WO2019155774A1 - Display device and color filter substrate - Google Patents

Display device and color filter substrate Download PDF

Info

Publication number
WO2019155774A1
WO2019155774A1 PCT/JP2018/047598 JP2018047598W WO2019155774A1 WO 2019155774 A1 WO2019155774 A1 WO 2019155774A1 JP 2018047598 W JP2018047598 W JP 2018047598W WO 2019155774 A1 WO2019155774 A1 WO 2019155774A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
substrate
color filter
light shielding
contact
Prior art date
Application number
PCT/JP2018/047598
Other languages
French (fr)
Japanese (ja)
Inventor
優次 前出
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to CN201880087637.5A priority Critical patent/CN111630418A/en
Publication of WO2019155774A1 publication Critical patent/WO2019155774A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • Embodiments described herein relate generally to a display device and a color filter substrate.
  • a technique for improving the display quality of display devices has been studied.
  • a technique is disclosed in which the surface of an overcoat layer that covers each of the red, green, and blue color filters is planarized, and the overcoat layer also functions as a white color filter.
  • a technique is disclosed in which an overcoat layer and a white color filter are laminated in a white pixel, and the white color filter and the structure are integrally formed.
  • An object of the present embodiment is to provide a display device and a color filter substrate that can improve display quality.
  • a first substrate comprising a first alignment film; A second substrate comprising a second alignment film; A liquid crystal layer provided between the first substrate and the second substrate, The first substrate includes a first pixel electrode and a second pixel electrode, The second substrate is An insulating substrate having a first surface; A first colored layer facing the first pixel electrode and in contact with the first surface; A transparent resin layer provided between the first colored layer and the second alignment film, The transparent resin layer has a recess facing the second pixel electrode, A display device is provided in which the second alignment film is in contact with the recess.
  • An insulating substrate A light shielding portion that forms a plurality of openings in a matrix; A color filter layer including a red color filter, a blue color filter, and a green color filter; A color filter substrate comprising an overcoat layer, The plurality of openings includes a first opening and a second opening, The color filter of any one of the color filter layers is located in the first opening, The overcoat layer has a first surface in contact with the color filter layer in the first opening, and in contact with the insulating substrate in the second opening, and a second surface opposite to the first surface.
  • a color filter substrate is provided in which a first distance from the insulating substrate to the second surface in the first opening is greater than a second distance from the insulating substrate to the second surface in the second opening. .
  • FIG. 1 is a plan view showing the appearance of the display device DSP of the present embodiment.
  • FIG. 2 is a diagram illustrating a basic configuration and an equivalent circuit of the pixel PX.
  • FIG. 3 is a plan view showing an example of a pixel layout.
  • FIG. 4 is a plan view showing a light shielding layer BM corresponding to the pixel layout shown in FIG.
  • FIG. 5 is a cross-sectional view showing the configuration of the display panel PNL.
  • FIG. 6 is a plan view showing an example of the pixel shown in FIG.
  • FIG. 7 is a cross-sectional view of the first substrate SUB1 along the line AB shown in FIG.
  • FIG. 8 is a cross-sectional view of the display panel PNL along the line CD shown in FIG. FIG.
  • FIG. 9 is a cross-sectional view of the display panel PNL along the line EF shown in FIG.
  • FIG. 10 is a cross-sectional view of the display panel PNL along the line GH shown in FIG.
  • FIG. 11 is a diagram for explaining the first to third embodiments.
  • FIG. 12A is a diagram showing the spectral transmittance of the liquid crystal layer LC in the white pixel PW.
  • FIG. 12B is a diagram illustrating an example of the first spectral intensity of illumination light (white light) that illuminates the first substrate SUB1 by the illumination device IL illustrated in FIG.
  • FIG. 13A is an enlarged view of the blue wavelength region in the second spectral intensity.
  • FIG. 13B is an enlarged view of the green wavelength region in the second spectral intensity.
  • FIG. 13C is an enlarged view of the red wavelength region in the second spectral intensity.
  • FIG. 14 is a diagram illustrating an example of the relationship between the cell gap d and the second chromaticity.
  • FIG. 15 is a cross-sectional view showing another configuration example of the present embodiment.
  • FIG. 16 is a diagram showing a thickness profile of the color filter CFB in contact with the light shielding portions B31 and B32 shown in FIG.
  • FIG. 17 is a diagram illustrating thickness profiles of the light shielding portions B31 and B32, the color filter CFB, and the overcoat layer OC.
  • FIG. 18 is a plan view showing a light shielding layer BM corresponding to another pixel layout.
  • FIG. 1 is a plan view showing the appearance of the display device DSP of the present embodiment.
  • the first direction X, the second direction Y, and the third direction Z are orthogonal to each other, but may intersect at an angle other than 90 degrees.
  • the first direction X and the second direction Y correspond to the direction parallel to the main surface of the substrate constituting the display device DSP
  • the third direction Z corresponds to the thickness direction of the display device DSP.
  • the position on the tip side of the arrow indicating the third direction Z is referred to as “up”, and the position opposite to the tip of the arrow is referred to as “down”.
  • a direction that intersects the second direction Y at an acute angle counterclockwise is defined as a direction D1
  • a direction that intersects the second direction Y at an acute angle clockwise is defined as a direction D2.
  • the angle ⁇ 1 formed by the second direction Y and the direction D1 is substantially the same as the angle ⁇ 2 formed by the second direction Y and the direction D2.
  • the display device DSP includes a display panel PNL, a flexible printed circuit board 1 and an IC chip 2.
  • the display panel PNL is a liquid crystal display panel, and includes a first substrate SUB1, a second substrate SUB2, a liquid crystal layer LC described later, a seal SE, and a light shielding layer LS.
  • the display panel PNL includes a display unit DA that displays an image and a frame-shaped non-display unit NDA that surrounds the display unit DA.
  • the second substrate SUB2 faces the first substrate SUB1.
  • the first substrate SUB1 has a mounting portion MA that extends in the second direction Y from the second substrate SUB2.
  • the seal SE is located in the non-display portion NDA, adheres the first substrate SUB1 and the second substrate SUB2, and seals the liquid crystal layer LC.
  • the light shielding layer LS is located in the non-display portion NDA.
  • the seal SE is provided at a position overlapping the light shielding layer LS in plan view.
  • a region where the seal SE is disposed and a region where the light shielding layer LS are disposed are indicated by different oblique lines, and a region where the seal SE and the light shielding layer LS overlap is indicated by cross hatching.
  • the light shielding layer LS is provided on the second substrate SUB2.
  • the display part DA is located inside the light shielding layer LS.
  • the display unit DA includes a plurality of pixels PX arranged in a matrix (matrix) in the first direction X (column direction) and the second direction Y (row direction).
  • the pixels PX located in the odd rows along the second direction Y extend along the direction D1.
  • the pixels PX located in the even-numbered rows along the second direction Y extend along the direction D2.
  • the pixel PX indicates a minimum unit that can be individually controlled according to a pixel signal, and may be referred to as a sub-pixel. Further, the minimum unit for realizing color display may be referred to as a main pixel MP.
  • the main pixel MP includes a plurality of subpixels PX that display different colors.
  • the main pixel MP includes, as sub-pixels PX, a red pixel that displays red, a green pixel that displays green, a blue pixel that displays blue, and a white pixel that displays white.
  • the display part DA includes a pair of edge parts E1 and E2 extending along the first direction X, a pair of edge parts E3 and E4 extending along the second direction Y, and four round parts R1 to R4. And have.
  • the display panel PNL includes a pair of straight portions E11 and E12 extending along the first direction X, a pair of straight portions E13 and E14 extending along the second direction Y, and two round portions R11 and R12. And have.
  • the round parts R11 and R12 are located outside the round parts R1 and R2, respectively.
  • the curvature radius of the round part R11 may be the same as or different from the curvature radius of the round part R1.
  • the straight portion E11 corresponds to the short side of the first substrate SUB1 and the second substrate SUB2, and the straight portion E12 corresponds to the short side of the first substrate SUB1.
  • the straight portions E13 and E14 both correspond to the long sides of the first substrate SUB1 and the second substrate SUB2.
  • the flexible printed circuit board 1 and the IC chip 2 are mounted on the mounting part MA.
  • the IC chip 2 may be mounted on the flexible printed circuit board 1.
  • the IC chip 2 includes a display driver DD that outputs a signal necessary for image display in a display mode for displaying an image.
  • the IC chip 2 includes a touch controller TC that controls a touch sensing mode for detecting the approach or contact of an object to the display device DSP.
  • the display panel PNL of the present embodiment has a transmissive display function for displaying an image by selectively transmitting light from the back side of the first substrate SUB1, and light from the front side of the second substrate SUB2. May be either a reflective type having a reflective display function for displaying an image by selectively reflecting the light, or a transflective type having a transmissive display function and a reflective display function.
  • the detailed configuration of the display panel PNL is omitted here, but the display panel PNL has a display mode that uses a horizontal electric field along the main surface of the substrate and a vertical electric field along the normal of the main surface of the substrate.
  • the display mode using a gradient electric field inclined in an oblique direction with respect to the main surface of the substrate and the display mode using an appropriate combination of the above horizontal electric field, vertical electric field, and gradient electric field Any configuration may be provided.
  • the main surface of the substrate is a plane parallel to the XY plane defined by the first direction X and the second direction Y.
  • FIG. 2 is a diagram illustrating a basic configuration and an equivalent circuit of the pixel PX.
  • the plurality of scanning lines G are connected to the scanning line driving circuit GD.
  • the plurality of signal lines S are connected to the signal line driving circuit SD. Note that the scanning lines G and the signal lines S do not necessarily extend linearly, and some of them may be bent. For example, the signal line S is assumed to extend in the second direction Y even if part of the signal line is bent.
  • the common electrode CE is connected to the voltage supply unit CD of the common voltage (Vcom), and is arranged over the plurality of pixels PX.
  • Each pixel PX includes a switching element SW, a pixel electrode PE, a common electrode CE, a liquid crystal layer LC, and the like.
  • the switching element SW is composed of, for example, a thin film transistor (TFT) and is electrically connected to the scanning line G and the signal line S.
  • the scanning line G is electrically connected to the switching element SW in each of the pixels PX arranged in the first direction X.
  • the signal line S is electrically connected to the switching element SW in each of the pixels PX arranged in the second direction Y.
  • the pixel electrode PE is electrically connected to the switching element SW.
  • Each pixel electrode PE faces the common electrode CE, and drives the liquid crystal layer LC by an electric field generated between the pixel electrode PE and the common electrode CE.
  • the storage capacitor CS is formed between, for example, an electrode having the same potential as the common electrode CE and an electrode having the same potential as the pixel electrode PE.
  • FIG. 3 is a plan view showing an example of a pixel layout.
  • the scanning lines G1 to G3 each extend linearly along the first direction X and are arranged at intervals in the second direction Y.
  • the signal lines S1 to S7 each extend substantially along the second direction Y, and are arranged at intervals in the first direction X.
  • a red pixel PR1, a green pixel PG1, a blue pixel PB1, a red pixel PR1, a green pixel PG1, and a white pixel PW1 are arranged in this order along the first direction X between the scanning lines G1 and G2.
  • the signal lines S1 to S3 are arranged at an equal interval W1
  • the signal lines S4 to S7 are arranged at an equal interval W1
  • the interval W2 between the signal lines S3 and S4 is larger than the interval W1.
  • the blue pixel PB1 is located between the signal lines S3 and S4.
  • the intervals W1 and W2 are both lengths along the first direction X.
  • the red pixel PR1 and the green pixel PG1 are each provided with a pixel electrode PE11 having the same shape
  • the blue pixel PB1 is provided with a pixel electrode PE12 larger than the pixel electrode PE11
  • the white pixel PW1 is smaller than the pixel electrode PE11.
  • Pixel electrode PE13 is arranged.
  • the pixel electrodes PE11 and PE13 have the same length Lx1, and the pixel electrode PE12 has the length Lx2 longer than the length Lx1.
  • the pixel electrode PE11 has a length Ly1
  • the pixel electrode PE12 has a length Ly2 longer than the length Ly1
  • the pixel electrode PE13 has a length shorter than the length Ly1. It has Ly3.
  • the pixel electrodes PE11 and PE13 are located between the scanning lines G1 and G2.
  • the pixel electrode PE12 is located between the scanning lines G1 and G2, and intersects the scanning line G2.
  • the pixel electrodes PE11 to PE13 have band electrodes Pa1 to Pa3 extending along the direction D1, respectively.
  • the strip electrodes Pa1 to Pa3 are located between the scanning lines G1 and G2.
  • the band electrode Pa1 has a length Ld1
  • the band electrode Pa2 has a length Ld2 longer than the length Ld1
  • the band electrode Pa3 has a length Ld3 shorter than the length Ld1.
  • a red pixel PR2, a green pixel PG2, a white pixel PW2, a red pixel PR2, a green pixel PG2, and a blue pixel PB2 are arranged in this order along the first direction X.
  • the red pixels PR1 and PR2, the green pixels PG1 and PG2, the blue pixel PB1 and the white pixel PW2, and the white pixel PW1 and the blue pixel PB2 are arranged in the second direction Y, respectively.
  • the signal lines S1 to S6 are arranged at an equal interval W1, and the interval W2 between the signal lines S6 and S7 is larger than the interval W1.
  • the blue pixel PB2 is located between the signal lines S6 and S7.
  • the pixel electrode PE21 having the same shape is disposed in each of the red pixel PR2 and the green pixel PG2, the pixel electrode PE22 larger than the pixel electrode PE21 is disposed in the blue pixel PB2, and the white pixel PW2 includes A pixel electrode PE23 smaller than the pixel electrode PE21 is disposed.
  • the pixel electrodes PE21 to PE23 have band electrodes Pb1 to Pb3 extending along the direction D2, respectively.
  • the pixel electrodes PE21 to PE23 have the same shape as the pixel electrodes PE11 to PE13, respectively. Note that the width of the strip electrode Pb3 along the first direction X is larger than the width of the strip electrode Pb1 along the first direction X. Further, the width of the strip electrode Pb2 along the first direction X is smaller than the width of the strip electrode Pb1 along the first direction X.
  • FIG. 4 is a plan view showing the light shielding layer BM corresponding to the pixel layout shown in FIG.
  • the light shielding layer BM is formed in a lattice shape and overlaps with the scanning lines G1 to G3 and the signal lines S1 to S7, respectively, in plan view.
  • Such a light shielding layer BM surrounds the red pixels PR1 and PR2, the green pixels PG1 and PG2, the blue pixels PB1 to PB3, and the white pixels PW1 and PW2.
  • the light shielding layer BM is formed of the same light shielding material as the light shielding layer LS of the non-display portion NDA shown in FIG. 1, and is connected to the light shielding layer LS at the non-display portion NDA.
  • the light shielding layer BM includes light shielding portions B11 to B15, light shielding portions B21 to B25, and light shielding portions B31 to B33.
  • the light shielding portions B11 to B15 extend along the direction D1 between the scanning lines G1 and G2, respectively, and overlap the signal lines S1 to S5, respectively.
  • the light shielding portions B21 to B25 extend along the direction D2 between the scanning lines G2 and G3, respectively, and overlap the signal lines S1 to S5, respectively.
  • the light shielding portions B31 to B33 each extend along the direction D1, and are superimposed on the scanning lines G1 to G3, respectively. These light shielding portions form a plurality of openings that transmit light. The plurality of openings are arranged in a matrix.
  • Each opening corresponds to one of a red pixel PR, a green pixel PG, a blue pixel PB, and a white pixel PW.
  • the blue pixel PB1 is surrounded by light shielding portions B13, B14, B31, and B32.
  • the white pixel PW2 is surrounded by the light shielding portions B23, B24, B32, and B33.
  • the blue pixel PB1 and the white pixel PW2 are adjacent to each other in the second direction (row direction) Y.
  • the white pixel PW2 is located between the green pixel PG2 and the red pixel PR2, and is located between the blue pixels PB1 and PB3.
  • the signal line S5 is located between the red pixel PR1 and the green pixel PG1, and between the red pixel PR2 and the green pixel PG2. Both the main spacer MSP and the sub-spacer SSP overlap with the signal line S5.
  • the main spacer MSP forms a cell gap between the first substrate SUB1 and the second substrate SUB2, and the sub-spacer SSP has a height lower than that of the main spacer MSP.
  • the light-shielding layer BM is extended substantially concentrically with the sub-spacer SSP around the sub-spacer SSP. Further, the light shielding layer BM is extended substantially concentrically with the main spacer MSP also around the main spacer MSP.
  • the red pixels PR1 and PR2 are provided with a red color filter CFR
  • the green pixels PG1 and PG2 are provided with a green color filter CFG
  • the blue pixels PB1 to PB3 are provided with a blue color filter CFB.
  • a transparent overcoat layer OC which will be described later, is disposed on the white pixels PW1 and PW2.
  • FIG. 5 is a cross-sectional view showing the configuration of the display panel PNL.
  • the main spacer MSP and the sub-spacer SSP are located between the first substrate SUB1 and the second substrate SUB2.
  • the main spacer MSP contacts the first substrate SUB1 and the second substrate SUB2 and forms a predetermined cell gap between the first substrate SUB1 and the second substrate SUB2.
  • the sub-spacer SSP is in contact with one of the first substrate SUB1 and the second substrate SUB2, and is separated from the other. In the illustrated example, the sub-spacer SSP is separated from the first substrate SUB1 and is in contact with the second substrate SUB2.
  • the main spacer MSP and the sub-spacer SSP are not limited to the example provided on the second substrate SUB2 as illustrated, but may be provided on the first substrate SUB1, or the main spacer MSP and the sub-spacer SSP may be separate substrates. May be provided. Alternatively, the sub-spacer SSP may be omitted.
  • the seal SE is disposed in the non-display portion NDA and bonds the first substrate SUB1 and the second substrate SUB2 in a state where the cell gap is formed.
  • the liquid crystal layer LC is held between the first substrate SUB1 and the second substrate SUB2.
  • FIG. 6 is a plan view showing an example of the pixel shown in FIG. Here, the main part will be described by paying attention to the green pixel PG1 surrounded by the scanning lines G1 and G2 and the signal lines S5 and S6 shown in FIG.
  • the switching element SW is electrically connected to the scanning line G2 and the signal line S6.
  • the switching element SW in the illustrated example has a double gate structure.
  • the switching element SW includes a semiconductor layer SC and a drain electrode DE.
  • the drain electrode DE may be referred to as a source electrode.
  • the semiconductor layer SC is arranged so that a part thereof overlaps with the signal line S6, and the other part extends between the signal lines S5 and S6 and is formed in a substantially U shape.
  • the semiconductor layer SC intersects with the scanning line G2 in a region overlapping with the signal line S6 and between the signal lines S5 and S6. In the scanning line G2, regions overlapping with the semiconductor layer SC function as gate electrodes GE1 and GE2, respectively.
  • the semiconductor layer SC is electrically connected to the signal line S6 through the contact hole CH1 at one end SCA, and is electrically connected to the drain electrode DE through the contact hole CH2 at the other end SCB.
  • the drain electrode DE is formed in an island shape and is disposed between the signal lines S5 and S6.
  • the pixel electrode PE11 includes a base BS that is integral with the plurality of band electrodes Pa1. The base BS overlaps with the drain electrode DE. The base BS is electrically connected to the drain electrode DE.
  • FIG. 7 is a cross-sectional view of the first substrate SUB1 along the line AB shown in FIG.
  • the first substrate SUB1 includes an insulating substrate 10, insulating films 11 to 16, a semiconductor layer SC, a scanning line G2, a signal line S6, a metal wiring ML6, a common electrode CE, an alignment film AL1, and the like.
  • the insulating substrate 10 is a light-transmitting substrate such as a glass substrate or a flexible resin substrate.
  • the insulating film 11 is located on the insulating substrate 10.
  • the semiconductor layer SC is located on the insulating film 11 and is covered with the insulating film 12.
  • the gate electrode GE1 which is a part of the scanning line G2, is located on the insulating film 12 and is covered with the insulating film 13.
  • Other scanning lines (not shown) are also located in the same layer as the scanning line G2.
  • the signal line S6 is located on the insulating film 13 and is covered with the insulating film 14. Other signal lines (not shown) are also located in the same layer as the signal line S6.
  • the signal line S6 is in contact with the semiconductor layer SC through a contact hole CH1 that penetrates the insulating films 12 and 13.
  • the metal wiring ML6 is located on the insulating film 14 and is covered with the insulating film 15.
  • the common electrode CE is located on the insulating film 15 and is covered with the insulating film 16.
  • the common electrode CE is in contact with the metal wiring ML6 through a contact hole CH3 that penetrates the insulating film 15.
  • the alignment film AL1 is located on the insulating film 16.
  • the insulating films 11 to 13 and the insulating film 16 are inorganic insulating films formed of an inorganic insulating material such as silicon oxide, silicon nitride, or silicon oxynitride, and may have a single-layer structure. A multilayer structure may be used.
  • the insulating films 14 and 15 are organic insulating films formed of an organic insulating material such as acrylic resin, for example.
  • the insulating film 15 may be an inorganic insulating film.
  • FIG. 8 is a cross-sectional view of the display panel PNL along the line CD shown in FIG.
  • the illustrated example corresponds to an example in which an FFS (Fringe Field Switching) mode, which is one of display modes using a horizontal electric field, is applied.
  • FFS Ringe Field Switching
  • the signal lines S5 and S6 are located on the insulating film 13 and covered with the insulating film.
  • the metal wirings ML5 and ML6 are located immediately above the signal lines S5 and S6, respectively.
  • the pixel electrode PE11 is located on the insulating film 16 and is covered with the alignment film AL1.
  • the pixel electrode PE11 and the common electrode CE are transparent electrodes formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the second substrate SUB2 includes an insulating substrate 20, a light shielding layer BM, a color filter layer CF, an overcoat layer OC, an alignment film AL2, and the like. Such a second substrate SUB2 may be referred to as a color filter substrate.
  • the insulating substrate 20 is a substrate having optical transparency such as a glass substrate or a flexible resin substrate, like the insulating substrate 10.
  • the light shielding layer BM and the color filter layer CF are located on the side of the insulating substrate 20 facing the first substrate SUB1.
  • the color filter layer CF includes a red color filter CFR, a green color filter CFG, and a blue color filter CFB.
  • the color filter CFG is opposed to the pixel electrode PE11.
  • the overcoat layer OC covers the color filter CFG.
  • the overcoat layer OC is formed of a transparent resin. Similarly to the color filter CFG, the other color filters CFR and CFB face the pixel electrode PE and are covered with the overcoat layer OC.
  • the alignment film AL2 covers the overcoat layer OC.
  • the alignment films AL1 and AL2 are made of, for example, a material exhibiting horizontal alignment.
  • the first substrate SUB1 and the second substrate SUB2 described above are arranged so that the alignment films AL1 and AL2 face each other.
  • the cell gap between the first substrate SUB1 and the second substrate SUB2 is 2 to 5 ⁇ m, for example.
  • the liquid crystal layer LC is located between the first substrate SUB1 and the second substrate SUB2, and is held between the alignment film AL1 and the alignment film AL2.
  • the liquid crystal layer LC includes liquid crystal molecules LM.
  • the liquid crystal layer LC is composed of a positive type (positive dielectric anisotropy) liquid crystal material or a negative type (negative dielectric anisotropy) liquid crystal material.
  • the optical element OD1 including the polarizing plate PL1 is bonded to the insulating substrate 10.
  • the optical element OD2 including the polarizing plate PL2 is bonded to the insulating substrate 20.
  • the optical elements OD1 and OD2 may include a retardation plate, a scattering layer, an antireflection layer, and the like as necessary.
  • the illumination device IL illuminates the first substrate SUB1 of the display panel PNL with white illumination light.
  • the liquid crystal molecules LM are initially aligned in a predetermined direction between the alignment films AL1 and AL2. ing.
  • the illumination light emitted from the illumination device IL toward the display panel PNL is absorbed by the optical elements OD1 and OD2 and dark display is performed.
  • the liquid crystal molecules LM are aligned in a direction different from the initial alignment direction by the electric field, and the alignment direction is controlled by the electric field. .
  • a part of the illumination light from the illumination device IL is transmitted through the optical elements OD1 and OD2, and a bright display is obtained.
  • FIG. 9 is a cross-sectional view of the display panel PNL along the line EF shown in FIG.
  • the configuration of the first substrate SUB1 is simplified, and only the alignment film AL1 and the pixel electrode PE having the surface SF1 are illustrated.
  • the alignment film AL2 has a surface SF2 facing the surface SF1.
  • the liquid crystal layer LC is in contact with the surface SF1 and the surface SF2, respectively.
  • the insulating substrate 20 has a surface SF3 on the side facing the liquid crystal layer LC.
  • the surface SF3 is a surface parallel to the XY plane.
  • the surface SF1 and the surface SF2 are assumed to be parallel to the surface SF3.
  • the light shielding portions B21 to B25 are in contact with the surface SF3, respectively, and are arranged in order along the first direction X at intervals.
  • the color filters CFB, CFR, and CFG are in contact with the surface SF3, respectively.
  • the color filter CFG located between the light shielding portions B22 and B23 is opposed to the pixel electrode PE21, is in contact with the light shielding portions B22 and B23, and is in contact with the surface SF3.
  • the color filter CFR located between the light shielding portions B24 and B25 is opposed to the pixel electrode PE21, is in contact with the light shielding portions B24 and B25, and is in contact with the surface SF3.
  • the overcoat layer OC has a surface SF4 and a surface SF5.
  • the surface SF4 is in contact with the color filters CFB, CFR, and CFG, respectively. Further, the surface SF4 is in direct contact with the surface SF3 between the light shielding portions B23 and B24 in the white pixel PW2.
  • the surface SF5 is in direct contact with the alignment film AL2.
  • the surface SF5 has a recess CC1 that is recessed between the light-shielding portions B23 and B24 on the side away from the first substrate SUB1.
  • the recess CC1 is opposed to the pixel electrode PE23.
  • the surface SF2 has a recessed portion CC2 that is recessed corresponding to the recessed portion CC1.
  • the recesses CC1 and CC2 have the same depth DP.
  • the first intermediate point M1 corresponds to a position equidistant from each of the light shielding portions B22 and B23.
  • the second intermediate point M2 corresponds to a position equidistant from each of the light shielding portions B23 and B24.
  • the color filter CFG is in contact with the surface SF3
  • the overcoat layer OC is in contact with the color filter CFG
  • the alignment film AL2 is in contact with the overcoat layer OC.
  • the liquid crystal layer LC has a first thickness T1 at the first intermediate point M1 and a second thickness T2 at the second intermediate point M2.
  • the first thickness T1 and the second thickness T2 correspond to the distance along the third direction Z between the surface SF1 and the surface SF2, respectively.
  • the second thickness T2 is thicker than the first thickness T1.
  • the second substrate SUB2 has a third thickness (first distance) T3 at the first intermediate point M1, and has a fourth thickness (second distance) T4 at the second intermediate point M2.
  • the third thickness T3 and the fourth thickness T4 correspond to the distance along the third direction Z between the surface SF2 and the surface SF3, respectively.
  • the fourth thickness T4 is thinner than the third thickness T3.
  • the third thickness T3 corresponds to the sum of the thicknesses of the color filter CFG, the overcoat layer OC, and the alignment film AL2.
  • the fourth thickness T4 corresponds to the sum of the thicknesses of the overcoat layer OC and the alignment film AL2.
  • the thickness of the alignment film AL2 is substantially equal at the first intermediate point M1 and the second intermediate point M2. Regarding the overcoat layer OC, the thickness of the first intermediate point M1 is smaller than the thickness of the second intermediate point M2.
  • the depth DP along the third direction Z of the recess CC2 at the second intermediate point M2 is the difference ⁇ T34 between the third thickness T3 and the fourth thickness T4, or the first thickness T1 and the second thickness T2.
  • it is 1/6 or less of the first thickness T1.
  • the first thickness T1 is 2.8 ⁇ m
  • the difference ⁇ T34 is not less than 0.05 ⁇ m and not more than 0.35 ⁇ m.
  • the difference ⁇ T34 is smaller than the spacer height along the third direction Z of the main spacer MSP shown in FIG.
  • the differences ⁇ T12 and ⁇ T34 are both absolute values.
  • the laminate formed by contacting the color filter CFG and the light shielding portion B23 has a fifth thickness T5 as the maximum thickness.
  • the laminated body formed by contacting the color filter CFR and the light shielding part B24 has a sixth thickness T6 as the maximum thickness.
  • the fifth thickness T5 is thinner than the sixth thickness T6.
  • the sixth thickness T6 may be thinner than the fifth thickness T5.
  • the sixth thickness T6 may be the same thickness as the fifth thickness T5. That is, it is desirable that the stacked body on both sides of the white pixel PW2 is thinner than the thickness T10 of the other stacked body (for example, the stacked body of the color filter CFR and the light shielding portion B25).
  • the color filters disposed on both sides of the white pixel PW2 are thinly formed.
  • the alignment films AL1 and AL2 correspond to the first alignment film and the second alignment film
  • the light shielding part B22 corresponds to the first light shielding part
  • the light shielding part B23 corresponds to the second light shielding part.
  • the light shielding part B24 corresponds to a third light shielding part
  • the light shielding part B25 corresponds to a fourth light shielding part
  • the color filter CFG corresponds to a first colored layer
  • the color filter CFR corresponds to a second colored layer
  • the overcoat layer OC corresponds to a transparent resin layer
  • the pixel electrode PE21 facing the color filter CFG corresponds to the first pixel electrode
  • the pixel electrode PE23 corresponds to the second pixel electrode
  • the pixel electrode facing the color filter CFR is
  • PE21 corresponds to the third pixel electrode
  • the surface SF3 corresponds to the first surface
  • the surface SF1 corresponds to the second surface
  • the surface SF2 corresponds to the third surface.
  • the green pixel PG2 corresponds to the first opening
  • the white pixel PW2 corresponds to the second opening
  • the surface SF4 corresponds to the first surface of the overcoat layer
  • the surface SF5 corresponds to the second surface of the overcoat layer. It corresponds to.
  • FIG. 10 is a cross-sectional view of the display panel PNL along the line GH shown in FIG.
  • the color filter CFB1 of the blue pixel PB1 located between the light shielding portions B31 and B32 is opposed to the pixel electrode PE12, is in contact with the light shielding portions B31 and B32, and is in contact with the surface SF3.
  • the color filter CFB3 of the blue pixel PB3 is in contact with the light shielding part B33 and is in contact with the surface SF3.
  • the overcoat layer OC is in contact with the color filters CFB1 and CFB3, respectively, and is in contact with the surface SF3 between the light shielding portions B32 and B33.
  • the concave portion CC1 and the concave portion CC2 are located between the light shielding portions B32 and B33.
  • the recess CC1 is opposed to the pixel electrode PE23.
  • the liquid crystal layer LC has the first thickness T1 at the center of the blue pixel PB1 and the second thickness T2 at the center of the white pixel PW2.
  • the second thickness T2 is thicker than the first thickness T1.
  • the second substrate SUB2 has a third thickness T3 at the center of the blue pixel PB1, and has a fourth thickness T4 at the center of the white pixel PW2.
  • the fourth thickness T4 is thinner than the third thickness T3.
  • the first chromaticity of white light obtained by combining the transmitted light of each of the red pixel PR, the green pixel PG, and the blue pixel PB and the transmitted light of the white pixel PW. It is required to reduce the difference between the obtained white light and the second chromaticity.
  • the first chromaticity is the area of each opening (region through which light passes) of each of the red pixel PR, the green pixel PG, and the blue pixel PB, and each of the red pixel PR, the green pixel PG, and the blue pixel PB. It can be adjusted according to the brightness of the image.
  • the second chromaticity can be adjusted by the retardation ⁇ n ⁇ d of the liquid crystal layer LC in the white pixel PW.
  • ⁇ n is a value indicating the refractive index anisotropy of the liquid crystal layer LC
  • d is a value corresponding to the cell gap or the second thickness T2 of the liquid crystal layer LC shown in FIG.
  • the cell gap d is adjusted by the depth DP of the recess CC2.
  • the depth DP of the recess CC2 is, for example, the fluidity (molecular weight of the raw material) of the overcoat layer OC, the pre-baking temperature when forming the overcoat layer OC, the width along the first direction X of the white pixel PW, and The width along the second direction Y, the amount of overlap between the light shielding part B and the color filter CF, the distance between two adjacent color filters CF, the thickness of the light shielding part B, the thickness of the color filter CF, the overcoat layer OC It is adjusted by various parameters such as thickness. That is, in the white pixel PW, the cell gap d can be adjusted and the second chromaticity can be controlled by intentionally adjusting the depth DP (or the difference ⁇ T34) of the recess CC2.
  • FIG. 11 is a diagram for explaining the first to third embodiments.
  • the thickness TB is the thickness at the central portion of the light shielding portion B23
  • the thickness TCF is the thickness of the color filter CFG at the first intermediate point M1
  • the thickness TOC is the first thickness TOC. This is the thickness of the overcoat layer OC at one intermediate point M1.
  • the other light shielding portions also have the same thickness TB, and the other color filters have the same thickness TCF.
  • the thickness TB is 1.5 ⁇ m
  • the thickness TCF is 2.6 ⁇ m
  • the thickness TOC is 1.2 ⁇ m.
  • Example 1 the thickness TB is 1.5 ⁇ m, the thickness TCF is 2.3 ⁇ m, and the thickness TOC is 1.0 ⁇ m. At this time, the depth DP is 0.20 ⁇ m.
  • the difference ⁇ xy was zero.
  • Each of the first chromaticity and the second chromaticity is expressed as coordinates (x, y) on the xy chromaticity diagram.
  • the xy chromaticity diagram is a diagram showing chromaticity coordinates x and y on a plane in a 2 ° visual field XYZ color system, and may be referred to as a CIE1931 chromaticity diagram.
  • the difference ⁇ xy corresponds to a linear distance between the coordinates (x1, y1) of the first chromaticity and the coordinates (x2, y2) of the second chromaticity.
  • the coordinates (x1, y1) of the first chromaticity coincided with the coordinates (x2, y2) of the second chromaticity.
  • the thickness TB is 1.5 ⁇ m
  • the thickness TCF is 2.3 ⁇ m
  • the thickness TOC is 1.5 ⁇ m.
  • the depth DP is 0.10 ⁇ m.
  • the difference ⁇ xy between the first chromaticity and the second chromaticity was 0.007.
  • Example 3 the thickness TB is 1.0 ⁇ m, the thickness TCF is 2.3 ⁇ m, and the thickness TOC is 1.5 ⁇ m. At this time, the depth DP is 0.07 ⁇ m.
  • the difference ⁇ xy between the first chromaticity and the second chromaticity was 0.009.
  • it was confirmed that the difference ⁇ xy was 0.01 or less.
  • the difference ⁇ xy was 0.01 or less in the range where the depth DP was 0.05 ⁇ m or more and 0.35 ⁇ m or less. Thereby, display quality can be improved.
  • FIG. 12A is a diagram showing the spectral transmittance of the liquid crystal layer LC in the white pixel PW.
  • the horizontal axis indicates the wavelength (nm), and the vertical axis indicates the transmittance (modulation rate).
  • a in the figure corresponds to the spectral transmittance when the cell gap d of the white pixel PW (or the second thickness T2 in FIG. 9) is 2.6 ⁇ m.
  • B is the cell gap d of 2
  • D corresponds to the spectral transmittance when the cell gap d is 2.9 ⁇ m.
  • E corresponds to the spectral transmittance when the cell gap d is 3.0 ⁇ m
  • F corresponds to the spectral transmittance when the cell gap d is 3.1 ⁇ m
  • G corresponds to the spectral gap 3 This corresponds to the spectral transmittance in the case of 2 ⁇ m.
  • Each of the spectral transmittances A to G of the liquid crystal layer LC does not have a constant transmittance at any wavelength, but has a transmittance that varies depending on the wavelength.
  • the transmittance near the green wavelength is maximum, and the transmittance near the blue wavelength and the red wavelength is higher than the transmittance near the green wavelength. Is also small. Further, as the cell gap d increases, the maximum transmittance increases and the wavelength at which the maximum transmittance is shifted tends to shift to the longer wavelength side.
  • FIG. 12B is a diagram illustrating an example of the first spectral intensity of illumination light (white light) that illuminates the first substrate SUB1 by the illumination device IL illustrated in FIG.
  • the horizontal axis represents wavelength (nm), and the vertical axis represents intensity (relative value).
  • the first peak intensity in the blue wavelength range is near 450 nm
  • the second peak intensity in the green wavelength range is near 540 nm
  • the third peak intensity in the red wavelength range is It is around 630 nm.
  • the first peak intensity is maximum at the first spectral intensity
  • the third peak intensity is smaller than the first peak intensity
  • the second peak intensity is smaller than the third peak intensity.
  • the second spectral intensity of the transmitted light when the illumination light having the first spectral intensity shown in FIG. 12B passes through the liquid crystal layer LC having the spectral transmittance shown in FIG. 12A is the first spectral intensity, the spectral transmittance, and the like. Is equivalent to the product of
  • FIG. 13A is an enlarged view of the blue wavelength region in the second spectral intensity.
  • FIG. 13B is an enlarged view of the green wavelength region in the second spectral intensity.
  • FIG. 13C is an enlarged view of the red wavelength region in the second spectral intensity.
  • the intensity tends to decrease as the cell gap d increases.
  • the strength tends to increase as the cell gap d increases.
  • the intensity tends to increase as the cell gap d increases in the red wavelength region. That is, under the condition where the cell gap d is different, the intensity ratios of the blue component, the green component, and the red component are different.
  • the intensities of each wavelength band of transmitted light are compared.
  • A is greater than G.
  • A is less than G. That is, as the cell gap d increases, the blue component decreases and the green component and the red component tend to increase. Therefore, the second chromaticity can be adjusted by adjusting the cell gap d of the white pixel PW.
  • FIG. 14 is a diagram illustrating an example of the relationship between the cell gap d and the second chromaticity.
  • the cell gap d increases, both the chromaticity coordinates x and y tend to increase.
  • the cell gap d of the white pixel PW is set to 3.0 ⁇ m, as indicated by E in the figure. Therefore, the depth DP of the recess CC2 is set to 0.2 ⁇ m.
  • the difference ⁇ xy between the first chromaticity and the second chromaticity can be made zero.
  • the cell gap d is set to 2.9 ⁇ m as shown by D in the figure (that is, the depth DP is 0.1 ⁇ m), or the cell gap d is 3 as shown by F in the figure. Even when it is set to 1 ⁇ m (that is, the depth DP is 0.3 ⁇ m), the difference ⁇ xy between the first chromaticity and the second chromaticity can be made 0.01 or less.
  • FIG. 15 is a cross-sectional view showing another configuration example of the present embodiment.
  • the cross section shown corresponds to the cross section of the display panel PNL along the line GH shown in FIG.
  • the first width W11 where the light shielding portion B31 and the color filter CFB1 are in contact is larger than the second width W12 where the light shielding portion B32 and the color filter CFB1 are in contact, as compared with the configuration example shown in FIG. It is different in point.
  • the contact area between the light shielding part B31 and the color filter CFB1 is larger than the contact area between the light shielding part B32 and the color filter CFB1.
  • the color filter CFB1 of the blue pixel PB1 has different widths in contact with the light shielding portion.
  • the color filter CFB1 is in contact with the surface SF3 between the end B31E of the light shielding part B31 and the end B32E of the light shielding part B32.
  • the color filter CFB1 of the blue pixel PB1 is opposed to the pixel electrode PE12, and the concave portion CC1 is opposed to the pixel electrode PE23.
  • the liquid crystal layer LC has a first thickness T1 at the center of the blue pixel PB1, and has a second thickness T2 at the center of the white pixel PW2.
  • the second thickness T2 is thicker than the first thickness T1.
  • the second substrate SUB2 has a third thickness T3 at the center of the blue pixel PB1, and has a fourth thickness T4 at the center of the white pixel PW2.
  • the fourth thickness T4 is thinner than the third thickness T3.
  • the laminate formed by contacting the color filter CFB1 and the light shielding part B31 has a seventh thickness T7 as the maximum thickness.
  • the laminated body formed by contacting the color filter CFB1 and the light shielding part B32 has an eighth thickness T8 as the maximum thickness.
  • the eighth thickness T8 is thinner than the seventh thickness T7. Since the stacked body of the color filter CFB1 adjacent to the white pixel PW2 and the light shielding portion B32 is formed thin, the raw material for forming the overcoat layer OC easily flows into the white pixel PW2.
  • the overcoat layer OC is in contact with the color filters CFB1 and CFB3 and the light shielding portions B31 to B33, and is in contact with the surface SF3 between the light shielding portions B32 and B33.
  • the third width W13 where the light shielding part B32 and the overcoat layer OC are in contact is larger than the fourth width W14 where the light shielding part B33 and the overcoat layer OC are in contact.
  • the contact area between the light shielding part B32 and the overcoat layer OC is larger than the contact area between the light shielding part B33 and the overcoat layer OC.
  • the second width W12 is smaller than the third width W13.
  • the contact area between the color filter CFB1 and the light shielding part B32 is smaller than the contact area between the overcoat layer OC and the light shielding part B32.
  • Focusing on the light shielding part B31 the contact area between the color filter CFB1 and the light shielding part B31 is larger than the contact area between the overcoat layer OC and the light shielding part B31.
  • the light shielding part B31 corresponds to the fifth light shielding part
  • the light shielding part B32 corresponds to the sixth light shielding part
  • the light shielding part B33 corresponds to the seventh light shielding part
  • the color filter of the blue pixel PB1 CFB1 corresponds to the third colored layer
  • the pixel electrode PE21 corresponds to the fourth pixel electrode
  • the overcoat layer OC corresponds to the transparent resin layer.
  • the blue pixel PB1 corresponds to the first opening
  • the white pixel PW2 corresponds to the second opening.
  • FIG. 16 is a diagram showing a thickness profile of the color filter CFB in contact with the light shielding portions B31 and B32 shown in FIG.
  • the horizontal axis is the position along the line GH in FIG. 4, and the vertical axis is the thickness ( ⁇ m).
  • the thickness is based on the surface SF3.
  • the light shielding portions B31 and B32 have a thickness of 1.5 ⁇ m, and the color filter CFB has a thickness of 2.3 ⁇ m.
  • H in the figure corresponds to a profile when the first width W11 shown in FIG. 15 is 7.5 ⁇ m and the second width W12 is 5.0 ⁇ m.
  • I in the figure corresponds to a profile when the first width W11 is 10.0 ⁇ m and the second width W12 is 2.5 ⁇ m.
  • the second width W12 in the figure corresponds to a profile when the first width W11 is 11.5 ⁇ m and the second width W12 is 1.0 ⁇ m.
  • the thickness on the side close to the end B31E is generally thicker than the thickness on the side close to the end B32E.
  • the second width W12 decreases, the thickness near the end B32E tends to decrease.
  • the second width W12 is desirably 2.5 ⁇ m or less as indicated by I and J.
  • FIG. 17 is a diagram showing thickness profiles of the light shielding portions B31 and B32, the color filter CFB, and the overcoat layer OC.
  • the horizontal axis is the position along the line GH in FIG. 4, and the vertical axis is the thickness ( ⁇ m).
  • the sum of the thickness of the color filter CFB and the thickness of the overcoat layer OC is about 3.75 ⁇ m
  • the thickness of the overcoat layer OC in the white pixel PW2 is about 3.65 ⁇ m
  • the white pixel PW2 Thus, a recess of about 0.1 ⁇ m is formed.
  • FIG. 18 is a plan view showing a light shielding layer BM corresponding to another pixel layout.
  • the width and the second direction along the first direction X of each of the red pixel PR, the green pixel PG, the blue pixel PB, and the white pixel PW are compared with the configuration example illustrated in FIG. The difference is that the widths along Y are equal.
  • the light shielding layer BM in the illustrated example does not consider a region overlapping with the main spacer and the sub-spacer.
  • Red pixels PR1 and PR2 are provided with a red color filter CFR
  • green pixels PG1 and PG2 are provided with a green color filter CFG
  • blue pixels PB1 to PB3 are provided with a blue color filter CFB
  • white pixels An overcoat layer OC is disposed on PW1 and PW2.
  • the color filters of the same color are distinguished by applying the same hatching. Also in the configuration example of such a pixel layout, the second chromaticity in the white pixel PW can be adjusted as in the above configuration example.
  • the pixel widths of the red pixel, the green pixel, and the white pixel are the same, but these pixel widths may be different.
  • the pixel electrodes of the red pixel, the green pixel, and the white pixel have the same shape, but the shape of these pixel electrodes may be different.
  • DSP ... Display device PNL ... Display panel SUB1 ... First substrate AL1 ... Alignment film SUB2 ... Second substrate 20 ... Insulating substrate BM ... Light shielding layer B ... Light shielding part CF ... Color filter OC ... Overcoat layer AL2 ... Alignment film LC ... Liquid crystal Layer IL ... Lighting device

Abstract

The purpose of the embodiments of the present invention is to provide a display device and a color filter substrate, which are capable of improving the display quality. A display device according to one embodiment of the present invention is provided with a first substrate which comprises a first alignment film, a second substrate which comprises a second alignment film, and a liquid crystal layer which is arranged between the first substrate and the second substrate. The first substrate is provided with a first pixel electrode and a second pixel electrode; and the second substrate is provided with an insulating substrate which has a first surface, a first coloring layer which faces the first pixel electrode and is in contact with the first surface, and a transparent resin layer which is arranged between the first coloring layer and the second alignment film. The transparent resin layer has a recessed part which faces the second pixel electrode; and the second alignment film is in contact with the recessed part.

Description

表示装置及びカラーフィルタ基板Display device and color filter substrate
 本発明の実施形態は、表示装置及びカラーフィルタ基板に関する。 Embodiments described herein relate generally to a display device and a color filter substrate.
 近年、表示装置の表示品位を向上するための技術が種々検討されている。一例では、赤色、緑色、及び、青色の各カラーフィルタを覆うオーバーコート層の表面が平坦化され、オーバーコート層が白色カラーフィルタとしての機能を兼ね備える技術が開示されている。その他の例では、白画素においてオーバーコート層と白色カラーフィルタとが積層され、白色カラーフィルタと構造体とが一体的に形成される技術が開示されている。 In recent years, various techniques for improving the display quality of display devices have been studied. In one example, a technique is disclosed in which the surface of an overcoat layer that covers each of the red, green, and blue color filters is planarized, and the overcoat layer also functions as a white color filter. In another example, a technique is disclosed in which an overcoat layer and a white color filter are laminated in a white pixel, and the white color filter and the structure are integrally formed.
特開2009-104182号公報JP 2009-104182 A 特開2016-71148号公報JP 2016-71148 A
 本実施形態の目的は、表示品位を改善できる表示装置及びカラーフィルタ基板を提供することにある。 An object of the present embodiment is to provide a display device and a color filter substrate that can improve display quality.
 本実施形態によれば、
 第1配向膜を備えた第1基板と、
 第2配向膜を備えた第2基板と、
 前記第1基板及び前記第2基板との間に設けられる液晶層と、を備え、
 前記第1基板は、第1画素電極と、第2画素電極と、を備え、
 前記第2基板は、
 第1面を有する絶縁基板と、
 前記第1画素電極と対向し、前記第1面に接する第1着色層と、
 前記第1着色層と前記第2配向膜との間に設けられた透明樹脂層と、を備え、
 前記透明樹脂層は、前記第2画素電極に対向する凹部を有し、
 前記第2配向膜は、前記凹部に接する、表示装置が提供される。 
 本実施形態によれば、
 絶縁基板と、
 行列状に複数の開口部を形成する遮光部と、
 赤カラーフィルタ、青カラーフィルタ、及び、緑カラーフィルタと、を含むカラーフィルタ層と、
 オーバーコート層と、を備えたカラーフィルタ基板であって、
 前記複数の開口部は、第1開口部及び第2開口部を含み、
 前記カラーフィルタ層の何れか一色のカラーフィルタは、前記第1開口部に位置し、
 前記オーバーコート層は、前記第1開口部において前記カラーフィルタ層と接し、前記第2開口部において前記絶縁基板と接する第1面と、前記第1面と反対の第2面と、を有し、
 前記第1開口部における前記絶縁基板から前記第2面までの第1距離は、前記第2開口部における前記絶縁基板から前記第2面までの第2距離より大きい、カラーフィルタ基板が提供される。
According to this embodiment,
A first substrate comprising a first alignment film;
A second substrate comprising a second alignment film;
A liquid crystal layer provided between the first substrate and the second substrate,
The first substrate includes a first pixel electrode and a second pixel electrode,
The second substrate is
An insulating substrate having a first surface;
A first colored layer facing the first pixel electrode and in contact with the first surface;
A transparent resin layer provided between the first colored layer and the second alignment film,
The transparent resin layer has a recess facing the second pixel electrode,
A display device is provided in which the second alignment film is in contact with the recess.
According to this embodiment,
An insulating substrate;
A light shielding portion that forms a plurality of openings in a matrix;
A color filter layer including a red color filter, a blue color filter, and a green color filter;
A color filter substrate comprising an overcoat layer,
The plurality of openings includes a first opening and a second opening,
The color filter of any one of the color filter layers is located in the first opening,
The overcoat layer has a first surface in contact with the color filter layer in the first opening, and in contact with the insulating substrate in the second opening, and a second surface opposite to the first surface. ,
A color filter substrate is provided in which a first distance from the insulating substrate to the second surface in the first opening is greater than a second distance from the insulating substrate to the second surface in the second opening. .
 本実施形態によれば、表示品位を改善できる表示装置及びカラーフィルタ基板を提供することができる。 According to this embodiment, it is possible to provide a display device and a color filter substrate that can improve display quality.
図1は、本実施形態の表示装置DSPの外観を示す平面図である。FIG. 1 is a plan view showing the appearance of the display device DSP of the present embodiment. 図2は、画素PXの基本構成及び等価回路を示す図である。FIG. 2 is a diagram illustrating a basic configuration and an equivalent circuit of the pixel PX. 図3は、画素レイアウトの一例を示す平面図である。FIG. 3 is a plan view showing an example of a pixel layout. 図4は、図3に示した画素レイアウトに対応した遮光層BMを示す平面図である。FIG. 4 is a plan view showing a light shielding layer BM corresponding to the pixel layout shown in FIG. 図5は、表示パネルPNLの構成を示す断面図である。FIG. 5 is a cross-sectional view showing the configuration of the display panel PNL. 図6は、図3に示した画素の一例を示す平面図である。FIG. 6 is a plan view showing an example of the pixel shown in FIG. 図7は、図6に示したA-B線に沿った第1基板SUB1の断面図である。FIG. 7 is a cross-sectional view of the first substrate SUB1 along the line AB shown in FIG. 図8は、図6に示したC-D線に沿った表示パネルPNLの断面図である。FIG. 8 is a cross-sectional view of the display panel PNL along the line CD shown in FIG. 図9は、図4に示したE-F線に沿った表示パネルPNLの断面図である。FIG. 9 is a cross-sectional view of the display panel PNL along the line EF shown in FIG. 図10は、図4に示したG-H線に沿った表示パネルPNLの断面図である。FIG. 10 is a cross-sectional view of the display panel PNL along the line GH shown in FIG. 図11は、実施例1乃至3を説明するための図である。FIG. 11 is a diagram for explaining the first to third embodiments. 図12Aは、白画素PWにおける液晶層LCの分光透過率を示す図である。FIG. 12A is a diagram showing the spectral transmittance of the liquid crystal layer LC in the white pixel PW. 図12Bは、図8に示した照明装置ILが第1基板SUB1を照明する照明光(白色光)の第1分光強度の一例を示す図である。FIG. 12B is a diagram illustrating an example of the first spectral intensity of illumination light (white light) that illuminates the first substrate SUB1 by the illumination device IL illustrated in FIG. 図13Aは、第2分光強度のうち、青波長域を拡大して示す図である。FIG. 13A is an enlarged view of the blue wavelength region in the second spectral intensity. 図13Bは、第2分光強度のうち、緑波長域を拡大して示す図である。FIG. 13B is an enlarged view of the green wavelength region in the second spectral intensity. 図13Cは、第2分光強度のうち、赤波長域を拡大して示す図である。FIG. 13C is an enlarged view of the red wavelength region in the second spectral intensity. 図14は、セルギャップdと第2色度との関係の一例を示す図である。FIG. 14 is a diagram illustrating an example of the relationship between the cell gap d and the second chromaticity. 図15は、本実施形態の他の構成例を示す断面図である。FIG. 15 is a cross-sectional view showing another configuration example of the present embodiment. 図16は、図15に示した遮光部B31及びB32に接するカラーフィルタCFBの厚さプロファイルを示す図である。FIG. 16 is a diagram showing a thickness profile of the color filter CFB in contact with the light shielding portions B31 and B32 shown in FIG. 図17は、遮光部B31及びB32、カラーフィルタCFB、及び、オーバーコート層OCの厚さプロファイルを示す図である。FIG. 17 is a diagram illustrating thickness profiles of the light shielding portions B31 and B32, the color filter CFB, and the overcoat layer OC. 図18は、他の画素レイアウトに対応した遮光層BMを示す平面図である。FIG. 18 is a plan view showing a light shielding layer BM corresponding to another pixel layout.
 以下、本実施形態について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。 Hereinafter, the present embodiment will be described with reference to the drawings. It should be noted that the disclosure is merely an example, and those skilled in the art can easily conceive of appropriate changes while maintaining the gist of the invention are naturally included in the scope of the present invention. In addition, for the sake of clarity, the drawings may be schematically represented with respect to the width, thickness, shape, etc. of each part as compared to actual aspects, but are merely examples, and The interpretation is not limited. In addition, in the present specification and each drawing, components that perform the same or similar functions as those described above with reference to the previous drawings are denoted by the same reference numerals, and repeated detailed description may be omitted as appropriate. .
 図1は、本実施形態の表示装置DSPの外観を示す平面図である。一例では、第1方向X、第2方向Y、及び、第3方向Zは、互いに直交しているが、90度以外の角度で交差していてもよい。第1方向X及び第2方向Yは、表示装置DSPを構成する基板の主面と平行な方向に相当し、第3方向Zは、表示装置DSPの厚さ方向に相当する。本明細書において、第3方向Zを示す矢印の先端側の位置を上と称し、矢印の先端とは逆側の位置を下と称する。また、第3方向Zを示す矢印の先端側に表示装置DSPを観察する観察位置があるものとし、この観察位置から、第1方向X及び第2方向Yで規定されるX-Y平面に向かって見ることを平面視という。また、図1において、第2方向Yに対して反時計回りに鋭角に交差する方向を方向D1と定義し、第2方向Yに対して時計回りに鋭角に交差する方向を方向D2と定義する。なお、第2方向Yと方向D1とのなす角度θ1は、第2方向Yと方向D2とのなす角度θ2とほぼ同一である。 FIG. 1 is a plan view showing the appearance of the display device DSP of the present embodiment. In one example, the first direction X, the second direction Y, and the third direction Z are orthogonal to each other, but may intersect at an angle other than 90 degrees. The first direction X and the second direction Y correspond to the direction parallel to the main surface of the substrate constituting the display device DSP, and the third direction Z corresponds to the thickness direction of the display device DSP. In the present specification, the position on the tip side of the arrow indicating the third direction Z is referred to as “up”, and the position opposite to the tip of the arrow is referred to as “down”. Further, it is assumed that there is an observation position for observing the display device DSP on the tip side of the arrow indicating the third direction Z, and from this observation position toward the XY plane defined by the first direction X and the second direction Y. This is called planar view. Further, in FIG. 1, a direction that intersects the second direction Y at an acute angle counterclockwise is defined as a direction D1, and a direction that intersects the second direction Y at an acute angle clockwise is defined as a direction D2. . The angle θ1 formed by the second direction Y and the direction D1 is substantially the same as the angle θ2 formed by the second direction Y and the direction D2.
 ここでは、X-Y平面における表示装置DSPの平面図を示している。表示装置DSPは、表示パネルPNLと、フレキシブルプリント回路基板1と、ICチップ2と、を備えている。 Here, a plan view of the display device DSP in the XY plane is shown. The display device DSP includes a display panel PNL, a flexible printed circuit board 1 and an IC chip 2.
 表示パネルPNLは、液晶表示パネルであり、第1基板SUB1と、第2基板SUB2と、後述する液晶層LCと、シールSEと、遮光層LSと、を備えている。表示パネルPNLは、画像を表示する表示部DAと、表示部DAを囲む額縁状の非表示部NDAとを備えている。第2基板SUB2は、第1基板SUB1に対向している。第1基板SUB1は、第2基板SUB2よりも第2方向Yに延出した実装部MAを有している。 
 シールSEは、非表示部NDAに位置し、第1基板SUB1と第2基板SUB2とを接着するとともに、液晶層LCを封止している。遮光層LSは、非表示部NDAに位置している。シールSEは、平面視で、遮光層LSと重畳する位置に設けられている。図1において、シールSEが配置された領域と、遮光層LSが配置された領域とでは、互いに異なる斜線で示し、シールSEと遮光層LSとが重畳する領域はクロスハッチングで示している。遮光層LSは、第2基板SUB2に設けられている。
The display panel PNL is a liquid crystal display panel, and includes a first substrate SUB1, a second substrate SUB2, a liquid crystal layer LC described later, a seal SE, and a light shielding layer LS. The display panel PNL includes a display unit DA that displays an image and a frame-shaped non-display unit NDA that surrounds the display unit DA. The second substrate SUB2 faces the first substrate SUB1. The first substrate SUB1 has a mounting portion MA that extends in the second direction Y from the second substrate SUB2.
The seal SE is located in the non-display portion NDA, adheres the first substrate SUB1 and the second substrate SUB2, and seals the liquid crystal layer LC. The light shielding layer LS is located in the non-display portion NDA. The seal SE is provided at a position overlapping the light shielding layer LS in plan view. In FIG. 1, a region where the seal SE is disposed and a region where the light shielding layer LS are disposed are indicated by different oblique lines, and a region where the seal SE and the light shielding layer LS overlap is indicated by cross hatching. The light shielding layer LS is provided on the second substrate SUB2.
 表示部DAは、遮光層LSによって囲まれた内側に位置している。表示部DAは、第1方向X(列方向)及び第2方向Y(行方向)にマトリクス状(行列状)に配置された複数の画素PXを備えている。図示した例では、第2方向Yに沿って奇数行目に位置する画素PXは、方向D1に沿って延出している。また、第2方向Yに沿って偶数行目に位置する画素PXは、方向D2に沿って延出している。なお、ここでの画素PXとは、画素信号に応じて個別に制御することができる最小単位を示し、副画素と称する場合がある。また、カラー表示を実現するための最小単位を主画素MPと称する場合がある。主画素MPは、互いに異なる色を表示する複数の副画素PXを備えて構成されるものである。一例では、主画素MPは、副画素PXとして、赤色を表示する赤画素、緑色を表示する緑画素、青色を表示する青画素、及び、白色を表示する白画素を備えている。 The display part DA is located inside the light shielding layer LS. The display unit DA includes a plurality of pixels PX arranged in a matrix (matrix) in the first direction X (column direction) and the second direction Y (row direction). In the illustrated example, the pixels PX located in the odd rows along the second direction Y extend along the direction D1. In addition, the pixels PX located in the even-numbered rows along the second direction Y extend along the direction D2. Here, the pixel PX indicates a minimum unit that can be individually controlled according to a pixel signal, and may be referred to as a sub-pixel. Further, the minimum unit for realizing color display may be referred to as a main pixel MP. The main pixel MP includes a plurality of subpixels PX that display different colors. In one example, the main pixel MP includes, as sub-pixels PX, a red pixel that displays red, a green pixel that displays green, a blue pixel that displays blue, and a white pixel that displays white.
 表示部DAは、第1方向Xに沿って延出した一対の縁部E1及びE2と、第2方向Yに沿って延出した一対の縁部E3及びE4と、4つのラウンド部R1乃至R4と、を有している。表示パネルPNLは、第1方向Xに沿って延出した一対の直線部E11及びE12と、第2方向Yに沿って延出した一対の直線部E13及びE14と、2つのラウンド部R11及びR12と、を有している。ラウンド部R11及びR12は、それぞれラウンド部R1及びR2の外側に位置している。ラウンド部R11の曲率半径は、ラウンド部R1の曲率半径と同一であってもよいし、異なっていてもよい。直線部E11は、第1基板SUB1及び第2基板SUB2の短辺に相当し、直線部E12は、第1基板SUB1の短辺に相当する。直線部E13及びE14は、いずれも第1基板SUB1及び第2基板SUB2の長辺に相当する。 The display part DA includes a pair of edge parts E1 and E2 extending along the first direction X, a pair of edge parts E3 and E4 extending along the second direction Y, and four round parts R1 to R4. And have. The display panel PNL includes a pair of straight portions E11 and E12 extending along the first direction X, a pair of straight portions E13 and E14 extending along the second direction Y, and two round portions R11 and R12. And have. The round parts R11 and R12 are located outside the round parts R1 and R2, respectively. The curvature radius of the round part R11 may be the same as or different from the curvature radius of the round part R1. The straight portion E11 corresponds to the short side of the first substrate SUB1 and the second substrate SUB2, and the straight portion E12 corresponds to the short side of the first substrate SUB1. The straight portions E13 and E14 both correspond to the long sides of the first substrate SUB1 and the second substrate SUB2.
 フレキシブルプリント回路基板1及びICチップ2は、実装部MAに実装されている。なお、ICチップ2は、フレキシブルプリント回路基板1に実装されてもよい。ICチップ2は、画像を表示する表示モードにおいて画像表示に必要な信号を出力するディスプレイドライバDDを内蔵している。図示した例では、ICチップ2は、表示装置DSPへの物体の接近又は接触を検出するタッチセンシングモードを制御するタッチコントローラTCを内蔵している。 The flexible printed circuit board 1 and the IC chip 2 are mounted on the mounting part MA. The IC chip 2 may be mounted on the flexible printed circuit board 1. The IC chip 2 includes a display driver DD that outputs a signal necessary for image display in a display mode for displaying an image. In the illustrated example, the IC chip 2 includes a touch controller TC that controls a touch sensing mode for detecting the approach or contact of an object to the display device DSP.
 本実施形態の表示パネルPNLは、第1基板SUB1の背面側からの光を選択的に透過させることで画像を表示する透過表示機能を備えた透過型、第2基板SUB2の前面側からの光を選択的に反射させることで画像を表示する反射表示機能を備えた反射型、あるいは、透過表示機能及び反射表示機能を備えた半透過型のいずれであってもよい。 
 また、表示パネルPNLの詳細な構成について、ここでは説明を省略するが、表示パネルPNLは、基板主面に沿った横電界を利用する表示モード、基板主面の法線に沿った縦電界を利用する表示モード、基板主面に対して斜め方向に傾斜した傾斜電界を利用する表示モード、さらには、上記の横電界、縦電界、及び、傾斜電界を適宜組み合わせて利用する表示モードに対応したいずれの構成を備えていてもよい。ここでの基板主面とは、第1方向X及び第2方向Yで規定されるX-Y平面と平行な面である。
The display panel PNL of the present embodiment has a transmissive display function for displaying an image by selectively transmitting light from the back side of the first substrate SUB1, and light from the front side of the second substrate SUB2. May be either a reflective type having a reflective display function for displaying an image by selectively reflecting the light, or a transflective type having a transmissive display function and a reflective display function.
The detailed configuration of the display panel PNL is omitted here, but the display panel PNL has a display mode that uses a horizontal electric field along the main surface of the substrate and a vertical electric field along the normal of the main surface of the substrate. Corresponding to the display mode to be used, the display mode using a gradient electric field inclined in an oblique direction with respect to the main surface of the substrate, and the display mode using an appropriate combination of the above horizontal electric field, vertical electric field, and gradient electric field Any configuration may be provided. Here, the main surface of the substrate is a plane parallel to the XY plane defined by the first direction X and the second direction Y.
 図2は、画素PXの基本構成及び等価回路を示す図である。複数本の走査線Gは、走査線駆動回路GDに接続されている。複数本の信号線Sは、信号線駆動回路SDに接続されている。なお、走査線G及び信号線Sは、必ずしも直線的に延出していなくてもよく、それらの一部が屈曲していてもよい。例えば、信号線Sは、その一部が屈曲していたとしても、第2方向Yに延出しているものとする。 FIG. 2 is a diagram illustrating a basic configuration and an equivalent circuit of the pixel PX. The plurality of scanning lines G are connected to the scanning line driving circuit GD. The plurality of signal lines S are connected to the signal line driving circuit SD. Note that the scanning lines G and the signal lines S do not necessarily extend linearly, and some of them may be bent. For example, the signal line S is assumed to extend in the second direction Y even if part of the signal line is bent.
 共通電極CEは、コモン電圧(Vcom)の電圧供給部CDに接続され、複数の画素PXに亘って配置されている。 
 各画素PXは、スイッチング素子SW、画素電極PE、共通電極CE、液晶層LC等を備えている。スイッチング素子SWは、例えば薄膜トランジスタ(TFT)によって構成され、走査線G及び信号線Sと電気的に接続されている。走査線Gは、第1方向Xに並んだ画素PXの各々におけるスイッチング素子SWと電気的に接続されている。信号線Sは、第2方向Yに並んだ画素PXの各々におけるスイッチング素子SWと電気的に接続されている。画素電極PEは、スイッチング素子SWと電気的に接続されている。画素電極PEの各々は、共通電極CEと対向し、画素電極PEと共通電極CEとの間に生じる電界によって液晶層LCを駆動している。保持容量CSは、例えば、共通電極CEと同電位の電極、及び、画素電極PEと同電位の電極の間に形成される。
The common electrode CE is connected to the voltage supply unit CD of the common voltage (Vcom), and is arranged over the plurality of pixels PX.
Each pixel PX includes a switching element SW, a pixel electrode PE, a common electrode CE, a liquid crystal layer LC, and the like. The switching element SW is composed of, for example, a thin film transistor (TFT) and is electrically connected to the scanning line G and the signal line S. The scanning line G is electrically connected to the switching element SW in each of the pixels PX arranged in the first direction X. The signal line S is electrically connected to the switching element SW in each of the pixels PX arranged in the second direction Y. The pixel electrode PE is electrically connected to the switching element SW. Each pixel electrode PE faces the common electrode CE, and drives the liquid crystal layer LC by an electric field generated between the pixel electrode PE and the common electrode CE. The storage capacitor CS is formed between, for example, an electrode having the same potential as the common electrode CE and an electrode having the same potential as the pixel electrode PE.
 図3は、画素レイアウトの一例を示す平面図である。走査線G1乃至G3は、それぞれ第1方向Xに沿って直線的に延出し、第2方向Yに間隔を置いて並んでいる。信号線S1乃至S7は、それぞれ概ね第2方向Yに沿って延出し、第1方向Xに間隔をおいて並んでいる。 FIG. 3 is a plan view showing an example of a pixel layout. The scanning lines G1 to G3 each extend linearly along the first direction X and are arranged at intervals in the second direction Y. The signal lines S1 to S7 each extend substantially along the second direction Y, and are arranged at intervals in the first direction X.
 走査線G1及びG2の間には、赤画素PR1、緑画素PG1、青画素PB1、赤画素PR1、緑画素PG1、及び、白画素PW1が第1方向Xに沿ってこの順に並んでいる。 
 走査線G1及びG2の間において、信号線S1乃至S3は等しい間隔W1で配置され、信号線S4乃至S7は等しい間隔W1で配置され、信号線S3及びS4の間隔W2は間隔W1より大きい。青画素PB1は、信号線S3及びS4の間に位置している。なお、間隔W1及びW2は、いずれも第1方向Xに沿った長さである。
A red pixel PR1, a green pixel PG1, a blue pixel PB1, a red pixel PR1, a green pixel PG1, and a white pixel PW1 are arranged in this order along the first direction X between the scanning lines G1 and G2.
Between the scanning lines G1 and G2, the signal lines S1 to S3 are arranged at an equal interval W1, the signal lines S4 to S7 are arranged at an equal interval W1, and the interval W2 between the signal lines S3 and S4 is larger than the interval W1. The blue pixel PB1 is located between the signal lines S3 and S4. The intervals W1 and W2 are both lengths along the first direction X.
 赤画素PR1及び緑画素PG1には、それぞれ同一形状の画素電極PE11が配置され、青画素PB1には、画素電極PE11より大きな画素電極PE12が配置され、白画素PW1には、画素電極PE11より小さな画素電極PE13が配置されている。第1方向Xに沿った長さLxについて、画素電極PE11及びPE13は等しい長さLx1を有し、画素電極PE12は長さLx1より長い長さLx2を有している。第2方向Yに沿った長さLyについて、画素電極PE11は長さLy1を有し、画素電極PE12は長さLy1より長い長さLy2を有し、画素電極PE13は長さLy1より短い長さLy3を有している。画素電極PE11及びPE13は、走査線G1及びG2の間に位置している。画素電極PE12は、走査線G1及びG2の間に位置するとともに、走査線G2と交差している。 The red pixel PR1 and the green pixel PG1 are each provided with a pixel electrode PE11 having the same shape, the blue pixel PB1 is provided with a pixel electrode PE12 larger than the pixel electrode PE11, and the white pixel PW1 is smaller than the pixel electrode PE11. Pixel electrode PE13 is arranged. Regarding the length Lx along the first direction X, the pixel electrodes PE11 and PE13 have the same length Lx1, and the pixel electrode PE12 has the length Lx2 longer than the length Lx1. Regarding the length Ly along the second direction Y, the pixel electrode PE11 has a length Ly1, the pixel electrode PE12 has a length Ly2 longer than the length Ly1, and the pixel electrode PE13 has a length shorter than the length Ly1. It has Ly3. The pixel electrodes PE11 and PE13 are located between the scanning lines G1 and G2. The pixel electrode PE12 is located between the scanning lines G1 and G2, and intersects the scanning line G2.
 画素電極PE11乃至PE13は、それぞれ方向D1に沿って延出した帯電極Pa1乃至Pa3を有している。図示した例では、帯電極Pa1及びPa3は2本であり、帯電極Pa2は3本である。帯電極Pa1乃至Pa3は、走査線G1及びG2の間に位置している。方向D1に沿った長さLdについて、帯電極Pa1は長さLd1を有し、帯電極Pa2は長さLd1より長い長さLd2を有し、帯電極Pa3は長さLd1より短い長さLd3を有している。 The pixel electrodes PE11 to PE13 have band electrodes Pa1 to Pa3 extending along the direction D1, respectively. In the illustrated example, there are two strip electrodes Pa1 and Pa3 and three strip electrodes Pa2. The strip electrodes Pa1 to Pa3 are located between the scanning lines G1 and G2. Regarding the length Ld along the direction D1, the band electrode Pa1 has a length Ld1, the band electrode Pa2 has a length Ld2 longer than the length Ld1, and the band electrode Pa3 has a length Ld3 shorter than the length Ld1. Have.
 走査線G2及びG3の間には、赤画素PR2、緑画素PG2、白画素PW2、赤画素PR2、緑画素PG2、及び、青画素PB2が第1方向Xに沿ってこの順に並んでいる。赤画素PR1及びPR2、緑画素PG1及びPG2、青画素PB1及び白画素PW2、及び、白画素PW1及び青画素PB2は、それぞれ第2方向Yに並んでいる。 
 走査線G2及びG3の間において、信号線S1乃至S6は等しい間隔W1で配置され、信号線S6及びS7の間隔W2は間隔W1より大きい。青画素PB2は、信号線S6及びS7の間に位置している。
Between the scanning lines G2 and G3, a red pixel PR2, a green pixel PG2, a white pixel PW2, a red pixel PR2, a green pixel PG2, and a blue pixel PB2 are arranged in this order along the first direction X. The red pixels PR1 and PR2, the green pixels PG1 and PG2, the blue pixel PB1 and the white pixel PW2, and the white pixel PW1 and the blue pixel PB2 are arranged in the second direction Y, respectively.
Between the scanning lines G2 and G3, the signal lines S1 to S6 are arranged at an equal interval W1, and the interval W2 between the signal lines S6 and S7 is larger than the interval W1. The blue pixel PB2 is located between the signal lines S6 and S7.
 詳述しないが、赤画素PR2及び緑画素PG2には、それぞれ同一形状の画素電極PE21が配置され、青画素PB2には、画素電極PE21より大きな画素電極PE22が配置され、白画素PW2には、画素電極PE21より小さな画素電極PE23が配置されている。画素電極PE21乃至PE23は、それぞれ方向D2に沿って延出した帯電極Pb1乃至Pb3を有している。画素電極PE21乃至PE23は、それぞれ画素電極PE11乃至PE13と同様の形状を有している。なお、帯電極Pb3の第1方向Xに沿った幅は、帯電極Pb1の第1方向Xに沿った幅よりも大きい。また、帯電極Pb2の第1方向Xに沿った幅は、帯電極Pb1の第1方向Xに沿った幅よりも小さい。 Although not described in detail, the pixel electrode PE21 having the same shape is disposed in each of the red pixel PR2 and the green pixel PG2, the pixel electrode PE22 larger than the pixel electrode PE21 is disposed in the blue pixel PB2, and the white pixel PW2 includes A pixel electrode PE23 smaller than the pixel electrode PE21 is disposed. The pixel electrodes PE21 to PE23 have band electrodes Pb1 to Pb3 extending along the direction D2, respectively. The pixel electrodes PE21 to PE23 have the same shape as the pixel electrodes PE11 to PE13, respectively. Note that the width of the strip electrode Pb3 along the first direction X is larger than the width of the strip electrode Pb1 along the first direction X. Further, the width of the strip electrode Pb2 along the first direction X is smaller than the width of the strip electrode Pb1 along the first direction X.
 図4は、図3に示した画素レイアウトに対応した遮光層BMを示す平面図である。遮光層BMは、格子状に形成され、平面視で、走査線G1乃至G3及び信号線S1乃至S7とそれぞれ重畳している。このような遮光層BMは、赤画素PR1及びPR2、緑画素PG1及びPG2、青画素PB1乃至PB3、及び、白画素PW1及びPW2をそれぞれ囲んでいる。遮光層BMは、図1に示した非表示部NDAの遮光層LSと同じ遮光性の材料で形成され、非表示部NDAにて遮光層LSと接続される。 FIG. 4 is a plan view showing the light shielding layer BM corresponding to the pixel layout shown in FIG. The light shielding layer BM is formed in a lattice shape and overlaps with the scanning lines G1 to G3 and the signal lines S1 to S7, respectively, in plan view. Such a light shielding layer BM surrounds the red pixels PR1 and PR2, the green pixels PG1 and PG2, the blue pixels PB1 to PB3, and the white pixels PW1 and PW2. The light shielding layer BM is formed of the same light shielding material as the light shielding layer LS of the non-display portion NDA shown in FIG. 1, and is connected to the light shielding layer LS at the non-display portion NDA.
 図示した例では、遮光層BMは、遮光部B11乃至B15と、遮光部B21乃至B25と、遮光部B31乃至B33と、を有している。遮光部B11乃至B15は、走査線G1及びG2の間において、それぞれ方向D1に沿って延出し、それぞれ信号線S1乃至S5の上に重畳している。遮光部B21乃至B25は、走査線G2及びG3の間において、それぞれ方向D2に沿って延出し、それぞれ信号線S1乃至S5の上に重畳している。遮光部B31乃至B33は、それぞれ方向D1に沿って延出し、それぞれ走査線G1乃至G3の上に重畳している。これらの遮光部は、光を透過する複数の開口部を形成する。複数の開口部は、行列状に配列される。各開口部は、赤画素PR、緑画素PG、青画素PB、白画素PWのいずれかに相当する。 
 例えば、青画素PB1は、遮光部B13、B14、B31、及び、B32で囲まれている。また、白画素PW2は、遮光部B23、B24、B32、及び、B33で囲まれている。青画素PB1及び白画素PW2は、第2方向(行方向)Yに隣接している。白画素PW2は、緑画素PG2及び赤画素PR2の間に位置し、青画素PB1及びPB3の間に位置している。
In the illustrated example, the light shielding layer BM includes light shielding portions B11 to B15, light shielding portions B21 to B25, and light shielding portions B31 to B33. The light shielding portions B11 to B15 extend along the direction D1 between the scanning lines G1 and G2, respectively, and overlap the signal lines S1 to S5, respectively. The light shielding portions B21 to B25 extend along the direction D2 between the scanning lines G2 and G3, respectively, and overlap the signal lines S1 to S5, respectively. The light shielding portions B31 to B33 each extend along the direction D1, and are superimposed on the scanning lines G1 to G3, respectively. These light shielding portions form a plurality of openings that transmit light. The plurality of openings are arranged in a matrix. Each opening corresponds to one of a red pixel PR, a green pixel PG, a blue pixel PB, and a white pixel PW.
For example, the blue pixel PB1 is surrounded by light shielding portions B13, B14, B31, and B32. Further, the white pixel PW2 is surrounded by the light shielding portions B23, B24, B32, and B33. The blue pixel PB1 and the white pixel PW2 are adjacent to each other in the second direction (row direction) Y. The white pixel PW2 is located between the green pixel PG2 and the red pixel PR2, and is located between the blue pixels PB1 and PB3.
 信号線S5は、赤画素PR1と緑画素PG1との間、及び、赤画素PR2と緑画素PG2との間に位置している。メインスペーサMSP及びサブスペーサSSPは、いずれも信号線S5と重畳している。メインスペーサMSPとは、第1基板SUB1と第2基板SUB2とのセルギャップを形成するものであり、サブスペーサSSPとは、メインスペーサMSPの高さより低い高さを有するものである。 
 遮光層BMは、サブスペーサSSPの周囲において、サブスペーサSSPと略同心円状に拡張されている。また、遮光層BMは、メインスペーサMSPの周囲においても、メインスペーサMSPと略同心円状に拡張されている。
The signal line S5 is located between the red pixel PR1 and the green pixel PG1, and between the red pixel PR2 and the green pixel PG2. Both the main spacer MSP and the sub-spacer SSP overlap with the signal line S5. The main spacer MSP forms a cell gap between the first substrate SUB1 and the second substrate SUB2, and the sub-spacer SSP has a height lower than that of the main spacer MSP.
The light-shielding layer BM is extended substantially concentrically with the sub-spacer SSP around the sub-spacer SSP. Further, the light shielding layer BM is extended substantially concentrically with the main spacer MSP also around the main spacer MSP.
 赤画素PR1及びPR2には赤色のカラーフィルタCFRが配置され、緑画素PG1及びPG2には緑色のカラーフィルタCFGが配置され、青画素PB1乃至PB3には青色のカラーフィルタCFBが配置されている。白画素PW1及びPW2には、後述する透明なオーバーコート層OCが配置される。 The red pixels PR1 and PR2 are provided with a red color filter CFR, the green pixels PG1 and PG2 are provided with a green color filter CFG, and the blue pixels PB1 to PB3 are provided with a blue color filter CFB. A transparent overcoat layer OC, which will be described later, is disposed on the white pixels PW1 and PW2.
 図5は、表示パネルPNLの構成を示す断面図である。メインスペーサMSP及びサブスペーサSSPは、第1基板SUB1と第2基板SUB2との間に位置している。メインスペーサMSPは、第1基板SUB1及び第2基板SUB2に接触し、第1基板SUB1と第2基板SUB2との間に所定のセルギャップを形成している。サブスペーサSSPは、第1基板SUB1及び第2基板SUB2のいずれか一方と接触し、他方から離間している。図示した例では、サブスペーサSSPは、第1基板SUB1から離間し第2基板SUB2に接触している。なお、メインスペーサMSP及びサブスペーサSSPは、図示したように第2基板SUB2に設けられる例に限らず、第1基板SUB1に設けられてもよいし、メインスペーサMSP及びサブスペーサSSPが別々の基板に設けられてもよい。あるいは、サブスペーサSSPは省略してもよい。シールSEは、非表示部NDAに配置され、セルギャップが形成された状態で第1基板SUB1と第2基板SUB2とを貼り合わせている。液晶層LCは、第1基板SUB1と第2基板SUB2との間に保持されている。 FIG. 5 is a cross-sectional view showing the configuration of the display panel PNL. The main spacer MSP and the sub-spacer SSP are located between the first substrate SUB1 and the second substrate SUB2. The main spacer MSP contacts the first substrate SUB1 and the second substrate SUB2 and forms a predetermined cell gap between the first substrate SUB1 and the second substrate SUB2. The sub-spacer SSP is in contact with one of the first substrate SUB1 and the second substrate SUB2, and is separated from the other. In the illustrated example, the sub-spacer SSP is separated from the first substrate SUB1 and is in contact with the second substrate SUB2. The main spacer MSP and the sub-spacer SSP are not limited to the example provided on the second substrate SUB2 as illustrated, but may be provided on the first substrate SUB1, or the main spacer MSP and the sub-spacer SSP may be separate substrates. May be provided. Alternatively, the sub-spacer SSP may be omitted. The seal SE is disposed in the non-display portion NDA and bonds the first substrate SUB1 and the second substrate SUB2 in a state where the cell gap is formed. The liquid crystal layer LC is held between the first substrate SUB1 and the second substrate SUB2.
 図6は、図3に示した画素の一例を示す平面図である。ここでは、図3に示した走査線G1及びG2と信号線S5及びS6とで囲まれた緑画素PG1に着目して、主要部について説明する。 FIG. 6 is a plan view showing an example of the pixel shown in FIG. Here, the main part will be described by paying attention to the green pixel PG1 surrounded by the scanning lines G1 and G2 and the signal lines S5 and S6 shown in FIG.
 スイッチング素子SWは、走査線G2及び信号線S6と電気的に接続されている。図示した例のスイッチング素子SWは、ダブルゲート構造を有している。スイッチング素子SWは、半導体層SCと、ドレイン電極DEと、を備えている。なお、スイッチング素子SWにおいて、ドレイン電極DEはソース電極と称される場合がある。半導体層SCは、その一部分が信号線S6と重なるように配置され、他の部分が信号線S5及びS6の間に延出し、略U字状に形成されている。半導体層SCは、信号線S6と重なる領域、及び、信号線S5及びS6の間において、それぞれ走査線G2と交差している。走査線G2において、半導体層SCと重畳する領域がそれぞれゲート電極GE1及びGE2として機能する。半導体層SCは、その一端部SCAにおいてコンタクトホールCH1を通じて信号線S6と電気的に接続され、また、その他端部SCBにおいてコンタクトホールCH2を通じてドレイン電極DEと電気的に接続されている。ドレイン電極DEは、島状に形成され、信号線S5及びS6の間に配置されている。 
 画素電極PE11は、複数の帯電極Pa1と一体の基部BSを備えている。基部BSは、ドレイン電極DEと重畳している。基部BSは、ドレイン電極DEと電気的に接続される。
The switching element SW is electrically connected to the scanning line G2 and the signal line S6. The switching element SW in the illustrated example has a double gate structure. The switching element SW includes a semiconductor layer SC and a drain electrode DE. In the switching element SW, the drain electrode DE may be referred to as a source electrode. The semiconductor layer SC is arranged so that a part thereof overlaps with the signal line S6, and the other part extends between the signal lines S5 and S6 and is formed in a substantially U shape. The semiconductor layer SC intersects with the scanning line G2 in a region overlapping with the signal line S6 and between the signal lines S5 and S6. In the scanning line G2, regions overlapping with the semiconductor layer SC function as gate electrodes GE1 and GE2, respectively. The semiconductor layer SC is electrically connected to the signal line S6 through the contact hole CH1 at one end SCA, and is electrically connected to the drain electrode DE through the contact hole CH2 at the other end SCB. The drain electrode DE is formed in an island shape and is disposed between the signal lines S5 and S6.
The pixel electrode PE11 includes a base BS that is integral with the plurality of band electrodes Pa1. The base BS overlaps with the drain electrode DE. The base BS is electrically connected to the drain electrode DE.
 図7は、図6に示したA-B線に沿った第1基板SUB1の断面図である。第1基板SUB1は、絶縁基板10、絶縁膜11乃至16、半導体層SC、走査線G2、信号線S6、金属配線ML6、共通電極CE、配向膜AL1などを備えている。 FIG. 7 is a cross-sectional view of the first substrate SUB1 along the line AB shown in FIG. The first substrate SUB1 includes an insulating substrate 10, insulating films 11 to 16, a semiconductor layer SC, a scanning line G2, a signal line S6, a metal wiring ML6, a common electrode CE, an alignment film AL1, and the like.
 絶縁基板10は、ガラス基板や可撓性の樹脂基板などの光透過性を有する基板である。絶縁膜11は、絶縁基板10の上に位置している。半導体層SCは、絶縁膜11の上に位置し、絶縁膜12によって覆われている。走査線G2の一部であるゲート電極GE1は、絶縁膜12の上に位置し、絶縁膜13によって覆われている。なお、図示しない他の走査線も、走査線G2と同一層に位置している。信号線S6は、絶縁膜13の上に位置し、絶縁膜14によって覆われている。なお、図示しない他の信号線も、信号線S6と同一層に位置している。信号線S6は、絶縁膜12及び13を貫通するコンタクトホールCH1を通じて半導体層SCにコンタクトしている。金属配線ML6は、絶縁膜14の上に位置し、絶縁膜15によって覆われている。共通電極CEは、絶縁膜15の上に位置し、絶縁膜16によって覆われている。共通電極CEは、絶縁膜15を貫通するコンタクトホールCH3を通じて金属配線ML6にコンタクトしている。配向膜AL1は、絶縁膜16の上に位置している。 The insulating substrate 10 is a light-transmitting substrate such as a glass substrate or a flexible resin substrate. The insulating film 11 is located on the insulating substrate 10. The semiconductor layer SC is located on the insulating film 11 and is covered with the insulating film 12. The gate electrode GE1, which is a part of the scanning line G2, is located on the insulating film 12 and is covered with the insulating film 13. Other scanning lines (not shown) are also located in the same layer as the scanning line G2. The signal line S6 is located on the insulating film 13 and is covered with the insulating film 14. Other signal lines (not shown) are also located in the same layer as the signal line S6. The signal line S6 is in contact with the semiconductor layer SC through a contact hole CH1 that penetrates the insulating films 12 and 13. The metal wiring ML6 is located on the insulating film 14 and is covered with the insulating film 15. The common electrode CE is located on the insulating film 15 and is covered with the insulating film 16. The common electrode CE is in contact with the metal wiring ML6 through a contact hole CH3 that penetrates the insulating film 15. The alignment film AL1 is located on the insulating film 16.
 絶縁膜11乃至13、及び、絶縁膜16は、シリコン酸化物、シリコン窒化物、シリコン酸窒化物などの無機絶縁材料によって形成された無機絶縁膜であり、単層構造であってもよいし、多層構造であってもよい。絶縁膜14及び15は、例えば、アクリル樹脂などの有機絶縁材料によって形成された有機絶縁膜である。なお、絶縁膜15は、無機絶縁膜であってもよい。 The insulating films 11 to 13 and the insulating film 16 are inorganic insulating films formed of an inorganic insulating material such as silicon oxide, silicon nitride, or silicon oxynitride, and may have a single-layer structure. A multilayer structure may be used. The insulating films 14 and 15 are organic insulating films formed of an organic insulating material such as acrylic resin, for example. The insulating film 15 may be an inorganic insulating film.
 図8は、図6に示したC-D線に沿った表示パネルPNLの断面図である。図示した例は、横電界を利用する表示モードの一つであるFFS(Fringe Field Switching)モードが適用された例に相当する。 FIG. 8 is a cross-sectional view of the display panel PNL along the line CD shown in FIG. The illustrated example corresponds to an example in which an FFS (Fringe Field Switching) mode, which is one of display modes using a horizontal electric field, is applied.
 第1基板SUB1において、信号線S5及びS6は、絶縁膜13の上に位置し、絶縁膜14によって覆われている。金属配線ML5及びML6は、それぞれ信号線S5及びS6の直上に位置している。画素電極PE11は、絶縁膜16の上に位置し、配向膜AL1によって覆われている。画素電極PE11及び共通電極CEは、インジウム・ティン・オキサイド(ITO)やインジウム・ジンク・オキサイド(IZO)などの透明な導電材料によって形成された透明電極である。 In the first substrate SUB1, the signal lines S5 and S6 are located on the insulating film 13 and covered with the insulating film. The metal wirings ML5 and ML6 are located immediately above the signal lines S5 and S6, respectively. The pixel electrode PE11 is located on the insulating film 16 and is covered with the alignment film AL1. The pixel electrode PE11 and the common electrode CE are transparent electrodes formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
 第2基板SUB2は、絶縁基板20、遮光層BM、カラーフィルタ層CF、オーバーコート層OC、配向膜AL2などを備えている。このような第2基板SUB2は、カラーフィルタ基板と称される場合がある。絶縁基板20は、絶縁基板10と同様に、ガラス基板や可撓性の樹脂基板などの光透過性を有する基板である。遮光層BM及びカラーフィルタ層CFは、絶縁基板20の第1基板SUB1と対向する側に位置している。カラーフィルタ層CFは、赤色のカラーフィルタCFR、緑色のカラーフィルタCFG、及び、青色のカラーフィルタCFBを含んでいる。カラーフィルタCFGは、画素電極PE11と対向している。オーバーコート層OCは、カラーフィルタCFGを覆っている。オーバーコート層OCは、透明な樹脂によって形成されている。他のカラーフィルタCFR及びCFBも、カラーフィルタCFGと同様に、それぞれ画素電極PEと対向し、オーバーコート層OCによって覆われている。配向膜AL2は、オーバーコート層OCを覆っている。配向膜AL1及びAL2は、例えば、水平配向性を呈する材料によって形成されている。 The second substrate SUB2 includes an insulating substrate 20, a light shielding layer BM, a color filter layer CF, an overcoat layer OC, an alignment film AL2, and the like. Such a second substrate SUB2 may be referred to as a color filter substrate. The insulating substrate 20 is a substrate having optical transparency such as a glass substrate or a flexible resin substrate, like the insulating substrate 10. The light shielding layer BM and the color filter layer CF are located on the side of the insulating substrate 20 facing the first substrate SUB1. The color filter layer CF includes a red color filter CFR, a green color filter CFG, and a blue color filter CFB. The color filter CFG is opposed to the pixel electrode PE11. The overcoat layer OC covers the color filter CFG. The overcoat layer OC is formed of a transparent resin. Similarly to the color filter CFG, the other color filters CFR and CFB face the pixel electrode PE and are covered with the overcoat layer OC. The alignment film AL2 covers the overcoat layer OC. The alignment films AL1 and AL2 are made of, for example, a material exhibiting horizontal alignment.
 上述した第1基板SUB1及び第2基板SUB2は、配向膜AL1及びAL2が対向するように配置されている。第1基板SUB1と第2基板SUB2との間のセルギャップは、例えば2~5μmである。 
 液晶層LCは、第1基板SUB1及び第2基板SUB2の間に位置し、配向膜AL1と配向膜AL2との間に保持されている。液晶層LCは、液晶分子LMを備えている。液晶層LCは、ポジ型(誘電率異方性が正)の液晶材料、あるいは、ネガ型(誘電率異方性が負)の液晶材料によって構成されている。
The first substrate SUB1 and the second substrate SUB2 described above are arranged so that the alignment films AL1 and AL2 face each other. The cell gap between the first substrate SUB1 and the second substrate SUB2 is 2 to 5 μm, for example.
The liquid crystal layer LC is located between the first substrate SUB1 and the second substrate SUB2, and is held between the alignment film AL1 and the alignment film AL2. The liquid crystal layer LC includes liquid crystal molecules LM. The liquid crystal layer LC is composed of a positive type (positive dielectric anisotropy) liquid crystal material or a negative type (negative dielectric anisotropy) liquid crystal material.
 偏光板PL1を含む光学素子OD1は、絶縁基板10に接着されている。偏光板PL2を含む光学素子OD2は、絶縁基板20に接着されている。なお、光学素子OD1及びOD2は、必要に応じて位相差板、散乱層、反射防止層などを備えていてもよい。照明装置ILは、白色の照明光で表示パネルPNLの第1基板SUB1を照明する。 The optical element OD1 including the polarizing plate PL1 is bonded to the insulating substrate 10. The optical element OD2 including the polarizing plate PL2 is bonded to the insulating substrate 20. Note that the optical elements OD1 and OD2 may include a retardation plate, a scattering layer, an antireflection layer, and the like as necessary. The illumination device IL illuminates the first substrate SUB1 of the display panel PNL with white illumination light.
 このような表示パネルPNLにおいては、画素電極PEと共通電極CEとの間に電界が形成されていないオフ状態において、液晶分子LMは、配向膜AL1及びAL2の間で所定の方向に初期配向している。このようなオフ状態では、照明装置ILから表示パネルPNLに向けて照射された照明光は、光学素子OD1及びOD2によって吸収され、暗表示となる。一方、画素電極PEと共通電極CEとの間に電界が形成されたオン状態においては、液晶分子LMは、電界により初期配向方向とは異なる方向に配向し、その配向方向は電界によって制御される。このようなオン状態では、照明装置ILからの照明光の一部は、光学素子OD1及びOD2を透過し、明表示となる。 In such a display panel PNL, in an off state where no electric field is formed between the pixel electrode PE and the common electrode CE, the liquid crystal molecules LM are initially aligned in a predetermined direction between the alignment films AL1 and AL2. ing. In such an off state, the illumination light emitted from the illumination device IL toward the display panel PNL is absorbed by the optical elements OD1 and OD2 and dark display is performed. On the other hand, in the ON state in which an electric field is formed between the pixel electrode PE and the common electrode CE, the liquid crystal molecules LM are aligned in a direction different from the initial alignment direction by the electric field, and the alignment direction is controlled by the electric field. . In such an ON state, a part of the illumination light from the illumination device IL is transmitted through the optical elements OD1 and OD2, and a bright display is obtained.
 図9は、図4に示したE-F線に沿った表示パネルPNLの断面図である。なお、ここでは、第1基板SUB1の構成を簡略化し、面SF1を有する配向膜AL1及び画素電極PEのみを図示している。配向膜AL2は、面SF1と対向する面SF2を有している。液晶層LCは、面SF1及び面SF2にそれぞれ接している。 FIG. 9 is a cross-sectional view of the display panel PNL along the line EF shown in FIG. Here, the configuration of the first substrate SUB1 is simplified, and only the alignment film AL1 and the pixel electrode PE having the surface SF1 are illustrated. The alignment film AL2 has a surface SF2 facing the surface SF1. The liquid crystal layer LC is in contact with the surface SF1 and the surface SF2, respectively.
 第2基板SUB2において、絶縁基板20は、液晶層LCと対向する側に、面SF3を有している。面SF3は、X-Y平面と平行な面である。面SF1及び面SF2は、面SF3と平行であるものとする。遮光部B21乃至B25は、それぞれ面SF3に接し、第1方向Xに沿って間隔をおいて順に並んでいる。カラーフィルタCFB、CFR、及び、CFGは、それぞれ面SF3に接している。 
 例えば、緑画素PG2において、遮光部B22及びB23の間に位置するカラーフィルタCFGは、画素電極PE21と対向し、遮光部B22及びB23にそれぞれ接するとともに、面SF3に接している。赤画素PR2において、遮光部B24及びB25の間に位置するカラーフィルタCFRは、画素電極PE21と対向し、遮光部B24及びB25にそれぞれ接するとともに、面SF3に接している。オーバーコート層OCは、面SF4及び面SF5を有している。面SF4は、カラーフィルタCFB、CFR、及び、CFGにそれぞれ接している。また、面SF4は、白画素PW2において、遮光部B23及びB24の間で面SF3に直接接している。面SF5は、配向膜AL2に直接接している。オーバーコート層OCについて、面SF5は、遮光部B23及びB24の間において第1基板SUB1から離間する側に窪んだ凹部CC1を有している。凹部CC1は、画素電極PE23と対向している。面SF2も面SF5と同様に、凹部CC1に対応して窪んだ凹部CC2を有している。一例では、凹部CC1及びCC2は、同等の深さDPを有している。
In the second substrate SUB2, the insulating substrate 20 has a surface SF3 on the side facing the liquid crystal layer LC. The surface SF3 is a surface parallel to the XY plane. The surface SF1 and the surface SF2 are assumed to be parallel to the surface SF3. The light shielding portions B21 to B25 are in contact with the surface SF3, respectively, and are arranged in order along the first direction X at intervals. The color filters CFB, CFR, and CFG are in contact with the surface SF3, respectively.
For example, in the green pixel PG2, the color filter CFG located between the light shielding portions B22 and B23 is opposed to the pixel electrode PE21, is in contact with the light shielding portions B22 and B23, and is in contact with the surface SF3. In the red pixel PR2, the color filter CFR located between the light shielding portions B24 and B25 is opposed to the pixel electrode PE21, is in contact with the light shielding portions B24 and B25, and is in contact with the surface SF3. The overcoat layer OC has a surface SF4 and a surface SF5. The surface SF4 is in contact with the color filters CFB, CFR, and CFG, respectively. Further, the surface SF4 is in direct contact with the surface SF3 between the light shielding portions B23 and B24 in the white pixel PW2. The surface SF5 is in direct contact with the alignment film AL2. Regarding the overcoat layer OC, the surface SF5 has a recess CC1 that is recessed between the light-shielding portions B23 and B24 on the side away from the first substrate SUB1. The recess CC1 is opposed to the pixel electrode PE23. Similarly to the surface SF5, the surface SF2 has a recessed portion CC2 that is recessed corresponding to the recessed portion CC1. In one example, the recesses CC1 and CC2 have the same depth DP.
 ここで、遮光部B22と遮光部B23との間の第1中間点M1、及び、遮光部B23と遮光部B24との間の第2中間点M2に着目する。第1中間点M1は、遮光部B22及びB23のそれぞれから等距離の位置に相当する。同様に、第2中間点M2は、遮光部B23及びB24のそれぞれから等距離の位置に相当する。第1中間点M1では、カラーフィルタCFGが面SF3に接し、オーバーコート層OCがカラーフィルタCFGに接し、配向膜AL2がオーバーコート層OCに接している。第2中間点M2では、オーバーコート層OCが面SF3に接し、配向膜AL2がオーバーコート層OCに接している。第2中間点M2においては、凹部CC1と凹部CC2とが重畳している。 
 液晶層LCは、第1中間点M1において第1厚さT1を有し、第2中間点M2において第2厚さT2を有している。第1厚さT1及び第2厚さT2は、それぞれ面SF1と面SF2との間の第3方向Zに沿った距離に相当する。第2厚さT2は、第1厚さT1よりも厚い。 
 第2基板SUB2は、第1中間点M1において第3厚さ(第1距離)T3を有し、第2中間点M2において第4厚さ(第2距離)T4を有している。第3厚さT3及び第4厚さT4は、それぞれ面SF2と面SF3との間の第3方向Zに沿った距離に相当する。第4厚さT4は、第3厚さT3よりも薄い。第3厚さT3は、カラーフィルタCFG、オーバーコート層OC、及び、配向膜AL2のそれぞれの厚さの総和に相当する。第4厚さT4は、オーバーコート層OC、及び、配向膜AL2のそれぞれの厚さの総和に相当する。配向膜AL2の厚さは、第1中間点M1及び第2中間点M2においてほぼ同等である。オーバーコート層OCについては、第1中間点M1の厚さは、第2中間点M2の厚さより薄い。
Here, attention is focused on the first intermediate point M1 between the light shielding part B22 and the light shielding part B23 and the second intermediate point M2 between the light shielding part B23 and the light shielding part B24. The first intermediate point M1 corresponds to a position equidistant from each of the light shielding portions B22 and B23. Similarly, the second intermediate point M2 corresponds to a position equidistant from each of the light shielding portions B23 and B24. At the first intermediate point M1, the color filter CFG is in contact with the surface SF3, the overcoat layer OC is in contact with the color filter CFG, and the alignment film AL2 is in contact with the overcoat layer OC. At the second intermediate point M2, the overcoat layer OC is in contact with the surface SF3, and the alignment film AL2 is in contact with the overcoat layer OC. At the second intermediate point M2, the concave portion CC1 and the concave portion CC2 overlap each other.
The liquid crystal layer LC has a first thickness T1 at the first intermediate point M1 and a second thickness T2 at the second intermediate point M2. The first thickness T1 and the second thickness T2 correspond to the distance along the third direction Z between the surface SF1 and the surface SF2, respectively. The second thickness T2 is thicker than the first thickness T1.
The second substrate SUB2 has a third thickness (first distance) T3 at the first intermediate point M1, and has a fourth thickness (second distance) T4 at the second intermediate point M2. The third thickness T3 and the fourth thickness T4 correspond to the distance along the third direction Z between the surface SF2 and the surface SF3, respectively. The fourth thickness T4 is thinner than the third thickness T3. The third thickness T3 corresponds to the sum of the thicknesses of the color filter CFG, the overcoat layer OC, and the alignment film AL2. The fourth thickness T4 corresponds to the sum of the thicknesses of the overcoat layer OC and the alignment film AL2. The thickness of the alignment film AL2 is substantially equal at the first intermediate point M1 and the second intermediate point M2. Regarding the overcoat layer OC, the thickness of the first intermediate point M1 is smaller than the thickness of the second intermediate point M2.
 第2中間点M2における凹部CC2の第3方向Zに沿った深さDPは、第3厚さT3と第4厚さT4との差分ΔT34、あるいは、第1厚さT1と第2厚さT2との差分ΔT12に相当し、例えば、第1厚さT1の1/6以下である。一例では、第1厚さT1は2.8μmであり、差分ΔT34は0.05μm以上0.35μm以下である。また、差分ΔT34は、図5に示したメインスペーサMSPの第3方向Zに沿ったスペーサ高さより小さい。なお、差分ΔT12及びΔT34は、いずれも絶対値である。 The depth DP along the third direction Z of the recess CC2 at the second intermediate point M2 is the difference ΔT34 between the third thickness T3 and the fourth thickness T4, or the first thickness T1 and the second thickness T2. For example, it is 1/6 or less of the first thickness T1. In one example, the first thickness T1 is 2.8 μm, and the difference ΔT34 is not less than 0.05 μm and not more than 0.35 μm. Further, the difference ΔT34 is smaller than the spacer height along the third direction Z of the main spacer MSP shown in FIG. The differences ΔT12 and ΔT34 are both absolute values.
 カラーフィルタCFGと遮光部B23とが接して形成される積層体は、最大厚さとして、第5厚さT5を有している。カラーフィルタCFRと遮光部B24とが接して形成される積層体は、最大厚さとして、第6厚さT6を有している。図示した例では、第5厚さT5は、第6厚さT6よりも薄い。なお、第6厚さT6が第5厚さT5より薄くてもよい。白画素PW2を挟んだ両側に異なる色のカラーフィルタが配置される場合、白画素PW2に隣接するカラーフィルタと遮光部との積層体のうちの一方が他方よりも薄く形成されることにより、オーバーコート層OCを形成するための原料が白画素PW2に流れ込みやすくなる。 The laminate formed by contacting the color filter CFG and the light shielding portion B23 has a fifth thickness T5 as the maximum thickness. The laminated body formed by contacting the color filter CFR and the light shielding part B24 has a sixth thickness T6 as the maximum thickness. In the illustrated example, the fifth thickness T5 is thinner than the sixth thickness T6. The sixth thickness T6 may be thinner than the fifth thickness T5. When color filters of different colors are arranged on both sides of the white pixel PW2, one of the stacked bodies of the color filter adjacent to the white pixel PW2 and the light shielding portion is formed thinner than the other, so that The raw material for forming the coat layer OC easily flows into the white pixel PW2.
 また、第6厚さT6は、第5厚さT5と同じ厚さであってもよい。つまり、白画素PW2を挟んだ両側の積層体は、他の積層体(例えば、カラーフィルタCFRと遮光部B25との積層体)の厚さT10よりも薄いことが望ましい。本発明では、オーバーコート層OCの白画素PWへの流れ込みやすさの為、白画素PW2を挟んだ両側に配置されるカラーフィルタを薄く形成している。 Further, the sixth thickness T6 may be the same thickness as the fifth thickness T5. That is, it is desirable that the stacked body on both sides of the white pixel PW2 is thinner than the thickness T10 of the other stacked body (for example, the stacked body of the color filter CFR and the light shielding portion B25). In the present invention, in order to facilitate the flow of the overcoat layer OC into the white pixel PW, the color filters disposed on both sides of the white pixel PW2 are thinly formed.
 図9に示した例において、配向膜AL1及びAL2はそれぞれ第1配向膜及び第2配向膜に相当し、遮光部B22は第1遮光部に相当し、遮光部B23は第2遮光部に相当し、遮光部B24は第3遮光部に相当し、遮光部B25は第4遮光部に相当し、カラーフィルタCFGは第1着色層に相当し、カラーフィルタCFRは第2着色層に相当し、オーバーコート層OCは透明樹脂層に相当し、カラーフィルタCFGに対向する画素電極PE21は第1画素電極に相当し、画素電極PE23は第2画素電極に相当し、カラーフィルタCFRに対向する画素電極PE21は第3画素電極に相当し、面SF3は第1面に相当し、面SF1は第2面に相当し、面SF2は第3面に相当する。また、緑画素PG2は第1開口部に相当し、白画素PW2は第2開口部に相当し、面SF4はオーバーコート層の第1面に相当し、面SF5はオーバーコート層の第2面に相当する。 In the example shown in FIG. 9, the alignment films AL1 and AL2 correspond to the first alignment film and the second alignment film, the light shielding part B22 corresponds to the first light shielding part, and the light shielding part B23 corresponds to the second light shielding part. The light shielding part B24 corresponds to a third light shielding part, the light shielding part B25 corresponds to a fourth light shielding part, the color filter CFG corresponds to a first colored layer, and the color filter CFR corresponds to a second colored layer, The overcoat layer OC corresponds to a transparent resin layer, the pixel electrode PE21 facing the color filter CFG corresponds to the first pixel electrode, the pixel electrode PE23 corresponds to the second pixel electrode, and the pixel electrode facing the color filter CFR. PE21 corresponds to the third pixel electrode, the surface SF3 corresponds to the first surface, the surface SF1 corresponds to the second surface, and the surface SF2 corresponds to the third surface. The green pixel PG2 corresponds to the first opening, the white pixel PW2 corresponds to the second opening, the surface SF4 corresponds to the first surface of the overcoat layer, and the surface SF5 corresponds to the second surface of the overcoat layer. It corresponds to.
 図10は、図4に示したG-H線に沿った表示パネルPNLの断面図である。遮光部B31及びB32の間に位置する青画素PB1のカラーフィルタCFB1は、画素電極PE12と対向し、遮光部B31及びB32にそれぞれ接するとともに、面SF3に接している。青画素PB3のカラーフィルタCFB3は、遮光部B33に接するとともに、面SF3に接している。オーバーコート層OCは、カラーフィルタCFB1及びCFB3にそれぞれ接するとともに、遮光部B32及びB33の間で面SF3に接している。凹部CC1及び凹部CC2は、遮光部B32及びB33の間に位置している。凹部CC1は、画素電極PE23と対向している。 FIG. 10 is a cross-sectional view of the display panel PNL along the line GH shown in FIG. The color filter CFB1 of the blue pixel PB1 located between the light shielding portions B31 and B32 is opposed to the pixel electrode PE12, is in contact with the light shielding portions B31 and B32, and is in contact with the surface SF3. The color filter CFB3 of the blue pixel PB3 is in contact with the light shielding part B33 and is in contact with the surface SF3. The overcoat layer OC is in contact with the color filters CFB1 and CFB3, respectively, and is in contact with the surface SF3 between the light shielding portions B32 and B33. The concave portion CC1 and the concave portion CC2 are located between the light shielding portions B32 and B33. The recess CC1 is opposed to the pixel electrode PE23.
 図10に示した例においても、液晶層LCは、青画素PB1の中央部において第1厚さT1を有し、白画素PW2の中央部において第2厚さT2を有している。第2厚さT2は、第1厚さT1よりも厚い。また、第2基板SUB2は、青画素PB1の中央部において第3厚さT3を有し、白画素PW2の中央部において第4厚さT4を有している。第4厚さT4は、第3厚さT3よりも薄い。 Also in the example shown in FIG. 10, the liquid crystal layer LC has the first thickness T1 at the center of the blue pixel PB1 and the second thickness T2 at the center of the white pixel PW2. The second thickness T2 is thicker than the first thickness T1. The second substrate SUB2 has a third thickness T3 at the center of the blue pixel PB1, and has a fourth thickness T4 at the center of the white pixel PW2. The fourth thickness T4 is thinner than the third thickness T3.
 このような表示パネルPNLにおいては、赤画素PR、緑画素PG、及び、青画素PBの各々の透過光を合成することによって得られる白色光の第1色度と、白画素PWの透過光によって得られる白色光の第2色度との差を低減することが要求される。第1色度は、赤画素PR、緑画素PG、及び、青画素PBの各々の開口部(光が透過する領域)の面積や、赤画素PR、緑画素PG、及び、青画素PBの各々の明度等により調整可能である。本実施形態では、第2色度は、白画素PWにおける液晶層LCのリタデーションΔn・dによって調整可能である。ここで、Δnは液晶層LCの屈折率異方性を示す値であり、dはセルギャップあるいは図9に示した液晶層LCの第2厚さT2に相当する値である。セルギャップdは、凹部CC2の深さDPによって調整される。 
 凹部CC2の深さDPは、例えば、オーバーコート層OCの原料の流動性(原料の分子量)、オーバーコート層OCを形成する際のプリベーク温度、白画素PWの第1方向Xに沿った幅及び第2方向Yに沿った幅、遮光部BとカラーフィルタCFとの重なり量、隣接する2つのカラーフィルタCF間の距離、遮光部Bの厚さ、カラーフィルタCFの厚さ、オーバーコート層OCの厚さなどの各種パラメータによって調整される。 
 つまり、白画素PWにおいて、凹部CC2の深さDP(あるいは差分ΔT34)を意図的に調整することで、セルギャップdを調整し、第2色度を制御することができる。
In such a display panel PNL, the first chromaticity of white light obtained by combining the transmitted light of each of the red pixel PR, the green pixel PG, and the blue pixel PB and the transmitted light of the white pixel PW. It is required to reduce the difference between the obtained white light and the second chromaticity. The first chromaticity is the area of each opening (region through which light passes) of each of the red pixel PR, the green pixel PG, and the blue pixel PB, and each of the red pixel PR, the green pixel PG, and the blue pixel PB. It can be adjusted according to the brightness of the image. In the present embodiment, the second chromaticity can be adjusted by the retardation Δn · d of the liquid crystal layer LC in the white pixel PW. Here, Δn is a value indicating the refractive index anisotropy of the liquid crystal layer LC, and d is a value corresponding to the cell gap or the second thickness T2 of the liquid crystal layer LC shown in FIG. The cell gap d is adjusted by the depth DP of the recess CC2.
The depth DP of the recess CC2 is, for example, the fluidity (molecular weight of the raw material) of the overcoat layer OC, the pre-baking temperature when forming the overcoat layer OC, the width along the first direction X of the white pixel PW, and The width along the second direction Y, the amount of overlap between the light shielding part B and the color filter CF, the distance between two adjacent color filters CF, the thickness of the light shielding part B, the thickness of the color filter CF, the overcoat layer OC It is adjusted by various parameters such as thickness.
That is, in the white pixel PW, the cell gap d can be adjusted and the second chromaticity can be controlled by intentionally adjusting the depth DP (or the difference ΔT34) of the recess CC2.
 図11は、実施例1乃至3を説明するための図である。ここでは、遮光部Bの厚さTB、カラーフィルタCFの厚さTCF、及び、オーバーコート層OCの厚さTOCの各パラメータによって深さDPが調整される場合を例に説明する。厚さTBとは、図9において、遮光部B23の中央部における厚さであり、厚さTCFとは、第1中間点M1におけるカラーフィルタCFGの厚さであり、厚さTOCとは、第1中間点M1におけるオーバーコート層OCの厚さである。なお、他の遮光部も同等の厚さTBを有し、他のカラーフィルタも同等の厚さTCFを有しているものとする。基準値(Ref)としては、厚さTBが1.5μmであり、厚さTCFが2.6μmであり、厚さTOCが1.2μmである。 FIG. 11 is a diagram for explaining the first to third embodiments. Here, a case where the depth DP is adjusted by each parameter of the thickness TB of the light shielding part B, the thickness TCF of the color filter CF, and the thickness TOC of the overcoat layer OC will be described as an example. In FIG. 9, the thickness TB is the thickness at the central portion of the light shielding portion B23, the thickness TCF is the thickness of the color filter CFG at the first intermediate point M1, and the thickness TOC is the first thickness TOC. This is the thickness of the overcoat layer OC at one intermediate point M1. It is assumed that the other light shielding portions also have the same thickness TB, and the other color filters have the same thickness TCF. As the reference value (Ref), the thickness TB is 1.5 μm, the thickness TCF is 2.6 μm, and the thickness TOC is 1.2 μm.
 実施例1では、厚さTBが1.5μmであり、厚さTCFが2.3μmであり、厚さTOCが1.0μmである。このとき、深さDPは0.20μmである。このような表示パネルPNLにおいて、第1色度及び第2色度をシミュレーションしたところ、その差分Δxyはゼロであった。なお、第1色度及び第2色度の各々は、xy色度図上の座標(x、y)として表される。xy色度図とは、2°視野XYZ表色系において、色度座標x、yを平面上に示した図であり、CIE1931色度図と称される場合もある。差分Δxyは、第1色度の座標(x1、y1)と第2色度の座標(x2、y2)との直線距離に相当する。実施例1においては、第1色度の座標(x1、y1)が第2色度の座標(x2、y2)に一致した。 
 実施例2では、厚さTBが1.5μmであり、厚さTCFが2.3μmであり、厚さTOCが1.5μmである。このとき、深さDPは0.10μmである。このような表示パネルPNLにおいて、第1色度及び第2色度の差分Δxyは0.007であった。 
 実施例3では、厚さTBが1.0μmであり、厚さTCFが2.3μmであり、厚さTOCが1.5μmである。このとき、深さDPは0.07μmである。このような表示パネルPNLにおいて、第1色度及び第2色度の差分Δxyは0.009であった。 
 このように、実施例1乃至3のいずれにおいても、差分Δxyが0.01以下となることが確認された。また、発明者が種々検討したところ、深さDPが0.05μm以上0.35μm以下の範囲において、差分Δxyが0.01以下となることが確認された。これにより、表示品位を改善することができる。
In Example 1, the thickness TB is 1.5 μm, the thickness TCF is 2.3 μm, and the thickness TOC is 1.0 μm. At this time, the depth DP is 0.20 μm. In such a display panel PNL, when the first chromaticity and the second chromaticity were simulated, the difference Δxy was zero. Each of the first chromaticity and the second chromaticity is expressed as coordinates (x, y) on the xy chromaticity diagram. The xy chromaticity diagram is a diagram showing chromaticity coordinates x and y on a plane in a 2 ° visual field XYZ color system, and may be referred to as a CIE1931 chromaticity diagram. The difference Δxy corresponds to a linear distance between the coordinates (x1, y1) of the first chromaticity and the coordinates (x2, y2) of the second chromaticity. In Example 1, the coordinates (x1, y1) of the first chromaticity coincided with the coordinates (x2, y2) of the second chromaticity.
In Example 2, the thickness TB is 1.5 μm, the thickness TCF is 2.3 μm, and the thickness TOC is 1.5 μm. At this time, the depth DP is 0.10 μm. In such a display panel PNL, the difference Δxy between the first chromaticity and the second chromaticity was 0.007.
In Example 3, the thickness TB is 1.0 μm, the thickness TCF is 2.3 μm, and the thickness TOC is 1.5 μm. At this time, the depth DP is 0.07 μm. In such a display panel PNL, the difference Δxy between the first chromaticity and the second chromaticity was 0.009.
Thus, in any of Examples 1 to 3, it was confirmed that the difference Δxy was 0.01 or less. As a result of various studies by the inventor, it was confirmed that the difference Δxy was 0.01 or less in the range where the depth DP was 0.05 μm or more and 0.35 μm or less. Thereby, display quality can be improved.
 次に、白画素PWにおいて、液晶層LCのセルギャップdにより第2色度が調整可能となる原理について説明する。 Next, the principle that the second chromaticity can be adjusted by the cell gap d of the liquid crystal layer LC in the white pixel PW will be described.
 図12Aは、白画素PWにおける液晶層LCの分光透過率を示す図である。横軸は波長(nm)を示し、縦軸は透過率(変調率)を示している。 
 図中のAは白画素PWのセルギャップd(あるいは、図9の第2厚さT2)が2.6μmである場合の分光透過率に相当し、以下同様に、Bはセルギャップdが2.7μmである場合の分光透過率に相当し、Cはセルギャップdが2.8μmである場合の分光透過率に相当し、Dはセルギャップdが2.9μmである場合の分光透過率に相当し、Eはセルギャップdが3.0μmである場合の分光透過率に相当し、Fはセルギャップdが3.1μmである場合の分光透過率に相当し、Gはセルギャップdが3.2μmである場合の分光透過率に相当する。
FIG. 12A is a diagram showing the spectral transmittance of the liquid crystal layer LC in the white pixel PW. The horizontal axis indicates the wavelength (nm), and the vertical axis indicates the transmittance (modulation rate).
A in the figure corresponds to the spectral transmittance when the cell gap d of the white pixel PW (or the second thickness T2 in FIG. 9) is 2.6 μm. Similarly, B is the cell gap d of 2 Corresponds to the spectral transmittance when the cell gap d is 2.8 μm, and D corresponds to the spectral transmittance when the cell gap d is 2.9 μm. E corresponds to the spectral transmittance when the cell gap d is 3.0 μm, F corresponds to the spectral transmittance when the cell gap d is 3.1 μm, and G corresponds to the spectral gap 3 This corresponds to the spectral transmittance in the case of 2 μm.
 液晶層LCの分光透過率A乃至Gの各々は、いずれの波長においても一定の透過率を有するわけではなく、波長によって異なる透過率を有する。概略的には、可視光域(例えば、400nm~700nmの波長範囲)において、緑波長付近の透過率は最大となり、青波長付近及び赤波長付近の各々の透過率は緑波長付近の透過率よりも小さい。また、セルギャップdが増加するほど、最大透過率が増加し、しかも、最大透過率となる波長が長波長側にシフトする傾向にある。 Each of the spectral transmittances A to G of the liquid crystal layer LC does not have a constant transmittance at any wavelength, but has a transmittance that varies depending on the wavelength. In general, in the visible light region (for example, a wavelength range of 400 nm to 700 nm), the transmittance near the green wavelength is maximum, and the transmittance near the blue wavelength and the red wavelength is higher than the transmittance near the green wavelength. Is also small. Further, as the cell gap d increases, the maximum transmittance increases and the wavelength at which the maximum transmittance is shifted tends to shift to the longer wavelength side.
 図12Bは、図8に示した照明装置ILが第1基板SUB1を照明する照明光(白色光)の第1分光強度の一例を示す図である。横軸は波長(nm)を示し、縦軸は強度(相対値)を示している。図示した例によれば、第1分光強度では、青波長域における第1ピーク強度は450nm付近にあり、緑波長域における第2ピーク強度は540nm付近にあり、赤波長域における第3ピーク強度は630nm付近にある。また、第1ピーク強度が第1分光強度において最大であり、第3ピーク強度が第1ピーク強度より小さく、第2ピーク強度が第3ピーク強度より小さい。 FIG. 12B is a diagram illustrating an example of the first spectral intensity of illumination light (white light) that illuminates the first substrate SUB1 by the illumination device IL illustrated in FIG. The horizontal axis represents wavelength (nm), and the vertical axis represents intensity (relative value). According to the illustrated example, in the first spectral intensity, the first peak intensity in the blue wavelength range is near 450 nm, the second peak intensity in the green wavelength range is near 540 nm, and the third peak intensity in the red wavelength range is It is around 630 nm. In addition, the first peak intensity is maximum at the first spectral intensity, the third peak intensity is smaller than the first peak intensity, and the second peak intensity is smaller than the third peak intensity.
 図12Bに示した第1分光強度を有する照明光が図12Aに示した分光透過率を有する液晶層LCを透過した際の透過光の第2分光強度は、第1分光強度と分光透過率との積に相当する。 The second spectral intensity of the transmitted light when the illumination light having the first spectral intensity shown in FIG. 12B passes through the liquid crystal layer LC having the spectral transmittance shown in FIG. 12A is the first spectral intensity, the spectral transmittance, and the like. Is equivalent to the product of
 図13Aは、第2分光強度のうち、青波長域を拡大して示す図である。図13Bは、第2分光強度のうち、緑波長域を拡大して示す図である。図13Cは、第2分光強度のうち、赤波長域を拡大して示す図である。 
 図13Aに示すように、青波長域においてはセルギャップdが増加するほど、強度が減少する傾向にある。図13Bに示すように、緑波長域においてはセルギャップdが増加するほど、強度が増加する傾向にある。図13Cに示すように、赤波長域においてはセルギャップdが増加するほど、強度が増加する傾向にある。つまり、セルギャップdが異なる条件では、青成分、緑成分、及び、赤成分のそれぞれの強度の割合が異なる。 
 例えば、セルギャップdが2.6μmの場合(A)と、セルギャップdが3.2μmの場合(G)とで、透過光の各波長域の強度を比較する。青波長域について、AはGより大きい。緑波長及び赤波長については、AはGより小さい。つまり、セルギャップdが増加するほど、青成分が減少し、且つ、緑成分及び赤成分が増加する傾向にある。したがって、白画素PWのセルギャップdを調整することで、第2色度を調整することができる。
FIG. 13A is an enlarged view of the blue wavelength region in the second spectral intensity. FIG. 13B is an enlarged view of the green wavelength region in the second spectral intensity. FIG. 13C is an enlarged view of the red wavelength region in the second spectral intensity.
As shown in FIG. 13A, in the blue wavelength region, the intensity tends to decrease as the cell gap d increases. As shown in FIG. 13B, in the green wavelength region, the strength tends to increase as the cell gap d increases. As shown in FIG. 13C, the intensity tends to increase as the cell gap d increases in the red wavelength region. That is, under the condition where the cell gap d is different, the intensity ratios of the blue component, the green component, and the red component are different.
For example, when the cell gap d is 2.6 μm (A) and when the cell gap d is 3.2 μm (G), the intensities of each wavelength band of transmitted light are compared. For the blue wavelength region, A is greater than G. For green and red wavelengths, A is less than G. That is, as the cell gap d increases, the blue component decreases and the green component and the red component tend to increase. Therefore, the second chromaticity can be adjusted by adjusting the cell gap d of the white pixel PW.
 図14は、セルギャップdと第2色度との関係の一例を示す図である。 
 セルギャップdが増加するほど、色度座標x及びyのいずれもが増加する傾向がある。例えば、青画素、緑画素、及び、赤画素のそれぞれのセルギャップが2.8μmである場合に、第1色度の座標が(x1、y1)=(0.275、0.282)である場合を想定する。この場合、第1色度と第2色度とを一致させるためには、図中にEで示したように、白画素PWのセルギャップdは3.0μmに設定される。したがって、凹部CC2の深さDPは、0.2μmに設定される。これにより、第1色度と第2色度との差分Δxyをゼロとすることができる。 
 また、図中にDで示したようにセルギャップdが2.9μmに設定された場合(つまり深さDPは0.1μm)、あるいは、図中にFで示したようにセルギャップdが3.1μmに設定された場合(つまり深さDPは0.3μm)であっても、第1色度と第2色度との差分Δxyを0.01以下とすることができる。
FIG. 14 is a diagram illustrating an example of the relationship between the cell gap d and the second chromaticity.
As the cell gap d increases, both the chromaticity coordinates x and y tend to increase. For example, when the cell gap of each of the blue pixel, the green pixel, and the red pixel is 2.8 μm, the coordinates of the first chromaticity are (x1, y1) = (0.275, 0.282). Assume a case. In this case, in order to match the first chromaticity and the second chromaticity, the cell gap d of the white pixel PW is set to 3.0 μm, as indicated by E in the figure. Therefore, the depth DP of the recess CC2 is set to 0.2 μm. Thereby, the difference Δxy between the first chromaticity and the second chromaticity can be made zero.
Further, when the cell gap d is set to 2.9 μm as shown by D in the figure (that is, the depth DP is 0.1 μm), or the cell gap d is 3 as shown by F in the figure. Even when it is set to 1 μm (that is, the depth DP is 0.3 μm), the difference Δxy between the first chromaticity and the second chromaticity can be made 0.01 or less.
 図15は、本実施形態の他の構成例を示す断面図である。図示した断面は、図4に示したG-H線に沿った表示パネルPNLの断面に相当する。図示した構成例は、図10に示した構成例と比較して、遮光部B31とカラーフィルタCFB1とが接する第1幅W11が、遮光部B32とカラーフィルタCFB1とが接する第2幅W12より大きい点で相違している。換言すると、遮光部B31とカラーフィルタCFB1との接触面積は、遮光部B32とカラーフィルタCFB1との接触面積より大きい。詳述しないが、図示した青画素PB1のカラーフィルタCFB1のみならず、青画素PB3のカラーフィルタCFB3も同様に遮光部と接する幅が異なる。カラーフィルタCFB1は、遮光部B31の端部B31Eと遮光部B32の端部B32Eとの間で面SF3に接している。 
 図15に示した例においても、青画素PB1のカラーフィルタCFB1は画素電極PE12と対向し、凹部CC1は画素電極PE23と対向している。また、液晶層LCは、青画素PB1の中央部において第1厚さT1を有し、白画素PW2の中央部において第2厚さT2を有している。第2厚さT2は、第1厚さT1よりも厚い。また、第2基板SUB2は、青画素PB1の中央部において第3厚さT3を有し、白画素PW2の中央部において第4厚さT4を有している。第4厚さT4は、第3厚さT3よりも薄い。
FIG. 15 is a cross-sectional view showing another configuration example of the present embodiment. The cross section shown corresponds to the cross section of the display panel PNL along the line GH shown in FIG. In the illustrated configuration example, the first width W11 where the light shielding portion B31 and the color filter CFB1 are in contact is larger than the second width W12 where the light shielding portion B32 and the color filter CFB1 are in contact, as compared with the configuration example shown in FIG. It is different in point. In other words, the contact area between the light shielding part B31 and the color filter CFB1 is larger than the contact area between the light shielding part B32 and the color filter CFB1. Although not described in detail, not only the illustrated color filter CFB1 of the blue pixel PB1 but also the color filter CFB3 of the blue pixel PB3 have different widths in contact with the light shielding portion. The color filter CFB1 is in contact with the surface SF3 between the end B31E of the light shielding part B31 and the end B32E of the light shielding part B32.
Also in the example shown in FIG. 15, the color filter CFB1 of the blue pixel PB1 is opposed to the pixel electrode PE12, and the concave portion CC1 is opposed to the pixel electrode PE23. Further, the liquid crystal layer LC has a first thickness T1 at the center of the blue pixel PB1, and has a second thickness T2 at the center of the white pixel PW2. The second thickness T2 is thicker than the first thickness T1. The second substrate SUB2 has a third thickness T3 at the center of the blue pixel PB1, and has a fourth thickness T4 at the center of the white pixel PW2. The fourth thickness T4 is thinner than the third thickness T3.
 カラーフィルタCFB1と遮光部B31とが接して形成される積層体は、最大厚さとして、第7厚さT7を有している。カラーフィルタCFB1と遮光部B32とが接して形成される積層体は、最大厚さとして、第8厚さT8を有している。図示した例では、第8厚さT8は、第7厚さT7よりも薄い。白画素PW2に隣接するカラーフィルタCFB1と遮光部B32との積層体が薄く形成されることにより、オーバーコート層OCを形成するための原料が白画素PW2に流れ込みやすくなる。 The laminate formed by contacting the color filter CFB1 and the light shielding part B31 has a seventh thickness T7 as the maximum thickness. The laminated body formed by contacting the color filter CFB1 and the light shielding part B32 has an eighth thickness T8 as the maximum thickness. In the illustrated example, the eighth thickness T8 is thinner than the seventh thickness T7. Since the stacked body of the color filter CFB1 adjacent to the white pixel PW2 and the light shielding portion B32 is formed thin, the raw material for forming the overcoat layer OC easily flows into the white pixel PW2.
 オーバーコート層OCは、カラーフィルタCFB1及びCFB3、及び、遮光部B31乃至B33にそれぞれ接するとともに、遮光部B32及びB33の間で面SF3に接している。遮光部B32とオーバーコート層OCとが接する第3幅W13は、遮光部B33とオーバーコート層OCとが接する第4幅W14より大きい。換言すると、遮光部B32とオーバーコート層OCとの接触面積は、遮光部B33とオーバーコート層OCとの接触面積より大きい。 The overcoat layer OC is in contact with the color filters CFB1 and CFB3 and the light shielding portions B31 to B33, and is in contact with the surface SF3 between the light shielding portions B32 and B33. The third width W13 where the light shielding part B32 and the overcoat layer OC are in contact is larger than the fourth width W14 where the light shielding part B33 and the overcoat layer OC are in contact. In other words, the contact area between the light shielding part B32 and the overcoat layer OC is larger than the contact area between the light shielding part B33 and the overcoat layer OC.
 遮光部B32に着目すると、第2幅W12は第3幅W13より小さい。換言すると、カラーフィルタCFB1と遮光部B32との接触面積は、オーバーコート層OCと遮光部B32との接触面積より小さい。遮光部B31に着目すると、カラーフィルタCFB1と遮光部B31との接触面積は、オーバーコート層OCと遮光部B31との接触面積より大きい。 Focusing on the light shielding part B32, the second width W12 is smaller than the third width W13. In other words, the contact area between the color filter CFB1 and the light shielding part B32 is smaller than the contact area between the overcoat layer OC and the light shielding part B32. Focusing on the light shielding part B31, the contact area between the color filter CFB1 and the light shielding part B31 is larger than the contact area between the overcoat layer OC and the light shielding part B31.
 図15に示した例では、遮光部B31が第5遮光部に相当し、遮光部B32が第6遮光部に相当し、遮光部B33が第7遮光部に相当し、青画素PB1のカラーフィルタCFB1が第3着色層に相当し、画素電極PE21は第4画素電極に相当し、オーバーコート層OCが透明樹脂層に相当する。また、青画素PB1が第1開口部に相当し、白画素PW2が第2開口部に相当する。 In the example shown in FIG. 15, the light shielding part B31 corresponds to the fifth light shielding part, the light shielding part B32 corresponds to the sixth light shielding part, the light shielding part B33 corresponds to the seventh light shielding part, and the color filter of the blue pixel PB1 CFB1 corresponds to the third colored layer, the pixel electrode PE21 corresponds to the fourth pixel electrode, and the overcoat layer OC corresponds to the transparent resin layer. The blue pixel PB1 corresponds to the first opening, and the white pixel PW2 corresponds to the second opening.
 図16は、図15に示した遮光部B31及びB32に接するカラーフィルタCFBの厚さプロファイルを示す図である。横軸は図4のG-H線に沿った位置であり、縦軸は厚さ(μm)である。厚さは、面SF3を基準としている。なお、遮光部B31及びB32の厚さは1.5μmであり、カラーフィルタCFBの厚さは2.3μmである。 
 図中のHは、図15に示した第1幅W11が7.5μmであり、第2幅W12が5.0μmである場合のプロファイルに相当する。図中のIは、第1幅W11が10.0μmであり、第2幅W12が2.5μmである場合のプロファイルに相当する。図中のJは、第1幅W11が11.5μmであり、第2幅W12が1.0μmである場合のプロファイルに相当する。プロファイルH乃至Jの各々について、概略的には、端部B31Eに近接する側の厚さが端部B32Eに近接する側の厚さより厚い。また、第2幅W12が減少するほど、端部B32E付近の厚さが減少する傾向にある。カラーフィルタCFBと遮光部B32との積層体が薄くする観点では、第2幅W12は、I及びJで示したように、2.5μm以下であることが望ましい。
FIG. 16 is a diagram showing a thickness profile of the color filter CFB in contact with the light shielding portions B31 and B32 shown in FIG. The horizontal axis is the position along the line GH in FIG. 4, and the vertical axis is the thickness (μm). The thickness is based on the surface SF3. The light shielding portions B31 and B32 have a thickness of 1.5 μm, and the color filter CFB has a thickness of 2.3 μm.
H in the figure corresponds to a profile when the first width W11 shown in FIG. 15 is 7.5 μm and the second width W12 is 5.0 μm. I in the figure corresponds to a profile when the first width W11 is 10.0 μm and the second width W12 is 2.5 μm. J in the figure corresponds to a profile when the first width W11 is 11.5 μm and the second width W12 is 1.0 μm. For each of the profiles H to J, the thickness on the side close to the end B31E is generally thicker than the thickness on the side close to the end B32E. Further, as the second width W12 decreases, the thickness near the end B32E tends to decrease. From the viewpoint of reducing the thickness of the laminated body of the color filter CFB and the light shielding part B32, the second width W12 is desirably 2.5 μm or less as indicated by I and J.
 図17は、遮光部B31及びB32、カラーフィルタCFB、及び、オーバーコート層OCの厚さプロファイルを示す図である。横軸は図4のG-H線に沿った位置であり、縦軸は厚さ(μm)である。青画素PB1において、カラーフィルタCFBの厚さとオーバーコート層OCの厚さとの総和は約3.75μmであり、白画素PW2におけるオーバーコート層OCの厚さは約3.65μmであり、白画素PW2において約0.1μmの凹部が形成されたことになる。 FIG. 17 is a diagram showing thickness profiles of the light shielding portions B31 and B32, the color filter CFB, and the overcoat layer OC. The horizontal axis is the position along the line GH in FIG. 4, and the vertical axis is the thickness (μm). In the blue pixel PB1, the sum of the thickness of the color filter CFB and the thickness of the overcoat layer OC is about 3.75 μm, the thickness of the overcoat layer OC in the white pixel PW2 is about 3.65 μm, and the white pixel PW2 Thus, a recess of about 0.1 μm is formed.
 図18は、他の画素レイアウトに対応した遮光層BMを示す平面図である。図示した構成例は、図4に示した構成例と比較して、赤画素PR、緑画素PG、青画素PB、及び、白画素PWの各々の第1方向Xに沿った幅及び第2方向Yに沿った幅が同等である点で相違している。但し、図示した例の遮光層BMは、メインスペーサ及びサブスペーサと重畳する領域を考慮していない。赤画素PR1及びPR2には赤色のカラーフィルタCFRが配置され、緑画素PG1及びPG2には緑色のカラーフィルタCFGが配置され、青画素PB1乃至PB3には青色のカラーフィルタCFBが配置され、白画素PW1及びPW2にはオーバーコート層OCが配置されている。なお、同一色のカラーフィルタには同一のハッチングを施して区別している。 
 このような画素レイアウトの構成例においても、上記の構成例と同様に、白画素PWにおける第2色度が調整可能である。
FIG. 18 is a plan view showing a light shielding layer BM corresponding to another pixel layout. In the illustrated configuration example, the width and the second direction along the first direction X of each of the red pixel PR, the green pixel PG, the blue pixel PB, and the white pixel PW are compared with the configuration example illustrated in FIG. The difference is that the widths along Y are equal. However, the light shielding layer BM in the illustrated example does not consider a region overlapping with the main spacer and the sub-spacer. Red pixels PR1 and PR2 are provided with a red color filter CFR, green pixels PG1 and PG2 are provided with a green color filter CFG, blue pixels PB1 to PB3 are provided with a blue color filter CFB, and white pixels An overcoat layer OC is disposed on PW1 and PW2. The color filters of the same color are distinguished by applying the same hatching.
Also in the configuration example of such a pixel layout, the second chromaticity in the white pixel PW can be adjusted as in the above configuration example.
 以上説明したように、本実施形態によれば、表示品位を改善することが可能な表示装置及びカラーフィルタ基板を提供することができる。 As described above, according to this embodiment, it is possible to provide a display device and a color filter substrate capable of improving display quality.
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 In addition, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 例えば、本実施形態においては、赤画素、緑画素、及び、白画素のそれぞれの画素幅が同一であるが、これらの画素幅が異なっていてもよい。また、本実施形態においては、赤画素、緑画素、及び、白画素のそれぞれの画素電極が同一形状を有しているが、これらの画素電極の形状が異なっていてもよい。 For example, in the present embodiment, the pixel widths of the red pixel, the green pixel, and the white pixel are the same, but these pixel widths may be different. In the present embodiment, the pixel electrodes of the red pixel, the green pixel, and the white pixel have the same shape, but the shape of these pixel electrodes may be different.
 DSP…表示装置
 PNL…表示パネル
 SUB1…第1基板 AL1…配向膜
 SUB2…第2基板 20…絶縁基板 BM…遮光層 B…遮光部
 CF…カラーフィルタ OC…オーバーコート層 AL2…配向膜
 LC…液晶層
 IL…照明装置
DSP ... Display device PNL ... Display panel SUB1 ... First substrate AL1 ... Alignment film SUB2 ... Second substrate 20 ... Insulating substrate BM ... Light shielding layer B ... Light shielding part CF ... Color filter OC ... Overcoat layer AL2 ... Alignment film LC ... Liquid crystal Layer IL ... Lighting device

Claims (17)

  1.  第1配向膜を備えた第1基板と、
     第2配向膜を備えた第2基板と、
     前記第1基板及び前記第2基板との間に設けられる液晶層と、を備え、
     前記第1基板は、第1画素電極と、第2画素電極と、を備え、
     前記第2基板は、
     第1面を有する絶縁基板と、
     前記第1画素電極と対向し、前記第1面に接する第1着色層と、
     前記第1着色層と前記第2配向膜との間に設けられた透明樹脂層と、を備え、
     前記透明樹脂層は、前記第2画素電極に対向する凹部を有し、
     前記第2配向膜は、前記凹部に接する、表示装置。
    A first substrate comprising a first alignment film;
    A second substrate comprising a second alignment film;
    A liquid crystal layer provided between the first substrate and the second substrate,
    The first substrate includes a first pixel electrode and a second pixel electrode,
    The second substrate is
    An insulating substrate having a first surface;
    A first colored layer facing the first pixel electrode and in contact with the first surface;
    A transparent resin layer provided between the first colored layer and the second alignment film,
    The transparent resin layer has a recess facing the second pixel electrode,
    The display device, wherein the second alignment film is in contact with the recess.
  2.  前記第2基板は、前記第1面にそれぞれ接し、第1方向に間隔を置いて順に並んだ第1乃至第4遮光部を備え、
     平面視において、前記第1画素電極は前記第1遮光部と前記第2遮光部との間に位置し、前記第2画素電極は前記第2遮光部と前記第3遮光部との間に位置し、
     前記透明樹脂層は、前記第1遮光部と前記第2遮光部との第1中間点において前記第1着色層に接し、前記第2遮光部と前記第3遮光部との第2中間点において前記第1面に接し、
     前記液晶層は、前記第1配向膜の第2面及び前記第2配向膜の第3面に接し、前記第1中間点において前記第2面と前記第3面との間に第1厚さを有し、前記第2中間点において前記第2面と前記第3面との間に第2厚さを有し、前記第2厚さは前記第1厚さより厚く、
     前記第2基板は、前記第1中間点において前記第1面と前記第3面との間に第3厚さを有し、前記第2中間点において前記第1面と前記第3面との間に第4厚さを有し、前記第4厚さは前記第3厚さより薄い、請求項1に記載の表示装置。
    The second substrate includes first to fourth light-shielding portions that are in contact with the first surface and arranged in order in the first direction at intervals.
    In plan view, the first pixel electrode is located between the first light shielding part and the second light shielding part, and the second pixel electrode is located between the second light shielding part and the third light shielding part. And
    The transparent resin layer is in contact with the first colored layer at a first intermediate point between the first light-shielding part and the second light-shielding part, and at a second intermediate point between the second light-shielding part and the third light-shielding part. In contact with the first surface,
    The liquid crystal layer is in contact with the second surface of the first alignment film and the third surface of the second alignment film, and has a first thickness between the second surface and the third surface at the first intermediate point. And having a second thickness between the second surface and the third surface at the second intermediate point, the second thickness being greater than the first thickness,
    The second substrate has a third thickness between the first surface and the third surface at the first intermediate point, and between the first surface and the third surface at the second intermediate point. The display device according to claim 1, further comprising a fourth thickness therebetween, wherein the fourth thickness is thinner than the third thickness.
  3.  前記第3厚さと前記第4厚さの差分は、前記第1厚さの1/6以下である、請求項2に記載の表示装置。 The display device according to claim 2, wherein a difference between the third thickness and the fourth thickness is 1/6 or less of the first thickness.
  4.  前記第3厚さと前記第4厚さの差分は、0.05μm以上0.35μm以下である、請求項2に記載の表示装置。 3. The display device according to claim 2, wherein a difference between the third thickness and the fourth thickness is 0.05 μm or more and 0.35 μm or less.
  5.  前記第1基板は、さらに、第3画素電極を備え、
     前記第2基板は、さらに、前記第3遮光部と前記第4遮光部との間において前記第3画素電極に対向し、前記第1面に接する第2着色層を備え、
     前記第1着色層と前記第2遮光部との積層体は第5厚さを有し、前記第2着色層と前記第3遮光部との積層体は第6厚さを有し、前記第5厚さは前記第6厚さより薄い、請求項4に記載の表示装置。
    The first substrate further includes a third pixel electrode,
    The second substrate further includes a second colored layer facing the third pixel electrode and in contact with the first surface between the third light shielding portion and the fourth light shielding portion,
    The laminated body of the first colored layer and the second light shielding part has a fifth thickness, the laminated body of the second colored layer and the third light shielding part has a sixth thickness, The display device according to claim 4, wherein the thickness 5 is thinner than the sixth thickness.
  6.  前記第2着色層の色は、前記第1着色層の色とは異なる、請求項5に記載の表示装置。 The display device according to claim 5, wherein a color of the second colored layer is different from a color of the first colored layer.
  7.  前記第1着色層及び前記第2着色層のうちの一方の色は赤であり、他方の色は緑である、請求項5に記載の表示装置。 6. The display device according to claim 5, wherein one of the first colored layer and the second colored layer is red and the other color is green.
  8.  前記第1基板は、さらに、第4画素電極を備え、
     前記第2基板は、さらに、前記第1面にそれぞれ接し、第2方向に間隔をおいて順に並んだ第5乃至第7遮光部と、
     前記第5遮光部と前記第6遮光部との間において、前記第4画素電極に対向し、前記第1面に接する第3着色層と、を備え、
     前記透明樹脂層は、前記第5遮光部と前記第6遮光部との間において前記第3着色層に接し、前記第6遮光部と前記第7遮光部との間において前記第1面に接し、
     前記第5遮光部と前記第3着色層とが接する第1幅は、前記第6遮光部と前記第3着色層とが接する第2幅より大きい、請求項2に記載の表示装置。
    The first substrate further includes a fourth pixel electrode,
    The second substrate is further in contact with the first surface, and is arranged in order in the second direction at intervals from the fifth to seventh light-shielding portions,
    A third colored layer facing the fourth pixel electrode and in contact with the first surface between the fifth light shielding part and the sixth light shielding part,
    The transparent resin layer is in contact with the third colored layer between the fifth light shielding portion and the sixth light shielding portion, and is in contact with the first surface between the sixth light shielding portion and the seventh light shielding portion. ,
    3. The display device according to claim 2, wherein a first width at which the fifth light-shielding portion and the third colored layer are in contact is greater than a second width at which the sixth light-shielding portion and the third colored layer are in contact.
  9.  前記第2幅は、2.5μm以下である、請求項8に記載の表示装置。 The display device according to claim 8, wherein the second width is 2.5 μm or less.
  10.  前記第3着色層と前記第5遮光部との積層体は第7厚さを有し、前記第3着色層と前記第6遮光部との積層体は第8厚さを有し、前記第8厚さは前記第7厚さより薄い、請求項8に記載の表示装置。 The laminated body of the third colored layer and the fifth light shielding part has a seventh thickness, the laminated body of the third colored layer and the sixth light shielding part has an eighth thickness, The display device according to claim 8, wherein the thickness 8 is thinner than the seventh thickness.
  11.  前記第6遮光部と前記透明樹脂層とが接する第3幅は、前記第7遮光部と前記透明樹脂層とが接する第4幅より大きい、請求項8に記載の表示装置。 The display device according to claim 8, wherein a third width at which the sixth light-shielding portion and the transparent resin layer are in contact is greater than a fourth width at which the seventh light-shielding portion and the transparent resin layer are in contact.
  12.  絶縁基板と、
     行列状に複数の開口部を形成する遮光部と、
     赤カラーフィルタ、青カラーフィルタ、及び、緑カラーフィルタと、を含むカラーフィルタ層と、
     オーバーコート層と、を備えたカラーフィルタ基板であって、
     前記複数の開口部は、第1開口部及び第2開口部を含み、
     前記カラーフィルタ層の何れか一色のカラーフィルタは、前記第1開口部に位置し、
     前記オーバーコート層は、前記第1開口部において前記カラーフィルタ層と接し、前記第2開口部において前記絶縁基板と接する第1面と、前記第1面と反対の第2面と、を有し、
     前記第1開口部における前記絶縁基板から前記第2面までの第1距離は、前記第2開口部における前記絶縁基板から前記第2面までの第2距離より大きい、カラーフィルタ基板。
    An insulating substrate;
    A light shielding portion that forms a plurality of openings in a matrix;
    A color filter layer including a red color filter, a blue color filter, and a green color filter;
    A color filter substrate comprising an overcoat layer,
    The plurality of openings includes a first opening and a second opening,
    The color filter of any one of the color filter layers is located in the first opening,
    The overcoat layer has a first surface in contact with the color filter layer in the first opening, and in contact with the insulating substrate in the second opening, and a second surface opposite to the first surface. ,
    The color filter substrate, wherein a first distance from the insulating substrate to the second surface in the first opening is greater than a second distance from the insulating substrate to the second surface in the second opening.
  13.  前記第1開口部には前記青カラーフィルタがあり、前記第1開口部及び前記第2開口部は行方向に隣接する、請求項12に記載のカラーフィルタ基板。 The color filter substrate according to claim 12, wherein the blue color filter is provided in the first opening, and the first opening and the second opening are adjacent to each other in a row direction.
  14.  前記絶縁基板は、前記行方向に延びる長辺と列方向に延びる短辺を有する、請求項13に記載のカラーフィルタ基板。 The color filter substrate according to claim 13, wherein the insulating substrate has a long side extending in the row direction and a short side extending in the column direction.
  15.  前記第1距離と前記第2距離の差分は、0.05μm以上0.30μ以下である、請求項14に記載のカラーフィルタ基板。 The color filter substrate according to claim 14, wherein a difference between the first distance and the second distance is 0.05 μm or more and 0.30 μ or less.
  16.  前記オーバーコート層の前記第1開口部における膜厚は、前記第2開口部における膜厚よりも小さい、請求項15に記載のカラーフィルタ基板。 The color filter substrate according to claim 15, wherein a film thickness in the first opening of the overcoat layer is smaller than a film thickness in the second opening.
  17.  前記カラーフィルタ基板は、さらに、スペーサを備え、前記第1距離と前記第2距離との差分は、前記スペーサ高さより小さい、請求項16に記載のカラーフィルタ基板。 The color filter substrate according to claim 16, wherein the color filter substrate further includes a spacer, and a difference between the first distance and the second distance is smaller than the spacer height.
PCT/JP2018/047598 2018-02-09 2018-12-25 Display device and color filter substrate WO2019155774A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880087637.5A CN111630418A (en) 2018-02-09 2018-12-25 Display device and color filter substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018021881A JP2019139056A (en) 2018-02-09 2018-02-09 Display and color filter substrate
JP2018-021881 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019155774A1 true WO2019155774A1 (en) 2019-08-15

Family

ID=67547941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047598 WO2019155774A1 (en) 2018-02-09 2018-12-25 Display device and color filter substrate

Country Status (3)

Country Link
JP (1) JP2019139056A (en)
CN (1) CN111630418A (en)
WO (1) WO2019155774A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104182A (en) * 2004-11-11 2009-05-14 Lg Display Co Ltd Thin film patterning apparatus and method of fabricating color filter array substrate using the same
JP2011128286A (en) * 2009-12-16 2011-06-30 Toppan Printing Co Ltd Color filter substrate, display device, and exposure method
JP2015152695A (en) * 2014-02-13 2015-08-24 三菱電機株式会社 liquid crystal display device
JP2015155953A (en) * 2014-02-20 2015-08-27 株式会社ジャパンディスプレイ liquid crystal display device
JP2016035571A (en) * 2014-07-31 2016-03-17 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Liquid crystal display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101033461B1 (en) * 2003-12-23 2011-05-11 엘지디스플레이 주식회사 Liquid crystal display device and manufacturing of the same
KR101085134B1 (en) * 2004-11-11 2011-11-18 엘지디스플레이 주식회사 Thin Film Patterning Apparatus And Method Of Fabricating Color Filter Array Substrate Using The Same
KR102189578B1 (en) * 2014-07-30 2020-12-14 삼성디스플레이 주식회사 Liquid crystal display panel and manufacturing method thereof
KR20160087047A (en) * 2015-01-12 2016-07-21 삼성디스플레이 주식회사 Display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104182A (en) * 2004-11-11 2009-05-14 Lg Display Co Ltd Thin film patterning apparatus and method of fabricating color filter array substrate using the same
JP2011128286A (en) * 2009-12-16 2011-06-30 Toppan Printing Co Ltd Color filter substrate, display device, and exposure method
JP2015152695A (en) * 2014-02-13 2015-08-24 三菱電機株式会社 liquid crystal display device
JP2015155953A (en) * 2014-02-20 2015-08-27 株式会社ジャパンディスプレイ liquid crystal display device
JP2016035571A (en) * 2014-07-31 2016-03-17 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Liquid crystal display device

Also Published As

Publication number Publication date
CN111630418A (en) 2020-09-04
JP2019139056A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP7374660B2 (en) display device
JP6980498B2 (en) Display device
WO2020075547A1 (en) Display device
WO2015033671A1 (en) Illumination device and display device
JP2018180087A (en) Display device
JP6230696B2 (en) Display device with touch panel
JP2016109791A (en) Display device
JP2019028139A (en) Display device
JP6968710B2 (en) Display device
JP2017090799A (en) Display device
JP7109956B2 (en) Display device
WO2020040246A1 (en) Display device
WO2019155774A1 (en) Display device and color filter substrate
JP2016161860A (en) Display device and color filter substrate
JP2015014670A (en) Liquid crystal display device
WO2019193856A1 (en) Display device
WO2020213253A1 (en) Display device
JP2017151246A (en) Display device
JP2019152746A (en) Display
JP2021162817A (en) Electronic apparatus
JP6707418B2 (en) Display device, method of manufacturing display device, and color filter substrate
JP2015094909A (en) Liquid crystal display device
US11656505B2 (en) Display device
JP7391736B2 (en) Display devices and semiconductor substrates
JP7326558B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905150

Country of ref document: EP

Kind code of ref document: A1