/2 light blocking zones into one frame.
  • the receiver collects the optical signal to a low level state.
  • the receiver collects the optical signal to a high state.
  • the receiver 30 determines a level interval of the corresponding optical signal by collecting the optical signal.
  • the time interval in which the low level state of the receiver 30 continues is indicated by "-";
  • the time interval in which the high level state of the receiver 30 continues is represented by "+";
  • gap indicates a time interval in which the high level state generated by the interval angle continues
  • a sequence of undetermined level state duration intervals is indicated by "".
  • the sequence of states of the receiver 30 may include the following in a frame:
  • the first state sequence 801 is (-, gap, -gap_var, +, ...
  • the second state sequence 802 is (+,?,gap,-gap_var,+,9)
  • the third state sequence 803 is (-, +, ?, gap, -gap_var, +, 7)
  • the fourth state sequence 804 is (+, -gap_var, +, ?, gap, -gap_var, +, 7)
  • the time interval gap of the high level state generated by the interval angle and the low time state generated by the fixed angle light blocking section last time interval -gap_var Forming a combination can determine a light blocking zone.
  • the sequence of states of a frame of signals By detecting the sequence of states of a frame of signals, the light blocking zone experienced by the current frame can be determined.
  • the statistic variables in the optical signal collected from the receiver 30 include:
  • Offset angle of the cover body the starting angle of the light block area corresponding to the time interval gap that the low level state generated by the fixed angle block light segment in the positioned (gap, -gap_var) combination segment continues.
  • Intra-frame offset length the sum of the number of data points of all the sections before the (gap, -gap_var) combination segment of the current frame
  • variable angle blocking section that is, the shadow width of the variable angle blocking section.
  • the horizontal angle ⁇ can be calculated from three variables:
  • the initial cover angle is the angle of the light block corresponding to the initial flicker frequency in one frame, and determining ⁇ 1 by the flicker frequency, when When the flicker frequency corresponds to the first light blocking area, the ⁇ 1 is 0°.
  • the horizontal angle ⁇ ⁇ 2 - ⁇ 1 - ⁇ 3 .
  • the offset angle of the cover body is an angle of a light blocking area of a fixed angle light blocking section corresponding to -gap_var in one frame, and if the angle corresponding to -gap_var is 4°, due to each light blocking area
  • the horizontal angle ⁇ and the vertical angle ⁇ are calculated by the above method, thereby determining the two-dimensional coordinates of the receiver 30.
  • two transmitters 10 are used, which are different according to the blinking frequency of the two transmitters 10 by frequency division multiplexing. Receiving the transmitter 10 to emit an optical signal determines the vertical height at which the receiver 30 is located, and calculating the three-dimensional position of the receiver 30.
  • the light curved surface rapid positioning device and method when in use, emits an optical signal to the receiver 30 through the transmitter 10, and the receiver 30 performs data processing and calculation according to the received optical signal to obtain the position of the receiver 30 through the wireless module 302.
  • the receiver 30 is sent to the server or remote monitoring terminal.
  • the light curved surface rapid positioning device and method provided by the invention can accurately position the receiver, and the receiver can be placed on the surface of the object to receive the light signal of the transmitter, which can perform accurate indoor positioning, and enables the robot to be accurate in an intelligent production environment. Auxiliary assembly, transportation of materials and products.
  • the light curved surface rapid positioning device of the invention can perform multiple positioning after one rotation, which can make the positioning faster.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Optical Transform (AREA)

Abstract

一种光曲面快速定位装置,包括发射器(10)和接收器(30),发射器(10)能够发射光信号至接收器(30),接收器(30)能够接收发射器(10)发射的光信号,光曲面快速定位装置根据接收器(30)接收到的光信号判断接收器(30)的位置,发射器(10)包括:发光装置(116)能够发射至少两种闪烁频率的光信号;中空半球型罩体(115)上设有固定角挡光段和可变角挡光段,固定角挡光段和可变角挡光段之间的部分为透光区。因此提供的光曲面快速定位装置和方法,可精准定位接收器(30)位置,接收器(30)可放置在物体表面接收发射器(10)的光信号,可进行室内精准定位,在智能生产环境中,使机器人能够精准辅助组装、运送物料和产品。光曲面快速定位装置旋转一周可进行多次定位,可使定位更加快捷。

Description

光曲面快速定位装置 技术领域
本发明涉及空间定位技术领域,特别是涉及光曲面快速定位装置。
背景技术
在机器人、大空间虚拟现实等新兴应用中,定位跟踪是一项重要的支撑技术。在智能生产环境中,机器人辅助组装、运送物料和产品时,需要精准的位置指示以保证不会出错;娱乐机器人编组可能需要在精准位置的帮助下协同完成某些动作。目前主要的光定位技术精度低、覆盖面积小和成本高,只能达到米或分米级的定位。卫星信号由于受建筑物遮挡,无法在室内提供位置服务,而且精度达不到要求、定位缓慢。
发明内容
基于此,有必要针对光定位技术的精度低、覆盖面积小、定位缓慢和成本高问题,提供一种光曲面快速定位装置。
一种光曲面快速定位装置,包括发射器和接收器,所述发射器能够发射光信号至所述接收器,所述接收器能够接收所述发射器发射的光信号,所述光曲面快速定位装置根据所述接收器接收到的光信号判断接收器的位置,所述发射器包括:
发光装置,所述发光装置能够发射至少两种闪烁频率的光信号;
中空半球形罩体,所述罩体上设有多组挡光区,每一组所述挡光区包括 固定角挡光段和可变角挡光段,所述固定角挡光段和所在的挡光区起始之间的部分为透光区,所述固定角挡光段和所述可变角挡光段之间的部分为透光区,所述固定角挡光段在所述罩体任意纬度线上的弧长所对应圆心角均相同,所述可变角挡光段在所述罩体纬度线上的弧长所对应的圆心角随所述罩体纬度的升高而单调递减或者递增。
在其中一个实施例中,所述闪烁频率种类数与所述挡光区个数相同。
在其中一个实施例中,多组所述挡光区于罩体上等间距设置。
在其中一个实施例中,所述固定角挡光段在所述罩体底面圆上的正投影为扇形,且不同所述挡光区的所述固定角挡光段对应的圆心角角度不同。
在其中一个实施例中,所述可变角挡光段在所述罩体底面圆上的正投影由两条弧形边和一条直线边围成,其中一条所述弧形边以所述罩体的底面圆的圆心为圆心,另外一条所述弧形边和所述直线边相交于所述底面圆的圆心。
在其中一个实施例中,所述另外一条弧形边朝向所述第一弧形边凸起或凹进。
在其中一个实施例中,所述发射器至少设置有控制器、驱动装置、基座和旋转座;
所述控制器与所述驱动装置相连接,控制所述驱动装置的运行;
所述驱动装置与所述旋转座相连接,带动所述旋转座以预定的角速度进行匀速旋转;
所述旋转座与所述罩体固定连接,所述旋转座转动时能够带动所述罩体同步转动。
在其中一个实施例中,所述发射器还设置有转动检测单元,所述转动检测单元检测旋转所述座旋转的旋转角度,所述控制器根据所述转动检测单元 的检测结果控制所述发光装置在相邻的挡光区扫过的时间区间内闪烁频率不同。
在其中一个实施例中,所述转动检测单元包括光耦合器和挡光片,所述光耦合器上设置有凹口;
所述挡光片位于旋转座位置与光耦合器相对应,当旋转座旋转时所述挡光片可穿过所述光耦合器的凹口。
在其中一个实施例中,所述接收器至少设置有接收单片机、光传感器和无线模块;
所述光传感器接收发射器发射的光信号;
所述接收单片机与光传感器相连接,处理所述光传感器接收光信号的信息;
所述无线模块与接收单片机相连接,接收所述接收单片机信息处理结果,发送至服务器。
因此本发明提供的光曲面快速定位装置和方法,可精准定位接收器位置,接收器可放置在物体表面接收发射器的光信号,可进行室内精准定位,在智能生产环境中,使机器人能够精准辅助组装、运送物料和产品。本发明的光曲面快速定位装置旋转一周可进行多次定位,可使定位更加快捷。
附图说明
图1为本发明实施方式的光曲面快速定位装置的示意图;
图2为图1的光曲面快速定位装置的发射器的示意图;
图3为图2的发射器的罩体的仰视图;
图4为图1的接收器的示意图;
图5为光曲面定位算法示意图一;
图6为光曲面定位算法示意图二;
图7为图1的发射器投影在地面形成的极坐标区域图;
图8为光曲面定位算法示意图三。
具体实施方式
为了便于理解本发明,下面将参照相关附图对光曲面快速定位装置进行更全面的描述。附图中给出了光曲面快速定位装置的首选实施例。但是,光曲面快速定位装置可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对光曲面快速定位装置的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在光曲面快速定位装置的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
如图1中示出一个实施例中光曲面快速定位装置的示意图,所述光曲面快速定位装置包括发射器10和接收器30,所述发射器10用于发射信号,所述接收器30用于接收所述发射器10发射的信号,并能够根据所接收到的信号确定自身位置。
请参阅图2,在本实施例中,发射器10包括基座111、控制器112、驱动装置113、转动检测单元114、罩体115、发光装置116以及旋转座117。
所述发光装置116用于发射预定闪烁频率的光信号,所述发光装置116能够发射至少两种闪烁频率的光信号。具体地,所述发光装置116可以为LED 灯、CFL灯或其他发射光信号可被光传感器303接收的灯。
在其中一个实施例中,所述发光装置116为LED灯。所述LED灯位于罩体115的底面圆圆心位置。
更进一步的,本实施例中发光装置116设于所述基座111上,具体地,所述基座111具有圆柱形的安装部,所述安装部朝向所述罩体115的一侧表面与罩体115底面圆共面,所述发光装置116设于所述安装部朝向所述罩体115的一侧表面且与所述底面圆圆心位置重合。
所述驱动装置113与控制器112相连接,且位于基座111内部。所述驱动装置113与所述旋转座117相连接,能够驱动旋转座117以预定的角速度进行匀速旋转。
所述控制器112控制驱动装置113,使驱动装置113按照预定的方式运行。
可选地,所述驱动装置113固定位置不限,只需可带动旋转底座117进行旋转即可。
在本实施例中,所述驱动装置113围绕于所述圆柱形的安装部,带动旋转底座进行旋转。
所述转动检测单元114用于检测所述旋转座117的转动位置。本实施方式中,所述转动检测单元114在所述旋转座117旋转一个完整转动周期时产生对应的检测信号,并将所述检测信号传输至所述控制器112,所述控制器112依据所述检测信号控制所述发光装置116在第一闪烁频率与第二闪烁频率的光信号之间切换,具体地,所述控制器112控制相邻的转动周期的光信号以不同频率闪烁。
具体地,所述转动检测单元114包括光耦合器1141和挡光片1142。所述光耦合器1141设置于所述基座111,所述挡光片1142设于所述旋转座117并 能够随所述旋转座117转动而转动。所述光耦合器器1141上设置有凹口1143,所述凹口1143朝向所述旋转座117。所述挡光片1142的位置与光耦合器1141上的凹口1143相对应,即所述挡光片1142随所述旋转座117转动的过程中,能够穿过所述凹口1143但不与所述光耦合器1141接触。所述光耦合器1141的光信号经过所述凹口1143,当挡光片1142位于光耦合器1141的凹口1143时,光信号被阻挡,光耦合器1141检测不到光信号。此时,所述控制器112控制发光装置116进行频率切换。
在本实施例中,所述转动检测单元114设置于各个挡光区20的相邻边对应的旋转座117上。
所述旋转座117与罩体115固定连接,所述旋转座117转动时能够带动所述罩体115同步转动。具体地,所述旋转座117可选择为圆盘、圆环或其他环形结构。在其中一个实施例中,所述旋转座117呈圆环状。
请一并参阅图3,所述罩体115大致呈中空半球形,其内部形成有半球形的空间。具体地,所述罩体115可以为中空半椭球形罩体、中空半圆球形罩体、中空部分椭球或圆球结合底部平面圆盘罩体,或其他中空凸形结构。图示的实施方式中,所述罩体115为半圆球形罩体。
所述罩体115的球面上形成有挡光区20,所述挡光区20包括固定角挡光段和可变角挡光段。所述固定角挡光段和可变角挡光段为所述罩体115球面上的不透光部分,所述罩体115球面的上其他部分为透光部分,即所述发光装置116的光信号能够穿过所述透光部分。
在本实施例中,所述球面分为四等分,包括第一挡光区21、第二挡光区22、第三挡光区23和第四挡光区24,发光装置116在各个所述挡光区20发射闪烁频率的光信号各不相同。
所述第一挡光区21包括第一固定角挡光段210和第一可变角挡光段220;
所述第二挡光区22包括第二固定角挡光段和第二可变角挡光段;
所述第三挡光区23包括第三固定角挡光段和第三可变角挡光段;
所述第四挡光区24包括第四固定角挡光段和第四可变角挡光段。
可以理解,本发明的挡光区20不限定于四个,也可以为其他个数,例如,2个、3个、5个、6个、7个、8个等。
所述发光装置116的闪烁频率的种类数与罩体115内的挡光区20个数相对应。在本实施例中,所述第一挡光区21对应的所述发光装置116的闪烁频率为10K,所述第二挡光区22对应的所述发光装置116的闪烁频率为15K,所述第三挡光区23对应的所述发光装置116的闪烁频率为20K,所述第四挡光区24对应的所述发光装置116的闪烁频率为25KHz。所述接收器30通过所述发光装置116的不同的闪烁频率确定所述罩体115转过的水平角。
所述可变角挡光段在所述罩体115底面圆上的正投影由两条弧形边和一条直线边围成,其中第一弧形边222为一条所述弧形边以所述罩体115的底面圆的圆心为圆心,另外一条弧形边和一条直线边相交于所述底面圆的圆心并且分别与所述第一弧形边222两端相交。所述另外一条弧形边朝所述第一弧形边222凸起。
所述罩体115包括挡光区20,且不同所述挡光区20的所述固定角挡光段的圆心角角度不同。以下以所述第一挡光区21的第一固定角挡光段210为例说明其具体形状,所述第一固定角挡光段210在所述罩体115的底面圆上的正投影为扇形,所述扇形的弧形边的圆心与底面圆的圆心重合,其对应的圆心角角度为4度,可以理解所述扇形的弧形边对应的圆心角也可以为其他度数,例如8度、12度、16度等。所述第一固定角挡光段210在所述罩体 115任意纬度线上的弧长所对应圆心角均相同,故称为固定角挡光段。所述各个所述固定角挡光段之间圆心角角度不同,其余形状一致,故不再赘述。
各个相邻的固定角挡光段之间设置有可变角挡光段,所述固定角挡光段与所述可变角挡光段一一对应。
当所述罩体115以固定的角速度转动时,各个所述固定角挡光段的阴影一次扫过所述接收器30的时长也固定,故此可以根据各个所述固定角挡光段的阴影一次扫过所述接收器30的时间判断扫过的是哪一个固定角挡光段。
本实施方式中,相邻所述挡光区在所述底面圆的正投影区域之间间隔角角度为10度,可以了解,相邻所述挡光区在所述底面圆的正投影区域之间间隔角度为也可以为其他数值,例如15度,20度,25度,30度、35度等。
所述可变角挡光段在所述罩体115的底面圆上的正投影由两条弧形边和一条直线边组成。以下以所述第一挡光区21的第一固定角挡光段210为例说明其具体形状,所述第一可变角挡光段220包括的第一弧形边222、第二弧形边221及第一直线边223,所述第一弧形边222以及所述底面圆的圆心为圆心,所述第二弧形边221以及所述第一直线边223相交于所述底面圆的圆心并且分别与所述第一弧形边222两端相交。本实施方式中,所述第二弧形边221为部分圆弧,所述第一直线边223为直线。所述第二弧形边221为一个圆的圆弧,所述圆的圆周经过底面圆圆心。若所述圆的直径小于或等于所述底面圆半径,则所述圆的圆周上离所述底面圆圆心最远的点为内切点,所述内切点与底面圆圆心之间的圆弧为所述第二弧形边221。若所述圆的直径大于所述底面圆半径,则所述圆的圆周与底面圆存在两个交点,其中离所述第一直线边223较近的一个交点为截点;所述截点与底面圆圆心之间的圆弧为所述第二弧形边221。本实施方式中,所述第二弧形边221朝向所述第一 弧形边222凸起。所述可变角挡光段在所述罩体115任意纬度线上的弧长所对应圆心角均不相同,故称为可变角挡光段,更具体地,所述可变角挡光段在所述罩体115纬度线上的弧长对应的圆心角随所述罩体115纬度的升高而递减。所述各个所述可变角挡光段形状一致,故不再赘述。
在图示的实施例中,所述第一挡光区21在所述底面圆的正投影位于[0°,90°]区间,所述第二挡光区22在所述底面圆的正投影位于[90°,180°]区间,所述第三挡光区23在所述底面圆的正投影位于[180°,270°]区间,所述第四挡光区在所述底面圆的正投影位于[270°,360°]区间;所述第一挡光区21对应的所述固定角挡光段在所述底面圆的投影对应的圆心角16°,所述第二挡光区22对应的所述固定角挡光段在所述底面圆的投影对应的圆心角4°,所述第三挡光区23对应的所述固定角挡光段在所述底面圆的投影对应的圆心角12°,所述第四挡光区24对应的所述固定角挡光段在所述底面圆的投影对应的圆心角8°。
可以理解,所述可变角挡光段的形状于不限于图示的实施方式。例如,所述可变角挡光段在所述罩体115纬度线上的弧度随所述罩体115纬度的升高而递增,此时所述第二弧形边221背离所述第一弧形边222凸起。
另外可以理解,所述第二弧形边221与所述第一直线边223可以为替换为其他任意合适形状的边,只要满足所述可变角挡光段在所述罩体115纬度线上的弧长所对应的圆心角随所述罩体115纬度的升高而递减或者递增均可。
以上实施方式中所描述罩体115纬度为所述罩体115表面的参照位置,所述罩体115表面纬度自所述罩体115的顶点(罩体115表面与所述底面圆之间的垂直距离最大的点)向底面圆逐渐降低。
如图4中示出一个实施例中的接收器30的示意图。
在该实施例中,接收器30包括接收单片机301、无线模块302和光传感器303。其中光传感器303能够接收发射器10的发光装置116发射的光信号,经过模数转换后,传送至接收单片机301。接收单片机301根据光信号数据和预设信息计算出所述光传感器303相对于所述发光装置116的垂直角、水平角以及最终位置,传输计算结果给无线模块302;所述无线模块302能够将计算结果传输给远程监控器或服务器。
具体地,所述无线模块302可以为蓝牙、GPRS、EDGE、WiFi、2G、3G、4G、5G通信设备或其他的无线传输装置。
具体的光曲面定位方法结合上述实施例与图5、图6、图7、图8进行说明:
在本实施例中,所述接收器30的预设信息为罩体115底面圆半径411、可变角挡光段较短弧形边所对应的圆直径412、旋转座转速、固定角挡光段在罩体115任意纬度线上的弧长所对应圆心角角度、发射器高度及发射器与接收器30的之间的垂直高度差422。
由于固定角挡光段角度是事先固定并已知的,所以从光传感器采集光信号获取采样频率Rate和旋转座转速Rev可以算得基准宽度,所述基准宽度为固定角挡光段210所对应的阴影宽度。
请参阅图5及图6,图6中Q点为发光装置116到接收器30中光传感器303的连线和所述罩体115相交点,令:
Rshade为罩体115底面圆半径411;
Rcut为可变角挡光段的第二弧形边所在的圆直径412,在本实施例中,所述Rcut=cos(Pi/16)*Rshade;
Rsense为Q点所在的所述罩体115的纬度线形成圆的半径413;
ShadowLen为可变角挡光段的阴影宽度414,即该阴影扫过接收器30的时间间隔内,接收器30采样的个数;
PeriodLen为旋转周长,罩体旋转一周的采样点个数:PeriodLen=Rate*60/Rev
r为发光装置116与接收器30的水平距离421;
H为发射器与接收器30的之间的垂直高度差422。
结合图5、图6可得:
Figure PCTCN2018113910-appb-000001
2Rcut=Rshade
可以得出
Figure PCTCN2018113910-appb-000002
结合图5,我们得到,
Figure PCTCN2018113910-appb-000003
Figure PCTCN2018113910-appb-000004
从图5中可知Rsense=Rshade·Sinγ
可以得出:
Figure PCTCN2018113910-appb-000005
Figure PCTCN2018113910-appb-000006
根据接收器30测量得到可变角挡光段阴影宽度ShadowLen和旋转周长PeriodLen,代入上述公式得到垂直角γ。
请参阅图7,图7为图1的发射器投影在地面形成的极坐标区域图。
所述水平角θ为由极坐标中心至转动起点直线423和极坐标中心至接收器30直线420所形成的夹角。以下将结合附图详细介绍本实施方式的水平角的确定方式。
请结合图8,所述接收器30检测闪烁频率,采集发射器发射的光信号,将所述发射器转动3/2个挡光区所发射的光信号为一帧。
当所述固定角挡光段与可变角挡光段的阴影经过所述接收器时,所述接收器采集光信号为低电平状态。当所述发射器发射的光信号未被遮挡时,所述接收器采集光信号为高电平状态。所述接收器30通过采集光信号,确定对应光信号的电平区间。
以“-”表示所述接收器30低电平状态持续的时间区间;
以“+”表示所述接收器30高电平状态持续的时间区间;
以“gap”表示间隔角产生的高电平状态持续的时间区间;
以“-gap_var”表示固定角挡光段产生的低电平状态持续的时间区间;
以“?”表示可变角挡光段产生的低电平状态持续的时间区间;
以“…”表示未确定的电平状态持续时间区间的序列。
在一个实施例中,针对每一个挡光区,在一帧内,所述接收器30的状态序列可能包括以下情况:
第一种状态序列801为(-,gap,-gap_var,+,…)
第二种状态序列802为(+,?,gap,-gap_var,+,…)
第三种状态序列803为(-,+,?,gap,-gap_var,+,…)
第四种状态序列804为(+,-gap_var,+,?,gap,-gap_var,+,…)
因为每一个挡光区的固定角挡光段宽度都不相同,所以以间隔角产生的高电平状态持续的时间区间gap与固定角挡光段产生的低电平状态持续的时间区间-gap_var形成组合(gap,-gap_var)可以确定一个挡光区。通过检测一帧信号的状态序列,就可以确定当前帧所经历的挡光区。从接收器30采集的光信号中可统计变量包括:
1)当前帧经历的所述发光装置116所述发射光信号的两个频率;
2)罩体内偏移角度:被定位的(gap,-gap_var)组合段中固定角挡光段产生的低电平状态持续的时间区间gap所对应挡光区的起始角度。
3)帧内偏移长度:当前帧的(gap,-gap_var)组合段之前的所有区间的数据点个数之和;
4)可变角挡光段产生的的数据点数,即可变角挡光段的阴影宽度。
水平角θ可由三个变量计算得出:
1)设帧起始时的罩体角度θ 1,所述起始时的罩体角度为一帧中起始的闪烁频率所对应挡光区的角度,通过闪烁频率确定θ 1,当所述闪烁频率对应为第一挡光区时,所述θ 1为0°。
2)所述罩体内偏移角度θ 2
3)帧内偏移角度θ 3,(帧内偏移长度/旋转周长)*360°=θ 3.
所述水平角θ=θ 213
在图示的实施例中,所述罩体内偏移角度为一帧中-gap_var对应的固定角挡光段所在挡光区的角度,若-gap_var对应的角度是4°,由于各个挡光区固定角挡光段的角度依次为16°,4°,12°,8°,则可确定为第二挡光区,所在罩体内偏移角度为θ 1=90°。所述帧起始时的灯罩角度由一帧中采集的闪烁频率来确定,所述一帧中采集的闪烁频率为(f1,f2),若f1=25KHz,而所述25KHZ对应第四挡光区,则帧起始时的罩体角度为θ 2=270°。
通过上述方法计算可得水平角θ和垂直角γ,从而确定接收器30的二维坐标。
若发射器与接收器30的之间的垂直高度差422相对高度未知,则使用两个发射器10,采用频分复用方法根据两个发射器10的闪烁频率不同,所述 接收器30通过接收所述发射器10发射光信号确定所述接收器30所位于的垂直高度,计算出所述接收器30的三维位置。
所述光曲面快速定位装置和方法在使用时,通过发射器10发射光信号至接收器30,接收器30根据接收到的光信号进行数据处理和计算,得到接收器30位置,通过无线模块302发送接收器30位置至服务器或远程监控端。
因此本发明提供的光曲面快速定位装置和方法,可精准定位接收器位置,接收器可放置在物体表面接收发射器的光信号,可进行室内精准定位,在智能生产环境中,使机器人能够精准辅助组装、运送物料和产品。本发明的光曲面快速定位装置旋转一周可进行多次定位,可使定位更加快捷。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光曲面快速定位装置,包括发射器和接收器,所述发射器能够发射光信号至所述接收器,所述接收器能够接收所述发射器发射的光信号,所述光曲面快速定位装置根据所述接收器接收到的光信号判断接收器的位置,其特征在于,所述发射器包括:
    发光装置,所述发光装置能够发射至少两种闪烁频率的光信号;
    中空半球形罩体,所述罩体上设有多组挡光区,每一组所述挡光区包括固定角挡光段和可变角挡光段,所述固定角挡光段和所在的挡光区起始之间的部分为透光区,所述固定角挡光段和所述可变角挡光段之间的部分为透光区,所述固定角挡光段在所述罩体任意纬度线上的弧长所对应圆心角均相同,所述可变角挡光段在所述罩体纬度线上的弧长所对应的圆心角随所述罩体纬度的升高而单调递减或者递增。
  2. 根据权利要求1所述的光曲面快速定位装置,其特征在于,所述闪烁频率种类数与所述挡光区个数相同。
  3. 根据权利要求1所述的光曲面快速定位装置,其特征在于,多组所述挡光区于罩体上等间距设置。
  4. 根据权利要求1所述的光曲面快速定位装置,其特征在于,所述固定角挡光段在所述罩体底面圆上的正投影为扇形,且不同所述挡光区的所述固定角挡光段对应的圆心角角度不同。
  5. 根据权利要求1所述的光曲面快速定位装置,其特征在于,所述可变角挡光段在所述罩体底面圆上的正投影由两条弧形边和一条直线边围成,其中一条所述弧形边以所述罩体的底面圆的圆心为圆心,另外一条所述弧形边和所述直线边相交于所述底面圆的圆心。
  6. 根据权利要求5所述的光曲面快速定位装置,其特征在于,所述另外一条弧形边朝向所述第一弧形边凸起或凹进。
  7. 根据权利要求1所述的光曲面快速定位装置,其特征在于,所述发射器至少设置有控制器、驱动装置、基座和旋转座;
    所述控制器与所述驱动装置相连接,控制所述驱动装置的运行;
    所述驱动装置与所述旋转座相连接,带动所述旋转座以预定的角速度进行匀速旋转;
    所述旋转座与所述罩体固定连接,所述旋转座转动时能够带动所述罩体同步转动。
  8. 根据权利要求7所述的光曲面快速定位装置,其特征在于,所述发射器还设置有转动检测单元,所述转动检测单元检测旋转所述座旋转的旋转角度,所述控制器根据所述转动检测单元的检测结果控制所述发光装置在相邻的挡光区扫过的时间区间内闪烁频率不同。
  9. 根据权利要求8所述的光曲面快速定位装置,其特征在于,所述转动检测单元包括光耦合器和挡光片,所述光耦合器上设置有凹口;
    所述挡光片位于旋转座位置与光耦合器相对应,当旋转座旋转时所述挡光片可穿过所述光耦合器的凹口。
  10. 根据权利要求1所述的光曲面快速定位装置,其特征在于,所述接收器至少设置有接收单片机、光传感器和无线模块;
    所述光传感器接收发射器发射的光信号;
    所述接收单片机与光传感器相连接,处理所述光传感器接收光信号的信息;
    所述无线模块与接收单片机相连接,接收所述接收单片机信息处理结果, 发送至服务器。
PCT/CN2018/113910 2018-02-13 2018-11-05 光曲面快速定位装置 WO2019157840A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/463,512 US11378640B2 (en) 2018-02-13 2018-11-05 Apparatus of rapid-positioning with curved light surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810148395.8 2018-02-13
CN201810148395.8A CN110161456B (zh) 2018-02-13 2018-02-13 光曲面快速定位装置

Publications (1)

Publication Number Publication Date
WO2019157840A1 true WO2019157840A1 (zh) 2019-08-22

Family

ID=67619104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113910 WO2019157840A1 (zh) 2018-02-13 2018-11-05 光曲面快速定位装置

Country Status (3)

Country Link
US (1) US11378640B2 (zh)
CN (1) CN110161456B (zh)
WO (1) WO2019157840A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110090124A1 (en) * 2009-10-20 2011-04-21 Institute For Information Industry Method and system for indoor positioning
WO2012087944A2 (en) * 2010-12-22 2012-06-28 Intel Corporation Systems and methods for determining position using light sources
CN104735780A (zh) * 2015-03-25 2015-06-24 中国科学院深圳先进技术研究院 一种室内定位装置和定位方法
CN104914407A (zh) * 2015-05-20 2015-09-16 中国科学院深圳先进技术研究院 一种室内定位装置和定位方法
CN105157696A (zh) * 2015-04-27 2015-12-16 上海第二工业大学 一种室内智能机器人精确位置感知系统及其感知方法
CN105866736A (zh) * 2016-04-05 2016-08-17 华中科技大学 一种基于光图案的室内定位方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2281790A (en) * 1940-03-11 1942-05-05 Kalorotor Inc Luminous display apparatus
US3227882A (en) * 1962-01-05 1966-01-04 Bissett Berman Corp Identification system using repetitively modulated infrared energy
US3400275A (en) * 1965-07-22 1968-09-03 Trump Ross Ind Controls Inc Optical encoder having a common light source located in a rotatable shuttered housing
JPH01127986A (ja) * 1987-11-12 1989-05-19 Opt:Kk 移動体の位置決め装置
KR100520078B1 (ko) * 2003-08-04 2005-10-12 삼성전자주식회사 로봇시스템 및 비콘
FR2927488A1 (fr) * 2008-02-07 2009-08-14 Schneider Electric Ind Sas Procede de couplage/decouplage entre un emetteur et un recepteur.
CN102981142B (zh) * 2011-09-02 2017-04-05 原相科技股份有限公司 光学定位系统
US9476695B2 (en) * 2013-07-03 2016-10-25 Faro Technologies, Inc. Laser tracker that cooperates with a remote camera bar and coordinate measurement device
TWI579580B (zh) * 2013-09-30 2017-04-21 鴻海精密工業股份有限公司 定位光源裝置、定位裝置及定位方法
CN103777176A (zh) * 2014-01-24 2014-05-07 上海速锐信息技术有限公司 一种高精度绝对定位系统及其定位方法
CN107430180A (zh) * 2014-12-10 2017-12-01 南澳大学 基于可见光的室内定位系统
CN105824010B (zh) * 2015-01-10 2018-11-16 浙江大学 基于特征光源和球形采光装置的室内定位系统和定位方法
CN105824008B (zh) * 2015-01-10 2018-11-13 浙江大学 一种针对多个特征光源的室内定位系统和定位方法
WO2016150146A1 (zh) * 2015-03-25 2016-09-29 中国科学院深圳先进技术研究院 一种室内定位装置和室内定位方法
CN107064873B (zh) * 2016-03-16 2019-02-15 北京国承万通信息科技有限公司 定位光束发射系统、方法及室内定位系统
US10145671B2 (en) * 2016-03-31 2018-12-04 Topcon Positioning Systems, Inc. Three dimensional laser measuring system and method
CN105717488B (zh) * 2016-04-28 2018-11-23 百色学院 一种基于可见光通信的优选二光源室内定位方法及系统
US9885851B2 (en) * 2016-05-19 2018-02-06 Lockheed Martin Corporation Advanced optical gimbal
CN106324564B (zh) * 2016-08-05 2020-01-14 北京国承万通信息科技有限公司 定位方法、装置、设备及系统
CN304168959S (zh) * 2017-01-06 2017-06-09
CN107356904B (zh) * 2017-07-25 2020-07-07 京东方科技集团股份有限公司 测量组件以及定位系统
US20190044616A1 (en) * 2017-08-07 2019-02-07 Osram Sylvania Inc. Techniques for resolving angle of transmitter and angle of receiver in light-based communication used to determine vehicle position
CN107561495A (zh) * 2017-08-28 2018-01-09 成都航天通信设备有限责任公司 一种基于激光跟踪的室内三维定位方法
CN109839102B (zh) * 2017-11-27 2021-05-04 灵踪科技(深圳)有限公司 光曲面定位方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110090124A1 (en) * 2009-10-20 2011-04-21 Institute For Information Industry Method and system for indoor positioning
WO2012087944A2 (en) * 2010-12-22 2012-06-28 Intel Corporation Systems and methods for determining position using light sources
CN104735780A (zh) * 2015-03-25 2015-06-24 中国科学院深圳先进技术研究院 一种室内定位装置和定位方法
CN105157696A (zh) * 2015-04-27 2015-12-16 上海第二工业大学 一种室内智能机器人精确位置感知系统及其感知方法
CN104914407A (zh) * 2015-05-20 2015-09-16 中国科学院深圳先进技术研究院 一种室内定位装置和定位方法
CN105866736A (zh) * 2016-04-05 2016-08-17 华中科技大学 一种基于光图案的室内定位方法

Also Published As

Publication number Publication date
CN110161456A (zh) 2019-08-23
US11378640B2 (en) 2022-07-05
CN110161456B (zh) 2021-07-20
US20210109182A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
US20230208420A1 (en) Method and apparatus for ranging finding, orienting and/or positioning of single and/or multiple devices and/or device and method for orientation and positioning
US20210255714A1 (en) Device and method for orientation and positioning
US9883351B2 (en) Indoor positioning device and indoor positioning method
AU2010220492B2 (en) Geodesic measurement system and method for identifying a target unit having a geodesic measurement device
CN104914407B (zh) 一种室内定位装置和定位方法
EP3017317B1 (en) Determining orientation
US7294822B2 (en) Method and apparatus to communicate with and individually locate multiple remote devices on a two-dimensional surface
EP1505465B1 (en) A robot location system
CN110850430B (zh) 激光扫描系统
CN107819187B (zh) 用于微波天线的对准装置、微波天线及对准方法
CN105866736B (zh) 一种基于光图案的室内定位方法
US20090127447A1 (en) Rotary laser with remote control
CN105157696A (zh) 一种室内智能机器人精确位置感知系统及其感知方法
CN103175504B (zh) 光学系统
JP2001013247A (ja) 自動測量システム
CN109931574B (zh) 确定移动头灯具的姿态的方法
CN104735780B (zh) 一种室内定位装置和定位方法
WO2019157840A1 (zh) 光曲面快速定位装置
CN109839102B (zh) 光曲面定位方法和装置
CN110824413A (zh) 光学定位装置
CN208689157U (zh) 光学定位装置
TWI632339B (zh) 座標感測裝置及感測方法
JP6748910B2 (ja) インテリジェントターゲット
CN108896008A (zh) 一种控照型光测距与定位系统
Yan et al. CurveLight: An Accurate and Practical Light Positioning System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18906043

Country of ref document: EP

Kind code of ref document: A1