WO2019155846A1 - Thermoconductive silicone composition, cured product, semiconductor device, and semiconductor device production method - Google Patents

Thermoconductive silicone composition, cured product, semiconductor device, and semiconductor device production method Download PDF

Info

Publication number
WO2019155846A1
WO2019155846A1 PCT/JP2019/001373 JP2019001373W WO2019155846A1 WO 2019155846 A1 WO2019155846 A1 WO 2019155846A1 JP 2019001373 W JP2019001373 W JP 2019001373W WO 2019155846 A1 WO2019155846 A1 WO 2019155846A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
silicone composition
parts
conductive silicone
Prior art date
Application number
PCT/JP2019/001373
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 秋場
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2019570642A priority Critical patent/JP6939914B2/en
Publication of WO2019155846A1 publication Critical patent/WO2019155846A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Definitions

  • the present invention relates to a silicone composition and a semiconductor device that are room temperature moisture curable and excellent in thermal conductivity.
  • Patent Document 1 JP-A-2-153959 discloses a silicone grease composition in which a spherical hexagonal aluminum nitride powder having a specific particle size range is blended with a specific organopolysiloxane.
  • Patent Document 2 discloses a heat conductive silicone grease in which an aluminum nitride powder having a small particle size and an aluminum nitride powder having a large particle size are combined.
  • Patent Document 3 discloses a heat conductive silicone grease in which an aluminum nitride powder and a zinc oxide powder are combined.
  • Patent Document 4 discloses a thermally conductive grease composition using an aluminum nitride powder surface-treated with organosilane.
  • Patent Document 5 discloses a thermally conductive silicone composition using diamond, zinc oxide, and a dispersant as a silicone resin.
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2000-63873
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2008-222776
  • Patent Document 8 discloses a thermally conductive grease composition in which metal aluminum powder is mixed with a base oil such as silicone oil.
  • silicone rubber compositions using silver powder having a high thermal conductivity as a filler are also disclosed in Japanese Patent No. 3130193 (Patent Document 8), Japanese Patent No. 3677671 (Patent Document 9), and the like.
  • any of the thermally conductive materials and thermally conductive greases have not been sufficiently compatible with recent integrated circuit elements such as CPUs that generate a large amount of heat.
  • an object of the present invention is to provide a room temperature moisture curable thermal conductive silicone composition that gives a cured product having a good heat dissipation effect and can be stored at room temperature.
  • the inventors of the present invention have a predetermined kinematic viscosity of silver powder having a predetermined tap density, specific surface area, and aspect ratio, and both ends are blocked with hydroxyl groups. It has been found that thermal conductivity is drastically improved by mixing in organopolysiloxane, and the present invention has been completed. That is, the present invention provides the following thermally conductive silicone composition and the like.
  • the silane compound of component (C) is represented by the following general formula (5) R 5 c SiX 4-c (5)
  • R 5 is a monovalent hydrocarbon group which is unsubstituted or substituted with a halogen atom or a cyano group
  • X is a hydrolyzable group
  • c is 0 or 1.
  • the heat conductive silicone composition as described in ⁇ 1> which is a silane compound represented by these.
  • R is an alkyl group having 1 to 6 carbon atoms
  • R 1 is independently of each other a saturated or unsaturated, unsubstituted or substituted monovalent hydrocarbon having 1 to 18 carbon atoms.
  • a is 5 to 120.
  • the heat conductive silicone composition as described in any one.
  • R 2 is a saturated or saturated group having 1 to 18 carbon atoms having one or more substituents selected from an epoxy group, an acrylic group, a methacryl group, an acryloyloxy group and a methacryloyloxy group.
  • An unsaturated monovalent hydrocarbon group R 3 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, and b is 1 ⁇ b ⁇ 3.
  • the thermally conductive silicone composition according to any one of ⁇ 1> to ⁇ 4>, wherein the organosilane represented by the formula (A) is contained in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the component (A).
  • ⁇ 6> A cured product of the thermally conductive silicone composition according to any one of ⁇ 1> to ⁇ 5>.
  • a semiconductor device comprising an exothermic electronic component and a radiator, wherein a cured product of the thermally conductive silicone composition according to ⁇ 6> is interposed between the exothermic electronic component and the radiator.
  • a semiconductor device characterized by that.
  • the manufacturing method of the semiconductor device characterized by having the process heated to 80 degreeC or more.
  • the thermally conductive silicone composition of the present invention is a room temperature moisture curable thermal conductive silicone composition that gives a cured product having a good heat dissipation effect and can be stored at room temperature, and is therefore useful for semiconductor devices.
  • the heat conductive silicone composition of the present invention a semiconductor device using the cured product, and a method for manufacturing the semiconductor device will be described in detail below.
  • the organopolysiloxane of component (A) is an organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s and having both ends blocked with hydroxyl groups.
  • Component (A) is a base polymer (main agent) of the thermally conductive silicone composition of the present invention, and is an organopolysiloxane in which both ends of the main chain composed of repeating diorganosiloxane units are blocked with hydroxyl groups.
  • the structure other than that is not particularly limited as long as it has hydroxyl groups at both ends of the main chain, and it may be cured to give an elastomer such as a linear organopolysiloxane.
  • Examples of the substituent bonded to the silicon atom of the organopolysiloxane include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group; a cycloalkyl group such as a cyclohexyl group; a vinyl group, An alkenyl group such as an allyl group; a monovalent hydrocarbon group having 1 to 8, preferably 1 to 7 carbon atoms such as an aryl group such as a phenyl group or a tolyl group; or one of hydrogen atoms of these monovalent hydrocarbon groups Examples thereof include halogenated hydrocarbon groups such as chloromethyl group, 3-chloropropyl group, and trifluoromethyl group in which part or all are substituted with halogen atoms such as chlorine atom, fluorine atom and bromine atom.
  • the kinematic viscosity at 25 ° C. of the organopolysiloxane is required to be 10 to 100,000 mm 2 / s, particularly preferably 100 to 50,000 mm 2 / s.
  • the kinematic viscosity of the organopolysiloxane of the component (A) described in this specification is a value at 25 ° C. measured with an Ostwald viscometer.
  • component (A) More preferable examples of the component (A) include organopolysiloxanes represented by the following general formula (3).
  • R 4 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, preferably 1 to 7 carbon atoms, which is the same or different from each other, specifically, a methyl group, Alkyl group such as ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group; monovalent hydrocarbon group such as phenyl group, aryl group such as tolyl group, etc., one of hydrogen atoms of these monovalent hydrocarbon groups Chloromethyl group, 3-chloropropyl group, trifluoromethyl group, cyanoethyl group and other halogen-substituted hydrocarbon groups substituted by halogen atoms such as chlorine atom, fluorine atom, bromine atom, cyano group or the like, cyano It is a group-substituted hydrocarbon group.
  • m is 10 to 1,000.
  • Component (A) may be used alone or in combination of two or more.
  • Component (B) is a silver powder having a tap density of 3.0 g / cm 3 or more, a specific surface area of 2.0 m 2 / g or less, and an aspect ratio of 2.0 to 50.
  • the tap density of the silver powder of the component (B) is less than 3.0 g / cm 3 , the filling rate of the silver powder of the component (B) into the heat conductive silicone composition does not increase, so the heat conductive silicone composition
  • the absolute viscosity of the composition may increase, and the handleability of the composition may deteriorate.
  • the tap density of the silver powder described in this specification is obtained by weighing 100 g of silver powder and gently dropping it onto a 100 ml graduated cylinder with a funnel, and then placing the cylinder on a tap density measuring device at a head distance of 20 mm, 60 times / It is a value obtained by measuring the volume of the compressed silver powder by dropping 600 times at a minute speed.
  • the specific surface area of silver powder therefor component (B) is preferably from 0.08m 2 /g ⁇ 2.0m 2 / g, more preferably 0.08m 2 /g ⁇ 1.5m 2 / g, 0.08m 2 / G to 1.0 m 2 / g is more preferable.
  • the specific surface area of the silver powder described in this specification was calculated by the BET method.
  • the aspect ratio of the silver powder of component (B) is 2.0 to 50, preferably 3.0 to 30, and more preferably 3.0 to 20.
  • the aspect ratio of silver powder refers to the ratio of the major axis to the minor axis (major axis / minor axis) of silver particles.
  • the major axis and minor axis of a silver particle are measured with an electron micrograph of the silver particle, and the aspect ratio of each individual silver particle is determined by dividing the measured value of the major axis by the measured value of the minor axis. It can be calculated.
  • the aspect ratio of the silver powder is an average value of the aspect ratios of a plurality of silver particles calculated by the above method.
  • the major axis of the silver particles is measured by taking the larger diameter of the silver particles as the major axis in an electron micrograph of the upper surface of the silver particles obtained by photographing the silver particles placed on the sample stage from above the sample stage.
  • the minor axis is the thickness of the silver particles in the state when measuring the major axis.
  • the particle size of the silver powder of component (B) is not particularly limited, but the average particle size is preferably 0.2 to 50 ⁇ m, particularly 1.0 to 30 ⁇ m.
  • the average particle diameter of the silver powder of component (B) refers to the volume-based volume average diameter [MV] measured by a laser diffraction particle size analyzer.
  • the average particle size of the silver powder of component (B) is as follows: 1 to 2 cups of silver powder in a microspatella, 100 ml beaker, about 60 ml of isopropyl alcohol, dispersed with an ultrasonic homogenizer for 1 minute, and then laser diffraction particle size It is measured by an analyzer. The measurement time by the laser diffraction particle size analyzer is 30 seconds.
  • the method for producing the raw silver powder used in the present invention is not particularly limited, and examples thereof include an electrolytic method, a pulverizing method, a heat treatment method, an atomizing method, and a reduction method.
  • the raw silver powder may be pulverized to have an average particle size within the above numerical range.
  • the raw material silver powder crushing apparatus is not particularly limited, and examples thereof include known apparatuses such as a stamp mill, a ball mill, a vibration mill, a hammer mill, a rolling roller, and a mortar.
  • a stamp mill, a ball mill, a vibration mill, and a hammer mill are preferable.
  • the blending amount of component (B) is 300 to 11,000 parts by mass with respect to 100 parts by mass of component (A). If less than 300 parts by mass with respect to 100 parts by mass of component (A), the thermal conductivity of the resulting thermally conductive silicone composition will be poor, and if more than 11,000 parts by mass, the fluidity of the composition will be poor and will be handled. Sexuality gets worse. Therefore, the amount of component (B) is preferably in the range of 300 to 5,000 parts by mass, more preferably 500 to 5,000 parts by mass.
  • the thermally conductive silicone composition of the present invention may contain an inorganic compound powder and / or an organic compound material as long as the effects of the present invention are not impaired.
  • the inorganic compound powder and the organic compound material preferably have high thermal conductivity, such as aluminum powder, zinc oxide powder, titanium oxide powder, magnesium oxide powder, alumina powder, aluminum hydroxide powder, boron nitride powder, aluminum nitride powder, One selected from diamond powder, gold powder, copper powder, carbon powder, nickel powder, indium powder, gallium powder, metal silicon powder, silicon dioxide powder, carbon fiber, graphene, graphite, carbon nanotube, carbon material or Two or more can be mentioned.
  • the surfaces of these inorganic compound powders and organic compound materials may be hydrophobized with organosilane, organosilazane, organopolysiloxane, organic fluorine compound, or the like, if necessary. Since the average particle size of the inorganic compound powder and the organic compound material powder is smaller than 0.5 ⁇ m or larger than 100 ⁇ m, the filling rate into the obtained heat conductive silicone composition cannot be increased. And particularly preferably 1 to 50 ⁇ m. Further, even if the fiber length of the carbon fiber is smaller than 10 ⁇ m or larger than 500 ⁇ m, the filling rate into the obtained heat conductive silicone composition cannot be increased, so that it is preferably 10 to 500 ⁇ m, particularly preferably 30 to 300 ⁇ m. is there.
  • the total compounding amount of the inorganic compound powder and the organic compound material is more than 3,000 parts by mass with respect to 100 parts by mass of the component (A), the fluidity of the composition is deteriorated and the handleability is deteriorated.
  • 000 parts by mass is preferable, and 0 to 2,000 parts by mass is particularly preferable.
  • Component (C) is a silane compound having three or more hydrolyzable groups bonded to a silicon atom in one molecule and / or its (partial) hydrolyzate or (partial) hydrolysis condensate. It acts as a thickener for the thermally conductive silicone composition.
  • Preferred examples of the silane compound include those represented by the following general formula (5).
  • R 5 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, which is unsubstituted or substituted with a halogen atom or a cyano group.
  • R 1 a group similar to R 1 is exemplified, and an alkyl group having 1 to 3 carbon atoms, a vinyl group, and a phenyl group are particularly preferable.
  • X is a hydrolyzable group, and examples thereof include an alkoxy group, an alkoxyalkoxy group, an alkenyloxy group, a ketoxime group, an acyloxy group, an amino group, an amide group, and an aminoxy group.
  • c is 0 or 1.
  • the alkoxy group and alkoxyalkoxy group exemplified as the hydrolyzable group represented by X may be those substituted with a halogen atom, for example, methoxy group, ethoxy group, Examples thereof include a propoxy group, a butoxy group, a ⁇ -chloroethoxy group, a 2,2,2-trifluoroethoxy group, a ⁇ -chlorobutoxy group, and a methoxyethoxy group.
  • the alkenyloxy group include an isopropenoxy group.
  • the ketoxime group include a dimethyl ketoxime group, a methyl ethyl ketoxime group, and a diethyl ketoxime group.
  • Examples of the acyloxy group include an acetoxy group and a propionyloxy group.
  • Examples of the amino group include a dimethylamino group, a diethylamino group, an n-butylamino group, and a cyclohexylamino group.
  • Examples of the amide group include an N-methylacetamide group, an N-ethylacetamide group, an N-butylacetamide group, an N-cyclohexylacetamide group, and the like.
  • Examples of the aminoxy group include N, N-dimethylaminoxy group, N, N-diethylaminoxy group and the like.
  • X is particularly preferably an alkenyloxy group.
  • component (C) silane compounds include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, vinyltrimethoxysilane.
  • the blending amount of this component (C) is 1 to 30 parts by mass with respect to 100 parts by mass of the component (A). And preferably 1 to 20 parts by mass.
  • the room temperature moisture curable heat conductive silicone composition of the present invention is a condensation curable type, and a condensation catalyst is used as the component (D) in the heat conductive silicone composition.
  • a condensation catalyst is used as the component (D) in the heat conductive silicone composition.
  • alkyltin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctoate; tetraisopropoxy titanium, tetra n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium, dipropoxy bis (acetylacetona) Titanic acid esters such as titanium and titanium isopropoxyoctylene glycol; diisopropoxybis (ethylacetoacetate) titanium, diisopropoxybis (methylacetoacetate) titanium, diisopropoxybis (acetylacetonate) titanium, dibutoxybis (ethyl) Acetoacetonate) titanium,
  • silane or siloxane containing a guanidyl group such as tetramethylguanidylpropyltrimethoxysilane, tetramethylguanidylpropylmethyldimethoxysilane, tetramethylguanidylpropyltris (trimethylsiloxy) silane, or the like is preferably used. .
  • the amount of component (D) added is less than 0.01 parts by weight relative to 100 parts by weight of component (A), and it is difficult to increase the viscosity. Since it is uneconomical, it is 0.01 to 20 parts by mass, preferably 0.1 to 5 parts by mass.
  • the present invention is a room temperature moisture curable thermally conductive silicone composition that can be stored at room temperature by containing the above components (A) to (D) at a predetermined content.
  • the total content of components (A) to (D) in 100% by mass of the heat conductive silicone composition of the present invention is preferably 80 to 100% by mass.
  • each component described below may be contained within a range not impairing the effects of the present invention.
  • Component (E) is a fine silicone powder having an average particle size of 0.7 to 50 ⁇ m.
  • the silicone fine powder as the component (E) is used as necessary to selectively disperse the silver powder of the component (B) and efficiently form a heat conduction path.
  • Examples of the silicone fine powder of component (E) include, for example, a silicone rubber powder having a structure in which a linear organopolysiloxane is crosslinked, and a siloxane bond is (RSiO 3/2 ) n (R is a substituted or unsubstituted monovalent).
  • the surface of the silicone resin powder or silicone rubber powder which is a polyorganosilsesquioxane cured fine powder having a three-dimensional network cross-linked structure, represented by a hydrocarbon group, n is 1 to 18.
  • examples thereof include a silicone composite powder having a structure coated with a silicone resin.
  • the silicone fine powder of component (E) of the present invention one kind of silicone fine powder may be used, or two or more kinds of silicone fine powder may be blended and used.
  • silicone fine powders include KMP-600 (manufactured by Shin-Etsu Chemical), KMP-601 (manufactured by Shin-Etsu Chemical), KMP-602 (manufactured by Shin-Etsu Chemical), KMP-605 (manufactured by Shin-Etsu Chemical), KMP -597 (manufactured by Shin-Etsu Chemical), KMP-598 (manufactured by Shin-Etsu Chemical), KMP-701 (manufactured by Shin-Etsu Chemical), X-52-854 (manufactured by Shin-Etsu Chemical), and the like.
  • silicone fine powders may be treated with organosilane, organosilazane, organopolysiloxane, organic fluorine compound or the like, if necessary.
  • the silicone fine powder of component (E) may contain silicone oil, organosilane, inorganic powder, organic powder, etc. in the particles.
  • the average particle size of the silicone fine powder of component (E) is less than 0.7 ⁇ m, the fluidity of the particles becomes low and the cohesiveness becomes high. Sexuality gets worse.
  • the average particle size exceeds 50 ⁇ m, the heat conduction path of the silver powder is hindered, and the heat conductivity of the heat conductive silicone composition is deteriorated. Therefore, it is necessary that the particle diameter is 0.7 to 50 ⁇ m.
  • the preferable range is 0.7 to 30 ⁇ m, and the more preferable range is 1 to 20 ⁇ m.
  • the average particle size of the silicone fine powder of component (E) is an average particle size measured by the same method as the average particle size of the silver powder of component (B).
  • the content is preferably 5 to 100 parts by mass, particularly preferably 7 to 20 parts by mass.
  • ingredient (F) In the composition of the present invention, an organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s represented by the following general formula (1) may be blended as the component (F).
  • R is an alkyl group having 1 to 6 carbon atoms
  • R 1 is independently of each other a saturated or unsaturated, unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms.
  • a is 5 to 120.
  • R is an alkyl group having 1 to 6 carbon atoms, and examples thereof include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group. An ethyl group is preferred.
  • R 1 independently of each other, is a saturated or unsaturated, unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms.
  • Examples of the monovalent hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, and an octadecyl group; a cyclopentyl group and a cyclohexyl group.
  • Cycloalkyl groups such as vinyl groups and allyl groups; aryl groups such as phenyl groups and tolyl groups; aralkyl groups such as 2-phenylethyl groups and 2-methyl-2-phenylethyl groups; In which part or all of the hydrogen atoms in the group are substituted with halogen atoms such as fluorine, bromine, chlorine, cyano groups, for example, 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group 2- (perfluorooctyl) ethyl group, p-chlorophenyl group, and the like. Of these, a methyl group is particularly preferable.
  • a is an integer of 5 to 120, preferably an integer of 10 to 90.
  • the kinematic viscosity at 25 ° C. of the organopolysiloxane used in the present invention is lower than 10 mm 2 / s, oil bleeding tends to occur when the composition is formed, and if it is higher than 100,000 mm 2 / s, the heat obtained Since the absolute viscosity of the conductive silicone composition is increased, the handleability is lowered. Therefore, the kinematic viscosity at 25 ° C. of the organopolysiloxane of the component (F), is required to be 10 ⁇ 100,000mm 2 / s, it is preferable in particular 30 ⁇ 10,000mm 2 / s.
  • the viscosity of the organopolysiloxane of the component (F) described in this specification is a value at 25 ° C. measured with an Ostwald viscometer.
  • this component (F) is less than 1 part by mass with respect to 100 parts by mass of the component (A), the effect of lowering the hardness after curing is small, and if it exceeds 150 parts by mass, it will not be cured. It is used at 150 parts by weight, preferably 10 to 100 parts by weight.
  • Ingredient (G) Furthermore, you may mix
  • Component (G) plays a role of imparting adhesiveness after curing of the composition, and is a component that acts as an adhesion aid.
  • R 2 b Si (OR 3 ) 4-b (2)
  • R 2 is a saturated or unsaturated group having 1 to 18 carbon atoms having one or more substituents selected from an epoxy group, an acrylic group, a methacryl group, an acryloyloxy group and a methacryloyloxy group.
  • R 1 represents a saturated monovalent hydrocarbon group
  • R 3 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms
  • b is 1 ⁇ b ⁇ 3.
  • saturated or unsaturated monovalent hydrocarbon group represented by R 2 in the general formula (2) include, for example, a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a nonyl group, a decyl group, and a dodecyl group.
  • Alkyl group such as tetradecyl group; cycloalkyl alkenyl group; acrylic group; epoxy group; cycloalkyl group such as cyclopentyl group and cyclohexyl group; alkenyl group such as vinyl group and allyl group; aryl group such as phenyl group and tolyl group; Aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group And halogenated hydrocarbon groups such as p-chlorophenyl group.
  • Examples of the substituent for the monovalent hydrocarbon group include an epoxy group, an acrylic group, a methacryl group, an acryloyloxy group, and a methacryloyloxy group.
  • B is 1 ⁇ b ⁇ 3.
  • Examples of R 3 include groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group and an ethyl group are particularly preferable.
  • organosilane represented by the general formula (2) of the component (G) include the following.
  • CH 2 C (CH 3) COOC 8 H 16 Si (OCH 3) 3
  • the organosilane of component (G) is added to the thermally conductive silicone composition of the present invention, it is preferably added in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of component (A). It is more preferable to add 10 parts by mass.
  • the manufacturing method of a composition should just follow the manufacturing method of a conventionally well-known heat conductive silicone composition, and is not restrict
  • the above components (A) to (D) and other components as necessary may be Trimix (registered trademark), Twinmix (registered trademark), Planetary mixer (registered trademark), Ultramixer (registered trademark), It can be produced by mixing for 30 minutes to 4 hours in a mixer such as Hibis Dispermix (registered trademark). If necessary, mixing may be performed while heating at a temperature in the range of 50 to 200 ° C.
  • the heat conductive silicone composition of the present invention preferably has an absolute viscosity measured at 25 ° C. of 10 to 1,500 Pa ⁇ s, preferably 15 to 800 Pa ⁇ s, and more preferably 50 to 500 Pa ⁇ s.
  • the absolute viscosity can be obtained by adjusting at least the essential components (A) to (D) of the present invention to the above-described amounts.
  • the absolute viscosity is a result of measurement using a spiral viscometer at a rotation speed of 10 rpm.
  • An example of a commercially available spiral viscometer is model number PC-1TL manufactured by Malcolm Corporation.
  • the thermally conductive silicone composition of the present invention can be stored at room temperature (20 to 25 ° C.), in an environment with a temperature condition of 21 to 25 ° C. and a relative humidity of 45 to 55% RH. It can be cured by allowing it to stand for 7 days or longer. Furthermore, it is preferable to use the cured product of the thermally conductive silicone composition of the present invention by heating from the viewpoint of improving the thermal conductivity.
  • the heating temperature for the cured product is preferably 80 ° C. or higher, more preferably 90 to 300 ° C., further preferably 100 to 300 ° C., particularly preferably 120 to 300 ° C. It is.
  • the silver powder efficiently forms a heat conduction path, and the heat conductivity of the cured product of the heat conductive silicone composition of the present invention is improved.
  • the heating temperature is 300 ° C. or less, the cured product of the heat conductive silicone composition after heating can be made to have an appropriate hardness.
  • the heating time is preferably 1 minute or more, more preferably 10 to 300 minutes, still more preferably 30 to 300 minutes, and particularly preferably 60 to 300 minutes.
  • the heating time is 1 minute or longer, the silver powder forms a heat conduction path, and the heat conductivity is improved.
  • pressure may be applied during heating.
  • the pressure is preferably 0.01 MPa or more, particularly preferably 0.05 MPa to 100 MPa, and more preferably 0.1 MPa to 100 MPa. When a pressure of 0.01 MPa or more is applied to the thermally conductive silicone composition at the time of heating, contact between silver powders easily occurs, a heat conduction path is efficiently formed, and thermal conductivity is improved.
  • the cured product of the thermally conductive silicone composition of the present invention has an excellent heat dissipation effect and has the following features. That is, the ratio of the thermal conductivity after heating and the thermal conductivity before heating of the cured product of the thermally conductive silicone composition of the present invention at 150 ° C. under a pressure of 0.35 MPa (heat conductivity after heating / The value of (thermal conductivity before heating) is 1.5 or more, preferably 2.0 or more, more preferably 10.0 or more, and further preferably 15.0 or more. A larger value is better, but the practical upper limit is 100.0.
  • the cured product of the thermally conductive silicone composition of the present invention exhibits a heat dissipation effect without decreasing the thermal conductivity even in a heated and pressurized environment. Therefore, it is particularly suitable for mounting on a semiconductor device that generates a large amount of heat.
  • the thermal conductivity of the thermally conductive silicone composition of the present invention after heating and before heating is measured by the following method.
  • the thermally conductive silicone composition is poured into a 6 mm thick mold, left in an environment of 23 ⁇ 2 ° C./50 ⁇ 5% RH for 7 days, and the thermal conductivity before heating is measured. Furthermore, after that, the cured product is held for 90 minutes under a pressure of 150 ° C. and 0.35 MPa, and the thermal conductivity after heating is measured.
  • the ratio of the thermal conductivity after heating and the thermal conductivity before heating of the cured product of the thermally conductive silicone composition of the present invention at 150 ° C. under a pressure of 0.35 MPa (thermal conductivity after heating / heating
  • the previous value of thermal conductivity is 1.5 or more.
  • the thermal conductivity of the thermally conductive silicone composition after heating is preferably 5.0 W / m ⁇ K or more, more preferably 10.0 W / m ⁇ K or more, further preferably 20.0 W / m ⁇ K or more, particularly Preferably it is 50.0 W / m ⁇ K or more.
  • the thermal conductivity before heating is preferably 1.0 W / m ⁇ K or more, more preferably 3.0 W / m ⁇ K or more, still more preferably 5.0 W / m ⁇ K or more, and particularly preferably 8.0 W / m. m ⁇ K or more.
  • the thermally conductive silicone composition of the present invention is interposed between the surface of the heat-generating electronic component and the heat radiator.
  • a typical structure is shown in FIG. 1, but the present invention is not limited to this.
  • 1 is a substrate
  • 2 is a heat-generating electronic component (CPU)
  • 3 is a thermally conductive silicone composition layer
  • 4 is a radiator (lid).
  • the thermally conductive silicone composition of the present invention laid between a heat generating electronic component and a radiator is applied with a pressure of 0.01 MPa or more. And a step of heating to 80 ° C. or higher in the obtained state.
  • the pressure applied to the structure including the laminated structure in which the heat-generating electronic component, the heat conductive silicone composition, and the heat radiating member are laminated is preferably 0.01 MPa or more, particularly preferably 0.05 MPa to 100 MPa, 0.1 MPa to 100 MPa is preferable.
  • the heating temperature needs to be 80 ° C. or higher, preferably 90 ° C. to 300 ° C., more preferably 100 ° C.
  • cured material of the semiconductor device manufactured by said method is not limited, For example, a gel form, a low-hardness rubber form, or a high-hardness rubber form is mentioned.
  • the hardness of the rubber-like cured product of the thermally conductive silicone composition of the present invention can be measured with an Asker rubber hardness meter C type.
  • the hardness of the rubber-like cured product according to the Asker rubber hardness tester C type is about 80.
  • the hardness is less than 80, the hardness is a low-hardness rubber-like cured product, and when the hardness is 80 or more, the high-hardness rubber May be treated as a cured product.
  • Examples 1 to 16 and Comparative Examples 1 to 12 The compositions shown in Tables 1 to 4 below were mixed as follows to obtain compositions of Examples 1 to 16 and Comparative Examples 1 to 12. That is, components (A), (F), and / or (G) are added to a 5-liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.), components (B) and (C) are added, and 1. Mix for 5 hours. Next, components (D) and / or (E) were added and mixed to be uniform. The absolute viscosity of each composition and the thermal conductivity of the cured product obtained from each composition were measured by the following methods.
  • the ratio of the thermal conductivity before heating of the composition to the thermal conductivity after heating was calculated, and Table 1 It was described in “Thermal conductivity ratio” of ⁇ 4.
  • the absolute viscosity of the thermally conductive silicone composition was measured at 25 ° C. at a rotation speed of 10 rpm using a spiral viscometer (model number PC-1TL manufactured by Malcolm Corporation).
  • kinematic viscosity of a component (A) and a component (F) is the value of 25 degreeC measured with the Ostwald viscometer.
  • A-2 Both ends blocked with hydroxyl groups and having a kinematic viscosity at 25 ° C.
  • Dimethylpolysiloxane A-3 (comparative example): Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 600 mm 2 / s
  • Ingredient (B) B-1 Silver powder having a tap density of 6.4 g / cm 3 , a specific surface area of 0.28 m 2 / g, and an aspect ratio of 8 B-2: A tap density of 6.2 g / cm 3 and a specific surface area of 0.8.
  • E-1 Silicone resin powder having an average particle size of 0.7 ⁇ m (X-52-854 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • E-2 Silicone composite powder with an average particle size of 30 ⁇ m (KMP-602, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Ingredient (F) F-1 Organopolysiloxane represented by the following formula (6) and having a kinematic viscosity at 25 ° C. of 30 mm 2 / s
  • Substrate 1. Heat-generating electronic components (CPU) 3. 3. Thermally conductive silicone composition layer Heat dissipation body (lid)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is a room-temperature moisture-curable thermoconductive silicone composition that can be preserved at room temperature, and that provides a cured product exhibiting a favourable heat-dissipation effect. The thermoconductive silicone composition comprises the following components (A), (B), (C) and (D). (A) An organopolysiloxane that has a kinematic viscosity at 25°C of 10–100,000mm2 /s, and in which each of both terminals are capped with a hydroxy group. (B) A silver powder that has a tapped density of at least 3.0g/cm3, a specific surface area of no more than 2.0m2/g, and an aspect ratio of 2.0–50. (C) A silane compound having per molecule at least 3 hydrolysable groups bonded to a silicon atom; and/or a (partial) hydrolysis product of said compound, or (partial) hydrolysis condensation product of said compound. (D) A condensation catalyst. A cured product of the thermoconductive silicone composition has a ratio of thermoconductivity after heating under conditions of 150°C and pressure of 0.35MPa, to thermoconductivity before said heating, that is at least 1.5.

Description

熱伝導性シリコーン組成物、硬化物、半導体装置、及び半導体装置の製造方法Thermally conductive silicone composition, cured product, semiconductor device, and method for manufacturing semiconductor device
 本発明は、室温湿気硬化型で熱伝導性に優れたシリコーン組成物及び半導体装置に関する。 The present invention relates to a silicone composition and a semiconductor device that are room temperature moisture curable and excellent in thermal conductivity.
 電子部品の多くは使用中に熱が発生するので、その電子部品を適切に機能させるためには、その電子部品から熱を取り除くことが必要である。特にパーソナルコンピューターに使用されているCPU等の集積回路素子は、動作周波数の高速化により発熱量が増大しており、熱対策が重要な問題となっている。従って、この熱を除去する手段として多くの方法が提案されている。特に発熱量の多い電子部品では、電子部品とヒートシンク等の部材の間に熱伝導性グリースや熱伝導性シートの熱伝導性材料を介在させて熱を逃がす方法が提案されている。 Since many electronic parts generate heat during use, it is necessary to remove the heat from the electronic parts in order to make them function properly. In particular, an integrated circuit element such as a CPU used in a personal computer has an increased amount of heat generated due to an increase in operating frequency, and countermeasures against heat are an important issue. Therefore, many methods have been proposed as means for removing this heat. In particular, for electronic components that generate a large amount of heat, a method of releasing heat by interposing a heat conductive grease or a heat conductive material such as a heat conductive sheet between the electronic component and a member such as a heat sink has been proposed.
 特開平2-153995号公報(特許文献1)には、特定のオルガノポリシロキサンに一定粒径範囲の球状六方晶系窒化アルミニウム粉末を配合したシリコーングリース組成物が、開示されている。特開平3-14873号公報(特許文献2)には、粒径の細かい窒化アルミニウム粉末と粒径の粗い窒化アルミニウム粉末を組み合わせた熱伝導性シリコーングリースが、開示されている。特開平10-110179号公報(特許文献3)には、窒化アルミニウム粉末と酸化亜鉛粉末を組み合わせた熱伝導性シリコーングリースが、開示されている。特開2000-63872号公報(特許文献4)には、オルガノシランで表面処理した窒化アルミニウム粉末を用いた熱伝導性グリース組成物が開示されている。 JP-A-2-153959 (Patent Document 1) discloses a silicone grease composition in which a spherical hexagonal aluminum nitride powder having a specific particle size range is blended with a specific organopolysiloxane. Japanese Patent Laid-Open No. 3-14873 (Patent Document 2) discloses a heat conductive silicone grease in which an aluminum nitride powder having a small particle size and an aluminum nitride powder having a large particle size are combined. Japanese Patent Application Laid-Open No. 10-110179 (Patent Document 3) discloses a heat conductive silicone grease in which an aluminum nitride powder and a zinc oxide powder are combined. Japanese Unexamined Patent Publication No. 2000-63872 (Patent Document 4) discloses a thermally conductive grease composition using an aluminum nitride powder surface-treated with organosilane.
 窒化アルミニウムの熱伝導率は70~270W/mKであり、窒化アルミニウムより熱伝導性の高い材料として熱伝導率900~2,000W/mKのダイヤモンドがある。特開2002-30217号公報(特許文献5)には、シリコーン樹脂に、ダイヤモンド、酸化亜鉛、分散剤を用いた熱伝導性シリコーン組成物が開示されている。 Aluminum nitride has a thermal conductivity of 70 to 270 W / mK, and diamond having a thermal conductivity of 900 to 2,000 W / mK is a material having higher thermal conductivity than aluminum nitride. Japanese Patent Application Laid-Open No. 2002-30217 (Patent Document 5) discloses a thermally conductive silicone composition using diamond, zinc oxide, and a dispersant as a silicone resin.
 また、特開2000-63873号公報(特許文献6)や特開2008-222776(特許文献7)には、シリコーンオイル等の基油に金属アルミニウム粉末を混合した熱伝導性グリース組成物が開示されている。更には熱伝導率の高い銀粉末を充填剤として用いているシリコーンゴム組成物が、特許3130193号公報(特許文献8)、特許3677671号公報(特許文献9)なども開示されている。しかし、いずれの熱伝導性材料や熱伝導性グリースも、最近の発熱量の大きいCPU等の集積回路素子には十分対応できないものとなってきている。 Japanese Patent Application Laid-Open No. 2000-63873 (Patent Document 6) and Japanese Patent Application Laid-Open No. 2008-222776 (Patent Document 7) disclose a thermally conductive grease composition in which metal aluminum powder is mixed with a base oil such as silicone oil. ing. Further, silicone rubber compositions using silver powder having a high thermal conductivity as a filler are also disclosed in Japanese Patent No. 3130193 (Patent Document 8), Japanese Patent No. 3677671 (Patent Document 9), and the like. However, any of the thermally conductive materials and thermally conductive greases have not been sufficiently compatible with recent integrated circuit elements such as CPUs that generate a large amount of heat.
 更に、最近では数多くの電子素子・部品を限られた空間内に搭載する必要があるために、その搭載環境(温度・角度等)も多岐にわたるようになってきた。例えば、発熱する電子素子・部品と冷却板とが水平置きされなくなり、それらを接続する熱伝導性材料も水平面に対し傾きを持って搭載されることが多くなってきた。このような搭載環境では、熱伝導性材料が発熱体と冷却体の間から垂れて抜けてしまわないように、1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンをベースポリマーとし、アルミニウム粉末と酸化亜鉛粉末とを充填剤として用いる付加一液型熱伝導性シリコーン組成物を使用する場合がある(特許文献10)。しかしながら、この付加一液型熱伝導性シリコーン組成物は保存に冷蔵或いは冷凍が必要な場合があり、かつ使用前には解凍も必要となってしまうなどの課題を抱えている。 Furthermore, recently, since it is necessary to mount a large number of electronic elements and parts in a limited space, the mounting environment (temperature, angle, etc.) has become diversified. For example, heat-generating electronic elements / components and cooling plates are not placed horizontally, and heat conductive materials that connect them are often mounted with an inclination with respect to a horizontal plane. In such a mounting environment, an organopolysiloxane having at least two alkenyl groups in one molecule is used as a base polymer so that the heat conductive material does not hang out from between the heating element and the cooling element, and aluminum There is a case where an additional one-component heat conductive silicone composition using powder and zinc oxide powder as a filler is used (Patent Document 10). However, this additional one-pack type heat conductive silicone composition has the problem that refrigeration or freezing may be required for storage, and thawing is required before use.
特開平2-153995号公報Japanese Patent Laid-Open No. 2-153955 特開平3-14873号公報JP-A-3-14873 特開平10-110179号公報Japanese Patent Laid-Open No. 10-110179 特開2000-63872号公報JP 2000-63872 A 特開2002-30217号公報JP 2002-30217 A 特開2000-63873号公報JP 2000-63873 A 特開2008-222776号公報JP 2008-222776 A 特許3130193号公報Japanese Patent No. 3130193 特許3677671号公報Japanese Patent No. 36777671 特開2002-327116号公報JP 2002-327116 A
 したがって、本発明は良好な放熱効果を有する硬化物を与え、かつ室温保存も可能な室温湿気硬化型の熱伝導性シリコーン組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide a room temperature moisture curable thermal conductive silicone composition that gives a cured product having a good heat dissipation effect and can be stored at room temperature.
 本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、所定のタップ密度、比表面積およびアスペクト比を有する銀粉末を所定の動粘度を有し、両末端が水酸基で封鎖されたオルガノポリシロキサン中に混合することで熱伝導性が飛躍的に向上することを見出し、本発明を完成した。すなわち、本発明は、次の熱伝導性シリコーン組成物等を提供するものである。 As a result of intensive studies to solve the above problems, the inventors of the present invention have a predetermined kinematic viscosity of silver powder having a predetermined tap density, specific surface area, and aspect ratio, and both ends are blocked with hydroxyl groups. It has been found that thermal conductivity is drastically improved by mixing in organopolysiloxane, and the present invention has been completed. That is, the present invention provides the following thermally conductive silicone composition and the like.
<1>
 成分(A)、(B)、(C)及び(D)
(A)25℃における動粘度が10~100,000mm2/sであり、両末端が水酸基で封鎖されたオルガノポリシロキサン:100質量部
(B)タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が、2.0~50である銀粉末:成分(A)100質量部に対して、300~11,000質量部
(C)ケイ素原子に結合した加水分解可能な基を1分子中に3個以上有するシラン化合物及び/又はその(部分)加水分解物もしくは(部分)加水分解縮合物:成分(A)100質量部に対して、1~30質量部
(D)縮合触媒:成分(A)100質量部に対して、0.01~20質量部
を含有する、
 熱伝導性シリコーン組成物の硬化物の、0.35MPaの圧力下で150℃の条件で加熱後の熱伝導率と加熱前の熱伝導率の比(加熱後の熱伝導率/加熱前の熱伝導率)の値が1.5以上である熱伝導性シリコーン組成物。
<1>
Components (A), (B), (C) and (D)
(A) Organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s and both ends blocked with hydroxyl groups: 100 parts by mass (B) Tap density is 3.0 g / cm 3 or more Silver powder having a specific surface area of 2.0 m 2 / g or less and an aspect ratio of 2.0 to 50: 300 to 11,000 parts by mass (C) with respect to 100 parts by mass of component (A) Silane compound having 3 or more hydrolyzable groups bonded to a silicon atom in one molecule and / or its (partial) hydrolyzate or (partial) hydrolyzed condensate: 100 parts by mass of component (A) 1 to 30 parts by weight (D) condensation catalyst: 0.01 to 20 parts by weight with respect to 100 parts by weight of component (A),
The ratio of the thermal conductivity after heating and the thermal conductivity before heating of the cured product of the thermally conductive silicone composition under the condition of 150 ° C. under a pressure of 0.35 MPa (thermal conductivity after heating / heat before heating) A thermally conductive silicone composition having a conductivity value of 1.5 or more.
<2>
 成分(C)のシラン化合物が下記一般式(5)
  R5 cSiX4-c   (5)
〔式(5)中、R5は非置換又はハロゲン原子若しくはシアノ基で置換された1価炭化水素基であり、Xは加水分解可能な基であり、cは0又は1である。〕
で表されるシラン化合物である、<1>に記載の熱伝導性シリコーン組成物。
<2>
The silane compound of component (C) is represented by the following general formula (5)
R 5 c SiX 4-c (5)
[In the formula (5), R 5 is a monovalent hydrocarbon group which is unsubstituted or substituted with a halogen atom or a cyano group, X is a hydrolyzable group, and c is 0 or 1. ]
The heat conductive silicone composition as described in <1> which is a silane compound represented by these.
<3>
 更に成分(E)として平均粒径が0.7~50μmのシリコーン微粉末を成分(A)100質量部に対して、5~100質量部含有する<1>又は<2>に記載の熱伝導性シリコーン組成物。
<3>
The heat conduction according to <1> or <2>, further comprising 5 to 100 parts by mass of silicone fine powder having an average particle size of 0.7 to 50 μm as component (E) with respect to 100 parts by mass of component (A) Silicone composition.
<4>
 更に、成分(F)として、下記一般式(1)
Figure JPOXMLDOC01-appb-C000002
〔式(1)中、Rは炭素数1~6のアルキル基であり、R1は、互いに独立に、炭素数1~18の、飽和または不飽和の、非置換または置換の一価炭化水素基であり、aは5~120である。〕
で表される、25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサンを成分(A)100質量部に対して1~150質量部含有する<1>~<3>の何れか1つに記載の熱伝導性シリコーン組成物。
<4>
Furthermore, as a component (F), following General formula (1)
Figure JPOXMLDOC01-appb-C000002
[In the formula (1), R is an alkyl group having 1 to 6 carbon atoms, and R 1 is independently of each other a saturated or unsaturated, unsubstituted or substituted monovalent hydrocarbon having 1 to 18 carbon atoms. And a is 5 to 120. ]
Any one of <1> to <3>, containing 1 to 150 parts by mass of an organopolysiloxane having a kinematic viscosity of 10 to 100,000 mm 2 / s at 25 ° C. The heat conductive silicone composition as described in any one.
<5>
 更に、成分(G)として、下記一般式(2)
  R2 bSi(OR34-b   (2)
〔式(2)中、R2は、エポキシ基、アクリル基、メタクリル基、アクリロイルオキシ基及びメタクリロイルオキシ基から選ばれる1種又は2種以上の置換基を有する、炭素数1~18の飽和又は不飽和の一価炭化水素基を示し、R3は炭素数1~6の一価炭化水素基を示し、bは1≦b≦3である。〕
で表されるオルガノシランを、成分(A)100質量部に対して0.1~20質量部含有する<1>~<4>の何れか1つに記載の熱伝導性シリコーン組成物。
<5>
Further, as the component (G), the following general formula (2)
R 2 b Si (OR 3 ) 4-b (2)
[In the formula (2), R 2 is a saturated or saturated group having 1 to 18 carbon atoms having one or more substituents selected from an epoxy group, an acrylic group, a methacryl group, an acryloyloxy group and a methacryloyloxy group. An unsaturated monovalent hydrocarbon group, R 3 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, and b is 1 ≦ b ≦ 3. ]
The thermally conductive silicone composition according to any one of <1> to <4>, wherein the organosilane represented by the formula (A) is contained in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the component (A).
<6>
<1>~<5>の何れか1つに記載の熱伝導性シリコーンの組成物の硬化物。
<6>
A cured product of the thermally conductive silicone composition according to any one of <1> to <5>.
<7>
 発熱性電子部品と、放熱体とを備えている半導体装置であって、前記発熱性電子部品と放熱体との間に、<6>に記載の熱伝導性シリコーン組成物の硬化物が介在していることを特徴とする半導体装置。
<7>
A semiconductor device comprising an exothermic electronic component and a radiator, wherein a cured product of the thermally conductive silicone composition according to <6> is interposed between the exothermic electronic component and the radiator. A semiconductor device characterized by that.
<8>
 発熱性電子部品と放熱体との間に敷設された、<1>~<5>の何れか1つに記載の熱伝導性シリコーン組成物を、0.01MPa以上の圧力がかけられた状態で80℃以上に加熱する工程を有することを特徴とする半導体装置の製造方法。
<8>
The thermally conductive silicone composition according to any one of <1> to <5>, which is laid between a heat-generating electronic component and a radiator, is subjected to a pressure of 0.01 MPa or more. The manufacturing method of the semiconductor device characterized by having the process heated to 80 degreeC or more.
 本発明の熱伝導性シリコーン組成物は、良好な放熱効果を有する硬化物を与え、かつ室温保存も可能な室温湿気硬化型の熱伝導性シリコーン組成物であるため、半導体装置に有用である。 The thermally conductive silicone composition of the present invention is a room temperature moisture curable thermal conductive silicone composition that gives a cured product having a good heat dissipation effect and can be stored at room temperature, and is therefore useful for semiconductor devices.
本発明の半導体装置の例を示す縦断面概略図である。It is the longitudinal cross-sectional schematic which shows the example of the semiconductor device of this invention.
 本発明の熱伝導性シリコーン組成物、その硬化物を用いた半導体装置、及び半導体装置の製造方法について以下詳述する。 The heat conductive silicone composition of the present invention, a semiconductor device using the cured product, and a method for manufacturing the semiconductor device will be described in detail below.
成分(A)
 成分(A)のオルガノポリシロキサンは、25℃における動粘度が10~100,000mm2/sであり、両末端が水酸基で封鎖されたオルガノポリシロキサンである。
Ingredient (A)
The organopolysiloxane of component (A) is an organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s and having both ends blocked with hydroxyl groups.
 成分(A)は、本発明の熱伝導シリコーン組成物のベースポリマー(主剤)であり、ジオルガノシロキサン単位の繰り返しからなる主鎖の両末端が水酸基で封鎖されたオルガノポリシロキサンである。当該主鎖の両末端に水酸基を有していれば、それ以外の構造は特に限定されず、直鎖状のオルガノポリシロキサン等の、硬化してエラストマーを与えるものであってもよい。オルガノポリシロキサンのケイ素原子に結合する置換基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基などの炭素数1~8、好ましくは炭素数1~7の1価炭化水素基、あるいはこれら1価炭化水素基の水素原子の一部又は全部を塩素原子、フッ素原子、臭素原子等のハロゲン原子で置換したクロロメチル基、3-クロロプロピル基、トリフルオロメチル基等のハロゲン化炭化水素基などが挙げられる。 Component (A) is a base polymer (main agent) of the thermally conductive silicone composition of the present invention, and is an organopolysiloxane in which both ends of the main chain composed of repeating diorganosiloxane units are blocked with hydroxyl groups. The structure other than that is not particularly limited as long as it has hydroxyl groups at both ends of the main chain, and it may be cured to give an elastomer such as a linear organopolysiloxane. Examples of the substituent bonded to the silicon atom of the organopolysiloxane include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group; a cycloalkyl group such as a cyclohexyl group; a vinyl group, An alkenyl group such as an allyl group; a monovalent hydrocarbon group having 1 to 8, preferably 1 to 7 carbon atoms such as an aryl group such as a phenyl group or a tolyl group; or one of hydrogen atoms of these monovalent hydrocarbon groups Examples thereof include halogenated hydrocarbon groups such as chloromethyl group, 3-chloropropyl group, and trifluoromethyl group in which part or all are substituted with halogen atoms such as chlorine atom, fluorine atom and bromine atom.
 オルガノポリシロキサンの25℃における動粘度が、10mm2/sより低いと、熱伝導性シリコーン組成物にした時にオイルブリードが出やすくなり、100,000mm2/sより高くなると上記の熱伝導性シリコーン組成物にしたときの絶対粘度が高くなるため取扱性が低下する。そのため、成分(A)のオルガノポリシロキサンの25℃での動粘度は、10~100,000mm2/sであることが必要であり、特に100~50,000mm2/sであることが好ましい。なお、本明細書に記載される成分(A)のオルガノポリシロキサンの動粘度はオストワルド粘度計で測定した25℃での値である。 When the kinematic viscosity at 25 ° C. of the organopolysiloxane is lower than 10 mm 2 / s, oil bleeding tends to occur when the heat conductive silicone composition is formed, and when the viscosity is higher than 100,000 mm 2 / s, the above heat conductive silicone is used. Since the absolute viscosity when it is made into a composition is increased, the handleability is lowered. Therefore, the kinematic viscosity at 25 ° C. of the organopolysiloxane of component (A) is required to be 10 to 100,000 mm 2 / s, particularly preferably 100 to 50,000 mm 2 / s. In addition, the kinematic viscosity of the organopolysiloxane of the component (A) described in this specification is a value at 25 ° C. measured with an Ostwald viscometer.
 成分(A)として、より好適には、下記一般式(3)で示されるオルガノポリシロキサンが挙げられる。 More preferable examples of the component (A) include organopolysiloxanes represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
 上記一般式(3)中、R4は互いに同一又は異なる炭素数1~8、好ましくは炭素数1~7の非置換又は置換の1価炭化水素基であり、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基等のアリール基などの1価炭化水素基、これら1価炭化水素基の水素原子の一部又は全部が塩素原子、フッ素原子、臭素原子等のハロゲン原子、シアノ基などで置換されたクロロメチル基、3-クロロプロピル基、トリフルオロメチル基、シアノエチル基等のハロゲン置換炭化水素基、シアノ基置換炭化水素基である。mは、10~1,000である。
Figure JPOXMLDOC01-appb-C000003
In the general formula (3), R 4 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, preferably 1 to 7 carbon atoms, which is the same or different from each other, specifically, a methyl group, Alkyl group such as ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group; monovalent hydrocarbon group such as phenyl group, aryl group such as tolyl group, etc., one of hydrogen atoms of these monovalent hydrocarbon groups Chloromethyl group, 3-chloropropyl group, trifluoromethyl group, cyanoethyl group and other halogen-substituted hydrocarbon groups substituted by halogen atoms such as chlorine atom, fluorine atom, bromine atom, cyano group or the like, cyano It is a group-substituted hydrocarbon group. m is 10 to 1,000.
 成分(A)は1種を単独で用いても、2種以上を併用してもよい。 Component (A) may be used alone or in combination of two or more.
成分(B)
 成分(B)は、タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が2.0~50である銀粉末である。成分(B)の銀粉末のタップ密度が3.0g/cm3より小さいと、成分(B)の銀粉末の熱伝導性シリコーン組成物への充填率が上がらないため、熱伝導性シリコーン組成物の絶対粘度が上がって、組成物の取り扱い性が悪くなるおそれがある。そのため成分(B)の銀粉末のタップ密度は、3.0g/cm3~8.0g/cm3が好ましく、4.5g/cm3~8.0g/cm3がより好ましく、5.5g/cm3~8.0g/cm3がさらに好ましい。なお、本明細書に記載される銀粉末のタップ密度は、銀粉末100gをはかり、ロートで100mlメスシリンダーに静かに落とした後、シリンダーをタップ密度測定器にのせて落差距離20mm、60回/分の速さで600回落下させ、圧縮した銀粉末の容積を測定した値である。
Ingredient (B)
Component (B) is a silver powder having a tap density of 3.0 g / cm 3 or more, a specific surface area of 2.0 m 2 / g or less, and an aspect ratio of 2.0 to 50. When the tap density of the silver powder of the component (B) is less than 3.0 g / cm 3 , the filling rate of the silver powder of the component (B) into the heat conductive silicone composition does not increase, so the heat conductive silicone composition The absolute viscosity of the composition may increase, and the handleability of the composition may deteriorate. Therefore the tap density of the silver powder of component (B), preferably from 3.0g / cm 3 ~ 8.0g / cm 3, more preferably 4.5g / cm 3 ~ 8.0g / cm 3, 5.5g / More preferably, it is from cm 3 to 8.0 g / cm 3 . The tap density of the silver powder described in this specification is obtained by weighing 100 g of silver powder and gently dropping it onto a 100 ml graduated cylinder with a funnel, and then placing the cylinder on a tap density measuring device at a head distance of 20 mm, 60 times / It is a value obtained by measuring the volume of the compressed silver powder by dropping 600 times at a minute speed.
 成分(B)の銀粉末の比表面積が2.0m2/gより大きいと、成分(B)の銀粉末のシリコーン組成物への充填率が上がらないため、該組成物の絶対粘度が上がって、組成物の取り扱い性が悪くなるおそれがある。そのため成分(B)の銀粉末の比表面積は、0.08m2/g~2.0m2/gが好ましく、0.08m2/g~1.5m2/gがより好ましく、0.08m2/g~1.0m2/gがさらに好ましい。本明細書に記載される銀粉末の比表面積は、BET法により算出した。まず銀粉末約2gをとり、60±5℃で10分間脱ガスした後、比表面積自動測定装置(BET法)にて総表面積を測定した。その後、銀粉末の重さ(g)をはかり、下記式(4)で計算し、算出したものである。
 比表面積(m2/g)=総表面積(m2)/銀粉末の重さ(g)  (4)
When the specific surface area of the silver powder of the component (B) is larger than 2.0 m 2 / g, the filling rate of the silver powder of the component (B) into the silicone composition does not increase, so that the absolute viscosity of the composition increases. The handling property of the composition may be deteriorated. The specific surface area of silver powder therefor component (B) is preferably from 0.08m 2 /g~2.0m 2 / g, more preferably 0.08m 2 /g~1.5m 2 / g, 0.08m 2 / G to 1.0 m 2 / g is more preferable. The specific surface area of the silver powder described in this specification was calculated by the BET method. First, about 2 g of silver powder was taken, degassed at 60 ± 5 ° C. for 10 minutes, and then the total surface area was measured by an automatic specific surface area measuring apparatus (BET method). Thereafter, the weight (g) of the silver powder was measured and calculated by the following formula (4).
Specific surface area (m 2 / g) = total surface area (m 2 ) / weight of silver powder (g) (4)
 成分(B)の銀粉末のアスペクト比は2.0~50であり、好ましくは3.0~30であり、より好ましくは3.0~20である。本明細書において銀粉末のアスペクト比とは、銀粒子の長径と短径の比(長径/短径)をいう。アスペクト比の算出方法としては、たとえば銀粒子の電子顕微鏡写真で銀粒子の長径と短径を測定し、長径の測定値を短径の測定値で除することで個別の銀粒子のアスペクト比を算出できる。銀粉末のアスペクト比は、上記の方法で算出された複数の銀粒子のアスペクト比の平均値である。銀粒子の長径は、試料台に載置された銀粒子を試料台上方から撮影した、銀粒子上面の電子顕微鏡写真において、銀粒子の大きい直径が長径として測定される。一方、短径は、上記の長径測定時の状態の銀粒子の厚さである。銀粒子の厚さを測定するには、電子顕微鏡写真を撮る際に、銀粒子の載っている試料台を傾斜させ、試料台に載置された銀粒子を試料台上方から電子顕微鏡写真を撮り、試料台の傾きの角度で画像を補正して銀粒子の厚さを算出し、銀粒子の短径とする。具体的には、電子顕微鏡で数千倍に拡大した銀粒子群の写真を数枚撮影した後、銀粒子の長径及び短径を任意に100個測定し、それぞれ長径と短径の比(長径/短径)を算出して、銀粒子のアスペクト比の平均値を求め、銀粉末のアスペクト比とした。 The aspect ratio of the silver powder of component (B) is 2.0 to 50, preferably 3.0 to 30, and more preferably 3.0 to 20. In this specification, the aspect ratio of silver powder refers to the ratio of the major axis to the minor axis (major axis / minor axis) of silver particles. As an aspect ratio calculation method, for example, the major axis and minor axis of a silver particle are measured with an electron micrograph of the silver particle, and the aspect ratio of each individual silver particle is determined by dividing the measured value of the major axis by the measured value of the minor axis. It can be calculated. The aspect ratio of the silver powder is an average value of the aspect ratios of a plurality of silver particles calculated by the above method. The major axis of the silver particles is measured by taking the larger diameter of the silver particles as the major axis in an electron micrograph of the upper surface of the silver particles obtained by photographing the silver particles placed on the sample stage from above the sample stage. On the other hand, the minor axis is the thickness of the silver particles in the state when measuring the major axis. To measure the thickness of silver particles, when taking an electron micrograph, the sample stage on which the silver particles are placed is tilted, and the silver particles placed on the sample stage are taken from above the sample stage. Then, the thickness of the silver particles is calculated by correcting the image with the inclination angle of the sample stage, and the short diameter of the silver particles is obtained. Specifically, after taking several photographs of the silver particle group magnified several thousand times with an electron microscope, 100 major and minor diameters of the silver particles were arbitrarily measured, and the ratio of the major axis to the minor axis (major axis). / Minor axis) was calculated, and the average value of the aspect ratios of the silver particles was determined and used as the aspect ratio of the silver powder.
 成分(B)の銀粉末の粒径は特に限定されないが、平均粒径は0.2~50μmが好ましく、特に1.0~30μmが好ましい。本明細書において、成分(B)の銀粉末の平均粒径とは、レーザー回折式粒度分析計により測定した体積基準の体積平均径[MV]をいう。成分(B)の銀粉末の平均粒径は、銀粉末をミクロスパテラで1~2杯、100mlビーカーにとり、イソプロピルアルコールを約60ml入れて、超音波ホモジナイザーで1分間分散した後、レーザー回折式粒度分析計により測定したものである。なお、レーザー回折式粒度分析計による測定時間は30秒である。 The particle size of the silver powder of component (B) is not particularly limited, but the average particle size is preferably 0.2 to 50 μm, particularly 1.0 to 30 μm. In this specification, the average particle diameter of the silver powder of component (B) refers to the volume-based volume average diameter [MV] measured by a laser diffraction particle size analyzer. The average particle size of the silver powder of component (B) is as follows: 1 to 2 cups of silver powder in a microspatella, 100 ml beaker, about 60 ml of isopropyl alcohol, dispersed with an ultrasonic homogenizer for 1 minute, and then laser diffraction particle size It is measured by an analyzer. The measurement time by the laser diffraction particle size analyzer is 30 seconds.
 本発明で用いる原料銀粉末の製造方法は、特に限定されないが、例えば電解法、粉砕法、熱処理法、アトマイズ法、還元法等が挙げられる。原料銀粉末は粉砕して上記の数値範囲内の平均粒径にしてもよい。原料銀粉末の粉砕装置は特に限定されず、例えば、スタンプミル、ボールミル、振動ミル、ハンマーミル、圧延ローラ、乳鉢等の公知の装置が挙げられる。好ましいのは、スタンプミル、ボールミル、振動ミル、ハンマーミルである。 The method for producing the raw silver powder used in the present invention is not particularly limited, and examples thereof include an electrolytic method, a pulverizing method, a heat treatment method, an atomizing method, and a reduction method. The raw silver powder may be pulverized to have an average particle size within the above numerical range. The raw material silver powder crushing apparatus is not particularly limited, and examples thereof include known apparatuses such as a stamp mill, a ball mill, a vibration mill, a hammer mill, a rolling roller, and a mortar. A stamp mill, a ball mill, a vibration mill, and a hammer mill are preferable.
 成分(B)の配合量は、成分(A)100質量部に対して、300~11,000質量部である。成分(A)100質量部に対して、300質量部より少ないと得られる熱伝導性シリコーン組成物の熱伝導率が悪くなり、11,000質量部より多いと組成物の流動性が悪くなり取り扱い性が悪くなる。従って、成分(B)の配合量は、好ましくは300~5,000質量部、より好ましくは500~5,000質量部の範囲である。 The blending amount of component (B) is 300 to 11,000 parts by mass with respect to 100 parts by mass of component (A). If less than 300 parts by mass with respect to 100 parts by mass of component (A), the thermal conductivity of the resulting thermally conductive silicone composition will be poor, and if more than 11,000 parts by mass, the fluidity of the composition will be poor and will be handled. Sexuality gets worse. Therefore, the amount of component (B) is preferably in the range of 300 to 5,000 parts by mass, more preferably 500 to 5,000 parts by mass.
 また、本発明の熱伝導性シリコーン組成物は成分(B)以外に、本発明の効果を損なわない範囲で、無機化合物粉末及び/又は有機化合物材料を含有せしめてもよい。無機化合物粉末及び有機化合物材料は、熱伝導率の高いものが好ましく、例えばアルミニウム粉末、酸化亜鉛粉末、酸化チタン粉末、酸化マグネシウム粉末、アルミナ粉末、水酸化アルミニウム粉末、窒化ホウ素粉末、窒化アルミニウム粉末、ダイヤモンド粉末、金粉末、銅粉末、カーボン粉末、ニッケル粉末、インジウム粉末、ガリウム粉末、金属ケイ素粉末、二酸化ケイ素粉末、炭素繊維、グラフェン、グラファイト、カーボンナノチューブ、カーボン材料の中から選択される1種又は2種以上を挙げることができる。 In addition to the component (B), the thermally conductive silicone composition of the present invention may contain an inorganic compound powder and / or an organic compound material as long as the effects of the present invention are not impaired. The inorganic compound powder and the organic compound material preferably have high thermal conductivity, such as aluminum powder, zinc oxide powder, titanium oxide powder, magnesium oxide powder, alumina powder, aluminum hydroxide powder, boron nitride powder, aluminum nitride powder, One selected from diamond powder, gold powder, copper powder, carbon powder, nickel powder, indium powder, gallium powder, metal silicon powder, silicon dioxide powder, carbon fiber, graphene, graphite, carbon nanotube, carbon material or Two or more can be mentioned.
 これら無機化合物粉末及び有機化合物材料の表面は、必要に応じてオルガノシラン、オルガノシラザン、オルガノポリシロキサン、有機フッ素化合物等で疎水化処理を施してもよい。無機化合物粉末及び有機化合物材料の粉末の平均粒径は、0.5μmより小さくても100μmより大きくても、得られる熱伝導性シリコーン組成物への充填率が上がらなくなるため、0.5~100μmが好ましく、特に好ましくは1~50μmである。また、炭素繊維の繊維長は10μmより小さくても、500μmより大きくても、得られる熱伝導性シリコーン組成物への充填率が上がらなくなるため、10~500μmが好ましく、特に好ましくは30~300μmである。無機化合物粉末及び有機化合物材料の総配合量は、成分(A)100質量部に対して3,000質量部より多いと組成物の流動性が悪くなり取り扱い性が悪くなるため、0~3,000質量部が好ましく、特に好ましくは0~2,000質量部である。 The surfaces of these inorganic compound powders and organic compound materials may be hydrophobized with organosilane, organosilazane, organopolysiloxane, organic fluorine compound, or the like, if necessary. Since the average particle size of the inorganic compound powder and the organic compound material powder is smaller than 0.5 μm or larger than 100 μm, the filling rate into the obtained heat conductive silicone composition cannot be increased. And particularly preferably 1 to 50 μm. Further, even if the fiber length of the carbon fiber is smaller than 10 μm or larger than 500 μm, the filling rate into the obtained heat conductive silicone composition cannot be increased, so that it is preferably 10 to 500 μm, particularly preferably 30 to 300 μm. is there. If the total compounding amount of the inorganic compound powder and the organic compound material is more than 3,000 parts by mass with respect to 100 parts by mass of the component (A), the fluidity of the composition is deteriorated and the handleability is deteriorated. 000 parts by mass is preferable, and 0 to 2,000 parts by mass is particularly preferable.
成分(C)
 成分(C)は、ケイ素原子に結合した加水分解可能な基を1分子中に3個以上有するシラン化合物及び/又はその(部分)加水分解物もしくは(部分)加水分解縮合物であり、本発明の熱伝導性シリコーン組成物の増粘剤として作用する。該シラン化合物としては、下記一般式(5)で表されるものが好適なものとして挙げられる。
Ingredient (C)
Component (C) is a silane compound having three or more hydrolyzable groups bonded to a silicon atom in one molecule and / or its (partial) hydrolyzate or (partial) hydrolysis condensate. It acts as a thickener for the thermally conductive silicone composition. Preferred examples of the silane compound include those represented by the following general formula (5).
  R5 cSiX4-c   (5)
 上記式(5)中、R5は非置換又はハロゲン原子若しくはシアノ基で置換された、好ましくは炭素数1~10、より好ましくは1~6の1価炭化水素基であり、下記成分(F)の式(1)におけるR1と同様の基が例示されるが、特に炭素数1~3のアルキル基、ビニル基、フェニル基が好ましい。Xは加水分解可能な基であり、アルコキシ基、アルコキシアルコキシ基、アルケニルオキシ基、ケトオキシム基、アシロキシ基、アミノ基、アミド基、アミノキシ基等が例示される。cは0又は1である。
R 5 c SiX 4-c (5)
In the above formula (5), R 5 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, which is unsubstituted or substituted with a halogen atom or a cyano group. In the formula (1), a group similar to R 1 is exemplified, and an alkyl group having 1 to 3 carbon atoms, a vinyl group, and a phenyl group are particularly preferable. X is a hydrolyzable group, and examples thereof include an alkoxy group, an alkoxyalkoxy group, an alkenyloxy group, a ketoxime group, an acyloxy group, an amino group, an amide group, and an aminoxy group. c is 0 or 1.
 上記式(5)中、Xで表される加水分解可能な基として例示されるアルコキシ基、アルコキシアルコキシ基としては、ハロゲン原子置換のものであってもよく、例えば、メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基、β-クロロエトキシ基、2,2,2-トリフルオロエトキシ基、δ-クロロブトキシ基、メトキシエトキシ基等が挙げられる。アルケニルオキシ基としては、例えば、イソプロペノキシ基等が挙げられる。ケトオキシム基としては、例えば、ジメチルケトオキシム基、メチルエチルケトオキシム基、ジエチルケトオキシム基等が挙げられる。アシロキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基等が挙げられる。アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、n-ブチルアミノ基、シクロヘキシルアミノ基等が挙げられる。アミド基としては、例えば、N-メチルアセトアミド基、N-エチルアセトアミド基、N-ブチルアセトアミド基、N-シクロヘキシルアセトアミド基等が挙げられる。アミノキシ基としては、例えば、N,N-ジメチルアミノキシ基、N,N-ジエチルアミノキシ基等が挙げられる。Xとしては、特にアルケニルオキシ基が好ましい。 In the above formula (5), the alkoxy group and alkoxyalkoxy group exemplified as the hydrolyzable group represented by X may be those substituted with a halogen atom, for example, methoxy group, ethoxy group, Examples thereof include a propoxy group, a butoxy group, a β-chloroethoxy group, a 2,2,2-trifluoroethoxy group, a δ-chlorobutoxy group, and a methoxyethoxy group. Examples of the alkenyloxy group include an isopropenoxy group. Examples of the ketoxime group include a dimethyl ketoxime group, a methyl ethyl ketoxime group, and a diethyl ketoxime group. Examples of the acyloxy group include an acetoxy group and a propionyloxy group. Examples of the amino group include a dimethylamino group, a diethylamino group, an n-butylamino group, and a cyclohexylamino group. Examples of the amide group include an N-methylacetamide group, an N-ethylacetamide group, an N-butylacetamide group, an N-cyclohexylacetamide group, and the like. Examples of the aminoxy group include N, N-dimethylaminoxy group, N, N-diethylaminoxy group and the like. X is particularly preferably an alkenyloxy group.
 これら成分(C)のシラン化合物、その(部分)加水分解物あるいは(部分)加水分解縮合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、ビニルトリメトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、β-シアノエチルトリメトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、フェニルトリメトキシシラン、オクタデシルトリメトキシシラン、テトラ(β-クロロエトキシ)シラン、テトラ(2,2,2-トリフルオロエトキシ)シラン、プロピルトリス(δ-クロロブトキシ)シラン、メチルトリス(メトキシエトキシ)シラン等のアルコキシシラン類;エチルポリシリケート、ジメチルテトラメトキシジシロキサン等のアルコキシシロキサン類;メチルトリス(メチルエチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン、フェニルトリス(メチルエチルケトオキシム)シラン、メチルトリス(ジエチルケトオキシム)シラン、テトラ(メチルエチルケトオキシム)シラン等のケトオキシムシラン類;メチルトリス(シクロヘキシルアミノ)シラン、ビニルトリス(n-ブチルアミノ)シラン等のアミノシラン類;メチルトリス(N-メチルアセトアミド)シラン、メチルトリス(N-ブチルアセトアミド)シラン、メチルトリス(N-シクロヘキシルアセトアミド)シラン等のアミドシラン類;メチルトリス(N,N-ジエチルアミノキシ)シラン等のアミノキシシラン類;メチルトリ(イソプロペノキシ)シラン、ビニルトリ(イソプロペノキシ)シラン、フェニルトリ(イソプロペノキシ)シラン等のアルケニルオキシシラン類;メチルトリアセトキシシラン、ビニルトリアセトキシシラン等のアシロキシシラン類などが挙げられる。成分(C)は1種を単独で用いても、2種以上を併用してもよい。 Specific examples of these component (C) silane compounds, their (partial) hydrolysates or (partial) hydrolyzed condensates include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, vinyltrimethoxysilane. Methoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, β-cyanoethyltrimethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, phenyltrimethoxysilane, octadecyltrimethoxysilane, tetra (β-chloroethoxy) silane , Alkoxysilanes such as tetra (2,2,2-trifluoroethoxy) silane, propyltris (δ-chlorobutoxy) silane, and methyltris (methoxyethoxy) silane; ethyl polysilicate, dimethyltetramethoxydisiloxy Alkoxy siloxanes such as methyl tris (methyl ethyl ketoxime) silane, vinyl tris (methyl ethyl ketoxime) silane, phenyl tris (methyl ethyl ketoxime) silane, methyl tris (diethyl ketoxime) silane, tetra (methyl ethyl ketoxime) silane, etc .; Aminosilanes such as methyltris (cyclohexylamino) silane, vinyltris (n-butylamino) silane; Amidosilanes such as methyltris (N-methylacetamido) silane, methyltris (N-butylacetamido) silane, methyltris (N-cyclohexylacetamido) silane Aminoxysilanes such as methyltris (N, N-diethylaminoxy) silane; methyltri (isopropenoxy) silane; Rutori (isopropenoxy) silane, alkenyloxy silane such as phenyl tri (isopropenoxy) silane; methyltriacetoxysilane, like acyloxy such as vinyltriacetoxysilane. A component (C) may be used individually by 1 type, or may use 2 or more types together.
 この成分(C)の配合量は、成分(A)100質量部に対して、1質量部よりも少ないと増粘せず、30質量部より多いと増粘し難いので、1~30質量部であり、好ましくは1~20質量部である。 The blending amount of this component (C) is 1 to 30 parts by mass with respect to 100 parts by mass of the component (A). And preferably 1 to 20 parts by mass.
成分(D)
 本発明の室温湿気硬化型の熱伝導性シリコーン組成物は縮合硬化型であり、この熱伝導性シリコーン組成物には、成分(D)として縮合触媒が使用される。これには、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジオクトエート等のアルキル錫エステル化合物;テトライソプロポキシチタン、テトラn-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナ)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル;ジイソプロポキシビス(エチルアセトアセテート)チタン、ジイソプロポキシビス(メチルアセトアセテート)チタン、ジイソプロポキシビス(アセチルアセトネート)チタン、ジブトキシビス(エチルアセトアセトネート)チタン、ジメトキシビス(エチルアセトアセトネート)チタン等のチタンキレート化合物;ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト、アルコキシアルミニウム化合物等の有機金属(亜鉛、鉄、コバルト、マンガン、アルミニウム)化合物;3-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等のアミノアルキル基置換アルコキシシラン、ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物及びその塩;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;酢酸カリウム、酢酸ナトリウム、蓚酸リチウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン;又はシロキサン等が例示されるが、これらはその1種に限定されず、2種もしくはそれ以上の混合物として使用してもよい。なかでもテトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン又はシロキサン等が好適に用いられる。
Ingredient (D)
The room temperature moisture curable heat conductive silicone composition of the present invention is a condensation curable type, and a condensation catalyst is used as the component (D) in the heat conductive silicone composition. This includes alkyltin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctoate; tetraisopropoxy titanium, tetra n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium, dipropoxy bis (acetylacetona) Titanic acid esters such as titanium and titanium isopropoxyoctylene glycol; diisopropoxybis (ethylacetoacetate) titanium, diisopropoxybis (methylacetoacetate) titanium, diisopropoxybis (acetylacetonate) titanium, dibutoxybis (ethyl) Acetoacetonate) titanium, titanium chelate compounds such as dimethoxybis (ethylacetoacetonate) titanium; zinc naphthenate, zinc stearate, zinc-2-ethyl octoate, Organic metal (zinc, iron, cobalt, manganese, aluminum) compounds such as -2-ethylhexoate, cobalt-2-ethylhexoate, manganese-2-ethylhexoate, cobalt naphthenate, and alkoxyaluminum compounds; Amino compound substituted alkoxysilane such as 3-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, amine compounds such as hexylamine, dodecylamine phosphate and salts thereof; benzyltriethylammonium acetate Quaternary ammonium salts such as potassium acetate, sodium acetate, and lower fatty acid salts of alkali metals such as lithium oxalate; dialkylhydroxylamines such as dimethylhydroxylamine and diethylhydroxylamine; tetramethylguanidylpropiyl Examples include silanes containing a guanidyl group such as trimethoxysilane, tetramethylguanidylpropylmethyldimethoxysilane, tetramethylguanidylpropyltris (trimethylsiloxy) silane; or siloxane. It is not limited and may be used as a mixture of two or more. Of these, silane or siloxane containing a guanidyl group such as tetramethylguanidylpropyltrimethoxysilane, tetramethylguanidylpropylmethyldimethoxysilane, tetramethylguanidylpropyltris (trimethylsiloxy) silane, or the like is preferably used. .
 成分(D)の添加量は、成分(A)100質量部に対し、0.01質量部未満であると増粘し難くなり、20質量部を超える量を添加しても特別顕著な触媒効果はなく不経済であるので、0.01~20質量部であり、好ましくは0.1~5質量部である。 The amount of component (D) added is less than 0.01 parts by weight relative to 100 parts by weight of component (A), and it is difficult to increase the viscosity. Since it is uneconomical, it is 0.01 to 20 parts by mass, preferably 0.1 to 5 parts by mass.
 本発明は、上記の成分(A)~(D)を所定の含有量で含有することにより、室温保存可能な室温湿気硬化型の熱伝導性シリコーン組成物となる。本発明の熱伝導性シリコーン組成物100質量%中の成分(A)~(D)の総含有量は、80~100質量%が好ましい。本発明には、本発明の作用効果を損なわない範囲で、以下に説明する各成分を含有させてもよい。 The present invention is a room temperature moisture curable thermally conductive silicone composition that can be stored at room temperature by containing the above components (A) to (D) at a predetermined content. The total content of components (A) to (D) in 100% by mass of the heat conductive silicone composition of the present invention is preferably 80 to 100% by mass. In the present invention, each component described below may be contained within a range not impairing the effects of the present invention.
成分(E)
 成分(E)は、平均粒径が0.7~50μmのシリコーン微粉末である。成分(E)であるシリコーン微粉末は成分(B)の銀粉末を選択的に分散させ、熱伝導経路を効率的に形成させるために必要に応じて使用されるものである。成分(E)のシリコーン微粉末としては、例えば、直鎖状のオルガノポリシロキサンを架橋した構造であるシリコーンゴムパウダー、シロキサン結合が(RSiO3/2n(Rは置換又は非置換の一価炭化水素基を表し、nは1~18である。)で表される三次元網目状に架橋した構造を持つポリオルガノシルセスキオキサン硬化微粉末であるシリコーンレジンパウダー、シリコーンゴムパウダーの表面をシリコーンレジンで被覆した構造のシリコーン複合パウダーなどが挙げられる。本発明の成分(E)のシリコーン微粉末としては、1種のシリコーン微粉末を使用してもよいし、2種以上のシリコーン微粉末をブレンドして使用してもよい。
Ingredient (E)
Component (E) is a fine silicone powder having an average particle size of 0.7 to 50 μm. The silicone fine powder as the component (E) is used as necessary to selectively disperse the silver powder of the component (B) and efficiently form a heat conduction path. Examples of the silicone fine powder of component (E) include, for example, a silicone rubber powder having a structure in which a linear organopolysiloxane is crosslinked, and a siloxane bond is (RSiO 3/2 ) n (R is a substituted or unsubstituted monovalent). The surface of the silicone resin powder or silicone rubber powder, which is a polyorganosilsesquioxane cured fine powder having a three-dimensional network cross-linked structure, represented by a hydrocarbon group, n is 1 to 18. Examples thereof include a silicone composite powder having a structure coated with a silicone resin. As the silicone fine powder of component (E) of the present invention, one kind of silicone fine powder may be used, or two or more kinds of silicone fine powder may be blended and used.
 シリコーン微粉末の市販品としては、KMP-600(信越化学工業製)、KMP-601(信越化学工業製)、KMP-602(信越化学工業製)、KMP-605(信越化学工業製)、KMP-597(信越化学工業製)、KMP-598(信越化学工業製)、KMP-701(信越化学工業製)、X-52-854(信越化学工業製)などがあげられる。また、これらシリコーン微粉末の表面は、必要に応じてオルガノシラン、オルガノシラザン、オルガノポリシロキサン、有機フッ素化合物等で処理を施してもよい。成分(E)のシリコーン微粉末はその粒子中にシリコーンオイル、オルガノシラン、無機系粉末、有機系粉末などを含有していてもよい。 Commercially available silicone fine powders include KMP-600 (manufactured by Shin-Etsu Chemical), KMP-601 (manufactured by Shin-Etsu Chemical), KMP-602 (manufactured by Shin-Etsu Chemical), KMP-605 (manufactured by Shin-Etsu Chemical), KMP -597 (manufactured by Shin-Etsu Chemical), KMP-598 (manufactured by Shin-Etsu Chemical), KMP-701 (manufactured by Shin-Etsu Chemical), X-52-854 (manufactured by Shin-Etsu Chemical), and the like. In addition, the surface of these silicone fine powders may be treated with organosilane, organosilazane, organopolysiloxane, organic fluorine compound or the like, if necessary. The silicone fine powder of component (E) may contain silicone oil, organosilane, inorganic powder, organic powder, etc. in the particles.
 成分(E)のシリコーン微粉末の平均粒径が0.7μm未満の場合、粒子の流動性が低くなり、凝集性も高くなることから、熱伝導性シリコーン組成物の流動性が悪くなり、取り扱い性が悪くなる。平均粒径が50μmを超えると銀粉末の熱伝導経路を阻害し、熱伝導性シリコーン組成物の熱伝導率が悪化するので、これは0.7~50μmのものとすることが必要とされ、この好ましい範囲は0.7~30μmであり、更に好ましい範囲は1~20μmである。成分(E)のシリコーン微粉末の平均粒径は、成分(B)の銀粉末の平均粒径と同様の方法で測定される平均粒径である。 When the average particle size of the silicone fine powder of component (E) is less than 0.7 μm, the fluidity of the particles becomes low and the cohesiveness becomes high. Sexuality gets worse. When the average particle size exceeds 50 μm, the heat conduction path of the silver powder is hindered, and the heat conductivity of the heat conductive silicone composition is deteriorated. Therefore, it is necessary that the particle diameter is 0.7 to 50 μm. The preferable range is 0.7 to 30 μm, and the more preferable range is 1 to 20 μm. The average particle size of the silicone fine powder of component (E) is an average particle size measured by the same method as the average particle size of the silver powder of component (B).
 成分(E)のシリコーン微粉末の配合量は、成分(A)100質量部に対して5質量部より少ないと本成分の熱伝導率向上の効果が得られにくくなり、100質量部より多いと組成物の流動性が悪くなり、取り扱い性が悪くなるため、5~100質量部が好ましく、特に好ましくは7~20質量部である。 When the blending amount of the silicone fine powder of component (E) is less than 5 parts by mass with respect to 100 parts by mass of component (A), it becomes difficult to obtain the effect of improving the thermal conductivity of this component, and when it exceeds 100 parts by mass. Since the fluidity of the composition is deteriorated and the handleability is deteriorated, the content is preferably 5 to 100 parts by mass, particularly preferably 7 to 20 parts by mass.
成分(F)
 本発明の組成物には、成分(F)として、下記一般式(1)で表される、25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサンを配合してもよい。
Ingredient (F)
In the composition of the present invention, an organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s represented by the following general formula (1) may be blended as the component (F).
Figure JPOXMLDOC01-appb-C000004
 式(1)中、Rは炭素数1~6のアルキル基であり、R1は、互いに独立に、炭素数1~18の、飽和または不飽和の、非置換または置換の一価炭化水素基であり、aは5~120である。
Figure JPOXMLDOC01-appb-C000004
In the formula (1), R is an alkyl group having 1 to 6 carbon atoms, and R 1 is independently of each other a saturated or unsaturated, unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms. And a is 5 to 120.
 成分(F)は、組成物の硬化後の硬度を制御する役割を担っている。上記式(1)中、Rは、炭素数1~6のアルキル基であり、例えばメチル基、エチル基、プロピル基などの炭素数1~6のアルキル基等が挙げられるが、特にメチル基、エチル基が好ましい。R1は、互いに独立に、炭素数1~18、好ましくは炭素数1~10の、飽和または不飽和の、非置換または置換の一価炭化水素基である。該一価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基及びオクタデシル基等のアルキル基;シクロペンチル基及びシクロヘキシル基等のシクロアルキル基;ビニル基及びアリル基等のアルケニル基;フェニル基及びトリル基等のアリール基;2-フェニルエチル基及び2-メチル-2-フェニルエチル基等のアラルキル基;又は、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えば、3,3,3-トリフルオロプロピル基、2-(パーフルオロブチル)エチル基、2-(パーフルオロオクチル)エチル基、p-クロロフェニル基等が挙げられる。この内、特にメチル基が好ましい。
 また、上記式(1)中、aは5~120の整数であり、好ましくは10~90の整数である。
Component (F) plays a role of controlling the hardness of the composition after curing. In the above formula (1), R is an alkyl group having 1 to 6 carbon atoms, and examples thereof include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group. An ethyl group is preferred. R 1 , independently of each other, is a saturated or unsaturated, unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms. Examples of the monovalent hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, and an octadecyl group; a cyclopentyl group and a cyclohexyl group. Cycloalkyl groups such as vinyl groups and allyl groups; aryl groups such as phenyl groups and tolyl groups; aralkyl groups such as 2-phenylethyl groups and 2-methyl-2-phenylethyl groups; In which part or all of the hydrogen atoms in the group are substituted with halogen atoms such as fluorine, bromine, chlorine, cyano groups, for example, 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group 2- (perfluorooctyl) ethyl group, p-chlorophenyl group, and the like. Of these, a methyl group is particularly preferable.
In the above formula (1), a is an integer of 5 to 120, preferably an integer of 10 to 90.
 また、本発明で使用するオルガノポリシロキサンの25℃における動粘度は、10mm2/sより低いと組成物にした時にオイルブリードが出やすくなり、100,000mm2/sより高くなると、得られる熱伝導性シリコーン組成物の絶対粘度が高くなることから取り扱い性が低下する。そのため、成分(F)のオルガノポリシロキサンの25℃における動粘度は、10~100,000mm2/sであることが必要であり、特に30~10,000mm2/sであることが好ましい。なお、本明細書に記載される成分(F)のオルガノポリシロキサンの粘度はオストワルド粘度計で測定した25℃での値である。 Further, if the kinematic viscosity at 25 ° C. of the organopolysiloxane used in the present invention is lower than 10 mm 2 / s, oil bleeding tends to occur when the composition is formed, and if it is higher than 100,000 mm 2 / s, the heat obtained Since the absolute viscosity of the conductive silicone composition is increased, the handleability is lowered. Therefore, the kinematic viscosity at 25 ° C. of the organopolysiloxane of the component (F), is required to be 10 ~ 100,000mm 2 / s, it is preferable in particular 30 ~ 10,000mm 2 / s. In addition, the viscosity of the organopolysiloxane of the component (F) described in this specification is a value at 25 ° C. measured with an Ostwald viscometer.
 この成分(F)は、成分(A)100質量部に対し、1質量部よりも少ないと硬化後の硬度を下げる効果が少なく、150質量部より多いと、硬化しなくなってしまうため、1~150質量部で用いるものであり、好ましくは10~100質量部で用いるものである。 If this component (F) is less than 1 part by mass with respect to 100 parts by mass of the component (A), the effect of lowering the hardness after curing is small, and if it exceeds 150 parts by mass, it will not be cured. It is used at 150 parts by weight, preferably 10 to 100 parts by weight.
成分(G)
 更に、本発明の熱伝導性シリコーン組成物には、成分(G)として、下記一般式(2)で表されるオルガノシランを配合してもよい。成分(G)は組成物の硬化後に接着性を付与する役割を担っており、接着助剤として作用する成分である。
Ingredient (G)
Furthermore, you may mix | blend the organosilane represented by following General formula (2) as a component (G) with the heat conductive silicone composition of this invention. Component (G) plays a role of imparting adhesiveness after curing of the composition, and is a component that acts as an adhesion aid.
  R2 bSi(OR34-b   (2)
 式(2)中、R2は、エポキシ基、アクリル基、メタクリル基、アクリロイルオキシ基及びメタクリロイルオキシ基から選ばれる1種又は2種以上の置換基を有する、炭素数1~18の飽和又は不飽和の一価炭化水素基を示し、R3は炭素数1~6の、一価炭化水素基を示し、bは1≦b≦3である。
R 2 b Si (OR 3 ) 4-b (2)
In the formula (2), R 2 is a saturated or unsaturated group having 1 to 18 carbon atoms having one or more substituents selected from an epoxy group, an acrylic group, a methacryl group, an acryloyloxy group and a methacryloyloxy group. R 1 represents a saturated monovalent hydrocarbon group, R 3 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, and b is 1 ≦ b ≦ 3.
 上記一般式(2)のR2の飽和又は不飽和の一価炭化水素基の具体例としては、例えばメチル基、エチル基、プロピル基、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等のアルキル基;シクロアルキルアルケニル基;アクリル基;エポキシ基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフルオロプロピル基、2-(パーフルオロブチル)エチル基、2-(パーフルオロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基等が挙げられる。一価炭化水素基の置換基としては、エポキシ基、アクリル基、メタクリル基、アクリロイルオキシ基、メタクリロイルオキシ基が挙げられる。また、bは1≦b≦3である。R3としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などの炭素数1~6の基が挙げられ、特にメチル基、エチル基が好ましい。 Specific examples of the saturated or unsaturated monovalent hydrocarbon group represented by R 2 in the general formula (2) include, for example, a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a nonyl group, a decyl group, and a dodecyl group. Alkyl group such as tetradecyl group; cycloalkyl alkenyl group; acrylic group; epoxy group; cycloalkyl group such as cyclopentyl group and cyclohexyl group; alkenyl group such as vinyl group and allyl group; aryl group such as phenyl group and tolyl group; Aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group And halogenated hydrocarbon groups such as p-chlorophenyl group. Examples of the substituent for the monovalent hydrocarbon group include an epoxy group, an acrylic group, a methacryl group, an acryloyloxy group, and a methacryloyloxy group. B is 1 ≦ b ≦ 3. Examples of R 3 include groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group and an ethyl group are particularly preferable.
 成分(G)の一般式(2)で表されるオルガノシランの具体例としては、下記のものを挙げることができる。
CH2=C(CH3)COOC816Si(OCH33
Specific examples of the organosilane represented by the general formula (2) of the component (G) include the following.
CH 2 = C (CH 3) COOC 8 H 16 Si (OCH 3) 3
 成分(G)のオルガノシランを本発明の熱伝導性シリコーン組成物に添加する場合には、成分(A)100質量部に対し0.1~20質量部添加するのが好ましく、0.1~10質量部添加するのがより好ましい。 When the organosilane of component (G) is added to the thermally conductive silicone composition of the present invention, it is preferably added in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of component (A). It is more preferable to add 10 parts by mass.
組成物の製造方法
 本発明の熱伝導性シリコーン組成物の製造方法は、従来公知の熱伝導性シリコーン組成物の製造方法に従えばよく、特に制限されるものでない。例えば、上記成分(A)~(D)、並びに必要に応じてその他の成分を、トリミックス(登録商標)、ツウィンミックス(登録商標)、プラネタリミキサー(登録商標)、ウルトラミキサー(登録商標)、ハイビスディスパーミックス(登録商標)等の混合機にて30分~4時間混合することにより製造することができる。また、必要に応じて、50~200℃の範囲の温度で加熱しながら混合してもよい。
The manufacturing method of a composition The manufacturing method of the heat conductive silicone composition of this invention should just follow the manufacturing method of a conventionally well-known heat conductive silicone composition, and is not restrict | limited in particular. For example, the above components (A) to (D) and other components as necessary may be Trimix (registered trademark), Twinmix (registered trademark), Planetary mixer (registered trademark), Ultramixer (registered trademark), It can be produced by mixing for 30 minutes to 4 hours in a mixer such as Hibis Dispermix (registered trademark). If necessary, mixing may be performed while heating at a temperature in the range of 50 to 200 ° C.
 本発明の熱伝導性シリコーン組成物は、25℃にて測定される絶対粘度が10~1,500Pa・s、好ましくは15~800Pa・s、更には50~500Pa・sであるものが好ましい。絶対粘度が上記範囲内であることにより、塗布対象の基材が水平でない状態でも流動し難い熱伝導性シリコーン組成物を提供できる。また熱伝導性シリコーン組成物は取り扱い性にも優れる。該絶対粘度は、少なくとも本発明の必須成分(A)~(D)を上述した配合量に調整することにより得ることができる。上記絶対粘度は、スパイラル粘度計を用いて回転数10rpmで測定した結果である。スパイラル粘度計の市販品の例としては、株式会社マルコム社製の型番PC-1TLが挙げられる。 The heat conductive silicone composition of the present invention preferably has an absolute viscosity measured at 25 ° C. of 10 to 1,500 Pa · s, preferably 15 to 800 Pa · s, and more preferably 50 to 500 Pa · s. When the absolute viscosity is within the above range, it is possible to provide a thermally conductive silicone composition that hardly flows even when the substrate to be coated is not horizontal. Further, the heat conductive silicone composition is excellent in handleability. The absolute viscosity can be obtained by adjusting at least the essential components (A) to (D) of the present invention to the above-described amounts. The absolute viscosity is a result of measurement using a spiral viscometer at a rotation speed of 10 rpm. An example of a commercially available spiral viscometer is model number PC-1TL manufactured by Malcolm Corporation.
本発明の熱伝導性シリコーン組成物の使用方法
 本発明の熱伝導性シリコーン組成物は、常温(20~25℃)で保存でき、温度条件21~25℃、相対湿度45~55%RHの環境下で7日以上静置することにより硬化させることができる。さらに本発明の熱伝導性シリコーン組成物の硬化物は、熱伝導性を向上させる観点から、加熱して用いることが好ましい。
Method of Using the Thermally Conductive Silicone Composition of the Present Invention The thermally conductive silicone composition of the present invention can be stored at room temperature (20 to 25 ° C.), in an environment with a temperature condition of 21 to 25 ° C. and a relative humidity of 45 to 55% RH. It can be cured by allowing it to stand for 7 days or longer. Furthermore, it is preferable to use the cured product of the thermally conductive silicone composition of the present invention by heating from the viewpoint of improving the thermal conductivity.
 硬化物を加熱して用いる場合、該硬化物に対する加熱条件について、加熱温度は、好ましくは80℃以上、より好ましくは90~300℃、更に好ましくは100~300℃、特に好ましくは120~300℃である。80℃以上であると、銀粉末が熱伝導経路を効率的に形成し、本発明の熱伝導性シリコーン組成物の硬化物の熱伝導性が向上する。また、加熱温度が300℃以下であると、加熱後の熱伝導性シリコーン組成物の硬化物を適度な硬さにすることが可能である。 When the cured product is used by heating, the heating temperature for the cured product is preferably 80 ° C. or higher, more preferably 90 to 300 ° C., further preferably 100 to 300 ° C., particularly preferably 120 to 300 ° C. It is. When it is 80 ° C. or higher, the silver powder efficiently forms a heat conduction path, and the heat conductivity of the cured product of the heat conductive silicone composition of the present invention is improved. Moreover, when the heating temperature is 300 ° C. or less, the cured product of the heat conductive silicone composition after heating can be made to have an appropriate hardness.
 加熱時間は、好ましくは1分以上、より好ましくは10~300分、更に好ましくは30~300分、特に好ましくは60~300分である。加熱時間が1分以上であると、銀粉末が熱伝導経路を形成し、熱伝導性が向上する。また、加熱時間が300分以下であると、熱伝導性シリコーン組成物を適度な硬さにすることが可能である。また加熱時に圧力を加えてもよい。圧力は、0.01MPa以上が好ましく、特に0.05MPa~100MPaが好ましく、更に0.1MPa~100MPaが好ましい。加熱時の熱伝導性シリコーン組成物に0.01MPa以上の圧力をかけると、銀粉末同士の接触が容易に生じ、熱伝導経路を効率的に形成し、熱伝導性が向上する。 The heating time is preferably 1 minute or more, more preferably 10 to 300 minutes, still more preferably 30 to 300 minutes, and particularly preferably 60 to 300 minutes. When the heating time is 1 minute or longer, the silver powder forms a heat conduction path, and the heat conductivity is improved. Moreover, it is possible to make a heat conductive silicone composition moderate hardness as heating time is 300 minutes or less. Further, pressure may be applied during heating. The pressure is preferably 0.01 MPa or more, particularly preferably 0.05 MPa to 100 MPa, and more preferably 0.1 MPa to 100 MPa. When a pressure of 0.01 MPa or more is applied to the thermally conductive silicone composition at the time of heating, contact between silver powders easily occurs, a heat conduction path is efficiently formed, and thermal conductivity is improved.
 本発明の熱伝導性シリコーン組成物の硬化物は、放熱効果に優れ、次の特長を有する。すなわち本発明の熱伝導性シリコーン組成物の硬化物の、0.35MPaの圧力下で150℃の条件で加熱後の熱伝導率と加熱前の熱伝導率の比(加熱後の熱伝導率/加熱前の熱伝導率)の値は1.5以上であり、好ましくは、2.0以上であり、より好ましくは、10.0以上であり、さらに好ましくは15.0以上である。この値は大きいほどよいが、事実上の上限は100.0である。すなわち本発明の熱伝導性シリコーン組成物の硬化物は、加熱加圧環境下でも熱伝導率が低下せず、放熱効果を発揮する。そのため、とりわけ発熱量の多い半導体装置への搭載に好適である。 The cured product of the thermally conductive silicone composition of the present invention has an excellent heat dissipation effect and has the following features. That is, the ratio of the thermal conductivity after heating and the thermal conductivity before heating of the cured product of the thermally conductive silicone composition of the present invention at 150 ° C. under a pressure of 0.35 MPa (heat conductivity after heating / The value of (thermal conductivity before heating) is 1.5 or more, preferably 2.0 or more, more preferably 10.0 or more, and further preferably 15.0 or more. A larger value is better, but the practical upper limit is 100.0. That is, the cured product of the thermally conductive silicone composition of the present invention exhibits a heat dissipation effect without decreasing the thermal conductivity even in a heated and pressurized environment. Therefore, it is particularly suitable for mounting on a semiconductor device that generates a large amount of heat.
 本発明の熱伝導性シリコーン組成物の加熱後および加熱前の熱伝導率は、次の方法で測定したものである。熱伝導性シリコーン組成物を6mm厚の型に流し込み、23±2℃/50±5%RHの環境下で7日間放置し、加熱前の熱伝導率を測定する。更に、その後硬化物を150℃かつ0.35MPaの圧力がかけられた状態で90分保持し、加熱後の熱伝導率を測定する。 The thermal conductivity of the thermally conductive silicone composition of the present invention after heating and before heating is measured by the following method. The thermally conductive silicone composition is poured into a 6 mm thick mold, left in an environment of 23 ± 2 ° C./50±5% RH for 7 days, and the thermal conductivity before heating is measured. Furthermore, after that, the cured product is held for 90 minutes under a pressure of 150 ° C. and 0.35 MPa, and the thermal conductivity after heating is measured.
 本発明の熱伝導性シリコーン組成物の硬化物の、0.35MPaの圧力下で150℃の条件で加熱後の熱伝導率と加熱前の熱伝導率の比(加熱後の熱伝導率/加熱前の熱伝導率)の値が1.5以上である。加熱後の熱伝導性シリコーン組成物の熱伝導率は好ましくは5.0W/m・K以上、より好ましくは10.0W/m・K以上、さらに好ましくは20.0W/m・K以上、特に好ましくは50.0W/m・K以上である。加熱前の熱伝導率は、好ましくは1.0W/m・K以上、より好ましくは3.0W/m・K以上、さらに好ましくは5.0W/m・K以上、特に好ましくは8.0W/m・K以上である。 The ratio of the thermal conductivity after heating and the thermal conductivity before heating of the cured product of the thermally conductive silicone composition of the present invention at 150 ° C. under a pressure of 0.35 MPa (thermal conductivity after heating / heating The previous value of thermal conductivity is 1.5 or more. The thermal conductivity of the thermally conductive silicone composition after heating is preferably 5.0 W / m · K or more, more preferably 10.0 W / m · K or more, further preferably 20.0 W / m · K or more, particularly Preferably it is 50.0 W / m · K or more. The thermal conductivity before heating is preferably 1.0 W / m · K or more, more preferably 3.0 W / m · K or more, still more preferably 5.0 W / m · K or more, and particularly preferably 8.0 W / m. m · K or more.
半導体装置
 本発明の半導体装置は、発熱性電子部品の表面と放熱体との間に、本発明の熱伝導性シリコーン組成物が介在する。代表的な構造を図1に示すが、本発明はこれに限定されるものではない。図1において、1は基板、2は発熱性電子部品(CPU)、3は熱伝導性シリコーン組成物層、4は放熱体(リッド)である。
Semiconductor Device In the semiconductor device of the present invention, the thermally conductive silicone composition of the present invention is interposed between the surface of the heat-generating electronic component and the heat radiator. A typical structure is shown in FIG. 1, but the present invention is not limited to this. In FIG. 1, 1 is a substrate, 2 is a heat-generating electronic component (CPU), 3 is a thermally conductive silicone composition layer, and 4 is a radiator (lid).
半導体装置の製造方法
 本発明の半導体装置の製造方法においては、発熱性電子部品と放熱体との間に敷設された、本発明の熱伝導性シリコーン組成物を、0.01MPa以上の圧力がかけられた状態で80℃以上に加熱する工程を有する。この際、発熱性電子部品と熱伝導性シリコーン組成物と放熱体とを積層させた積層構造を含む構造体に掛ける圧力は、0.01MPa以上が好ましく、特に0.05MPa~100MPaが好ましく、更に0.1MPa~100MPaが好ましい。加熱する温度は、80℃以上が必要であり、好ましくは、90℃~300℃であり、より好ましくは100℃~300℃であり、更に好ましくは120℃~300℃である。上記の方法で製造される半導体装置の熱伝導性シリコーン硬化物の性状は限定されないが、例えば、ゲル状、低硬度のゴム状、あるいは高硬度のゴム状が挙げられる。本発明の熱伝導性シリコーン組成物のゴム状硬化物の硬度は、アスカーゴム硬度計C型で計測できる。ゴム状硬化物のアスカーゴム硬度計C型による硬度は、約80が目安とされ、一例として硬度が80未満の場合は低硬度のゴム状硬化物として、硬度が80以上の場合は高硬度のゴム状硬化物として扱われる場合がある。
Method for Manufacturing Semiconductor Device In the method for manufacturing a semiconductor device of the present invention, the thermally conductive silicone composition of the present invention laid between a heat generating electronic component and a radiator is applied with a pressure of 0.01 MPa or more. And a step of heating to 80 ° C. or higher in the obtained state. At this time, the pressure applied to the structure including the laminated structure in which the heat-generating electronic component, the heat conductive silicone composition, and the heat radiating member are laminated is preferably 0.01 MPa or more, particularly preferably 0.05 MPa to 100 MPa, 0.1 MPa to 100 MPa is preferable. The heating temperature needs to be 80 ° C. or higher, preferably 90 ° C. to 300 ° C., more preferably 100 ° C. to 300 ° C., and still more preferably 120 ° C. to 300 ° C. Although the property of the heat conductive silicone hardened | cured material of the semiconductor device manufactured by said method is not limited, For example, a gel form, a low-hardness rubber form, or a high-hardness rubber form is mentioned. The hardness of the rubber-like cured product of the thermally conductive silicone composition of the present invention can be measured with an Asker rubber hardness meter C type. The hardness of the rubber-like cured product according to the Asker rubber hardness tester C type is about 80. As an example, when the hardness is less than 80, the hardness is a low-hardness rubber-like cured product, and when the hardness is 80 or more, the high-hardness rubber May be treated as a cured product.
 以下、本発明の効果をより明確にする目的で、実施例及び比較例によって更に詳述するが、本発明はこれによって限定されるものではない。本発明に関わる効果に関する試験は次のように行った。 Hereinafter, for the purpose of clarifying the effects of the present invention, examples and comparative examples will be described in more detail, but the present invention is not limited thereto. Tests relating to the effects of the present invention were performed as follows.
実施例1~16及び比較例1~12
 下記表1~4に示す組成で、次のように混合して実施例1~16及び比較例1~12の組成物を得た。即ち、5リットルプラネタリーミキサー(井上製作所(株)社製)に成分(A)、(F)、及び/又は(G)を取り、成分(B)及び(C)を加え25℃で1.5時間混合した。次に、成分(D)及び/又は(E)を加えて均一になるように混合した。各組成物の絶対粘度および各組成物から得られる硬化物の熱伝導率は、下記の方法で測定した。また熱伝導率の測定値を用いて、組成物の加熱前の熱伝導率と加熱後の熱伝導率の比(加熱後の熱伝導率/加熱前の熱伝導率)を算出し、表1~4の「熱伝導率比」に記載した。
Examples 1 to 16 and Comparative Examples 1 to 12
The compositions shown in Tables 1 to 4 below were mixed as follows to obtain compositions of Examples 1 to 16 and Comparative Examples 1 to 12. That is, components (A), (F), and / or (G) are added to a 5-liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.), components (B) and (C) are added, and 1. Mix for 5 hours. Next, components (D) and / or (E) were added and mixed to be uniform. The absolute viscosity of each composition and the thermal conductivity of the cured product obtained from each composition were measured by the following methods. Also, using the measured value of thermal conductivity, the ratio of the thermal conductivity before heating of the composition to the thermal conductivity after heating (heat conductivity after heating / thermal conductivity before heating) was calculated, and Table 1 It was described in “Thermal conductivity ratio” of ˜4.
〔粘度〕
 熱伝導性シリコーン組成物の絶対粘度は、スパイラル粘度計(株式会社マルコム社製 型番PC-1TL)を用いて回転数10rpmで25℃で測定した。
〔viscosity〕
The absolute viscosity of the thermally conductive silicone composition was measured at 25 ° C. at a rotation speed of 10 rpm using a spiral viscometer (model number PC-1TL manufactured by Malcolm Corporation).
〔熱伝導率〕
 表1~4に示す組成の実施例1~16および比較例1~12の各組成物を6mm厚の型に流し込み、23±2℃/50±5%RHの環境下で7日間放置した後、各組成物の硬化物を得た。得られた各硬化物について加熱前の熱伝導率を測定した。更に、該硬化物を0.35MPaの圧力を掛けた状態で150℃に90分間加熱し、各組成物の加熱後の熱伝導率を測定した。なお、この熱伝導率測定はホットディスク法熱物性測定装置(京都電子工業(株)社製、TPS-2500S)により、いずれも25℃において行った。
〔Thermal conductivity〕
Each of the compositions of Examples 1 to 16 and Comparative Examples 1 to 12 having the compositions shown in Tables 1 to 4 was poured into a 6 mm thick mold and left for 7 days in an environment of 23 ± 2 ° C./50±5% RH. A cured product of each composition was obtained. About each obtained hardened | cured material, the heat conductivity before a heating was measured. Further, the cured product was heated to 150 ° C. for 90 minutes under a pressure of 0.35 MPa, and the thermal conductivity after heating of each composition was measured. The thermal conductivity was measured at 25 ° C. using a hot disk method thermophysical property measuring apparatus (TPS-2500S, manufactured by Kyoto Electronics Industry Co., Ltd.).
 組成物を形成する以下の各成分を用意した。なお、成分(A)及び成分(F)の動粘度は、オストワルド粘度計で測定した25℃の値である。
成分(A)
A-1:両末端が水酸基で封鎖され、25℃における動粘度が500mm2/sのジメチルポリシロキサン
A-2:両末端が水酸基で封鎖され、25℃における動粘度が5,000mm2/sのジメチルポリシロキサン
A-3(比較例):両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン
The following components for forming the composition were prepared. In addition, the kinematic viscosity of a component (A) and a component (F) is the value of 25 degreeC measured with the Ostwald viscometer.
Ingredient (A)
A-1: Dimethylpolysiloxane having both ends blocked with hydroxyl groups and a kinematic viscosity at 25 ° C. of 500 mm 2 / s A-2: Both ends blocked with hydroxyl groups and having a kinematic viscosity at 25 ° C. of 5,000 mm 2 / s Dimethylpolysiloxane A-3 (comparative example): Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 600 mm 2 / s
成分(B)
B-1:タップ密度が6.4g/cm3、比表面積が0.28m2/g、アスペクト比が8の銀粉末
B-2:タップ密度が6.2g/cm3、比表面積が0.48m2/g、アスペクト比が13の銀粉末
B-3:タップ密度が8.0g/cm3、比表面積が0.16m2/g、アスペクト比が30の銀粉末
B-4:タップ密度が3.0g/cm3、比表面積が2.0m2/g、アスペクト比が50の銀粉末
B-5(比較例):タップ密度が2.3g/cm3、比表面積が2.3m2/g、アスペクト比が1の銀粉末
B-6(比較例):タップ密度が3.3g/cm3、比表面積が2.11m2/g、アスペクト比が1の銀粉末
B-7(比較例):タップ密度が2.8g/cm3、比表面積が1.8m2/g、アスペクト比が2の銀粉末
Ingredient (B)
B-1: Silver powder having a tap density of 6.4 g / cm 3 , a specific surface area of 0.28 m 2 / g, and an aspect ratio of 8 B-2: A tap density of 6.2 g / cm 3 and a specific surface area of 0.8. Silver powder B-3 with 48 m 2 / g and aspect ratio 13: Tap density 8.0 g / cm 3 , specific surface area 0.16 m 2 / g, silver powder B-4 with aspect ratio 30 B-4: tap density Silver powder B-5 having a surface area of 3.0 g / cm 3 , a specific surface area of 2.0 m 2 / g and an aspect ratio of 50 (comparative example): a tap density of 2.3 g / cm 3 and a specific surface area of 2.3 m 2 / g g, silver powder B-6 having an aspect ratio of 1 (comparative example): silver powder B-7 having a tap density of 3.3 g / cm 3 , a specific surface area of 2.11 m 2 / g and an aspect ratio of 1 (comparative example) ): Silver powder with a tap density of 2.8 g / cm 3 , a specific surface area of 1.8 m 2 / g, and an aspect ratio of 2
成分(C)
C-1:フェニルトリ(イソプロペノキシ)シラン
C-2:テトラメトキシシラン
Ingredient (C)
C-1: Phenyltri (isopropenoxy) silane C-2: Tetramethoxysilane
成分(D)
D-1(縮合触媒):テトラメチルグアニジルプロピルトリメトキシシラン
D-2(縮合触媒):ジメチルヒドロキシルアミン
Ingredient (D)
D-1 (Condensation catalyst): Tetramethylguanidylpropyltrimethoxysilane D-2 (Condensation catalyst): Dimethylhydroxylamine
成分(E)
E-1:平均粒径0.7μmのシリコーンレジンパウダー(信越化学工業製 X-52-854)
E-2:平均粒径30μmのシリコーン複合パウダー(信越化学工業製 KMP-602)
Ingredient (E)
E-1: Silicone resin powder having an average particle size of 0.7 μm (X-52-854 manufactured by Shin-Etsu Chemical Co., Ltd.)
E-2: Silicone composite powder with an average particle size of 30 μm (KMP-602, manufactured by Shin-Etsu Chemical Co., Ltd.)
成分(F)
F-1:下記式(6)で表される、25℃における動粘度が30mm2/sのオルガノポリシロキサン
Ingredient (F)
F-1: Organopolysiloxane represented by the following formula (6) and having a kinematic viscosity at 25 ° C. of 30 mm 2 / s
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
成分(G)
G-1:下記式(7)で表されるオルガノシラン、式(7)においてMeはメチル基を表す。
Ingredient (G)
G-1: Organosilane represented by the following formula (7), Me in the formula (7) represents a methyl group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
1.基板
2.発熱性電子部品(CPU)
3.熱伝導性シリコーン組成物層
4.放熱体(リッド)
1. Substrate 2. Heat-generating electronic components (CPU)
3. 3. Thermally conductive silicone composition layer Heat dissipation body (lid)

Claims (8)

  1.  次の成分(A)、(B)、(C)及び(D)
    (A)25℃における動粘度が10~100,000mm2/sであり、両末端が水酸基で封鎖されたオルガノポリシロキサン:100質量部
    (B)タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が2.0~50である銀粉末:成分(A)100質量部に対して、300~11,000質量部
    (C)ケイ素原子に結合した加水分解可能な基を1分子中に3個以上有するシラン化合物及び/又はその(部分)加水分解物もしくは(部分)加水分解縮合物:成分(A)100質量部に対して、1~30質量部
    (D)縮合触媒:成分(A)100質量部に対して、0.01~20質量部
    を含有する、
     熱伝導性シリコーン組成物の硬化物の、0.35MPaの圧力下で150℃の条件で加熱後の熱伝導率と加熱前の熱伝導率の比(加熱後の熱伝導率/加熱前の熱伝導率)の値が1.5以上である熱伝導性シリコーン組成物。
    The following components (A), (B), (C) and (D)
    (A) Organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s and both ends blocked with hydroxyl groups: 100 parts by mass (B) Tap density is 3.0 g / cm 3 or more Silver powder having a specific surface area of 2.0 m 2 / g or less and an aspect ratio of 2.0 to 50: 300 to 11,000 parts by mass (C) silicon with respect to 100 parts by mass of component (A) Silane compound having 3 or more hydrolyzable groups bonded to an atom and / or its (partial) hydrolyzate or (partial) hydrolyzed condensate: 100 parts by mass of component (A), 1 to 30 parts by weight (D) condensation catalyst: 0.01 to 20 parts by weight per 100 parts by weight of component (A)
    The ratio of the thermal conductivity after heating and the thermal conductivity before heating of the cured product of the thermally conductive silicone composition under the condition of 150 ° C. under a pressure of 0.35 MPa (thermal conductivity after heating / heat before heating) A thermally conductive silicone composition having a conductivity value of 1.5 or more.
  2.  成分(C)のシラン化合物が下記一般式(5)
      R5 cSiX4-c   (5)
    〔式(5)中、R5は非置換又はハロゲン原子若しくはシアノ基で置換された1価炭化水素基であり、Xは加水分解可能な基であり、cは0又は1である。〕
    で表されるシラン化合物である、請求項1に記載の熱伝導性シリコーン組成物。
    The silane compound of component (C) is represented by the following general formula (5)
    R 5 c SiX 4-c (5)
    [In the formula (5), R 5 is a monovalent hydrocarbon group which is unsubstituted or substituted with a halogen atom or a cyano group, X is a hydrolyzable group, and c is 0 or 1. ]
    The heat conductive silicone composition of Claim 1 which is a silane compound represented by these.
  3.  更に成分(E)として平均粒径が0.7~50μmのシリコーン微粉末を成分(A)100質量部に対して、5~100質量部含有する請求項1又は2に記載の熱伝導性シリコーン組成物。 The thermally conductive silicone according to claim 1 or 2, further comprising 5 to 100 parts by mass of silicone fine powder having an average particle size of 0.7 to 50 µm as component (E) with respect to 100 parts by mass of component (A). Composition.
  4.  更に、成分(F)として、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、Rは炭素数1~6のアルキル基であり、R1は、互いに独立に、炭素数1~18の、飽和または不飽和の、非置換または置換の一価炭化水素基であり、aは5~120である。〕
    で表される、25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサンを成分(A)100質量部に対して1~150質量部含有する請求項1~3の何れか1項に記載の熱伝導性シリコーン組成物。
    Furthermore, as a component (F), following General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R is an alkyl group having 1 to 6 carbon atoms, and R 1 is independently of each other a saturated or unsaturated, unsubstituted or substituted monovalent hydrocarbon having 1 to 18 carbon atoms. And a is 5 to 120. ]
    The composition according to any one of claims 1 to 3, which contains 1 to 150 parts by mass of an organopolysiloxane having a kinematic viscosity at 25 ° C of 10 to 100,000 mm 2 / s represented by The thermally conductive silicone composition according to item.
  5.  更に、成分(G)として、下記一般式(2)
      R2 bSi(OR34-b   (2)
    〔式(2)中、R2は、エポキシ基、アクリル基、メタクリル基、アクリロイルオキシ基及びメタクリロイルオキシ基から選ばれる1種又は2種以上の置換基を有する、炭素数1~18の飽和又は不飽和の一価炭化水素基を示し、R3は炭素数1~6の一価炭化水素基を示し、bは1≦b≦3である。〕
    で表されるオルガノシランを、成分(A)100質量部に対して0.1~20質量部含有する請求項1~4の何れか1項に記載の熱伝導性シリコーン組成物。
    Further, as the component (G), the following general formula (2)
    R 2 b Si (OR 3 ) 4-b (2)
    [In the formula (2), R 2 is a saturated or saturated group having 1 to 18 carbon atoms having one or more substituents selected from an epoxy group, an acrylic group, a methacryl group, an acryloyloxy group and a methacryloyloxy group. An unsaturated monovalent hydrocarbon group, R 3 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, and b is 1 ≦ b ≦ 3. ]
    The thermally conductive silicone composition according to any one of claims 1 to 4, which contains 0.1 to 20 parts by mass of the organosilane represented by the formula (A) with respect to 100 parts by mass of the component (A).
  6.  請求項1~5の何れか1項に記載の熱伝導性シリコーン組成物の硬化物。 A cured product of the thermally conductive silicone composition according to any one of claims 1 to 5.
  7.  発熱性電子部品と、放熱体とを備えている半導体装置であって、前記発熱性電子部品と放熱体との間に、請求項6に記載の熱伝導性シリコーン組成物の硬化物が介在していることを特徴とする半導体装置。 A semiconductor device comprising a heat-generating electronic component and a heat radiator, wherein a cured product of the thermally conductive silicone composition according to claim 6 is interposed between the heat-generating electronic component and the heat radiator. A semiconductor device characterized by that.
  8.  発熱性電子部品と放熱体との間に敷設された、請求項1~5の何れか1項に記載の熱伝導性シリコーン組成物を、0.01MPa以上の圧力がかけられた状態で80℃以上に加熱する工程を有することを特徴とする半導体装置の製造方法。 The thermally conductive silicone composition according to any one of claims 1 to 5, which is laid between a heat-generating electronic component and a radiator, is heated at 80 ° C under a pressure of 0.01 MPa or more. The manufacturing method of the semiconductor device characterized by having the process heated above.
PCT/JP2019/001373 2018-02-09 2019-01-18 Thermoconductive silicone composition, cured product, semiconductor device, and semiconductor device production method WO2019155846A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019570642A JP6939914B2 (en) 2018-02-09 2019-01-18 Thermally conductive silicone compositions, cured products, semiconductor devices, and methods for manufacturing semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-021870 2018-02-09
JP2018021870 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019155846A1 true WO2019155846A1 (en) 2019-08-15

Family

ID=67548099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001373 WO2019155846A1 (en) 2018-02-09 2019-01-18 Thermoconductive silicone composition, cured product, semiconductor device, and semiconductor device production method

Country Status (3)

Country Link
JP (1) JP6939914B2 (en)
TW (1) TWI793250B (en)
WO (1) WO2019155846A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080027A1 (en) * 2021-11-02 2023-05-11 昭栄化学工業株式会社 Thermosetting conductive resin composition and method for producing electronic component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168920A (en) * 2002-11-21 2004-06-17 Dow Corning Toray Silicone Co Ltd Thermally conductive silicone elastomer composition
JP2017066406A (en) * 2015-10-02 2017-04-06 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
JP2017165932A (en) * 2016-03-18 2017-09-21 東洋インキScホールディングス株式会社 Thermally conductive member and device
WO2017159252A1 (en) * 2016-03-18 2017-09-21 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
JP2018058953A (en) * 2016-10-03 2018-04-12 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151136A1 (en) * 2014-04-04 2015-10-08 京セラケミカル株式会社 Thermosetting resin composition, semiconductor device and electrical/electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168920A (en) * 2002-11-21 2004-06-17 Dow Corning Toray Silicone Co Ltd Thermally conductive silicone elastomer composition
JP2017066406A (en) * 2015-10-02 2017-04-06 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
JP2017165932A (en) * 2016-03-18 2017-09-21 東洋インキScホールディングス株式会社 Thermally conductive member and device
WO2017159252A1 (en) * 2016-03-18 2017-09-21 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
JP2018058953A (en) * 2016-10-03 2018-04-12 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080027A1 (en) * 2021-11-02 2023-05-11 昭栄化学工業株式会社 Thermosetting conductive resin composition and method for producing electronic component

Also Published As

Publication number Publication date
TWI793250B (en) 2023-02-21
JPWO2019155846A1 (en) 2020-12-03
JP6939914B2 (en) 2021-09-22
TW201934664A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
JP6645395B2 (en) Thermal conductive silicone composition and semiconductor device
JP6610429B2 (en) Thermally conductive silicone composition, cured product thereof and method for producing the same
TWI742051B (en) Thermally conductive polysiloxane composition, semiconductor device, and method for manufacturing semiconductor device
JP6607166B2 (en) Thermally conductive silicone composition and semiconductor device
JP6183319B2 (en) Thermally conductive silicone composition and thermally conductive sheet
TWI743247B (en) Thermally conductive silicone composition and its hardened product, and manufacturing method
JP6610491B2 (en) Thermally conductive silicone composition and semiconductor device
JP2017075202A (en) Additional one-pack type curable thermoconductive silicone grease composition
JP7092212B2 (en) Thermally conductive silicone compositions and semiconductor devices
JP7168084B2 (en) High thermal conductivity silicone composition and cured product thereof
KR101775288B1 (en) Silicone composition having excellent long-term storage stability and heat-radiating function
WO2019155846A1 (en) Thermoconductive silicone composition, cured product, semiconductor device, and semiconductor device production method
KR20160150290A (en) Silicone polymer composition having an excellent heat-radiating function
TWI818154B (en) Non-hardening thermally conductive silicone composition
JP2021191823A (en) Heat-conductive silicone composition, semiconductor device, and production method of semiconductor device
TW202400725A (en) Thermally conductive silicone composition, semiconductor device and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750265

Country of ref document: EP

Kind code of ref document: A1