WO2019155552A1 - 配車管理システム、記録媒体および方法 - Google Patents

配車管理システム、記録媒体および方法 Download PDF

Info

Publication number
WO2019155552A1
WO2019155552A1 PCT/JP2018/004204 JP2018004204W WO2019155552A1 WO 2019155552 A1 WO2019155552 A1 WO 2019155552A1 JP 2018004204 W JP2018004204 W JP 2018004204W WO 2019155552 A1 WO2019155552 A1 WO 2019155552A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
control instruction
threshold value
phase
transport vehicle
Prior art date
Application number
PCT/JP2018/004204
Other languages
English (en)
French (fr)
Inventor
岳大 伊藤
永哉 若山
小西 啓治
小川 雅嗣
Original Assignee
日本電気株式会社
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 公立大学法人大阪府立大学 filed Critical 日本電気株式会社
Priority to PCT/JP2018/004204 priority Critical patent/WO2019155552A1/ja
Priority to JP2019570202A priority patent/JP6991449B2/ja
Publication of WO2019155552A1 publication Critical patent/WO2019155552A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to an apparatus for managing a plurality of transport vehicles and a control method thereof.
  • a production method called cell production forms an overall large production process by connecting a work process called a cell and a transfer process called water sushi that connects the processes.
  • a transfer process called water sushi that connects the processes.
  • Patent Document 1 describes that a transport vehicle is arranged by changing the order so that the number of times of transport is minimized by an optimization method in consideration of daily orders and various parameters.
  • Patent Document 2 describes that a transport vehicle is selected and dispatched from information such as a current position and a work start position. In addition, it is described that the route is changed by judging the interference of the route with the vehicle.
  • Patent Document 3 describes that the most suitable transport vehicle is selected and dispatched from information such as fuel consumption to the destination and required time.
  • Patent Document 4 describes that information on obstacles on a route to a destination, information on other transport vehicles, and the like are acquired and dispatched.
  • the schedule-based method as in Patent Document 1 cannot cope with various disturbances that occur during actual operation. Such disturbances may include, for example, equipment failures, transport vehicle failures, and worker vacancies. Cell production in particular is subject to significant fluctuations in production. In general, the optimization method requires a lot of information. For this reason, the investment cost for acquiring information increases.
  • Fig. 1 shows the deterioration of efficiency (left) due to traffic jam (Automated Guided Vehicle, AGV) and how it is resolved (right).
  • AGV Automated Guided Vehicle
  • FIG. 1 shows the deterioration of efficiency (left) due to traffic jam (Automated Guided Vehicle, AGV) and how it is resolved (right).
  • AGV Automated Guided Vehicle
  • FIG. 1 shows the deterioration of efficiency (left) due to traffic jam (Automated Guided Vehicle, AGV) and how it is resolved (right).
  • AGV Automated Guided Vehicle
  • AGV repeats the following operations (1) to (3). (1) Go to the parts store and pick parts. (2) Replenish the cell in charge of the member. (3) Acquire Kanban and go to the parts store.
  • the parts store is shared by each AGV. For this reason, when a plurality of AGVs are used simultaneously, clogging occurs due to congestion.
  • the left half of FIG. 1 schematically shows such a situation.
  • 5 vehicles AGV
  • AGV member picking in the parts store is a bottleneck.
  • the cycle time of each transporter vehicle has been extended, leading to a deterioration in long-term efficiency as a whole. In order to avoid such a decrease in efficiency, a technique that prevents AGV from concentrating in one place is necessary.
  • Patent Document 4 proposes a method for grasping the congestion situation in real time and considering the dispatch.
  • using the congestion situation in real time has a problem that it costs equipment investment such as laying sensors and preparing communication facilities.
  • the present invention has been made in view of such circumstances, and the problem to be solved by the present invention is to prevent location and time concentration of the transport vehicle in a robust manner even when there is fluctuation in the production amount, and It is to provide a vehicle allocation management system for a transport vehicle that can be operated with a small amount of information and has a low introduction cost.
  • the present invention has, as one aspect thereof, information acquisition means that is means for acquiring process information, which is information related to the progress of work of a process, from each process in real time; Phase calculation means, which is means for calculating a phase index indicating the progress of the current work of the process in the process cycle based on the process information and the process cycle corresponding to the required time per process And a control instruction means that is a means for generating a control instruction for instructing movement to the process based on the phase index of one process and transmitting it to a waiting transport vehicle. To do.
  • the present invention provides, as another aspect, information acquisition means that is means for acquiring process information that is information related to the progress of work of a process from each process in real time, the process information of one process, and A phase calculation means that is a means for calculating a phase index indicating the progress of the current work of the process in the process cycle based on a process cycle corresponding to a required time per process, and one process Based on the phase index, a machine instruction is recorded, which records a program for causing a computer to function as a control instruction means that generates a control instruction for instructing movement to the process and transmits the control instruction to a waiting transport vehicle A possible recording medium is provided.
  • the present invention provides, as one aspect, an information acquisition stage, which is a stage for acquiring process information, which is information related to the progress of a process work, from each process in real time, the process information of one process,
  • a phase calculation step which is a step of calculating a phase index indicating the progress of the current work of the process in the process cycle based on a process cycle corresponding to a required time per process, and one process
  • a control instruction step which is a step of generating a control instruction for instructing movement to the process based on the phase index and transmitting it to a waiting transport vehicle.
  • the dispatch management system of a conveyance vehicle can be provided at introduction cost.
  • FIG. 2 shows the overall configuration of the vehicle allocation management system 200 according to the first embodiment.
  • the vehicle allocation management system 200 includes an information acquisition unit 11, a phase calculation unit 12, and a control instruction unit 13.
  • the vehicle allocation management system 200 is a system for managing the allocation of a plurality of transport vehicles in a factory or warehouse having a plurality of processes.
  • the vehicle allocation management system 200 includes a communication device that communicates with each of a plurality of processes and a communication device arranged in each of the plurality of transport vehicles.
  • Communication with a process and a conveyance vehicle may be communication via a wired network, and may be communication via a wireless network.
  • communication devices are arranged in each cell and each transport vehicle, and communication is performed with these communication devices.
  • the information acquisition unit 11 has a function of acquiring process information from each process in real time.
  • the process information is information regarding the progress of work in the process.
  • the process information is, for example, the work performance of the process and the amount of articles that have been completed in the process and are waiting to be transported.
  • the process information can use the amount of the product stored in the output buffer of the cell responsible for the process as the process information.
  • the information acquisition unit 11 acquires process information at sufficiently short time intervals as compared to the time required for each process and the time required for a transport vehicle to move once. To do.
  • the phase calculation unit 12 calculates a phase index for each process.
  • the phase index is calculated based on the current process information and the process cycle.
  • the current process information is received from the information acquisition unit 11.
  • the process cycle is the time required per process. In each step, the same processing is repeatedly performed.
  • a process cycle is a time period required to execute this repeated process once based on past work results.
  • a preset value may be stored in the storage device of the vehicle allocation management system 200.
  • a value calculated by performing statistical processing on the process information acquired by the information acquisition unit 11 may be used as the process cycle.
  • each process consists of a production process and an output buffer
  • the transport vehicle transports the product accumulated in the output buffer to the next process.
  • the amount of the product accumulated in the output buffer becomes zero after being transported to the next process by the transport vehicle, then increases with production in the production process, and is zero again by transport to the next process by the transport vehicle. Is repeated. For this reason, the time until the product stored in the output buffer becomes zero again can be used as the process cycle.
  • the process cycle it is conceivable that the time required for one process is measured a plurality of times, and a statistic obtained from these measured values is used as a process cycle. For such statistics, an average value, a median value, a mode value, or the like can be used. Moreover, you may use as a process period based on the value which measured the required time when the process was performed last time. Alternatively, a value arbitrarily determined by a person who manages using the dispatch management system 200 (hereinafter referred to as a manager) based on his / her own experience may be used as the process cycle.
  • a manager a person who manages using the dispatch management system 200
  • the phase index is a value determined by paying attention to the periodicity of work in each process.
  • the phase index is a position indicating the position of the current work progress of the process in the process cycle of the process, that is, an index indicating the phase.
  • the unit of phase is [rad] (radian), but it may be converted to [deg] (degrees).
  • the maximum phase is represented by 2 ⁇ [rad]
  • the phase of 0 seconds is 0 [rad].
  • the phase of 50 seconds is ⁇ [rad].
  • the phase for 100 seconds is 2 ⁇ [rad] and 0 [rad].
  • each process consists of a production process and an output buffer
  • the transport vehicle transports the product accumulated in the output buffer to the next process.
  • the transport vehicle receives a product from the output buffer every 100 seconds on average and starts the next process.
  • the process information is the amount of product stored in the output buffer.
  • the process cycle can be set to 100 seconds.
  • the control instruction unit 13 generates a control instruction for instructing movement to the process based on the phase information of the process.
  • the control instruction unit 13 transmits the generated control instruction to one of the waiting transport vehicles.
  • FIG. 3 is a diagram illustrating a hardware configuration example of the computer 400 that implements the vehicle allocation management system 200.
  • the computer 400 includes a CPU (Central Processing Unit) 401, a ROM (Read Only Memory) 402, a RAM (Random Access Memory) 403, a storage device 404, a drive device 405, a communication IF (InterFace) 406, and an input. And an output IF (InterFace) 407.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 401 uses the RAM 403 to execute a computer program (program) 408.
  • the communication IF 406 exchanges information with an external device via the information communication network 410.
  • the input / output IF 407 exchanges information with peripheral devices (such as an input device and a display device).
  • the communication IF 406 and the input / output IF 407 can function as components that acquire or output information.
  • the program 408 may be stored in the ROM 402.
  • the program 408 may be stored in a storage medium 409 such as a memory card and read by the drive device 405, or may be received from an external device via the information communication network 410.
  • control device of the vehicle allocation management system 200 is realized by the CPU 401
  • storage device is realized by the ROM 402, the RAM 402, and the storage device 404.
  • the components of the computer 400 shown in FIG. 3 may be configured by a single circuit (such as a processor) or a combination of a plurality of circuits.
  • the circuit here may be either dedicated or general purpose.
  • part of the computer 400 may be realized by a dedicated processor, and the other part may be realized by a general-purpose processor.
  • the functions of the computer 400 may be realized by cooperation of a plurality of computers using, for example, cloud computing technology.
  • the information acquisition unit 11 acquires process information (S101).
  • the phase calculation unit 12 calculates a phase index based on the acquired process information and the process cycle (S102). Here, it is assumed that the process cycle is given in advance.
  • control instruction unit 13 calculates a control instruction based on the calculated phase index (S103). For example, if the control target is to match the phase, a control instruction to match the phase is calculated.
  • step S103 it is conceivable to adjust the phase by controlling the process, but it is generally difficult to control the process in cell production. Therefore, the phase of the process is controlled by AGV dispatch.
  • the control instruction unit 13 calculates a control instruction for slightly delaying the conveyance timing for the conveyance vehicle in charge of the process 1, and transmits the calculation instruction to the conveyance vehicle.
  • the control instruction for delaying the transport vehicle include a control instruction for delaying the time when the transport vehicle departs a process, a control instruction for reducing the moving speed of the transport vehicle, a control instruction for detouring the transport vehicle, and a combination thereof. It is done.
  • a delay control instruction that delays transport for 10 seconds per transport is calculated and transmitted to the transport vehicle.
  • the control instruction unit 13 ends the delay control instruction. If the phase difference between step 1 and step 2 deviates from ⁇ for some reason, the control instruction unit 13 issues a delay control instruction to either step 1 or 2, for example. Control to become.
  • FIG. 1 shows five AGV-A, AGV-B, AGV-C, and AGV-D, respectively responsible for cells A, B, C, D, and E, similar to the left side of FIG.
  • the state when AGV-E is managed by the vehicle allocation management system 200 is shown. As illustrated, the timing of using the parts store by the AGV-A, AGV-B, AGV-C, AGV-D, and AGV-E is shifted by the control of the vehicle allocation management system 200. For this reason, congestion in the parts store does not occur.
  • the phase indicates a relative work phase that does not depend on the speed information of the transport vehicle, and is highly versatile information. In addition, by using process information, it is possible to perform robust control while reflecting on-site information even if the production volume fluctuates.
  • the vehicle allocation management system 200 includes an information acquisition unit 11, a phase calculation unit 12, a control instruction unit 13, and a storage unit 14.
  • the storage unit 14 is a storage device.
  • the storage unit 14 stores information such as process information, control parameters, control expressions, and past work results. Further, the storage unit 14 stores information indicating a correspondence relationship between a process and a transport vehicle in charge of the process.
  • the storage unit 14 stores a threshold th (x) of each process.
  • the storage unit 14 updates the currently stored threshold value th (x) of each process with the next threshold value calculated by the control instruction unit 13.
  • the information acquisition unit 11, the phase calculation unit 12, and the control instruction unit 13 have a function of acquiring and updating process information stored in the storage unit 14. Prepare.
  • Process i consists of a production process (gear type) and an output buffer.
  • the production process processes the product at an appropriate speed v i (t).
  • the processed product is stored in the output buffer and waits for transport by the transport vehicle.
  • x i (t) be the amount of product currently stored in the output buffer.
  • step i when the product accumulated in the output buffer reaches a predetermined amount, the vehicle allocation management system 200 allocates the transport vehicle in charge of step i.
  • This predetermined amount is set as a threshold th i (t).
  • the transport vehicle that has come to the process i transports all the products stored in the output buffer of the process i to the next process after the process i.
  • the graph on the right side of FIG. 6 shows the relationship between the amount of product accumulated in the output buffer amount and the passage of time.
  • the vertical axis of the graph represents the amount of product x i (t) accumulated in the output buffer of step i.
  • the horizontal axis of the graph represents time t.
  • the product quantity x i (t) in the output buffer is reset to zero at the timing when the transport vehicle receives the product from the process i and departs. It can be seen that the output buffer product quantity x i (t) is periodically reset to zero.
  • the phase of this periodic operation is modulated by adjusting the threshold th i (t).
  • This operation can be formulated as the following equation (1) as a model of a nonlinear oscillator called a relaxation oscillator.
  • the time t to reach the threshold th i (t) can be adjusted.
  • cell production includes manual assembly processes. For this reason, it is generally difficult to adjust the production speed. Therefore, the time t reaching the threshold is adjusted by modulating the threshold th i (t).
  • the time from when the buffer amount of each cell becomes 0 to the threshold value th i (t) is defined as one period (that is, 2 ⁇ [rad]).
  • the phase ⁇ i can be obtained from the current buffer amount x i (t) and the current threshold th i (t) as shown in the following equation (2).
  • the phase ⁇ i corresponds to a phase index.
  • the threshold value can be adjusted and the phases can be aligned based on the following equations (3) and (4) and the phase information. It is assumed that the transport vehicle that starts the process i and the transport vehicle that starts the process j are both directed to the same destination (process).
  • N is a natural number representing the number of steps that are coupled.
  • the time for reaching the threshold value can be lengthened, the phase can be delayed, and the period can be extended.
  • the time for reaching the threshold value can be shortened, the phase can be advanced, and the cycle can be shortened.
  • the two graphs on the right side of FIG. 7 represent time changes of the buffer amount x i (t) of the process i and the buffer amount x j (t) of the process j, respectively.
  • the period of the buffer amount x i (t) is longer than the period of the buffer amount x j (t).
  • the cycle is shortened to approach the cycle of the step j.
  • the threshold th j (x) of the process j the period is extended to approach the period of the process i.
  • step i and step j are matched.
  • x i (t) and x j (t) are synchronized.
  • x i (t) and x j (t) are reversely synchronized (synchronized with a phase difference of ⁇ rad).
  • the coefficient k is referred to as a coupling parameter. It is said that the transport vehicles that have started from their own process are connected to the same destination.
  • the coupling parameters are defined during the processes that are coupled to each other.
  • the combination parameter defines the time interval at which transport vehicles starting from the combined processes arrive at the same destination.
  • a combination parameter k ij is provided between step i and step j.
  • the matrix of FIG. 8 has a coupling parameter k ij as an element. Such a matrix is called a coupling matrix.
  • the coupling matrix of FIG. 8 has 16 elements ⁇ k 11 , k 12 ,..., K 43 , k 44 ⁇ in order from the upper left.
  • the diagonal component is 0 in the coupling matrix of the lower “two-pair synchronization” in FIG. This means that it does not combine with its own process.
  • step i is combined with N steps, N combination parameters are required to calculate equation (4) to determine the threshold th i (t).
  • the period between the process i and the process j can be appropriately shifted. Furthermore, even if it is the period of two or more processes, it can shift appropriately. This will be described with reference to FIG. Assume that the output buffer amounts in the four steps 1 , 2 , 3 , and 4 are x 1 , x 2 , x 3 , and x 4 in order. As shown in FIG. 8, the synchronization pattern of x 1 , x 2 , x 3 , x 4 can be designed by appropriately determining the coupling parameter k.
  • the coupling parameter k described at the top of FIG. 8 synchronizes x 1 , x 2 , x 3 , x 4 .
  • x 1 , x 2 , x 3 , and x 4 are shifted at equal time intervals.
  • the storage unit 14 stores in advance the current threshold values th i (t), th j (t),.
  • the information acquisition unit 11 acquires buffer amounts x i (t), x j (t),..., Which are process information, from each of the processes i, j,.
  • the information acquisition unit 11 acquires the thresholds th i (t), th j (t),... Of each process from the storage unit 14 (S202).
  • the phase calculation unit 12 uses the buffer amounts x i (t), x j (t),..., And thresholds th i (t), th j (t),.
  • the phase indexes ⁇ i , ⁇ j ,... In each process are calculated (S203).
  • the control instruction unit 13 sets the next thresholds th i (t), th j (t),. Is calculated.
  • the control instruction unit 13 updates the threshold information in the storage unit 14 with the calculated threshold value (S204).
  • the control instructing unit 13 compares the updated threshold value with the current buffer amount (S205), and if the buffer amount exceeds the threshold value, dispatches a transport vehicle to the process (S206). When the current buffer amount x i (t) is larger than the updated threshold th i (t), the control instruction unit 13 dispatches the transport vehicle to the process i. Similarly, when the current buffer amount x j (t) is larger than the updated threshold value th j (t), the control instruction unit 13 dispatches the transport vehicle to the process j.
  • the accumulated product is transported by the transport vehicle in the process cycle of each process (in this embodiment, in the output buffer of the process). After that, the product is accumulated again, and the period until it is next transported by the transport vehicle) can be adjusted to match the length of each process cycle.
  • a synchronization pattern composed of a plurality of processes can be appropriately determined by shifting the periods of the processes having lengths that coincide with each other.
  • the coupling parameter k in equation (4) is set appropriately.
  • the negative coupling parameter k is specified to shift the timing of the two processes, the periods in which the transport vehicle arrives and departs in the two processes coincide with each other, and the phases of the processes depart and arrive in opposite phases.
  • the arrival time at the destination may be shifted if the transport vehicles depart and arrive in opposite phases. For this reason, it becomes difficult to generate congestion around the destination. The case where the distances to the destination are not equal will be described in the third embodiment.
  • the pull-in phenomenon of the nonlinear vibrator is used for the dynamics of arrival and departure of the transport vehicle.
  • the dispatch management according to the present embodiment has a characteristic that is strong against disturbance. That is, even if the production speed of the process fluctuates somewhat, there is an advantage that the arrival and departure timings of the transport vehicles in the two processes are stably synchronized.
  • the method according to the present embodiment performs synchronization using only limited information such as process information of a process to be synchronized and threshold information only. Therefore, compared with other methods, for example, a method of acquiring the congestion situation of the transport vehicle in real time and reflecting it in the control, there is an advantage that the initial investment cost such as the installation of the sensor or the maintenance of the communication facilities can be suppressed. .
  • the phase information is calculated using the buffer amount and the threshold value as the process information.
  • the phase information may be information that varies periodically.
  • the progress information of one assembly in the process may be phase information.
  • it may be the difference between the buffer amount waiting for conveyance in the current process and the buffer amount waiting for work in the next process.
  • the coupling parameter k is set to a negative value as shown in the middle part of FIG. 8 mainly described. This is because it is particularly assumed that transport vehicles that have started from the respective steps avoid arriving at the same destination at the same time. However, on the contrary, depending on the convenience of the destination process, it may be desirable for the transport vehicles that depart from each process to arrive at the same time. Such a case can be dealt with by setting the coupling parameter k to a positive value as shown in the upper part of FIG. Furthermore, as shown in the lower part of FIG. 8, complicated synchronization is possible in which four processes are made into two pairs, the processes of the same pair are synchronized with each other, and the processes of different pairs are synchronized with each other.
  • the coupling parameters between processes are fixed.
  • the coupling parameter is dynamically changed.
  • the storage unit 14 stores at least the coupling parameter k ij included in Expression (4).
  • the coupling parameter is updated based on a predetermined criterion. Thereby, the synchronous / asynchronous of the arrival and departure of the transport vehicle in a plurality of processes is switched. When the difference in production speed between the processes becomes large, the coupling parameter between the processes is updated to 0, so that the transport vehicle is controlled to be asynchronously moved between the processes.
  • the information acquisition unit 11 acquires the buffer amounts x i (t), x j (t),... That are process information from the respective processes i, j,.
  • the information acquisition unit 11 acquires the current thresholds th i (t), th j (t),... Of each process, which is process information, from the storage unit 14 (S302).
  • the information acquisition unit 11 acquires, from the storage unit 14, the inter-process coupling parameter k ij that is the process information (S303).
  • the phase calculation unit 12 calculates the phase indexes ⁇ i , ⁇ j ,... In each step from the obtained buffer amount and threshold value based on the equation (2) (S304).
  • control instruction unit 13 calculates the next threshold value for each step from the obtained phase index based on the equation (4), and updates the threshold information currently stored in the storage unit 14. (S305).
  • control instruction unit 13 compares the updated threshold value with the current buffer amount (S306). When the buffer amount exceeds the threshold value, the control instruction unit 13 dispatches the transport vehicle (S307).
  • control instruction unit 13 determines whether or not to update the combination parameter based on the information obtained from the information acquisition unit 11 (S308).
  • the information acquisition unit 11 acquires the production speeds v i (t) and v j (t) as process information from each of the processes i and j.
  • the control instruction unit 13 calculates a difference between v i (t) and v j (t), that is, a production speed difference, and compares the production speed difference with a predetermined reference value. When the production speed difference exceeds the reference value, the control instruction unit 13 determines to update the coupling parameter to 0.
  • the coupling parameter is set to 0 for the following reason.
  • the difference in production speed between the process i and the process j is larger than a certain level, it becomes difficult to match the periods of the process i and the process j, and if they are forced to match, the overall efficiency may be deteriorated.
  • the coupling parameter is updated to 0.
  • the coupling parameter is set to 0 the arrival and departure of the transport vehicle in the step i and the arrival and departure of the transport vehicle in the step j are performed at periods independent from each other.
  • control instruction unit 13 updates the coupling parameter stored in the storage unit 14 (S309).
  • the coupling parameter can be changed according to the difference in production speed between processes. For this reason, according to the comparison situation of the production situation between processes, the pattern which dispatches a conveyance vehicle to each process can be changed.
  • the coupling parameter is set to zero. For this reason, a process moves in each autonomous period, without synchronizing. Thereby, in the situation where the production speed between processes changes extremely, it can prevent that the whole efficiency deteriorates by synchronizing the arrival and departure of the conveyance vehicle to a some process.
  • the coupling parameter instead of updating the coupling parameter to 0, it can be updated to a positive value, for example, 1 to temporarily synchronize the arrival and departure of the transport vehicle in a plurality of processes.
  • a binding parameter k ij corresponding to each product is stored in the storage unit, the next product information is acquired from the information acquisition unit 11, and an appropriate k ij is calculated from the storage unit when the control instruction unit calculates. It may be obtained and used. For example, when two parts are assembled to make one part, it is desirable that the original parts arrive at the same time. Therefore, it is possible to control whether to synchronize for each product or reverse synchronization.
  • processes having an arbitrary phase difference are synchronized with each other by extending the synchronization equation (4) in the second embodiment by using the phase difference parameter.
  • the phase difference parameter is obtained by converting the time required for the transport vehicle that has started the process to arrive at the destination into a phase difference in the process cycle.
  • the storage unit 14 stores the phase difference parameter ⁇ ij .
  • the basic configuration of the vehicle allocation management system 200 is the same as that of the second embodiment.
  • the second embodiment is based on the premise that the distance that the transport vehicle moves from step i to the destination and the distance that the transport vehicle moves from another step j to the same destination are substantially equal.
  • a case where these distances are different from each other is considered.
  • the time required from each process to the destination is also different.
  • the timing at which the transport vehicle departs from a certain process is adjusted according to the travel distance of the transport vehicle. Thereby, the timing of arrival at the destination is controlled even when the moving distance of the transport vehicle is different.
  • a phase difference parameter ⁇ ij corresponding to a delay time of the transport vehicle starting from step i with respect to the transport vehicle starting from step j is expressed by the following equation (6).
  • equation (6) is expanded to equations (7) and (8), respectively, in equations (3) and (4) used in the second embodiment.
  • the information acquisition unit 11 acquires buffer amounts x i (t), x j (t)... As process information from each process (S401).
  • the information acquisition unit 11 acquires the current thresholds th i (t), th j (t),... Of each process, which is process information, from the storage unit 14 (S402).
  • the information acquisition unit 11 acquires the phase difference parameter ⁇ ij of each process, which is process information, from the storage unit 14 (S403).
  • phase calculation unit 12 calculates phase indexes ⁇ i , ⁇ j ,... In each step from the obtained buffer amount and threshold value based on the equation (2) (S404).
  • control instruction unit 13 calculates the next threshold value for each step from the obtained phase index based on the equation (8), and updates the threshold information in the storage unit 14 (S405).
  • the control instruction unit 13 compares the updated threshold value with the current buffer amount (S406). When the buffer amount exceeds the threshold value, the control instruction unit 13 dispatches the transport vehicle (S407).
  • the departure and arrival of the transport vehicle may be delayed from the schedule.
  • the time at which the buffer amount reaches the threshold value may be behind schedule.
  • some trouble or accident may occur during the movement of the transport vehicle from one process to the next process, and the arrival of the transport vehicle may be delayed. Such a delay can be eliminated by modifying the above-described fourth embodiment.
  • topology information between processes such as factories and warehouses that manage vehicle allocation by the vehicle allocation management system 200 is stored in the storage unit 14 in advance. Based on this topology information, the phase difference parameter is stored in the storage unit 14 for each destination from each process.
  • the information acquisition unit 11 detects in real time whether or not a delay has occurred based on the process information acquired from each process.
  • the phase calculation unit 12 obtains a phase difference parameter corresponding to the delay time.
  • the phase calculation unit 12 stores the phase difference parameter in the storage unit 14 in association with the process.
  • the information acquisition unit 11 obtains a difference between the actual arrival and departure times of the transport vehicle in each step and the scheduled departure and arrival times calculated in advance. The information acquisition unit 11 determines whether there is a delay based on the difference. When the information acquisition unit 11 determines that there is a delay for a certain process, the phase calculation unit 12 obtains a phase difference parameter based on the difference. The storage unit 14 stores the phase difference parameter obtained by the phase calculation unit 12 in association with the process. When calculating the threshold value of the process, the control instruction unit 13 reads the phase difference parameter stored in association with the process from the storage unit 14 and applies it to Expression (8). When calculating the next threshold value in step S405, the control instruction unit 13 adds the phase difference parameter resulting from the above-described delay to the phase difference parameter acquired in step S403, and applies the result to equation (8).
  • the information acquisition unit 11 acquires delay information from the process information (S411). Next, a phase difference parameter is calculated based on Expression (4) (S412). The obtained phase parameter is stored in the storage unit 14 (S413).
  • the present invention is not limited to the above-described embodiments and modifications.
  • the vehicle allocation management system 200 is realized by the general-purpose computer 400, a part or all of the information acquisition unit 11, the phase calculation unit 12, the control instruction unit 13, and the storage unit 14 are, for example, a dedicated integrated circuit It may be designed as a dedicated hardware.
  • the vehicle allocation management system 200 has been described on the premise that the vehicle allocation management system 200 is disposed outside the transport vehicle to be managed. However, the vehicle allocation management system 200 may be mounted on any one of the transport vehicles or on each transport vehicle.
  • control instruction unit 13 controls the correction of the synchronization pattern by transmitting a control instruction for delaying the conveyance timing to some of the conveyance vehicles constituting the synchronization pattern. Instructions were sent primarily. Instead of issuing such a control instruction for delaying the conveyance timing, the synchronization pattern may be corrected by issuing a control instruction for advancing the conveyance timing to some of the conveyance vehicles.
  • Such control instructions include, for example, a control instruction for advancing the time at which the transport vehicle departs the process, a control instruction for increasing the travel speed of the transport vehicle, and a travel route that is not normally used for the transport vehicle A control instruction to be instructed or a combination of these is conceivable.
  • Information acquisition means that is means for acquiring process information, which is information related to the progress of work in the process, from each process in real time; Means for calculating a phase index indicating the progress of the current work of the process in the process cycle based on the process information of the process and the process cycle corresponding to the required time per process
  • a phase calculation means A vehicle allocation management system comprising: control instruction means that is a means for generating a control instruction for instructing movement to a process based on the phase index of one process and transmitting the control instruction to a waiting transport vehicle.
  • control instruction means instructs to move to the process based on a predetermined threshold for the process information of one process and the current process information acquired for the process by the information acquisition means.
  • the control instruction means includes A first threshold that is the process information of the first process based on the phase index of the first process and the phase index of the second process that is a process different from the first process. And a second threshold that is a threshold for the process information of the second process, Based on the first threshold value and the process information of the first process, generate a control instruction to instruct the movement to the first process, The vehicle allocation management system according to attachment 2, wherein a control instruction for instructing movement to the second process is generated based on the second threshold value and the process information of the second process.
  • the control instruction means calculates the new threshold value by applying the current threshold value of one step to a predetermined mathematical formula, and updates the current threshold value with the new threshold value. 3.
  • the vehicle allocation management system according to 3.
  • the control instruction means includes The phase index of each of a plurality of processes such that a transport vehicle starting from the own process heads to a common destination, Calculating the threshold value of each of the plurality of steps based on a mathematical formula including a combination parameter that is a parameter that defines a time interval when the transport vehicle starting from each of the plurality of steps arrives at the destination;
  • the vehicle allocation management system according to attachment 4.
  • Appendix 6 The vehicle allocation management system according to appendix 5, wherein the instruction unit updates the combination parameter based on the current process information acquired from each of the plurality of processes by the information acquisition unit.
  • the control instruction means includes The phase index of one step;
  • the threshold value of the process is calculated based on a formula including a phase difference parameter that is a parameter obtained by converting a required time until the transport vehicle that has started the process arrives at the destination into a phase difference in the process cycle.
  • the process includes a process for performing a predetermined process on the article, and a buffer for storing the article that has been processed in the process.
  • the process information is information determined based on the amount of articles currently stored in the buffer
  • the process cycle is a time that is determined based on a required time from when the article accumulated in the buffer is received by the transport vehicle until it reaches an amount corresponding to a predetermined threshold
  • the phase index is determined based on a ratio between an amount corresponding to the threshold and an amount corresponding to the process information.
  • Appendix 10 10. The vehicle allocation management system according to any one of appendix 1 to appendix 9, wherein the process cycle is a statistic based on an actual measurement value obtained by actually measuring a time required for the process multiple times.
  • Appendix 11 10. The vehicle allocation management system according to any one of appendix 1 to appendix 9, wherein the process cycle is a required time when the process was performed last time.
  • Information acquisition means that is means for acquiring process information, which is information related to the progress of work in the process, from each process in real time; Means for calculating a phase index indicating the progress of the current work of the process in the process cycle based on the process information of the process and the process cycle corresponding to the required time per process
  • a phase calculation means A program for causing a computer to function as a control instruction means that is a means for generating a control instruction for instructing movement to a process based on the phase index of one process and transmitting the control instruction to a waiting transport vehicle is recorded.
  • a machine-readable recording medium A machine-readable recording medium.
  • control instruction means instructs to move to the process based on a predetermined threshold for the process information of one process and the current process information acquired for the process by the information acquisition means.
  • the control instruction means includes A first threshold that is the process information of the first process based on the phase index of the first process and the phase index of the second process that is a process different from the first process. And a second threshold that is a threshold for the process information of the second process, Based on the first threshold value and the process information of the first process, generate a control instruction to instruct the movement to the first process, 14.
  • the control instruction means applies the current threshold value of one step to a predetermined mathematical formula, calculates a new threshold value, and updates the current threshold value with the new threshold value. 14.
  • the control instruction means includes The phase index of each of a plurality of processes such that a transport vehicle starting from the own process heads to a common destination, Calculating the threshold value of each of the plurality of steps based on a mathematical formula including a combination parameter that is a parameter that defines a time interval when the transport vehicle starting from each of the plurality of steps arrives at the destination;
  • the recording medium according to appendix 15.
  • Appendix 17 The recording medium according to appendix 16, wherein the instruction unit updates the combination parameter based on the current process information acquired from each of the plurality of processes by the information acquisition unit.
  • the control instruction means includes The phase index of one step;
  • the threshold value of the process is calculated based on a formula including a phase difference parameter that is a parameter obtained by converting a required time until the transport vehicle that has started the process arrives at the destination into a phase difference in the process cycle.
  • the recording medium according to appendix 15.
  • the process includes a process for performing a predetermined process on the article, and a buffer for storing the article that has been processed in the process.
  • the process information is information determined based on the amount of articles currently stored in the buffer
  • the process cycle is a time that is determined based on a required time from when the article accumulated in the buffer is received by the transport vehicle until it reaches an amount corresponding to a predetermined threshold
  • the phase index is determined based on a ratio between an amount corresponding to the threshold and an amount corresponding to the process information.
  • the recording medium according to any one of appendix 12 to appendix 19.
  • Appendix 21 The recording medium according to any one of appendix 12 to appendix 20, wherein the process cycle is a statistic based on an actual measurement value obtained by actually measuring the time required for the process multiple times.
  • Appendix 22 The recording medium according to any one of appendix 12 to appendix 20, wherein the process cycle is a time required when the process was performed last time.
  • An information acquisition stage which is a stage for acquiring process information, which is information related to the progress of the process work, from each process in real time;
  • a phase calculation stage which is A vehicle allocation management method, comprising: a control instruction step which is a step of generating a control instruction for instructing movement to the process based on the phase index of one process and transmitting the control instruction to a waiting transport vehicle.
  • the control instruction step is a control for instructing movement to the step based on a predetermined threshold for the step information of one step and the current step information acquired for the step by the information acquisition step.
  • the control instruction step includes A first threshold that is the process information of the first process based on the phase index of the first process and the phase index of the second process that is a process different from the first process. And a second threshold that is a threshold for the process information of the second process, Based on the first threshold value and the process information of the first process, generate a control instruction to instruct the movement to the first process, 25.
  • the control instruction step calculates the new threshold value by applying the current threshold value of one process to a predetermined mathematical formula, and updates the current threshold value with the new threshold value.
  • the vehicle allocation management method according to 25 is the same.
  • the control instruction step includes The phase index of each of a plurality of processes such that a transport vehicle starting from the own process heads to a common destination, Calculating the threshold value of each of the plurality of steps based on a mathematical formula including a combination parameter that is a parameter that defines a time interval when the transport vehicle starting from each of the plurality of steps arrives at the destination; The vehicle allocation management method according to attachment 26.
  • Appendix 28 28.
  • the control instruction step includes The phase index of one step;
  • the threshold value of the process is calculated based on a formula including a phase difference parameter that is a parameter obtained by converting a required time until the transport vehicle that has started the process arrives at the destination into a phase difference in the process cycle.
  • (Appendix 30) Based on the process information of one process, determine the presence or absence of a delay related to the process, If it is determined that there is a delay, calculate the phase difference parameter, which is a parameter obtained by converting the delay time into a phase difference in the process cycle of the process, The vehicle allocation management method according to attachment 29, wherein the threshold value of the process is calculated based on a mathematical formula including the phase index of the process and the phase difference parameter.
  • the process includes a process for performing a predetermined process on the article, and a buffer for storing the article that has been processed in the process.
  • the process information is information determined based on the amount of articles currently stored in the buffer
  • the process cycle is a time that is determined based on a required time from when the article accumulated in the buffer is received by the transport vehicle until it reaches an amount corresponding to a predetermined threshold
  • the phase index is determined based on a ratio between an amount corresponding to the threshold and an amount corresponding to the process information.
  • the dispatch management method according to any one of supplementary notes 23 to 30.
  • Appendix 32 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Factory Administration (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

生産量に揺らぎがあってもロバストに搬送車の場所的・時間的な集中を防ぎ、かつ、少ない情報で運用可能な、導入コストが低い搬送車の配車管理システムを提供する。工程の作業の進捗に関する情報である工程情報を、各工程からリアルタイムに取得し、一の工程の工程情報と、その工程の一回当たりの所要時間に対応する工程周期とに基づいて、工程周期の中におけるその工程の現時点の作業の進捗を示す位相指標を算出し、位相指標に基づいて、その工程への移動を指示する制御指示を生成し、待機中の搬送車に送信する。

Description

配車管理システム、記録媒体および方法
 本発明は、複数の搬送車を管理する装置およびその制御方法に関する。
 最近では消費者のニーズの多様化が著しく、大量生産・大量消費の時代から、少量多品種・変種変量生産へとシフトが起きている。工場や倉庫などでは、労働力不足を補う観点や、大規模設備敷設のコスト抑制の観点等から、搬送車などの自動搬送車の活用が期待されている。
 たとえば、セル生産とよばれる生産方式は、セルと呼ばれる作業工程と、工程間をつなぐ水すましと呼ばれる搬送工程が連なることにより、全体の大きな生産工程を形成している。自動搬送車を用いる生産工程でも同様である。
 典型的なケースでは、セルには人が配置され、人が作業を行う。人の生産性はばらつきが多いので、セルの生産性を厳密にコントロールするのは困難である。搬送車を適切に制御することにより、生産工程全体の効率を高めることができる。
 自動搬送車の台数が増加すると、自動搬送車の渋滞が発生しやすくなり、生産工程全体の効率に悪影響を及ぼすことがある。搬送工程がボトルネックになるのを避けるためには、十分な数の搬送車と余裕のある搬送ラインをとるアプローチが考えられる。しかし、こうしたアプローチでは、初期投資のコストが非常に大きくなる。生産品自体が短い周期で変わる今日では、少ない投資でより効率的な運用が可能な搬送車の配車管理システムが求められている。
 本発明に関連する搬送車の配車管理システムには、以下のようなものがある。
 特許文献1には、日々のオーダーや種々のパラメータを考慮し、最適化手法で最も搬送回数が最小となるようにオーダーを組み替えて搬送車を配車することが記載されている。
 特許文献2には、現在位置及び作業開始位置などの情報から、搬送車を選択し配車することが記載されている。また、車両とのルートの干渉を判断し、ルートを変更することが記載されている。
 特許文献3には、目的地への燃料消費と、所要時間などの情報からもっとも適した搬送車を選択し配車することが記載されている。
 特許文献4には、目的地までのルート上の障害物やほかの搬送車の情報などを取得し配車を行うことが記載されている。
WO2016/147335 特開2017-7814号公報 特開2017-114673号公報 WO2016/129045
 特許文献1のようなスケジュールベースの手法では、実運用時に発生する種々の外乱に対応することができない。こうした外乱には、例えば、機器の故障、搬送車の故障、作業員の欠員が考えられる。特にセル生産は人手による生産量の揺らぎが大きい。また、通常、最適化手法では多くの情報が必要となる。このため、情報を取得するための投資コストが大きくなる。
 特許文献2、3のような需要や到着時間に基づく指標を用いた手法では、判断時間における情報のみで配車を行う。このため、同時に需要が発生した場合に同じ時間に同じ個所に集中してしまう可能性がある。一度同じ個所に搬送車が集中すると渋滞が発生する。すると図1に示すように渋滞がボトルネックになる。その結果、搬送車のサイクルタイムが延びる可能性がある。
 図1は、搬送車(Automated Guided Vehicle, AGV)の渋滞による効率の悪化(左)と、それが解消される様子(右)を示す。ここでは、例として各搬送車は3つの作業を周期的に繰り返しているものとする。5台のAGV-A、AGV-B、AGV-C、AGV-D、AGV-Eは、それぞれ順に、セルA、B、C、D、Eを担当している。部品ストアは5つのセルが共有している。すなわち、部品ストアを中心としたスター型のトポロジである。
 AGVは、それぞれ、次の(1)~(3)の作業を繰り返し行っている。(1)部品ストアへ行き、部材をピッキングする。(2)その部材を担当しているセルに補充する。(3)カンバンを取得し、また部品ストアに向かう。
 部品ストアは各AGVが共通に利用する。このため、複数のAGVが同時に利用すると混雑によって詰まりが発生する。図1の左半分はそのような状況を模式的に示したものである。5台の搬送車(AGV)が各自の判断で、ベストを尽くした結果、この例では部品のピッキングで渋滞が生じている。結果として、部品ストアにおけるAGVの部材ピッキングがボトルネックとなっている。各搬送車のサイクルタイムが延び、全体としての長期的な効率の悪化につながっている。このような効率低下を避けるためには、一か所にAGVが集中するのを防ぐような手法が必要となる。
 特許文献4では、混雑状況をリアルタイムに把握し、配車を考慮する手法が提案されている。しかし、リアルタイムに混雑状況を利用することは、センサの敷設や、通信設備の準備など設備投資のコストがかかるという問題がある。
 本発明はこのような状況に鑑みてなされたものであり、本発明が解決しようとする課題は、生産量に揺らぎがあってもロバストに搬送車の場所的・時間的な集中を防ぎ、かつ、少ない情報で運用可能な、導入コストが低い搬送車の配車管理システムを提供することである。
 上述の課題を解決するため、本発明は、その一態様として、工程の作業の進捗に関する情報である工程情報を、各工程からリアルタイムに取得する手段である情報取得手段と、一の工程の前記工程情報と、その工程の一回当たりの所要時間に対応する工程周期とに基づいて、前記工程周期の中におけるその工程の現時点の作業の進捗を示す位相指標を算出する手段である位相算出手段と、一の工程の前記位相指標に基づいて、その工程への移動を指示する制御指示を生成し、待機中の搬送車に送信する手段である制御指示手段とを備える、配車管理システムを提供する。
 また、本発明は、他の一態様として、工程の作業の進捗に関する情報である工程情報を、各工程からリアルタイムに取得する手段である情報取得手段と、一の工程の前記工程情報と、その工程の一回当たりの所要時間に対応する工程周期とに基づいて、前記工程周期の中におけるその工程の現時点の作業の進捗を示す位相指標を算出する手段である位相算出手段と、一の工程の前記位相指標に基づいて、その工程への移動を指示する制御指示を生成し、待機中の搬送車に送信する手段である制御指示手段としてコンピュータを機能させるためのプログラムを記録した、機械読み取り可能な記録媒体を提供する。
 また、本発明は、他の一態様として、工程の作業の進捗に関する情報である工程情報を、各工程からリアルタイムに取得する段階である情報取得段階と、一の工程の前記工程情報と、その工程の一回当たりの所要時間に対応する工程周期とに基づいて、前記工程周期の中におけるその工程の現時点の作業の進捗を示す位相指標を算出する段階である位相算出段階と、一の工程の前記位相指標に基づいて、その工程への移動を指示する制御指示を生成し、待機中の搬送車に送信する段階である制御指示段階とを含む、配車管理方法を提供する。
 本発明によれば、搬送車の場所的・時間的な集中を防ぐことができる。また、本発明によれば、搬送車の配車管理システムを導入コストで提供することができる。
本発明の効果を示す模式図である。 本発明の第1の実施の形態である管理システムのブロック図である。 管理システムを構成するハードウェア構成の一例を示す図である。 本発明の第1の実施の形態の動作について説明するためのフローチャートである。 本発明の第2の実施の形態の管理システムのブロック図である。 本発明の第2の実施の形態におけるAGVの配車を示した模式図である。 本発明の第2の実施の形態における閾値の調整示した模式図である。 本発明の第2の実施の形態におけるAGVタイミング制御の結果を示す模式図である。 本発明の第2の実施の形態における動作を示したフローチャートである。 本発明の第3の実施の形態における動作を示したフローチャートである。 本発明の第4の実施の形態における動作を示したフローチャートである。 本発明の第4の実施の形態における位相パラメータの更新動作を示したフローチャートである。
[第1の実施の形態]
[構成の説明]
 図2は第1の実施形態である、配車管理システム200の全体構成を示したものである。配車管理システム200は、情報取得部11、位相算出部12、制御指示部13を備える。
 配車管理システム200は、複数の工程を有する工場や倉庫等で、複数の搬送車の配車を管理するシステムである。配車管理システム200は、複数の工程それぞれと、複数の搬送車それぞれに配置された通信装置と通信する通信装置を備える。工程及び搬送車との通信は、有線ネットワークを介した通信であってもよいし、無線ネットワークを介した通信であってもよい。例えば、セル生産方式を採用する工場において、各セルと各搬送車に通信装置を配置し、これらの通信装置と通信を行う。
 情報取得部11は、工程それぞれから工程情報をリアルタイムに取得する機能を備える。工程情報はその工程での作業の進捗に関する情報である。工程情報は、例えば、その工程の作業実績や、その工程での作業が済み、搬送待ちになっている物品の量である。典型的な例では、各工程が生産工程と出力バッファからなるとき、工程情報は、その工程を担うセルの出力バッファに蓄積された製品の量を工程情報として用いることができる。工程情報のリアルタイム性を確保するため、情報取得部11は、各工程の所要時間や搬送車が一回の移動に要する時間等と比較して十分に短い時間間隔で工程情報を取得するものとする。
 位相算出部12は、工程それぞれについて位相指標を算出する。位相指標は現在の工程情報と工程周期に基づいて算出される。
 現在の工程情報は情報取得部11から受け取る。
 工程周期はその工程の一回当たりの所要時間である。各工程では、同じ処理が繰り返し行われている。この繰り返し行われる処理を一回実行するために要する時間を、過去の作業実績から求めたものが工程周期である。工程周期はあらかじめ設定した値を配車管理システム200の記憶装置に保存しておいてもよい。あるいは、情報取得部11が取得した工程情報に対して、統計的な処理を行って算出した値を工程周期として用いてもよい。
 例えば、各工程が生産工程と出力バッファからなり、搬送車は、出力バッファに蓄積した製品を次の工程に搬送するものとする。このとき、出力バッファに蓄積された製品の量は、搬送車による次工程への搬送によってゼロになった後、生産工程の生産に伴って増加し、搬送車による次工程への搬送によって再びゼロになる、といった処理が繰り返される。このため、出力バッファに蓄積された製品がゼロから再びゼロになるまでの時間を工程周期として用いることができる。
 工程周期として様々な値を用いることが考えられる。たとえば1回の処理にかかる所要時間を複数回実測し、それら実測値から求めた統計量を工程周期とすることが考えられる。こうした統計量には、平均値、中央値、最頻値等を用いることができる。また、その工程を前回行ったときの所要時間を実測した値に基づいて工程周期として用いてもよい。あるいは、配車管理システム200を用いて管理を行う者(以下、管理者と記す)が自身の経験に基づいて任意に定めた値を工程周期として用いてもよい。
 位相指標とは、各工程での作業の周期性に着目して定められる値である。位相指標は、その工程の工程周期の中における、その工程の現時点の作業の進捗を示す位置、即ち、位相を示す指標である。ここでは位相の単位は[rad](ラジアン)とするが、[deg](度)へ変換してもよい。位相の最大を2π[rad]で表し、位相の最小を0で表す。周期的な動作であるため、ひとつの動作の終了は次の動作の開始と等しい。従って2π=0である。たとえば100秒周期で組み立てを繰り返す工程の場合、0秒の位相は0[rad]である。50秒の位相はπ[rad]である。100秒の位相は2π[rad]であり、かつ、0[rad]である。
 例えば、各工程が生産工程と出力バッファからなり、搬送車は、出力バッファに蓄積した製品を次の工程に搬送するものとする。搬送車は、平均して100秒毎に出力バッファから製品を受け取って次の工程に出発するものとする。工程情報を出力バッファに蓄積した製品の量とする。このとき工程周期を100秒とすることができる。
 制御指示部13は、工程の位相情報に基づいて、その工程への移動を指示する制御指示を生成する。制御指示部13は、生成した制御指示を、待機中の搬送車の一台に送信する。
 図3は、配車管理システム200を実現するコンピュータ400のハードウェア構成例を表す図である。コンピュータ400は、CPU(Central Processing Unit)401と、ROM(Read Only Memory)402と、RAM(Random Access Memory)403と、記憶装置404と、ドライブ装置405と、通信IF(InterFace)406と、入出力IF(InterFace)407とを備えている。
 CPU401は、RAM403を用いてコンピュータプログラム(プログラム)408を実行する。通信IF406は、情報通信網410を介して外部装置と情報をやり取りする。入出力IF407は、周辺機器(入力装置、表示装置など)と情報をやり取りする。通信IF406および入出力IF407は、情報を取得又は出力する構成要素として機能することができる。
 プログラム408は、ROM402に記憶されていてもよい。また、プログラム408は、メモリカード等の記憶媒体409に記憶され、ドライブ装置405によって読み出されてもよいし、外部装置から情報通信網410を介して受信してもよい。
 例えば、配車管理システム200の制御装置はCPU401により実現され、記憶装置はROM402とRAM402と記憶装置404により実現される。
 なお、図3に表されるコンピュータ400の構成要素は、単一の回路(プロセッサ等)によって構成されてもよいし、複数の回路の組み合わせによって構成されてもよい。ここでいう回路(circuitry)は、専用又は汎用のいずれであってもよい。例えば、コンピュータ400は、一部が専用のプロセッサによって実現され、他の部分が汎用のプロセッサによって実現されてもよい。さらに、コンピュータ400の機能は、例えば、クラウドコンピューティング技術などを用いて、複数のコンピュータの協働によって実現されてもよい。
 [動作の説明]
 図4を参照して、配車管理システム200の動作について説明する。
 まず、情報取得部11は工程情報を取得する(S101)。
 次に、位相算出部12は、取得した工程情報と工程周期に基づいて、位相指標を算出する(S102)。ここでは、工程周期はあらかじめ与えられていたものとする。
 次に、制御指示部13は、算出した位相指標に基づいて、制御指示を算出する(S103)。例えば制御目標が、位相を合わせることであれば、位相を合わせるような制御指示を算出する。
 ステップS103では、工程を制御して位相を合わすことも考えられるが、一般的にセル生産においては工程の制御は困難である。そこで、AGVの配車によって、工程の位相を制御する。
 たとえば、工程は、AGVが部材を持ってくるタイミングで作業を開始するとする。いま2つの工程1と工程2が逆位相(位相差がπ[rad])となるように制御することを考える。いま、一つの作業の周期は100秒間であるとする。
 例を挙げて説明する。2つの工程1、工程2があり、どちらも、AGVが部材を持ってくるタイミングで作業を始めるとする。工程1、工程2が逆位相、即ち、位相差がπ[rad]となるように制御することを制御目標とする。工程1、工程2の工程周期はどちらも100秒間であるとする。
 このような工程1、2を同時に開始したとする。このとき工程1、2の位相差は0[rad]である。制御目標は位相差π[rad]なので、制御指示部13は、工程1を担当する搬送車に対し、搬送のタイミングを少し遅延させる制御指示を算出し、その搬送車に送信する。搬送車を遅延させる制御指示には、例えば、搬送車が工程を出発する時刻を遅らせる制御指示、搬送車の移動速度を低下させる制御指示、搬送車に遠回りさせる制御指示や、これらの組み合わせが考えられる。
 例えば、一回の搬送につき搬送を10秒遅らせるような遅延の制御指示を算出し、その搬送車に送信する。この例では、5回の搬送後に、10秒×5回=50秒、即ち、位相差πだけ工程1は工程2から遅延する。このようにして制御目標を達成した後、制御指示部13は遅延の制御指示を終了する。尚、何らかの理由により工程1と工程2の位相差がπからずれた場合、制御指示部13は、例えば工程1、2のどちらかに対して遅延の制御指示を出すことにより、位相差がπになるように制御する。
 図1の右側には、上述の図1の左側と同様に、セルA、B、C、D、Eをそれぞれ担当する5台のAGV-A、AGV-B、AGV-C、AGV-D、AGV-Eを、配車管理システム200により管理したときの状態を示している。図示したように、配車管理システム200の制御により、AGV-A、AGV-B、AGV-C、AGV-D、AGV-Eが部品ストアを利用するタイミングがずれるようになる。このため、部品ストアでの渋滞が発生しないようになる。
 [効果の説明]
 通常、工場の工程は周期的な作業である。本実施の形態によれば、搬送車の発着のタイミングを制御することで、配送車が部品ストア等に局所的に集中するのを防ぐことができる。このため、効率的な配車が可能となる。
 位相は搬送車の速度情報に寄らない、相対的な作業フェーズを示すものであり、汎用性が高い情報である。また、工程情報を用いることで生産量に揺らぎがあっても現場の情報を反映しつつロバストな制御が可能である。
 本実施の形態では、搬送車の現在位置など細かな情報は利用しない。このため、システムの初期投資コストを低く抑えることができる。
 [第2の実施の形態]
 本発明の第2の実施の形態について説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ名称及び参照符号を付す。同じ名称、同じ参照符号の構成要素については上述の第1の実施の形態での説明も必要に応じて参照されたい。
 [構成の説明]
 図5を参照して第2の実施の形態における配車管理システム200について説明する。本実施の形態では、配車管理システム200は、情報取得部11と、位相算出部12と、制御指示部13と、記憶部14を備える。
 記憶部14は記憶装置である。記憶部14は、工程情報、制御パラメータ、制御式、過去の作業実績などの情報を記憶する。また、記憶部14は、工程と、その工程を担当する搬送車との対応関係を示す情報を記憶する。
 特に、記憶部14は、各工程の閾値th(x)を記憶する。制御指示部13が各工程の次の閾値を算出すると、記憶部14は、現在記憶している各工程の閾値th(x)を、制御指示部13が算出した次の閾値で更新する。
 尚、記憶部14の追加に伴い、本実施の形態では、情報取得部11、位相算出部12、制御指示部13は、記憶部14に記憶される工程情報を取得する機能および更新する機能を備える。
 [動作の説明]
 第2の実施の形態では図6のような工程を考える。いまあるひとつの工程iを考える。工程iは生産工程(歯車型)と出力バッファからなる。生産工程は適当な速度v(t)で製品を処理する。処理された製品は出力バッファへ蓄積されて、搬送車によって搬送されるのを待つ。出力バッファに現在蓄積されている製品の量をx(t)とする。
 工程iにおいて、出力バッファに蓄積された製品が所定の量に達したとき、配車管理システム200は工程iを担当する搬送車の配車を行う。この所定の量を閾値th(t)とする。工程iに来た搬送車は、そのときに工程iの出力バッファに蓄積されている全ての製品を、工程iの次の工程に搬送する。
 図6右側のグラフは、出力バッファ量に蓄積されている製品の量と時間の経過との関係を表したものである。グラフの縦軸は、工程iの出力バッファに蓄積された製品の量x(t)を表している。グラフの横軸は時間tを表している。
 グラフから分かるように、出力バッファの製品量x(t)は、搬送車が工程iから製品を受け取って出発するタイミングでゼロにリセットされる。出力バッファの製品量x(t)は周期的にゼロにリセットされると見ることができる。
 一般に、生産工程において、生産速度を調整するのは困難であることが多い。このため、閾値th(t)を調整することにより、この周期的な動作の位相を変調することを考える。この動作は、緩和振動子と呼ばれる非線形振動子のモデルとして、次の式(1)のように定式化することができる。
Figure JPOXMLDOC01-appb-M000001
ここで、生産速度を調整することが可能であれば、閾値th(t)に達する時間tを調整することができる。しかし、セル生産は人手による組み立て工程などを含む。このため、一般に生産速度の調整は困難である。そこで、閾値th(t)を変調することで閾値に達する時間tを調整する。各セルのバッファ量が0になってから、閾値th(t)に達するまでの時間を1周期(すなわち2π[rad])と定義する。このとき、現在のバッファ量x(t)と現在の閾値th(t)から、次の式(2)のように位相θを求めることができる。位相θは位相指標に相当する。
Figure JPOXMLDOC01-appb-M000002
ここで、図7のように別の工程jがあったとき、次の式(3)、(4)と、位相情報とに基づいて、閾値を調整し、位相を揃えることができる。工程iを出発する搬送車と、工程jを出発する搬送車は、どちらも同じ目的地(工程)に向かうものとする。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Nは結合している工程の数を表す自然数である。定性的には、位相が進んでいる工程については、閾値を上げることにより、閾値に到達する時間を長くして、位相を遅らせ、周期を延長することができる。逆に、位相が遅れている工程については、閾値を下げることにより、閾値に到達する時間を短くして、位相を早め、周期を短縮することができる。
 図7右側の2つのグラフは、それぞれ、工程iのバッファ量x(t)、工程jのバッファ量x(t)の時間変化を表している。時刻t=0付近において比較すると、バッファ量x(t)の周期はバッファ量x(t)の周期よりも長い。グラフの横軸中心付近において、上のグラフでは工程iの閾値th(x)を下げることにより、周期を短縮し、工程jの周期に近づけている。一方、下のグラフでは工程jの閾値th(x)を上げることにより、周期を延長し、工程iの周期に近づけている。
 このようにして工程iと工程jの周期を一致させる。式(4)において係数kijを正にした場合、x(t)とx(t)は同期する。逆に、式(4)において係数kijを負にした場合、x(t)とx(t)は逆同期(位相差がπradで同期)する。図7はkij=kji=1とした例であり、x(t)とx(t)は同期する。
 以下、係数kを結合パラメータと呼ぶ。自工程から出発した搬送車が同じ目的地に向かうような工程を結合していると呼ぶ。結合パラメータは、互いに結合している工程の間に定められる。結合パラメータは、結合している工程から出発する搬送車が、同じ目的地に到着する際の時間間隔を規定する。
 例えば、工程iと工程jが結合しているとき、工程iと工程jの間に結合パラメータkijが設けられる。図8の行列は結合パラメータkijを要素に持つ。このような行列を結合行列と呼ぶものとする。図8の結合行列は、左上から順に、{k11,k12,…,k43,k44}の16個の要素を有する。
 図8の下段「2ペア同期」の結合行列では対角成分が0である。これは自工程とは結合しないことを意味する。結合行列において、1行2列、即ち、k12=1であることは、工程1と工程2がプラスの結合、即ち、同期の結合を有することを意味している。また、結合行列において、1行3列、即ち、k13=-1であることは、工程1と工程3がマイナスの結合、即ち、逆同期の結合を有することを意味している。
 工程iがN個の工程と結合している場合、式(4)を計算して閾値th(t)を求めるにはN個の結合パラメータが必要になる。
 結合パラメータkij、kjiを適切に設定することにより、工程iと工程jの周期を適切にずらすことができる。更に、2つ以上の工程の周期であっても適切にずらすことができる。このことについて図8を参照して説明する。4つの工程1、2、3、4の出力バッファ量がそれぞれ順にx、x、x、xであるとする。図8に示すように、結合パラメータkを適切に定めることにより、x、x、x、xの同期パターンを設計することができる。
 図8の最上段に記載の結合パラメータkは、x、x、x、xを同期させる。
 図8の中段に記載の結合パラメータkは、x、x、x、xを互いに等しい時間間隔でずらしている。
 図8の下段に記載の結合パラメータは、互いに同期する2つのペアを組み、ペア同士を互いに逆同期させている。すなわち、この結合パラメータを適切に設定することにより、図8のように複数のセルとの同期のパターンを設計することができる。x、xを一方のペアとし、x、xを他方のペアとしている。x、xを互いに同期させている。x、xを互いに同期させている。x、xのペアと、x、xのペアを互いに逆同期させている。
 次に、本実施の形態における配車管理システム200の動作について図9を参照して説明する。記憶部14は、予め、工程i、j、…それぞれの現在の閾値th(t)、th(t)、…を格納しているものとする。
 まず、情報取得部11は、工程i、j、…のそれぞれから、工程情報であるバッファ量x(t)、x(t)、…を取得する(S201)。
 また、情報取得部11は、各工程の閾値th(t)、th(t)、…を記憶部14から取得する(S202)。
 次に、位相算出部12は、式(2)に基づいて、バッファ量x(t)、x(t)、…、及び閾値th(t)、th(t)、…から、それぞれの工程における位相指標θ、θ、…を算出する(S203)。
 次に、制御指示部13は、算出した位相指標θ、θ、…と式(4)とに基づいて、それぞれの工程の次の閾値th(t)、th(t)、…を算出する。制御指示部13は、算出した閾値によって、記憶部14の閾値情報を更新する(S204)。
 制御指示部13は、更新された閾値と現在のバッファ量とを比較し(S205)、バッファ量が閾値を超えている場合、その工程に搬送車を配車する(S206)。現在のバッファ量x(t)が更新後の閾値th(t)よりも大きい場合、制御指示部13は、工程iに搬送車を配車する。同様に、現在のバッファ量x(t)が更新後の閾値th(t)よりも大きい場合、制御指示部13は、工程jに搬送車を配車する。
 [効果の説明]
 本実施の形態によれば、各工程の閾値th(t)を調整することにより、各工程の工程周期(本実施の形態では、その工程の出力バッファにおいて、蓄積された製品が搬送車で搬送された後、再び製品が蓄積され、次に搬送車で搬送されるまでの期間)を調整して、各工程の周期の長さを一致させることができる。
 また、本実施の形態によれば、互いに一致する長さを有する各工程の周期を、互いにずらすことにより、複数の工程からなる同期パターンを適切に定めることができる。式(4)の結合パラメータkを適切に設定する。
 例えば、2つの工程のタイミングをずらすために負の結合パラメータkを指定した場合、2つの工程において搬送車が発着する周期は一致し、かつ、その位相は逆位相で発着する。特に、2つの搬送車が同じくらいの距離にある共通の目的地へ物を運ぶ場合、搬送車が逆位相で発着するようにすれば、目的地への到着時刻もずれる。このため、目的地周辺での混雑が発生しづらくなる。尚、目的地までの距離が同等ではない場合については、第3の実施の形態において説明する。
 また、本実施の形態によれば、搬送車の発着のダイナミクスに非線形振動子の引き込み現象を利用している。このため、本実施の形態による配車管理は外乱に強い特性がある。すなわち工程の生産速度が多少揺らいだとしても、2つの工程の搬送車の発着タイミングは安定して同期するという利点がある。
 また、本実施の形態の手法は、同期をとりたい工程の工程情報と、その閾値の情報のみという、限られた情報のみを用いて同期を行う。そのため、他の手法、例えば、リアルタイムに搬送車の混雑状況を取得して制御に反映する方法と比較して、センサの敷設や通信設備等の整備などの初期投資コストが抑えられるという利点がある。
 また、非線形振動子の同期現象では、速度が大きく違う場合、同じ周期にならない一方、速度の比率が整数倍に近い場合、整数倍の周期で同期することが知られている。したがって本実施の形態の手法においても、速度差に応じて適切な比率で同期させることができる。
 更に、相互作用したい工程との情報のみであるため、設備の増減にもたやすく対応することができる。増えた設備と相互作用したい工程のみの実装を変えるだけで容易に導入することが可能である。
 本実施の形態においては、工程情報として、バッファ量および閾値を用いて位相情報を算出したが、位相情報は周期的に変動する情報であればよい。たとえば、工程における一つの組み立ての進捗情報を位相情報としてもよい。あるいは、今の工程の搬送待ちのバッファ量と、次の工程の作業待ちバッファ量の差などでもよい。
 また、本実施の形態においては、図8の中段に示したように、結合パラメータkを負の値に設定した場合を中心にして説明した。これは、各工程から出発した搬送車が同一目的地に同時に到着するのを回避することを特に想定したためである。しかし、逆に、目的地となる工程の都合によっては、各工程から出発した搬送車が同時に到着することが望ましい場合がある。このような場合にも、図8の上段に示したように、結合パラメータkを正の値に設定することにより対応することができる。更に、図8の下段に示したように、4つの工程を2つのペアとし、同じペアの工程を互いに同期させ、異なるペアの工程とは互いに逆同期させるといった、複雑な同期も可能である。
 本実施の形態では、式(4)のような制御式を用いたが、式(4)に代わって次の式(5)を用いて制御してもよい。ただし、式(5)はθ=0の場合にゼロ除算が発生する。このため、θ=[2π:4π]等のように定義域を工夫する、或いは、1/θを計算機で実行可能な十分小さい数でθ=0を近似するなどの工夫を行う必要がある。
Figure JPOXMLDOC01-appb-M000005
ここでαは0より大きい正の定数である。位相が同期したとき、閾値はαに収束する。
 [第3の実施の形態]
 本発明の第3の実施形態について説明する。以下の説明では、第1及び第2の実施の形態と同じ構成要素には同じ名称及び参照符号を付す。同じ名称、同じ参照符号の構成要素については上述の第1及び第2の実施の形態での説明も必要に応じて参照されたい。
 第2の実施の形態では、工程間の結合パラメータは固定されていた。本実施の形態では、結合パラメータを動的に変更する。
 [構成の説明]
 構成は第2の実施の形態と同様である。図5を参照されたい。本実施の形態において、記憶部14は、少なくとも式(4)に含まれる結合パラメータkijを記憶する。また、本実施の形態では、所定の基準に基づいて結合パラメータを更新する。これにより、複数の工程での搬送車の発着の同期/非同期を切り替える。工程間で生産速度の差が大きくなった場合には、その工程間の結合パラメータを0に更新することにより、その工程間において搬送車の発着を非同期に行うように制御する。
 [動作の説明]
 図10を参照して本実施の形態の動作について説明する。
 情報取得部11は、工程情報であるバッファ量x(t)、x(t)、…を、それぞれの工程i、j、…から取得する(S301)。
 また、情報取得部11は、工程情報であるそれぞれの工程の現在の閾値th(t)、th(t)、…を、記憶部14から取得する(S302)。
 また、情報取得部11は、工程情報である工程間の結合パラメータkijを、記憶部14から取得する(S303)。
 次に、位相算出部12は、式(2)に基づいて、得られたバッファ量および閾値から、それぞれの工程における位相指標θ、θ、…を算出する(S304)。
 次に、制御指示部13は、式(4)に基づいて、得られた位相指標から、それぞれの工程の次の閾値を算出して、記憶部14に現に記憶されている閾値情報を更新する(S305)。
 次に、制御指示部13は、更新された閾値と現在のバッファ量を比較する(S306)。バッファ量が閾値を超えていた場合、制御指示部13は搬送車を配車する(S307)。
 また、制御指示部13は、情報取得部11から得られた情報をもとに、結合パラメータを更新するか否かを判断する(S308)。本実施の形態では、情報取得部11は、工程i、jのそれぞれから、生産速度v(t)、v(t)を工程情報として取得する。制御指示部13は、v(t)とv(t)の差、即ち生産速度差を算出し、その生産速度差を予め定めた基準値と比較する。生産速度差が基準値を超える場合、制御指示部13は、結合パラメータを0に更新すると判断する。
 生産速度差が大きい場合に結合パラメータを0にするのは次の理由による。工程iと工程jの生産速度差がある程度よりも大きい場合、工程iと工程jの周期を一致させるのが困難になり、無理に一致させると、全体の効率がかえって悪化する場合がある。このため、生産速度差が基準値を超える場合、結合パラメータを0に更新することとした。結合パラメータを0にすると、工程iの搬送車の発着と、工程jの搬送車の発着が互いに独立した周期で行われる。
 更新する必要がある場合、制御指示部13は、記憶部14に記憶されている結合パラメータを更新する(S309)。
 [効果の説明]
 本実施の形態によれば、工程間の生産速度の差に応じて、結合パラメータを変更することができる。このため、工程間の生産状況の比較状況に応じて、各工程に搬送車を配車するパターンを変更することができる。
 特に、本実施の形態では、工程間がある一定の速度差を超えた場合、結合パラメータを0にする。このため、工程が同期させずにそれぞれの自律周期で動くことになる。これにより、工程間の生産速度が極端に異なる状況において、複数の工程への搬送車の発着を同期することにより、全体の効率が悪化するのを防ぐことができる。
 また、結合パラメータを0に更新する代わりに、正の値、例えば1に更新して、複数の工程への搬送車の発着を一時的に同期させることもできる。例えば、たとえば製品ごとに対応する結合パラメータkijを記憶部に記憶しており、情報取得部11から次の製品情報を取得し、制御指示部が計算する際に記憶部から適切なkijを取得し、用いてもよい。たとえば、2つの部品を組み立てて一つの部品を作る際には、もとの部品が同時に届くのが望ましい。したがって、製品ごとに同期させるのか、あるいは逆同期させるのかを制御することが可能となる。
 [第4の実施の形態]
 本発明の第4の実施形態として動作する配車管理システム200について説明する。以下の説明では、第1~第3の実施の形態と同じ構成要素には同じ名称及び参照符号を付す。同じ名称、同じ参照符号の構成要素については上述の第1~第3の実施の形態での説明も必要に応じて参照されたい。
 本実施の形態では、第2の実施の形態における同期の式(4)を、位相差パラメータを用いて拡張することにより、任意の位相差を有する工程を互いに同期させる。位相差パラメータとは、工程を出発した搬送車が目的地に到着するまでの所要時間を、工程周期における位相差に換算したものである。第4の実施の形態において記憶部14は、位相差パラメータφijを記憶する。尚、配車管理システム200の基本的な構成は第2の実施の形態と同様である。
 [動作の説明]
 第2の実施の形態では、結合パラメータを調整することにより、搬送車が発車するタイミングを工程間で同期(位相差が0[rad])する方法と、逆同期(位相差がπ[rad])する方法とについて説明した。
 第2の実施の形態は、工程iから目的地まで搬送車が移動する距離と、別の工程jから同じ目的地まで搬送車が移動する距離とがほぼ等しいことを前提としている。ここで、これらの距離が互いに異なる場合を考える。このような場合、各工程から目的地に至る所要時間も異なる。
 このため、例えば、2台の搬送車がそれぞれ工程i、工程jから同時に目的地に向かって出発したとしても、それぞれ別の時刻に目的地に到着する。また、例えば、工程i、jから搬送車が出発するタイミングを互いに半周期ずらしたとしても、工程iから目的地までの所要時間と、工程jから目的地までの所要時間が異なるため、2台の搬送車が目的地に到着するタイミングは、互いに半周期ずれたものではなくなる。
 本実施の形態では、ある工程から搬送車が出発するタイミングを、搬送車の移動距離に応じて調整する。これにより、搬送車の移動距離が異なる場合であっても、目的地への到着のタイミングを制御する。
 工程iから搬送車が出発し、経路rを移動して目的地に向かうとする。また、別の工程jから別の搬送車が出発し、経路rを移動して同じ目的地に向かうとする。経路rを搬送車が移動するための所要時間と、経路rを搬送車が移動するための所要時間の差をτijとする。工程i、工程jの工程周期をどちらもTとする。このとき、工程iを出発する搬送車が、時間τijだけ早く出発すれば、どちらの搬送車も同時に目的地に到着する。工程iを出発する搬送車が工程jを出発する搬送車に対して遅延する時間に相当する位相差パラメータφijは次の式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
式(6)を用いて、第2の実施の形態で用いた式(3)、(4)に式(6)をそれぞれ次の式(7)、(8)に拡張する。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 図11を参照して本実施の形態における配車管理システム200の動作について説明する。
 情報取得部11は、工程情報であるバッファ量x(t)、x(t)…をそれぞれの工程から取得する(S401)。
 また、情報取得部11は、工程情報であるそれぞれの工程の現在の閾値th(t)、th(t)、…を、記憶部14から取得する(S402)。
 また、情報取得部11は、工程情報であるそれぞれの工程の位相差パラメータφijを、記憶部14から取得する(S403)。
 次に、位相算出部12は、式(2)に基づいて、得られたバッファ量および閾値から、それぞれの工程における位相指標θ、θ、…を算出する(S404)。
 次に、制御指示部13は、式(8)に基づいて、得られた位相指標からそれぞれの工程の次の閾値を算出して、記憶部14の閾値情報を更新する(S405)。
 制御指示部13は、更新した閾値と現在のバッファ量とを比較する(S406)。バッファ量が閾値を超える場合、制御指示部13は、搬送車を配車する(S407)。
 [効果の説明]
 本実施の形態によれば、互いに移動時間が異なる搬送車の同期パターンを変更することが可能となる。本実施の形態では、移動距離に応じた遅延時間を導入する。それを位相差パラメータとして位相同期の式(8)に組み込むことで、移動時間が互いに異なる搬送車同士でも同期できることを示した。
 [第4の実施の形態の変形]
 意図しない理由により、搬送車の出発及び到着は、予定よりも遅延する場合がある。例えば、生産工程での作業の遅れにより、バッファ量が閾値に達する時刻が予定よりも遅れる場合がある。また、例えば、ある工程から次の工程に搬送車が移動する途中で、何らかの障害や事故が発生し、搬送車の到着が遅延する場合がある。上述の第4の実施の形態を変形することにより、このような遅延を解消することができる。
 典型的には、配車管理システム200によって配車を管理する工場、倉庫等の工程間のトポロジ情報を記憶部14に予め記憶しておく。このトポロジ情報に基づいて、各工程からの行先毎に位相差パラメータを記憶部14に記憶する。
 工程内の作業や搬送車の移動に何らかの理由による遅延が発生する場合がある。このとき、情報取得部11は、各工程から取得する工程情報に基づいて、遅延の発生の有無をリアルタイムに検出する。位相算出部12は、その遅延時間に相当する位相差パラメータを求める。位相算出部12は、その位相差パラメータをその工程と関連付けて記憶部14に記憶する。
 次のような例が考えられる。各工程における搬送車の実際の発着時刻と、事前に算出していた発着の予定時刻との差分を情報取得部11で求める。情報取得部11はその差分に基づいて遅延の有無を判定する。ある工程について情報取得部11が遅延ありと判定した場合、位相算出部12はその差分に基づいて位相差パラメータを求める。記憶部14は、位相算出部12が求めた位相差パラメータをその工程に関連付けて記憶する。制御指示部13は、その工程の閾値を算出する際、記憶部14からその工程に関連付けて記憶した位相差パラメータを読み出して、式(8)に適用する。
 ステップS405において次の閾値を算出する際、制御指示部13は、ステップS403で取得した位相差パラメータに、上述の遅延に起因する位相差パラメータを加えて式(8)に適用する。
 図12を参照して本変形における配車管理システム200の動作について説明する。情報取得部11は、工程情報から遅延情報を取得する(S411)。次に、式(4)に基づいて、位相差パラメータを算出する(S412)。求めた位相パラメータを記憶部14へ保存する(S413)。
 [その他の変形]
 本発明は、上述の実施の形態及び変形に限定されるものではない。例えば、配車管理システム200を汎用のコンピュータ400によって実現することとして説明したが、情報取得部11、位相算出部12、制御指示部13、記憶部14の一部或いは全部を、例えば専用の集積回路として設計して、専用のハードウェアとして構成することとしてもよい。
 また、上述の実施形態及び変形では、配車管理システム200を管理対象である搬送車の外部に配置することを前提として説明した。しかし、配車管理システム200を搬送車のいずれか一台、或いは、各搬送車に搭載することとしてもよい。
 また、上述の実施形態及び変形では、制御指示部13は、同期パターンを構成する一部の搬送車に対して、搬送のタイミングを遅らせる制御指示を送信することにより、同期パターンの修正を行う制御指示を主として送信した。このような、搬送のタイミングを遅らせる制御指示を発行する代わりに、一部の搬送車に対して、搬送のタイミングを早める制御指示を発行することにより、同期パターンの修正を図ることとしてもよい。
 このような制御指示には、例えば、搬送車が工程を出発する時刻を早める制御指示、搬送車の移動速度を上げる制御指示、搬送車に通常は用いないショートカットした経路を介して移動するように指示する制御指示や、これらの組み合わせが考えられる。
 上記の実施形態の一部又は全部は以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 工程の作業の進捗に関する情報である工程情報を、各工程からリアルタイムに取得する手段である情報取得手段と、
 一の工程の前記工程情報と、その工程の一回当たりの所要時間に対応する工程周期とに基づいて、前記工程周期の中におけるその工程の現時点の作業の進捗を示す位相指標を算出する手段である位相算出手段と、
 一の工程の前記位相指標に基づいて、その工程への移動を指示する制御指示を生成し、待機中の搬送車に送信する手段である制御指示手段と
を備える、配車管理システム。
(付記2)
 前記制御指示手段は、一の工程の前記工程情報について予め定められた閾値と、前記情報取得手段がその工程について取得した現時点の前記工程情報とに基づいて、その工程への移動を指示する制御指示を生成し、搬送車に送信する、付記1に記載の配車管理システム。
(付記3)
 前記制御指示手段は、
 第1の工程の前記位相指標と、前記第1の工程とは異なる工程である第2の工程の前記位相指標とに基づいて、前記第1の工程の前記工程情報についての閾値である第1の閾値、及び、前記第2の工程の前記工程情報についての閾値である第2の閾値を算出し、
 前記第1の閾値と、前記第1の工程の前記工程情報とに基づいて、前記第1の工程への移動を指示する制御指示を生成し、
 前記第2の閾値と、前記第2の工程の前記工程情報とに基づいて、前記第2の工程への移動を指示する制御指示を生成する
付記2に記載の配車管理システム。
(付記4)
 前記制御指示手段は、一の工程の現在の前記閾値を予め定められた数式に適用して新たな前記閾値を算出して、現在の前記閾値を新たな前記閾値で更新する、付記2または付記3に記載の配車管理システム。
(付記5)
 前記制御指示手段は、
 自工程から出発した搬送車が共通の目的地に向かうような複数の工程それぞれの前記位相指標と、
 前記複数の工程のそれぞれから出発した搬送車が前記目的地に到着する際の時間間隔を規定するパラメータである結合パラメータと
を含む数式に基づいて、前記複数の工程それぞれの前記閾値を算出する、付記4に記載の配車管理システム。
(付記6)
 前記情報取得手段によって前記複数の工程のそれぞれから取得した現在の前記工程情報に基づいて、前記指示手段は、前記結合パラメータを更新する、付記5に記載の配車管理システム。
(付記7)
 前記制御指示手段は、
 一の工程の前記位相指標と、
 その工程を出発した搬送車が目的地に到着するまでの所要時間を、前記工程周期における位相差に換算したパラメータである位相差パラメータと
を含む数式に基づいて、その工程の前記閾値を算出する、付記4に記載の配車管理システム。
(付記8)
 一の工程の前記工程情報に基づいて、その工程に関する遅延の有無を判定し、
 遅延があると判定した場合、その遅延時間を、その工程の工程周期における位相差に換算したパラメータである位相差パラメータを算出し、
 その工程の前記位相指標と、前記位相差パラメータとを含む数式に基づいて、その工程の前記閾値を算出する、付記7に記載の配車管理システム。
(付記9)
 前記工程は、物品に対して所定の処理を施す処理工程と、前記処理工程での処理が終わった物品を蓄積するバッファとを含み、
 前記工程情報は、前記バッファに現に蓄積している物品の量に基づいて定められる情報であり、
 前記工程周期は、前記バッファに蓄積している物品を、搬送車が受け取った直後から、予め定められた閾値に相当する量に達するまでの所要時間に基づいて定められる時間であり、
 前記位相指標は、前記閾値に相当する量と、前記工程情報に相当する量との比に基づいて定められる、
付記1乃至付記8のいずれかに記載の配車管理システム。
(付記10)
 前記工程周期は、その工程の所要時間を複数回実測して得た実測値に基づく統計量である、付記1乃至付記9のいずれかに記載の配車管理システム。
(付記11)
 前記工程周期は、その工程を前回行ったときの所要時間である、付記1乃至付記9のいずれかに記載の配車管理システム。
(付記12)
 工程の作業の進捗に関する情報である工程情報を、各工程からリアルタイムに取得する手段である情報取得手段と、
 一の工程の前記工程情報と、その工程の一回当たりの所要時間に対応する工程周期とに基づいて、前記工程周期の中におけるその工程の現時点の作業の進捗を示す位相指標を算出する手段である位相算出手段と、
 一の工程の前記位相指標に基づいて、その工程への移動を指示する制御指示を生成し、待機中の搬送車に送信する手段である制御指示手段と
してコンピュータを機能させるためのプログラムを記録した、機械読み取り可能な記録媒体。
(付記13)
 前記制御指示手段は、一の工程の前記工程情報について予め定められた閾値と、前記情報取得手段がその工程について取得した現時点の前記工程情報とに基づいて、その工程への移動を指示する制御指示を生成し、搬送車に送信する、付記12に記載の記録媒体。
(付記14)
 前記制御指示手段は、
 第1の工程の前記位相指標と、前記第1の工程とは異なる工程である第2の工程の前記位相指標とに基づいて、前記第1の工程の前記工程情報についての閾値である第1の閾値、及び、前記第2の工程の前記工程情報についての閾値である第2の閾値を算出し、
 前記第1の閾値と、前記第1の工程の前記工程情報とに基づいて、前記第1の工程への移動を指示する制御指示を生成し、
 前記第2の閾値と、前記第2の工程の前記工程情報とに基づいて、前記第2の工程への移動を指示する制御指示を生成する
付記13に記載の記録媒体。
(付記15)
 前記制御指示手段は、一の工程の現在の前記閾値を予め定められた数式に適用して新たな前記閾値を算出して、現在の前記閾値を新たな前記閾値で更新する、付記13または付記14に記載の記録媒体。
(付記16)
 前記制御指示手段は、
 自工程から出発した搬送車が共通の目的地に向かうような複数の工程それぞれの前記位相指標と、
 前記複数の工程のそれぞれから出発した搬送車が前記目的地に到着する際の時間間隔を規定するパラメータである結合パラメータと
を含む数式に基づいて、前記複数の工程それぞれの前記閾値を算出する、付記15に記載の記録媒体。
(付記17)
 前記情報取得手段によって前記複数の工程のそれぞれから取得した現在の前記工程情報に基づいて、前記指示手段は、前記結合パラメータを更新する、付記16に記載の記録媒体。
(付記18)
 前記制御指示手段は、
 一の工程の前記位相指標と、
 その工程を出発した搬送車が目的地に到着するまでの所要時間を、前記工程周期における位相差に換算したパラメータである位相差パラメータと
を含む数式に基づいて、その工程の前記閾値を算出する、付記15に記載の記録媒体。
(付記19)
 一の工程の前記工程情報に基づいて、その工程に関する遅延の有無を判定し、
 遅延があると判定した場合、その遅延時間を、その工程の工程周期における位相差に換算したパラメータである位相差パラメータを算出し、
 その工程の前記位相指標と、前記位相差パラメータとを含む数式に基づいて、その工程の前記閾値を算出する、付記18に記載の記録媒体。
(付記20)
 前記工程は、物品に対して所定の処理を施す処理工程と、前記処理工程での処理が終わった物品を蓄積するバッファとを含み、
 前記工程情報は、前記バッファに現に蓄積している物品の量に基づいて定められる情報であり、
 前記工程周期は、前記バッファに蓄積している物品を、搬送車が受け取った直後から、予め定められた閾値に相当する量に達するまでの所要時間に基づいて定められる時間であり、
 前記位相指標は、前記閾値に相当する量と、前記工程情報に相当する量との比に基づいて定められる、
付記12乃至付記19のいずれかに記載の記録媒体。
(付記21)
 前記工程周期は、その工程の所要時間を複数回実測して得た実測値に基づく統計量である、付記12乃至付記20のいずれかに記載の記録媒体。
(付記22)
 前記工程周期は、その工程を前回行ったときの所要時間である、付記12乃至付記20のいずれかに記載の記録媒体。
(付記23)
 工程の作業の進捗に関する情報である工程情報を、各工程からリアルタイムに取得する段階である情報取得段階と、
 一の工程の前記工程情報と、その工程の一回当たりの所要時間に対応する工程周期とに基づいて、前記工程周期の中におけるその工程の現時点の作業の進捗を示す位相指標を算出する段階である位相算出段階と、
 一の工程の前記位相指標に基づいて、その工程への移動を指示する制御指示を生成し、待機中の搬送車に送信する段階である制御指示段階と
を含む、配車管理方法。
(付記24)
 前記制御指示段階は、一の工程の前記工程情報について予め定められた閾値と、前記情報取得段階がその工程について取得した現時点の前記工程情報とに基づいて、その工程への移動を指示する制御指示を生成し、搬送車に送信する、付記23に記載の配車管理方法。
(付記25)
 前記制御指示段階は、
 第1の工程の前記位相指標と、前記第1の工程とは異なる工程である第2の工程の前記位相指標とに基づいて、前記第1の工程の前記工程情報についての閾値である第1の閾値、及び、前記第2の工程の前記工程情報についての閾値である第2の閾値を算出し、
 前記第1の閾値と、前記第1の工程の前記工程情報とに基づいて、前記第1の工程への移動を指示する制御指示を生成し、
 前記第2の閾値と、前記第2の工程の前記工程情報とに基づいて、前記第2の工程への移動を指示する制御指示を生成する
付記24に記載の配車管理方法。
(付記26)
 前記制御指示段階は、一の工程の現在の前記閾値を予め定められた数式に適用して新たな前記閾値を算出して、現在の前記閾値を新たな前記閾値で更新する、付記24または付記25に記載の配車管理方法。
(付記27)
 前記制御指示段階は、
 自工程から出発した搬送車が共通の目的地に向かうような複数の工程それぞれの前記位相指標と、
 前記複数の工程のそれぞれから出発した搬送車が前記目的地に到着する際の時間間隔を規定するパラメータである結合パラメータと
を含む数式に基づいて、前記複数の工程それぞれの前記閾値を算出する、付記26に記載の配車管理方法。
(付記28)
 前記情報取得段階によって前記複数の工程のそれぞれから取得した現在の前記工程情報に基づいて、前記指示段階は、前記結合パラメータを更新する、付記27に記載の配車管理方法。
(付記29)
 前記制御指示段階は、
 一の工程の前記位相指標と、
 その工程を出発した搬送車が目的地に到着するまでの所要時間を、前記工程周期における位相差に換算したパラメータである位相差パラメータと
を含む数式に基づいて、その工程の前記閾値を算出する、付記26に記載の配車管理方法。
(付記30)
 一の工程の前記工程情報に基づいて、その工程に関する遅延の有無を判定し、
 遅延があると判定した場合、その遅延時間を、その工程の工程周期における位相差に換算したパラメータである位相差パラメータを算出し、
 その工程の前記位相指標と、前記位相差パラメータとを含む数式に基づいて、その工程の前記閾値を算出する、付記29に記載の配車管理方法。
(付記31)
 前記工程は、物品に対して所定の処理を施す処理工程と、前記処理工程での処理が終わった物品を蓄積するバッファとを含み、
 前記工程情報は、前記バッファに現に蓄積している物品の量に基づいて定められる情報であり、
 前記工程周期は、前記バッファに蓄積している物品を、搬送車が受け取った直後から、予め定められた閾値に相当する量に達するまでの所要時間に基づいて定められる時間であり、
 前記位相指標は、前記閾値に相当する量と、前記工程情報に相当する量との比に基づいて定められる、
付記23乃至付記30のいずれかに記載の配車管理方法。
(付記32)
 前記工程周期は、その工程の所要時間を複数回実測して得た実測値に基づく統計量である、付記23乃至付記31のいずれかに記載の配車管理方法。
(付記33)
 前記工程周期は、その工程を前回行ったときの所要時間である、付記23乃至付記31のいずれかに記載の配車管理方法。
11 情報取得部
12 位相算出部
13 制御指示部
14 記憶部
200 配車管理システム
400 コンピュータ
401 CPU(Central Processing Unit)
402 ROM(Read Only Memory)
403 RAM(Random Access Memory)
404 記憶装置
405 ドライブ装置
406 通信IF(InterFace)
407 入出力IF(InterFace)

 

Claims (33)

  1.  工程の作業の進捗に関する情報である工程情報を、各工程からリアルタイムに取得する手段である情報取得手段と、
     一の工程の前記工程情報と、その工程の一回当たりの所要時間に対応する工程周期とに基づいて、前記工程周期の中におけるその工程の現時点の作業の進捗を示す位相指標を算出する手段である位相算出手段と、
     一の工程の前記位相指標に基づいて、その工程への移動を指示する制御指示を生成し、待機中の搬送車に送信する手段である制御指示手段と
    を備える、配車管理システム。
  2.  前記制御指示手段は、一の工程の前記工程情報について予め定められた閾値と、前記情報取得手段がその工程について取得した現時点の前記工程情報とに基づいて、その工程への移動を指示する制御指示を生成し、搬送車に送信する、請求項1に記載の配車管理システム。
  3.  前記制御指示手段は、
     第1の工程の前記位相指標と、前記第1の工程とは異なる工程である第2の工程の前記位相指標とに基づいて、前記第1の工程の前記工程情報についての閾値である第1の閾値、及び、前記第2の工程の前記工程情報についての閾値である第2の閾値を算出し、
     前記第1の閾値と、前記第1の工程の前記工程情報とに基づいて、前記第1の工程への移動を指示する制御指示を生成し、
     前記第2の閾値と、前記第2の工程の前記工程情報とに基づいて、前記第2の工程への移動を指示する制御指示を生成する
    請求項2に記載の配車管理システム。
  4.  前記制御指示手段は、一の工程の現在の前記閾値を予め定められた数式に適用して新たな前記閾値を算出して、現在の前記閾値を新たな前記閾値で更新する、請求項2または請求項3に記載の配車管理システム。
  5.  前記制御指示手段は、
     自工程から出発した搬送車が共通の目的地に向かうような複数の工程それぞれの前記位相指標と、
     前記複数の工程のそれぞれから出発した搬送車が前記目的地に到着する際の時間間隔を規定するパラメータである結合パラメータと
    を含む数式に基づいて、前記複数の工程それぞれの前記閾値を算出する、請求項4に記載の配車管理システム。
  6.  前記情報取得手段によって前記複数の工程のそれぞれから取得した現在の前記工程情報に基づいて、前記制御指示手段は、前記結合パラメータを更新する、請求項5に記載の配車管理システム。
  7.  前記制御指示手段は、
     一の工程の前記位相指標と、
     その工程を出発した搬送車が目的地に到着するまでの所要時間を、前記工程周期における位相差に換算したパラメータである位相差パラメータと
    を含む数式に基づいて、その工程の前記閾値を算出する、請求項4に記載の配車管理システム。
  8.  一の工程の前記工程情報に基づいて、その工程に関する遅延の有無を判定し、
     遅延があると判定した場合、その遅延時間を、その工程の工程周期における位相差に換算したパラメータである位相差パラメータを算出し、
     その工程の前記位相指標と、前記位相差パラメータとを含む数式に基づいて、その工程の前記閾値を算出する、請求項7に記載の配車管理システム。
  9.  前記工程は、物品に対して所定の処理を施す処理工程と、前記処理工程での処理が終わった物品を蓄積するバッファとを含み、
     前記工程情報は、前記バッファに現に蓄積している物品の量に基づいて定められる情報であり、
     前記工程周期は、前記バッファに蓄積している物品を、搬送車が受け取った直後から、予め定められた閾値に相当する量に達するまでの所要時間に基づいて定められる時間であり、
     前記位相指標は、前記閾値に相当する量と、前記工程情報に相当する量との比に基づいて定められる、
    請求項1乃至請求項8のいずれかに記載の配車管理システム。
  10.  前記工程周期は、その工程の所要時間を複数回実測して得た実測値に基づく統計量である、請求項1乃至請求項9のいずれかに記載の配車管理システム。
  11.  前記工程周期は、その工程を前回行ったときの所要時間である、請求項1乃至請求項9のいずれかに記載の配車管理システム。
  12.  工程の作業の進捗に関する情報である工程情報を、各工程からリアルタイムに取得する手段である情報取得手段と、
     一の工程の前記工程情報と、その工程の一回当たりの所要時間に対応する工程周期とに基づいて、前記工程周期の中におけるその工程の現時点の作業の進捗を示す位相指標を算出する手段である位相算出手段と、
     一の工程の前記位相指標に基づいて、その工程への移動を指示する制御指示を生成し、待機中の搬送車に送信する手段である制御指示手段と
    してコンピュータを機能させるためのプログラムを記録した、機械読み取り可能な記録媒体。
  13.  前記制御指示手段は、一の工程の前記工程情報について予め定められた閾値と、前記情報取得手段がその工程について取得した現時点の前記工程情報とに基づいて、その工程への移動を指示する制御指示を生成し、搬送車に送信する、請求項12に記載の記録媒体。
  14.  前記制御指示手段は、
     第1の工程の前記位相指標と、前記第1の工程とは異なる工程である第2の工程の前記位相指標とに基づいて、前記第1の工程の前記工程情報についての閾値である第1の閾値、及び、前記第2の工程の前記工程情報についての閾値である第2の閾値を算出し、
     前記第1の閾値と、前記第1の工程の前記工程情報とに基づいて、前記第1の工程への移動を指示する制御指示を生成し、
     前記第2の閾値と、前記第2の工程の前記工程情報とに基づいて、前記第2の工程への移動を指示する制御指示を生成する
    請求項13に記載の記録媒体。
  15.  前記制御指示手段は、一の工程の現在の前記閾値を予め定められた数式に適用して新たな前記閾値を算出して、現在の前記閾値を新たな前記閾値で更新する、請求項13または請求項14に記載の記録媒体。
  16.  前記制御指示手段は、
     自工程から出発した搬送車が共通の目的地に向かうような複数の工程それぞれの前記位相指標と、
     前記複数の工程のそれぞれから出発した搬送車が前記目的地に到着する際の時間間隔を規定するパラメータである結合パラメータと
    を含む数式に基づいて、前記複数の工程それぞれの前記閾値を算出する、請求項15に記載の記録媒体。
  17.  前記情報取得手段によって前記複数の工程のそれぞれから取得した現在の前記工程情報に基づいて、前記制御指示手段は、前記結合パラメータを更新する、請求項16に記載の記録媒体。
  18.  前記制御指示手段は、
     一の工程の前記位相指標と、
     その工程を出発した搬送車が目的地に到着するまでの所要時間を、前記工程周期における位相差に換算したパラメータである位相差パラメータと
    を含む数式に基づいて、その工程の前記閾値を算出する、請求項15に記載の記録媒体。
  19.  一の工程の前記工程情報に基づいて、その工程に関する遅延の有無を判定し、
     遅延があると判定した場合、その遅延時間を、その工程の工程周期における位相差に換算したパラメータである位相差パラメータを算出し、
     その工程の前記位相指標と、前記位相差パラメータとを含む数式に基づいて、その工程の前記閾値を算出する、請求項18に記載の記録媒体。
  20.  前記工程は、物品に対して所定の処理を施す処理工程と、前記処理工程での処理が終わった物品を蓄積するバッファとを含み、
     前記工程情報は、前記バッファに現に蓄積している物品の量に基づいて定められる情報であり、
     前記工程周期は、前記バッファに蓄積している物品を、搬送車が受け取った直後から、予め定められた閾値に相当する量に達するまでの所要時間に基づいて定められる時間であり、
     前記位相指標は、前記閾値に相当する量と、前記工程情報に相当する量との比に基づいて定められる、
    請求項12乃至請求項19のいずれかに記載の記録媒体。
  21.  前記工程周期は、その工程の所要時間を複数回実測して得た実測値に基づく統計量である、請求項12乃至請求項20のいずれかに記載の記録媒体。
  22.  前記工程周期は、その工程を前回行ったときの所要時間である、請求項12乃至請求項20のいずれかに記載の記録媒体。
  23.  工程の作業の進捗に関する情報である工程情報を、各工程からリアルタイムに取得する段階である情報取得段階と、
     一の工程の前記工程情報と、その工程の一回当たりの所要時間に対応する工程周期とに基づいて、前記工程周期の中におけるその工程の現時点の作業の進捗を示す位相指標を算出する段階である位相算出段階と、
     一の工程の前記位相指標に基づいて、その工程への移動を指示する制御指示を生成し、待機中の搬送車に送信する段階である制御指示段階と
    を含む、配車管理方法。
  24.  前記制御指示段階は、一の工程の前記工程情報について予め定められた閾値と、前記情報取得段階がその工程について取得した現時点の前記工程情報とに基づいて、その工程への移動を指示する制御指示を生成し、搬送車に送信する、請求項23に記載の配車管理方法。
  25.  前記制御指示段階は、
     第1の工程の前記位相指標と、前記第1の工程とは異なる工程である第2の工程の前記位相指標とに基づいて、前記第1の工程の前記工程情報についての閾値である第1の閾値、及び、前記第2の工程の前記工程情報についての閾値である第2の閾値を算出し、
     前記第1の閾値と、前記第1の工程の前記工程情報とに基づいて、前記第1の工程への移動を指示する制御指示を生成し、
     前記第2の閾値と、前記第2の工程の前記工程情報とに基づいて、前記第2の工程への移動を指示する制御指示を生成する
    請求項24に記載の配車管理方法。
  26.  前記制御指示段階は、一の工程の現在の前記閾値を予め定められた数式に適用して新たな前記閾値を算出して、現在の前記閾値を新たな前記閾値で更新する、請求項24または請求項25に記載の配車管理方法。
  27.  前記制御指示段階は、
     自工程から出発した搬送車が共通の目的地に向かうような複数の工程それぞれの前記位相指標と、
     前記複数の工程のそれぞれから出発した搬送車が前記目的地に到着する際の時間間隔を規定するパラメータである結合パラメータと
    を含む数式に基づいて、前記複数の工程それぞれの前記閾値を算出する、請求項26に記載の配車管理方法。
  28.  前記情報取得段階によって前記複数の工程のそれぞれから取得した現在の前記工程情報に基づいて、前記制御指示段階は、前記結合パラメータを更新する、請求項27に記載の配車管理方法。
  29.  前記制御指示段階は、
     一の工程の前記位相指標と、
     その工程を出発した搬送車が目的地に到着するまでの所要時間を、前記工程周期における位相差に換算したパラメータである位相差パラメータと
    を含む数式に基づいて、その工程の前記閾値を算出する、請求項26に記載の配車管理方法。
  30.  一の工程の前記工程情報に基づいて、その工程に関する遅延の有無を判定し、
     遅延があると判定した場合、その遅延時間を、その工程の工程周期における位相差に換算したパラメータである位相差パラメータを算出し、
     その工程の前記位相指標と、前記位相差パラメータとを含む数式に基づいて、その工程の前記閾値を算出する、請求項29に記載の配車管理方法。
  31.  前記工程は、物品に対して所定の処理を施す処理工程と、前記処理工程での処理が終わった物品を蓄積するバッファとを含み、
     前記工程情報は、前記バッファに現に蓄積している物品の量に基づいて定められる情報であり、
     前記工程周期は、前記バッファに蓄積している物品を、搬送車が受け取った直後から、予め定められた閾値に相当する量に達するまでの所要時間に基づいて定められる時間であり、
     前記位相指標は、前記閾値に相当する量と、前記工程情報に相当する量との比に基づいて定められる、
    請求項23乃至請求項30のいずれかに記載の配車管理方法。
  32.  前記工程周期は、その工程の所要時間を複数回実測して得た実測値に基づく統計量である、請求項23乃至請求項31のいずれかに記載の配車管理方法。
  33.  前記工程周期は、その工程を前回行ったときの所要時間である、請求項23乃至請求項31のいずれかに記載の配車管理方法。

     
PCT/JP2018/004204 2018-02-07 2018-02-07 配車管理システム、記録媒体および方法 WO2019155552A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/004204 WO2019155552A1 (ja) 2018-02-07 2018-02-07 配車管理システム、記録媒体および方法
JP2019570202A JP6991449B2 (ja) 2018-02-07 2018-02-07 配車管理システム、プログラムおよび方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004204 WO2019155552A1 (ja) 2018-02-07 2018-02-07 配車管理システム、記録媒体および方法

Publications (1)

Publication Number Publication Date
WO2019155552A1 true WO2019155552A1 (ja) 2019-08-15

Family

ID=67549396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004204 WO2019155552A1 (ja) 2018-02-07 2018-02-07 配車管理システム、記録媒体および方法

Country Status (2)

Country Link
JP (1) JP6991449B2 (ja)
WO (1) WO2019155552A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039595A1 (ja) * 2019-08-26 2021-03-04
CN112987708A (zh) * 2019-11-29 2021-06-18 杭州海康机器人技术有限公司 自动引导运输车的调度方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198413A (ja) * 1995-01-20 1996-08-06 Hitachi Ltd 配車指示システム
WO2016129045A1 (ja) * 2015-02-09 2016-08-18 株式会社日立製作所 搬送システム、搬送システムに用いられるコントローラ、および、搬送方法
WO2016147335A1 (ja) * 2015-03-18 2016-09-22 株式会社日立製作所 オーダー管理装置、及びオーダー管理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198413A (ja) * 1995-01-20 1996-08-06 Hitachi Ltd 配車指示システム
WO2016129045A1 (ja) * 2015-02-09 2016-08-18 株式会社日立製作所 搬送システム、搬送システムに用いられるコントローラ、および、搬送方法
WO2016147335A1 (ja) * 2015-03-18 2016-09-22 株式会社日立製作所 オーダー管理装置、及びオーダー管理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039595A1 (ja) * 2019-08-26 2021-03-04
WO2021039595A1 (ja) * 2019-08-26 2021-03-04 日本電気株式会社 搬送システム、制御装置、搬送方法、及びプログラム
JP7416072B2 (ja) 2019-08-26 2024-01-17 日本電気株式会社 搬送システム、制御装置、及び搬送方法
CN112987708A (zh) * 2019-11-29 2021-06-18 杭州海康机器人技术有限公司 自动引导运输车的调度方法和装置
CN112987708B (zh) * 2019-11-29 2024-01-19 杭州海康机器人股份有限公司 自动引导运输车的调度方法和装置

Also Published As

Publication number Publication date
JP6991449B2 (ja) 2022-02-03
JPWO2019155552A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
Subramanian et al. Economic model predictive control for inventory management in supply chains
Dunbar et al. Distributed MPC for dynamic supply chain management
CN102254246B (zh) 一种工作流管理方法及其系统
CN101788787B (zh) 多站点传送带给料生产加工站系统的优化控制方法
WO2019155552A1 (ja) 配車管理システム、記録媒体および方法
CN105974891B (zh) 一种基于动态看板的模具生产过程自适应控制方法
JP5463945B2 (ja) 飛行体順序付けシステム、飛行体順序付け方法および飛行体順序付けプログラム
WO2020061175A1 (en) Inventory management and scheduling tool
CN106293952A (zh) 一种基于任务需求与服务能力匹配的遥感任务调度方法
US6868298B2 (en) Method and apparatus for bottleneck feed factor based scheduling
US7031801B1 (en) Continuous item picking in a distribution center using coordinated item picking periods
Weng et al. Dynamic routing strategies for JIT production in hybrid flow shops
CN116902449A (zh) 用于智能立体库房的工业物联网、控制方法及其存储介质
Borangiu et al. A smart palletising planning and control model in Logistics 4.0 framework
Hong et al. Admission control in queue-time loop production-mixed integer programming with Lagrangian relaxation (MIPLAR)
Adra et al. Realtime predictive and prescriptive analytics with real-time data and simulation
WO2017094181A1 (ja) 倉庫設計システム
US20120024666A1 (en) System for Decentralized Material Flow Control
Hadad et al. A multinomial model for the machine interference problem with different service types and multiple operators
US20120290495A1 (en) System and method for establishing transshipment of a product between stocking locations
CN116562772A (zh) 物品补货信息生成方法、装置、设备、介质和程序产品
Tang et al. Modeling and optimization control of a demand-driven, conveyor-serviced production station
Kai et al. Cell-level Production-Logistics Synchronization for multi-variety and small-batch Production: A step toward industry 4.0
Dalalah et al. Dynamic decentralised balancing of CONWIP production systems
Tadano et al. Robust transfer vehicle swarm for unreliable production facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905849

Country of ref document: EP

Kind code of ref document: A1