WO2019157753A1 - 侦听方法和设备 - Google Patents

侦听方法和设备 Download PDF

Info

Publication number
WO2019157753A1
WO2019157753A1 PCT/CN2018/076898 CN2018076898W WO2019157753A1 WO 2019157753 A1 WO2019157753 A1 WO 2019157753A1 CN 2018076898 W CN2018076898 W CN 2018076898W WO 2019157753 A1 WO2019157753 A1 WO 2019157753A1
Authority
WO
WIPO (PCT)
Prior art keywords
listening
carrier sensing
listening direction
sending node
node
Prior art date
Application number
PCT/CN2018/076898
Other languages
English (en)
French (fr)
Inventor
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/076898 priority Critical patent/WO2019157753A1/zh
Priority to CN201880088945.XA priority patent/CN111699749A/zh
Priority to AU2018409036A priority patent/AU2018409036A1/en
Priority to KR1020207026325A priority patent/KR20200120706A/ko
Priority to JP2020543304A priority patent/JP2021517386A/ja
Priority to EP18906206.0A priority patent/EP3751946A4/en
Publication of WO2019157753A1 publication Critical patent/WO2019157753A1/zh
Priority to US16/992,608 priority patent/US11641588B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • Embodiments of the present application relate to the field of communications, and more particularly, to a listening method and apparatus.
  • the 5G system supports data transmission on unlicensed bands.
  • unlicensed bands for data transmission, it is based on the Listen Before Talk (LBT) mechanism. That is, before sending the data, the transmitting node first needs to listen to whether the channel is idle, and determines that the channel is idle before transmitting the data. Therefore, how to effectively perform carrier sensing on the transmitting node to improve the signal transmission performance between the transmitting node and the receiving node in the unlicensed frequency band becomes an urgent problem to be solved.
  • LBT Listen Before Talk
  • the embodiment of the present application provides a listening method and device, and a transmitting node can effectively perform carrier sensing, thereby improving signal transmission performance between a transmitting node and a receiving node in an unlicensed frequency band.
  • a listening method including: a sending node determining, according to a beam direction used by the sending node to send data to a receiving node, at least one listening direction to be intercepted; Performing carrier sensing on at least one listening direction; the transmitting node transmitting data to the receiving node by using the beam direction based on a listening result in the at least one listening direction.
  • the transmitting node determines at least one listening direction to be intercepted based on the direction of the transmitting beam that transmits the data to the receiving node, and performs directional listening in at least one listening direction, thereby based on the at least one listening direction.
  • the result of the interception sends data to the sending node, thus avoiding interference of data transmission between the sending node and other nodes, and improving signal transmission performance between different nodes in the unlicensed frequency band.
  • the at least one listening direction includes a first listening direction and/or a second listening direction, where the first listening direction is that the sending node sends data to the receiving node.
  • the direction is that the sending node sends data to the receiving node.
  • the second listening direction is a back direction of the first listening direction.
  • the sending node performs carrier sensing on the at least one listening direction, including: the sending node performs carrier sensing on the at least one listening direction until the intercepting station The channel in at least one listening direction is idle.
  • the at least one listening direction includes the first listening direction and the second listening direction
  • the sending node performs carrier sensing on the at least one listening direction.
  • the method includes: the sending node performing carrier sensing on the first listening direction, and detecting the first listening direction
  • the second listening direction is subjected to carrier sensing until the channel in the second listening direction is also detected to be idle; or the transmitting node is in the second listening direction.
  • carrier sensing and after detecting that the channel in the second intercepting direction is idle, performing carrier sensing on the first listening direction until the first listening direction is detected. The channel is also idle.
  • the sending node performs carrier sensing on the at least one listening direction, including: the sending node performing, in the at least one listening window, the at least one listening direction Carrier sense
  • the listening window used by the sending node to perform carrier sensing on the first listening direction is a first listening window, and the sending node uses carrier sensing for the second listening direction.
  • the listening window is a second listening window, the first listening window is located before the second listening window, or the first listening window is located after the second listening window, or the first The listening window overlaps with the second listening window.
  • the method before the sending node performs carrier sensing on the at least one listening direction, the method further includes: the sending node receiving configuration information sent by the receiving node, The configuration information is used to indicate the interception information used for carrier sensing; or the sending node acquires the interception information pre-existing in the sending node;
  • the interception information includes at least one of the following information: the at least one listening direction, the listening order of different listening directions, and the information of the listening window corresponding to different listening directions.
  • the information of the listening window includes a time domain length and/or a time starting position of the listening window.
  • the method before the sending node receives the configuration information sent by the receiving node, the method further includes: sending, by the sending node, the listening capability of the sending node to the receiving node Information, the listening capability indicating the ability of the sending node to support the listening direction and/or the listening order.
  • the sending node performs carrier sensing on the at least one listening direction, including: the sending node simultaneously adopting multiple listening directions including the at least one listening direction Perform carrier sensing.
  • a listening method including: a receiving node sending configuration information to a sending node, where the configuration information is used to indicate that the sending node performs interception information used for carrier sensing, and the intercepting information At least one of the following information is included: at least one listening direction to be listened to, a listening order of the at least one listening direction, and a listening window used for carrier sensing of the at least one listening direction Information, wherein the at least one listening direction is determined by the transmitting node according to a beam used by the transmitting node to transmit data to the receiving node.
  • the receiving node configures a different listening direction to the sending node, so that the sending node directly senses the beam in at least one listening direction, and then sends the sounding based on the interception result in the at least one listening direction.
  • the node sends data, thus avoiding the interference of data transmission between the sending node and other nodes, and improving the signal transmission performance between different nodes in the unlicensed frequency band.
  • the at least one listening direction includes a first listening direction and/or a second listening direction, where the first listening direction is that the sending node sends data to the receiving node.
  • the direction is that the sending node sends data to the receiving node.
  • the second listening direction is a back direction of the first listening direction.
  • the method before the sending node sends the configuration information to the sending node, the method further includes: receiving, by the receiving node, information about a listening capability of the sending node sent by the sending node,
  • the listening capability represents the ability of the transmitting node to support the listening direction and/or the listening order.
  • a transmitting node device which can perform the operations of the transmitting node in the above first aspect or any optional implementation of the first aspect.
  • the terminal device may comprise a modular unit configured to perform the operations of the transmitting node in any of the above-described first aspects or any of the possible implementations of the first aspect.
  • a receiving node device which can perform the operations of the receiving node in the above first aspect or any optional implementation of the first aspect.
  • the network device may comprise a modular unit configured to perform the operations of the receiving node in any of the possible implementations of the second aspect or the second aspect described above.
  • a transmitting node device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is configured to store instructions that are configured to execute instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the transmitting node device to perform the method of the first aspect or any possible implementation of the first aspect, or the performing causes the transmitting node device to implement the second aspect Send node device.
  • a receiving node device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is configured to store instructions that are configured to execute instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the receiving node device to perform the method in any of the possible implementations of the second aspect or the second aspect, or the performing causes the receiving node device to implement the fourth aspect Receive node device.
  • a system chip comprising an input interface, an output interface, a processor, and a memory, the processor configured to execute an instruction stored by the memory, when the instruction is executed, the processor can implement The method of any of the preceding first aspect or any possible implementation of the first aspect.
  • a system chip in an eighth aspect, includes an input interface, an output interface, a processor, and a memory, the processor configured to execute an instruction stored by the memory, when the instruction is executed, the processor can implement The method of any of the preceding second aspect or any of the possible implementations of the second aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the first aspect or the first aspect of the first aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the above-described second or second aspect of the second aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic flowchart of a listening method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a listening direction according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a listening method according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a sending node device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a receiving node device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UPD Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • Network device 100 may provide communication coverage for a particular geographic area and may communicate with terminal devices (e.g., UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, A network side device in a future 5G network or a network device in a publicly available Public Land Mobile Network (PLMN) in the future.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes at least one terminal device, such as terminal device 121 and terminal device 122, located within the coverage of network device 110.
  • Terminal device 121 and terminal device 122 may be mobile or fixed.
  • the terminal device 121 and the terminal device 122 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • a device to device (D2D) communication may be performed between the terminal device 121 and the terminal device 122.
  • D2D device to device
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like.
  • network entities such as a network controller, a mobility management entity, and the like.
  • the frequency band used for data transmission is higher than the frequency band used in LTE, so the path loss of the wireless signal transmission becomes large, and the coverage of the wireless signal becomes small.
  • beamforming technology is proposed in 5G systems to increase the gain of wireless signals to compensate for path loss.
  • the beam used by the base station to send signals to the terminal device has directivity, and different beams actually correspond to different transmission directions, and each narrow beam can only cover a partial area of the cell, and cannot cover all areas in the cell.
  • FIG. 1 shows four beams in different directions, namely, beam B1, beam B2, beam B3, and beam B4, and the base station can transmit signals to the terminal device through four different directions of beams.
  • the base station can transmit signals to the terminal device 121 through the beam B1 and the beam B2, and transmit signals to the terminal device 122 through the beam B3 and the beam B4.
  • LBT Listening Before Talk
  • WiFi Wireless Fidelity
  • RTS Request-To-Send
  • CTS Clear-To-Send
  • LBT Listen Before Talk
  • CSI-RS Channel State Indication Reference Signals
  • SRS Sounding Reference Signal Reference Signals
  • SSB Synchronizing Signal Block
  • the transmission and measurement process of the reference signal acquires a link with the best measurement result for data transmission.
  • both the network device and the terminal device have multiple beam direction transmission and reception capabilities.
  • the terminal device uses the beam B1 to send uplink data to the network device, and the network device uses the beam B3 to receive the data, and the optimal transmission can be obtained.
  • the performance, that is, the measurement result on this link is optimal, the beam B3 of the network device and the beam B1 of the terminal device form an optimal beam pair.
  • the embodiment of the present application proposes that the sending node passes Directly listening to the beam in at least one listening direction, and transmitting data to the transmitting node based on the interception result in the at least one listening direction, thereby avoiding data transmission between the transmitting node and other nodes. Interference to improve signal transmission performance between different nodes on unlicensed bands.
  • FIG. 2 is a schematic flowchart of a listening method according to an embodiment of the present application.
  • the transmitting node shown in FIG. 2 may be, for example, the network device 110, the terminal device 121, or the terminal device 122 shown in FIG. 1.
  • the method shown in FIG. 2 can be applied to an unlicensed frequency band.
  • the listening method may include some or all of the following contents:
  • the transmitting node determines at least one listening direction to be intercepted according to a beam direction used by the transmitting node to transmit data to the receiving node.
  • the at least one listening direction comprises a first listening direction and/or a second listening direction.
  • the first listening direction is a direction in which the sending node sends data to the receiving node, for example, the first listening direction is consistent with a beam direction used by the sending node to send data to the receiving node.
  • the second listening direction is a back direction of the first listening direction.
  • the transmitting node is a terminal device 121
  • the terminal device 121 transmits data to the network device 110 by using the beam B1
  • the terminal device 121 determines at least one listening direction to be intercepted according to the direction of the beam B1
  • the at least A listening direction may include a first listening direction and a second listening direction opposite to the first listening direction, where the first listening direction is the direction of the beam B1 of the terminal device 121, and the second listening direction The direction of the beam B2 of the terminal device.
  • the transmitting node performs carrier sensing on the at least one listening direction.
  • other nodes such as the terminal device 122 and the terminal device 123, may exist in the vicinity of the terminal device 121, wherein the terminal device 122 is a node of the first listening direction accessory, and the terminal device 123 is a node of the second listening direction accessory, assuming The terminal device 122 and the terminal device 123 use an omnidirectional antenna for data transmission.
  • the terminal device 121 may perform carrier sensing in the first listening direction before transmitting data to the network device 110, so that if the terminal device 122 has data being transmitted, the terminal device 121 can detect the channel in the first listening direction. For occupation.
  • the terminal device 121 can also perform carrier sensing in the second listening direction, so that if the terminal device 123 has data being transmitted, the terminal device 123 can detect that the channel in the second listening direction is occupied.
  • the terminal device can intercept the first listening direction, that is, the hidden device in the first listening direction, that is, the terminal device 122, thereby preventing the terminal device 121 from interfering with the data transmission of the terminal device 122.
  • the terminal device can detect the second listening direction, so that the hidden device in the second listening direction, that is, the terminal device 123, can be excluded, thereby preventing the terminal device 123 from interfering with the data transmission of the terminal device 121. Therefore, the signal transmission performance between different nodes on the unlicensed band is improved.
  • the transmitting node transmits data to the receiving node based on the interception result in the at least one listening direction, using the beam direction.
  • the transmitting node determines at least one listening direction to be intercepted based on the direction of the transmitting beam that transmits the data to the receiving node, and performs directional listening in at least one listening direction, thereby based on the at least one listening direction.
  • the result of the interception sends data to the sending node, thus avoiding interference of data transmission between the sending node and other nodes, and improving signal transmission performance between different nodes in the unlicensed frequency band.
  • the transmitting node can perform carrier sensing on the at least one listening direction based on two ways. Described separately below.
  • the sending node performs carrier sensing on the at least one listening direction, including: the sending node performs carrier sensing on the at least one listening direction, until the channel in the at least one listening direction is detected as idle.
  • the transmitting node performs carrier sensing on the first listening direction until the channel in the first listening direction is detected to be idle, and uses the beam direction to send data to the receiving node.
  • the transmitting node performs carrier sensing on the second listening direction until the channel in the second listening direction is detected to be idle, and uses the beam direction to send data to the receiving node.
  • the sending node performs carrier sensing on the first listening direction and the second listening direction until the channels in the first listening direction and the second listening direction are both idle.
  • the beam direction is used, data is transmitted to the receiving node.
  • the sending node may perform carrier sensing on the first listening direction, and after detecting that the channel in the first listening direction is idle, performing carrier sensing on the second listening direction until the detecting When the channel in the second listening direction is also idle, the beam direction is used to send data to the receiving node; or
  • the transmitting node may first perform carrier sensing on the second listening direction, and after detecting that the channel in the second listening direction is idle, performing carrier sensing on the first listening direction until the detecting When the channel in the first listening direction is also idle, the beam direction is used to transmit data to the receiving node.
  • the sending node performs carrier sensing on the at least one listening direction, and the sending node performs carrier sensing on the at least one listening direction of the target beam in the at least one listening window.
  • the listening window used by the sending node to perform carrier sensing on the first listening direction is a first listening window, and the sending node uses carrier sensing for the second listening direction.
  • the listening window is the second listening window.
  • the first listening window is located before the second listening window, or the first listening window is located after the second listening window, or the first listening window and the second listening The windows overlap.
  • the first listening window and the second listening window may for example be equal to 16 us or 25 us.
  • the transmitting node when the transmitting node performs carrier sensing on the first listening direction and the second listening direction, it is in a different listening window.
  • the transmitting node performs carrier sensing on the first listening direction in the first listening window, and performs carrier sensing on the second listening direction in the second listening window. If the carrier sense is performed on the second listening direction after performing carrier sensing on the first listening direction, the first listening window is temporally located before the second listening window; if it is the second listening first After the carrier senses, the carrier sense is performed on the first listening direction, and the second listening window is located in front of the first listening window in time; if the first listening direction and the second listening direction are simultaneously performed Carrier sense, the first listening window and the second listening window overlap in time.
  • the listening window may not be set, but the data is sent to the receiving node by using the beam direction until the channel in the at least one listening direction is detected to be idle.
  • a beam used to receive a signal can be understood as a spatial domain reception filter used to receive a signal; a beam used to transmit a signal can be understood as , a spatial domain transmission filter used to transmit a signal.
  • the two signals can be said to be Quasi-Co-Located (QCL) with respect to the spatial receive parameters.
  • the sending node receives the configuration information sent by the receiving node, where the configuration information is used to indicate the interception information used for carrier sensing; or the sending node acquires the pre-existing in the sending node.
  • the interception information is used to indicate the interception information used for carrier sensing; or the sending node acquires the pre-existing in the sending node.
  • the interception information includes at least one of the following information: the at least one listening direction, the listening order of different listening directions, and the information of the listening window corresponding to different listening directions.
  • the information of the listening window includes, for example, the time domain length and/or the time starting position of the listening window.
  • the listening node specifically listens to which listening directions, and the listening order of each listening direction, or the information of the listening window for listening to different listening directions, may be network device configuration. Or, as previously agreed and pre-existing in the sending node, for example, as specified in the protocol.
  • the method further includes: the sending node sending, to the receiving node, information about a listening capability of the sending node, where the listening capability indicates The ability of the sending node to support the listening direction and/or the listening order.
  • the sending node reports information such as the transmit beam, the supported listening direction, and the listening sequence that the support node can support to the receiving node, and the receiving node selects the listening direction for the final listening and uses the listening sequence, and configures the sending. node.
  • the sending node performs carrier sensing on the at least one listening direction, including: the sending node simultaneously performing carrier sensing on multiple listening directions including the at least one listening direction.
  • the sending node performs carrier sensing on the at least one listening direction, including: the sending node simultaneously performing carrier sensing on multiple listening directions including the at least one listening direction.
  • the sending node can support omnidirectional listening or quasi-omnidirectional listening.
  • the transmitting node simultaneously opens a plurality of panels to listen in all directions supported by the transmitting node, or the transmitting node opens a partial panel to listen in a partial direction.
  • FIG. 4 is a schematic flowchart of a listening method according to an embodiment of the present application.
  • the transmitting node shown in Fig. 4 may be, for example, the network device 110, the terminal device 121, or the terminal device 122 shown in Fig. 1.
  • the method shown in FIG. 4 can be applied to an unlicensed frequency band.
  • the listening method can include some or all of the following contents:
  • the receiving node sends configuration information to the sending node, where the configuration information is used to indicate the listening information used by the transmitting node for carrier sensing.
  • the interception information includes at least one of the following information: at least one listening direction, a listening order of the at least one listening direction, and a listening window used for carrier sensing of the at least one listening direction. Information.
  • the at least one listening direction is determined by the sending node according to a first listening direction used by the sending node to send data to the receiving node.
  • the receiving node configures a different listening direction to the sending node, so that the sending node directly senses the beam in at least one listening direction, and then sends the sounding based on the interception result in the at least one listening direction.
  • the node sends data, thus avoiding the interference of data transmission between the sending node and other nodes, and improving the signal transmission performance between different nodes in the unlicensed frequency band.
  • the at least one listening direction comprises a first listening direction and/or a second listening direction.
  • the first listening direction is a direction in which the sending node sends data to the receiving node, for example, the first listening direction is consistent with a beam direction used by the sending node to send data to the receiving node.
  • the second listening direction is a back direction of the first listening direction.
  • the method further includes: receiving, by the receiving node, information about the listening capability of the sending node sent by the sending node.
  • the listening capability indicates the ability of the sending node to support the listening direction and/or the listening order.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • FIG. 5 is a schematic block diagram of a transmitting node device 500 in accordance with an embodiment of the present application.
  • the transmitting node device 500 includes a determining unit 510, a listening unit 520, and a transceiving unit 530. among them:
  • the determining unit 510 is configured to: determine, according to a beam direction used by the sending node device to send data to the receiving node device, at least one listening direction to be intercepted;
  • the listening unit 520 is configured to: perform carrier sensing on the at least one listening direction;
  • the transceiver unit 510 is further configured to send data to the receiving node device by using the beam direction based on the interception result in the at least one listening direction.
  • the transmitting node determines at least one listening direction to be intercepted based on the direction of the transmitting beam that transmits the data to the receiving node, and performs directional listening in at least one listening direction, thereby based on the at least one listening direction.
  • the result of the interception sends data to the sending node, thus avoiding interference of data transmission between the sending node and other nodes, and improving signal transmission performance between different nodes in the unlicensed frequency band.
  • the at least one listening direction includes a first listening direction and/or a second listening direction, where the first listening direction is a direction in which the sending node device sends data to the receiving node device.
  • the second listening direction is a back direction of the first listening direction.
  • the listening unit 520 is configured to perform carrier sensing on the at least one listening direction until the channel in the at least one listening direction is detected to be idle.
  • the at least one listening direction includes the first listening direction and the second listening direction
  • the listening unit 520 is specifically configured to perform carrier sensing on the first listening direction. And after detecting that the channel in the first interception direction is idle, performing carrier sensing on the second interception direction until the channel in the second interception direction is detected to be idle. Or performing carrier sensing on the second listening direction, and after detecting that the channel in the second listening direction is idle, performing carrier sensing on the first listening direction until the detecting The channel in the first listening direction is also idle.
  • the listening unit 520 is configured to perform carrier sensing on the at least one listening direction in the at least one listening window, where the sending node device is in the first listening
  • the listening window used for performing carrier sensing in the direction is a first listening window
  • the listening window used by the transmitting node device to perform carrier sensing on the second listening direction is a second listening window, a first listening window is located before the second listening window, or the first listening window is located after the second listening window, or the first listening window overlaps with the second listening window .
  • the listening unit 520 is configured to: receive, by using the transceiver unit 510, configuration information sent by the receiving node device, where the configuration information is used to indicate the interception information used for carrier sensing; or Obtaining the interception information pre-existing in the sending node device, where the interception information includes at least one of the following information: the at least one listening direction, the listening order of different listening directions, And information about the listening window corresponding to different listening directions.
  • the information of the listening window includes a time domain length and/or a time starting position of the listening window.
  • the transceiver unit 510 is further configured to: send, to the receiving node device, information about a listening capability of the sending node device, where the listening capability indicates a listening direction that the sending node device can support and / or the ability to listen to the order.
  • the listening unit 520 is specifically configured to perform carrier sensing simultaneously on multiple listening directions including the at least one listening direction.
  • the sending node device 500 can perform the corresponding operations performed by the sending node in the foregoing method 200. For brevity, no further details are provided herein.
  • FIG. 6 is a schematic block diagram of a receiving node device 600 in accordance with an embodiment of the present application.
  • the receiving node device 600 includes a transceiver unit 610 configured to: send configuration information to the sending node device, where the configuration information is used to indicate the listening information used by the sending node device for carrier sensing.
  • the interception information includes at least one of the following: at least one listening direction to be intercepted, a listening order of the at least one listening direction, and carrier detection on the at least one listening direction. Listening to the information of the listening window used, the at least one listening direction is determined by the transmitting node device according to a beam direction used by the sending node device to transmit data to the receiving node device.
  • the receiving node configures a different listening direction to the sending node, so that the sending node directly senses the beam in at least one listening direction, and then sends the sounding based on the interception result in the at least one listening direction.
  • the node sends data, thus avoiding the interference of data transmission between the sending node and other nodes, and improving the signal transmission performance between different nodes in the unlicensed frequency band.
  • the at least one listening direction includes a first listening direction and/or a second listening direction, where the first listening direction is a direction in which the sending node sends data to the receiving node.
  • the second listening direction is a back direction of the first listening direction.
  • the transceiver unit 620 is further configured to: receive information about a listening capability of the sending node device that is sent by the sending node device, where the listening capability indicates a listening direction that the sending node device can support And/or the ability to listen to the order.
  • receiving node device 600 can perform the corresponding operations performed by the receiving node in the foregoing method 400, and details are not described herein for brevity.
  • FIG. 7 is a schematic structural diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device includes a processor 710, a transceiver 720, and a memory 730, wherein the processor 710, the transceiver 720, and the memory 730 communicate with each other through an internal connection path.
  • the memory 730 is configured to store instructions
  • the processor 710 is configured to execute instructions stored by the memory 730 to control the transceiver 720 to receive signals or transmit signals.
  • the processor 710 can call the program code stored in the memory 730 to perform the corresponding operations performed by the sending node in the method 200.
  • the processor 710 can call the program code stored in the memory 730 to perform the corresponding operations performed by the sending node in the method 200.
  • the processor 710 can call the program code stored in the memory 730 to perform the corresponding operations performed by the receiving node in the method 400.
  • the processor 710 can call the program code stored in the memory 730 to perform the corresponding operations performed by the receiving node in the method 400.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • FIG. 8 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • the system chip 800 of FIG. 8 includes an input interface 801, an output interface 802, at least one processor 803, and a memory 804.
  • the input interface 801, the output interface 802, the processor 803, and the memory 804 are interconnected by an internal connection path.
  • the processor 803 is configured to execute code in the memory 804.
  • the processor 803 can implement the corresponding operations performed by the transmitting node in the method 200. For the sake of brevity, it will not be repeated here.
  • the processor 803 can implement the corresponding operations performed by the receiving node in the method 400. For the sake of brevity, it will not be repeated here.
  • B corresponding to (corresponding to) A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种侦听方法和设备,包括:发送节点根据所述发送节点向接收节点发送数据所使用的波束方向,确定待侦听的至少一个侦听方向;所述发送节点对所述至少一个侦听方向,进行载波侦听;所述发送节点基于所述至少一个侦听方向上的侦听结果,使用所述波束方向,向所述接收节点发送数据。

Description

侦听方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及侦听方法和设备。
背景技术
5G系统中支持非授权频段上的数据传输,在使用非授权频段进行数据传输时是基于先听后说(Listen Before Talk,LBT)机制。即,发送节点在发送数据之前,首先需要侦听信道是否空闲,确定信道为空闲后才发送数据。因此,发送节点如何有效地进行载波侦听以提高非授权频段上发送节点和接收节点之间的信号传输性能,成为亟待解决的问题。
发明内容
本申请实施例提供了一种侦听方法和设备,发送节点能够有效地进行载波侦听,从而提高非授权频段上发送节点和接收节点之间的信号传输性能。
第一方面,提供了一种侦听方法,包括:发送节点根据所述发送节点向接收节点发送数据所使用的波束方向,确定待侦听的至少一个侦听方向;所述发送节点对所述至少一个侦听方向,进行载波侦听;所述发送节点基于所述至少一个侦听方向上的侦听结果,使用所述波束方向,向所述接收节点发送数据。
因此,发送节点基于向接收节点发送数据的发送波束的方向,确定待侦听的至少一个侦听方向,并在至少一个侦听方向上进行方向性的侦听,从而基于该至少一个侦听方向上的侦听结果,向发送节点发送数据,因此避免了发送节点与其他节点之间的数据传输的干扰,提高了非授权频段上不同节点之间的信号传输性能。
在一种可能的实现方式中,所述至少一个侦听方向包括第一侦听方向和/或第二侦听方向,所述第一侦听方向为所述发送节点向所述接收节点发送数据的方向。
在一种可能的实现方式中,所述第二侦听方向为所述第一侦听方向的背向。
在一种可能的实现方式中,所述发送节点对所述至少一个侦听方向进行 载波侦听,包括:所述发送节点对所述至少一个侦听方向进行载波侦听,直至侦听到所述至少一个侦听方向上的信道为空闲。
在一种可能的实现方式中,所述至少一个侦听方向包括所述第一侦听方向和所述第二侦听方向,所述发送节点对所述至少一个侦听方向进行载波侦听,直至侦听到所述至少一个侦听方向上的信道为空闲,包括:所述发送节点对所述第一侦听方向进行载波侦听,并在侦听到所述第一侦听方向上的信道为空闲后,对所述第二侦听方向进行载波侦听,直到侦听到所述第二侦听方向上的信道也为空闲;或者,所述发送节点对所述第二侦听方向进行载波侦听,并在侦听到所述第二侦听方向上的信道为空闲后,对所述第一侦听方向进行载波侦听,直到侦听到所述第一侦听方向上的信道也为空闲。
在一种可能的实现方式中,所述发送节点对所述至少一个侦听方向进行载波侦听,包括:所述发送节点在至少一个侦听窗口中,分别对所述至少一个侦听方向进行载波侦听;
其中,所述发送节点对所述第一侦听方向进行载波侦听所使用的侦听窗口为第一侦听窗口,所述发送节点对所述第二侦听方向进行载波侦听所使用的侦听窗口为第二侦听窗口,所述第一侦听窗口位于所述第二侦听窗口之前,或者所述第一侦听窗口位于所述第二侦听窗口之后,或者所述第一侦听窗口与所述第二侦听窗口重叠。
在一种可能的实现方式中,在所述发送节点对所述至少一个侦听方向进行载波侦听之前,所述方法还包括:所述发送节点接收所述接收节点发送的配置信息,所述配置信息用于指示进行载波侦听所使用的侦听信息;或者,所述发送节点获取预存在所述发送节点中的所述侦听信息;
其中,所述侦听信息包括以下信息中的至少一种:所述至少一个侦听方向、不同侦听方向的侦听顺序、以及不同侦听方向对应的侦听窗口的信息。
在一种可能的实现方式中,所述侦听窗口的信息包括所述侦听窗口的时域长度和/或时间起始位置。
在一种可能的实现方式中,在所述发送节点接收所述接收节点发送的配置信息之前,所述方法还包括:所述发送节点向所述接收节点发送所述发送节点的侦听能力的信息,所述侦听能力表示所述发送节点能够支持的侦听方向和/或侦听顺序的能力。
在一种可能的实现方式中,所述发送节点对所述至少一个侦听方向进行 载波侦听,包括:所述发送节点对包括所述至少一个侦听方向在内的多个侦听方向同时进行载波侦听。
第二方面,提供了一种侦听方法,包括:接收节点向发送节点发送配置信息,所述配置信息用于指示所述发送节点进行载波侦听所使用的侦听信息,所述侦听信息包括以下信息中的至少一种:待侦听的至少一个侦听方向、所述至少一个侦听方向的侦听顺序、以及对所述至少一个侦听方向进行载波侦听所使用的侦听窗口的信息,其中,所述至少一个侦听方向是所述发送节点根据所述发送节点向接收节点发送数据所使用的波束确定的。
因此,接收节点通过向发送节点配置不同的侦听方向,使得发送节点在至少一个侦听方向上对波束进行方向性的侦听,从而基于该至少一个侦听方向上的侦听结果,向发送节点发送数据,因此避免了发送节点与其他节点之间的数据传输的干扰,提高了非授权频段上不同节点之间的信号传输性能。
在一种可能的实现方式中,所述至少一个侦听方向包括第一侦听方向和/或第二侦听方向,所述第一侦听方向为所述发送节点向所述接收节点发送数据的方向。
在一种可能的实现方式中,所述第二侦听方向为所述第一侦听方向的背向。
在一种可能的实现方式中,在所述接收节点向发送节点发送配置信息之前,所述方法还包括:所述接收节点接收所述发送节点发送的所述发送节点的侦听能力的信息,所述侦听能力表示所述发送节点能够支持的侦听方向和/或侦听顺序的能力。
第三方面,提供了一种发送节点设备,该发送节点设备可以执行上述第一方面或第一方面的任意可选的实现方式中的发送节点的操作。具体地,该终端设备可以包括配置为执行上述第一方面或第一方面的任意可能的实现方式中的发送节点的操作的模块单元。
第四方面,提供了一种接收节点设备,该接收节点设备可以执行上述第一方面或第一方面的任意可选的实现方式中的接收节点的操作。具体地,该网络设备可以包括配置为执行上述第二方面或第二方面的任意可能的实现方式中的接收节点的操作的模块单元。
第五方面,提供了一种发送节点设备,该发送节点设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路 互相通信。该存储器配置为存储指令,该处理器配置为执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该发送节点设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该发送节点设备实现第二方面提供的发送节点设备。
第六方面,提供了一种接收节点设备,该接收节点设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器配置为存储指令,该处理器配置为执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该接收节点设备执行第二方面或第二方面的任意可能的实现方式中的方法,或者该执行使得该接收节点设备实现第四方面提供的接收节点设备。
第七方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器配置为执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器配置为执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1是本申请实施例应用的无线通信系统的示意图。
图2是本申请实施例的侦听方法的示意性流程图。
图3是本申请实施例的侦听方向的示意图。
图4是本申请实施例的侦听方法的示意性流程图。
图5是本申请实施例的发送节点设备的示意性框图。
图6是本申请实施例的接收节点设备的示意性框图。
图7是本申请实施例的通信设备的示意性结构图。
图8是本申请实施例的系统芯片的示意性结构图。
具体实施方式
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备例如终端设备121和终端设备122。终端设备121和终端设备122可以是移动的或固定的。可选地,终端设备121和终端设备122可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户 代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。其中,可选地,终端设备121与终端设备122之间也可以进行终端直连(Device to Device,D2D)通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
在5G系统中,数据传输所采用的频段比LTE中使用的频段更高,因此无线信号传输的路径损耗变大,无线信号的覆盖变小。为此,5G系统中提出波束成形(beamforming)技术,以提高无线信号的增益,从而弥补路径损耗。具体地,基站向终端设备发送信号所使用的波束具有方向性,不同波束实际对应着不同的发射方向,每个窄波束只能覆盖小区的部分区域,而无法覆盖小区中的所有区域。例如图1所示,图1示出了4个不同方向的波束,即波束B1、波束B2、波束B3和波束B4,基站可以通过着4个不同方向的波束向终端设备发送信号。对于波束B1和波束B2,只能覆盖终端设备121而无法覆盖终端设备122;而波束B3和波束B4只能覆盖终端设备122而无法覆盖终端设备121。基站可以通过波束B1和波束B2向终端设备121发送信号,通过波束B3和波束B4向终端设备122发送信号。
下面简单介绍本申请实施例涉及的非授权频段(unlicensed frequency bands)上的先听后说(Listen Before Talk,LBT)机制,以及工作在非授权频段上的无线保真(Wireless Fidelity,WiFi)系统中的请求发送(Request-To-Send,RTS)/清除发送(Clear-To-Send,CTS)机制。
在5G系统中,支持非授权频段(unlicensed frequency bands)上的数据传输。在使用非授权频段进行数据传输时是基于先听后说(Listen Before Talk,LBT)机制。即,发送节点在发送数据之前,需要侦听信道是否空闲,只有确定信道为空闲后才可以发送数据。
终端设备与网络设备之间可以通过信道状态指示参考信号(Channel State Indication Reference Signals,CSI-RS)、信道探测参考信号(Sounding Reference Signal Reference Signals,SRS)和同步信号块(Synchronizing Signal Block,SSB)等参考信号的发送与测量过程,获取一个测量结果最优的链路进行数据传输。例如,网络设备与终端设备均多波束方向的发送与接收能力,对于上行方向,终端设备使用波束B1向网络设备发送上行数据,而网络设备使用波束B3接收该数据时,能够得到最优的传输性能,即这条链路上的测量结果最优,则网络设备的波束B3和终端设备的波束B1构成最优的波束对(beam pair)。
为了保证发送节点在发送数据之前能够更有效地进行载波侦听(也称为波束侦听、信道侦听、侦听等),以降低各个方向上的干扰,本申请实施例提出,发送节点通过在至少一个侦听方向上对波束进行方向性的侦听,并基于该至少一个侦听方向上的侦听结果,向发送节点发送数据,从而能够避免发送节点与其他节点之间的数据传输的干扰,提高非授权频段上不同节点之间的信号传输性能。
图2是本申请实施例的侦听方法的示意性流程图。图2中所示的发送节点例如可以为图1中所示的网络设备110、终端设备121或终端设备122。图2所示的方法可以应用在非授权频段,如图2所示,该侦听方法可以包括以下部分或全部内容:
在210中,发送节点根据该发送节点向接收节点发送数据所使用的波束方向,确定待侦听的至少一个侦听方向。
可选地,该至少一个侦听方向包括第一侦听方向和/或第二侦听方向。
可选地,该第一侦听方向为该发送节点向该接收节点发送数据的方向,例如该第一侦听方向与发送节点向该接收节点发送数据所使用的波束方向一致。
可选地,该第二侦听方向为该第一侦听方向的背向。
例如图3所示,该发送节点为终端设备121,该终端设备121使用波束B1向网络设备110发送数据,该终端设备121根据波束B1的方向确定待侦听的至少一个侦听方向,该至少一个侦听方向可以包括第一侦听方向,以及与第一侦听方向相背的第二侦听方向,该第一侦听方向为该终端设备121的波束B1的方向,第二侦听方向为该终端设备的波束B2的方向。
在220中,该发送节点对该至少一个侦听方向,进行载波侦听。
参考图3,该终端设备121附近可能存在其他节点例如终端设备122和终端设备123,其中终端设备122为第一侦听方向附件的节点,终端设备123为第二侦听方向附件的节点,假设终端设备122和终端设备123采用全向天线进行数据传输。终端设备121在向网络设备110发送数据之前,可以在第一侦听方向进行载波侦听,从而如果终端设备122有数据正在传输,终端设备121可以侦听到该第一侦听方向上的信道为占用。终端设备121还可以在第二侦听方向进行载波侦听,从而如果终端设备123有数据正在传输,终端设备123可以侦听到该第二侦听方向上的信道为占用。
这样,终端设备通过对第一侦听方向进行侦听,从而能够将第一侦听方向的隐藏节点即终端设备122排除掉,从而避免终端设备121对终端设备122的数据传输带来干扰。终端设备通过对第二侦听方向进行侦听,从而能够将第二侦听方向的隐藏节点即终端设备123排除掉,从而避免终端设备123对终端设备121的数据传输带来干扰。因此,提高了非授权频段上不同节点之间的信号传输性能。
在230中,该发送节点基于该至少一个侦听方向上的侦听结果,使用该波束方向,向该接收节点发送数据。
因此,发送节点基于向接收节点发送数据的发送波束的方向,确定待侦听的至少一个侦听方向,并在至少一个侦听方向上进行方向性的侦听,从而基于该至少一个侦听方向上的侦听结果,向发送节点发送数据,因此避免了发送节点与其他节点之间的数据传输的干扰,提高了非授权频段上不同节点之间的信号传输性能。
在220中,该发送节点可以基于两种方式对该至少一个侦听方向进行载波侦听。下面分别描述。
方式1
可选地,该发送节点对该至少一个侦听方向进行载波侦听,包括:该发送节点对该至少一个侦听方向进行载波侦听,直至侦听到该至少一个侦听方向上的信道为空闲。
例如,该发送节点对该第一个侦听方向进行载波侦听,直至侦听到该第一侦听方向上的信道为空闲时,使用该波束方向,向该接收节点发送数据。
又例如,该发送节点对该第二个侦听方向进行载波侦听,直至侦听到该 第二侦听方向上的信道为空闲时,使用该波束方向,向该接收节点发送数据。
又例如,该发送节点对该第一个侦听方向和该第二侦听方向均进行载波侦听,直至侦听到该第一侦听方向和该第二侦听方向上的信道均为空闲时,使用该波束方向,向该接收节点发送数据。
其中,发送节点可以向对该第一侦听方向进行载波侦听,并在侦听到该第一侦听方向上的信道为空闲后,对该第二侦听方向进行载波侦听,直到侦听到该第二侦听方向上的信道也为空闲时,使用该波束方向,向该接收节点发送数据;或者,
该发送节点可以先对该第二侦听方向进行载波侦听,并在侦听到该第二侦听方向上的信道为空闲后,对该该第一侦听方向进行载波侦听,直到侦听到该第一侦听方向上的信道也为空闲时,使用该波束方向,向该接收节点发送数据。
方式2
可选地,该发送节点对该至少一个侦听方向进行载波侦听,包括:该发送节点在至少一个侦听窗口中,分别对该目标波束的该至少一个侦听方向进行载波侦听。
其中,可选地,该发送节点对该第一侦听方向进行载波侦听所使用的侦听窗口为第一侦听窗口,该发送节点对该第二侦听方向进行载波侦听所使用的侦听窗口为第二侦听窗口。
其中,可选地,该第一侦听窗口位于该第二侦听窗口之前,或者该第一侦听窗口位于该第二侦听窗口之后,或者该第一侦听窗口与该第二侦听窗口重叠。
该第一侦听窗口和该第二侦听窗口例如可以等于16us或25us。
在方式2中,发送节点对第一侦听方向和第二侦听方向进行载波侦听时,是在不同的侦听窗口中。发送节点在第一侦听窗内对第一侦听方向进行载波侦听,并在第二侦听窗口内对第二侦听方向进行载波侦听。如果是先对第一侦听方向进行载波侦听后对第二侦听方向进行载波侦听,则第一侦听窗口在时间上位于第二侦听窗口之前;如果是先对第二侦听方向进行载波侦听后对第一侦听方向进行载波侦听,则第二侦听窗口在时间上位于第一侦听窗口之前;如果是同时对第一侦听方向和第二侦听方向进行载波侦听,则第一侦听窗口和第二侦听窗口在时间上重叠。
而在方式1中,可以不设置侦听窗口,而是直到在侦听到该至少一个侦听方向上的信道为空闲时,使用该波束方向,向该接收节点发送数据。
应理解,本申请实施例中,接收一个信号所使用的波束,可以理解为,接收一个信号所使用的空间域接收滤波器(Spatial domain reception filter);发送一个信号所使用的波束,可以理解为,发送一个信号所使用的空间域传输滤波器(Spatial domain transmission filter)。对于采用相同的空间域发送滤波器发送的两个信号,可以称这两个信号相对于空间接收参数是准同址(Quasi-Co-Located,QCL)的。
可选地,在220之前,该发送节点接收该接收节点发送的配置信息,该配置信息用于指示进行载波侦听所使用的侦听信息;或者,该发送节点获取预存在该发送节点中的该侦听信息;
其中,该侦听信息包括以下信息中的至少一种:该至少一个侦听方向、不同侦听方向的侦听顺序、以及不同侦听方向对应的侦听窗口的信息。
该侦听窗口的信息例如包括该侦听窗口的时域长度和/或时间起始位置。
也就是说,该发送节点具体对哪些侦听方向进行侦听,以及各侦听方向的侦听顺序、或用于对不同侦听方向进行侦听的侦听窗口的信息,可以是网络设备配置的,或者是事先约定并预存在该发送节点中的例如协议中规定。
进一步地,可选地,在该发送节点接收该接收节点发送的配置信息之前,该方法还包括:该发送节点向该接收节点发送该发送节点的侦听能力的信息,该侦听能力表示该发送节点能够支持的侦听方向和/或侦听顺序的能力。
发送节点将自己所能够支持的发送波束、支持的侦听方向以及侦听顺序等信息上报给接收节点,并由接收节点选择最终进行侦听的侦听方向以及使用侦听顺序,并配置给发送节点。
可选地,该发送节点对该至少一个侦听方向进行载波侦听,包括:该发送节点对包括该至少一个侦听方向在内的多个侦听方向同时进行载波侦听。
可选地,该发送节点对该至少一个侦听方向进行载波侦听,包括:该发送节点对包括该至少一个侦听方向在内的多个侦听方向同时进行载波侦听。
也就是说,发送节点可以支持全向侦听或者准全向侦听。例如,该发送节点同时打开多个面板(pannel)从而在该发送节点所支持的全部方向上进行侦听,或者该发送节点打开部分pannel从而在部分方向上进行侦听。
图4是本申请实施例的侦听方法的示意性流程图。图4中所示的发送节 点例如可以为图1中所示的网络设备110、终端设备121或终端设备122。图4所示的方法可以应用在非授权频段,如图4所示,该侦听方法可以包括以下部分或全部内容:
在410中,接收节点向发送节点发送配置信息,该配置信息用于指示该发送节点进行载波侦听所使用的侦听信息。
其中,该侦听信息包括以下信息中的至少一种:至少一个侦听方向、该至少一个侦听方向的侦听顺序、以及对该至少一个侦听方向进行载波侦听所使用的侦听窗口的信息。
其中,该至少一个侦听方向是该发送节点根据该发送节点向接收节点发送数据所使用的第一侦听方向确定的。
因此,接收节点通过向发送节点配置不同的侦听方向,使得发送节点在至少一个侦听方向上对波束进行方向性的侦听,从而基于该至少一个侦听方向上的侦听结果,向发送节点发送数据,因此避免了发送节点与其他节点之间的数据传输的干扰,提高了非授权频段上不同节点之间的信号传输性能。
可选地,该至少一个侦听方向包括第一侦听方向和/或第二侦听方向。
可选地,该第一侦听方向为该发送节点向该接收节点发送数据的方向,例如该第一侦听方向与发送节点向该接收节点发送数据所使用的波束方向一致。
可选地,该第二侦听方向为该第一侦听方向的背向。
可选地,在该接收节点向发送节点发送配置信息之前,该方法还包括:该接收节点接收该发送节点发送的该发送节点的侦听能力的信息。其中,该侦听能力表示该发送节点能够支持的侦听方向和/或侦听顺序的能力。
应理解,接收节点在发送节点进行载波侦听的过程中所执行的过程的详细描述,可以参考前述图2和图3中对发送节点的描述。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的侦听方法,下面将结合图5至图8,描述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图5是根据本申请实施例的发送节点设备500的示意性框图。如图5所 示,该发送节点设备500包括确定单元510、侦听单元520和收发单元530。其中:
所述确定单元510配置为:根据所述发送节点设备向接收节点设备发送数据所使用的波束方向,确定待侦听的至少一个侦听方向;
所述侦听单元520配置为:对所述至少一个侦听方向,进行载波侦听;
所述收发单元510还配置为:基于所述至少一个侦听方向上的侦听结果,使用所述波束方向,向所述接收节点设备发送数据。
因此,发送节点基于向接收节点发送数据的发送波束的方向,确定待侦听的至少一个侦听方向,并在至少一个侦听方向上进行方向性的侦听,从而基于该至少一个侦听方向上的侦听结果,向发送节点发送数据,因此避免了发送节点与其他节点之间的数据传输的干扰,提高了非授权频段上不同节点之间的信号传输性能。
可选地,所述至少一个侦听方向包括第一侦听方向和/或第二侦听方向,所述第一侦听方向为所述发送节点设备向所述接收节点设备发送数据的方向。
可选地,所述第二侦听方向为所述第一侦听方向的背向。
可选地,所述侦听单元520具体配置为:对所述至少一个侦听方向进行载波侦听,直至侦听到所述至少一个侦听方向上的信道为空闲。
可选地,所述至少一个侦听方向包括所述第一侦听方向和所述第二侦听方向,所述侦听单元520具体配置为:对所述第一侦听方向进行载波侦听,并在侦听到所述第一侦听方向上的信道为空闲后,对所述第二侦听方向进行载波侦听,直到侦听到所述第二侦听方向上的信道也为空闲;或者,对所述第二侦听方向进行载波侦听,并在侦听到所述第二侦听方向上的信道为空闲后,对所述第一侦听方向进行载波侦听,直到侦听到所述第一侦听方向上的信道也为空闲。
可选地,所述侦听单元520具体配置为:在至少一个侦听窗口中,分别对所述至少一个侦听方向进行载波侦听;其中,所述发送节点设备对所述第一侦听方向进行载波侦听所使用的侦听窗口为第一侦听窗口,所述发送节点设备对所述第二侦听方向进行载波侦听所使用的侦听窗口为第二侦听窗口,所述第一侦听窗口位于所述第二侦听窗口之前,或者所述第一侦听窗口位于所述第二侦听窗口之后,或者所述第一侦听窗口与所述第二侦听窗口重叠。
可选地,所述侦听单元520具体配置为:通过所述收发单元510接收所述接收节点设备发送的配置信息,所述配置信息用于指示进行载波侦听所使用的侦听信息;或者,获取预存在所述发送节点设备中的所述侦听信息;其中,所述侦听信息包括以下信息中的至少一种:所述至少一个侦听方向、不同侦听方向的侦听顺序、以及不同侦听方向对应的侦听窗口的信息。
可选地,所述侦听窗口的信息包括所述侦听窗口的时域长度和/或时间起始位置。
可选地,所述收发单元510还配置为:向所述接收节点设备发送所述发送节点设备的侦听能力的信息,所述侦听能力表示所述发送节点设备能够支持的侦听方向和/或侦听顺序的能力。
可选地,所述侦听单元520具体配置为:对包括所述至少一个侦听方向在内的多个侦听方向同时进行载波侦听。
应理解,该发送节点设备500可以执行上述方法200中由发送节点执行的相应操作,为了简洁,在此不再赘述。
图6是根据本申请实施例的接收节点设备600的示意性框图。如图6所示,该接收节点设备600包括收发单元610,配置为:向发送节点设备发送配置信息,所述配置信息用于指示所述发送节点设备进行载波侦听所使用的侦听信息。
其中,所述侦听信息包括以下信息中的至少一种:待侦听的至少一个侦听方向、所述至少一个侦听方向的侦听顺序、以及对所述至少一个侦听方向进行载波侦听所使用的侦听窗口的信息,所述至少一个侦听方向是所述发送节点设备根据所述发送节点设备向接收节点设备发送数据所使用的波束方向确定的。
因此,接收节点通过向发送节点配置不同的侦听方向,使得发送节点在至少一个侦听方向上对波束进行方向性的侦听,从而基于该至少一个侦听方向上的侦听结果,向发送节点发送数据,因此避免了发送节点与其他节点之间的数据传输的干扰,提高了非授权频段上不同节点之间的信号传输性能。
可选地,所述至少一个侦听方向包括第一侦听方向和/或第二侦听方向,所述第一侦听方向为所述发送节点向所述接收节点发送数据的方向。
可选地,所述第二侦听方向为所述第一侦听方向的背向。
可选地,所述收发单元620还配置为:接收所述发送节点设备发送的所 述发送节点设备的侦听能力的信息,所述侦听能力表示所述发送节点设备能够支持的侦听方向和/或侦听顺序的能力。
应理解,该接收节点设备600可以执行上述方法400中由接收节点执行的相应操作,为了简洁,在此不再赘述。
图7是根据本申请实施例的通信设备700的示意性结构图。如图7所示,该通信设备包括处理器710、收发器720和存储器730,其中,该处理器710、收发器720和存储器730之间通过内部连接通路互相通信。该存储器730配置为存储指令,该处理器710配置为执行该存储器730存储的指令,以控制该收发器720接收信号或发送信号。
可选地,该处理器710可以调用存储器730中存储的程序代码,执行方法200中由发送节点执行的相应操作,为了简洁,在此不再赘述。
可选地,该处理器710可以调用存储器730中存储的程序代码,执行方法400中由接收节点执行的相应操作,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电 可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图8是本申请实施例的系统芯片的一个示意性结构图。图8的系统芯片800包括输入接口801、输出接口802、至少一个处理器803、存储器804,所述输入接口801、输出接口802、所述处理器803以及存储器804之间通过内部连接通路互相连接。所述处理器803配置为执行所述存储器804中的代码。
可选地,当所述代码被执行时,所述处理器803可以实现方法200中由发送节点执行的相应操作。为了简洁,这里不再赘述。
可选地,当所述代码被执行时,所述处理器803可以实现方法400中由接收节点执行的相应操作。为了简洁,这里不再赘述。
应理解,在本发明实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (28)

  1. 一种侦听方法,所述方法包括:
    发送节点根据所述发送节点向接收节点发送数据所使用的波束方向,确定待侦听的至少一个侦听方向;
    所述发送节点对所述至少一个侦听方向,进行载波侦听;
    所述发送节点基于所述至少一个侦听方向上的侦听结果,使用所述波束方向,向所述接收节点发送数据。
  2. 根据权利要求1所述的方法,其中,所述至少一个侦听方向包括第一侦听方向和/或第二侦听方向,所述第一侦听方向为所述发送节点向所述接收节点发送数据的方向。
  3. 根据权利要求2所述的方法,其中,所述第二侦听方向为所述第一侦听方向的背向。
  4. 根据权利要求2或3所述的方法,其中,所述发送节点对所述至少一个侦听方向进行载波侦听,包括:
    所述发送节点对所述至少一个侦听方向进行载波侦听,直至侦听到所述至少一个侦听方向上的信道为空闲。
  5. 根据权利要求4所述的方法,其中,所述至少一个侦听方向包括所述第一侦听方向和所述第二侦听方向,
    所述发送节点对所述至少一个侦听方向进行载波侦听,直至侦听到所述至少一个侦听方向上的信道为空闲,包括:
    所述发送节点对所述第一侦听方向进行载波侦听,并在侦听到所述第一侦听方向上的信道为空闲后,对所述第二侦听方向进行载波侦听,直到侦听到所述第二侦听方向上的信道也为空闲;或者,
    所述发送节点对所述第二侦听方向进行载波侦听,并在侦听到所述第二侦听方向上的信道为空闲后,对所述第一侦听方向进行载波侦听,直到侦听到所述第一侦听方向上的信道也为空闲。
  6. 根据权利要求2或3所述的方法,其中,所述发送节点对所述至少一个侦听方向进行载波侦听,包括:
    所述发送节点在至少一个侦听窗口中,分别对所述至少一个侦听方向进行载波侦听;
    其中,所述发送节点对所述第一侦听方向进行载波侦听所使用的侦听窗 口为第一侦听窗口,所述发送节点对所述第二侦听方向进行载波侦听所使用的侦听窗口为第二侦听窗口,
    所述第一侦听窗口位于所述第二侦听窗口之前,或者所述第一侦听窗口位于所述第二侦听窗口之后,或者所述第一侦听窗口与所述第二侦听窗口重叠。
  7. 根据权利要求1至6中任一项所述的方法,其中,在所述发送节点对所述至少一个侦听方向进行载波侦听之前,所述方法还包括:
    所述发送节点接收所述接收节点发送的配置信息,所述配置信息用于指示进行载波侦听所使用的侦听信息;或者,
    所述发送节点获取预存在所述发送节点中的所述侦听信息;
    其中,所述侦听信息包括以下信息中的至少一种:所述至少一个侦听方向、不同侦听方向的侦听顺序、以及不同侦听方向对应的侦听窗口的信息。
  8. 根据权利要求7所述的方法,其中,所述侦听窗口的信息包括所述侦听窗口的时域长度和/或时间起始位置。
  9. 根据权利要求7或8所述的方法,其中,在所述发送节点接收所述接收节点发送的配置信息之前,所述方法还包括:
    所述发送节点向所述接收节点发送所述发送节点的侦听能力的信息,所述侦听能力表示所述发送节点能够支持的侦听方向和/或侦听顺序的能力。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述发送节点对所述至少一个侦听方向进行载波侦听,包括:
    所述发送节点对包括所述至少一个侦听方向在内的多个侦听方向同时进行载波侦听。
  11. 一种侦听方法,所述方法包括:
    接收节点向发送节点发送配置信息,所述配置信息用于指示所述发送节点进行载波侦听所使用的侦听信息;
    其中,所述侦听信息包括以下信息中的至少一种:待侦听的至少一个侦听方向、所述至少一个侦听方向的侦听顺序、以及对所述至少一个侦听方向进行载波侦听所使用的侦听窗口的信息,
    所述至少一个侦听方向是所述发送节点根据所述发送节点向接收节点发送数据所使用的波束确定的。
  12. 根据权利要求11所述的方法,其中,所述至少一个侦听方向包括 第一侦听方向和/或第二侦听方向,所述第一侦听方向为所述发送节点向所述接收节点发送数据的方向。
  13. 根据权利要求12所述的方法,其中,所述第二侦听方向为所述第一侦听方向的背向。
  14. 根据权利要求11至13中任一项所述的方法,其中,在所述接收节点向发送节点发送配置信息之前,所述方法还包括:
    所述接收节点接收所述发送节点发送的所述发送节点的侦听能力的信息,所述侦听能力表示所述发送节点能够支持的侦听方向和/或侦听顺序的能力。
  15. 一种发送节点设备,所述发送节点设备包括:
    确定单元,配置为根据所述发送节点设备向接收节点设备发送数据所使用的波束方向,确定待侦听的至少一个侦听方向;
    侦听单元,配置为对所述确定单元确定的所述至少一个侦听方向,进行载波侦听;
    收发单元,配置为基于所述至少一个侦听方向上的侦听结果,使用所述波束方向,向所述接收节点设备发送数据。
  16. 根据权利要求15所述的发送节点设备,其中,所述至少一个侦听方向包括第一侦听方向和/或第二侦听方向,所述第一侦听方向为所述发送节点设备向所述接收节点设备发送数据的方向。
  17. 根据权利要求16所述的发送节点设备,其中,所述第二侦听方向为所述第一侦听方向的背向。
  18. 根据权利要求16或17所述的发送节点设备,其中,所述侦听单元具体配置为:
    对所述至少一个侦听方向进行载波侦听,直至侦听到所述至少一个侦听方向上的信道为空闲。
  19. 根据权利要求18所述的发送节点设备,其中,所述至少一个侦听方向包括所述第一侦听方向和所述第二侦听方向,
    所述侦听单元具体配置为:
    对所述第一侦听方向进行载波侦听,并在侦听到所述第一侦听方向上的信道为空闲后,对所述第二侦听方向进行载波侦听,直到侦听到所述第二侦听方向上的信道也为空闲;或者,
    对所述第二侦听方向进行载波侦听,并在侦听到所述第二侦听方向上的信道为空闲后,对所述第一侦听方向进行载波侦听,直到侦听到所述第一侦听方向上的信道也为空闲。
  20. 根据权利要求18或19所述的发送节点设备,其中,所述侦听单元具体配置为:
    在至少一个侦听窗口中,分别对所述至少一个侦听方向进行载波侦听;
    其中,所述发送节点设备对所述第一侦听方向进行载波侦听所使用的侦听窗口为第一侦听窗口,所述发送节点设备对所述第二侦听方向进行载波侦听所使用的侦听窗口为第二侦听窗口,
    所述第一侦听窗口位于所述第二侦听窗口之前,或者所述第一侦听窗口位于所述第二侦听窗口之后,或者所述第一侦听窗口与所述第二侦听窗口重叠。
  21. 根据权利要求15至20中任一项所述的发送节点设备,其中,所述侦听单元具体配置为:
    通过所述收发单元接收所述接收节点设备发送的配置信息,所述配置信息用于指示进行载波侦听所使用的侦听信息;或者,
    获取预存在所述发送节点设备中的所述侦听信息;
    其中,所述侦听信息包括以下信息中的至少一种:所述至少一个侦听方向、不同侦听方向的侦听顺序、以及不同侦听方向对应的侦听窗口的信息。
  22. 根据权利要求21所述的发送节点设备,其中,所述侦听窗口的信息包括所述侦听窗口的时域长度和/或时间起始位置。
  23. 根据权利要求21或22所述的发送节点设备,其中,所述收发单元还配置为:
    向所述接收节点设备发送所述发送节点设备的侦听能力的信息,所述侦听能力表示所述发送节点设备能够支持的侦听方向和/或侦听顺序的能力。
  24. 根据权利要求15至23中任一项所述的发送节点设备,其中,所述侦听单元具体配置为:
    对包括所述至少一个侦听方向在内的多个侦听方向同时进行载波侦听。
  25. 一种接收节点设备,所述接收节点设备包括:
    收发单元,配置为向发送节点设备发送配置信息,所述配置信息用于指示所述发送节点设备进行载波侦听所使用的侦听信息,
    所述侦听信息包括以下信息中的至少一种:待侦听的至少一个侦听方向、所述至少一个侦听方向的侦听顺序、以及对所述至少一个侦听方向进行载波侦听所使用的侦听窗口的信息,
    其中,所述至少一个侦听方向是所述发送节点设备根据所述发送节点设备向接收节点设备发送数据所使用的波束方向确定的。
  26. 根据权利要求25所述的接收节点设备,其中,所述至少一个侦听方向包括第一侦听方向和/或第二侦听方向,所述第一侦听方向为所述发送节点向所述接收节点发送数据的方向。
  27. 根据权利要求26所述的接收节点设备,其中,所述第二侦听方向为所述第一侦听方向的背向。
  28. 根据权利要求25至27中任一项所述的接收节点设备,其中,所述收发单元还配置为:
    接收所述发送节点设备发送的所述发送节点设备的侦听能力的信息,所述侦听能力表示所述发送节点设备能够支持的侦听方向和/或侦听顺序的能力。
PCT/CN2018/076898 2018-02-14 2018-02-14 侦听方法和设备 WO2019157753A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2018/076898 WO2019157753A1 (zh) 2018-02-14 2018-02-14 侦听方法和设备
CN201880088945.XA CN111699749A (zh) 2018-02-14 2018-02-14 侦听方法和设备
AU2018409036A AU2018409036A1 (en) 2018-02-14 2018-02-14 Listening method and device
KR1020207026325A KR20200120706A (ko) 2018-02-14 2018-02-14 감지 방법 및 기기
JP2020543304A JP2021517386A (ja) 2018-02-14 2018-02-14 センシング方法および機器
EP18906206.0A EP3751946A4 (en) 2018-02-14 2018-02-14 LISTENING PROCESS AND DEVICE
US16/992,608 US11641588B2 (en) 2018-02-14 2020-08-13 Listening method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076898 WO2019157753A1 (zh) 2018-02-14 2018-02-14 侦听方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,608 Continuation US11641588B2 (en) 2018-02-14 2020-08-13 Listening method and device

Publications (1)

Publication Number Publication Date
WO2019157753A1 true WO2019157753A1 (zh) 2019-08-22

Family

ID=67619107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076898 WO2019157753A1 (zh) 2018-02-14 2018-02-14 侦听方法和设备

Country Status (7)

Country Link
US (1) US11641588B2 (zh)
EP (1) EP3751946A4 (zh)
JP (1) JP2021517386A (zh)
KR (1) KR20200120706A (zh)
CN (1) CN111699749A (zh)
AU (1) AU2018409036A1 (zh)
WO (1) WO2019157753A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000236A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Directional sensing signal request

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989975A (zh) 2018-04-25 2020-11-24 Oppo广东移动通信有限公司 信号传输的方法和通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020293A1 (en) * 2015-08-06 2017-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for listening based transmission
WO2017026813A1 (ko) * 2015-08-11 2017-02-16 엘지전자(주) 무선 통신 시스템에서 무선 신호 송수신 방법 및 이를 위한 장치
CN106658751A (zh) * 2016-12-14 2017-05-10 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置
CN107196683A (zh) * 2016-03-14 2017-09-22 松下电器产业株式会社 通信系统、通信方法、基站装置和终端装置
CN108668366A (zh) * 2017-03-31 2018-10-16 华为技术有限公司 信号传输方法和设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811420B2 (en) * 2009-01-05 2014-08-19 Samsung Electronics Co., Ltd. System and method for contention-based channel access for peer-to-peer connection in wireless networks
US9847962B2 (en) * 2014-07-29 2017-12-19 Futurewei Technologies, Inc. Device, network, and method for communications with spatial-specific sensing
JP6466105B2 (ja) 2014-09-01 2019-02-06 Ntn株式会社 流体動圧軸受装置とこれに用いられる軸受部材及び軸部材
KR102309863B1 (ko) * 2014-10-15 2021-10-08 삼성전자주식회사 전자 장치, 그 제어 방법 및 기록 매체
US10111105B2 (en) * 2015-06-26 2018-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods used in control nodes, and associated control nodes
WO2017188733A1 (en) * 2016-04-26 2017-11-02 Lg Electronics Inc. Method and apparatus for configuring frame structure for new radio access technology in wireless communication system
TWI593941B (zh) * 2016-07-26 2017-08-01 明泰科技股份有限公司 車載導航方法及系統
US10257860B2 (en) * 2016-10-21 2019-04-09 Samsung Electronics Co., Ltd. Channel access framework for multi-beam operation on the unlicensed spectrum
US10075149B2 (en) * 2016-10-25 2018-09-11 Qualcomm Incorporated Methods and apparatus supporting controlled transmission and reception of messages
CN109923796B (zh) * 2016-11-04 2022-06-17 索尼移动通讯有限公司 能够进行网络接入的方法、用户设备、介质和基站
US10601492B2 (en) * 2017-01-05 2020-03-24 Futurewei Technologies, Inc. Device/UE-oriented beam recovery and maintenance mechanisms
CN108966355B (zh) 2017-05-24 2021-06-08 华为技术有限公司 信道侦听方法、网络侧设备及终端
EP3698599A1 (en) 2017-10-19 2020-08-26 IDAC Holdings, Inc. Channel access procedures for directional systems in unlicensed bands
CN108658751B (zh) 2018-03-29 2021-06-15 浙江巨化技术中心有限公司 一种三氟乙酸的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020293A1 (en) * 2015-08-06 2017-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for listening based transmission
WO2017026813A1 (ko) * 2015-08-11 2017-02-16 엘지전자(주) 무선 통신 시스템에서 무선 신호 송수신 방법 및 이를 위한 장치
CN107196683A (zh) * 2016-03-14 2017-09-22 松下电器产业株式会社 通信系统、通信方法、基站装置和终端装置
CN106658751A (zh) * 2016-12-14 2017-05-10 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置
CN108668366A (zh) * 2017-03-31 2018-10-16 华为技术有限公司 信号传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751946A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000236A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Directional sensing signal request

Also Published As

Publication number Publication date
JP2021517386A (ja) 2021-07-15
KR20200120706A (ko) 2020-10-21
US20200374709A1 (en) 2020-11-26
EP3751946A1 (en) 2020-12-16
US11641588B2 (en) 2023-05-02
CN111699749A (zh) 2020-09-22
AU2018409036A1 (en) 2020-10-01
EP3751946A4 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US11570810B2 (en) Method and device for scheduling uplink data based on carrier sensing of at least one beam
WO2018081990A1 (zh) 数据传输的方法、用户设备与网络设备
US20230083602A1 (en) Multi-carrier communication method, terminal device, and network device
WO2019024871A1 (zh) 非授权频段下的信息传输方法、网络设备及终端
US11523432B2 (en) Signal transmission method and device
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019242419A1 (zh) 一种bwp切换方法及装置、终端设备
US11641588B2 (en) Listening method and device
WO2019127462A1 (zh) 无线通信方法、终端设备和网络设备
WO2019047188A1 (zh) 无线通信方法、网络设备和终端设备
US11399391B2 (en) Method and device to provide a signal transmission between a sending node and receiving node in unlicensed frequency band
WO2019047182A1 (zh) 无线通信方法、网络设备和终端设备
US11792831B2 (en) Method and device for signal transmission
WO2019157749A1 (zh) 信号传输的方法和设备
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019178843A1 (zh) 确定多天线发送模式的方法和设备
WO2019061354A1 (zh) 无线通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026325

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018906206

Country of ref document: EP

Effective date: 20200914

ENP Entry into the national phase

Ref document number: 2018409036

Country of ref document: AU

Date of ref document: 20180214

Kind code of ref document: A