WO2019157806A1 - 基于图像反馈的六维力传感器、夹持探头及夹持器械 - Google Patents

基于图像反馈的六维力传感器、夹持探头及夹持器械 Download PDF

Info

Publication number
WO2019157806A1
WO2019157806A1 PCT/CN2018/102235 CN2018102235W WO2019157806A1 WO 2019157806 A1 WO2019157806 A1 WO 2019157806A1 CN 2018102235 W CN2018102235 W CN 2018102235W WO 2019157806 A1 WO2019157806 A1 WO 2019157806A1
Authority
WO
WIPO (PCT)
Prior art keywords
pull rod
force
movable
handle
contact
Prior art date
Application number
PCT/CN2018/102235
Other languages
English (en)
French (fr)
Inventor
李进华
李旭莹
王树新
刘宏斌
张国凯
白军焕
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2019157806A1 publication Critical patent/WO2019157806A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • A61B2090/3614Image-producing devices, e.g. surgical cameras using optical fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/373Surgical systems with images on a monitor during operation using light, e.g. by using optical scanners

Definitions

  • the present disclosure relates to the field of minimally invasive surgical clamping instruments, and more particularly to a six-dimensional force sensor based on image feedback, a clamping probe and a clamping device.
  • Minimally invasive surgery refers to the operation in which a doctor uses a slender surgical tool to penetrate into the body through a tiny incision on the surface of the human body. Compared with traditional open surgery, minimally invasive surgery brings great benefits to patients, including greatly reducing the trauma area, reducing the amount of intraoperative blood loss, reducing the risk and complications of surgery, reducing postoperative pain, shortening the length of hospitalization, etc. .
  • the doctor performs the surgical operation task with the slender minimally invasive surgical instrument.
  • One end of the surgical instrument is operated by the doctor, and the other end is infiltrated into the body through a small incision on the surface of the human body for operation. Therefore, the operation is performed.
  • the instrument is the only part that comes into contact with the body's diseased tissue and is the only tool that directly performs the surgical procedure.
  • the inventors of the present disclosure have found that although minimally invasive surgery brings significant benefits to the patient, it increases the difficulty of the surgeon's surgical operation, such as: the doctor's treatment of the diseased tissue and the end of the surgical instrument. Loss of tactile sensing, reduced flexibility of the doctor's hand operation, and lack of hand-eye coordination for surgical operations. During the operation, the doctor's lack of tactile perception of the diseased tissue will cause potential safety problems, and will prolong the operation time of the operation, which will greatly affect the smooth operation of the operation.
  • the present disclosure provides a six-dimensional force sensor based on image feedback, comprising: a contact end directly in contact with human tissue; an elastic deformation body disposed in close contact with the contact end, when the contact end is subjected to a force, The elastic deformation body is deformed; the marking block includes N feature points disposed in the elastic deformation body, and is fixedly disposed opposite to the contact end, when the contact end is biased and/or deflected, The elastic deformation body is deformed, and the marking block moves and/or rotates with the contact end, N ⁇ 4; and an image information recognition module is configured to capture and process image information of the marking block in real time.
  • the method further includes: a contact force modeling module that uses the image information processed by the image information recognition module to obtain a contact force between the contact end and the human tissue.
  • the method further includes: a base disposed in close contact with the elastic deformation body for supporting the elastic deformation body.
  • the image information recognition module includes: a fiber optic endoscope for capturing image information of the mark block in real time; and an image information processing unit receiving image information captured by the fiber endoscope Obtaining image coordinate information of the feature point of the mark block by using the image information and an image processing algorithm; the contact force modeling module receives the image coordinate information obtained by the image information processing unit, according to the The image coordinate information of the feature point, in combination with the geometry of the marker block, the spatial three-dimensional coordinates of the feature point are obtained by mapping the camera imaging model; the current spatial three-dimensional coordinates of the feature point and the force sensor are not affected Calculating the amount of movement and/or the amount of rotation of the contact end in the three-dimensional coordinates of the initial space in the force state; obtaining a deformation state of the elastic deformation body according to the amount of movement and/or the amount of rotation of the contact end; The deformation state of the body, using the stiffness model of the elastic deformation body, the connection between the contact end and the human body is obtained The size
  • the elastic deformation body adopts transparent silica gel, and the fiber endoscope is disposed on the elastic deformation body.
  • the marker block is a tetrahedron and the feature points are vertices of a tetrahedron.
  • the present disclosure also provides a six-dimensional force sensing clamping probe based on image feedback, comprising: the above-mentioned image feedback based six-dimensional force sensor; the base comprises: a probe base, and the probe base a bracket formed by extending outwardly from the end, the elastic deformation body being disposed on the pallet; and a movable jaw connected to the probe base; the contact end being disposed opposite to the movable jaw
  • the fiber optic endoscope is disposed inside the probe base, and the movable jaw is rotatable along an hinge axis thereof with the probe base to realize an opening and closing movement with the contact end, and the contact end Collaboratively grip human tissue.
  • the present disclosure also provides a six-dimensional force sensing clamping device based on image feedback, comprising: an operating handle unit for applying a force; a force transmitting unit coupled to the operating handle unit for conducting the function
  • the above-mentioned six-dimensional force sensing clamping probe based on image feedback is connected with the force transmission unit, and the opening and closing movement of the movable jaw and the contact end is realized by the force, and the human body tissue is cooperatively clamped;
  • a housing fixedly connected to the operating handle unit and the probe base, respectively, and disposed outside the force conducting unit for assisting in force transmission.
  • the force transmitting unit includes: a pull rod having one end connected to the operating handle unit and the other end connected to the movable jaw; wherein the outer casing is disposed outside the rod
  • the pull rod drives the movable clamp to open or close relative to the contact end.
  • the probe base includes: a pull rod groove disposed in the probe base for guiding a running track of the pull rod when the pull rod extends into the probe base a limiting groove, symmetrically disposed on both sides of the pull rod groove along the extending direction of the pull rod groove, for guiding the movement track of the movable jaw to limit the opening range of the movable jaw opening and closing movement
  • the force transmission unit further includes: two movable jaw links, which are mirrored with respect to the plane of symmetry of the movable jaw, one end of which is hingedly connected with the movable jaw, and the other end is hingedly connected with the rod;
  • the movable clamp link and the pull rod are hingedly connected by a pin, and the pin is fitted into the limiting slot, and the pull rod drives the movable clamp when the pull rod moves along the pull rod groove
  • One end of the connecting rod moves along the limiting slot
  • the other end of the movable jaw link drives the movable jaw to rotate along its hinge axis with
  • the probe base further includes: a sliding slot disposed along an extending direction of the limiting slot for constraining a motion track of the movable jaw and the movable jaw link
  • the movable clamp link is provided with a protrusion symmetrically disposed on two hinge points of the movable clamp link and the pull rod for fitting one end of the movable clamp link In the sliding groove.
  • the operating handle unit includes: a fixed end fixedly coupled to the outer casing, comprising: a handle connector fixedly coupled to the outer casing, the lever for the passage of the drawbar is disposed thereon And a fixed handle fixedly coupled to the handle connector for providing a force applying base; and a movable end hingedly coupled to the fixed end and coupled to the pull rod, including: a movable handle, and the handle a connector hinged connection for engaging with the fixed handle for gripping; and a movable handle link having one end hingedly coupled to the movable handle and the other end hingedly coupled to the pull rod connector; one end of the pull rod from the drawbar
  • the passage extends and is fixedly coupled to the pull rod connecting member, the movable handle, the movable handle link and the pull rod connecting member constitute a rocker slider mechanism, and the movable handle is an active rocker, the activity
  • the handle link is a driven link
  • the pull rod connecting member is a slider
  • the pull rod connecting member is a slider
  • the fixed end further includes: a guiding member disposed on the fixed handle for guiding and providing auxiliary support for the pull rod, wherein the guiding member is provided with a guiding hole, corresponding to The pull rod channel is disposed for extending into the pull rod; wherein the probe base, the outer casing and the handle connecting member are respectively provided with a fiberscope channel.
  • the use of image feedback-based detection allows doctors to effectively understand the clamping force between the end of the surgical instrument and the patient's body tissue, improving the efficiency and safety of the operation; the size of the marker block can be small, almost no increase in surgery
  • the device configuration does not increase the difficulty of the doctor's operation; by designing a reasonable marker block geometry and performing image information recognition and contact force modeling, the force sensor can detect the force in the six-dimensional direction of the end of the instrument, and the force sensor High detection accuracy can be obtained; it is realized by mechanical structure and software algorithm, no electrical components are in direct contact with the internal tissue or blood of the patient, so it is not necessary to consider the influence of electrical equipment on the human body and the increased safety hazard, and it can be conveniently Handling biocompatibility and disinfection requirements; force sensors can be integrated with a variety of minimally invasive surgical instruments, for example, due to the flexibility of the fiber, force sensors can also be applied to flexible minimally invasive surgical instruments.
  • the use of transparent silica gel to form an elastic deformation body can facilitate the fiber endoscope to capture the image information of the marker block, and at the same time, the fiber endoscope is placed on the elastic deformation body to reduce the refraction and reflection phenomenon when the light enters the elastic deformation body, thereby further improving Capturing the quality of the image;
  • the marker block adopts a tetrahedron, which effectively simplifies the shape of the marker block, and reduces the difficulty of obtaining the spatial three-dimensional coordinates of the marker block feature points according to the marker block geometry.
  • FIG. 1 is a schematic structural diagram of a six-dimensional force sensor based on image feedback and a six-dimensional force sensing clamping probe based on image feedback according to an embodiment of the present disclosure.
  • FIG. 2a and 2b are schematic views showing the establishment of a reference coordinate system in the clamp probe shown in Fig. 1.
  • Fig. 2b is a cross-sectional view of the clamp probe shown in Fig. 2a in the A-A direction in an unstressed state.
  • FIG. 3a is a cross-sectional view showing the corresponding deformation of the clamping probe shown in FIG. 2a in the A-A direction when the force is applied by the reference coordinate system X direction.
  • FIG. 3b is a cross-sectional view showing the corresponding deformation of the clamping probe shown in FIG. 2a in the A-A direction when the reference coordinate system is in the X direction.
  • Figure 3c is a cross-sectional view showing the corresponding deformation of the clamping probe shown in Figure 2a in the A-A direction when the force is applied in the direction of the reference coordinate system Y.
  • FIG. 3d is a cross-sectional view showing the corresponding deformation of the clamping probe shown in FIG. 2a in the A-A direction when the reference coordinate system is in the Y direction.
  • FIG. 3e is a cross-sectional view showing the corresponding deformation of the clamping probe shown in FIG. 2a in the A-A direction when the clamping probe is subjected to the force in the Z coordinate direction.
  • FIG. 3f is a cross-sectional view showing the corresponding deformation of the clamping probe shown in FIG. 2a in the A-A direction when the reference coordinate system is in the Z direction.
  • FIG. 4 is a schematic structural view of a six-dimensional force sensing clamping device based on image feedback according to a third embodiment of the present disclosure.
  • FIG. 5 is a schematic structural view of a transmission system in which the clamping probe opening and closing function is completed in the clamping device shown in FIG. 4.
  • FIG. 5 is a schematic structural view of a transmission system in which the clamping probe opening and closing function is completed in the clamping device shown in FIG. 4.
  • FIG. 6 is a schematic structural view of a probe base in a clamping device according to a third embodiment of the present disclosure.
  • FIG. 7 is a schematic view showing the cooperation of the clamping probe and the pull rod in the clamping device according to the third embodiment of the present disclosure.
  • FIG. 8 is a schematic structural view of an operating handle unit in a clamping device according to a third embodiment of the present disclosure.
  • 1100-contact end 1200-elastic deformation body; 1300-marking block;
  • 1800-image information processing unit 1900-contact force modeling module
  • the first embodiment of the present disclosure provides a six-dimensional force sensor based on image feedback.
  • the six-dimensional force sensor includes:
  • the elastic deformation body 1200 can be disposed on the base, and the elastic deformation body 1200 can be disposed in contact with the base, and the base is used to support the elastic deformation body 1200.
  • the base can be, for example, a probe base 1500.
  • the contact end 1100 is in direct contact with the human body tissue 6000 and is disposed in contact with the elastic deformation body 1200.
  • the elastic deformation body 1200 is deformed.
  • the marking block 1300 includes N feature points disposed in the elastic deformation body 1200 and disposed opposite to the contact end 1100. When the contact end 1100 is biased and/or deflected, the elastic deformation body 1200 is deformed, and the marking block is marked. The 1300 moves and/or rotates with the contact end 1100, N ⁇ 4.
  • the image information identification module 1700 is configured to capture image information of the mark block 1300 in real time and perform processing.
  • the contact force modeling module 1900 uses the image information of the marker block 1300 captured by the image information recognition module 1700 to derive the contact force of the contact end 1100 with the human tissue 6000.
  • the embodiment adopts the image feedback-based detection method, so that the doctor can effectively understand the clamping force between the end of the surgical instrument (contact end 1100) and the patient human tissue 6000, thereby improving the efficiency and safety of the operation.
  • the size of the marker block 1300 can be designed to be small, with little increase in the configuration of the surgical instrument and without increasing the difficulty of the doctor's operation. It is realized by mechanical structure and software algorithm. No electrical components are in direct contact with the internal tissues or blood of the patient. Therefore, it is not necessary to consider the influence of electrical equipment on the human body and increased safety hazards, and it can conveniently handle biocompatibility and disinfection. Requirements.
  • the image information recognition module 1700 includes a fiberscope 1400 and an image information processing unit 1800.
  • the fiberscope 1400 is disposed on the elastic deformation body 1200 for capturing image information of the marker block 1300 in real time.
  • the image information processing unit 1800 connects the fiberscope 1400, receives the image information captured by the fiberscope 1400, and obtains image coordinate information of the feature points of the marker block 1300 using the image information and the image processing algorithm.
  • the contact force modeling module 1900 receives the image coordinate information of the feature points obtained by the image information processing unit 1800, and combines the geometrical structure of the marker block 1300 according to the image coordinate information of the feature points to obtain the spatial three-dimensional coordinates of the feature points by the camera imaging model mapping; Calculating the amount of movement and/or the amount of rotation of the contact end 1100 according to the current spatial three-dimensional coordinates of the feature point and the initial spatial three-dimensional coordinates of the six-dimensional force sensor in an unstressed state; according to the amount of movement of the contact end 1100 and/or The amount of rotation is obtained to obtain a deformation state of the elastic deformation body 1200. According to the deformation state of the elastic deformation body 1200, the magnitude and direction of the contact force between the contact end 1100 and the human body tissue 6000 can be obtained by using the stiffness model of the elastic deformation body 1200.
  • the force sensor is integrated on the clamping probe 1000.
  • the clamping probe 1000 includes a probe base 1500 and a movable jaw 1600.
  • the movable jaw 1600 can be rotated along the hinge axis of the probe base 1500. Opening and closing with the contact end 1100, the human body tissue 6000 is clamped in cooperation with the contact end 1100.
  • the contact end 1100, the probe base 1500, and the movable jaw 1600 are made of a metal material.
  • the elastic modulus of the elastic deformation body 1200 is much smaller than the elastic modulus of the metal contact end 1100 and the probe base 1500, and the clamping force between the clamping probe 1000 and the human body tissue 6000 in the surgical operation is insufficient to make metal contact
  • the end 1100 and the probe base 1500 are largely deformed, that is, the deformation of the contact end 1100 and the probe base 1500 is negligible. Therefore, according to the deformation state of the elastic deformation body 1200, the stiffness model of the elastic deformation body 1200 can be used to obtain contact.
  • the elastic deformation body 1200 is made of transparent silica gel, which can facilitate the fiber endoscope 1400 to capture image information of the marker block 1300.
  • the fiberscope 1400 is placed on the elastic deformation body 1200, which can reduce the phenomenon of refraction and reflection when the light enters the elastic deformation body 1200, thereby further improving the quality of the captured image.
  • the marker block 1300 is a tetrahedron, and the feature points are vertices of the tetrahedron, which can effectively simplify the shape of the marker block 1300, and the difficulty of obtaining the spatial three-dimensional coordinates of the marker block feature points according to the geometry of the marker block 1300 is reduced.
  • the second embodiment of the present disclosure provides a six-dimensional force sensing clamping probe based on image feedback, as shown in FIG. 1 , comprising: a probe base 1500 , a movable jaw 1600 , and an image based on the first embodiment of the present disclosure. Feedback of the six-dimensional force sensor.
  • the probe base 1500 has an end portion extending outward to form a pallet 1510.
  • the movable jaw 1600 is hingedly connected to the end of the probe base 1500.
  • the elastic deformation body 1200 of the six-dimensional force sensor is disposed on the pallet 1510, the contact end 1100 is disposed opposite to the movable jaw 1600, and the fiberscope 1400 is disposed inside the probe base 1500; wherein the movable jaw 1600 can be along the same
  • the hinge shaft of the probe base 1500 is rotated to open and close with the contact end 1100, and the human body tissue 6000 is clamped in cooperation with the contact end 1100.
  • FIG. 2a and 2b are schematic views of establishing a reference coordinate system in the gripping probe shown in Fig. 1.
  • Figure 2b is a cross-sectional view of the clamping probe shown in Figure 2a in the AA direction without stress.
  • Figure 3a is the clamping force of the clamping probe shown in Figure 2a in the direction of the reference coordinate system X (specifically shown in Figure 3a) A cross-sectional view of the corresponding deformation of the AA direction.
  • Figure 3b is the torque of the clamping probe shown in Figure 2a in the X direction of the reference coordinate system (specifically shown in Figure 3b) A cross-sectional view of the corresponding deformation of the AA direction.
  • Figure 3c is the clamping force of the clamping probe shown in Figure 2a in the direction of the reference coordinate system Y (specifically shown in Figure 3c) A cross-sectional view of the corresponding deformation of the AA direction.
  • Figure 3d is the clamping probe shown in Figure 2a subjected to the Y-direction torque of the reference coordinate system (specifically shown in Figure 3d) A cross-sectional view of the corresponding deformation of the AA direction.
  • Figure 3e is the clamping force of the clamping probe shown in Figure 2a in the direction of the reference coordinate system Z (specifically shown in Figure 3e) A cross-sectional view of the corresponding deformation of the AA direction.
  • Figure 3f is the clamping probe shown in Figure 2a subjected to the Z-direction moment of the reference coordinate system (specifically shown in Figure 3f) A cross-sectional view of the corresponding deformation of the AA direction.
  • the clamping probe when the clamping probe is subjected to the combined force and moment in all directions, it is a superposition of the above several deformation situations.
  • a third embodiment of the present disclosure provides a six-dimensional force sensing clamping device based on image feedback.
  • the six-dimensional force sensing clamping device comprises: an operating handle unit 3000, a force transmitting unit 2000, a six-dimensional force sensing clamping probe 1000 based on image feedback, and a casing 4000 of the second embodiment of the present disclosure.
  • the handle unit 3000 is operated for applying a force.
  • the force transmission unit 2000 is coupled to the operating handle unit 3000 for conducting a force.
  • the six-dimensional force sensing clamping probe 1000 is connected to the force transmission unit 2000 and the outer casing 4000, and uses the force to realize the opening and closing movement of the movable jaw 1600 and the contact end 1100 to cooperatively clamp the human body tissue 6000.
  • the outer casing 4000 is a hollow sleeve that is fixedly connected to the operating handle unit 3000 and the probe base 1500 respectively.
  • the force transmitting unit 2000 is disposed in the sleeve, and the outer casing 4000 is used to assist in achieving force transmission.
  • the force transmission unit 2000 includes a pull rod 2100 that is disposed in the outer casing 4000, one end of which is connected to the operation handle unit 3000, and the other end is connected to the movable clamp piece 1600 through the movable clamp link 2200.
  • the force transmission unit 2000 further includes two movable jaw links 2200 mirrored with respect to the plane of symmetry of the movable jaw 1600, one end of which is hingedly connected to the movable jaw 1600, and the other end of which is hingedly connected to the rod 2100 via the pin 2300.
  • the probe base 1500 includes a base body 1550 and a pallet 1510.
  • the base body 1550 has a column shape, and one end thereof extends outward to form a pallet 1510, and the other end is connected to the outer casing 4000.
  • the base body 1550 is provided with a pull rod groove 1520 for accommodating the pull rod 2100.
  • the drawbar slot 1520 guides the trajectory of the drawbar 2100.
  • the two sides of the rod groove 1520 are symmetrically disposed with the limiting groove 1530, and the pin 2300 is fitted into the limiting groove 1530.
  • the limiting slot 1530 is configured to guide the movement track of the movable jaw 1600 to limit the opening range of the opening and closing movement of the movable jaw 1600;
  • the rod 2100 drives one end of the movable jaw link 2200 to move along the limiting slot 1530, and the other end of the movable jaw link 2200 drives the movable jaw 1600.
  • the pull rod 2100 drives the movable jaw 1600 to open or close relative to the contact end 1100, so that the movable jaw 1600 is driven by the tie rod 2100 to cooperate with the contact end 1100 to clamp the human tissue 6000.
  • the base body 1550 is further provided with a sliding groove 1540 along the extending direction of the limiting groove 1530 for restraining the movement trajectory of the movable jaw 1600 and the movable jaw link 2200.
  • the movable jaw link 2200 is provided with a protrusion 2210 symmetrically disposed on the hinge points of the two movable jaw links 2200 and the rod 2100 for fitting one end of the movable jaw link 2200 to the sliding groove 1540.
  • the movable jaw link 2200 is hinged at one end to the movable jaw 1600 during the movement, and the other end is engaged with the sliding groove 1540 through the protrusion 2210, and one end of the movable jaw 1600 Also fitted within the sliding slot 1540, thereby limiting the freedom of the movable jaw 1600 and the movable jaw link 2200 in a direction perpendicular to the sliding slot 1540, causing the movable jaw 1600 and the movable jaw link 2200 to move more smooth.
  • the operating handle unit 3000 includes a fixed end 3100 fixedly coupled to the outer casing 4000, and a movable end 3200 hingedly coupled to the fixed end 3100 and coupled to the tie rod 2100.
  • the driving rod 2100 is moved along the outer casing 4000, thereby driving the opening and closing movement of the clamping probe 1000.
  • the fixed end 3100 includes: a handle connecting member 3110 fixedly connected to the outer casing 4000, and a pull rod passage for the rod 2100 passing therethrough; and a fixed handle 3120 fixedly connected with the handle connecting member 3110 for Provide the basis for exertion.
  • the movable end 3200 includes: a movable handle 3210, one end of which is hingedly connected with the handle connecting member 3110 for engaging with the fixed handle 3120; the movable handle link 3220 has one end hingedly connected with the movable handle 3210, and the other end is connected by the pull rod connecting piece The 3230 is hingedly coupled to the drawbar 2100.
  • the movable handle 3210, the movable handle link 3220 and the pull rod connecting member 3230 constitute a rocker slider mechanism, and the movable handle 3210 is an active rocker, the movable handle
  • the link 3220 is a driven link, and the pull rod connecting member 3230 is a slider, thereby converting the rotational movement of the movable handle 3210 relative to the handle connecting member 3110 into a pull rod connecting member 3230 to drive the linear movement of the pull rod 2100 along the rod passage.
  • the fixed end 3100 further includes a guiding member 3130 disposed on the fixed handle 3120 for guiding and providing auxiliary support for the pull rod 2100.
  • the guiding member 3130 is provided with a guiding hole 3131, which is disposed corresponding to the rod passage for extending into the rod 2100.
  • the guiding hole 3131 can guide the movement track of the rod 2100 and provide auxiliary support for the rod 2100, thereby making the movement of the rod 2100 smoother. .
  • the probe base 1500 , the outer casing 4000 and the handle connector 3110 are respectively provided with a fiberoptic endoscope channel 5000 for accommodating the fiberscope 1400.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Gynecology & Obstetrics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)

Abstract

一种基于图像反馈的六维力传感器、夹持探头及夹持器械。六维力传感器包括:接触端(1100),其与人体组织(6000)直接接触;弹性变形体(1200),与接触端(1100)贴合设置,在接触端(1100)受到作用力时,弹性变形体(1200)发生变形;标记块(1300),包括N个特征点,设置在弹性变形体(1200)内,与接触端(1100)相对固定设置,当接触端(1100)受力而偏移和/或偏转时,弹性变形体(1200)变形,标记块(1300)随接触端移动和/或转动,N≥4;图像信息识别模块,用于实时捕捉所述标记块(1300)的图像信息并进行处理。

Description

基于图像反馈的六维力传感器、夹持探头及夹持器械 技术领域
本公开涉及微创手术夹持器械技术领域,尤其涉及一种基于图像反馈的六维力传感器、夹持探头及夹持器械。
背景技术
微创手术是指医生利用细长的手术工具通过人体表面的微小切口探入到体内进行操作的手术。与传统开口手术相比,微创外科手术为患者带来巨大的好处,包括极大减小创伤面积,减少术中出血量,降低手术风险和并发症,减轻术后痛苦,缩短住院治疗时间等。
在微创外科手术过程中,医生借助细长的微创手术器械实施手术操作任务,手术器械的一端由医生手持操作,另一端通过人体表面的微小切口探入到体内进行手术操作,因此,手术器械是唯一与人体病变组织相接触的部分,也是直接执行手术动作的唯一工具。
然而,在实现本公开的过程中,本公开发明人发现,虽然微创手术给病人带来了明显的好处,但对医生的手术操作增加了难度,如:医生对病变组织和手术器械末端的触觉传感缺失、医生手部操作的灵活性降低、手术操作不具备手眼协调性等。手术操作中,医生对病变组织缺乏触觉感知会造成潜在的安全性问题,同时会延长手术操作时间,极大影响手术的顺利进行。
公开内容
本公开提供了一种基于图像反馈的六维力传感器,包括:接触端,其与人体组织直接接触;弹性变形体,与所述接触端贴合设置,在所述接触端受到作用力时,所述弹性变形体发生变形;标记块,包括N个特征点,设置在所述弹性变形体内,与所述接触端相对固定设置,当所述接触端受力偏移和/或偏转时,所述弹性变形体变形,所述标记块随所述接触端移动和/或转动,N≥4;图像信息识别模块,用于实时捕捉所述标记块的图像信息并进行处理。
在本公开的一些实施例中,还包括:接触力建模模块,利用所述图像信息识别模块处理后的图像信息得出所述接触端与人体组织的接触力。
在本公开的一些实施例中,还包括:基座,与所述弹性变形体贴合设置,用于支撑所述弹性变形体。
在本公开的一些实施例中,所述图像信息识别模块包括:光纤内窥镜,用于实时捕捉所述标记块的图像信息;图像信息处理单元,接收所述光纤内窥镜捕捉的图像信息,利用所述图像信息和图像处理算法得到所述标记块的所述特征点的图像坐标信息;所述接触力建模模块接收所述图像信息处理单元得到的所述图像坐标信息,根据所述特征点的所述图像坐标信息,结合所述标记块的几何结构,由摄像机成像模型映射得到所述特征点的空间三维坐标;根据所述特征点的当前空间三维坐标以及所述力传感器未受力状态下的初始空间三维坐标,计算所述接触端的移动量和/或转动量;根据所述接触端的移动量和/或转动量,得到所述弹性变形体的形变状态;根据所述弹性变形体的形变状态,利用所述弹性变形体的刚度模型,得出所述接触端与人体组织之间接触力的大小和方向。
在本公开的一些实施例中,所述弹性变形体采用透明硅胶,所述光纤内窥镜抵设在所述弹性变形体上。
在本公开的一些实施例中,所述标记块为四面体,所述特征点为四面体的顶点。
本公开还提供了一种基于图像反馈的六维力传感夹持探头,包括:上述基于图像反馈的六维力传感器;所述基座包括:探头基座,以及由所述探头基座的端部向外延伸形成的托台,所述弹性变形体设置在所述托台上;以及活动钳片,与所述探头基座铰接连接;所述接触端与所述活动钳片相对设置,所述光纤内窥镜设置在所述探头基座的内部,所述活动钳片可沿其与所述探头基座的铰接轴转动,实现与所述接触端的开合运动,与所述接触端协同夹持人体组织。
本公开还提供了一种基于图像反馈的六维力传感夹持器械,包括:操作手柄单元,用于施加作用力;力传导单元,与所述操作手柄单元连接,用于传导所述作用力;上述基于图像反馈的六维力传感夹持探头,与所述力传导单元连接,利用所述作用力实现所述活动钳片与所述接触端的开合运动,协同夹持人体组织;以及外壳,分别与所述操作手柄单元和所述探头基座固定连接,罩设在所述力传导单元外侧,用于辅助实现力传导。
在本公开的一些实施例中,所述力传导单元包括:拉杆,其一端与所述操作手柄单元连接,另一端与所述活动钳片连接;其中,所述外壳罩设在所述拉杆外侧,当所述操作手柄单元带动所述拉杆沿所述外壳运动时,所述拉杆带动所述活动钳片相对所述接触端开启或闭合。
在本公开的一些实施例中,所述探头基座包括:拉杆槽,设置在所述探头基座内,用于当所述拉杆伸入所述探头基座时,引导所述拉杆的运行轨迹;限位槽,沿所述拉杆槽的延伸方向,对称设置在所述拉杆槽的两侧,用于引导所述活动钳片的运动轨迹,以限制所述活动钳片开合运动的开口范围;所述力传导单元还包括:两根活动钳片连杆,相对于所述活动钳片的对称面镜像设置,其一端与所述活动钳片铰接连接,另一端与所述拉杆铰接连接;所述活动钳片连杆和所述拉杆通过销铰接连接,所述销嵌合于所述限位槽内,当所述拉杆沿所述拉杆槽运动时,所述拉杆带动所述活动钳片连杆的一端沿所述限位槽运动,所述活动钳片连杆的另一端带动所述活动钳片沿其与所述探头基座的铰接轴转动。
在本公开的一些实施例中,所述探头基座还包括:滑动槽,沿所述限位槽的延伸方向设置,用于约束所述活动钳片和所述活动钳片连杆的运动轨迹;所述活动钳片连杆上设置有:凸起,对称设置在两根所述活动钳片连杆与所述拉杆的铰接点上,用于使所述活动钳片连杆的一端嵌合于所述滑动槽内。
在本公开的一些实施例中,所述操作手柄单元包括:固定端,与所述外壳固定连接,包括:手柄连接件,与所述外壳固定连接,其上设置有用于所述拉杆通过的拉杆通道;以及固定手柄,与所述手柄连接件固定连接,用于提供施力基础;以及活动端,与所述固定端铰接连接,且与所述拉杆连接,包括:活动手柄,与所述手柄连接件铰接连接,用于与所述固定手柄配合实现抓握;以及活动手柄连杆,一端与所述活动手柄铰接连接,另一端与拉杆连接件铰接连接;所述拉杆的一端从所述拉杆通道伸出,并与所述拉杆连接件固定连接,所述活动手柄、所述活动手柄连杆以及所述拉杆连接件构成摇杆滑块机构,所述活动手柄为主动摇杆,所述活动手柄连杆为从动连杆,所述拉杆连接件为滑块,所述拉杆连接件带动所述拉杆在所述拉杆通道内作直线运动。
在本公开的一些实施例中,所述固定端还包括:导向件,设置在所述固定手柄上,用于为所述拉杆导向并提供辅助支撑,该导向件上设置有导向孔,对应所述拉杆通道设置,用于伸入所述拉杆;其中,所述探头基座、所述外壳以及所述手柄连接件内部均对应设置有光纤内窥镜通道。
从上述技术方案可以看出,本公开实施例至少具有以下有益效果:
采用基于图像反馈的检测方式,使医生能够有效的了解手术器械末端与患者人体组织之间的夹持力,提高了手术的效率和安全性;标记块的尺寸可以很小,几乎不会增加手术器械构型,且不会增加医生的操作难度;通过设计合理的标记块几何结构并进行图像信息识别及接触力建模,提供的力传感器能够检测器械末端六维方向受力,且该力传感器可以获得较高的检测精度;采用机械结构和软件算法实现,无任何电气元器件与病人内部组织或血液直接接触,故无需考虑电器设备对人体的影响以及增加的安全隐患,且能够很方便地处理生物相容性和消毒方面的要求;力传感器可以与多种微创手术器械末端集成使用,例如由于光纤具有柔性特点,力传感器也可应用于柔性微创手术器械等。
采用透明硅胶制作弹性变形体能够便于光纤内窥镜捕捉标记块的图像信息,同时将光纤内窥镜抵设在弹性变形体上,降低光线进入弹性变形体时产生的折射与反射现象,进一步提高捕捉图像的质量;标记块采用四面体,有效简化标记块的形状,为后续根据标记块几何结构获取标记块特征点的空间三维坐标降低了难度。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开实施例的基于图像反馈的六维力传感器及基于图像反馈的六维力传感夹持探头的结构示意图。
图2a和图2b为在图1中所示的夹持探头中建立参考坐标系的示意图;图2b为图2a中所示夹持探头不受力状态下的A-A方向剖视示意图。
图3a为图2a中所示夹持探头受所述参考坐标系X方向作用力时A-A方向相应变形情况的剖视示意图。
图3b为图2a中所示夹持探头受所述参考坐标系X方向力矩时A-A方向相应变形情况的剖视示意图。
图3c为图2a中所示夹持探头受所述参考坐标系Y方向作用力时A-A方向相应变形情况的剖视示意图。
图3d为图2a中所示夹持探头受所述参考坐标系Y方向力矩时A-A方向相应变形情况的剖视示意图。
图3e为图2a中所示夹持探头受所述参考坐标系Z方向作用力时A-A方向相应变形情况的剖视示意图。
图3f为图2a中所示夹持探头受所述参考坐标系Z方向力矩时A-A方向相应变形情况的剖视示意图。
图4为本公开第三实施例基于图像反馈的六维力传感夹持器械的结构示意图。
图5为图4中所示夹持器械中完成夹持探头开合功能的传动系统结构示意图。
图6为本公开第三实施例夹持器械中探头基座的结构示意图。
图7为本公开第三实施例夹持器械中夹持探头与拉杆配合示意图。
图8为本公开第三实施例夹持器械中操作手柄单元的结构示意图。
【符号说明】
1000-夹持探头;
1100-接触端;      1200-弹性变形体;     1300-标记块;
1400-光纤内窥镜;
1500-探头基座;
1510-托台;       1520-拉杆槽;          1530-限位槽;
1540-滑动槽;     1550-基座本体;
1600-活动钳片;   1700-图像信息识别模块;
1800-图像信息处理单元;           1900-接触力建模模块;
2000-力传导单元;
2100-拉杆;
2200-活动钳片连杆;
2210-凸起;
2300-销;
3000-操作手柄单元;
3100-固定端;
3110-手柄连接件;   3120-固定手柄;
3130-导向件;
3131-导向孔;
3200-活动端;
3210-活动手柄;     3220-活动手柄连杆;3230-拉杆连接件;
4000-外壳;
5000-光纤内窥镜通道;
6000-人体组织。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
本公开第一实施例提供了一种基于图像反馈的六维力传感器,如图1所示,六维力传感器包括:
弹性变形体1200,可设置于基座上,弹性变形体1200可与基座贴合设置,基座用于支撑弹性变形体1200。该基座例如可以是探头基座1500。
接触端1100,其可与人体组织6000直接接触,并与弹性变形体1200贴合设置,在接触端1100受到作用力时,弹性变形体1200发生变形。
标记块1300,包括N个特征点,设置在弹性变形体1200内,与接触端1100相对固定设置,当接触端1100受力偏移和/或偏转时,弹性变形体1200发生变形,且标记块1300随接触端1100移动和/或转动,N≥4。
图像信息识别模块1700,用于实时捕捉标记块1300的图像信息并进行处理。
接触力建模模块1900利用图像信息识别模块1700捕捉的标记块1300的图像信息,得出接触端1100与人体组织6000的接触力。
本实施例采用基于图像反馈的检测方式,使医生能够有效的了解手术器械末端(接触端1100)与患者人体组织6000之间的夹持力,提高了手术的效率和安全性。标记块1300的尺寸可以设计的很小,几乎不会增加 手术器械构型,且不会增加医生的操作难度。采用机械结构和软件算法实现,无任何电气元器件与病人内部组织或血液直接接触,故无需考虑电器设备对人体的影响以及增加的安全隐患,且能够很方便地处理生物相容性和消毒方面的要求。
在本实施例中,图像信息识别模块1700包括:光纤内窥镜1400和图像信息处理单元1800。
光纤内窥镜1400,抵设在弹性变形体1200上,用于实时捕捉标记块1300的图像信息。
图像信息处理单元1800,连接光纤内窥镜1400,接收光纤内窥镜1400捕捉的图像信息,利用图像信息和图像处理算法得到标记块1300的特征点的图像坐标信息。
接触力建模模块1900接收图像信息处理单元1800得到的特征点的图像坐标信息,根据特征点的图像坐标信息,结合标记块1300的几何结构,由摄像机成像模型映射得到特征点的空间三维坐标;根据特征点的当前空间三维坐标,以及所述六维力传感器未受力状态下的初始空间三维坐标,计算接触端1100的移动量和/或转动量;根据接触端1100的移动量和/或转动量,得到弹性变形体1200的形变状态;根据弹性变形体1200的形变状态,利用弹性变形体1200的刚度模型,可得出接触端1100与人体组织6000之间接触力的大小和方向。
本实施例中,所述力传感器集成在夹持探头1000上,夹持探头1000包括探头基座1500和活动钳片1600,活动钳片1600可沿其与探头基座1500的铰接轴转动,实现与接触端1100开合,与接触端1100协同夹持人体组织6000。接触端1100、探头基座1500和活动钳片1600采用金属材料。由于弹性变形体1200的弹性模量远小于金属接触端1100和探头基座1500的弹性模量,且手术操作中所述夹持探头1000与人体组织6000之间的夹持力不足以使金属接触端1100和探头基座1500产生较大变形,即接触端1100和探头基座1500的变形可忽略不计,因此根据弹性变形体1200的形变状态,利用弹性变形体1200的刚度模型,可得出接触端1100与人体组织6000之间接触力的大小和方向。
在本实施例中,弹性变形体1200采用透明硅胶,能够便于光纤内窥 镜1400捕捉标记块1300的图像信息。同时将光纤内窥镜1400抵设在弹性变形体1200上,可以降低光线进入弹性变形体1200时产生的折射与反射现象,进一步提高捕捉图像的质量。标记块1300为四面体,特征点为四面体的顶点,能有效简化标记块1300的形状,为后续根据标记块1300几何结构获取标记块特征点的空间三维坐标降低了难度。
本公开第二实施例提供了一种基于图像反馈的六维力传感夹持探头,如图1所示,包括:探头基座1500、活动钳片1600、本公开第一实施例的基于图像反馈的六维力传感器。
探头基座1500,其端部向外延伸形成一托台1510。
活动钳片1600,与探头基座1500的端部铰接连接。
六维力传感器的弹性变形体1200设置在托台1510上,接触端1100与活动钳片1600相对设置,光纤内窥镜1400设置在探头基座1500的内部;其中,活动钳片1600可沿其与探头基座1500的铰接轴转动,实现与接触端1100开合,与接触端1100协同夹持人体组织6000。
图2a和图2b为在图1中所示的夹持探头中建立参考坐标系的示意图。图2b为图2a中所示夹持探头不受力状态下的A-A方向剖视示意图。图3a为图2a中所示夹持探头受所述参考坐标系X方向作用力(具体为图3a中所示
Figure PCTCN2018102235-appb-000001
)时A-A方向相应变形情况的剖视示意图。图3b为图2a中所示夹持探头受所述参考坐标系X方向力矩(具体为图3b中所示
Figure PCTCN2018102235-appb-000002
)时A-A方向相应变形情况的剖视示意图。图3c为图2a中所示夹持探头受所述参考坐标系Y方向作用力(具体为图3c中所示
Figure PCTCN2018102235-appb-000003
)时A-A方向相应变形情况的剖视示意图。图3d为图2a中所示夹持探头受所述参考坐标系Y方向力矩(具体为图3d中所示
Figure PCTCN2018102235-appb-000004
)时A-A方向相应变形情况的剖视示意图。图3e为图2a中所示夹持探头受所述参考坐标系Z方向作用力(具体为图3e中所示
Figure PCTCN2018102235-appb-000005
)时A-A方向相应变形情况的剖视示意图。图3f为图2a中所示夹持探头受所述参考坐标系Z方向力矩(具体为图3f中所示
Figure PCTCN2018102235-appb-000006
)时A-A方向相应变形情况的剖视示意图。本实施例夹持探头受各方向复合力和力矩时,即是以上几种变形情况的叠加。
本公开第三实施例提供了一种基于图像反馈的六维力传感夹持器械。如图4所示,六维力传感夹持器械包括:操作手柄单元3000、力传导单元 2000、本公开第二实施例的基于图像反馈的六维力传感夹持探头1000、外壳4000。
操作手柄单元3000,用于施加作用力。
力传导单元2000,与操作手柄单元3000连接,用于传导作用力。
六维力传感夹持探头1000,与力传导单元2000和外壳4000连接,利用作用力实现活动钳片1600与接触端1100的开合运动,协同夹持人体组织6000。
外壳4000为中空的套管,分别与操作手柄单元3000和探头基座1500固定连接,力传导单元2000穿设于套管内,外壳4000用于辅助实现力传导。
如图5所示,力传导单元2000包括:拉杆2100,穿设于外壳4000内,其一端与操作手柄单元3000连接,另一端通过活动钳片连杆2200与活动钳片1600连接。
力传导单元2000还包括:两根活动钳片连杆2200,相对于活动钳片1600的对称面镜像设置,其一端与活动钳片1600铰接连接,另一端与拉杆2100通过销2300铰接连接。
如图6所示,探头基座1500包括:基座本体1550、托台1510。
基座本体1550呈柱状,其一端向外延伸形成托台1510,另一端与外壳4000连接。
基座本体1550开设有拉杆槽1520,用于容纳拉杆2100。当拉杆2100伸入探头基座1500时,拉杆槽1520引导拉杆2100的运行轨迹。沿拉杆槽1520的延伸方向,拉杆槽1520的两侧对称设置有限位槽1530,销2300嵌合于限位槽1530内。限位槽1530用于引导活动钳片1600的运动轨迹,以限制活动钳片1600开合运动的开口范围;
当操作手柄单元3000带动拉杆2100沿外壳4000及拉杆槽1520运动时,拉杆2100带动活动钳片连杆2200的一端沿限位槽1530运动,活动钳片连杆2200的另一端带动活动钳片1600沿其与探头基座1500的铰接轴转动,拉杆2100带动活动钳片1600相对接触端1100开启或闭合,从而实现通过拉杆2100驱动活动钳片1600与接触端1100协同配合,夹持人体组织6000。
如图5至图7所示,基座本体1550沿限位槽1530的延伸方向还设置有滑动槽1540,用于约束活动钳片1600和活动钳片连杆2200的运动轨迹。活动钳片连杆2200上设置有:凸起2210,对称设置在两根活动钳片连杆2200与拉杆2100的铰接点上,用于使活动钳片连杆2200的一端嵌合于滑动槽1540内。通过凸起2210与滑动槽1540的配合,活动钳片连杆2200在运动的过程中,一端与活动钳片1600铰接,另一端通过凸起2210与滑动槽1540嵌合,活动钳片1600的一端也嵌合于滑动槽1540内,从而限制了活动钳片1600和活动钳片连杆2200在与滑动槽1540垂直的方向上的自由度,使活动钳片1600和活动钳片连杆2200运动更平稳。
如图4所示,操作手柄单元3000包括:固定端3100,与外壳4000固定连接;以及活动端3200,与固定端3100铰接连接,且与拉杆2100连接。其中,通过固定端3100和活动端3200开合,驱动拉杆2100沿外壳4000运动,进而驱动夹持探头1000的开合运动。
如图8所示,固定端3100包括:手柄连接件3110,与外壳4000固定连接,其上设置有用于拉杆2100穿过的拉杆通道;以及固定手柄3120,与手柄连接件3110固定连接,用于提供施力基础。
活动端3200包括:活动手柄3210,其一端与手柄连接件3110铰接连接,用于与固定手柄3120配合实现抓握;活动手柄连杆3220,一端与活动手柄3210铰接连接,另一端通过拉杆连接件3230与拉杆2100铰接连接。
拉杆2100的一端从拉杆通道伸出,并与拉杆连接件3230固定连接,活动手柄3210、活动手柄连杆3220以及拉杆连接件3230构成摇杆滑块机构,活动手柄3210为主动摇杆,活动手柄连杆3220为从动连杆,拉杆连接件3230为滑块,从而将活动手柄3210相对手柄连接件3110的转动运动转化为拉杆连接件3230带动拉杆2100沿拉杆通道的直线运动。
固定端3100还包括:导向件3130,设置在固定手柄3120上,用于为拉杆2100导向并提供辅助支撑。
导向件3130上设置有导向孔3131,对应拉杆通道设置,用于伸入拉杆2100,通过导向孔3131能够引导拉杆2100的运动轨迹,并为拉杆2100提供辅助支撑,从而使拉杆2100的运动更平稳。
其中,如图1、图7和图8所示,探头基座1500、外壳4000以及手柄连接件3110内部均对应设置有光纤内窥镜通道5000,用于容纳光纤内窥镜1400。
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;在不冲突的情况下,本发明实施例中的特征可以任意组合;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。
并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个 权利要求中所明确记载的特征更多的特征。更确切地说,如前面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。

Claims (13)

  1. 一种基于图像反馈的六维力传感器,其中,包括:
    接触端,其与人体组织直接接触;
    弹性变形体,与所述接触端贴合设置,在所述接触端受到作用力时,所述弹性变形体发生变形;
    标记块,包括N个特征点,设置在所述弹性变形体内,与所述接触端相对固定设置,当所述接触端受力而偏移和/或偏转时,所述弹性变形体变形,所述标记块随所述接触端移动和/或转动,N≥4;
    图像信息识别模块,用于实时捕捉所述标记块的图像信息并进行处理。
  2. 根据权利要求1所述的六维力传感器,其中,还包括:接触力建模模块,利用处理后的图像信息得出所述接触端与人体组织的接触力。
  3. 根据权利要求1所述的六维力传感器,其中,还包括:基座,与所述弹性变形体贴合设置,用于支撑所述弹性变形体。
  4. 根据权利要求1所述的六维力传感器,其中,
    所述图像信息识别模块包括:
    光纤内窥镜,用于实时捕捉所述标记块的图像信息;
    图像信息处理单元,接收所述光纤内窥镜捕捉的图像信息,利用所述图像信息和图像处理算法得到所述标记块的所述特征点的图像坐标信息;
    所述接触力建模模块接收所述图像信息处理单元得到的所述图像坐标信息,根据所述特征点的所述图像坐标信息,结合所述标记块的几何结构,由摄像机成像模型映射得到所述特征点的空间三维坐标;
    根据所述特征点的当前空间三维坐标以及所述力传感器未受力状态下的初始空间三维坐标,计算所述接触端的移动量和/或转动量;
    根据所述接触端的移动量和/或转动量,得到所述弹性变形 体的形变状态;
    根据所述弹性变形体的形变状态,利用所述弹性变形体的刚度模型,得出所述接触端与人体组织之间接触力的大小和方向。
  5. 根据权利要求4所述的六维力传感器,其中,所述弹性变形体采用透明硅胶,所述光纤内窥镜抵设在所述弹性变形体上。
  6. 根据权利要求4所述的六维力传感器,其中,所述标记块为四面体,所述特征点为四面体的顶点。
  7. 一种基于图像反馈的六维力传感夹持探头,其中,包括:
    如上述权利要求3至6中任一项所述的基于图像反馈的六维力传感器;
    所述基座包括:探头基座,以及由所述探头基座的端部向外延伸形成的托台,所述弹性变形体设置在所述托台上;以及
    活动钳片,与所述探头基座铰接连接;
    所述接触端与所述活动钳片相对设置,所述光纤内窥镜设置在所述探头基座的内部,所述活动钳片可沿其与所述探头基座的铰接轴转动,实现与所述接触端的开合运动,与所述接触端协同夹持人体组织。
  8. 一种基于图像反馈的六维力传感夹持器械,其中,包括:
    操作手柄单元,用于施加作用力;
    力传导单元,与所述操作手柄单元连接,用于传导所述作用力;
    如权利要求7所述的基于图像反馈的六维力传感夹持探头,与所述力传导单元连接,利用所述作用力实现所述活动钳片与所述接触端的开合运动,协同夹持人体组织;以及
    外壳,分别与所述操作手柄单元和所述探头基座固定连接,罩设在所述力传导单元外侧,用于辅助实现力传导。
  9. 根据权利要求8所述的夹持器械,其中:
    所述力传导单元包括:拉杆,其一端与所述操作手柄单元连接,另一端与所述活动钳片连接;
    其中,所述外壳罩设在所述拉杆外侧,当所述操作手柄单元带动所述拉杆沿所述外壳运动时,所述拉杆带动所述活动钳片相对所述接触端开启或闭合。
  10. 根据权利要求9所述的夹持器械,其中:
    所述探头基座包括:
    拉杆槽,设置在所述探头基座内,用于当所述拉杆伸入所述探头基座时,引导所述拉杆的运行轨迹;
    限位槽,沿所述拉杆槽的延伸方向,对称设置在所述拉杆槽的两侧,用于引导所述活动钳片的运动轨迹,以限制所述活动钳片开合运动的开口范围;
    所述力传导单元还包括:
    两根活动钳片连杆,相对于所述活动钳片的对称面镜像设置,其一端与所述活动钳片铰接连接,另一端与所述拉杆铰接连接;
    所述活动钳片连杆和所述拉杆通过销铰接连接,所述销嵌合于所述限位槽内,当所述拉杆沿所述拉杆槽运动时,所述拉杆带动所述活动钳片连杆的一端沿所述限位槽运动,所述活动钳片连杆的另一端带动所述活动钳片沿其与所述探头基座的铰接轴转动。
  11. 根据权利要求10所述的夹持器械,其中:
    所述探头基座还包括:滑动槽,沿所述限位槽的延伸方向设置,用于约束所述活动钳片和所述活动钳片连杆的运动轨迹;
    所述活动钳片连杆上设置有:凸起,对称设置在两根所述活动钳片连杆与所述拉杆的铰接点上,用于使所述活动钳片连杆的一端嵌合于所述滑动槽内。
  12. 根据权利要求9所述的夹持器械,其中,所述操作手柄单元包括:
    固定端,与所述外壳固定连接,包括:
    手柄连接件,与所述外壳固定连接,其上设置有用于所述拉杆通过的拉杆通道;以及
    固定手柄,与所述手柄连接件固定连接,用于提供施力基础;以及
    活动端,与所述固定端铰接连接,且与所述拉杆连接,包括:
    活动手柄,与所述手柄连接件铰接连接,用于与所述固定手柄配合实现抓握;以及
    活动手柄连杆,一端与所述活动手柄铰接连接,另一端与拉杆连接件铰接连接;
    所述拉杆的一端从所述拉杆通道伸出,并与所述拉杆连接件固定连接,所述活动手柄、所述活动手柄连杆以及所述拉杆连接件构成摇杆滑块机构,所述活动手柄为主动摇杆,所述活动手柄连杆为从动连杆,所述拉杆连接件为滑块,所述拉杆连接件带动所述拉杆在所述拉杆通道内作直线运动。
  13. 根据权利要求12所述的夹持器械,其中:
    所述固定端还包括:
    导向件,设置在所述固定手柄上,用于为所述拉杆导向并提供辅助支撑,该导向件上设置有导向孔,对应所述拉杆通道设置,用于伸入所述拉杆;
    其中,所述探头基座、所述外壳以及所述手柄连接件内部均对应设置有光纤内窥镜通道。
PCT/CN2018/102235 2018-02-14 2018-08-24 基于图像反馈的六维力传感器、夹持探头及夹持器械 WO2019157806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810153157.6 2018-02-14
CN201810153157.6A CN108542469B (zh) 2018-02-14 2018-02-14 基于图像反馈的六维力传感器、夹持探头及夹持器械

Publications (1)

Publication Number Publication Date
WO2019157806A1 true WO2019157806A1 (zh) 2019-08-22

Family

ID=63515918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102235 WO2019157806A1 (zh) 2018-02-14 2018-08-24 基于图像反馈的六维力传感器、夹持探头及夹持器械

Country Status (2)

Country Link
CN (1) CN108542469B (zh)
WO (1) WO2019157806A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109551507B (zh) * 2019-01-15 2020-12-29 中国海洋大学 一种基于机器学习的软体机械手
CN111991087B (zh) * 2020-09-10 2022-02-11 苏州大学 一种微创手术机器人及其末端执行器
CN114831736B (zh) * 2022-04-15 2023-10-20 江苏唯德康医疗科技有限公司 一种具有力反馈的自然腔道手术用夹持器械
CN116549123B (zh) * 2023-07-11 2023-08-29 西安交通大学医学院第一附属医院 一种用于口腔器械抓取放置的机械手

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110137337A1 (en) * 2008-05-30 2011-06-09 Vieugels Holding B.V. Instrument for Minimally Invasive Surgery
CN102151179A (zh) * 2011-05-13 2011-08-17 南开大学 用于微创外科手术机器人的三维力传感器
CN202105024U (zh) * 2011-04-28 2012-01-11 黑龙江科技学院 手术微器械三维力传感器
CN103376172A (zh) * 2013-07-10 2013-10-30 上海交通大学 用于微创外科手术机器人的六维力觉传感器
CN104783865A (zh) * 2015-04-09 2015-07-22 上海交通大学 一种基于光纤布拉格光栅的腹腔镜三维力传感抓钳
CN105606272A (zh) * 2015-10-30 2016-05-25 哈尔滨工程大学 三维测力传感器和应用三维测力传感器的手术微器械指尖

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110137337A1 (en) * 2008-05-30 2011-06-09 Vieugels Holding B.V. Instrument for Minimally Invasive Surgery
CN202105024U (zh) * 2011-04-28 2012-01-11 黑龙江科技学院 手术微器械三维力传感器
CN102151179A (zh) * 2011-05-13 2011-08-17 南开大学 用于微创外科手术机器人的三维力传感器
CN103376172A (zh) * 2013-07-10 2013-10-30 上海交通大学 用于微创外科手术机器人的六维力觉传感器
CN104783865A (zh) * 2015-04-09 2015-07-22 上海交通大学 一种基于光纤布拉格光栅的腹腔镜三维力传感抓钳
CN105606272A (zh) * 2015-10-30 2016-05-25 哈尔滨工程大学 三维测力传感器和应用三维测力传感器的手术微器械指尖

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, YUNDONG, RESEARCH ON TACTILE SENSING TECHNOLOGY BASED ON 3D DEFORMATION OF ELASTIC BODY, 20 April 2016 (2016-04-20), pages 26 - 65 *

Also Published As

Publication number Publication date
CN108542469A (zh) 2018-09-18
CN108542469B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2019157806A1 (zh) 基于图像反馈的六维力传感器、夹持探头及夹持器械
JP6942360B2 (ja) ロボット手術用の外科器具及びロボット外科手術アセンブリ
Tavakoli et al. Haptic interaction in robot‐assisted endoscopic surgery: a sensorized end‐effector
EP2323564B1 (en) Modular tool with signal feedback
US20190094084A1 (en) Fluid pressure based end effector force transducer
De Donno et al. Introducing STRAS: A new flexible robotic system for minimally invasive surgery
He et al. Toward clinically applicable steady-hand eye robot for vitreoretinal surgery
CN110087559A (zh) 具有可选运动控制断联场的机器人外科系统
US20110046637A1 (en) Sensorized medical instrument
EP3025673A1 (en) Medical system and medical treatment tool control method
CN115363770A (zh) 用于控制外科器械的系统和方法
US11969225B2 (en) End effector force feedback to master controller
US10245111B2 (en) Operation support device
Noonan et al. Gaze contingent articulated robot control for robot assisted minimally invasive surgery
US20140379014A1 (en) Endoscopic Instrument
CN214549342U (zh) 软式内镜手术执行器
JPH08224247A (ja) 医療用マニピュレータ
US20150045620A1 (en) Curved manual surgical equipment
CN113100946A (zh) 高度集成化的手术机器人执行器及手术机器人系统
WO2023024600A1 (zh) 一种多自由度的便携微创手术机械臂
CN217366085U (zh) 一种主端操作装置和手术机器人
Ren et al. ACTORS: adaptive and compliant transoral robotic surgery with flexible manipulators and intelligent guidance
JP4145464B2 (ja) 遠隔マイクロサージェリシステムおよびスレーブマニュピュレータの挿入方法。
KR20170125174A (ko) 최소침습수술용 로봇장치
Morel et al. Comanipulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06.10.2020

122 Ep: pct application non-entry in european phase

Ref document number: 18906412

Country of ref document: EP

Kind code of ref document: A1