TW202400725A - Thermally conductive silicone composition, semiconductor device and method for producing same - Google Patents

Thermally conductive silicone composition, semiconductor device and method for producing same Download PDF

Info

Publication number
TW202400725A
TW202400725A TW112123624A TW112123624A TW202400725A TW 202400725 A TW202400725 A TW 202400725A TW 112123624 A TW112123624 A TW 112123624A TW 112123624 A TW112123624 A TW 112123624A TW 202400725 A TW202400725 A TW 202400725A
Authority
TW
Taiwan
Prior art keywords
component
thermally conductive
parts
mass
conductive silicone
Prior art date
Application number
TW112123624A
Other languages
Chinese (zh)
Inventor
秋場翔太
Original Assignee
日商信越化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商信越化學工業股份有限公司 filed Critical 日商信越化學工業股份有限公司
Publication of TW202400725A publication Critical patent/TW202400725A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The purpose of the present invention is to provide: a thermally conductive silicone composition which has good heat dissipation performance; and a semiconductor device which uses this composition, and the like. The present invention provides a thermally conductive silicone composition which contains the following components (A), (B), (C), (D) and (E). (A) an organopolysiloxane which has at least two alkenyl groups that are each bonded to a silicon atom in each molecule, while having a kinematic viscosity of 10 to 100,000 mm2/s at 25 DEG C (B) a silver powder in an amount of 500 to 3,000 parts by mass relative to 100 parts by mass of the component (A) (C) a fatty acid in an amount of 0.01 to 10.0 parts by mass relative to 100 parts by mass of the component (B) (D) a platinum-based catalyst in a catalytic amount (E) an organohydrogen polysiloxane which has at least two hydrogen atoms that are each bonded to a silicon atom in each molecule in an addition amount at which (number of Si-H groups in component (E))/(number of alkenyl groups in component (A)) is 0.8 to 6.0.

Description

熱傳導性矽酮組合物、半導體裝置及其製造方法Thermal conductive silicone composition, semiconductor device and manufacturing method thereof

本發明關於一種熱傳導性優異的矽酮組合物、半導體裝置及其製造方法。The present invention relates to a silicone composition excellent in thermal conductivity, a semiconductor device, and a manufacturing method thereof.

由於大多數電子部件在使用中會發熱,進而,為了適宜地發揮其電子部件的功能,需要從電子部件除去熱量。特別是被用於個人電腦的CPU等的積體電路元件,由於工作頻率的高速化則發熱量增大,從而熱對策成為了重要的課題。Since most electronic components generate heat during use, in order to properly perform the functions of the electronic components, it is necessary to remove heat from the electronic components. In particular, integrated circuit components used in CPUs and other components of personal computers generate more heat as the operating frequency increases, so thermal countermeasures become an important issue.

作為除去所述熱量的手段,提案著多種方法。特別是針對發熱量多的電子部件,提案著將熱傳導性潤滑脂或熱傳導性片材的熱傳導性材料介於電子部件和散熱體等的構件之間而進行散熱的方法。As a means of removing the heat, various methods have been proposed. Especially for electronic components that generate a large amount of heat, a method of dissipating heat by interposing a thermally conductive grease or a thermally conductive material such as a thermally conductive sheet between the electronic component and a member such as a heat sink has been proposed.

在日本專利特開平2-153995號公報(專利文獻1)中,公開了已將一定粒徑範圍的球狀六方晶類氮化鋁粉末配合在特定的有機聚矽氧烷中的矽酮潤滑脂組合物;在日本專利特開平3-14873號公報(專利文獻2)中,公開了已將細粒徑氮化鋁粉和粗粒徑氮化鋁粉進行組合的熱傳導性矽酮潤滑脂;在日本專利特開平10-110179號公報(專利文獻3)中,公開了已將氮化鋁粉和氧化鋅粉進行組合的熱傳導性矽酮潤滑脂;在日本專利特開2000-63872號公報(專利文獻4)中,公開了使用已用有機矽烷進行表面處理的氮化鋁粉的熱傳導性潤滑脂組合物。Japanese Patent Application Laid-Open No. 2-153995 (Patent Document 1) discloses a silicone grease in which spherical hexagonal aluminum nitride powder in a certain particle size range is blended with a specific organopolysiloxane. Composition; Japanese Patent Application Laid-Open No. 3-14873 (Patent Document 2) discloses a thermally conductive silicone grease that combines fine-grained aluminum nitride powder and coarse-grained aluminum nitride powder; in Japanese Patent Application Laid-Open No. 10-110179 (Patent Document 3) discloses a thermally conductive silicone grease that combines aluminum nitride powder and zinc oxide powder; Japanese Patent Application Laid-Open No. 2000-63872 (Patent Document 3) Document 4) discloses a thermally conductive grease composition using aluminum nitride powder surface-treated with organosilane.

氮化鋁的熱傳導率為70~270W/mK,作為比氮化鋁熱傳導性高的材料,其為熱傳導率900~2000W/mK的金剛石。在日本專利特開2002-30217號公報(專利文獻5)中,公開了將金剛石、氧化鋅以及分散劑用於矽酮樹脂的熱傳導性矽酮組合物。The thermal conductivity of aluminum nitride is 70 to 270 W/mK. As a material with higher thermal conductivity than aluminum nitride, it is diamond with a thermal conductivity of 900 to 2000 W/mK. Japanese Patent Application Laid-Open No. 2002-30217 (Patent Document 5) discloses a thermally conductive silicone composition using diamond, zinc oxide, and a dispersant for a silicone resin.

另外,在日本專利特開2000-63873號公報(專利文獻6)和日本專利特開2008-222776號公報(專利文獻7)中,公開了在矽油等的基油中混合了金屬鋁粉的熱傳導性潤滑脂組合物。In addition, Japanese Patent Laid-Open No. 2000-63873 (Patent Document 6) and Japanese Patent Laid-Open No. 222776 (Patent Document 7) disclose heat conduction in which metal aluminum powder is mixed with a base oil such as silicone oil. Sexual grease composition.

在上述中雖也為顯示出高熱傳導率的矽酮組合物,但是,針對最近的CPU等的積體電路元件的發熱量,其上述所有的熱傳導性材料或熱傳導性潤滑脂均存在著散熱不充分的問題。 現有技術文獻 專利文獻 Although the above-mentioned ones are silicone compositions showing high thermal conductivity, all of the above-mentioned thermally conductive materials or thermally conductive greases have problems in dissipating heat due to the amount of heat generated by integrated circuit components such as recent CPUs. Sufficient question. existing technical documents patent documents

[專利文獻1]:日本專利特開平2-153995號公報 [專利文獻2]:日本專利特開平3-14873號公報 [專利文獻3]:日本專利特開平10-110179號公報 [專利文獻4]:日本專利特開2000-63872號公報 [專利文獻5]:日本專利特開2002-30217號公報 [專利文獻6]:日本專利特開2000-63873號公報 [專利文獻7]:日本專利特開2008-222776號公報 [Patent Document 1]: Japanese Patent Application Laid-Open No. 2-153995 [Patent document 2]: Japanese Patent Application Laid-Open No. 3-14873 [Patent Document 3]: Japanese Patent Application Publication No. 10-110179 [Patent Document 4]: Japanese Patent Application Laid-Open No. 2000-63872 [Patent document 5]: Japanese Patent Application Publication No. 2002-30217 [Patent Document 6]: Japanese Patent Application Laid-Open No. 2000-63873 [Patent Document 7]: Japanese Patent Application Laid-Open No. 2008-222776

發明要解決的問題Invent the problem to be solved

因此,本發明的目的在於,提供一種能夠發揮良好的散熱效果的熱傳導性矽酮組合物和使用該組合物的半導體裝置。 用於解決問題的方案 Therefore, an object of the present invention is to provide a thermally conductive silicone composition that can exhibit a good heat dissipation effect and a semiconductor device using the composition. solutions to problems

本發明人們為達到上述目的所精心研究的結果,發現了能夠達到上述目的方法,進而完成了本發明。該方法為,藉由將銀粉和特定的脂肪酸混合到特定的有機聚矽氧烷中,從而能夠飛躍性地提高熱傳導性。 即,本發明為提供以下的熱傳導性矽酮組合物等的發明。 As a result of careful research to achieve the above object, the present inventors discovered a method capable of achieving the above object, and completed the present invention. This method can dramatically improve thermal conductivity by mixing silver powder and a specific fatty acid into a specific organopolysiloxane. That is, the present invention provides the following thermally conductive silicone composition and the like.

[1]一種熱傳導性矽酮組合物,其包含下述成分(A)、成分(B)、成分(C)、成分(D)以及成分(E),其中 (A)有機聚矽氧烷,其在1分子中含有至少2個與矽原子鍵合了的烯基,且在25℃條件下的運動黏度為10~100000mm 2/s (B)銀粉:相對於成分(A)100質量份,其為500~3000質量份 (C)脂肪酸:相對於成分(B)100質量份,其為0.01~10.0質量份 (D)鉑系催化劑:催化劑量 (E):有機氫聚矽氧烷:其在1分子中含有至少2個與矽原子鍵合了的氫原子,{成分(E)的Si-H基團的個數/成分(A)的烯基的個數}為0.8~6.0的配合量。 [2]如[1]所述的熱傳導性矽酮組合物,其中, 成分(B)的銀粉為長徑比為1~2的霧化銀粉。 [3]如[1]或[2]所述的熱傳導性矽酮組合物,其中, 成分(C)為碳原子數為2~24的脂肪酸。 [4]如[1]~[3]中任1項所述的熱傳導性矽酮組合物,其中, 進一步,包含作為成分(F)的以下述平均組成式(1)表示的、在25℃條件下的運動黏度為10~100000mm 2/s的有機聚矽氧烷或、以下述通式(2)表示的有機矽烷, R 1 aSiO (4-a) /2(1) 在平均組成式(1)中,R 1為氫原子和/或碳原子數為1~18的飽和或不飽合的一價烴基,a為1.8≤a≤2.2, R 2 bSi(OR 3) 4-b(2) 在通式(2)中,R 2為選自可具有取代基的飽和或不飽和的一價烴基、環氧基和(甲基)丙烯酸基團中的1種或2種以上的基團,R 3表示為一價烴基,b為1≤b≤3,且相對於所述成分(A)100質量份,所述成分(F)為0.1~20質量份。 [5]一種半導體裝置,其特徵在於, 其為具備發熱性電子部件和散熱體的半導體裝置,且[1]~[4]中任1項所述的熱傳導性矽酮組合物介於所述發熱性電子部件和所述散熱體之間。 [6]如[5]所述的半導體裝置的製造方法,其特徵在於, 其具有如下步驟: 在發熱性電子部件和散熱體之間,且在施加著0.1MPa以上的壓力的狀態下,將[1]~[4]中任1項所述的熱傳導性矽酮組合物加熱至100℃以上。 發明的效果 [1] A thermally conductive silicone composition containing the following component (A), component (B), component (C), component (D) and component (E), wherein (A) organopolysiloxane, It contains at least two alkenyl groups bonded to silicon atoms in one molecule, and has a kinematic viscosity of 10 to 100000 mm 2 /s at 25°C. (B) Silver powder: relative to 100 parts by mass of component (A), It is 500 to 3000 parts by mass (C) Fatty acid: It is 0.01 to 10.0 parts by mass relative to 100 parts by mass of component (B) (D) Platinum-based catalyst: Catalyst amount (E): Organohydrogen polysiloxane: It is A compound containing at least 2 hydrogen atoms bonded to silicon atoms in one molecule, and {the number of Si-H groups of component (E)/the number of alkenyl groups of component (A)} is 0.8 to 6.0 quantity. [2] The thermally conductive silicone composition according to [1], wherein the silver powder of component (B) is atomized silver powder with an aspect ratio of 1 to 2. [3] The thermally conductive silicone composition according to [1] or [2], wherein the component (C) is a fatty acid having 2 to 24 carbon atoms. [4] The thermally conductive silicone composition according to any one of [1] to [3], further comprising as component (F) represented by the following average composition formula (1), at 25°C For organopolysiloxane or organosilane represented by the following general formula (2), the kinematic viscosity under the conditions is 10 to 100000 mm 2 /s, R 1 a SiO (4-a) /2 (1) in the average composition formula In (1), R 1 is a hydrogen atom and/or a saturated or unsaturated monovalent hydrocarbon group with 1 to 18 carbon atoms, a is 1.8≤a≤2.2, R 2 b Si(OR 3 ) 4-b (2) In the general formula (2), R 2 is one or more selected from the group consisting of saturated or unsaturated monovalent hydrocarbon groups that may have substituents, epoxy groups, and (meth)acrylic acid groups. Group, R 3 represents a monovalent hydrocarbon group, b is 1≤b≤3, and relative to 100 parts by mass of the component (A), the component (F) is 0.1 to 20 parts by mass. [5] A semiconductor device including a heat-generating electronic component and a heat sink, and the thermally conductive silicone composition according to any one of [1] to [4] is interposed between the between heat-generating electronic components and the heat sink. [6] The method for manufacturing a semiconductor device according to [5], which includes the step of: placing a heat sink between the heat-generating electronic component and the heat sink while applying a pressure of 0.1 MPa or more. The thermally conductive silicone composition described in any one of [1] to [4] is heated to 100°C or above. Effect of the invention

由於本發明的熱傳導性矽酮組合物具有優異的熱傳導率,因此,對需要具有良好的散熱效果的半導體裝置為有用。Since the thermally conductive silicone composition of the present invention has excellent thermal conductivity, it is useful for semiconductor devices that require good heat dissipation effects.

以下,對本發明的熱傳導性矽酮組合物詳細地進行說明。Hereinafter, the thermally conductive silicone composition of the present invention will be described in detail.

成分(A) 用於本發明的熱傳導性矽酮組合物的成分(A)的有機聚矽氧烷,其為在1分子中具有至少2個與矽原子直接鍵合的烯基的有機聚矽氧烷,可以為直鏈,也可為支鏈,另外,也可以為這些有機聚矽氧烷2種以上不同黏度的混合物。 Ingredient(A) The organopolysiloxane used as component (A) of the thermally conductive silicone composition of the present invention is an organopolysiloxane having at least two alkenyl groups directly bonded to silicon atoms in one molecule. It may be a linear chain or a branched chain, and it may also be a mixture of two or more types of these organopolysiloxanes with different viscosities.

作為成分(A),可列舉出例如,以下述平均組成式表示的、在1分子中具有至少2個與矽原子鍵合的烯基的有機聚矽氧烷。 R 4 cR 5SiO 4-c -d /2(在上述平均組成式中,R 4獨立地為不具有脂肪族不飽和鍵的未取代或取代的一價烴基,R 5獨立地表示為烯基,c為0.5~2.5的正數、較佳為0.8~2.2的正數,d為0.001~0.2的正數、較佳為0.0005~0.1的正數。但是,c+d較佳為0.8~2.7的正數、更佳為0.9~2.2的正數。) Examples of the component (A) include, for example, an organopolysiloxane represented by the following average composition formula and having at least two alkenyl groups bonded to a silicon atom in one molecule. R 4 c R 5 SiO ( 4-c -d ) /2 (In the above average composition formula, R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group without an aliphatic unsaturated bond, and R 5 independently represents is an alkenyl group, c is a positive number from 0.5 to 2.5, preferably a positive number from 0.8 to 2.2, and d is a positive number from 0.001 to 0.2, preferably a positive number from 0.0005 to 0.1. However, c+d is preferably a positive number from 0.8 to 2.7 A positive number, preferably a positive number between 0.9 and 2.2.)

作為烯基,較佳為碳原子數為2~6的烯基、更佳為碳原子數為2~4的烯基。具體而言,可列舉出乙烯基、烯丙基、1-丁烯基、1-己烯基等烯基,但從合成的容易程度、成本方面考慮,較佳為乙烯基。與矽原子鍵合的烯基可存在於有機聚矽氧烷分子鏈的末端或中端,但較佳為至少存在於末端。As the alkenyl group, an alkenyl group having 2 to 6 carbon atoms is preferred, and an alkenyl group having 2 to 4 carbon atoms is more preferred. Specific examples include alkenyl groups such as vinyl, allyl, 1-butenyl, and 1-hexenyl. However, from the viewpoint of ease of synthesis and cost, vinyl is preferred. The alkenyl group bonded to the silicon atom may be present at the terminal or middle terminal of the organopolysiloxane molecular chain, but is preferably present at least at the terminal.

作為與矽原子鍵合的烯基以外的有機基團,可列舉出不具有脂肪族不飽和鍵的未取代或取代的一價烴基。較佳為碳原子數為1~10的有機基團、更佳為碳原子數為1~6的有機基團。具體而言,可列舉出甲基、乙基、丙基、丁基、己基、十二烷基等烷基;苯基等芳基;2-苯基乙基、2-苯基丙基等芳烷基,進一步,可例舉出氯甲基、3,3,3-三氟丙基等取代烴基。其中,從合成的容易程度、成本方面考慮,較佳為甲基。Examples of the organic group other than the alkenyl group bonded to the silicon atom include unsubstituted or substituted monovalent hydrocarbon groups that do not have an aliphatic unsaturated bond. An organic group having 1 to 10 carbon atoms is preferred, and an organic group having 1 to 6 carbon atoms is more preferred. Specific examples include alkyl groups such as methyl, ethyl, propyl, butyl, hexyl, and dodecyl; aryl groups such as phenyl; and aromatic groups such as 2-phenylethyl and 2-phenylpropyl. Examples of the alkyl group include substituted hydrocarbon groups such as chloromethyl and 3,3,3-trifluoropropyl. Among them, from the viewpoint of ease of synthesis and cost, methyl is preferred.

成分(A)的有機聚矽氧烷在25℃條件下的運動黏度,如果低於10mm 2/s,則在形成組合物時容易出現滲油;所述運動黏度如果高於100000mm 2/s,則在形成組合物時的黏度變高,進而導致組合物難以處理。因此,要求在25℃條件下的所述運動黏度為10~100000mm 2/s、特佳為100~10000mm 2/s。需要說明的是,有機聚矽氧烷的運動黏度為在25℃條件下使用奧氏黏度計所測定的值。 If the kinematic viscosity of the organopolysiloxane of component (A) at 25°C is lower than 10 mm 2 /s, oil leakage will easily occur when forming the composition; if the kinematic viscosity is higher than 100000 mm 2 /s, The viscosity when forming the composition becomes high, making the composition difficult to handle. Therefore, the kinematic viscosity at 25°C is required to be 10~100000mm 2 /s, and the optimum is 100~10000mm 2 /s. It should be noted that the kinematic viscosity of organopolysiloxane is a value measured using an Ostend viscometer under conditions of 25°C.

在本發明的熱傳導性有機矽組合物中的(A)成分的含量較佳為1.0~30質量%、更較佳為2.0~25質量%、又更佳為3.0~20質量%。The content of component (A) in the thermally conductive organosilicon composition of the present invention is preferably 1.0 to 30 mass%, more preferably 2.0 to 25 mass%, and still more preferably 3.0 to 20 mass%.

成分(B) 用於本發明的熱傳導性矽酮組合物的成分(B)為銀粉。 對成分(B)的銀粉的振實密度沒有特別的限定,但由於如果小於3.0g/cm 3,則不能夠對成分(B)的組合物提高填充率,從而導致組合物的黏度上升,進而組合物的可操作性變劣,因此,其振實密度較佳為在3.0g/cm 3~10.0g/cm 3的範圍,更佳為4.0g/cm 3~10.0g/cm 3的範圍,又更佳為6.0g/cm 3~10.0g/cm 3的範圍。 需要說明的是,在本說明書中記載的振實密度,其為稱量出100g的銀粉,且在將該銀粉用漏斗柔和地灑落在100ml量筒中後,將該量筒載置於振實密度測定儀上,並以落差距離20mm、60次/分鐘的速度回落600次,從而從已壓縮的銀粉的容積而算出的值。 Component (B) Component (B) used in the thermally conductive silicone composition of the present invention is silver powder. The tap density of the silver powder of component (B) is not particularly limited, but if it is less than 3.0 g/cm 3 , the filling rate of the composition of component (B) cannot be increased, resulting in an increase in the viscosity of the composition, and further The operability of the composition deteriorates, so its tap density is preferably in the range of 3.0g/cm 3 ~10.0g/cm 3 , more preferably in the range of 4.0g/cm 3 ~10.0g/cm 3 . More preferably, it is in the range of 6.0g/cm 3 ~10.0g/cm 3 . It should be noted that the tap density described in this specification is based on weighing 100 g of silver powder, gently sprinkling the silver powder into a 100 ml graduated cylinder with a funnel, and then placing the graduated cylinder on the tap density measurement scale. The value is calculated from the volume of the compressed silver powder by placing it on the instrument and falling back 600 times at a drop distance of 20mm and a speed of 60 times/minute.

對成分(B)的銀粉的比表面積沒有特別的限定,但由於如果大於2.0m 2/g,則不能夠對成分(B)的組合物提高填充率,導致組合物的黏度上升,有時組合物的可操作性變劣,因此,成分(B)的銀粉的比表面積較佳為在0.08m 2/g~2.0m 2/g的範圍為宜、更佳為0.08m 2/g~1.5m 2/g的範圍,又更佳為0.08m 2/g~0.5m 2/g的範圍。 The specific surface area of the silver powder of component (B) is not particularly limited. However, if it is greater than 2.0 m 2 /g, the filling rate of the composition of component (B) cannot be increased, resulting in an increase in the viscosity of the composition. In some cases, the combination The workability of the material deteriorates. Therefore, the specific surface area of the silver powder of component (B) is preferably in the range of 0.08m 2 /g ~ 2.0m 2 /g, and more preferably 0.08m 2 / g ~ 1.5m 2 /g range, and more preferably, the range is 0.08m 2 /g~0.5m 2 /g.

在稱取2g銀粉且將其作為樣品,且在60±5℃條件下進行10分鐘的脫氣後,使用比表面積自動測定裝置(BET法)測定了總表面積。其後,稱量樣品量,用下述算式(1)進行計算,從而算出比表面積。 比表面積(m 2/g)=總表面積(m 2)/樣品的量(g)     (1) After weighing 2 g of silver powder as a sample and degassing it at 60±5° C. for 10 minutes, the total surface area was measured using an automatic specific surface area measuring device (BET method). Thereafter, the sample was weighed and calculated using the following equation (1) to calculate the specific surface area. Specific surface area (m 2 /g) = total surface area (m 2 )/amount of sample (g) (1)

對成分(B)的銀粉的粒徑雖無特別地限定,但平均粒徑較佳為在0.2~200μm的範圍,更佳為0.1~100μm的範圍、特佳為1.0~30μm的範圍。 平均粒徑,其為稱取0.5g銀粉且放入100ml燒杯中,再加入60ml的異丙醇,在用超聲波均化器使銀粉分散1分鐘後,可藉由雷射繞射式細微性分析儀所測定的體積基準的體積平均直徑[MV]。需要說明的是,以測定時間為30秒進行了測定。 Although the particle size of the silver powder of component (B) is not particularly limited, the average particle size is preferably in the range of 0.2 to 200 μm, more preferably in the range of 0.1 to 100 μm, and particularly preferably in the range of 1.0 to 30 μm. The average particle size is calculated by weighing 0.5g of silver powder and putting it into a 100ml beaker, then adding 60ml of isopropyl alcohol, and dispersing the silver powder with an ultrasonic homogenizer for 1 minute, and then analyzing the fineness by laser diffraction. The volume mean diameter [MV] of the volume basis measured by the instrument. In addition, the measurement was performed with the measurement time being 30 seconds.

成分(B)的銀粉的長徑比為1~2的範圍、較佳為1~1.5的範圍、特佳為1~1.2的範圍。 所謂長徑比是指粒子的長徑和短徑的比率(長徑/短徑)。作為其測定方法,例如,拍攝粒子的電子顯微鏡的照片,從該照片測定粒子的長徑和短徑,從而能夠算出長徑比。粒子的大小能夠用從上面拍攝的電子顯微鏡的照片進行測定,且將從該上面的電子顯微鏡的照片中的大的一方的直徑作為長徑進行測定。相對於該長徑,將短徑作為粒子的厚度。但粒子的厚度不能在從上面的電子顯微鏡的照片中進行測定。為了測定粒子的厚度,可在拍攝電子顯微鏡的照片時,將放置粒子的試樣台傾斜安裝,從上面拍攝電子顯微鏡的照片,用試樣台的傾斜角度進行補正,從而算出粒子的厚度。 具體說來,在用電子顯微鏡拍攝多枚已擴大數千倍的照片後,任意測定100個銀粒子的長徑和短徑,然後算出長徑和短徑的比(長徑/短徑),再求出平均值,將其作為長徑比。 The aspect ratio of the silver powder of component (B) is in the range of 1 to 2, preferably in the range of 1 to 1.5, and particularly preferably in the range of 1 to 1.2. The so-called aspect ratio refers to the ratio of the long diameter and the short diameter of the particle (long diameter/short diameter). As a method of measuring the particle, for example, an electron microscope photograph is taken of the particle, and the major axis and minor axis of the particle are measured from the photograph, so that the aspect ratio can be calculated. The size of the particles can be measured using an electron microscope photograph taken from above, and the larger diameter in the electron microscope photograph taken from the upper surface is measured as the major diameter. With respect to the major axis, the minor axis was defined as the thickness of the particle. But the thickness of the particles cannot be measured from the electron microscope photo above. In order to measure the thickness of particles, when taking electron microscope pictures, the sample stage on which the particles are placed can be tilted, and the electron microscope pictures are taken from above, and the thickness of the particles can be calculated by correcting the inclination angle of the sample stage. Specifically, after using an electron microscope to take several pictures that have been magnified several thousand times, the major and minor diameters of 100 silver particles are randomly measured, and then the ratio of the major to minor diameters (major diameter/short diameter) is calculated. Then find the average value and use it as the aspect ratio.

在本發明中使用的原料銀粉,較佳為用(濕式或乾式)還原法製造了的銀粉或用霧化法(水霧化法、氣體霧化法、等離子體旋轉電極法等)製造了的銀粉(霧化銀粉)。該霧化銀粉特佳為用水霧化法製造的霧化銀粉。 銀粉也可以使用在滿足上述數值範圍的方式進行粉碎之後的銀粉。在粉碎銀粉的情況下,對其裝置並無特別地限定,可列舉出例如,搗碎機、球磨機、振動磨機、錘磨機、軋輥機和研缽等的公知的裝置,較佳為搗碎機、球磨機、振動磨機和錘磨機。 The raw material silver powder used in the present invention is preferably silver powder produced by a reduction method (wet or dry) or produced by an atomization method (water atomization method, gas atomization method, plasma rotating electrode method, etc.) Silver powder (atomized silver powder). The atomized silver powder is particularly preferably atomized silver powder produced by water atomization. Silver powder that has been ground to satisfy the above numerical range may be used. When pulverizing silver powder, the apparatus is not particularly limited, and examples thereof include known apparatuses such as a pounder, a ball mill, a vibrating mill, a hammer mill, a roller mill, and a mortar. Preferably, a crusher is used. Crusher, ball mill, vibration mill and hammer mill.

相對於成分(A)的100質量份,成分(B)的配合量為500~3000質量份。相對於成分(A)的100質量份,成分(B)的配合量若少於500質量份、則所得到的組合物的熱傳導率變劣;相對於成分(A)的100質量份,成分(B)的配合量若多於3000質量份,則所得到的組合物的流動性變劣,從而組合物的可操作性變劣。相對於成分(A)的100質量,成分(B)的配合量較佳為600~2500質量份的範圍、更佳為700~1800質量份的範圍。The compounding amount of component (B) is 500 to 3000 parts by mass relative to 100 parts by mass of component (A). If the blending amount of component (B) is less than 500 parts by mass relative to 100 parts by mass of component (A), the thermal conductivity of the resulting composition will deteriorate; relative to 100 parts by mass of component (A), the component ( If the blending amount of B) exceeds 3000 parts by mass, the fluidity of the obtained composition will deteriorate, and the operability of the composition will deteriorate. The blending amount of component (B) is preferably in the range of 600 to 2500 parts by mass, more preferably in the range of 700 to 1800 parts by mass relative to 100 parts by mass of component (A).

成分(C) 在本發明的熱傳導性矽酮組合物中使用的成分(C)為脂肪酸。脂肪酸具有促進成分(B)銀粉的燒結,且提高組合物的熱傳導率的效果。 在本發明中可以使用任意的各種脂肪酸,但較佳為具有碳原子數為2~24、特別是碳原子數為6~18的未取代或取代的一價烴基的脂肪酸。作為成分(C),可列舉出例如,辛酸、壬酸、癸酸、十二烷酸、十四烷酸、十五烷酸、十六烷酸、油酸、硬脂酸、二十二烷酸、亞油酸等,其中較佳為辛酸、油酸、硬脂酸、二十二烷酸。 Ingredients(C) The component (C) used in the thermally conductive silicone composition of the present invention is fatty acid. The fatty acid has the effect of accelerating the sintering of the silver powder of component (B) and improving the thermal conductivity of the composition. Any of various fatty acids can be used in the present invention, but fatty acids having an unsubstituted or substituted monovalent hydrocarbon group having 2 to 24 carbon atoms, particularly 6 to 18 carbon atoms, are preferred. Examples of the component (C) include caprylic acid, nonanoic acid, capric acid, dodecanoic acid, myristanoic acid, pentadecanoic acid, hexadecanoic acid, oleic acid, stearic acid, and behenic acid. acid, linoleic acid, etc., among which caprylic acid, oleic acid, stearic acid, and behenic acid are preferred.

成分(C)的配合量,相對於成分(B)100質量份,為0.01~10.0質量份。相對於100質量份成分(B),成分(C)的配合量如果小於0.01質量份,則得不到促進燒結的效果,相對於成分(B)100質量份,成分(C)的配合量如果大於10.0質量份,則由於阻礙熱傳導路徑的形成,有時熱傳導率會變差。因此,成分(C)的配合量較佳為0.05~5.0質量份的範圍、更佳為0.1~3.0質量份的範圍。The blending amount of component (C) is 0.01 to 10.0 parts by mass relative to 100 parts by mass of component (B). If the blending amount of component (C) is less than 0.01 parts by mass relative to 100 parts by mass of component (B), the effect of promoting sintering will not be obtained. If the blending amount of component (C) is less than 100 parts by mass of component (B) If it is more than 10.0 parts by mass, the thermal conductivity may be deteriorated because the formation of a thermal conduction path is inhibited. Therefore, the blending amount of component (C) is preferably in the range of 0.05 to 5.0 parts by mass, and more preferably in the range of 0.1 to 3.0 parts by mass.

成分(D) 在本發明的熱傳導性矽酮組合物中使用的成分(D)為鉑系催化劑。 作為鉑系催化劑,可列舉出例如,氯鉑酸、氯鉑酸的醇溶液、鉑的鏈烯錯合物、鉑的烯基矽氧烷錯合物以及鉑的羰基錯合物等。 Ingredients(D) The component (D) used in the thermally conductive silicone composition of the present invention is a platinum-based catalyst. Examples of the platinum-based catalyst include chloroplatinic acid, an alcohol solution of chloroplatinic acid, an olefinic complex of platinum, an alkenylsiloxane complex of platinum, and a carbonyl complex of platinum.

在本發明的組合物中,鉑類催化劑的含量為對本發明的組合物的固化所需要的量,即為所謂的催化劑量。具體說來,相對於(A)成分,本成分中的鉑金屬較佳為以質量單位計為在0.1~2000ppm範圍內的量,特佳為在0.1~1500ppm範圍內的量。In the composition of the present invention, the content of the platinum-based catalyst is the amount required for curing the composition of the present invention, that is, the so-called catalyst amount. Specifically, the platinum metal in this component is preferably in an amount in the range of 0.1 to 2000 ppm in terms of mass units relative to the component (A), and particularly preferably in an amount in the range of 0.1 to 1500 ppm.

成分(E) 在本發明的熱傳導性矽酮組合物中使用的成分(E)的有機氫聚矽氧烷,其為在1分子中具有至少2個(通常為2~300個)、較佳為2~100個與矽原子鍵合的氫原子(即SiH基團)的有機氫聚矽氧烷,且為具有直鏈、支鏈、環狀或三維網狀結構的樹脂狀物中的任意一種。作為成分(E)的氫原子的鍵合位置,可列舉出例如,分子鏈末端和/或分子鏈側鏈。 Ingredients(E) The organohydrogenpolysiloxane of component (E) used in the thermally conductive silicone composition of the present invention has at least 2 (usually 2 to 300), preferably 2 to 100, per molecule. It is an organohydrogen polysiloxane with hydrogen atoms bonded to silicon atoms (i.e., SiH groups), and is any one of resinous materials with a linear, branched, cyclic or three-dimensional network structure. Examples of the bonding position of the hydrogen atom of component (E) include molecular chain terminals and/or molecular chain side chains.

作為成分(E),其為例如,以下述平均組成式表示的有機氫聚矽氧烷。 R 6 eH fSiO (4-e-f)/2(3) (在上述平均組成式中,R 6為除脂肪族不飽和烴基以外的未取代或取代的一價烴基。e為1.0~3.0、較佳為0.5~2.5,f為0.05~2.0、較佳為0.01~1.0,且e+f為滿足0.5~3.0的正數、較佳為0.8~2.5的正數。) As component (E), it is, for example, an organohydrogen polysiloxane represented by the following average composition formula. R 6 e H f SiO (4-ef)/2 (3) (In the above average composition formula, R 6 is an unsubstituted or substituted monovalent hydrocarbon group other than an aliphatic unsaturated hydrocarbon group. e is 1.0~3.0, Preferably, it is 0.5~2.5, f is 0.05~2.0, preferably 0.01~1.0, and e+f is a positive number satisfying 0.5~3.0, preferably 0.8~2.5.)

作為上述R 6,可列舉出甲基、乙基、丙基、丁基、戊基、己基、異丙基、異丁基、三級丁基、環己基等烷基;苯基、甲苯基、二甲苯基等芳基;苄基、苯乙基等芳烷基;3-氯丙基、3,3,3-三氟丙基等鹵代烷基等除脂肪族不飽和鍵外,較佳為碳原子數為1~10、更佳為1~8左右的未取代或鹵素取代的一價烴基等。其中,較佳為甲基、乙基、丙基、苯基、3,3,3-三氟丙基,更佳為甲基。 Examples of R 6 include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, tertiary butyl, and cyclohexyl; phenyl, tolyl, Aryl groups such as xylyl group; aralkyl groups such as benzyl and phenethyl groups; halogenated alkyl groups such as 3-chloropropyl and 3,3,3-trifluoropropyl, etc. In addition to aliphatic unsaturated bonds, carbon is preferred An unsubstituted or halogen-substituted monovalent hydrocarbon group having an atomic number of 1 to 10, preferably about 1 to 8, etc. Among them, methyl, ethyl, propyl, phenyl, and 3,3,3-trifluoropropyl are preferred, and methyl is more preferred.

在成分(E)的有機氫聚矽氧烷中,作為與氫原子以外的矽原子鍵合的有機基團,較佳為碳原子數為1~10的有機基團、更佳為碳原子數為1~8的有機基團。具體而言,可列舉出例如,甲基、乙基、丙基、丁基、戊基、己基、庚基等烷基;苯基、甲苯基、二甲苯基、萘基等芳基;苄基、苯乙基等芳烷基;氯甲基、3-氯丙基、3,3,3-三氟丙基等鹵代烷基等,其中較佳為甲基、苯基。In the organohydrogen polysiloxane of component (E), the organic group bonded to silicon atoms other than hydrogen atoms is preferably an organic group having a carbon number of 1 to 10, more preferably an organic group having a carbon number of It is an organic group of 1 to 8. Specific examples include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, and heptyl; aryl groups such as phenyl, tolyl, xylyl, and naphthyl; and benzyl groups. , phenethyl and other aralkyl groups; chloromethyl, 3-chloropropyl, 3,3,3-trifluoropropyl and other haloalkyl groups, among which methyl and phenyl are preferred.

對成分(E)在25℃條件下的運動黏度沒有特別的限定,較佳為1~10000mm 2/s、更佳為3~5000mm 2/s、特佳為5~3000mm 2/s,且較佳為在室溫(25℃)條件下為液態。 The kinematic viscosity of component (E) at 25°C is not particularly limited, but is preferably 1~10000mm 2 /s, more preferably 3~5000mm 2 /s, particularly preferably 5~3000mm 2 /s, and more preferably Preferably, it is liquid at room temperature (25°C).

成分(E)的配合量,如果成分(E)中的Si-H基團數相對於成分(A)中的烯基的數,即{成分(E)的Si-H基團的個數}/{成分(A)的烯基的個數}小於0.8,則組合物與基材的密合性變差,如果大於6,則有時組合物的散熱性降低,因此,以0.8~6的範圍為宜,較佳為1.5~3的範圍。The compounding amount of component (E), if the number of Si-H groups in component (E) is relative to the number of alkenyl groups in component (A), that is {the number of Si-H groups in component (E)} /{The number of alkenyl groups in component (A)} is less than 0.8, and the adhesion between the composition and the base material becomes poor. If it is greater than 6, the heat dissipation property of the composition may decrease. Therefore, the ratio is 0.8 to 6. The range is suitable, preferably the range of 1.5~3.

在本發明中,根據需要也可以使用以下的任意成分。In the present invention, any of the following components may be used as necessary.

成分(F) 在本發明的熱傳導性矽酮組合物中使用的成分(F),其為以下述平均組成式(1)表示的有機聚矽氧烷或以下述通式(2)表示的有機矽烷。 但是,與(A)成分重複的範圍除外。 Ingredients(F) The component (F) used in the thermally conductive silicone composition of the present invention is an organopolysiloxane represented by the following average composition formula (1) or an organosilane represented by the following general formula (2). However, the range that overlaps with component (A) is excluded.

有機聚矽氧烷 其為以R 1 aSiO (4-a)/2(1)表示的、在25℃條件下的運動黏度為10~100000mm 2/s的有機聚矽氧烷。 (在上述平均組成式中,R 1為氫原子和/或碳原子數為1~18的飽和的一價烴基,a為1.8≤a≤2.2。) The organopolysiloxane is an organopolysiloxane represented by R 1 a SiO (4-a)/2 (1) and has a kinematic viscosity of 10 to 100000 mm 2 /s at 25°C. (In the above average composition formula, R 1 is a hydrogen atom and/or a saturated monovalent hydrocarbon group with 1 to 18 carbon atoms, and a is 1.8≤a≤2.2.)

在上述平均組成式(1)中R 1表示為碳原子數為1~18的飽和的一價烴基、較佳為碳原子數為1~10的飽和的一價烴基、更佳為碳原子數為1~6的飽和的一價烴基。作為該一價烴基,可列舉出例如,甲基、乙基、丙基、己基、辛基、癸基、十二烷基、十四烷基、十六烷基、十八烷基等烷基;苯基、甲苯基等芳基;2-苯乙基、2-甲基-2-苯乙基等芳烷基;3,3,3-三氟丙基、2-(全氟丁基)乙基、2-(全氟辛基)乙基、對氯苯基等鹵代烴基,其中較佳為甲基。 In the above average composition formula (1), R 1 represents a saturated monovalent hydrocarbon group with a carbon number of 1 to 18, preferably a saturated monovalent hydrocarbon group with a carbon number of 1 to 10, more preferably a carbon number of It is a saturated monovalent hydrocarbon group of 1 to 6. Examples of the monovalent hydrocarbon group include alkyl groups such as methyl, ethyl, propyl, hexyl, octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl. ; Aryl groups such as phenyl and tolyl; aralkyl groups such as 2-phenylethyl and 2-methyl-2-phenylethyl; 3,3,3-trifluoropropyl, 2-(perfluorobutyl) Halogenated hydrocarbon groups such as ethyl, 2-(perfluorooctyl)ethyl, p-chlorophenyl, etc., among which methyl is preferred.

在將本發明的矽酮組合物用作潤滑脂的情況下,從作為矽酮潤滑脂組合物所要求的稠度的觀點考慮,a可為1.8~2.2的範圍、特佳為1.9~2.1的範圍。When the silicone composition of the present invention is used as a grease, a may be in the range of 1.8 to 2.2, particularly preferably in the range of 1.9 to 2.1, from the viewpoint of the required consistency of the silicone grease composition. .

另外,(F)成分的有機聚矽氧烷在25℃條件下的運動黏度如果低於10mm 2/s,則在形成組合物時容易產生滲油,運動黏度如果大於100000mm 2/s,則由於形成組合物時的黏度變高,有時處理會變得不充分,因此,較佳為在25℃條件下為10~100000mm 2/s、特佳為100~50000mm 2/s。需要說明的是,有機聚矽氧烷的運動黏度為用奧斯特瓦爾德黏度計測定的25℃的值。 In addition, if the kinematic viscosity of the organopolysiloxane of component (F) at 25°C is less than 10 mm 2 /s, oil leakage will easily occur when forming the composition. If the kinematic viscosity is greater than 100000 mm 2 /s, oil leakage will occur due to The viscosity when forming the composition becomes high and processing may become insufficient. Therefore, the viscosity is preferably 10 to 100000 mm 2 /s at 25° C., and particularly preferably 100 to 50000 mm 2 /s. In addition, the kinematic viscosity of organopolysiloxane is the value measured with an Ostwald viscometer at 25°C.

有機矽烷 R 2 bSi(OR 3) 4-b(2) 〔在上述通式(2)中,R 2為選自可具有取代基的飽和或不飽和的一價烴基、環氧基、丙烯基以及甲基丙烯基中的1種或2種以上的基團,R 3表示為一價烴基,b為1≤b≤3。〕 Organosilane R 2 b Si(OR 3 ) 4-b (2) [In the above general formula (2), R 2 is a saturated or unsaturated monovalent hydrocarbon group that may have a substituent, an epoxy group, and a propylene group. group and one or more of methacryl groups, R 3 represents a monovalent hydrocarbon group, and b is 1≤b≤3. 〕

作為上述通式(2)的R 2,其為可以具有取代基的飽和或不飽和的一價烴基,較佳為碳原子數為1~18的一價烴基、更佳為碳原子數為1~14的一價烴基。作為該一價烴基,可列舉出例如,甲基、乙基、丙基、己基、辛基、壬基、癸基、十二烷基以及十四烷基等烷基;環烯基烷基、丙烯酸基、環氧基、環戊基和環己基等環烷基;乙烯基和丙烯基等烯基;苯基和甲苯基等芳基;2-苯乙基和2-甲基-2-苯乙基等芳烷基;3,3,3-三氟丙基、2-(全氟丁基)乙基、2-(全氟辛基)乙基、對氯苯基等鹵化烴基等。其中,較佳為癸基。作為一價烴基的取代基,可列舉出丙烯醯氧基、甲基丙烯醯氧基等。 另外,b為1~3。 作為R 3,為一價烴基,較佳為碳原子數為1~10的一價烴基、更佳為碳原子數為1~6的一價烴基。作為一價烴基,可列舉出例如,甲基、乙基、丙基、丁基、戊基和己基等碳原子數為1~6的1種或2種以上的烷基、特佳為甲基和乙基。 R 2 in the above general formula (2) is a saturated or unsaturated monovalent hydrocarbon group which may have a substituent, preferably a monovalent hydrocarbon group having 1 to 18 carbon atoms, more preferably 1 carbon atom. ~14 monovalent hydrocarbon groups. Examples of the monovalent hydrocarbon group include alkyl groups such as methyl, ethyl, propyl, hexyl, octyl, nonyl, decyl, dodecyl, and tetradecyl; cycloalkenyl alkyl, Cycloalkyl groups such as acrylic, epoxy, cyclopentyl and cyclohexyl; alkenyl groups such as vinyl and propenyl; aryl groups such as phenyl and tolyl; 2-phenylethyl and 2-methyl-2-phenyl Aralkyl groups such as ethyl; halogenated hydrocarbon groups such as 3,3,3-trifluoropropyl, 2-(perfluorobutyl)ethyl, 2-(perfluorooctyl)ethyl, p-chlorophenyl, etc. Among them, decyl is preferred. Examples of the substituent of the monovalent hydrocarbon group include an acryloxy group, a methacryloyloxy group, and the like. In addition, b is 1~3. R 3 is a monovalent hydrocarbon group, preferably a monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably a monovalent hydrocarbon group having 1 to 6 carbon atoms. Examples of the monovalent hydrocarbon group include one or more alkyl groups having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, butyl, pentyl, and hexyl. Particularly preferred is methyl. and ethyl.

作為以通式(2)表示的有機矽烷的具體例子,可列舉如下。 C 10H 21Si(OCH 3) 3C 12H 25Si(OCH 3) 3C 12H 25Si(OC 2H 5) 3C 10H 21Si(CH 3)(OCH 3) 2C 10H 21Si(C 6H 6)(OCH 3) 2C 10H 21Si(CH 3)(OC 2H 5) 2C 10H 21Si(CH=CH 2)(OCH 3) 2C 10H 21Si(CH 2CH 2CF 3)(OCH 3) 2CH 2=C(CH 3)COOC 8H 16Si(OCH 3) 3 Specific examples of the organosilane represented by general formula (2) include the following. C 10 H 21 Si(OCH 3 ) 3 C 12 H 25 Si(OCH 3 ) 3 C 12 H 25 Si(OC 2 H 5 ) 3 C 10 H 21 Si(CH 3 )(OCH 3 ) 2 C 10 H 21 Si(C 6 H 6 )(OCH 3 ) 2 C 10 H 21 Si(CH 3 )(OC 2 H 5 ) 2 C 10 H 21 Si(CH=CH 2 )(OCH 3 ) 2 C 10 H 21 Si( CH 2 CH 2 CF 3 )(OCH 3 ) 2 CH 2 =C(CH 3 )COOC 8 H 16 Si(OCH 3 ) 3

在添加這些有機聚矽氧烷和有機矽烷的情況下,相對於成分(A)100質量份,所述有機聚矽氧烷和有機矽烷的配合量較佳為在0.1~20質量份的範圍內進行添加、更佳為在5~10質量份的範圍內進行添加。When these organopolysiloxane and organosilane are added, the compounding amount of the organopolysiloxane and organosilane is preferably in the range of 0.1 to 20 parts by mass relative to 100 parts by mass of component (A) Add it, preferably within the range of 5 to 10 parts by mass.

成分(G) 為了調節本發明的組合物的固化速度,使其提高組合物的處理操作性,可將2-甲基-3-丁炔-2-醇、2-苯基-3-丁炔-2-醇、1-乙炔基-1-環己醇等乙炔類化合物;3-甲基-3-戊烯-1-炔、3,5-二甲基-3-己烯-1-炔等烯-炔化合物;以及其它的肼類化合物;膦類化合物;硫醇類化合物等固化反應抑制劑添加到本發明的組合物中。雖對該固化反應抑制劑的含量並無限定,但相對於成分(A)100質量份,較佳為在0.0001~1.0質量份的範圍內。 Ingredients(G) In order to adjust the curing speed of the composition of the present invention and improve the handling operability of the composition, 2-methyl-3-butyn-2-ol and 2-phenyl-3-butyn-2-ol can be , 1-ethynyl-1-cyclohexanol and other acetylene compounds; 3-methyl-3-pentene-1-yne, 3,5-dimethyl-3-hexene-1-yne and other en-ynes Compounds; and other curing reaction inhibitors such as hydrazine compounds, phosphine compounds, and thiol compounds are added to the composition of the present invention. Although the content of the curing reaction inhibitor is not limited, it is preferably in the range of 0.0001 to 1.0 parts by mass relative to 100 parts by mass of component (A).

另外,在不損害本發明的效果的範圍內,除成分(B)之外,本發明的熱傳導性矽氧烷組合物還可含有無機化合物粉和/或有機化合物材料。 無機化合物粉較佳為具有高熱傳導率的無機化合物粉,可列舉出例如,選自鋁粉、氧化鋅粉、氧化鈦粉、氧化鎂粉、氧化鋁粉,氫氧化鋁粉、氮化硼粉、氮化鋁粉、金剛石粉、金粉、銅粉、碳粉、鎳粉、銦粉、鎵粉、金屬矽粉、二氧化矽粉中的1種或者2種以上。 有機化合物材料較佳也為具有高熱傳導率的有機化合物材料,可列舉出例如,選自碳纖維粉、石墨烯、石墨、碳奈米管以及碳素材料中的1種或者2種以上。 根據需要,這些無機化合物粉和有機化合物材料的表面也可以用有機矽烷、有機氮烷、有機聚矽氧烷以及有機氟化合物等實施疏水化處理。由於無機化合物粉和有機化合物材料的平均粒徑小於0.5μm或大於100μm,有時對所得到的潤滑脂組合物均不能提高填充率,因此,無機化合物粉和有機化合物材料的平均粒徑較佳為在0.5~100μm的範圍、特佳為在1~50μm的範圍。另外,由於碳纖維的纖維長度小於10μm或大於500μm,有時對所得的潤滑脂組合物均不能提高填充率,因此,碳纖維的纖維長度較佳為在10~500μm的範圍、特佳為在30~300μm的範圍。 相對於成分(A)100質量份,無機化合物粉末和有機化合物材料的配合量如果大於3000質量份,則所得到的組合物的流動性變差,有時潤滑脂組合物的可操作性變差,因此,無機化合物粉末和有機化合物材料的配合量較佳為0.1~3000質量份、特佳為0.1~2000質量份。 In addition, the thermally conductive siloxane composition of the present invention may contain inorganic compound powder and/or organic compound material in addition to component (B) within a range that does not impair the effects of the present invention. The inorganic compound powder is preferably an inorganic compound powder having high thermal conductivity. Examples thereof include aluminum powder, zinc oxide powder, titanium oxide powder, magnesium oxide powder, aluminum oxide powder, aluminum hydroxide powder, and boron nitride powder. , one or more of aluminum nitride powder, diamond powder, gold powder, copper powder, carbon powder, nickel powder, indium powder, gallium powder, metallic silicon powder, and silicon dioxide powder. The organic compound material is preferably an organic compound material having high thermal conductivity, and examples thereof include one or more selected from the group consisting of carbon fiber powder, graphene, graphite, carbon nanotubes, and carbon materials. If necessary, the surfaces of these inorganic compound powders and organic compound materials can also be hydrophobicized using organosilane, organazane, organopolysiloxane, organofluorine compound, or the like. Since the average particle diameter of the inorganic compound powder and the organic compound material is less than 0.5 μm or greater than 100 μm, sometimes the filling rate of the obtained grease composition cannot be increased. Therefore, the average particle diameter of the inorganic compound powder and the organic compound material is better. The range is 0.5~100μm, particularly preferably the range is 1~50μm. In addition, since the fiber length of the carbon fiber is less than 10 μm or greater than 500 μm, sometimes the filling rate of the obtained grease composition cannot be increased. Therefore, the fiber length of the carbon fiber is preferably in the range of 10 to 500 μm, and particularly preferably 30 to 30 μm. 300μm range. If the blending amount of the inorganic compound powder and the organic compound material exceeds 3000 parts by mass relative to 100 parts by mass of component (A), the fluidity of the resulting composition will deteriorate, and the operability of the grease composition may deteriorate. , therefore, the blending amount of the inorganic compound powder and the organic compound material is preferably 0.1 to 3000 parts by mass, and particularly preferably 0.1 to 2000 parts by mass.

製造方法 本發明的熱傳導性矽酮組合物的製造方法,只要是遵循以往公知的矽酮潤滑脂組合物的製備方法即可,並無特殊的限制。例如,可以藉由將上述成分(A)~成分(E)、以及根據需要其它他的成分用三輥混合機、雙輥混合機、行星式攪拌機(均為日本井上製作所股份有限公司製造混合機,註冊商標)、高速攪拌機(日本瑞穗工業股份有限公司製造混合機,註冊商標)、三軸行星軌跡運轉分散、混合、混練機(日本特殊機化工業股份有限公司製造混合機,註冊商標)等的混合機進行30分鐘~4小時的混合而製造。另外,根據需要,也可在30~100℃範圍的溫度條件下邊加熱邊進行混合。 Manufacturing method The manufacturing method of the thermally conductive silicone composition of the present invention is not particularly limited as long as it follows a conventionally known manufacturing method of silicone grease compositions. For example, the above-mentioned components (A) to (E) and other components as needed can be mixed with a three-roller mixer, a two-roller mixer, or a planetary mixer (all mixers manufactured by Inoue Seisakusho Co., Ltd., Japan). , registered trademark), high-speed mixer (mixer manufactured by Nippon Mizuho Industrial Co., Ltd., registered trademark), three-axis planetary orbit dispersing, mixing and kneading machine (mixer manufactured by Nippon Special Machinery Chemical Industry Co., Ltd., registered trademark), etc. It is manufactured by mixing with a mixer for 30 minutes to 4 hours. In addition, if necessary, mixing can also be performed while heating under temperature conditions ranging from 30 to 100°C.

本發明的熱傳導性矽酮組合物在25℃條件下所測得的絕對黏度為10~1000Pa·s、較佳為50~700Pa·s、更佳為80~600Pa·s。藉由絕對黏度為在上述範圍內,可以提供良好的潤滑脂,並且該組合物的可操作性也優異。藉由以上述配合量調製各成分,可以得到該絕對黏度。所述絕對黏度為使用螺旋式黏度計的股份有限公司瑪律科姆公司製造的型號PC-1TL(10rpm)所測定的結果。The absolute viscosity of the thermally conductive silicone composition of the present invention measured at 25°C is 10 to 1000 Pa·s, preferably 50 to 700 Pa·s, and more preferably 80 to 600 Pa·s. When the absolute viscosity is within the above range, a good grease can be provided, and the composition also has excellent operability. This absolute viscosity can be obtained by preparing each component in the above blending amount. The absolute viscosity is measured using a spiral viscometer model PC-1TL (10 rpm) manufactured by Malcom Co., Ltd.

半導體裝置 本發明的半導體裝置,其為將本發明的熱傳導性矽酮組合物介於發熱性電子部件和散熱體之間。本發明的熱傳導性矽酮組合物,其較佳為以10~200μm的厚度介於所述發熱性電子部件和所述散熱體之間。 將代表性結構表示在圖1,但本發明並不限定於此。圖1為表示本發明的半導體裝置的1例子的縱剖面概略圖,例如,本發明的半導體裝置為將熱傳導性矽酮組合物層3介於被搭載在基板1上的發熱性電子部件(CPU)2和散熱體(蓋)4之間的半導體裝置,且該熱傳導性矽酮組合物層3為本發明的熱傳導性矽酮組合物的固化物。 Semiconductor device In the semiconductor device of the present invention, the thermally conductive silicone composition of the present invention is interposed between a heat-generating electronic component and a heat sink. The thermally conductive silicone composition of the present invention is preferably interposed between the heat-generating electronic component and the heat sink with a thickness of 10 to 200 μm. A representative structure is shown in FIG. 1 , but the present invention is not limited thereto. 1 is a schematic vertical cross-sectional view showing an example of a semiconductor device of the present invention. For example, the semiconductor device of the present invention is a heat-generating electronic component (CPU) mounted on a substrate 1 with a thermally conductive silicone composition layer 3 interposed therebetween. ) 2 and the heat sink (cover) 4, and the thermally conductive silicone composition layer 3 is a cured product of the thermally conductive silicone composition of the present invention.

在製造本發明的半導體裝置的過程中,其較佳為在施加0.01MPa以上的壓力的狀態下、且在發熱性電子部件和散熱體之間,將本發明的熱傳導性矽酮組合物加熱至100℃以上的方法。此時,所施加的壓力,較佳為0.01MPa以上、特佳為0.05MPa~100MPa、更佳為0.1MPa~100MPa。進行加熱的溫度為需要在100℃以上、較佳為100℃~300℃、更佳為120℃~250℃、又更佳為140℃~200℃。 實施例 In the process of manufacturing the semiconductor device of the present invention, it is preferable to heat the thermally conductive silicone composition of the present invention between the heat-generating electronic component and the heat sink while applying a pressure of 0.01 MPa or more. Method above 100℃. At this time, the applied pressure is preferably 0.01MPa or more, particularly preferably 0.05MPa to 100MPa, and more preferably 0.1MPa to 100MPa. The heating temperature needs to be above 100°C, preferably 100°C to 300°C, more preferably 120°C to 250°C, and still more preferably 140°C to 200°C. Example

以下,以進一步明確本發明的效果為目的,藉由實施例和比較例對本發明更為詳細地進行說明,但本發明並不被這些實施例所限定。Hereinafter, for the purpose of further clarifying the effects of the present invention, the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to these examples.

成分(A) A-1:兩末端用二甲基乙烯基甲矽烷基所封端,且在25℃條件下的運動黏度為600mm 2/s的二甲基聚矽氧烷(乙烯基含量:0.014mol/100g) Component (A) A-1: Dimethylpolysiloxane with both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity of 600mm 2 /s at 25°C (vinyl content: 0.014mol/100g)

成分(B) B-1:平均粒徑為3µm、振實密度為6.5g/cm 3、比表面積為0.3m 2/g、長徑比為1的以霧化法製造的球形銀粉(霧化銀粉) B-2:平均粒徑為0.8µm、振實密度為4.3g/cm 3、比表面積為1.2m 2/g、長徑比為1的以霧化法製造的球形銀粉(霧化銀粉) B-3:平均粒徑為70µm、振實密度為6.0g/cm 3、比表面積為0.2m 2/g、長徑比為1的以霧化法製造的球形銀粉(霧化銀粉) B-4:平均粒徑為1.5µm、振實密度為6.2g/cm 3、比表面積為0.3m 2/g、長徑比為1的以濕式還原法製造的銀粉 B-5(比較例):平均粒徑為3µm、振實密度為6.3g/cm 3、比表面積為0.3m 2/g、長徑比為1的以濕式還原法製造的銀粉 B-6(比較例):平均粒徑為10µm的鋁粉 B-7(比較例):平均粒徑為10µm的氧化鋁粉 Component (B) B-1: Spherical silver powder produced by the atomization method with an average particle diameter of 3µm, a tap density of 6.5g/ cm3 , a specific surface area of 0.3m2 /g, and an aspect ratio of 1 (atomized Silver powder) B-2: Spherical silver powder produced by the atomization method (atomized silver powder) with an average particle diameter of 0.8µm, a tap density of 4.3g/cm 3 , a specific surface area of 1.2m 2 /g, and an aspect ratio of 1. ) B-3: Spherical silver powder produced by the atomization method (atomized silver powder) with an average particle diameter of 70µm, a tap density of 6.0g/cm 3 , a specific surface area of 0.2m 2 /g, and an aspect ratio of 1. B -4: Silver powder B-5 produced by the wet reduction method with an average particle diameter of 1.5 µm, a tap density of 6.2 g/cm 3 , a specific surface area of 0.3 m 2 /g, and an aspect ratio of 1 (comparative example) : Silver powder B-6 (comparative example) produced by the wet reduction method with an average particle diameter of 3 µm, a tap density of 6.3 g/cm 3 , a specific surface area of 0.3 m 2 /g, and an aspect ratio of 1: Average particle size Aluminum powder with a diameter of 10µm B-7 (comparative example): Alumina powder with an average particle diameter of 10µm

成分(C) C-1:油酸 C-2:辛酸 C-3:二十二烷酸 Ingredients(C) C-1: Oleic acid C-2: Caprylic acid C-3: Behenic acid

成分(D) D-1(鉑催化劑):鉑-二乙烯基四甲基二矽氧烷錯合物的A-1溶液,作為鉑原子含有1wt% Ingredients(D) D-1 (platinum catalyst): A-1 solution of platinum-divinyltetramethyldisiloxane complex, containing 1 wt% as platinum atoms

成分(E) E-1:以下述通式表示的有機氫聚矽氧烷(Si-H基團含量:0.0055mol/g) [化學式1] Component (E) E-1: Organohydrogen polysiloxane represented by the following general formula (Si-H group content: 0.0055 mol/g) [Chemical Formula 1]

成分(F) F-1:以下述通式表示的有機矽烷 [化學式2] Component (F) F-1: Organosilane represented by the following general formula [Chemical Formula 2]

成分(G) G-1:1-乙炔基-1-環己醇 Ingredients(G) G-1: 1-ethynyl-1-cyclohexanol

實施例1~12和比較例1~7 以下述表1和表2所示的組成、按以下的方法進行混合,從而得到了實施例1~12和比較例1~7的組合物。 即,將成分(A)、成分(B)、成分(C)和成分(F)加入在容積為5公升的行星式攪拌機(日本井上製作所股份有限公司製造)內,在25℃條件下混合了1.5小時。然後再添加成分(D)和成分(G),且在25℃條件下混合了15分鐘。最後添加成分(E),並將其混合至均勻。 Examples 1 to 12 and Comparative Examples 1 to 7 The compositions shown in Table 1 and Table 2 below were mixed in the following method to obtain the compositions of Examples 1 to 12 and Comparative Examples 1 to 7. That is, the component (A), the component (B), the component (C) and the component (F) were added to a planetary mixer (manufactured by Japan Inoue Manufacturing Co., Ltd.) with a capacity of 5 liters, and mixed at 25°C. 1.5 hours. Then, component (D) and component (G) were added and mixed at 25°C for 15 minutes. Finally add ingredient (E) and mix until smooth.

以下述的方法進行了有關涉及本發明的效果的試驗。 〔黏度〕 在25℃條件下,螺旋式黏度計使用股份有限公司瑪律科姆公司製造的型號PC-1TL(10rpm)測定了潤滑脂組合物的絕對黏度。 〔熱傳導率〕 將各組合物分別澆鑄在6公分厚的模具中,覆蓋上廚房用保鮮膜,並在25℃條件下,藉由日本京都電子工業股份有限公司公司製造的TPS-2500S,測定了各組合物的加熱固化前的熱傳導率。將各組合物分別澆鑄在6mm厚的模具內,在已施加0.35MPa的壓力的狀態下且在150℃的條件下加熱60分鐘,在將其冷卻至室溫後,藉由日本京都電子工業股份有限公司公司製造的TPS-2500S,在25℃條件下測定了各組合物的加熱固化後的熱傳導率。 Tests regarding the effects of the present invention were conducted by the following method. [viscosity] The absolute viscosity of the grease composition was measured at 25°C using a spiral viscometer model PC-1TL (10 rpm) manufactured by Malcom Co., Ltd. [Thermal conductivity] Each composition was cast into a 6 cm thick mold, covered with kitchen plastic wrap, and measured at 25°C using TPS-2500S manufactured by Kyoto Electronics Industry Co., Ltd., Japan. Thermal conductivity before heat curing. Each composition was cast into a 6 mm thick mold, heated at 150°C for 60 minutes with a pressure of 0.35 MPa applied, and cooled to room temperature. TPS-2500S manufactured by Co., Ltd. measured the thermal conductivity of each composition after heat curing at 25°C.

表1   單位:質量份       實施例    1 2 3 4 5 6 7 8 9 10 11 12 A-1 100 100 100 100 100 100 100 100 100 100 100 100 B-1 1700 2800 2800 550 1700 1700                   B-2                   1700                B-3                      1700             B-4                         1700    1700    B-5                            1700    1700 B-6                                     B-7                                     C-1 1.7 1.7 280 0.06       1.7 1.7 1.7 1.7 1.7 1.7 C-2             1.7                      C-3                1.7                   D-1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 E-1 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 F-1                               10 10 G-1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 H/Vi 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 成分(C)/成分(B) (%) 0.1 0.06 10 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 黏度(Pa・s) 300 700 500 100 320 350 600 400 600 550 200 190 加熱固化前的 熱傳導率 (W/m・K) 1 2 1 1 2 2 1 2 2 2 2 2 加熱固化後的 熱傳導率 (W/m・K) 10 15 12 7 12 11 8 12 14 16 12 14 Table 1 Unit: parts by mass Example 1 2 3 4 5 6 7 8 9 10 11 12 A-1 100 100 100 100 100 100 100 100 100 100 100 100 B-1 1700 2800 2800 550 1700 1700 B-2 1700 B-3 1700 B-4 1700 1700 B-5 1700 1700 B-6 B-7 C-1 1.7 1.7 280 0.06 1.7 1.7 1.7 1.7 1.7 1.7 C-2 1.7 C-3 1.7 D-1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 E-1 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 F-1 10 10 G-1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 H/Vi 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 Ingredient(C)/Ingredient(B) (%) 0.1 0.06 10 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Viscosity (Pa・s) 300 700 500 100 320 350 600 400 600 550 200 190 Thermal conductivity before heating and curing (W/m・K) 1 2 1 1 2 2 1 2 2 2 2 2 Thermal conductivity after heating and curing (W/m・K) 10 15 12 7 12 11 8 12 14 16 12 14

表2    比較例    1 2 3 4 5 6 7 A-1 100 100 100 100 100 100 100 B-1 450 3300       1700 1700 1700 B-2                      B-3                      B-4                      B-5                      B-6       1200             B-7          1200          C-1 0.4 3.3 1.2 1.2 0.1 250    C-2                      C-3                      D-1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 E-1 2.44 2.44 2.44 2.44 2.44 2.44 2.44 F-1                      G-1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 H/Vi 0.96 0.96 0.96 0.96 0.96 0.96 0.96 成分(C)/成分(B) (%) 0.09 0.1 0.1 0.1 0.006 14.7 0 黏度(Pa・s) 80 未能形成為 潤滑脂狀    300 350 320 150 320 加熱固化前的 熱傳導率 (W/m・K) 0.5 4 3 1 0.5 1 加熱固化後的 熱傳導率 (W/m・K) 2 4 3 2 0.5 2 比較例1:銀粉的配合量少,導致熱傳導率低。 比較例2:銀粉的配合量多,導致未能形成為潤滑脂狀。 比較例3、4:由於並非為銀粉而導致熱傳導率低。 比較例5:脂肪酸的配合量少,導致熱傳導率低。 比較例6:脂肪酸的配合量多,導致熱傳導率低。 比較例7:脂肪酸的配合量為零,導致熱傳導率低。    Table 2 Comparative example 1 2 3 4 5 6 7 A-1 100 100 100 100 100 100 100 B-1 450 3300 1700 1700 1700 B-2 B-3 B-4 B-5 B-6 1200 B-7 1200 C-1 0.4 3.3 1.2 1.2 0.1 250 C-2 C-3 D-1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 E-1 2.44 2.44 2.44 2.44 2.44 2.44 2.44 F-1 G-1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 H/Vi 0.96 0.96 0.96 0.96 0.96 0.96 0.96 Ingredient(C)/Ingredient(B) (%) 0.09 0.1 0.1 0.1 0.006 14.7 0 Viscosity (Pa・s) 80 Failed to form into grease 300 350 320 150 320 Thermal conductivity before heating and curing (W/m・K) 0.5 4 3 1 0.5 1 Thermal conductivity after heating and curing (W/m・K) 2 4 3 2 0.5 2 Comparative Example 1: The blending amount of silver powder is small, resulting in low thermal conductivity. Comparative Example 2: The blending amount of the silver powder was large and the grease was not formed into grease. Comparative Examples 3 and 4: Since they are not silver powder, the thermal conductivity is low. Comparative Example 5: The blending amount of fatty acid is small, resulting in low thermal conductivity. Comparative Example 6: The compounding amount of fatty acid is large, resulting in low thermal conductivity. Comparative Example 7: The compounding amount of fatty acid is zero, resulting in low thermal conductivity.

1:基板 2:發熱性電子部件(CPU) 3:熱傳導性矽酮組合物層 4:散熱體(蓋) 1:Substrate 2: Heating electronic components (CPU) 3: Thermal conductive silicone composition layer 4: Heat sink (cover)

圖1為表示本發明的半導體裝置的1例子的縱剖面概略圖。FIG. 1 is a schematic vertical cross-sectional view showing an example of the semiconductor device of the present invention.

Claims (6)

一種熱傳導性矽酮組合物,其包含下述成分(A)、成分(B)、成分(C)、成分(D)以及成分(E),其中 (A)有機聚矽氧烷,其在1分子中含有至少2個與矽原子鍵合了的烯基,且在25℃條件下的運動黏度為10~100000mm 2/s (B)銀粉:相對於成分(A)100質量份,其為500~3000質量份 (C)脂肪酸:相對於成分(B)100質量份,其為0.01~10.0質量份 (D)鉑系催化劑:催化劑量 (E):有機氫聚矽氧烷:其在1分子中含有至少2個與矽原子鍵合了的氫原子,{成分(E)的Si-H基團的個數/成分(A)的烯基的個數}為0.8~6.0的配合量。 A thermally conductive silicone composition comprising the following component (A), component (B), component (C), component (D) and component (E), wherein (A) organopolysiloxane, which is in 1 The molecule contains at least 2 alkenyl groups bonded to silicon atoms, and the kinematic viscosity at 25°C is 10~100000mm 2 /s (B) Silver powder: relative to 100 parts by mass of component (A), it is 500 ~3000 parts by mass (C) Fatty acid: 0.01~10.0 parts by mass relative to 100 parts by mass of component (B) (D) Platinum-based catalyst: Catalyst amount (E): Organohydrogen polysiloxane: It is in 1 molecule It contains at least 2 hydrogen atoms bonded to silicon atoms, and {number of Si-H groups of component (E)/number of alkenyl groups of component (A)} is a blending amount of 0.8 to 6.0. 如請求項1所述的熱傳導性矽酮組合物,其中, 成分(B)的銀粉為長徑比為1~2的霧化銀粉。 The thermally conductive silicone composition according to claim 1, wherein, The silver powder of component (B) is atomized silver powder with an aspect ratio of 1 to 2. 如請求項1所述的熱傳導性矽酮組合物,其中, 成分(C)為碳原子數為2~24的脂肪酸。 The thermally conductive silicone composition according to claim 1, wherein, Component (C) is a fatty acid with 2 to 24 carbon atoms. 如請求項1~3中任1項所述的熱傳導性矽酮組合物,其中, 進一步,包含作為成分(F)的以下述平均組成式(1)表示的、在25℃條件下的運動黏度為10~100000mm 2/s的有機聚矽氧烷或、以下述通式(2)表示的有機矽烷, R 1 aSiO (4-a) /2(1) 在平均組成式(1)中,R 1為氫原子和/或碳原子數為1~18的飽和的一價烴基,a為1.8≤a≤2.2, R 2 bSi(OR 3) 4-b(2) 在通式(2)中,R 2為選自可具有取代基的飽和或不飽和的一價烴基、環氧基和(甲基)丙烯酸基團中的1種或2種以上的基團,R 3表示為一價烴基,b為1≤b≤3,且相對於所述成分(A)100質量份,所述成分(F)為0.1~20質量份。 The thermally conductive silicone composition according to any one of claims 1 to 3, further comprising as component (F) a kinematic viscosity at 25°C represented by the following average composition formula (1) is an organopolysiloxane or an organosilane represented by the following general formula (2) of 10 to 100000 mm 2 /s, R 1 a SiO (4-a) /2 (1) In the average composition formula (1), R 1 is a hydrogen atom and/or a saturated monovalent hydrocarbon group with 1 to 18 carbon atoms, a is 1.8≤a≤2.2, R 2 b Si(OR 3 ) 4-b (2) In the general formula (2) , R 2 is one or more groups selected from the group consisting of saturated or unsaturated monovalent hydrocarbon groups that may have substituents, epoxy groups and (meth)acrylic acid groups, and R 3 represents a monovalent group. Hydrocarbon group, b is 1≤b≤3, and the component (F) is 0.1 to 20 parts by mass relative to 100 parts by mass of the component (A). 一種半導體裝置,其特徵在於, 其為具備發熱性電子部件和散熱體的半導體裝置,且請求項1所述的熱傳導性矽酮組合物介於所述發熱性電子部件和所述散熱體之間。 A semiconductor device characterized by: This is a semiconductor device including a heat-generating electronic component and a heat sink, and the thermally conductive silicone composition according to claim 1 is interposed between the heat-generating electronic component and the heat sink. 一種請求項5所述的半導體裝置的製造方法,其特徵在於, 其具有如下步驟: 在發熱性電子部件和散熱體之間,且在施加著0.1MPa以上的壓力的狀態下,將請求項1所述的熱傳導性矽酮組合物加熱至100℃以上。 A method for manufacturing a semiconductor device according to claim 5, characterized in that: It has the following steps: The thermally conductive silicone composition according to claim 1 is heated to 100° C. or higher while a pressure of 0.1 MPa or higher is applied between the heat-generating electronic component and the heat sink.
TW112123624A 2022-06-28 2023-06-26 Thermally conductive silicone composition, semiconductor device and method for producing same TW202400725A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022103619 2022-06-28
JP2022-103619 2022-06-28

Publications (1)

Publication Number Publication Date
TW202400725A true TW202400725A (en) 2024-01-01

Family

ID=89382867

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112123624A TW202400725A (en) 2022-06-28 2023-06-26 Thermally conductive silicone composition, semiconductor device and method for producing same

Country Status (2)

Country Link
TW (1) TW202400725A (en)
WO (1) WO2024004625A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4393817B2 (en) * 2002-08-07 2010-01-06 東レ・ダウコーニング株式会社 Thermally conductive filler, thermally conductive silicone elastomer composition, and semiconductor device
JP2008088318A (en) * 2006-10-03 2008-04-17 Momentive Performance Materials Japan Kk Thermoconductive silicone composition and semiconductor device comprised of the same
EP3150672B1 (en) * 2015-10-02 2018-05-09 Shin-Etsu Chemical Co., Ltd. Thermal conductive silicone composition and semiconductor device
JP6656509B1 (en) * 2018-11-07 2020-03-04 ニホンハンダ株式会社 Method for producing conductive filler, conductive addition-curable silicone composition, and semiconductor device

Also Published As

Publication number Publication date
WO2024004625A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
KR102537150B1 (en) Thermal conductive silicone composition and semiconductor device
WO2017159252A1 (en) Thermally conductive silicone composition and semiconductor device
TWI736699B (en) Thermally conductive silicon-oxygen composition, semiconductor device, and manufacturing method of semiconductor device
JP6610491B2 (en) Thermally conductive silicone composition and semiconductor device
TWI828808B (en) Thermal conductive silicone composition, semiconductor device, and method for manufacturing semiconductor device
TW202400725A (en) Thermally conductive silicone composition, semiconductor device and method for producing same
CN117280000A (en) Curable organopolysiloxane composition and semiconductor device
JP6939914B2 (en) Thermally conductive silicone compositions, cured products, semiconductor devices, and methods for manufacturing semiconductor devices
TWI834860B (en) Thermal conductive silicon oxide composition, semiconductor device and manufacturing method thereof
JP2021191823A (en) Heat-conductive silicone composition, semiconductor device, and production method of semiconductor device
WO2023276846A1 (en) Heat-conductive silicone composition, semiconductor device, and method for manufacturing same
TW202106810A (en) Thermally-conductive silicone composition, semiconductor device, and production method therefor