WO2019156256A1 - 測定装置および細胞またはウイルスの測定方法 - Google Patents

測定装置および細胞またはウイルスの測定方法 Download PDF

Info

Publication number
WO2019156256A1
WO2019156256A1 PCT/JP2019/004857 JP2019004857W WO2019156256A1 WO 2019156256 A1 WO2019156256 A1 WO 2019156256A1 JP 2019004857 W JP2019004857 W JP 2019004857W WO 2019156256 A1 WO2019156256 A1 WO 2019156256A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
suspension
transmitted
target particles
ultrasonic
Prior art date
Application number
PCT/JP2019/004857
Other languages
English (en)
French (fr)
Inventor
和夫 大楽
康弘 溝上
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2019571191A priority Critical patent/JPWO2019156256A1/ja
Publication of WO2019156256A1 publication Critical patent/WO2019156256A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Definitions

  • the present invention relates to a measuring apparatus and a measuring method for measuring target particles that are cells or viruses in suspension using ultrasonic waves.
  • ultrasonic inspection echo inspection
  • an ultrasonic wave is applied to an internal organ and a reflected wave at an organ interface is used.
  • Patent Document 1 describes a technique that uses ultrasonic waves in measuring characteristics such as the deformation performance of red blood cells in blood.
  • CTC circulating cancer cells
  • the ultrasonic wave is reflected at the leukocyte or CTC interface, and further, the ultrasonic wave is also reflected at the red blood cell interface. For this reason, it is difficult to measure the presence and concentration of leukocytes or CTC.
  • an object of the present invention is to provide a measuring apparatus and a measuring method for measuring target particles that are cells or viruses in suspension using ultrasonic waves.
  • a measuring apparatus is an apparatus that measures target particles in a suspension using ultrasonic waves, and a transmission unit that transmits ultrasonic waves, and transmission that is generated by transmitting ultrasonic waves through the suspension.
  • a receiving unit that receives a wave, a measuring unit that measures a target particle in a suspension based on a difference between a transmitted wave and a reference wave generated by transmitting an ultrasonic wave through a reference liquid that does not include the target particle;
  • the wavelength of the ultrasonic wave is 1.5 to 38 times the diameter of the target particle, and the target particle is a cell or virus.
  • the measurement method according to the present invention is a method for measuring target particles in a suspension using ultrasonic waves, and an ultrasonic wave having a wavelength of 1.5 to 38 times the diameter of the target particles. Transmit and receive the transmitted wave that is generated by transmitting the ultrasonic wave through the suspension. Suspension is based on the difference between the transmitted wave and the reference wave that is generated when the ultrasonic wave is transmitted through the reference liquid that does not contain the target particles. In this method, target particles in a liquid are measured, and the target particles are cells or viruses.
  • the present invention it is possible to measure target particles that are cells or viruses in a suspension by lowering the frequency of ultrasonic waves to obtain a transmitted wave, and performing ultrasonic inspection using this transmitted wave. it can.
  • FIG. 1 It is a figure which shows the structure of an example of a preferable measuring apparatus. It is a figure which shows an example of the transmitted wave (or reference wave) received by a transmission / reception part. It is a schematic diagram which shows how to obtain
  • FIG. It is a figure which shows the measurement result of the transmitted wave and reference wave in verification 1.
  • FIG. It is a figure which shows the measurement result of the transmitted wave and reference wave in verification 2.
  • FIG. It is a figure which shows the measurement result of the transmitted wave and reference wave in verification 2.
  • FIG. It is a figure which shows the measurement result of the transmitted wave and reference wave in verification 2.
  • FIG. It is a figure which shows the measurement result of the transmitted wave and reference wave in verification 2.
  • FIG. It is a figure which shows the measurement result of the transmitted wave in reference 3, and a reference wave.
  • FIG. It is a figure which shows the measurement result of the transmitted wave in reference 3, and a reference wave.
  • the measuring device is a device that measures the target particles in the suspension using ultrasonic waves.
  • the measurement apparatus includes a transmission unit, a reception unit, and a measurement unit.
  • the transmission unit transmits ultrasonic waves.
  • the receiving unit receives a transmitted wave that is generated when the ultrasonic wave passes through the suspension.
  • the measurement unit measures the target particle in the suspension based on the difference between the transmitted wave and the reference wave generated when the ultrasonic wave passes through the reference liquid not including the target particle.
  • the wavelength of the ultrasonic wave is 1.5 times or more and 38 times or less the diameter of the target particle.
  • the target particle is a cell or a virus.
  • the measuring apparatus measures the target particles in the suspension using ultrasonic waves, and the target particles are cells or viruses.
  • the measurement target in the measurement of the target particle is derived based on the difference between the transmitted wave generated by transmitting the ultrasonic wave through the suspension and the reference wave generated by transmitting the ultrasonic wave through the reference liquid not including the target particle.
  • the information is not particularly limited as long as it is information on the target particles.
  • the measurement of the target particle is typically a measurement of the presence or absence of cells or viruses, or a measurement of the concentration of cells or viruses in the suspension.
  • the type of cell or virus as the target particle is not particularly limited as long as the diameter satisfies the relationship between the diameter and the wavelength of the ultrasonic wave.
  • the cell as the target particle may be a single cell or an aggregate of a plurality of cells. Suitable cells as target particles include leukocytes, circulating cancer cells (CTC), CTC clusters, peripheral circulating endothelial cells (CEC) floating in the blood, cells such as bacteria, fungi, and spores, and other microorganisms. Can be mentioned.
  • the diameter of the cell or virus as the target particle is not particularly limited as long as the relationship between the wavelength of the ultrasonic wave and the diameter of the target particle satisfies the aforementioned relationship.
  • the diameter of the cell or virus as the target particle is preferably, for example, 1 ⁇ m or more and 50 ⁇ m or less for cells, 0.02 ⁇ m or more and 0.5 ⁇ m or less for viruses, 3 ⁇ m or more and 30 ⁇ m or less for cells, and 0.03 ⁇ m for viruses.
  • the thickness is particularly preferably 0.3 ⁇ m or less. This diameter does not depend on the number of cells that form several clusters.
  • the liquid component as a medium for dispersing the target particles in the suspension containing the target particles is not particularly limited as long as it does not cause undesired deformation, destruction, alteration or the like in the cells or viruses as the target particles.
  • the liquid component include water, physiological saline, various buffer solutions, liquid media, and the like.
  • the suspension is a body fluid typified by blood, lymph, etc.
  • the body fluid can be used for measurement by a measuring device as it is.
  • the diluted or concentrated body fluid can also be used for measurement by a measuring device as necessary.
  • the concentration of the target particles in the suspension is not particularly limited as long as a desired measurement can be performed. Even if the concentration of the target particles in the suspension is outside the range where it is easy to perform a good measurement, the desired measurement can be performed on the target particles in the suspension by diluting or concentrating the suspension. Can be easily performed.
  • the concentration of the target particles in the suspension is preferably 1 ⁇ 10 6 to 1 ⁇ 10 7 particles / mL as the number of target particles.
  • the concentration of the target particles in the suspension is preferably 1 to 100 particles / mL as the number of target particles.
  • the measurement about the cell in blood can be performed using blood as a sample as it is.
  • the blood concentration is preferably 40 to 48% for male blood, more preferably 40 to 45% as hematocrit, and preferably 36 for female blood. -42%, more preferably 36-40%.
  • the hematocrit value is a value of the proportion of the volume of red blood cells in the blood.
  • a transmission part will not be specifically limited if the ultrasonic wave of a desired wavelength can be transmitted.
  • Various conventionally known ultrasonic transmission devices can be used as the transmission unit.
  • the receiving unit is not particularly limited as long as it can receive the transmitted wave.
  • Various conventionally known ultrasonic receiving devices can be used as the receiving unit.
  • the transmission unit typically includes an ultrasonic transmission probe.
  • the reception unit typically includes an ultrasonic reception probe. There is no particular limitation on the probe for ultrasonic transmission.
  • the ultrasonic transmission probe includes, for example, an oscillator and a piezoelectric element. Such a probe converts an electrical signal output from an oscillator into an ultrasonic wave by a piezoelectric element, and transmits the ultrasonic wave.
  • the ultrasonic reception probe includes, for example, a piezoelectric element. Such a probe receives an ultrasonic wave, changes the ultrasonic wave into an electric signal by a piezoelectric element, and supplies the electric signal to a measurement unit.
  • the transmission unit and the reception unit may be configured separately. Further, the transmission unit and the reception unit may be provided in the measurement device as a transmission / reception unit in which both are integrally configured.
  • the ultrasonic wave transmitted from the transmission unit is not particularly limited as long as desired measurement can be performed.
  • the ultrasonic wave is, for example, a burst wave, a chirp wave whose frequency changes.
  • the wavelength of the ultrasonic wave is 1.5 to 38 times the diameter of the target particle in the suspension.
  • the wavelength of the ultrasonic wave may be 20 times or more the diameter of the non-target particles and 38 times or less the diameter of the target particles.
  • the wavelength of the ultrasonic wave is more preferably 1.8 times or more the diameter of the non-target particle and 30 or less times the diameter of the target particle, and 2.0 or more times the diameter of the non-target particle. It is still more preferable that it is 20 times or less of the diameter.
  • the wavelength of the ultrasonic wave is 20 times or more the diameter of red blood cells and 38 of the diameter of white blood cells. It may be less than double.
  • the wavelength of the ultrasonic wave is more preferably 1.8 times or more the diameter of red blood cells and 30 or less times the diameter of white blood cells, 2.0 times or more of the diameter of red blood cells and 20 times or less of the diameter of white blood cells. Is even more preferable.
  • the center wavelength of the chirp wave may be set to the above-described ultrasonic wavelength.
  • the chirp ratio of the chirp wave is preferably 0.25 or more and 4.0 or less, and more preferably 0.4 or more and 2.0 or less.
  • the measuring unit Based on the difference between the transmitted wave received by the receiving unit and the reference wave generated when the sound wave passes through the reference solution that does not contain the target particle, the measuring unit detects the target particle that is a cell or virus in the suspension. Measure. As described above, the measurement of the particles is typically measurement of the presence or absence of cells or viruses, or measurement of the concentration of cells or viruses in the suspension.
  • the measurement unit preferably includes a storage unit. In this case, based on the reference information stored in the storage unit, the presence or absence of cells or viruses can be measured from the difference between the transmitted wave and the reference wave.
  • the measurement unit can also measure the concentration of the target particle from the difference between the transmitted wave and the reference wave based on a predetermined function. The function is preferably stored in the storage unit.
  • the measurement unit may be configured by an arithmetic processor such as a DSP (Digital Signal Processor) or FPGA (Field-Programmable Gate Array).
  • Various functions of the measurement unit can be realized by executing predetermined software (program) stored in the storage unit, for example.
  • Various functions of the measurement unit may be realized by cooperation of hardware and software, or may be realized only by hardware (electronic circuit).
  • the measurement unit may include, for example, a machine learning function that learns a plurality of transmitted waves as input data, a deep learning function, an AI (Artificial Intelligence) function, or the like.
  • the presence / absence or concentration of cells or viruses may be measured based on the difference between the transmitted wave and the reference wave or the feature amount thereof.
  • the measurement unit may be constructed by a neural network including, for example, a multilayer neural network (input layer, intermediate layer, output layer).
  • a neural network for example, various methods such as CNN (Convolutional Network Network) may be used.
  • FIG. 1 is a diagram showing a configuration of an example of a preferable measuring apparatus.
  • a measuring apparatus 1 shown in FIG. 1 is an apparatus that measures target particles that are cells or viruses in a suspension using ultrasonic waves.
  • the measuring apparatus 1 is, for example, a white blood cell, a circulating cancer cell (CTC), a CTC cluster, or a peripheral circulating vascular endothelial cell (CEC) floating in the blood in a suspension selected from blood or various test solutions. ), Cells such as bacteria, fungi, and spores, other microorganisms, viruses, and the like, and can be applied to various measuring devices that measure target particles.
  • CTC circulating cancer cell
  • CEC peripheral circulating vascular endothelial cell
  • a measuring apparatus 1 in FIG. 1 includes a storage unit 10 that stores a suspension, a transmission / reception unit 20 that transmits and receives ultrasonic waves, a holding unit 22 that holds the transmission / reception unit 20, a reflector 24, and a storage unit. 30 and a measurement unit 40.
  • the transmission / reception unit 20 has a function as a transmission unit and a function as a reception unit.
  • FIG. 1 while showing the cross section of the accommodating part 10, the transmission / reception part 20, the holding
  • the shape and size of the storage unit 10 are not particularly limited as long as a desired amount of suspension or reference liquid can be stored.
  • the accommodating part 10 is a chamber having a substantially cylindrical shape, for example.
  • the storage unit 10 stores the suspension or the reference liquid in the internal space.
  • the suspension or the reference liquid is introduced into the storage unit 10 through the introduction tube 12, for example.
  • the accommodating portion 10 may be provided with an exhaust pipe (not shown) in order to exhaust the internal space when the suspension or reference liquid is introduced from the introduction pipe 12.
  • the holding part 22 is provided on one side of the opening of the accommodating part 10.
  • a reflective plate 24 is provided on the other side of the opening of the accommodating portion 10.
  • an O-ring 15 is provided between the storage unit 10 and the holding unit 22, between the storage unit 10 and the reflection plate 24, and between the holding unit 22 and the transmission / reception unit 20. Thereby, the internal space of the accommodating part 10 is sealed.
  • the holding unit 22 shown in FIG. 1 has, for example, a substantially cylindrical shape, and holds the transmission / reception unit 20 in the internal space.
  • the transmission / reception unit 20 includes, for example, an oscillator and an ultrasonic transmission / reception probe using a piezoelectric element.
  • the transmission / reception unit 20 converts an electrical signal output from the oscillator into an ultrasonic wave using a piezoelectric element, and transmits the ultrasonic wave. Further, the transmission / reception unit 20 receives the ultrasonic wave, converts the ultrasonic wave into an electric signal by a piezoelectric element, and supplies the electric signal to the measurement unit 40.
  • the ultrasonic wave is, for example, a burst wave, a chirp wave whose frequency changes.
  • the wavelength of the ultrasonic wave is 1.5 to 38 times the diameter of the target particle in the suspension.
  • the wavelength of the ultrasonic wave may be 20 times or more the diameter of the non-target particles and 38 times or less the diameter of the target particles.
  • the wavelength of the ultrasonic wave is more preferably 1.8 times or more the diameter of the non-target particle and 30 or less times the diameter of the target particle, and 2.0 or more times the diameter of the non-target particle. It is still more preferable that it is 20 times or less of the diameter.
  • the wavelength of the ultrasonic wave is 20 times or more the diameter of red blood cells and 38 of the diameter of white blood cells. It may be less than double.
  • the wavelength of the ultrasonic wave is more preferably 1.8 times or more the diameter of red blood cells and 30 or less times the diameter of white blood cells, 2.0 times or more of the diameter of red blood cells and 20 times or less of the diameter of white blood cells. Is even more preferable.
  • the center wavelength of the chirp wave may be set to the above-described ultrasonic wavelength.
  • the chirp ratio of the chirp wave is preferably 0.25 or more and 4.0 or less, and more preferably 0.4 or more and 2.0 or less.
  • the shape of the reflector 24 is not particularly limited.
  • the shape of the reflecting plate 24 is, for example, a disc shape or a substantially disc shape.
  • the reflector 24 faces the transmission / reception surface of the transmission / reception unit 20 via a suspension of blood or the like stored in the storage unit 10, that is, the internal space of the storage unit 10.
  • the storage unit 30 stores the transmitted wave and reference wave data received by the transmission / reception unit 20.
  • the reference wave is a transmitted wave obtained in advance by transmitting an ultrasonic wave through a reference solution that does not contain target particles such as water, physiological saline, or plasma instead of the suspension.
  • storage part 30 memorize
  • the storage unit 30 stores in advance a function that receives the difference between the transmitted wave and the reference wave and outputs the concentration of the target particle according to the input difference.
  • the difference between the transmitted wave and the reference wave is a difference in peak height, a difference in peak position, or a difference in waveform distortion (details will be described later).
  • the storage unit 30 may be a rewritable memory such as an EEPROM, or may be a rewritable storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Disk).
  • the measuring unit 40 measures the presence / absence or concentration of the target particles in the suspension based on the difference between the transmitted wave received by the transmitting / receiving unit 20 and stored in the storage unit 30 and the reference wave.
  • the measuring unit 40 measures the presence / absence of the target particle from the difference between the transmitted wave and the reference wave based on the reference information stored in the storage unit 30, for example.
  • the measurement part 40 measures the density
  • the measurement unit 40 is composed of an arithmetic processor such as a DSP (Digital Signal Processor) or FPGA (Field-Programmable Gate Array). Various functions of the measurement unit 40 are realized by executing predetermined software (program) stored in the storage unit, for example. Various functions of the measurement unit 40 may be realized by cooperation of hardware and software, or may be realized only by hardware (electronic circuit).
  • arithmetic processor such as a DSP (Digital Signal Processor) or FPGA (Field-Programmable Gate Array).
  • Various functions of the measurement unit 40 are realized by executing predetermined software (program) stored in the storage unit, for example.
  • Various functions of the measurement unit 40 may be realized by cooperation of hardware and software, or may be realized only by hardware (electronic circuit).
  • the frequency of ultrasonic wave is lowered to obtain a transmitted wave, and the target particle is measured using the transmitted wave.
  • the measuring method of the target particle by the measuring apparatus 1 is demonstrated.
  • a method for measuring leukocytes as target particles in blood as a suspension using water as a reference solution will be described. Note that the measurement method described below is merely an example.
  • the measuring device for measuring the target particles is not limited to the measuring device 1 described in FIG.
  • the reference solution is not limited to water.
  • the target particles and suspension used for the measurement are not limited to leukocytes and blood.
  • the transmission / reception unit 20 transmits ultrasonic waves.
  • the transmission / reception unit 20 receives a reference wave generated by transmitting an ultrasonic wave through the reference liquid.
  • the measurement unit 40 stores the reference wave received by the transmission / reception unit 20 in the storage unit 30.
  • the transmission / reception unit 20 transmits ultrasonic waves.
  • the transmission / reception unit 20 receives a transmitted wave that is generated when an ultrasonic wave passes through blood.
  • the measurement unit 40 stores the transmitted wave received by the transmission / reception unit 20 in the storage unit 30.
  • FIG. 2 is a diagram illustrating an example of a transmitted wave (or reference wave) received by the transmission / reception unit 20.
  • the vertical axis represents the intensity of the transmitted wave, and the horizontal axis represents time [ ⁇ sec].
  • a portion A ⁇ b> 1 is an ultrasonic wave transmitted from the transmission / reception unit 20.
  • Part B ⁇ b> 1 is a transmitted wave (or reference wave) received by the transmitter / receiver 20 by making one round trip between the transmitter / receiver surface of the transmitter / receiver 20 and the reflective surface of the reflector 24 on the transmitter / receiver 20 side.
  • Part B ⁇ b> 2 is a transmitted wave (or reference wave) received by the transmitting / receiving unit 20 by making two round trips between the transmitting / receiving surface of the transmitting / receiving unit 20 and the reflecting surface of the reflecting plate 24.
  • the portion B1 is also referred to as a first wave
  • the portion B2 is also referred to as a second wave.
  • the portion B12 is a transmitted wave (or reference wave) received by the transmitting / receiving unit 20 by making a round trip between the transmitting / receiving surface of the transmitting / receiving unit 20 and the back surface of the reflecting plate 24 opposite to the reflecting surface
  • Part B ⁇ b> 22 is a transmitted wave (or reference wave) received by the transmitting / receiving unit 20 by making two reciprocations between the transmitting / receiving surface of the transmitting / receiving unit 20 and the back surface of the reflecting plate 24.
  • the wavelength of the ultrasonic wave is set to 1.5 to 38 times the diameter of the target white blood cell.
  • the wavelength of the ultrasonic wave is set to 30 ⁇ m or more, which is 1.5 times the diameter of the white blood cell, 1.5 ⁇ m, that is, the frequency of the ultrasonic wave is set to 50 MHz or less (the speed of sound is 1500 m / sec)
  • the ultrasonic wave is reflected on the surface of the white blood cell. Without passing through the leukocytes, a transmitted wave is obtained.
  • the transmitted wave through which the ultrasonic wave has passed through the white blood cell changes.
  • the speed of sound is faster than that in a reference solution such as plasma, water, or physiological saline. It becomes earlier than the phase of the reference wave that has passed through.
  • the peak value of the transmitted wave changes with respect to the peak value of the reference wave.
  • white blood cells do not become a part of a medium that is uniform with respect to ultrasonic waves, but affects the transmitted wave, and the waveform of the transmitted wave is distorted relative to the waveform of the reference wave. Thereby, based on the difference between the transmitted wave and the reference wave, it is possible to measure white blood cells as target particles in the blood as a suspension.
  • the wavelength of the ultrasonic wave is 20 times or more the diameter of red blood cells and 38 times the diameter of white blood cells.
  • the wavelength of the ultrasonic wave is set to 140 ⁇ m or more, which is 20 times the diameter of the red blood cell of about 7 ⁇ m, that is, the frequency of the ultrasonic wave is set to 10 MHz or less, the ultrasonic wave does not reflect on the surface of the white blood cell and the red blood cell and transmits the white blood cell and the red blood cell. A transmitted wave is obtained.
  • leukocytes have an effect on changes in the transmitted waves that have passed through leukocytes and erythrocytes, but erythrocytes do not.
  • the measurement of the white blood cells that are the target particles in the blood is performed without being affected by the red blood cells that are the non-target particles in the blood suspension that is the suspension. It can be carried out.
  • the measuring unit 40 determines whether or not the presence or concentration of white blood cells that are target particles in the blood that is the suspension Measure.
  • the difference include a difference in peak height, a difference in peak position, or a difference in waveform distortion.
  • 3A to 3C are schematic diagrams showing how to obtain the difference between the transmitted wave and the reference wave.
  • 3A to 3C show a transmitted wave (solid line) and a reference wave (broken line) corresponding to the first wave B1 or the second wave B2 shown in FIG. These are a transmitted wave and a reference wave when an ultrasonic wave having a continuous wave number of 5 is transmitted from the transmission / reception unit 20.
  • the phase of the transmitted wave is ahead of the phase of the reference wave.
  • the measurement unit 40 for example, superimposes the peak position of the transmitted wave that is the position of the maximum value on the peak position of the reference wave that is a position corresponding to the peak position of the transmitted wave.
  • the transmitted wave is translated along the time axis by time t.
  • the measurement part 40 calculates
  • the measurement unit 40 multiplies the intensity of the transmitted wave by N so that the peak height of the transmitted wave is superimposed on the peak height of the reference wave. Thereby, the measurement unit 40 obtains the difference in peak height as the intensity ratio N.
  • the measurement unit 40 is a suspension based on the difference between the transmitted wave and the reference wave, for example, the advance time t that is the difference in peak position, the intensity ratio N that is the difference in peak height, or the waveform distortion.
  • the presence / absence or concentration of white blood cells as target particles in blood is measured.
  • the measurement unit 40 measures the presence or absence of white blood cells based on the difference between the transmitted wave and the reference wave based on the reference information stored in the storage unit 30.
  • the measuring unit 40 measures the white blood cell concentration from the difference between the transmitted wave and the reference wave based on the function stored in the storage unit 30.
  • the transmission / reception unit 20 transmits ultrasonic waves, receives transmission waves generated by transmission of the ultrasonic waves through the suspension, and the measurement unit 40 transmits transmitted waves and reference waves.
  • the target particles in the suspension are measured based on the difference.
  • the wavelength of the ultrasonic wave is 1.5 to 38 times the diameter of the target particle. As described above, when the wavelength of the ultrasonic wave is 1.5 times or more the diameter of the target particle, the ultrasonic wave does not reflect on the surface of the target particle and passes through the target particle to obtain a transmitted wave. Further, if the wavelength of the ultrasonic wave is 38 times or less the diameter of the target particle, the transmitted wave through which the ultrasonic wave has passed through the target particle changes.
  • the speed of sound is faster than that in a reference solution such as plasma, water, or physiological saline. Becomes earlier than the phase of the reference wave transmitted through the reference solution.
  • the peak value of the transmitted wave changes with respect to the peak value of the reference wave.
  • white blood cells do not become a part of a medium that is uniform with respect to ultrasonic waves, but affects the transmitted wave, and the waveform of the transmitted wave is distorted with respect to the waveform of the reference wave. Thereby, based on the difference between the transmitted wave and the reference wave, it is possible to measure the presence or concentration or the concentration of white blood cells that are target particles in the blood that is a suspension.
  • the ultrasonic wave is set to 1.5 times to 38 times the diameter of the target particle, so that the suspension containing the target particle is super Sound waves are transmitted, and the presence or concentration of target particles in the suspension can be measured using the transmitted waves.
  • the wavelength of the ultrasonic wave is 20 times or more the diameter of the non-target particles, and the target particles The diameter is 38 times or less.
  • the wavelength of the ultrasonic wave is 20 times or more the diameter of red blood cells that are non-target particles, and It is 38 times or less of the diameter of the target white blood cell.
  • the ultrasonic wave when the wavelength of the ultrasonic wave is 20 times or more the diameter of the non-target particle, the ultrasonic wave does not reflect on the surface of the target particle and the non-target particle, and passes through the target particle and the non-target particle. Is obtained.
  • the target particle affects the change of the transmitted wave through which the ultrasonic wave passes through the target particle and the non-target particle, but the non-target particle does not. Thereby, based on the difference between the transmitted wave and the reference wave, it is possible to measure the presence / absence or concentration of the target particle in the suspension without being affected by the non-target particle in the suspension.
  • the measurement apparatus 1 and the measurement method described above by setting the wavelength of the ultrasonic wave to 20 times or more the diameter of the non-target particle and 38 times or less the diameter of the target particle, Ultrasound is transmitted through the suspension containing the target particles, and the transmitted wave is used to determine the presence or concentration of the target particles in the suspension without being affected by non-target particles in the suspension. Measurements can be made.
  • a pulse wave is used in an ultrasonic inspection (echo inspection).
  • a supersonic wave is used as an ultrasonic wave, thereby super Sound wave permeability can be increased.
  • a continuous wave for example, a chirp wave
  • the difference between the transmitted wave and the reference wave corresponding to the second wave that has passed through the suspension two or more times using the apparatus including the transmission / reception unit 20 and the reflection plate 24.
  • the target particles in the suspension may be measured based on the above. Thereby, the difference between the transmitted wave and the reference wave is increased, and the presence or absence or concentration of the target particle in the suspension can be easily measured.
  • the transmitter / receiver 20 in which the transmitter and the receiver are integrally configured and the reflector 24 are provided, and the transmitted wave transmitted through the suspension one or more times (twice) or more is measured. . It is preferable to measure the transmitted wave that has passed through the suspension two times (four times).
  • the feature of the present invention is not limited to this. Even if the transmission unit and the reception unit configured separately are opposed to each other with the storage unit interposed therebetween, the transmitted wave that has passed through the suspension only once is measured. Good.
  • the measurement unit 40 determines the presence or absence or concentration of the target particle from the difference between the transmitted wave that has passed through the suspension and the reference wave based on the reference information or function stored in the storage unit 30. It was measured.
  • the measurement unit is not limited to this, and has a machine learning (Machine Learning) function, a deep learning function (AI), an AI (Artificial Intelligence) function, or the like, for example, which learns a plurality of transmitted waves as input data. Based on the learned model, the presence / absence or concentration of the target particle may be measured from the difference between the transmitted wave and the reference wave or the characteristic amount thereof.
  • the measurement unit may be constructed by a neural network including, for example, a multilayer neural network (input layer, intermediate layer, output layer). As such a neural network, for example, various methods such as CNN (Convolutional Network Network) may be used.
  • 4A to 4D are diagrams illustrating measurement results of the transmitted wave and the reference wave in verification 1.
  • FIG. 4A to 4D show the transmitted wave and the reference wave corresponding to the second wave B2 shown in FIG. 2, and the transmitted wave (solid line) and the reference wave after the peak position and the peak height are superimposed by the measuring unit 40. Waves (dashed lines) are shown.
  • the ultrasonic wave transmitted from the transmission / reception unit 20 has a frequency of 5 MHz (wavelength: intermediate between 20 times the diameter of red blood cells and 38 times the diameter of white blood cells), 5 continuous waves, and chirp waves (chirp ratio 3). .5).
  • a reference wave (broken line) is a reference wave that has passed through water.
  • the transmitted wave (solid line) in FIG. 4A is a transmitted wave that has been transmitted through whole blood (plasma + red blood cells + white blood cells), and the transmitted wave (solid line) in FIG. 4B is a transmitted wave that has been transmitted through only plasma, and the transmitted wave in FIG. 4C.
  • Solid line is a transmitted wave transmitted through white blood removal (plasma + red blood cells), and a transmitted wave (solid line) in FIG. 4D is a transmitted wave transmitted through plasma + white blood cells.
  • the transmitted wave advance time t (difference in peak position) with respect to the reference wave is 2.74 ⁇ sec, and waveform distortion occurs in the transmitted wave with respect to the reference wave.
  • the advance time t of the transmitted wave with respect to the reference wave was 1.05 ⁇ sec, and no waveform distortion occurred in the transmitted wave.
  • the advance time t of the transmitted wave with respect to the reference wave was 1.47 ⁇ sec, and no waveform distortion occurred in the transmitted wave.
  • the transmission wave advance time t with respect to the reference wave was 1.16 ⁇ sec, and waveform distortion occurred in the transmitted wave with respect to the reference wave.
  • the phase of the transmitted wave advances from the phase of the reference wave due to the red blood cells or white blood cells containing protein, and the advance time t for each of whole blood, white blood removal, and plasma + white blood cells is I can see that they are different.
  • red blood cells become a part of a medium that is uniform with respect to ultrasonic waves (5 MHz)
  • white blood cells are a medium that is uniform with respect to ultrasonic waves (5 MHz)
  • the waveform distortion of transmitted waves is not affected. It can be seen that the waveform distortion of the transmitted wave is affected.
  • the presence / absence or concentration of white blood cells can be measured based on the advance time t (difference in peak position) of the transmitted wave with respect to the reference wave. Further, the presence or concentration of white blood cells or the like can be measured based on the waveform distortion of the transmitted wave with respect to the reference wave.
  • FIG. 5A to 5D are diagrams showing the measurement results of the transmitted wave and the reference wave in verification 2.
  • FIG. 5A to 5D show the transmitted wave and the reference wave corresponding to the second wave B2 shown in FIG. 2, and the transmitted wave (solid line) and the reference wave after the peak position and the peak height are superimposed by the measurement unit 40. Waves (dashed lines) are shown.
  • the ultrasonic wave transmitted from the transmission / reception unit 20 was set to a frequency of 10 MHz (wavelength: 20 times the diameter of red blood cells), a continuous wave number of 5 waves, and a chirp wave (chirp ratio of 3.5).
  • the reference wave (broken line) is a reference wave that has passed through water.
  • the transmitted wave (solid line) in FIG. 5A is a transmitted wave that has passed through whole blood
  • the transmitted wave (solid line) in FIG. 5B is a transmitted wave that has passed through only plasma
  • the transmitted wave (solid line) in FIG. 5D is a transmitted wave that has passed through plasma + white blood cells.
  • the transmission wave advance time t (difference in peak position) with respect to the reference wave was 2.69 ⁇ sec.
  • the advance time t of the transmitted wave with respect to the reference wave was 1.10 ⁇ sec.
  • the advance time t of the transmitted wave with respect to the reference wave was 1.49 ⁇ sec.
  • the advance time t of the transmitted wave with respect to the reference wave was 1.25 ⁇ sec.
  • the phase of the transmitted wave advances from the phase of the reference wave due to the red blood cells or white blood cells containing protein, and the advance time t is different for each of whole blood, white blood removal, and plasma + white blood cells. I can see that they are different.
  • the presence / absence or concentration of white blood cells can be measured based on the advance time t (difference in peak position) of the transmitted wave with respect to the reference wave.
  • 6A to 6D are diagrams showing the measurement results of the transmitted wave and the reference wave in verification 3.
  • FIG. 6A to 6D show the transmitted wave and the reference wave corresponding to the first wave B1 shown in FIG. 2, and the transmitted wave (solid line) and the reference wave after the peak position and peak height are superposed by the measurement unit 40. Waves (dashed lines) are shown.
  • the ultrasonic wave transmitted from the transmission / reception unit 20 was set to a frequency of 2 MHz (wavelength: 38 times the diameter of white blood cells), a continuous wave number of 5 waves, and a chirp wave (chirp ratio of 3.5).
  • the reference wave (broken line) is a reference wave that has passed through water.
  • the transmitted wave (solid line) in FIG. 6A is a transmitted wave that has passed through whole blood
  • the transmitted wave (solid line) in FIG. 6B is a transmitted wave that has passed through only plasma
  • the transmitted wave (solid line) in FIG. 6D is a transmitted wave that has passed through plasma + white blood cells.
  • the transmission wave advance time t with respect to the reference wave was 1.31 ⁇ sec.
  • the advance time t of the transmitted wave with respect to the reference wave was 0.73 ⁇ sec.
  • the lead time t of the transmitted wave with respect to the reference wave was 1.30 ⁇ sec.
  • the advance time t of the transmitted wave with respect to the reference wave was 0.72 ⁇ sec.
  • the phase of the transmitted wave advances from the phase of the reference wave due to the red blood cells or white blood cells containing protein, and the advance time t is different for each of whole blood, white blood removal, and plasma + white blood cells. I can see that they are different.
  • the presence / absence or concentration of white blood cells can be measured based on the advance time t (difference in peak position) of the transmitted wave with respect to the reference wave.
  • FIG. 7A to 7E are diagrams showing measurement results of the transmitted wave and the reference wave in verification 4.
  • FIG. 7A to 7E show the transmitted wave and the reference wave corresponding to the first wave B1 shown in FIG. 2, and the transmitted wave (solid line) and the reference wave after the peak position and the peak height are superimposed by the measuring unit 40. Waves (dashed lines) are shown.
  • the ultrasonic wave transmitted from the transmission / reception unit 20 was set to a frequency of 2 MHz, a continuous wave number of 5 waves, and a chirp wave (chirp ratio 0.6).
  • the reference wave (broken line) is a reference wave that has passed through water.
  • FIG. 7A is a transmitted wave that has passed through whole blood
  • the transmitted wave (solid line) in FIG. 7B is a transmitted wave that has passed through only plasma
  • the transmitted wave (solid line) in FIG. 7D is the transmitted wave that has passed through plasma + white blood cells
  • the transmitted wave (solid line) in FIG. 7E has passed through plasma + blood circulating cancer cells (CTC).
  • the transmitted wave advance time t (difference in peak position) with respect to the reference wave was 1.29 ⁇ sec, and no waveform distortion occurred in the transmitted wave.
  • the advance time t of the transmitted wave with respect to the reference wave was 0.72 ⁇ sec, and no waveform distortion occurred in the transmitted wave.
  • the advance time t of the transmitted wave with respect to the reference wave was 1.29 ⁇ sec, and no waveform distortion occurred in the transmitted wave.
  • the transit time t of the transmitted wave with respect to the reference wave was 0.72 ⁇ sec, and no waveform distortion occurred in the transmitted wave.
  • FIG. 7E in plasma + CTC, the advance time t of the transmitted wave with respect to the reference wave was 0.70 ⁇ sec, and waveform distortion occurred in the transmitted wave with respect to the reference wave.
  • leukocytes are not part of a uniform medium with respect to ultrasonic waves (2 MHz), but the influence on waveform distortion of transmitted waves is reduced. It has been found that CTC does not become a part of a uniform medium and affects waveform distortion of a transmitted wave. Thereby, the presence or absence of the CTC or the concentration can be measured based on the waveform distortion of the transmitted wave with respect to the reference wave.

Abstract

超音波を用いて懸濁液中の、細胞またはウイルスである目的粒子の測定を行う測定装置および測定方法を提供する。 測定装置1は、超音波を用いて懸濁液中の、細胞またはウイルスである目的粒子の測定を行う装置であって、超音波を送信する送信部20と、超音波が懸濁液を透過して生じる透過波を受信する受信部20と、透過波と、超音波が目的粒子を含まない基準液を透過して生じる基準波との差異に基づいて、懸濁液中の目的粒子の測定を行う測定部40とを備え、超音波の波長は、目的粒子の直径の1.5倍以上38倍以下である。

Description

測定装置および細胞またはウイルスの測定方法
 本発明は、超音波を用いて懸濁液中の細胞またはウイルスである目的粒子の測定を行う測定装置および測定方法に関する。
 超音波を用いた検査技術として、例えば医療分野における超音波検査(エコー検査)が知られている。この超音波検査は、超音波を体内の臓器に当てて臓器界面での反射波を利用する検査である。
 ところで、血液中の粒子を測定する技術がある。特許文献1には、血液中の赤血球の変形性能のような特性の測定において超音波を用いる技術が記載されている。
 また、血液中の白血球または血中循環癌細胞(CTC)の有無および濃度等を測定する技術がある。このような血液中の白血球またはCTCの測定技術に、上述した反射波を利用する超音波検査の技術を適用する場合、白血球またはCTCの界面の面積が小さいため、超音波の周波数を上げ反射波を得る必要がある。周波数としては、例えば、50MHz~100MHzである。
特許3537824号公報
 しかし、反射波を利用する技術では、白血球またはCTCの界面で超音波が反射されてしまい、さらには赤血球の界面でも超音波が反射されてしまう。このため、白血球またはCTCの有無および濃度の測定が困難である。
 そこで、本発明は、超音波を用いて懸濁液中の細胞またはウイルスである目的粒子の測定を行う測定装置および測定方法を提供することを目的とする。
 本発明に係る測定装置は、超音波を用いて懸濁液中の目的粒子の測定を行う装置であって、超音波を送信する送信部と、超音波が懸濁液を透過して生じる透過波を受信する受信部と、透過波と、超音波が目的粒子を含まない基準液を透過して生じる基準波との差異に基づいて、懸濁液中の目的粒子の測定を行う測定部とを備え、超音波の波長は、目的粒子の直径の1.5倍以上38倍以下であり、目的粒子が細胞またはウイルスである測定装置である。
 本発明に係る測定方法は、超音波を用いて懸濁液中の目的粒子の測定を行う方法であって、目的粒子の直径の1.5倍以上38倍以下である波長を有する超音波を送信し、超音波が懸濁液を透過して生じる透過波を受信し、透過波と、超音波が目的粒子を含まない基準液を透過して生じる基準波との差異に基づいて、懸濁液中の目的粒子の測定を行い、目的粒子が細胞またはウイルスである測定方法である。
 本発明によれば、超音波の周波数を下げ透過波を得、この透過波を利用して超音波検査を行うことにより、懸濁液中の細胞またはウイルスである目的粒子の測定を行うことができる。
好ましい測定装置の一例の構成を示す図である。 送受信部で受信する透過波(または基準波)の一例を示す図である。 透過波と基準波との差異の求め方を示す模式図である。 透過波と基準波との差異の求め方を示す模式図である。 透過波と基準波との差異の求め方を示す模式図である。 検証1における透過波および基準波の測定結果を示す図である。 検証1における透過波および基準波の測定結果を示す図である。 検証1における透過波および基準波の測定結果を示す図である。 検証1における透過波および基準波の測定結果を示す図である。 検証2における透過波および基準波の測定結果を示す図である。 検証2における透過波および基準波の測定結果を示す図である。 検証2における透過波および基準波の測定結果を示す図である。 検証2における透過波および基準波の測定結果を示す図である。 検証3における透過波および基準波の測定結果を示す図である。 検証3における透過波および基準波の測定結果を示す図である。 検証3における透過波および基準波の測定結果を示す図である。 検証3における透過波および基準波の測定結果を示す図である。 検証4における透過波および基準波の測定結果を示す図である。 検証4における透過波および基準波の測定結果を示す図である。 検証4における透過波および基準波の測定結果を示す図である。 検証4における透過波および基準波の測定結果を示す図である。 検証4における透過波および基準波の測定結果を示す図である。
≪測定装置≫
 測定装置は、超音波を用いて懸濁液中の目的粒子の測定を行う装置である。
 測定装置は、送信部と、受信部と、測定部とを備える。
 送信部は、超音波を送信する。
 受信部は、超音波が懸濁液を透過して生じる透過波を受信する。
 測定部は、透過波と、超音波が目的粒子を含まない基準液を透過して生じる基準波との差異に基づいて、懸濁液中の目的粒子の測定を行う。
 また、超音波の波長は、目的粒子の直径の1.5倍以上38倍以下である。
 目的粒子は、細胞またはウイルスである。
 前述の通り、測定装置は、超音波を用いて懸濁液中の目的粒子の測定を行い、目的粒子は細胞またはウイルスである。目的粒子の測定における測定対象は、超音波が懸濁液を透過して生じる透過波と、超音波が目的粒子を含まない基準液を透過して生じる基準波との差異に基づいて導出される目的粒子に関する情報であれば特に限定されない。
 目的粒子の測定は、典型的には、細胞またはウイルスの有無の測定や、懸濁液中の細胞またはウイルスの濃度の測定である。
 目的粒子としての細胞またはウイルスの種類は、その直径が、上記の直径と超音波の波長との関係を満たす限りにおいて特に限定されない。目的粒子としての細胞は、単一の細胞であっても、複数の細胞の集合体であってもよい。目的粒子として好適な細胞としては、白血球、血中循環癌細胞(CTC)、CTCクラスター、血液中に浮遊する末梢循環血管内皮細胞(CEC)、細菌、真菌、芽胞等の細胞、その他の微生物が挙げられる。
 目的粒子としての細胞またはウイルスの直径は、超音波の波長と、目的粒子の直径との関係が前述の関係を満たす限り、特に限定されない。
 目的粒子としての細胞またはウイルスの直径は、例えば、細胞では1μm以上、50μm以下、ウイルスでは0.02μm以上、0.5μm以下が好ましく、細胞では、3μm以上、30μm以下が、ウイルスでは0.03μm以上0.3μm以下が特に好ましい。細胞が数個以上のクラスターを形成する場合は、この直径によらない。
 目的粒子を含む懸濁液における目的粒子を分散させる媒質としての液体成分は、目的粒子としての細胞またはウイルスに、所望しない変形、破壊、変質等を生じさせない液体であれば特に限定されない。上記の液体成分としては、水、生理食塩水、種々の緩衝液や液体培地等が挙げられる。
 懸濁液が、血液、リンパ液等に代表される体液である場合、当該体液をそのまま測定装置による測定に用いることができる。また、必要に応じて、希釈または濃縮された体液を、測定装置による測定に用いることもできる。
 懸濁液中の目的粒子の濃度は、所望の測定を行うことができる限り特に限定されない。仮に、懸濁液中の目的粒子の濃度が、良好な測定を行いやすい濃度の範囲外であっても、懸濁液を希釈または濃縮することにより、懸濁液中の目的粒子について所望の測定を容易に行うことができる。
 目的粒子が細胞である場合、懸濁液中の目的粒子の濃度は、目的粒子数として1×10~1×10個/mLが好ましい。
 また、目的粒子がCTCである場合、懸濁液中の目的粒子の濃度は、目的粒子数として1~100個/mLが好ましい。
 さらに上記の測定装置によれば、血液をそのまま試料として用いて血液中の細胞についての測定を行うことができる。血液をそのまま試料としての懸濁液として用いる場合、血液の濃度は、ヘマトクリット値として、男性の血液について好ましくは40~48%、より好ましくは40~45%であり、女性の血液について好ましくは36~42%、より好ましくは36~40%である。
 ヘマトクリット値は、血液中に占める赤血球の体積の割合の値である。
 送信部は、所望する波長の超音波を送信可能であれば特に限定されない。送信部としては従来知られる種々の超音波送信装置を用いることができる。受信部は、上記の透過波を受信可能であれば特に限定されない。受信部としては従来知られる種々の超音波受信装置を用いることができる。
 送信部は、典型的には、超音波送信用プローブを備える。受信部は、典型的には、超音波受信用プローブを備える。
 超音波送信用プローブに特に限定はない。超音波送信用プローブは、例えば、発振器および圧電素子を備える。かかるプローブは、発振器により出力される電気信号を圧電素子により超音波に変換し、この超音波を送信する。
 超音波受信用プローブに特に限定はない。超音波受信用プローブは、例えば、圧電素子を備える。かかるプローブは、超音波を受信し、この超音波を圧電素子により電気信号に変化し、電気信号を測定部に供給する。
 送信部と、受信部とは、それぞれ別体で構成されてもよい。また、送信部と、受信部とは、両者が一体的に構成された送受信部として測定装置に備えられてもよい。
 送信部より送信される超音波は、所望する測定を行うことができる限り特定に限定されない。超音波は、例えば、バースト波、周波数が変化するチャープ波等である。超音波の波長は、懸濁液中の目的粒子の直径の1.5倍以上38倍以下である。懸濁液が目的粒子よりも小さい非目的粒子を含む場合、超音波の波長は、非目的粒子の直径の20倍以上、かつ、目的粒子の直径の38倍以下であってもよい。
 超音波の波長は、非目的粒子の直径の1.8倍以上、かつ、目的粒子の直径の30倍以下であるとより好ましく、非目的粒子の直径の2.0倍以上、かつ、目的粒子の直径の20倍以下であるとさらにより好ましい。
 例えば、懸濁液が、血液のように目的粒子である白血球の他に非目的粒子である赤血球を含む場合、超音波の波長は、赤血球の直径の20倍以上、かつ、白血球の直径の38倍以下であってもよい。超音波の波長は、赤血球の直径の1.8倍以上、かつ、白血球の直径の30倍以下であるとより好ましく、赤血球の直径の2.0倍以上、かつ、白血球の直径の20倍以下であるとさらにより好ましい。
 なお、チャープ波の場合、チャープ波の中心波長が上述した超音波の波長に設定されればよい。チャープ波のチャープ比は、0.25以上4.0以下であると好ましく、0.4以上2.0以下であるとより好ましい。
 測定部は、受信部で受信された透過波と、音波が目的粒子を含まない基準液を透過して生じる基準波との差異に基づいて、懸濁液中の細胞またはウイルスである目的粒子の測定を行う。当該粒子の測定は、前述の通り、典型的には、細胞またはウイルスの有無の測定や、懸濁液中の細胞またはウイルスの濃度の測定である。
 測定部は、好ましくは記憶部を備える。この場合、記憶部に記憶された基準情報に基づいて、透過波と基準波との差異から細胞またはウイルスの有無等を測定できる。また、測定部は、予め定められた関数に基づいて、透過波と基準波との差異から目的粒子の濃度を測定することもできる。関数は、記憶部に記憶されているのが好ましい。
 測定部は、例えば、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)等の演算プロセッサで構成されてよい。測定部の各種機能は、例えば記憶部に格納された所定のソフトウェア(プログラム)を実行することで実現され得る。測定部の各種機能は、ハードウェアとソフトウェアとの協働で実現されてもよいし、ハードウェア(電子回路)のみで実現されてもよい。
 また、測定部は、例えば、複数の透過波を入力データとして学習する機械学習(Machine Learning)機能、深層学習(Deep Learning)機能、またはAI(Artificial Intelligence)機能等を備えてもよい。この場合、学習した学習モデルに基づいて、透過波と基準波との差異またはその特徴量から細胞またはウイルスの有無または濃度等の測定を行ってもよい。
 測定部は、例えば多層ニューラルネットワーク(入力層、中間層、出力層)を含むニューラルネットワークにより構築されてもよい。このようなニューラルネットワークとしては、例えばCNN(Convolutional Newral Network)等の種々の方式が用いられてもよい。
 以下、添付の図面を参照して測定装置および測定方法の好ましい一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。
 図1は、好ましい測定装置の一例について、その構成を示す図である。図1に示す測定装置1は、超音波を用いて懸濁液中の細胞またはウイルスである目的粒子の測定を行う装置である。
 測定装置1は、例えば、血液または種々の試験液等から選択される懸濁液中の、白血球、血中循環癌細胞(CTC)、CTCクラスター、血液中に浮遊する末梢循環血管内皮細胞(CEC)、細菌、真菌、および芽胞等の細胞、その他の微生物、ならびにウイルス等から選択される目的粒子を測定する種々の測定装置に適用可能である。
 図1中の測定装置1は、懸濁液を収容する収容部10と、超音波を送信および受信する送受信部20と、送受信部20を保持する保持部22と、反射板24と、記憶部30と、測定部40とを備える。送受信部20は、送信部としての機能と、受信部としての機能とを兼ね備える。
 なお、図1では、収容部10、送受信部20、保持部22および反射板24の断面を示すと共に、記憶部30および測定部40の回路ブロックを示している。
 収容部10の形状やサイズは、所望する量の懸濁液、または基準液を収容可能である限り特定に限定されない。
 収容部10は、例えば略筒状の形状をなすチャンバである。収容部10は、懸濁液、または基準液を内部空間に収容する。懸濁液、または基準液は、例えば導入管12を通じて収容部10に導入される。収容部10には、導入管12から懸濁液または基準液が導入される際に内部空間の排気を行うために、排気管(図示省略)が設けられていてもよい。
 例えば、収容部10の開口の一方側には保持部22が設けられる。収容部10の開口の他方側には反射板24が設けられている。収容部10と保持部22との間、収容部10と反射板24との間、および、保持部22と送受信部20との間には、例えばOリング15が設けられている。これにより、収容部10の内部空間は密閉されている。
 図1に示される保持部22は、例えば略筒状の形状をなしており、内部空間に送受信部20を保持している。
 送受信部20は、例えば、発振器と、圧電素子を用いた超音波送受信プローブとを含む。送受信部20は、発振器により出力される電気信号を圧電素子により超音波に変換し、この超音波を送信する。また、送受信部20は、超音波を受信し、この超音波を圧電素子により電気信号に変換し、電気信号を測定部40に供給する。
 超音波は、例えば、バースト波、周波数が変化するチャープ波等である。超音波の波長は、懸濁液中の目的粒子の直径の1.5倍以上38倍以下である。懸濁液が目的粒子よりも小さい非目的粒子を含む場合、超音波の波長は、非目的粒子の直径の20倍以上、かつ、目的粒子の直径の38倍以下であってもよい。超音波の波長は、非目的粒子の直径の1.8倍以上、かつ、目的粒子の直径の30倍以下であるとより好ましく、非目的粒子の直径の2.0倍以上、かつ、目的粒子の直径の20倍以下であるとさらにより好ましい。
 例えば、懸濁液が、血液のように目的粒子である白血球の他に非目的粒子である赤血球を含む場合、超音波の波長は、赤血球の直径の20倍以上、かつ、白血球の直径の38倍以下であってもよい。超音波の波長は、赤血球の直径の1.8倍以上、かつ、白血球の直径の30倍以下であるとより好ましく、赤血球の直径の2.0倍以上、かつ、白血球の直径の20倍以下であるとさらにより好ましい。
 なお、チャープ波の場合、チャープ波の中心波長が上述した超音波の波長に設定されればよい。チャープ波のチャープ比は、0.25以上4.0以下であると好ましく、0.4以上2.0以下であるとより好ましい。
 反射板24の形状は特に限定されない。反射板24の形状は、例えば円盤状、または略円盤状である。反射板24は、収容部10、すなわち収容部10の内部空間に収容される血液等の懸濁液を介して、送受信部20の送受信面と対向している。
 記憶部30は、送受信部20で受信された透過波および基準波のデータを記憶する。基準波は、懸濁液の代わりに、水、生理食塩水、または血漿等の目的粒子を含まない基準液に、超音波を透過させて予め得た透過波である。
 また、記憶部30は、例えば、目的粒子の有無を測定するための透過波と基準波との差異の基準情報を予め記憶する。また、記憶部30は、例えば、透過波と基準波との差異を入力とし、入力した差異に応じた目的粒子の濃度を出力とする関数を予め記憶する。透過波と基準波との差異は、ピーク高さの差異、ピーク位置の差異、または、波形歪みの差異である(詳細は後述する)。
 記憶部30は、例えばEEPROM等の書き換え可能なメモリであってもよいし、HDD(Hard Disk Drive)またはSSD(Solid State Disk)等の書き換え可能な記憶装置であってもよい。
 測定部40は、送受信部20で受信されて記憶部30に記憶された透過波と基準波との差異に基づいて、懸濁液中の目的粒子の有無または濃度の測定を行う。測定部40は、例えば記憶部30に記憶された基準情報に基づいて、透過波と基準波との差異から目的粒子の有無を測定する。また、測定部40は、例えば記憶部30に記憶された関数に基づいて、透過波と基準波との差異から目的粒子の濃度を測定する。
 測定部40は、例えば、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)等の演算プロセッサで構成される。測定部40の各種機能は、例えば記憶部に格納された所定のソフトウェア(プログラム)を実行することで実現される。測定部40の各種機能は、ハードウェアとソフトウェアとの協働で実現されてもよいし、ハードウェア(電子回路)のみで実現されてもよい。
 ここで、上述したように、例えば血液中の白血球のような微小な目的粒子の測定技術に、反射波を利用する超音波検査の技術を適用する場合、目的粒子の界面の面積が小さいため、超音波の周波数を上げ、反射波を得る必要がある。周波数としては、例えば、50MHz~100MHzである。
 しかし、反射波を利用する技術では、微小な目的粒子の界面で超音波が反射されてしまう。さらには、懸濁液が赤血球のような非目的粒子を含む場合、非目的粒子の界面でも超音波が反射されてしまい、白血球のような目的粒子の有無および/または濃度の測定が困難である。
 そこで、本実施形態では、超音波の周波数を下げ、透過波を得、この透過波を利用して目的粒子の測定を行う。
 以下、図2および図3を参照して、測定装置1による目的粒子の測定方法について説明する。以下、一例として、基準液として水を用いて、懸濁液としての血液中の目的粒子としての白血球の測定を行う方法について説明する。
 なお、以下に説明する測定方法は、あくまで一例である。目的粒子を測定するための測定装置は、図1に記載される測定装置1に限定されない。基準液は、水に限定されない。測定に供される目的粒子および懸濁液は、白血球および血液に限定されない。
 まず、導入管12を介して収容部10の内部空間に基準液としての水が導入される。その後、送受信部20が超音波を送信する。送受信部20は、超音波が基準液を透過して生じる基準波を受信する。測定部40は、送受信部20で受信された基準波を記憶部30に記憶させる。
 次に、導入管12を介して収容部10の内部空間に測定対象としての懸濁液としての血液が導入された後、送受信部20が超音波を送信する。送受信部20は、超音波が血液を透過して生じる透過波を受信する。測定部40は、送受信部20で受信された透過波を記憶部30に記憶させる。
 図2は、送受信部20で受信する透過波(または基準波)の一例を示す図である。縦軸は透過波の強度を示し、横軸は時間[μsec]を示す。
 図2において、部分A1は、送受信部20から送信された超音波である。部分B1は、送受信部20の送受信面と、反射板24における送受信部20側の反射面との間を1往復して送受信部20で受信された透過波(または基準波)である。部分B2は、送受信部20の送受信面と反射板24の反射面との間を2往復して送受信部20で受信された透過波(または基準波)である。以下では、部分B1を第1波とも称し、部分B2を第2波とも称する。
 なお、部分B12は、送受信部20の送受信面と、反射板24における反射面と反対側の裏面との間を1往復して送受信部20で受信された透過波(または基準波)であり、部分B22は、送受信部20の送受信面と反射板24の裏面との間を2往復して送受信部20で受信された透過波(または基準波)である。
 ここで、超音波の波長は、目的粒子である白血球の直径の1.5倍以上38倍以下に設定される。
 超音波の波長が白血球の直径約20μmの1.5倍の30μm以上、すなわち超音波の周波数が50MHz以下に設定されると(音速は1500m/secとする)、超音波は白血球の表面で反射せず白血球を透過し、透過波が得られる。
 また、超音波の波長が白血球の直径約20μmの38倍の760μm以下、すなわち超音波の周波数が2MHz以上に設定されると、超音波が白血球を通過した透過波が変化する。例えば、タンパクを含む白血球中では、血漿、水、または生理食塩水等の基準液中よりも音速が速いため、超音波が白血球を含む血液を透過した透過波の位相は、超音波が基準液を透過した基準波の位相よりも早くなる。或いは、透過波のピーク値は基準波のピーク値に対して変化する。また、例えば、白血球が超音波に対して均一な媒体の一部とはならず、透過波に影響を及ぼし、透過波の波形は基準波の波形に対して歪む。
 これにより、透過波と基準波との差異に基づいて、懸濁液としての血液中の目的粒子としての白血球の測定を行うことができる。
 血液のように目的粒子である白血球の他に非目的粒子である赤血球が存在する懸濁液を用いる場合、超音波の波長は、赤血球の直径の20倍以上、かつ、白血球の直径の38倍以下に設定される。
 超音波の波長が赤血球の直径約7μmの20倍の140μm以上、すなわち超音波の周波数が10MHz以下に設定されると、超音波は白血球および赤血球の表面で反射せず白血球および赤血球を透過し、透過波が得られる。
 また、超音波が白血球および赤血球を通過した透過波の変化に対し、白血球は影響を及ぼすが、赤血球は影響を及ぼさない。
 これにより、透過波と基準波との差異に基づいて、懸濁液である血液懸濁液中の非目的粒子である赤血球の影響を受けずに、血液中の目的粒子である白血球の測定を行うことができる。
 測定部40は、送受信部20で受信されて記憶部30に記憶された透過波と基準波との差異に基づいて、懸濁液である血液中の目的粒子である白血球の有無または濃度等の測定を行う。上記の差異としては、ピーク高さの差異、ピーク位置の差異、または、波形歪みの差異が挙げられる。
 図3A~図3Cは、透過波と基準波との差異の求め方を示す模式図である。図3A~図3Cには、図2に示す第1波B1または第2波B2に対応する透過波(実線)および基準波(破線)が示されている。これらは、送受信部20から連続波数5波の超音波が送信されたときの透過波および基準波である。
 図3Aに示すように、透過波の位相は基準波の位相よりも進む。測定部40は、図3Bに示すように、例えば最大値の位置であるような透過波のピーク位置を、透過波のピーク位置に対応する位置である基準波のピーク位置に重ね合わせるように、透過波を時間軸に沿って時間tだけ平行移動する。これにより、測定部40は、ピーク位置の差異を進み時間tとして求める。
 また、測定部40は、図3Cに示すように、透過波のピーク高さを基準波のピーク高さに重ね合わせるように、透過波の強度をN倍する。これにより、測定部40は、ピーク高さの差異を強度比Nとして求める。
 測定部40は、透過波と基準波との差異、例えば、ピーク位置の差異である進み時間t、ピーク高さの差異である強度比N、または、波形歪みに基づいて、懸濁液である血液中の目的粒子である白血球の有無または濃度等の測定を行う。
 例えば、測定部40は、記憶部30に記憶された基準情報に基づいて、透過波と基準波との差異から白血球の有無を測定する。また、測定部40は、記憶部30に記憶された関数に基づいて、透過波と基準波との差異から白血球の濃度を測定する。
 以上説明した、測定装置1および測定方法では、送受信部20が超音波を送信して、超音波が懸濁液を透過して生じる透過波を受信し、測定部40が透過波と基準波との差異に基づいて懸濁液中の目的粒子の測定を行う。超音波の波長は、目的粒子の直径の1.5倍以上38倍以下である。
 上述したように、超音波の波長が目的粒子の直径の1.5倍以上であると、超音波は目的粒子の表面で反射せず目的粒子を透過し、透過波が得られる。
 また、超音波の波長が目的粒子の直径の38倍以下であると、超音波が目的粒子を通過した透過波が変化する。例えば、タンパクを含む白血球またはCTC中では、血漿、水または生理食塩水等の基準液中よりも音速が速いため、超音波が白血球またはCTCを含む血液を透過した透過波の位相は、超音波が基準液を透過した基準波の位相よりも早くなる。或いは、透過波のピーク値は基準波のピーク値に対して変化する。また、例えば、白血球が超音波に対して均一な媒体の一部とはならず、透過波に影響を及ぼし、透過波の波形は基準波の波形に対して歪む。
 これにより、透過波と基準波との差異に基づいて、懸濁液である血液中の目的粒子である白血球の有無または濃度等の測定を行うことができる。
 このように、本実施形態の測定装置1および測定方法によれば、超音波の波長を目的粒子の直径の1.5倍以上38倍以下とすることにより、目的粒子を含む懸濁液を超音波が透過し、その透過波を利用して懸濁液中の目的粒子の有無または濃度の測定を行うことができる。
 また、本実施形態の測定装置1および測定方法では、懸濁液が目的粒子よりも小さい非目的粒子を含む場合、超音波の波長は、非目的粒子の直径の20倍以上、かつ、目的粒子の直径の38倍以下である。例えば、懸濁液としての血液のように、目的粒子である白血球の他に非目的粒子である赤血球を含む場合、超音波の波長は、非目的粒子でる赤血球の直径の20倍以上、かつ、目的粒子である白血球の直径の38倍以下である。
 上述したように、超音波の波長が非目的粒子の直径の20倍以上であると、超音波は目的粒子および非目的粒子の表面で反射せず目的粒子および非目的粒子を透過し、透過波が得られる。また、超音波が目的粒子および非目的粒子を通過した透過波の変化に対し、目的粒子は影響を及ぼすが、非目的粒子は影響を及ぼさない。
 これにより、透過波と基準波との差異に基づいて、懸濁液中の非目的粒子の影響を受けずに、懸濁液中の目的粒子の有無または濃度等の測定を行うことができる。
 このように、上記の測定装置1および測定方法によれば、超音波の波長を非目的粒子の直径の20倍以上、かつ、目的粒子の直径の38倍以下とすることにより、目的粒子および非目的粒子を含む懸濁液を超音波が透過し、その透過波を利用して、懸濁液中の非目的粒子の影響を受けずに、懸濁液中の目的粒子の有無または濃度等の測定を行うことができる。
 ところで、例えば、超音波検査(エコー検査)では、パルス波を用いるが、本実施形態の測定装置1および測定方法によれば、超音波として連続波(例えば、バースト波)を用いることにより、超音波の透過性を高めることができる。
 また、本実験形態の測定装置1および測定方法によれば超音波として周波数が変化する連続波(例えばチャープ波)を用いることにより、超音波の透過性と細胞の検出精度を高めることができる。
 また、上記の測定装置1および測定方法では、送受信部20と反射板24とを備える装置を用いて、懸濁液を2往復以上透過した第2波に対応する透過波と基準波との差異に基づいて、懸濁液中の目的粒子の測定を行ってもよい。これにより、透過波と基準波との差異が大きくなり、懸濁液中の目的粒子の有無または濃度の測定が容易となる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、上述した実施形態では、送信部と受信部とが一体的に構成された送受信部20と反射板24とを備え、懸濁液を1往復(2回)以上透過した透過波を測定した。なお、懸濁液を2往復(4回)透過した透過波を測定すると好ましい。しかし、本発明の特徴はこれに限定されず、別体に構成された送信部と受信部とを収容部を挟んで対向させ、懸濁液を1回だけ通過した透過波を測定してもよい。
 また、上述した実施形態では、測定部40は、記憶部30に記憶された基準情報または関数に基づいて、懸濁液を透過した透過波と基準波との差異から目的粒子の有無または濃度を測定した。しかし、測定部はこれに限定されず、例えば複数の透過波を入力データとして学習する機械学習(Machine Learning)機能、深層学習(Deep Learning)機能、またはAI(Artificial Intelligence)機能等を備え、学習した学習モデルに基づいて、透過波と基準波との差異またはその特徴量から目的粒子の有無または濃度等の測定を行ってもよい。
 測定部は、例えば多層ニューラルネットワーク(入力層、中間層、出力層)を含むニューラルネットワークにより構築されてもよい。このようなニューラルネットワークとしては、例えばCNN(Convolutional Newral Network)等の種々の方式が用いられてもよい。
 以下、測定装置1および測定方法の効果について検証する。なお、下記の検証では、白血球を目的粒子として使用したが、目的粒子としての細胞またはウイルスは白血球には限定されない。
(検証1)
 図4A~図4Dは、検証1における透過波および基準波の測定結果を示す図である。図4A~図4Dには、図2に示す第2波B2に対応する透過波および基準波であって、測定部40によるピーク位置およびピーク高さの重ね合わせ後の透過波(実線)および基準波(破線)が示されている。この検証1では、送受信部20から送信された超音波は、周波数5MHz(波長:赤血球の直径の20倍と白血球の直径の38倍との中間)、連続波数5波、チャープ波(チャープ比3.5)に設定された。
 図4A~図4Dにおいて、基準波(破線)は、水を透過した基準波である。
 図4Aにおける透過波(実線)は全血(血漿+赤血球+白血球)を透過した透過波であり、図4Bにおける透過波(実線)は血漿のみを透過した透過波であり、図4Cにおける透過波(実線)は白除血(血漿+赤血球)を透過した透過波であり、図4Dにおける透過波(実線)は血漿+白血球を透過した透過波である。
 図4Aに示すように、全血では、基準波に対する透過波の進み時間t(ピーク位置の差異)は2.74μsecであり、基準波に対して透過波に波形歪みが生じた。
 図4Bに示すように、血漿のみでは、基準波に対する透過波の進み時間tは1.05μsecであり、透過波に波形歪みが生じなかった。
 図4Cに示すように、白除血では、基準波に対する透過波の進み時間tは1.47μsecであり、透過波に波形歪みが生じなかった。
 図4Dに示すように、血漿+白血球では、基準波に対する透過波の進み時間tは1.16μsecであり、基準波に対して透過波に波形歪みが生じた。
 図4A~図4Dの測定結果によれば、タンパクを含む赤血球または白血球により、透過波の位相が基準波の位相よりも進み、全血、白除血、血漿+白血球のそれぞれで進み時間tが異なることがわかる。
 また、赤血球は超音波(5MHz)に対して均一な媒体の一部となるため、透過波の波形歪みに影響を及ぼさないのに対して、白血球は超音波(5MHz)に対して均一な媒体の一部とはならず、透過波の波形歪みに影響を及ぼすことがわかる。
 これにより、基準波に対する透過波の進み時間t(ピーク位置の差異)に基づいて、白血球の有無または濃度等を測定することができる。また、基準波に対する透過波の波形歪みに基づいて、白血球の有無または濃度等を測定することができる。
(検証2)
 図5A~図5Dは、検証2における透過波および基準波の測定結果を示す図である。図5A~図5Dには、図2に示す第2波B2に対応する透過波および基準波であって、測定部40によるピーク位置およびピーク高さの重ね合わせ後の透過波(実線)および基準波(破線)が示されている。この検証2では、送受信部20から送信された超音波は、周波数10MHz(波長:赤血球の直径の20倍)、連続波数5波、チャープ波(チャープ比3.5)に設定された。
 図5A~図5Dでも、基準波(破線)は、水を透過した基準波である。
 図5Aにおける透過波(実線)は全血を透過した透過波であり、図5Bにおける透過波(実線)は血漿のみを透過した透過波であり、図5Cにおける透過波(実線)は白除血を透過した透過波であり、図5Dにおける透過波(実線)は血漿+白血球を透過した透過波である。
 図5Aに示すように、全血では、基準波に対する透過波の進み時間t(ピーク位置の差異)は2.69μsecであった。
 図5Bに示すように、血漿のみでは、基準波に対する透過波の進み時間tは1.10μsecであった。
 図5Cに示すように、白除血では、基準波に対する透過波の進み時間tは1.49μsecであった。
 図5Dに示すように、血漿+白血球では、基準波に対する透過波の進み時間tは1.25μsecであった。
 図5A~図5Dの測定結果によれば、タンパクを含む赤血球または白血球により、透過波の位相が基準波の位相よりも進み、全血、白除血、血漿+白血球のそれぞれで進み時間tが異なることがわかる。
 これにより、基準波に対する透過波の進み時間t(ピーク位置の差異)に基づいて、白血球の有無または濃度等を測定することができる。
(検証3)
 図6A~図6Dは、検証3における透過波および基準波の測定結果を示す図である。図6A~図6Dには、図2に示す第1波B1に対応する透過波および基準波であって、測定部40によるピーク位置およびピーク高さの重ね合わせ後の透過波(実線)および基準波(破線)が示されている。この検証3では、送受信部20から送信された超音波は、周波数2MHz(波長:白血球の直径の38倍)、連続波数5波、チャープ波(チャープ比3.5)に設定された。
 図6A~図6Dでも、基準波(破線)は、水を透過した基準波である。
 図6Aにおける透過波(実線)は全血を透過した透過波であり、図6Bにおける透過波(実線)は血漿のみを透過した透過波であり、図6Cにおける透過波(実線)は白除血を透過した透過波であり、図6Dにおける透過波(実線)は血漿+白血球を透過した透過波である。
 図6Aに示すように、全血では、基準波に対する透過波の進み時間t(ピーク位置の差異)は1.31μsecであった。
 図6Bに示すように、血漿のみでは、基準波に対する透過波の進み時間tは0.73μsecであった。
 図6Cに示すように、白除血では、基準波に対する透過波の進み時間tは1.30μsecであった。
 図6Dに示すように、血漿+白血球では、基準波に対する透過波の進み時間tは0.72μsecであった。
 図6A~図6Dの測定結果によれば、タンパクを含む赤血球または白血球により、透過波の位相が基準波の位相よりも進み、全血、白除血、血漿+白血球のそれぞれで進み時間tが異なることがわかる。
 これにより、基準波に対する透過波の進み時間t(ピーク位置の差異)に基づいて、白血球の有無または濃度等を測定することができる。
(検証4)
 図7A~図7Eは、検証4における透過波および基準波の測定結果を示す図である。図7A~図7Eには、図2に示す第1波B1に対応する透過波および基準波であって、測定部40によるピーク位置およびピーク高さの重ね合わせ後の透過波(実線)および基準波(破線)が示されている。この検証4では、送受信部20から送信された超音波は、周波数2MHz、連続波数5波、チャープ波(チャープ比0.6)に設定された。
 図7A~図7Eでも、基準波(破線)は、水を透過した基準波である。
 図7Aにおける透過波(実線)は全血を透過した透過波であり、図7Bにおける透過波(実線)は血漿のみを透過した透過波であり、図7Cにおける透過波(実線)は白除血を透過した透過波であり、図7Dにおける透過波(実線)は血漿+白血球を透過した透過波であり、図7Eにおける透過波(実線)は血漿+血中循環癌細胞(CTC)を透過した透過波である(本実験での「血漿+血中循環癌細胞」は、「がん細胞株(MDA-MB231)に血漿を加えたものである」)。
 図7Aに示すように、全血では、基準波に対する透過波の進み時間t(ピーク位置の差異)は1.29μsecであり、透過波に波形歪みが生じなかった。
 図7Bに示すように、血漿のみでは、基準波に対する透過波の進み時間tは0.72μsecであり、透過波に波形歪みが生じなかった。
 図7Cに示すように、白除血では、基準波に対する透過波の進み時間tは1.29μsecであり、透過波に波形歪みが生じなかった。
 図7Dに示すように、血漿+白血球では、基準波に対する透過波の進み時間tは0.72μsecであり、透過波に波形歪みが生じなかった。
 図7Eに示すように、血漿+CTCでは、基準波に対する透過波の進み時間tは0.70μsecであり、基準波に対して透過波に波形歪みが生じた。
 図7A~図7Eの測定結果によれば、白血球は超音波(2MHz)に対して均一な媒体の一部とはならないが、透過波の波形歪みに対する影響が低減しているのに対して、CTCは均一な媒体の一部とはならず、透過波の波形歪みに影響を及ぼすことがわかった。
 これにより、基準波に対する透過波の波形歪みに基づいて、CTCの有無または濃度等を測定することができる。
 1 測定装置
 10 収容部
 12 導入管
 15 Oリング
 20 送受信部
 22 保持部
 24 反射板
 30 記憶部
 40 測定部

Claims (11)

  1.  超音波を用いて懸濁液中の目的粒子の測定を行う装置であって、
     前記超音波を送信する送信部と、
     前記超音波が前記懸濁液を透過して生じる透過波を受信する受信部と、
     前記透過波と、前記超音波が前記目的粒子を含まない基準液を透過して生じる基準波との差異に基づいて、前記懸濁液中の前記目的粒子の測定を行う測定部と、
    を備え、
     前記超音波の波長は、前記目的粒子の直径の1.5倍以上38倍以下であり、
     前記目的粒子が、細胞またはウイルスである、
    測定装置。
  2.  前記超音波はバースト波である、請求項1に記載の測定装置。
  3.  前記超音波は、周波数が変化する連続波であり、
     前記超音波の波長は前記連続波の中心波長である、
    請求項2に記載の測定装置。
  4.  前記送信部と前記受信部とは一体的に形成され、
     前記送信部および前記受信部の送受信面と前記懸濁液を介して対向して配置された反射板をさらに備え、
     前記測定部は、前記懸濁液を2往復以上透過した前記透過波と前記基準波との差異に基づいて、前記懸濁液中の前記目的粒子の測定を行う、
    請求項1~3の何れか1項に記載の測定装置。
  5.  前記透過波と前記基準波との差異は、ピーク高さの差異、ピーク位置の差異、および、波形歪みの差異の少なくとも1つである、請求項1~4の何れか1項に記載の測定装置。
  6.  前記測定部は、
     前記透過波のピーク位置を前記基準波のピーク位置に重ね合わせるように、前記透過波を時間軸に沿って時間tだけ平行移動し、
     前記透過波のピーク高さを前記基準波のピーク高さに重ね合わせるように、前記透過波の強度をN倍し、
     前記時間tまたは前記強度のN倍に基づいて、または、波形歪みに基づいて、前記懸濁液中の前記目的粒子の測定を行う、
    請求項5に記載の測定装置。
  7.  前記測定部は、前記懸濁液中の前記目的粒子の測定として、前記目的粒子の有無または濃度の測定を行う、請求項1~6の何れか1項に記載の測定装置。
  8.  前記基準液は、水、生理食塩水または血漿である、請求項1~7の何れか1項に記載の測定装置。
  9.  前記懸濁液は、前記目的粒子よりも小さい非目的粒子を含み、
     前記超音波の波長は、前記非目的粒子の直径の20倍以上、かつ、前記目的粒子の直径の38倍以下である、
    請求項1~8の何れか1項に記載の測定装置。
  10.  前記懸濁液は血液であり、
     前記目的粒子は白血球または血中循環癌細胞であり、
     前記非目的粒子は赤血球である、
    請求項9に記載の測定装置。
  11.  超音波を用いて懸濁液中の目的粒子の測定を行う方法であって、
     前記目的粒子の直径の1.5倍以上38倍以下である波長を有する前記超音波を送信し、
     前記超音波が前記懸濁液を透過して生じる透過波を受信し、
     前記透過波と、前記超音波が前記目的粒子を含まない基準液を透過して生じる基準波との差異に基づいて、前記懸濁液中の前記目的粒子の測定を行い、
     前記目的粒子が、細胞またはウイルスである、
    測定方法。
PCT/JP2019/004857 2018-02-09 2019-02-12 測定装置および細胞またはウイルスの測定方法 WO2019156256A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019571191A JPWO2019156256A1 (ja) 2018-02-09 2019-02-12 測定装置および細胞またはウイルスの測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022158 2018-02-09
JP2018-022158 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019156256A1 true WO2019156256A1 (ja) 2019-08-15

Family

ID=67549690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004857 WO2019156256A1 (ja) 2018-02-09 2019-02-12 測定装置および細胞またはウイルスの測定方法

Country Status (2)

Country Link
JP (1) JPWO2019156256A1 (ja)
WO (1) WO2019156256A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629159A (en) * 1979-08-17 1981-03-23 Chiyouonpa Kogyo Kk Measurement unit for ultrasonic wave concentration
JPS62500612A (ja) * 1984-10-23 1987-03-12 ロフラ−、フリ−ドリッヒ 固体濃度・粒度分布の超音波測定方法
JPH06288990A (ja) * 1993-03-31 1994-10-18 Japan Tobacco Inc 超音波式濃度計
JP2006506607A (ja) * 2002-08-28 2006-02-23 セパレーション テクノロジー,インコーポレーティッド 赤血球指数の超音波測定のための方法及び装置
JP2014106225A (ja) * 2012-11-27 2014-06-09 Hokushin Electronics:Kk 超音波式小型ガス濃度計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629159A (en) * 1979-08-17 1981-03-23 Chiyouonpa Kogyo Kk Measurement unit for ultrasonic wave concentration
JPS62500612A (ja) * 1984-10-23 1987-03-12 ロフラ−、フリ−ドリッヒ 固体濃度・粒度分布の超音波測定方法
JPH06288990A (ja) * 1993-03-31 1994-10-18 Japan Tobacco Inc 超音波式濃度計
JP2006506607A (ja) * 2002-08-28 2006-02-23 セパレーション テクノロジー,インコーポレーティッド 赤血球指数の超音波測定のための方法及び装置
JP2014106225A (ja) * 2012-11-27 2014-06-09 Hokushin Electronics:Kk 超音波式小型ガス濃度計

Also Published As

Publication number Publication date
JPWO2019156256A1 (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
Averkiou et al. Nonlinear distortion of short pulses radiated by plane and focused circular pistons
Deng et al. In vitro measurements of inertial cavitation thresholds in human blood
CN102692453B (zh) 一种基于非线性声学的材料无损检测方法和装置
CN103969341A (zh) 奥氏体不锈钢管对接环焊缝超声波检测特种探头
Baker Nonlinear effects in ultrasound propagation
Lenz et al. Measurement of the sound velocity in fluids using the echo signals from scattering particles
CN109142537B (zh) 一种质点偏振方向控制与扫描检测方法
KR102326149B1 (ko) 모델-기반 이미지 재구성 방법
WO2019156256A1 (ja) 測定装置および細胞またはウイルスの測定方法
Win et al. Identification and removal of reverberation in ultrasound imaging
US20150226842A1 (en) Sonar technique
BR112021015095A2 (pt) Método e dispositivo para testes não destrutivos de um material de chapa
Weston Advanced ultrasonic digital imaging and signal processing for applications in the field of non-destructive testing
Wu et al. Application of coded excitation signals for measurement of rock ultrasonic wave velocity
CN203758968U (zh) 奥氏体不锈钢管对接环焊缝超声波检测特种探头
CN107389803B (zh) 一种液体与固体延迟材料之间声反射系数的测量方法
Weight A model to predict the ultrasonic echo responses of small targets in solids
Pal Fourier transform ultrasound spectroscopy for the determination of wave propagation parameters
Nie et al. A human ear-inspired ultrasonic transducer (HEUT) for 3D localization of sub-wavelength scatterers
Humphrey Non-linear propagation for medical imaging
CN113960160B (zh) 基于超声Lamb波紧凑阵列的损伤检测方法和装置
US10136835B1 (en) Determining a presence of an object
US11719672B2 (en) Application specific excitation of ultrasonic probes
Fay et al. Determination of the sensitivity of ultrasonic contact transducers
Ingram et al. Ultrasonic array imaging through reverberating layers for industrial process analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751654

Country of ref document: EP

Kind code of ref document: A1