WO2019155539A1 - Power conversion device, and motor driving apparatus and refrigerator using same - Google Patents
Power conversion device, and motor driving apparatus and refrigerator using same Download PDFInfo
- Publication number
- WO2019155539A1 WO2019155539A1 PCT/JP2018/004152 JP2018004152W WO2019155539A1 WO 2019155539 A1 WO2019155539 A1 WO 2019155539A1 JP 2018004152 W JP2018004152 W JP 2018004152W WO 2019155539 A1 WO2019155539 A1 WO 2019155539A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- voltage
- power supply
- current
- short circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to a power conversion device that performs power conversion between AC power and DC power, a motor drive device that uses the power conversion device, and a refrigeration apparatus such as an air conditioner.
- a power conversion device that performs power conversion using a switching element is used.
- the current on the AC power supply side is used to improve efficiency and reduce harmonics. It is required to reduce waveform distortion.
- the distortion of the current waveform is reduced by controlling the switching drive of the switching element for the boost operation.
- conventional techniques for reducing distortion of a current waveform techniques described in Patent Document 1 and Patent Document 2 are known.
- a semiconductor switching element in an oscillation circuit connected to the primary side of a high-frequency transformer is controlled according to an AC power supply current, and the output of the high-frequency transformer includes a full-wave rectifier circuit and a waveform positive / negative conversion circuit.
- the output of the high-frequency transformer includes a full-wave rectifier circuit and a waveform positive / negative conversion circuit.
- a sinusoidal AC power supply current waveform is obtained.
- by stopping the driving of the switching elements constituting the positive / negative conversion circuit near the zero point of the AC power supply current distortion of the waveform of the AC power supply current near the zero current can be suppressed.
- the conduction factor signal of the switching element in the boost chopper circuit is set according to the instantaneous value of the AC power supply current and the boost ratio.
- the AC power supply current is sine wave without generating a reference waveform.
- the present invention provides a power conversion device that can stably reduce the waveform distortion of an AC power supply current to make a sine wave, and a motor drive device and a refrigeration apparatus using the power conversion device.
- a power conversion device performs a boosting operation for converting AC power from an AC power source into DC power and converting a DC output voltage to a voltage larger than the voltage of the AC power source.
- a power conversion circuit unit that includes a short circuit that short-circuits the AC power supply via the reactor, and that performs a boost operation by switching the short circuit, and a current ratio of the short circuit, the power supply voltage of the AC power supply and the reactor And a control unit that is set in accordance with the voltage.
- the power conversion device converts the AC power from the AC power source into DC power and performs a boosting operation that converts the DC output voltage to a voltage larger than the voltage of the AC power source.
- a power conversion circuit unit that includes a semiconductor switching element and a reactor that stores energy when the semiconductor switching element is turned on, and performs a boosting operation by switching the semiconductor switching element; and a semiconductor switching element And a control unit for setting the conduction ratio of the semiconductor switching element according to a sine wave, and further comprising means for stopping the switching of the semiconductor switching element near the zero current of the power source current of the AC power source. Contains ingredients and higher order components.
- a motor driving device drives a motor by a power converter, and the power converter converts AC power from an AC power source into DC power and outputs DC power.
- a first power conversion circuit unit that includes a short circuit that performs a step-up operation that converts a voltage to a voltage that is greater than the voltage of the AC power source, short-circuits the AC power source via a reactor, and performs the step-up operation by switching the short circuit
- a control unit that sets the conduction ratio of the short circuit according to the power supply voltage of the AC power supply and the voltage of the reactor, and a second power conversion circuit unit that converts the DC power into a variable voltage and variable frequency AC power And comprising.
- a refrigeration apparatus includes a heat exchanger, a compressor that compresses and circulates a refrigerant, a fan that blows air to the heat exchanger, and a motor that drives the compressor or the fan. And a motor driving device for driving the motor, wherein the motor driving device is the motor driving device according to the present invention.
- the waveform distortion of the AC power supply current can be stably reduced to a sine wave, it is possible to stably suppress harmonics generated by the power converter, the motor driving device using the power converter, and the refrigeration equipment. it can.
- the circuit structure of the power converter device which is one Embodiment of this invention is shown.
- An example of a power supply current waveform is shown.
- the example of a waveform of a power supply current at the time of adding a tertiary component to a power supply current command value is shown.
- a waveform example of a power supply current when a tertiary component is added to the power supply current command value is shown.
- the circuit structure of the power converter device which is Example 1 is shown.
- the circuit structure of the motor drive device which is Example 2 is shown. It is a block diagram of the refrigeration equipment which is Example 3.
- FIG. 1 shows a circuit configuration of a power conversion device according to an embodiment of the present invention.
- the power conversion circuit unit (main circuit unit) of the power conversion device 1 includes rectifier circuits configured by rectifier elements 3 a to 3 d to rectify AC power supplied from the AC power supply 2.
- the rectifying elements 3a to 3d are diodes.
- the AC power source 2 is connected to the AC input of the rectifier circuit via the reactor 4 in the power conversion device 1.
- a short circuit 6 is connected between the AC inputs to short-circuit the AC input and control a short-circuit current flowing from the AC power supply 2 via the reactor 4.
- a smoothing capacitor 5 that smoothes the output voltage of the rectifier circuit is connected to the DC output of the rectifier circuit.
- the power converter 1 includes an AC power source current detector 7 that detects an AC power source current (hereinafter referred to as “power source current”) input from the AC power source 2, and an AC power source that detects an AC power source voltage input from the AC power source 2.
- a voltage detector 8 and a DC output voltage detector 9 for detecting the DC output voltage of the rectifier circuit are provided.
- the short circuit control unit 10 creates a short circuit command signal 10A for the short circuit 6 based on the detection current of the AC power supply current detector 7 and the detection voltages of the AC power supply voltage detector 8 and the DC output voltage detector 9. Output.
- the pulse-off control unit 11 determines whether to stop the short-circuit command signal 10A, corrects the short-circuit command signal 10A according to the determination result, and outputs the corrected short-circuit command signal 11A.
- the short circuit 6 can perform ON / OFF control of the bidirectional current according to the positive / negative of the AC power supply voltage.
- the power converter 1 shown in FIG. 1 performs a boosting operation by driving the short circuit 6 by switching (on / off).
- the short circuit 6 When the short circuit 6 is turned on, the AC power source 2 is short-circuited via the reactor 4, and thus a power source current flows through the closed circuit including the AC power source 2, the short circuit 6, and the reactor 4. At this time, the electric power from the AC power source 2, that is, electric energy, is stored in the reactor 4 as magnetic energy.
- a power supply current flows through a path including the AC power supply 2, the rectifier circuit, the smoothing capacitor 5, and the reactor 4, and the energy accumulated in the reactor 4 is transferred to the smoothing capacitor 5 side through the rectifier circuit. Is released. At this time, an induced voltage proportional to the time change of the power supply current flowing through the reactor is generated in the reactor 4, so that a DC voltage larger than the voltage amplitude of the AC power supply 2 is output from the rectifier circuit.
- the direction of the power supply current flowing to the AC side of the power converter 1 varies depending on the direction of the power supply current flowing when the short circuit 6 is turned on, that is, the voltage of the AC power supply 2.
- the rectifier circuit full-wave rectifier circuit
- the rectifier circuit composed of a bridge flows in one direction (the direction from the top to the bottom in the figure) through the DC side, that is, the smoothing capacitor.
- the smoothing capacitor 5 is charged with a DC voltage larger than the voltage amplitude of the AC power supply 2.
- the magnitude of the DC output voltage of the power conversion device 1 is controlled to a predetermined value by controlling the conduction rate (duty) when the short circuit 6 is ON.
- the short circuit control unit 10 creates a command signal corresponding to the conduction ratio, and compares the command signal with a carrier signal (such as a triangular wave or a sawtooth wave) by pulse width modulation (PWM) to indicate the command signal indicated by the command signal.
- PWM pulse width modulation
- a short-circuit command signal 10A which is a pulse signal having a flow rate, is created.
- “d” is a conduction ratio (duty) when the short circuit 6 is ON
- “i s ” is an instantaneous value [A] of the power supply current
- “L” is The inductance value [H] of the reactor 4
- “v s ” is the instantaneous value [V] of the power supply voltage of the AC power supply 2
- “E d ” is the voltage across the smoothing capacitor 5, that is, the DC output voltage [V].
- “ ⁇ E d ” is the fluctuation component [V] of the DC output voltage.
- a voltage controller for matching the E d to the command value E d * the current controller for matching the i s the command value i s * (sine wave)
- a power source current is converted into a sine wave and a predetermined DC output voltage is obtained.
- the technique of setting d by “d 1 ⁇ K
- ” simplifies the configuration of the control device.
- the control may become unstable depending on the switching frequency (PWM frequency) (for example, when the frequency is lowered).
- the flow rate d is set as shown in Equation (2). According to the equation (2), the control is stabilized by using the voltage value.
- Equation (2) “K pv ” is a proportional constant (voltage control gain), “v s * ” is a power supply voltage command value [A], and “i s * ” is a power supply current command value [A]. “E d * ” is the DC output voltage command value [A], and “ ⁇ E d * ” is the DC output voltage fluctuation command value.
- V s * -L ⁇ (di s * / dt) in equation (2) is the voltage portion of the circuit of FIG. 1 (instantaneous value), a voltage as it were related to the sinusoidal waveform of the power supply current i s is there.
- L ⁇ (di s * / dt) is the product of the inductance of the reactor 4 and the time rate of change of the power supply current, that is, the voltage of the reactor 4.
- K pv (E d * + ⁇ E d * ) relates to voltage control of the DC output voltage.
- v s * and i s * are set by the equations (3) and (4), respectively.
- V s ⁇ 1st * is the power supply voltage fundamental wave amplitude.
- I s ⁇ 1st * is the power source current fundamental wave amplitude.
- ⁇ is the power source angular frequency, and “t” is time.
- FIG. 2 shows an example of a power supply current waveform when the power conversion device of FIG. 1 is controlled by the conduction rate d according to the equation (2).
- the power supply current can be converted into a sine wave.
- the vibration component of the power supply current can be removed by a known filter circuit.
- the short circuit control unit 10 stops the switching of the short circuit 6 when the AC power supply current detector 7 detects a power supply current near zero. Thereby, the distortion of the power supply current waveform near zero current is reduced.
- this technique is a known technique, in the present embodiment, the slope (time change rate) of the power supply current near zero current is further reduced to approach zero. As a result, it is possible to suppress the occurrence of unexpected harmonics in the power supply current waveform due to the switching stop of the short circuit 6 becoming a disturbance to the boosting operation.
- the magnitude of the slope of the supply current in the vicinity of zero current in order to reduce than the sine wave (fundamental wave), high-order component in the "i s *", for example, the formula Add tertiary components as shown in (5).
- I s-3rd * is the power supply current tertiary command amplitude.
- the magnitude of “I s-3rd * ” is set to a value smaller than “I s-1st * ”, for example, about one third of “I s-1st * ”.
- Figure 3 shows the i s * to the power current command value, an example of the waveform of the power source current when added tertiary component as shown in Equation (5). However, the switching of the short circuit 6 is not stopped near the zero current.
- the waveform example of Fig. 3 by adding a tertiary component i s * to the power current command value, the slope of the magnitude of the supply current of around zero current is reduced to a size close to zero.
- the vibration component in this waveform example can be removed by a known filter circuit (the waveform example in FIG. 4 is also the same).
- Figure 4 shows the i s * to the power current command value, an example of the waveform of the power source current when added tertiary component as shown in Equation (5). However, switching of the short circuit 6 is stopped in the vicinity of zero current.
- the switching of the short circuit 6 is stopped when the slope of the power supply current near zero current is reduced to near zero. Thereby, even if switching of the short circuit 6 is stopped, generation of unexpected harmonics in the power supply current waveform can be suppressed.
- the conduction ratio (duty) according to the voltage of a predetermined part in the circuit, in this embodiment, the voltage of the AC power supply 2 and the reactor 4, the power supply current The waveform can be sine wave reliably. Thereby, the efficiency of a power converter device improves. Furthermore, even if the switching operation is stopped in the vicinity of the zero current to reduce the waveform distortion by reducing the time change rate of the power supply current related to the voltage value of the reactor 4 near the zero current, an unexpected harmonic wave Can be suppressed.
- means for applying a high-order component current sine wave in the case of conventional techniques, i.e., the command and the voltage controller for matching the E d to the command value E d *, the i s
- the present invention can also be applied to the case where the power supply current is converted into a sine wave and a predetermined DC output voltage is obtained by using a current controller for matching the value i s * (sine wave).
- the power conversion device has a reactor in which energy is stored when the semiconductor switching element (in the above-described embodiment, “short circuit 6”) is turned on, and the semiconductor switching element is switched (ON / OFF).
- a power conversion circuit unit that performs a boosting operation and a control unit that sets the conduction ratio of the semiconductor switching element according to a sine wave current including a fundamental wave component and a higher-order component are provided.
- FIG. 5 shows a circuit configuration of the power conversion device that is Embodiment 1 of the present invention.
- the rectifier elements 3a to 3d constituting the rectifier circuit of the power conversion device 1A are MOSFETs (Metal / Oxide / Semiconductor / Field / Effect / Transistors) which are semiconductor switching elements, and diodes connected in reverse parallel to the MOSFETs. Consists of As the diode, a MOSFET built-in diode may be used. Further, the power conversion device 1A performs a boosting operation by driving these MOSFETs on and off. That is, the rectifier circuit including the rectifier elements 3 a to 3 d also serves as the short circuit 6.
- MOSFETs Metal / Oxide / Semiconductor / Field / Effect / Transistors
- the step-up operation of the power conversion device 1A is as follows.
- the rectifying element 3c MOSFET
- the rectifying element 3a diode
- the smoothing capacitor 5 the rectifying element 3d (diode)
- the reactor 4 A current flows, and the energy accumulated in the reactor 4 is released to the smoothing capacitor 5 side.
- a DC voltage larger than the voltage amplitude of the AC power supply 2 is output from the rectifier circuit.
- the short circuit 6 in the first embodiment can supply a power supply current to both by a MOSFET full bridge circuit.
- a MOSFET full bridge circuit For example, when the direction of the voltage of the AC power supply 2 is downward in the figure, when the rectifier element 3d (MOSFET) is turned on to turn on the short circuit 6, the AC power supply 2, the reactor 4, the rectifier element 3d (MOSFET), the rectifier A power supply current flows through a closed circuit including the element 3b (diode). Thereby, energy is accumulated in the reactor 4.
- a pair of MOSFETs may be turned on. Thereby, the power loss which generate
- the operation of the MOSFET is the same as the so-called synchronous rectification operation when the energy of the reactor 4 is released, that is, when the short circuit 6 operates as a rectification circuit.
- the magnitude of the DC output voltage of the power conversion device 1A controls the conduction ratio (duty) when each of the short circuit 6, that is, the rectifying element 3c (MOSFET) and the rectifying element 3d (MOSFET) is ON.
- the short circuit control unit 10 creates a command signal corresponding to the conduction ratio, and compares the command signal with a carrier signal (such as a triangular wave or a sawtooth wave) by pulse width modulation (PWM) to indicate the command signal indicated by the command signal.
- PWM pulse width modulation
- a short-circuit command signal 10A which is a pulse signal having a flow rate, is created.
- the conduction rate d is set by the above equation (2).
- the switching operation of the rectifier element is stopped in the vicinity of the zero current of the power supply current in order to reduce the waveform distortion, and the slope of the power supply current in the vicinity of the zero current (time change rate). and in order to reduce than the sine wave (fundamental wave), high-order component in the "i s *" in the above equation (2), for example, as shown in the above equation (5) is added to the tertiary component.
- FIG. 6 shows a circuit configuration of a motor drive device that is Embodiment 2 of the present invention.
- the power conversion device 1 ⁇ / b> A of the first embodiment is connected as a DC power source to the DC side of the inverter device that drives the motor 100.
- the main circuit of the inverter device is composed of a three-phase bridge circuit composed of six semiconductor switching elements 30a to 30f (MOSFETs in FIG. 6) each connected to a freewheeling diode.
- the power converter 1A (FIG. 5) of the first embodiment is connected to the DC input side, and the motor 100 is connected to the AC output side.
- AC power of constant voltage and constant frequency from the AC power source 2 is converted into DC power of a predetermined voltage by the power conversion device 1A. Further, the DC power is converted into AC power having a variable frequency and a variable voltage by driving the semiconductor switching elements 30a to 30f on and off. The motor 100 is driven at a variable speed by this AC power.
- the inverter device controls the motor 100 to rotate at a desired speed.
- the inverter control unit 50 calculates a motor current necessary for making the speed of the motor 100 coincide with the speed command value, and the detected motor current, that is, the motor in which the three-phase output current I uvw of the inverter device is calculated.
- the on / off driving of the semiconductor switching elements 30a to 30f is controlled so as to match the current.
- a three-phase AC motor such as an induction motor or a synchronous motor (for example, a permanent magnet synchronous motor) is applied.
- An IGBT Insulated Gate Bipolar Transistor
- MOSFET Metal Organic Field-effect transistor
- a built-in diode may be used as the freewheeling diode.
- the efficiency of the motor driving device is improved, Unexpected generation of harmonics in the motor drive device can be suppressed.
- FIG. 7 is a configuration diagram of a refrigeration apparatus that is Embodiment 3 of the present invention.
- the refrigeration equipment is a device that harmonizes temperatures, such as an air conditioner or a refrigerator.
- the fan motor is driven by the motor driving device (FIG. 6) according to the second embodiment described above.
- the refrigeration apparatus 300 includes heat exchangers 301 and 302, fans 303 and 304 for blowing air to these heat exchangers, a compressor 305 that compresses and circulates the refrigerant, It is arranged between the heat exchanger 301 and the heat exchanger 302, and between the compressor 305 and the heat exchangers 301 and 302, and includes a pipe 306 through which a refrigerant flows and a motor driving device 307.
- Permanent magnet synchronous motors are used as fan motors that rotationally drive the fans 303 and 304.
- a compressor motor 308 that drives the compressor 305 is disposed inside the compressor 305.
- the motor driving device 307 includes a DC power supply circuit that converts AC power from a commercial AC power supply into DC power, and a compressor motor that converts the DC power from the DC power supply circuit into AC power and supplies the AC power to the compressor motor 308.
- a drive inverter and a fan motor drive inverter that converts DC power into AC power from the DC power supply circuit and supplies the AC power to the fan motor are provided.
- the above-described first embodiment (FIG. 5) is applied to the DC power supply circuit.
- the above-described second embodiment (FIG. 6) is applied as the motor driving device 307 including the inverter.
- the first and second DC power supply circuits independent from each other are provided, and the compressor motor drive inverter and the compressor motor drive inverter are respectively connected to the first DC power supply circuit and the second DC power supply circuit. You may make it receive direct-current power.
- the efficiency of the refrigeration equipment is improved and an unexpected harmonic in the refrigeration equipment. Wave generation can be suppressed.
- IGBT Insulated Gate Bipolar Transistor
- SJ Super Junction
- MOSFET Metal Organic Field-effect transistor
- the semiconductor material constituting the semiconductor switching element may be a wide gap semiconductor such as SiC (Silicon Carbon) in addition to normal semiconductor silicon.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Inverter Devices (AREA)
Abstract
A power conversion device (1) is provided with: a power conversion circuit part that performs a boosting operation of converting AC power from an AC power supply (2) to DC power and converting DC output voltage to voltage higher than the voltage of the AC power supply, and that is provided with a short circuit (6) for short-circuiting the AC power supply via a reactor (4) and performs the boosting operation by switching the short circuit (6); and a control unit (10) that sets the conduction rate of the short circuit (6) according to the power supply voltage of the AC power supply (2) and the voltage of the reactor (4).
Description
本発明は、交流電力と直流電力の間における電力変換を行う電力変換装置、並びに、電力変換装置を用いるモータ駆動装置、および空気調和機などの冷凍機器に関する。
The present invention relates to a power conversion device that performs power conversion between AC power and DC power, a motor drive device that uses the power conversion device, and a refrigeration apparatus such as an air conditioner.
近年、空気調和機などの電動力応用機器を駆動するために、スイッチング素子によって電力変換を行う電力変換装置が用いられる。商用交流電源などの交流電源における交流電力と、直流電源や負荷における直流電力との間で電力変換を行う電力変換装置に対しては、効率向上や高調波低減のために、交流電源側の電流波形の歪を低減することが要求される。
Recently, in order to drive electric power application equipment such as an air conditioner, a power conversion device that performs power conversion using a switching element is used. For power converters that perform power conversion between AC power in AC power supplies such as commercial AC power supplies and DC power in DC power supplies and loads, the current on the AC power supply side is used to improve efficiency and reduce harmonics. It is required to reduce waveform distortion.
昇圧動作を行う電力変換装置では、昇圧動作のためのスイッチング素子のスイッチング駆動を制御することにより、電流波形の歪を低減する。電流波形の歪を低減する従来技術として、特許文献1および特許文献2に記載の技術が知られている。
In a power conversion device that performs a boost operation, the distortion of the current waveform is reduced by controlling the switching drive of the switching element for the boost operation. As conventional techniques for reducing distortion of a current waveform, techniques described in Patent Document 1 and Patent Document 2 are known.
特許文献1に記載の技術では、高周波トランスの一次側に接続される発振回路における半導体スイッチング素子を交流電源電流に応じて制御し、高周波トランスの出力が、全波整流回路および波形の正負変換回路を順次介して、交流電源に接続される。これにより、正弦波の交流電源電流の波形が得られる。さらに、交流電源電流の零点付近で正負変換回路を構成するスイッチング素子の駆動を停止することにより、零電流付近での交流電源電流の波形の歪が抑えられる。
In the technique described in Patent Document 1, a semiconductor switching element in an oscillation circuit connected to the primary side of a high-frequency transformer is controlled according to an AC power supply current, and the output of the high-frequency transformer includes a full-wave rectifier circuit and a waveform positive / negative conversion circuit. Are sequentially connected to an AC power source. As a result, a sinusoidal AC power supply current waveform is obtained. Furthermore, by stopping the driving of the switching elements constituting the positive / negative conversion circuit near the zero point of the AC power supply current, distortion of the waveform of the AC power supply current near the zero current can be suppressed.
特許文献2に記載の技術では、昇圧チョッパ回路におけるスイッチング素子の通流率信号を交流電源電流の瞬時値と昇圧比に応じて設定する。これにより、基準波形を生成しなくても、交流電源電流が正弦波化される。
In the technique described in Patent Document 2, the conduction factor signal of the switching element in the boost chopper circuit is set according to the instantaneous value of the AC power supply current and the boost ratio. As a result, the AC power supply current is sine wave without generating a reference waveform.
特許文献1に記載の技術では、正負変換回路のスイッチング素子の駆動の停止が、発振回路の半導体スイッチング素子の動作に外乱を加えることになるため、交流電源電流波形に予期せぬ高調波成分が発生する。
In the technique described in Patent Document 1, since the stop of the driving of the switching element of the positive / negative conversion circuit adds disturbance to the operation of the semiconductor switching element of the oscillation circuit, an unexpected harmonic component is present in the AC power supply current waveform. Occur.
また、特許文献2に記載の技術では、交流電源電流の瞬時値が用いられるため、スイッチング周波数によっては制御が不安定になる場合がある。
In the technique described in Patent Document 2, since the instantaneous value of the AC power supply current is used, the control may become unstable depending on the switching frequency.
そこで、本発明は、交流電源電流の波形歪を安定に低減して正弦波化できる電力変換装置およびそれを用いたモータ駆動装置および冷凍機器を提供する。
Therefore, the present invention provides a power conversion device that can stably reduce the waveform distortion of an AC power supply current to make a sine wave, and a motor drive device and a refrigeration apparatus using the power conversion device.
上記課題を解決するために、本発明による電力変換装置は、交流電源からの交流電力を直流電力に変換するとともに、直流出力電圧を交流電源の電圧よりも大きな電圧に変換する昇圧動作を行うものであって、リアクタを介して交流電源を短絡する短絡回路を備え、短絡回路をスイッチングすることにより昇圧動作を行う電力変換回路部と、短絡回路の通流率を、交流電源の電源電圧およびリアクタの電圧に応じて設定する制御部と、を備える。
In order to solve the above problems, a power conversion device according to the present invention performs a boosting operation for converting AC power from an AC power source into DC power and converting a DC output voltage to a voltage larger than the voltage of the AC power source. A power conversion circuit unit that includes a short circuit that short-circuits the AC power supply via the reactor, and that performs a boost operation by switching the short circuit, and a current ratio of the short circuit, the power supply voltage of the AC power supply and the reactor And a control unit that is set in accordance with the voltage.
また、上記課題を解決するために、本発明による電力変換装置は、交流電源からの交流電力を直流電力に変換するとともに、直流出力電圧を交流電源の電圧よりも大きな電圧に変換する昇圧動作を行うものであって、半導体スイッチング素子と、半導体スイッチング素子をオンするとエネルギーが蓄積されるリアクタと、を有し、半導体スイッチング素子をスイッチングすることにより昇圧動作を行う電力変換回路部と、半導体スイッチング素子の通流率を正弦波に応じて設定する制御部と、を備え、さらに、交流電源の電源電流の零電流付近で、半導体スイッチング素子のスイッチングを停止する手段を備え、正弦波は、基本波成分と高次成分とを含む。
In order to solve the above problem, the power conversion device according to the present invention converts the AC power from the AC power source into DC power and performs a boosting operation that converts the DC output voltage to a voltage larger than the voltage of the AC power source. A power conversion circuit unit that includes a semiconductor switching element and a reactor that stores energy when the semiconductor switching element is turned on, and performs a boosting operation by switching the semiconductor switching element; and a semiconductor switching element And a control unit for setting the conduction ratio of the semiconductor switching element according to a sine wave, and further comprising means for stopping the switching of the semiconductor switching element near the zero current of the power source current of the AC power source. Contains ingredients and higher order components.
上記課題を解決するために、本発明によるモータ駆動装置は、電力変換装置によってモータを駆動するものであって、電力変換装置は、交流電源からの交流電力を直流電力に変換するとともに、直流出力電圧を交流電源の電圧よりも大きな電圧に変換する昇圧動作を行い、リアクタを介して交流電源を短絡する短絡回路を備え、短絡回路をスイッチングすることにより昇圧動作を行う第1の電力変換回路部と、短絡回路の通流率を、交流電源の電源電圧およびリアクタの電圧に応じて設定する制御部と、直流電力を、可変電圧かつ可変周波数の交流電力に変換する第2の電力変換回路部と、を備える。
In order to solve the above-described problems, a motor driving device according to the present invention drives a motor by a power converter, and the power converter converts AC power from an AC power source into DC power and outputs DC power. A first power conversion circuit unit that includes a short circuit that performs a step-up operation that converts a voltage to a voltage that is greater than the voltage of the AC power source, short-circuits the AC power source via a reactor, and performs the step-up operation by switching the short circuit A control unit that sets the conduction ratio of the short circuit according to the power supply voltage of the AC power supply and the voltage of the reactor, and a second power conversion circuit unit that converts the DC power into a variable voltage and variable frequency AC power And comprising.
上記課題を解決するために、本発明による冷凍機器は、熱交換器と、冷媒を圧縮して循環させる圧縮機と、熱交換器への送風を行うファンと、圧縮機またはファンを駆動するモータと、モータを駆動するモータ駆動装置と、を備えるものであって、モータ駆動装置は、上記本発明によるモータ駆動装置である。
In order to solve the above problems, a refrigeration apparatus according to the present invention includes a heat exchanger, a compressor that compresses and circulates a refrigerant, a fan that blows air to the heat exchanger, and a motor that drives the compressor or the fan. And a motor driving device for driving the motor, wherein the motor driving device is the motor driving device according to the present invention.
本発明によれば、交流電源電流の波形歪を安定に低減して正弦波化できるので、電力変換装置およびそれを用いたモータ駆動装置および冷凍機器が発生する高調波を安定に抑制することができる。
According to the present invention, since the waveform distortion of the AC power supply current can be stably reduced to a sine wave, it is possible to stably suppress harmonics generated by the power converter, the motor driving device using the power converter, and the refrigeration equipment. it can.
以下、本発明の実施形態について、図1~4を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
図1は、本発明の一実施形態である電力変換装置の回路構成を示す。
FIG. 1 shows a circuit configuration of a power conversion device according to an embodiment of the present invention.
図1に示すように、電力変換装置1の電力変換回路部(主回路部)は、整流素子3a~3dによって構成されて、交流電源2から供給される交流電力を整流する整流回路を備える。なお、本実施形態では、整流素子3a~3dをダイオードとしている。交流電源2は、電力変換装置1において、リアクタ4を介して、整流回路の交流入力に接続される。また、交流入力間には、交流入力を短絡し、交流電源2からリアクタ4を介して流れる短絡電流を制御する短絡回路6が接続される。整流回路の直流出力には、整流回路の出力電圧を平滑化する平滑コンデンサ5が接続される。
As shown in FIG. 1, the power conversion circuit unit (main circuit unit) of the power conversion device 1 includes rectifier circuits configured by rectifier elements 3 a to 3 d to rectify AC power supplied from the AC power supply 2. In the present embodiment, the rectifying elements 3a to 3d are diodes. The AC power source 2 is connected to the AC input of the rectifier circuit via the reactor 4 in the power conversion device 1. Further, a short circuit 6 is connected between the AC inputs to short-circuit the AC input and control a short-circuit current flowing from the AC power supply 2 via the reactor 4. A smoothing capacitor 5 that smoothes the output voltage of the rectifier circuit is connected to the DC output of the rectifier circuit.
電力変換装置1は、交流電源2から入力する交流電源電流(以下、「電源電流」と記す)を検出する交流電源電流検出器7と、交流電源2から入力する交流電源電圧を検出する交流電源電圧検出器8と、整流回路の直流出力電圧を検出する直流出力電圧検出器9を備える。短絡回路制御部10は、交流電源電流検出器7の検出電流と、交流電源電圧検出器8および直流出力電圧検出器9の各検出電圧に基づいて、短絡回路6に対する短絡指令信号10Aを作成して出力する。パルスオフ制御部11は、短絡指令信号10Aを停止するか否かを判定し、判定結果に応じて短絡指令信号10Aを修正し、修正された短絡指令信号11Aを出力する。なお、短絡回路6は、交流電源電圧の正負に応じて、双方向の電流をオン・オフ制御できる。
The power converter 1 includes an AC power source current detector 7 that detects an AC power source current (hereinafter referred to as “power source current”) input from the AC power source 2, and an AC power source that detects an AC power source voltage input from the AC power source 2. A voltage detector 8 and a DC output voltage detector 9 for detecting the DC output voltage of the rectifier circuit are provided. The short circuit control unit 10 creates a short circuit command signal 10A for the short circuit 6 based on the detection current of the AC power supply current detector 7 and the detection voltages of the AC power supply voltage detector 8 and the DC output voltage detector 9. Output. The pulse-off control unit 11 determines whether to stop the short-circuit command signal 10A, corrects the short-circuit command signal 10A according to the determination result, and outputs the corrected short-circuit command signal 11A. In addition, the short circuit 6 can perform ON / OFF control of the bidirectional current according to the positive / negative of the AC power supply voltage.
次に、本実施形態の動作について説明する。
Next, the operation of this embodiment will be described.
図1に示す電力変換装置1は、短絡回路6をスイッチング(オン・オフ)駆動することによって、昇圧動作を行う。
The power converter 1 shown in FIG. 1 performs a boosting operation by driving the short circuit 6 by switching (on / off).
短絡回路6がオンすると、交流電源2がリアクタ4を介して短絡されるので、交流電源2と短絡回路6およびリアクタ4を含む閉回路に、電源電流が流れる。この時、リアクタ4に、交流電源2からの電力すなわち電気エネルギーが、磁気エネルギーとして蓄積される。次に、短絡回路6がオフすると、交流電源2、整流回路、平滑コンデンサ5、リアクタ4を含む経路で電源電流が流れ、リアクタ4に蓄積されたエネルギーが、整流回路を介して平滑コンデンサ5側へ放出される。この時、リアクタ4に、リアクタに流れる電源電流の時間変化に比例した誘起電圧が発生するため、交流電源2の電圧振幅よりも大きな直流電圧が整流回路から出力される。
When the short circuit 6 is turned on, the AC power source 2 is short-circuited via the reactor 4, and thus a power source current flows through the closed circuit including the AC power source 2, the short circuit 6, and the reactor 4. At this time, the electric power from the AC power source 2, that is, electric energy, is stored in the reactor 4 as magnetic energy. Next, when the short circuit 6 is turned off, a power supply current flows through a path including the AC power supply 2, the rectifier circuit, the smoothing capacitor 5, and the reactor 4, and the energy accumulated in the reactor 4 is transferred to the smoothing capacitor 5 side through the rectifier circuit. Is released. At this time, an induced voltage proportional to the time change of the power supply current flowing through the reactor is generated in the reactor 4, so that a DC voltage larger than the voltage amplitude of the AC power supply 2 is output from the rectifier circuit.
短絡回路6のオフ時に、電力変換装置1の交流側に流れる電源電流の方向は、短絡回路6のオン時に流れていた電源電流の方向すなわち交流電源2の電圧の正負に応じて変わるが、ダイオードブリッジからなる整流回路(全波整流回路)によって、直流側すなわち平滑コンデンサには一方向(図中、上から下へ向かう方向)に流れる。これにより、平滑コンデンサ5は、交流電源2の電圧振幅よりも大きな直流電圧で、充電される。
When the short circuit 6 is turned off, the direction of the power supply current flowing to the AC side of the power converter 1 varies depending on the direction of the power supply current flowing when the short circuit 6 is turned on, that is, the voltage of the AC power supply 2. The rectifier circuit (full-wave rectifier circuit) composed of a bridge flows in one direction (the direction from the top to the bottom in the figure) through the DC side, that is, the smoothing capacitor. Thereby, the smoothing capacitor 5 is charged with a DC voltage larger than the voltage amplitude of the AC power supply 2.
電力変換装置1の直流出力電圧の大きさは、短絡回路6がONしているときの通流率(デューティー)を制御することにより、所定値に制御される。ここで、短絡回路制御部10は、通流率に応じた指令信号を作成し、指令信号とキャリア信号(三角波やのこぎり波など)を比較するパルス幅変調(PWM)により、指令信号が示す通流率を有するパルス信号である短絡指令信号10Aを作成する。
The magnitude of the DC output voltage of the power conversion device 1 is controlled to a predetermined value by controlling the conduction rate (duty) when the short circuit 6 is ON. Here, the short circuit control unit 10 creates a command signal corresponding to the conduction ratio, and compares the command signal with a carrier signal (such as a triangular wave or a sawtooth wave) by pulse width modulation (PWM) to indicate the command signal indicated by the command signal. A short-circuit command signal 10A, which is a pulse signal having a flow rate, is created.
上記のような短絡回路6のオン・オフ動作を考慮すると、図1の回路構成に関する回路方程式は、近似的に、式(1)で表される。
Considering the on / off operation of the short circuit 6 as described above, the circuit equation relating to the circuit configuration of FIG. 1 is approximately expressed by the equation (1).
式(1)において、「d」は短絡回路6がONしているときの通流率(デューティー)であり、「is」は:電源電流の瞬時値[A]であり、「L」はリアクタ4のインダクタンス値[H]であり、「vs」は交流電源2の電源電圧の瞬時値[V]であり、「Ed」は平滑コンデンサ5の両端の電圧すなわち直流出力電圧[V]であり、「ΔEd」は直流出力電圧の変動成分[V]である。
In Expression (1), “d” is a conduction ratio (duty) when the short circuit 6 is ON, “i s ” is an instantaneous value [A] of the power supply current, and “L” is The inductance value [H] of the reactor 4, “v s ” is the instantaneous value [V] of the power supply voltage of the AC power supply 2, and “E d ” is the voltage across the smoothing capacitor 5, that is, the DC output voltage [V]. “ΔE d ” is the fluctuation component [V] of the DC output voltage.
なお、短絡回路6の通流率dは、短絡回路6のスイッチングの1周期(T)において、短絡回路6がオンおよびオフしている時間をそれぞれtonおよびtoffとすると、「d=ton/(ton+toff)=ton/T」と表される。
The conduction rate d of the short circuit 6 is expressed as “d = t, where t on and t off are the times during which the short circuit 6 is on and off, respectively, during one switching period (T) of the short circuit 6. represented and on / (t on + t off ) = t on / T ".
ここで、d=1-K|is|(K:比例ゲイン)とすると、isを正弦波状に制御できることが知られている(例えば、前述の特許文献2参照)。ここで、Kは、電源電流isの振幅(Is)と昇圧比a(=Ed/Vs:Vsはvsの振幅)から設定される(K=1/(a・Is))。これにより、所定の直流出力電圧が得られる。
Here, when d = 1−K | i s | (K: proportional gain), it is known that is can be controlled in a sine wave shape (see, for example, Patent Document 2 described above). Here, K is the amplitude of the supply current i s (I s) and the step-up ratio a (= E d / V s : V s is v amplitude s) is set from the (K = 1 / (a · I s )). Thereby, a predetermined DC output voltage is obtained.
これに対し、慣用的な技術では、Edを指令値Ed
*に一致させるための電圧制御器と、isを指令値is
*(正弦波)に一致させるための電流制御器により、電源電流を正弦波化すると共に所定の直流出力電圧を得る。
In contrast, in conventional techniques, a voltage controller for matching the E d to the command value E d *, the current controller for matching the i s the command value i s * (sine wave), A power source current is converted into a sine wave and a predetermined DC output voltage is obtained.
このような一般的技術に比べ、「d=1-K|is|」によってdを設定する技術は、制御装置の構成が簡略化される。しかし、本発明者の検討によれば、このように電源電流の瞬時値を用いる手段では、スイッチング周波数(PWM周波数)によっては(例えば、周波数を低くすると)、制御が不安定になる場合がある。
Compared to such a general technique, the technique of setting d by “d = 1−K | i s |” simplifies the configuration of the control device. However, according to the study by the present inventor, in such a means using the instantaneous value of the power supply current, the control may become unstable depending on the switching frequency (PWM frequency) (for example, when the frequency is lowered). .
そこで、本実施形態では、通流率dを式(2)のように設定する。式(2)によれば、電圧値を使用することにより、制御が安定化する。
Therefore, in this embodiment, the flow rate d is set as shown in Equation (2). According to the equation (2), the control is stabilized by using the voltage value.
式(2)において、「Kpv」は比例定数(電圧制御ゲイン)であり、「vs
*」は電源電圧指令値[A]であり、「is
*」は電源電流指令値[A]であり、「Ed
*」は直流出力電圧指令値[A]であり、「ΔEd
*」は直流出力電圧変動指令値である。
In Equation (2), “K pv ” is a proportional constant (voltage control gain), “v s * ” is a power supply voltage command value [A], and “i s * ” is a power supply current command value [A]. “E d * ” is the DC output voltage command value [A], and “ΔE d * ” is the DC output voltage fluctuation command value.
式(2)において「vs
*-L・(dis
*/dt)」は、図1の回路の部位の電圧(瞬時値)であり、いわば電源電流isの正弦波波形に関わる電圧である。なお、L・(dis
*/dt)は、リアクタ4のインダクタンスと電源電流の時間変化率との積、すなわち、リアクタ4の電圧である。また、「Kpv(Ed
*+ΔEd
*)」は、直流出力電圧の電圧制御に関わる。なお、「ΔEd
*」は、直流出力電圧検出器9によって検出される「Ed」の値と「Ed
*」との偏差の値が設定される。また、「Kpv」の値は、「ΔEd
*」の値に応じて、「ΔEd
*」の値が大きくなるほど大きく、また小さくなるほど小さく設定される。
"V s * -L · (di s * / dt) " in equation (2) is the voltage portion of the circuit of FIG. 1 (instantaneous value), a voltage as it were related to the sinusoidal waveform of the power supply current i s is there. L · (di s * / dt) is the product of the inductance of the reactor 4 and the time rate of change of the power supply current, that is, the voltage of the reactor 4. “K pv (E d * + ΔE d * )” relates to voltage control of the DC output voltage. Incidentally, "Delta] E d *", the value of the deviation between the value of the "E d" that is detected by the DC output voltage detector 9 as "E d *" is set. The value of "K pv", depending on the value of the "Delta] E d *", increases as the value of the "Delta] E d *" increases, and is set as smaller smaller.
さらに、式(2)において、vs
*,is
*は、それぞれ式(3)、式(4)により設定される。
Furthermore, in the equation (2), v s * and i s * are set by the equations (3) and (4), respectively.
式(3)において、「Vs-1st
*」は電源電圧基本波振幅である。式(4)において、「Is-1st
*」は電源電流基本波振幅である。なお、「ω」は電源角周波数、「t」は時間である。
In Expression (3), “V s−1st * ” is the power supply voltage fundamental wave amplitude. In Expression (4), “I s−1st * ” is the power source current fundamental wave amplitude. “Ω” is the power source angular frequency, and “t” is time.
ここで、「vs
*」については、交流電源電圧検出器8によって検出される「vs」に基づいて、「vs」の振幅と位相が計測され、計測される「vs」の振幅および位相の各値が、それぞれ、式(3)における「Vs-1st
*」および「ωt」として設定される。さらに、電源電流の位相を電源電圧と同相になるように制御するので、計測される「vs」の位相の値が、式(4)における「ωt」として設定される。「is
*」については、交流電源電流検出器7によって検出される「is」に基づいて、「is」の振幅が計測され、計測される「is」の振幅の値が式(4)における「Is-1st
*」として設定される。
Here, "v s *" based on the "v s" detected by the AC power supply voltage detector 8, the amplitude of the "v s" amplitude and phase are measured, and are measured "v s" And each value of the phase are set as “V s−1st * ” and “ωt” in Equation (3), respectively. Furthermore, since the phase of the power supply current is controlled to be in phase with the power supply voltage, the measured phase value of “v s ” is set as “ωt” in Equation (4). For "i s *" based on the "i s" detected by the AC power source current detector 7, "i s" amplitude is measured, the value of the amplitude of the "i s" as measurement formula ( It is set as “I s-1st * ” in 4).
具体的な計算過程の記載は省略するが、回路方程式である式(1)に式(2)を代入して、isを算出すれば、isがほぼ正弦波状にできることが分かる。なお、式(2)による通流率dによって図1の電力変換装置を制御した場合の電源電流波形の一例を図2に示す。図2に示すように、本例では、振動成分はあるものの、電源電流を正弦波化できる。なお、電源電流の振動成分は、公知のフィルタ回路によって除去できる。
Although the description of a specific calculation process is omitted, it is understood that if is calculated by substituting equation (2) into equation (1), which is a circuit equation, is can be substantially sinusoidal. FIG. 2 shows an example of a power supply current waveform when the power conversion device of FIG. 1 is controlled by the conduction rate d according to the equation (2). As shown in FIG. 2, in this example, although there is a vibration component, the power supply current can be converted into a sine wave. The vibration component of the power supply current can be removed by a known filter circuit.
本実施形態において、短絡回路制御部10は、交流電源電流検出器7によって、零付近の電源電流が検出されると、短絡回路6のスイッチングを停止する。これにより、零電流付近の電源電流波形の歪が低減される。本技術は、公知の技術であるが、本実施形態においては、さらに、零電流付近の電源電流の傾き(時間変化率)を低減して零に近づける。これにより、短絡回路6のスイッチング停止が昇圧動作に対する外乱となって、電源電流波形に予期せぬ高調波が発生することが抑制できる。
In this embodiment, the short circuit control unit 10 stops the switching of the short circuit 6 when the AC power supply current detector 7 detects a power supply current near zero. Thereby, the distortion of the power supply current waveform near zero current is reduced. Although this technique is a known technique, in the present embodiment, the slope (time change rate) of the power supply current near zero current is further reduced to approach zero. As a result, it is possible to suppress the occurrence of unexpected harmonics in the power supply current waveform due to the switching stop of the short circuit 6 becoming a disturbance to the boosting operation.
本実施形態においては、零電流付近の電源電流の傾き(時間変化率)の大きさを、正弦波(基本波)よりも低減するために、「is
*」に高次成分、例えば、式(5)に示すように、三次成分を加える。
In the present embodiment, the magnitude of the slope of the supply current in the vicinity of zero current (time rate of change), in order to reduce than the sine wave (fundamental wave), high-order component in the "i s *", for example, the formula Add tertiary components as shown in (5).
式(5)において、「Is-3rd
*」は電源電流三次指令振幅である。「Is-3rd
*」の大きさは、「Is-1st
*」よりも小さな値、例えば、「Is-1st
*」の三分の一程度の値が設定される。
In Expression (5), “I s-3rd * ” is the power supply current tertiary command amplitude. The magnitude of “I s-3rd * ” is set to a value smaller than “I s-1st * ”, for example, about one third of “I s-1st * ”.
図3は、電源電流指令値にis
*に、式(5)で示すように三次成分を加えた場合の電源電流の波形例を示す。ただし、零電流付近において短絡回路6のスイッチングは停止されていない。
Figure 3 shows the i s * to the power current command value, an example of the waveform of the power source current when added tertiary component as shown in Equation (5). However, the switching of the short circuit 6 is not stopped near the zero current.
図3の波形例が示すように、電源電流指令値にis
*に三次成分を加えることにより、零電流付近の電源電流の傾きの大きさが零に近い大きさに低減される。本波形例における振動成分は、公知のフィルタ回路によって除去できる(図4の波形例も同様)。
As the waveform example of Fig. 3, by adding a tertiary component i s * to the power current command value, the slope of the magnitude of the supply current of around zero current is reduced to a size close to zero. The vibration component in this waveform example can be removed by a known filter circuit (the waveform example in FIG. 4 is also the same).
図4は、電源電流指令値にis
*に、式(5)で示すように三次成分を加えた場合の電源電流の波形例を示す。ただし、零電流付近において短絡回路6のスイッチングが停止されている。
Figure 4 shows the i s * to the power current command value, an example of the waveform of the power source current when added tertiary component as shown in Equation (5). However, switching of the short circuit 6 is stopped in the vicinity of zero current.
図4の波形例が示すように、零電流付近の電源電流の傾きの大きさが零に近い大きさに低減された時点で、短絡回路6のスイッチングが停止されている。これにより、短絡回路6のスイッチングが停止されても、電源電流波形に予期せぬ高調波が発生することが抑制できる。
As shown in the waveform example of FIG. 4, the switching of the short circuit 6 is stopped when the slope of the power supply current near zero current is reduced to near zero. Thereby, even if switching of the short circuit 6 is stopped, generation of unexpected harmonics in the power supply current waveform can be suppressed.
上述のように、本実施形態によれば、回路中の所定の部位の電圧、本実施形態では交流電源2およびリアクタ4の電圧に応じて通流率(デューティ)を設定することにより、電源電流波形を確実に正弦波化できる。これにより、電力変換装置の効率が向上する。さらに、リアクタ4の電圧値に関わる電源電流の零電流付近の時間変化率を低減することにより、零電流付近で、波形歪を低減するためにスイッチング動作を停止しても、予期せぬ高調波の発生を抑制できる。
As described above, according to the present embodiment, by setting the conduction ratio (duty) according to the voltage of a predetermined part in the circuit, in this embodiment, the voltage of the AC power supply 2 and the reactor 4, the power supply current The waveform can be sine wave reliably. Thereby, the efficiency of a power converter device improves. Furthermore, even if the switching operation is stopped in the vicinity of the zero current to reduce the waveform distortion by reducing the time change rate of the power supply current related to the voltage value of the reactor 4 near the zero current, an unexpected harmonic wave Can be suppressed.
なお、上記実施形態における、電流正弦波に高次成分を加える手段は、慣用的な技術による場合、すなわち、Edを指令値Ed
*に一致させるための電圧制御器と、isを指令値is
*(正弦波)に一致させるための電流制御器により、電源電流を正弦波化すると共に所定の直流出力電圧を得る場合にも適用できる。また、上記実施形態における、電流正弦波に高次成分を加える手段は、d=1-K|is|(K:比例ゲイン)とする場合にも適用できる。これらの場合、電力変換装置は、半導体スイッチング素子(上記実施形態では、「短絡回路6」)をオンするとエネルギーが蓄積されるリアクタを有し、半導体スイッチング素子をスイッチング(オン・オフ)することにより昇圧動作を行う電力変換回路部と、半導体スイッチング素子の通流率を、基本波成分と高次成分とを含む正弦波電流に応じて設定する制御部を備える。
Incidentally, in the above embodiment, means for applying a high-order component current sine wave, in the case of conventional techniques, i.e., the command and the voltage controller for matching the E d to the command value E d *, the i s The present invention can also be applied to the case where the power supply current is converted into a sine wave and a predetermined DC output voltage is obtained by using a current controller for matching the value i s * (sine wave). The means for adding a high-order component to the current sine wave in the above embodiment can also be applied to the case of d = 1−K | i s | (K: proportional gain). In these cases, the power conversion device has a reactor in which energy is stored when the semiconductor switching element (in the above-described embodiment, “short circuit 6”) is turned on, and the semiconductor switching element is switched (ON / OFF). A power conversion circuit unit that performs a boosting operation and a control unit that sets the conduction ratio of the semiconductor switching element according to a sine wave current including a fundamental wave component and a higher-order component are provided.
以下、上述の実施形態に関わる実施例について説明する。
Hereinafter, examples related to the above-described embodiment will be described.
図5は、本発明の実施例1である電力変換装置の回路構成を示す。
FIG. 5 shows a circuit configuration of the power conversion device that is Embodiment 1 of the present invention.
本実施例1においては、電力変換装置1Aの整流回路を構成する、整流素子3a~3dが、半導体スイッチング素子であるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)と、MOSFETに逆並列に接続されるダイオードから構成される。なお、ダイオードは、MOSFETの内蔵ダイオードを用いても良い。さらに、これらMOSFETのオン・オフ駆動によって、電力変換装置1Aは、昇圧動作を行う。すなわち、整流素子3a~3dからなる整流回路が、短絡回路6を兼ねている。
In the first embodiment, the rectifier elements 3a to 3d constituting the rectifier circuit of the power conversion device 1A are MOSFETs (Metal / Oxide / Semiconductor / Field / Effect / Transistors) which are semiconductor switching elements, and diodes connected in reverse parallel to the MOSFETs. Consists of As the diode, a MOSFET built-in diode may be used. Further, the power conversion device 1A performs a boosting operation by driving these MOSFETs on and off. That is, the rectifier circuit including the rectifier elements 3 a to 3 d also serves as the short circuit 6.
電力変換装置1Aの昇圧動作は次のとおりである。
The step-up operation of the power conversion device 1A is as follows.
交流電源2の電圧の方向が図中上向きである場合、短絡回路6をオンするために整流素子3c(MOSFET)をオンすると、交流電源2、整流素子3a(ダイオード)、整流素子3c(MOSFET)、リアクタ4を含む閉回路に電源電流が流れる。これにより、リアクタ4にエネルギーが蓄積される。
When the voltage direction of the AC power supply 2 is upward in the figure, when the rectifier element 3c (MOSFET) is turned on to turn on the short circuit 6, the AC power supply 2, the rectifier element 3a (diode), and the rectifier element 3c (MOSFET) The power supply current flows through the closed circuit including the reactor 4. Thereby, energy is accumulated in the reactor 4.
次に、短絡回路6をオフするために整流素子3c(MOSFET)をオフすると、交流電源2、整流素子3a(ダイオード)、平滑コンデンサ5、整流素子3d(ダイオード)、リアクタ4を含む経路で電源電流が流れ、リアクタ4に蓄積されたエネルギーが、平滑コンデンサ5側へ放出される。この時、リアクタ4に誘起電圧が発生するため、交流電源2の電圧振幅よりも大きな直流電圧が整流回路から出力される。
Next, when the rectifying element 3c (MOSFET) is turned off to turn off the short circuit 6, the power is supplied through a path including the AC power supply 2, the rectifying element 3a (diode), the smoothing capacitor 5, the rectifying element 3d (diode), and the reactor 4. A current flows, and the energy accumulated in the reactor 4 is released to the smoothing capacitor 5 side. At this time, since an induced voltage is generated in the reactor 4, a DC voltage larger than the voltage amplitude of the AC power supply 2 is output from the rectifier circuit.
本実施例1における短絡回路6は、MOSFETのフルブリッジ回路により、双方に電源電流を流せる。例えば、交流電源2の電圧の方向が図中下向きである場合、短絡回路6をオンするために整流素子3d(MOSFET)をオンすると、交流電源2、リアクタ4、整流素子3d(MOSFET)、整流素子3b(ダイオード)を含む閉回路に電源電流が流れる。これにより、リアクタ4にエネルギーが蓄積される。
The short circuit 6 in the first embodiment can supply a power supply current to both by a MOSFET full bridge circuit. For example, when the direction of the voltage of the AC power supply 2 is downward in the figure, when the rectifier element 3d (MOSFET) is turned on to turn on the short circuit 6, the AC power supply 2, the reactor 4, the rectifier element 3d (MOSFET), the rectifier A power supply current flows through a closed circuit including the element 3b (diode). Thereby, energy is accumulated in the reactor 4.
次に、短絡回路6をオフするために整流素子3d(MOSFET)をオフすると、交流電源2、リアクタ4、整流素子3c(ダイオード)、平滑コンデンサ5、整流素子3b(ダイオード)を含む経路で電源電流が流れ、リアクタ4に蓄積されたエネルギーが、平滑コンデンサ5側へ放出される。この時、リアクタ4に誘起電圧が発生するため、交流電源2の電圧振幅よりも大きな直流電圧が整流回路から出力される。
Next, when the rectifier 3d (MOSFET) is turned off to turn off the short circuit 6, the power is supplied through a path including the AC power supply 2, the reactor 4, the rectifier 3c (diode), the smoothing capacitor 5, and the rectifier 3b (diode). A current flows, and the energy accumulated in the reactor 4 is released to the smoothing capacitor 5 side. At this time, since an induced voltage is generated in the reactor 4, a DC voltage larger than the voltage amplitude of the AC power supply 2 is output from the rectifier circuit.
上述のような昇圧動作において、整流素子(ダイオード)に電源電流が流れる場合、対となるMOSFETをオンさせても良い。これにより、電力変換装置1Aで発生する電力損失を低減できる。なお、このようなMOSFETの動作は、リアクタ4のエネルギーを放出する場合、すなわち短絡回路6が整流回路として動作する場合、いわゆる同期整流動作と同様の動作である。
In the step-up operation as described above, when a power supply current flows through the rectifier element (diode), a pair of MOSFETs may be turned on. Thereby, the power loss which generate | occur | produces in 1 A of power converter devices can be reduced. The operation of the MOSFET is the same as the so-called synchronous rectification operation when the energy of the reactor 4 is released, that is, when the short circuit 6 operates as a rectification circuit.
電力変換装置1Aの直流出力電圧の大きさは、短絡回路6すなわち上述の整流素子3c(MOSFET)および整流素子3d(MOSFET)の各々がONしているときの通流率(デューティー)を制御することにより、所定値に制御される。ここで、短絡回路制御部10は、通流率に応じた指令信号を作成し、指令信号とキャリア信号(三角波やのこぎり波など)を比較するパルス幅変調(PWM)により、指令信号が示す通流率を有するパルス信号である短絡指令信号10Aを作成する。通流率dは、上述の式(2)で設定される。これにより、上述のように、電源電流波形を確実に正弦波化できるので、効率が向上する。
The magnitude of the DC output voltage of the power conversion device 1A controls the conduction ratio (duty) when each of the short circuit 6, that is, the rectifying element 3c (MOSFET) and the rectifying element 3d (MOSFET) is ON. Thus, the predetermined value is controlled. Here, the short circuit control unit 10 creates a command signal corresponding to the conduction ratio, and compares the command signal with a carrier signal (such as a triangular wave or a sawtooth wave) by pulse width modulation (PWM) to indicate the command signal indicated by the command signal. A short-circuit command signal 10A, which is a pulse signal having a flow rate, is created. The conduction rate d is set by the above equation (2). Thereby, as described above, the power supply current waveform can be reliably converted into a sine wave, and thus the efficiency is improved.
さらに、本実施例1においては、電源電流の零電流付近で、波形歪を低減するために整流素子(MOSFET)のスイッチング動作を停止するとともに、零電流付近の電源電流の傾き(時間変化率)を、正弦波(基本波)よりも低減するために、上述の式(2)における「is
*」に高次成分、例えば、上述の式(5)に示すように、三次成分を加える。これにより、上述のように、零電流付近で、波形歪を低減するためにスイッチング動作を停止しても、予期せぬ高調波の発生を抑制できる。
Further, in the first embodiment, the switching operation of the rectifier element (MOSFET) is stopped in the vicinity of the zero current of the power supply current in order to reduce the waveform distortion, and the slope of the power supply current in the vicinity of the zero current (time change rate). and in order to reduce than the sine wave (fundamental wave), high-order component in the "i s *" in the above equation (2), for example, as shown in the above equation (5) is added to the tertiary component. Thus, as described above, even if the switching operation is stopped in the vicinity of zero current to reduce waveform distortion, the generation of unexpected harmonics can be suppressed.
図6は、本発明の実施例2であるモータ駆動装置の回路構成を示す。
FIG. 6 shows a circuit configuration of a motor drive device that is Embodiment 2 of the present invention.
図6に示すように、モータ100を駆動するインバータ装置の直流側には、直流電源として、前述の実施例1の電力変換装置1Aが接続される。
As shown in FIG. 6, the power conversion device 1 </ b> A of the first embodiment is connected as a DC power source to the DC side of the inverter device that drives the motor 100.
インバータ装置の主回路は、それぞれ環流ダイオードが接続される6個の半導体スイッチング素子30a~30f(図6ではMOSFET)から構成される三相ブリッジ回路からなる。三相ブリッジ回路において、直流入力側には、前述の実施例1の電力変換装置1A(図5)が接続され、交流出力側には、モータ100が接続される。
The main circuit of the inverter device is composed of a three-phase bridge circuit composed of six semiconductor switching elements 30a to 30f (MOSFETs in FIG. 6) each connected to a freewheeling diode. In the three-phase bridge circuit, the power converter 1A (FIG. 5) of the first embodiment is connected to the DC input side, and the motor 100 is connected to the AC output side.
交流電源2からの定電圧・定周波数の交流電力が、電力変換装置1Aによって所定電圧の直流電力に変換される。さらに、この直流電力が、半導体スイッチング素子30a~30fをオン・オフ駆動することにより、可変周波数・可変電圧の交流電力に変換される。この交流電力によって、モータ100が可変速駆動される。
AC power of constant voltage and constant frequency from the AC power source 2 is converted into DC power of a predetermined voltage by the power conversion device 1A. Further, the DC power is converted into AC power having a variable frequency and a variable voltage by driving the semiconductor switching elements 30a to 30f on and off. The motor 100 is driven at a variable speed by this AC power.
インバータ装置は、モータ100を、所望の速度で回転するように制御する。このとき、インバータ制御部50は、モータ100の速度を速度指令値に一致させるために必要なモータ電流を算出し、検出されるモータ電流すなわちインバータ装置の三相出力電流Iuvwが算出されたモータ電流に一致するように、半導体スイッチング素子30a~30fのオン・オフ駆動を制御する。
The inverter device controls the motor 100 to rotate at a desired speed. At this time, the inverter control unit 50 calculates a motor current necessary for making the speed of the motor 100 coincide with the speed command value, and the detected motor current, that is, the motor in which the three-phase output current I uvw of the inverter device is calculated. The on / off driving of the semiconductor switching elements 30a to 30f is controlled so as to match the current.
なお、モータ100としては、誘導モータや同期モータ(例えば、永久磁石同期モータ)などの三相交流モータが適用される。また、インバータ装置に用いられる半導体スイッチング素子として、IGBT(Insulated Gate Bipolar Transistor)を適用しても良い。半導体スイッチング素子として、MOSFETを適用する場合、環流ダイオードとして、内蔵ダイオードを用いても良い。
As the motor 100, a three-phase AC motor such as an induction motor or a synchronous motor (for example, a permanent magnet synchronous motor) is applied. An IGBT (Insulated Gate Bipolar Transistor) may be applied as the semiconductor switching element used in the inverter device. When a MOSFET is applied as the semiconductor switching element, a built-in diode may be used as the freewheeling diode.
上述のような本実施例2によれば、インバータ装置の直流電源として、本発明の実施例1である電力変換装置1A(図5)を用いることにより、モータ駆動装置の効率が向上するとともに、モータ駆動装置における予期せぬ高調波の発生を抑制できる。
According to the second embodiment as described above, by using the power conversion device 1A (FIG. 5) that is the first embodiment of the present invention as the DC power source of the inverter device, the efficiency of the motor driving device is improved, Unexpected generation of harmonics in the motor drive device can be suppressed.
図7は、本発明の実施例3である冷凍機器の構成図である。ここで、冷凍機器は、温度を調和する装置であり、空気調和機や冷凍機などである。本実施例3においては、上述した実施例2によるモータ駆動装置(図6)によって、ファンモータが駆動される。
FIG. 7 is a configuration diagram of a refrigeration apparatus that is Embodiment 3 of the present invention. Here, the refrigeration equipment is a device that harmonizes temperatures, such as an air conditioner or a refrigerator. In the third embodiment, the fan motor is driven by the motor driving device (FIG. 6) according to the second embodiment described above.
図7に示すように、冷凍機器300は、熱交換器301および302と、これらの熱交換器への送風を行うためのファン303および304と、冷媒を圧縮して循環させる圧縮機305と、熱交換器301と熱交換器302との間、並びに圧縮機305と熱交換器301および302との間に配設され、冷媒が流れる配管306と、モータ駆動装置307から構成されている。
As shown in FIG. 7, the refrigeration apparatus 300 includes heat exchangers 301 and 302, fans 303 and 304 for blowing air to these heat exchangers, a compressor 305 that compresses and circulates the refrigerant, It is arranged between the heat exchanger 301 and the heat exchanger 302, and between the compressor 305 and the heat exchangers 301 and 302, and includes a pipe 306 through which a refrigerant flows and a motor driving device 307.
ファン303,304を回転駆動するファンモータとして、永久磁石同期モータが用いられる。圧縮機305を駆動する圧縮機用モータ308は、圧縮機305の内部に配置されている。なお、圧縮機用モータ308としては、永久磁石同期モータもしくは三相誘導モータが用いられる。
Permanent magnet synchronous motors are used as fan motors that rotationally drive the fans 303 and 304. A compressor motor 308 that drives the compressor 305 is disposed inside the compressor 305. As the compressor motor 308, a permanent magnet synchronous motor or a three-phase induction motor is used.
モータ駆動装置307は、商用交流電源からの交流電力を直流電力に変換する直流電源回路、この直流電源回路からの直流電力を交流電力に変換して圧縮機用モータ308に供給する圧縮機用モータ駆動用インバータ、並びに同直流電源回路から直流電力を交流電力に変換してファンモータに供給するファンモータ駆動用インバータを備えている。直流電源回路には、前述の実施例1(図5)が適用される。また、インバータを含むモータ駆動装置307としては、前述の実施例2(図6)が適用される。
The motor driving device 307 includes a DC power supply circuit that converts AC power from a commercial AC power supply into DC power, and a compressor motor that converts the DC power from the DC power supply circuit into AC power and supplies the AC power to the compressor motor 308. A drive inverter and a fan motor drive inverter that converts DC power into AC power from the DC power supply circuit and supplies the AC power to the fan motor are provided. The above-described first embodiment (FIG. 5) is applied to the DC power supply circuit. In addition, as the motor driving device 307 including the inverter, the above-described second embodiment (FIG. 6) is applied.
なお、互いに独立した第1および第2の直流電源回路を設け、圧縮機用モータ駆動用インバータおよび圧縮機用モータ駆動用インバータが、それぞれ、第1の直流電源回路および第2の直流電源回路から直流電力を受けるようにしても良い。
The first and second DC power supply circuits independent from each other are provided, and the compressor motor drive inverter and the compressor motor drive inverter are respectively connected to the first DC power supply circuit and the second DC power supply circuit. You may make it receive direct-current power.
本実施例3によれば、モータ駆動装置307として、本発明の実施例2であるモータ駆動装置(図6)を用いることにより、冷凍機器の効率が向上するとともに、冷凍機器における予期せぬ高調波の発生を抑制できる。
According to the third embodiment, by using the motor driving device (FIG. 6) according to the second embodiment of the present invention as the motor driving device 307, the efficiency of the refrigeration equipment is improved and an unexpected harmonic in the refrigeration equipment. Wave generation can be suppressed.
なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
例えば、図5における半導体スイッチング素子や図6に示すインバータ用の半導体スイッチング素子として、IGBT(Insulated Gate Bipolar Transistor)、SJ(Super Junction)-MOSFETなどを用いても良い。ただし、IGBTを用いる場合は、ダイオードは外付けとする。また、半導体スイッチング素子を構成する半導体材料は、通常の半導体シリコンのほか、SiC(Silicon Carbide)などのワイドギャップ半導体でも良い。
For example, IGBT (Insulated Gate Bipolar Transistor), SJ (Super Junction) -MOSFET or the like may be used as the semiconductor switching element in FIG. 5 or the semiconductor switching element for the inverter shown in FIG. However, when IGBT is used, the diode is externally attached. The semiconductor material constituting the semiconductor switching element may be a wide gap semiconductor such as SiC (Silicon Carbon) in addition to normal semiconductor silicon.
1,1A…電力変換装置、2…交流電源、
3a,3b,3c,3d…整流素子、4…リアクタ、
5…平滑コンデンサ、6…短絡回路、7…交流電源電流検出器、
8…交流電源電圧検出器、9…直流出力電圧検出器、
10…短絡回路制御部、10A…短絡指令信号、
11…パルスオフ制御部、11A…修正された短絡指令信号、
30a,30b,30c…半導体スイッチング素子、
30d,30e,30f…半導体スイッチング素子、
50…インバータ制御部、100…モータ、
300…冷凍機器、301…熱交換器、302…熱交換器、
303…ファン、304…ファン、305…圧縮機、
306…配管、307…モータ駆動装置、308…圧縮機用モータ 1, 1A ... Power converter, 2 ... AC power supply,
3a, 3b, 3c, 3d ... rectifier, 4 ... reactor,
5 ... smoothing capacitor, 6 ... short circuit, 7 ... AC power supply current detector,
8 ... AC power supply voltage detector, 9 ... DC output voltage detector,
10 ... Short circuit control unit, 10A ... Short circuit command signal,
11 ... Pulse-off control unit, 11A ... Corrected short-circuit command signal,
30a, 30b, 30c... Semiconductor switching element,
30d, 30e, 30f... Semiconductor switching element,
50 ... Inverter control unit, 100 ... Motor,
300 ... Refrigeration equipment, 301 ... Heat exchanger, 302 ... Heat exchanger,
303 ... Fan, 304 ... Fan, 305 ... Compressor,
306 ... Piping, 307 ... Motor driving device, 308 ... Compressor motor
3a,3b,3c,3d…整流素子、4…リアクタ、
5…平滑コンデンサ、6…短絡回路、7…交流電源電流検出器、
8…交流電源電圧検出器、9…直流出力電圧検出器、
10…短絡回路制御部、10A…短絡指令信号、
11…パルスオフ制御部、11A…修正された短絡指令信号、
30a,30b,30c…半導体スイッチング素子、
30d,30e,30f…半導体スイッチング素子、
50…インバータ制御部、100…モータ、
300…冷凍機器、301…熱交換器、302…熱交換器、
303…ファン、304…ファン、305…圧縮機、
306…配管、307…モータ駆動装置、308…圧縮機用モータ 1, 1A ... Power converter, 2 ... AC power supply,
3a, 3b, 3c, 3d ... rectifier, 4 ... reactor,
5 ... smoothing capacitor, 6 ... short circuit, 7 ... AC power supply current detector,
8 ... AC power supply voltage detector, 9 ... DC output voltage detector,
10 ... Short circuit control unit, 10A ... Short circuit command signal,
11 ... Pulse-off control unit, 11A ... Corrected short-circuit command signal,
30a, 30b, 30c... Semiconductor switching element,
30d, 30e, 30f... Semiconductor switching element,
50 ... Inverter control unit, 100 ... Motor,
300 ... Refrigeration equipment, 301 ... Heat exchanger, 302 ... Heat exchanger,
303 ... Fan, 304 ... Fan, 305 ... Compressor,
306 ... Piping, 307 ... Motor driving device, 308 ... Compressor motor
Claims (15)
- 交流電源からの交流電力を直流電力に変換するとともに、直流出力電圧を前記交流電源の電圧よりも大きな電圧に変換する昇圧動作を行う電力変換装置において、
リアクタを介して前記交流電源を短絡する短絡回路を備え、前記短絡回路をスイッチングすることにより前記昇圧動作を行う電力変換回路部と、
前記短絡回路の通流率を、前記交流電源の電源電圧および前記リアクタの電圧に応じて設定する制御部と、
を備えることを特徴とする電力変換装置。 In the power conversion device that converts the AC power from the AC power source to DC power and performs a boost operation that converts the DC output voltage to a voltage larger than the voltage of the AC power source,
A power conversion circuit unit that includes a short circuit that short-circuits the AC power supply via a reactor, and performs the boosting operation by switching the short circuit;
A control unit for setting a current conduction rate of the short circuit according to a power supply voltage of the AC power supply and a voltage of the reactor;
A power conversion device comprising: - 請求項1に記載される電力変換装置において、
前記リアクタの電圧は、前記リアクタのインダクタンスと前記交流電源の電源電流の時間変化率の積によって算出されることを特徴とする電力変換装置。 In the power converter device described in Claim 1,
The voltage of the reactor is calculated by a product of an inductance of the reactor and a time change rate of a power source current of the AC power supply. - 請求項2に記載される電力変換装置において、
前記電源電圧の値は正弦波の瞬時値であり、
前記電源電流の時間変化率の値は、前記電源電流が、前記電源電圧と同相である基本波成分を含む正弦波成分からなるとして算出される瞬時値であることを特徴とする電力変換装置。 In the power converter device described in Claim 2,
The value of the power supply voltage is an instantaneous value of a sine wave,
The time conversion rate value of the power supply current is an instantaneous value calculated by assuming that the power supply current is composed of a sine wave component including a fundamental wave component in phase with the power supply voltage. - 請求項3に記載される電力変換装置において、
前記電源電圧を検出する電圧検出器と、
前記電源電流を検出する電流検出器と、
を備え、
前記制御部は、前記電圧検出器および前記電流検出器の各検出値に基づいて、前記通流率を設定することを特徴とする電力変換装置。 In the power converter device described in Claim 3,
A voltage detector for detecting the power supply voltage;
A current detector for detecting the power supply current;
With
The said control part sets the said duty ratio based on each detection value of the said voltage detector and the said current detector, The power converter device characterized by the above-mentioned. - 請求項1に記載の電力変換装置において、
前記制御部は、
前記直流出力電圧が所定値になるように前記通流率を設定することを特徴とする電力変換装置。 The power conversion device according to claim 1,
The controller is
The power conversion device, wherein the conduction ratio is set so that the DC output voltage becomes a predetermined value. - 請求項5に記載の電力変換装置において、
前記制御部は、
前記所定値および、前記直流出力電圧と前記所定値との偏差に応じて、前記通流率を設定することを特徴とする電力変換装置。 The power conversion device according to claim 5,
The controller is
The power conversion device, wherein the conduction ratio is set according to the predetermined value and a deviation between the DC output voltage and the predetermined value. - 請求項6に記載される電力変換装置において、
前記直流出力電圧を検出する直流電圧検出器を備え、
前記制御部は、前記直流電圧検出器の検出値に基づいて、前記通流率を設定することを特徴とする電力変換装置。 In the power converter device described in Claim 6,
A DC voltage detector for detecting the DC output voltage;
The said control part sets the said duty ratio based on the detected value of the said DC voltage detector, The power converter device characterized by the above-mentioned. - 請求項1に記載される電力変換装置において、
さらに、前記交流電源の電源電流の零電流付近で、前記短絡回路のスイッチングを停止する手段を備え、
前記電源電流の零電流付近における前記電源電流の波形の傾きの大きさは、正弦波の傾きの大きさよりも小さいことを特徴とする電力変換装置。 In the power converter device described in Claim 1,
Furthermore, it comprises means for stopping the switching of the short circuit near the zero current of the power source current of the AC power source,
The power converter according to claim 1, wherein the power supply current waveform has a slope that is smaller than a slope of the sine wave in the vicinity of a zero current of the power supply current. - 請求項3に記載される電力変換装置において、
さらに、前記電源電流の零電流付近で、前記短絡回路のスイッチングを停止する手段を備え、
前記正弦波成分は高次成分を含むことを特徴とする電力変換装置。 In the power converter device described in Claim 3,
Furthermore, comprising means for stopping the switching of the short circuit near the zero current of the power supply current,
The sine wave component includes a high-order component. - 請求項9に記載される電力変換装置において、
前記高次成分の次数が三次であることを特徴とする電力変換装置。 In the power converter device described in Claim 9,
The power converter according to claim 1, wherein the order of the higher order component is third order. - 交流電源からの交流電力を直流電力に変換するとともに、直流出力電圧を前記交流電源の電圧よりも大きな電圧に変換する昇圧動作を行う電力変換装置において、
半導体スイッチング素子と、前記半導体スイッチング素子をオンするとエネルギーが蓄積されるリアクタと、を有し、前記半導体スイッチング素子をスイッチングすることにより前記昇圧動作を行う電力変換回路部と、
前記半導体スイッチング素子の通流率を正弦波電流に応じて設定する制御部と、
を備え、
さらに、前記交流電源の電源電流の零電流付近で、前記半導体スイッチング素子のスイッチングを停止する手段を備え、
前記正弦波電流は、基本波成分と高次成分とを含むことを特徴とする電力変換装置。 In the power conversion device that converts the AC power from the AC power source to DC power and performs a boost operation that converts the DC output voltage to a voltage larger than the voltage of the AC power source,
A power conversion circuit unit that includes a semiconductor switching element and a reactor that stores energy when the semiconductor switching element is turned on, and performs the boosting operation by switching the semiconductor switching element;
A control unit for setting the conduction rate of the semiconductor switching element according to a sine wave current;
With
Furthermore, a means for stopping the switching of the semiconductor switching element near the zero current of the power supply current of the AC power supply,
The sine wave current includes a fundamental wave component and a higher-order component. - 請求項11に記載される電力変換装置において、
前記高次成分の次数が三次であることを特徴とする電力変換装置。 In the power converter device described in Claim 11,
The power converter according to claim 1, wherein the order of the higher order component is third order. - 請求項11に記載される電力変換装置において、
前記半導体スイッチング素子は、オンすると、前記リアクタを介して前記交流電源を短絡することを特徴とする電力変換装置。 In the power converter device described in Claim 11,
When the semiconductor switching element is turned on, the AC power supply is short-circuited through the reactor. - 電力変換装置によってモータを駆動するモータ駆動装置において、
前記電力変換装置は、
交流電源からの交流電力を直流電力に変換するとともに、直流出力電圧を前記交流電源の電圧よりも大きな電圧に変換する昇圧動作を行い、リアクタを介して前記交流電源を短絡する短絡回路を備え、前記短絡回路をスイッチングすることにより昇圧動作を行う第1の電力変換回路部と、
前記短絡回路の通流率を、前記交流電源の電源電圧および前記リアクタの電圧に応じて設定する制御部と、
前記直流電力を、可変電圧かつ可変周波数の交流電力に変換する第2の電力変換回路部と、
を備えることを特徴とするモータ駆動装置。 In a motor drive device that drives a motor by a power converter,
The power converter is
Along with converting AC power from the AC power source into DC power, performing a step-up operation that converts a DC output voltage to a voltage larger than the voltage of the AC power source, and comprising a short circuit that shorts the AC power source through a reactor, A first power conversion circuit unit that performs a boosting operation by switching the short circuit;
A control unit for setting a current conduction rate of the short circuit according to a power supply voltage of the AC power supply and a voltage of the reactor;
A second power conversion circuit unit for converting the DC power into AC power of variable voltage and variable frequency;
A motor drive device comprising: - 熱交換器と、冷媒を圧縮して循環させる圧縮機と、前記熱交換器への送風を行うファンと、前記圧縮機または前記ファンを駆動するモータと、前記モータを駆動するモータ駆動装置と、を備える冷凍機器において、
前記モータ駆動装置は、
交流電源からの交流電力を直流電力に変換するとともに、直流出力電圧を前記交流電源の電圧よりも大きな電圧に変換する昇圧動作を行い、リアクタを介して前記交流電源を短絡する短絡回路を備え、前記短絡回路をスイッチングすることにより昇圧動作を行う第1の電力変換回路部と、
前記短絡回路の通流率を、前記交流電源の電源電圧および前記リアクタの電圧に応じて設定する制御部と、
前記直流電力を、可変電圧かつ可変周波数の交流電力に変換する第2の電力変換回路部と、
を備えることを特徴とする冷凍機器。 A heat exchanger, a compressor that compresses and circulates the refrigerant, a fan that blows air to the heat exchanger, a motor that drives the compressor or the fan, a motor drive device that drives the motor, In refrigeration equipment comprising:
The motor driving device is
Along with converting AC power from the AC power source into DC power, performing a step-up operation that converts a DC output voltage to a voltage larger than the voltage of the AC power source, and comprising a short circuit that shorts the AC power source through a reactor, A first power conversion circuit unit that performs a boosting operation by switching the short circuit;
A control unit for setting a current conduction rate of the short circuit according to a power supply voltage of the AC power supply and a voltage of the reactor;
A second power conversion circuit unit for converting the DC power into AC power of variable voltage and variable frequency;
A refrigeration apparatus comprising:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019570189A JP7159227B2 (en) | 2018-02-07 | 2018-02-07 | POWER CONVERSION DEVICE, MOTOR DRIVE DEVICE AND REFRIGERATION DEVICE USING THE SAME |
PCT/JP2018/004152 WO2019155539A1 (en) | 2018-02-07 | 2018-02-07 | Power conversion device, and motor driving apparatus and refrigerator using same |
TW107106505A TWI699085B (en) | 2018-02-07 | 2018-02-27 | Power conversion device, motor drive device using the same, and freezing machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/004152 WO2019155539A1 (en) | 2018-02-07 | 2018-02-07 | Power conversion device, and motor driving apparatus and refrigerator using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019155539A1 true WO2019155539A1 (en) | 2019-08-15 |
Family
ID=67548858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004152 WO2019155539A1 (en) | 2018-02-07 | 2018-02-07 | Power conversion device, and motor driving apparatus and refrigerator using same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7159227B2 (en) |
TW (1) | TWI699085B (en) |
WO (1) | WO2019155539A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10327576A (en) * | 1997-03-21 | 1998-12-08 | Mitsubishi Electric Corp | Ac-dc converter |
JP2002095243A (en) * | 2000-09-13 | 2002-03-29 | Sharp Corp | Direct-current power supply |
JP2012028247A (en) * | 2010-07-27 | 2012-02-09 | Eye Lighting Syst Corp | Illumination lighting device |
JP2014220954A (en) * | 2013-05-10 | 2014-11-20 | 三菱電機株式会社 | Power conversion device |
JP2016073203A (en) * | 2014-09-30 | 2016-05-09 | ダイキン工業株式会社 | Power conversion device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101343189B1 (en) * | 2009-08-26 | 2013-12-19 | 다이킨 고교 가부시키가이샤 | Power conversion device and control method therefor |
KR101965081B1 (en) * | 2014-09-30 | 2019-04-02 | 미쓰비시덴키 가부시키가이샤 | Power conversion device |
TWM510429U (en) * | 2015-06-25 | 2015-10-11 | Lan Chang Electric Co Ltd | AC/DC power conversion control module of central air conditioning system |
KR102543891B1 (en) * | 2015-08-10 | 2023-06-14 | 엘지전자 주식회사 | Power converting apparatus and air conditioner including the same |
-
2018
- 2018-02-07 WO PCT/JP2018/004152 patent/WO2019155539A1/en active Application Filing
- 2018-02-07 JP JP2019570189A patent/JP7159227B2/en active Active
- 2018-02-27 TW TW107106505A patent/TWI699085B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10327576A (en) * | 1997-03-21 | 1998-12-08 | Mitsubishi Electric Corp | Ac-dc converter |
JP2002095243A (en) * | 2000-09-13 | 2002-03-29 | Sharp Corp | Direct-current power supply |
JP2012028247A (en) * | 2010-07-27 | 2012-02-09 | Eye Lighting Syst Corp | Illumination lighting device |
JP2014220954A (en) * | 2013-05-10 | 2014-11-20 | 三菱電機株式会社 | Power conversion device |
JP2016073203A (en) * | 2014-09-30 | 2016-05-09 | ダイキン工業株式会社 | Power conversion device |
Also Published As
Publication number | Publication date |
---|---|
TW201935839A (en) | 2019-09-01 |
JP7159227B2 (en) | 2022-10-24 |
TWI699085B (en) | 2020-07-11 |
JPWO2019155539A1 (en) | 2021-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9929670B2 (en) | Power conversion device, motor drive control device equipped with power conversion device, compressor and blower equipped with motor drive control device, and air conditioner equipped with compressor or blower | |
Inazuma et al. | High-power-factor single-phase diode rectifier driven by repetitively controlled IPM motor | |
US9214881B2 (en) | Power conversion apparatus | |
WO2012049706A1 (en) | Three-phase ac/dc converting apparatus and air handling unit using three-phase ac/dc converting apparatus | |
US20120300519A1 (en) | Multi-phase active rectifier | |
JP4416531B2 (en) | Voltage controlled pulse width modulation frequency converter and control method thereof | |
Singh et al. | Voltage controlled PFC Zeta converter based PMBLDCM drive for an air-conditioner | |
JP2011061887A (en) | Power converter, method of controlling the same, and air conditioner | |
WO2015186229A1 (en) | Direct current power supply device, and refrigeration cycle-applied apparatus provided with same | |
WO2018070012A1 (en) | Power conversion apparatus, motor drive control device, blower, compressor and air conditioner | |
JP2016163406A (en) | Active filter, motor drive device employing the same, and refrigeration device | |
WO2020039579A1 (en) | Dc power source device, motor driving control device, blower, compressor, and air conditioner | |
US20220149742A1 (en) | Electrical power conversion apparatus | |
JP2014007827A (en) | Power conversion device, motor drive control device, air blower, compressor, and refrigerating and air conditioning device | |
WO2019155539A1 (en) | Power conversion device, and motor driving apparatus and refrigerator using same | |
WO2022071401A1 (en) | Power converter and heat pump system provided therewith | |
JP4439846B2 (en) | Multiphase current supply circuit | |
CN212785193U (en) | Combinable switch type power supply structure for arc plasma | |
JP2019057979A (en) | Motor control device and air conditioner | |
KR20180085999A (en) | Power supply apparatus controlling harmonics, air conditioner including the same, and method for controlling harmonics | |
Arunraj et al. | A novel zeta converter with pi controller for power factor correction in induction motor | |
Singh et al. | Isolated Zeta PFC converter based voltage controlled PMBLDCM drive for air-conditioning application | |
JP4517762B2 (en) | Switching control method, rectifier, and drive system | |
JP6513564B2 (en) | Inverter device capable of resonance avoidance | |
CN108736754A (en) | Power inverter and air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18905128 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019570189 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18905128 Country of ref document: EP Kind code of ref document: A1 |