WO2019155524A1 - Power conversion device and abnormality detection method - Google Patents

Power conversion device and abnormality detection method Download PDF

Info

Publication number
WO2019155524A1
WO2019155524A1 PCT/JP2018/004027 JP2018004027W WO2019155524A1 WO 2019155524 A1 WO2019155524 A1 WO 2019155524A1 JP 2018004027 W JP2018004027 W JP 2018004027W WO 2019155524 A1 WO2019155524 A1 WO 2019155524A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation direction
abnormality
speed
detection unit
power conversion
Prior art date
Application number
PCT/JP2018/004027
Other languages
French (fr)
Japanese (ja)
Inventor
太一 吉田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/004027 priority Critical patent/WO2019155524A1/en
Publication of WO2019155524A1 publication Critical patent/WO2019155524A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present invention relates to a power conversion device and an abnormality detection method for detecting an abnormality in at least one of an electric motor and a speed sensor.
  • An electric railway vehicle is equipped with a power conversion device that converts electric power input from an overhead line and supplies the converted electric power to an electric motor.
  • the control unit of the power conversion device performs control for maintaining the torque of the motor in a desired range based on the rotation speed of the motor acquired from the speed sensor and the current flowing through the motor.
  • the speed control device with pulse generator disconnection detection disclosed in Patent Document 1 includes a speed control operational amplifier that performs an operation from an input motor speed reference and speed feedback and outputs a current reference or a torque reference.
  • a speed control operational amplifier that performs an operation from an input motor speed reference and speed feedback and outputs a current reference or a torque reference.
  • the speed control operational amplifier By providing the speed control operational amplifier, the torque of the electric motor is maintained in a desired range. If an abnormality occurs in the speed sensor, the torque of the motor cannot be maintained in a desired range. Therefore, the speed control device with pulse generator disconnection detection disclosed in Patent Document 1 can regard speed feedback as 0 when there is a speed reference of the motor, and can regard current reference or torque reference as a limit value.
  • the disconnection of the pulse generator is detected by detecting that the ready state has continued for a certain period of time.
  • the speed control device with pulse generator disconnection detection disclosed in Patent Document 1 can detect the disconnection of the pulse generator based on the speed feedback.
  • the sensor signal is output from the pulse generator when the power cable, signal line, etc. are about to break, or the motor shaft is damaged, but the sensor signal is delayed, the sensor signal is momentarily interrupted, etc. May occur.
  • the speed generator with pulse generator disconnection detection disclosed in Patent Document 1 cannot detect the abnormality.
  • the speed control device with pulse generator disconnection detection disclosed in Patent Document 1 erroneously determines that the speed sensor is abnormal when the sensor signal cannot be detected because the rotational speed of the electric motor is slow.
  • the present invention has been made in view of the above circumstances, and an object thereof is to detect an abnormality in at least one of an electric motor and a speed sensor in a state where a sensor signal is being output.
  • a power conversion device is a power conversion device that supplies electric power to an electric motor, and includes a rotation direction detection unit and an abnormality detection unit.
  • a rotation direction detection part detects the rotation direction of an electric motor based on the sensor signal which the speed sensor attached to the electric motor outputs.
  • the abnormality detection unit detects a change in the rotation direction, calculates a frequency of the change in the rotation direction, and detects an abnormality in at least one of the electric motor and the speed sensor based on the frequency of the change in the rotation direction.
  • the present invention it is possible to detect an abnormality in at least one of the motor and the speed sensor in a state where the sensor signal is output based on the frequency of change in the rotation direction of the motor.
  • FIG. 5 is a diagram illustrating an example of a sensor signal in the first embodiment
  • FIG. 5 is a diagram illustrating an example of a sensor signal in the first embodiment
  • the block diagram which shows the structure of the abnormality detection part which concerns on Embodiment 1.
  • FIG. 5 is a diagram illustrating an example of a sensor signal in the first embodiment
  • the block diagram which shows the structure of the power converter device which concerns on Embodiment 2 of this invention.
  • FIG. 5 is a diagram illustrating an example of a sensor signal in the first embodiment
  • the block diagram which shows the structure of the power converter device which concerns on Embodiment 2 of this invention.
  • the block diagram which shows the structure of the abnormality detection part which concerns on Embodiment 2.
  • FIG. 5 is a diagram illustrating an example of a sensor signal in the first embodiment
  • the block diagram which shows the structure of the power converter device which concerns on Embodiment 2 of this invention.
  • FIG. 6 is a block diagram showing a configuration of an abnormality detection unit according to the fourth embodiment.
  • Block diagram showing a configuration of an abnormality detection unit according to the sixth embodiment The flowchart which shows an example of operation
  • FIG. 7 is a block diagram showing a configuration of an abnormality detection unit according to the seventh embodiment.
  • the power conversion device 1 As shown in FIG. 1, the power conversion device 1 according to Embodiment 1 of the present invention includes a power conversion unit 11 that converts input power and supplies the converted power to an electric motor 51, and a speed sensor 52.
  • a rotation direction detection unit 12 that detects the rotation direction of the electric motor 51 based on the sensor signal to be output is provided.
  • the power conversion unit 11 converts the input AC power into desired AC power and supplies the desired AC power to the electric motor 51.
  • the power converter 1 further detects a change in the rotation direction, calculates the frequency of the change in the rotation direction, and detects an abnormality in at least one of the electric motor 51 and the speed sensor 52 based on the frequency of the change in the rotation direction.
  • An abnormality detection unit 13 is provided. With the above configuration, the power conversion device 1 can detect an abnormality in at least one of the electric motor 51 and the speed sensor 52 in a state where the sensor signal is output.
  • the power conversion device 1 is mounted on an electric railway vehicle.
  • the power conversion unit 11 converts the electric power input from the overhead line and supplies it to the electric motor 51, and the electric motor 51 drives the wheels of the electric railway vehicle.
  • the speed sensor 52 a two-phase output PG (Pulse Generator: pulse generator) attached to the shaft of the electric motor 51 is provided.
  • the speed sensor 52 outputs a plurality of sensor signals according to the rotation direction and rotation speed of the electric motor 51.
  • Each of the plurality of sensor signals is a pulse signal, and the phases of the plurality of sensor signals are different from each other.
  • the speed sensor 52 outputs two sensor signals, that is, an A-phase pulse signal and a B-phase pulse signal.
  • the duty ratio and the period ⁇ of the A-phase pulse signal and the B-phase pulse signal are the same.
  • the phase of the A-phase pulse signal and the B-phase pulse signal are shifted by 90 degrees.
  • the speed sensor 52 delays one phase of the A-phase pulse signal and the B-phase pulse signal by 90 degrees from the other phase according to the rotation direction of the electric motor 51.
  • the phase of the B-phase pulse signal is delayed by 90 degrees from the phase of the A-phase pulse signal as shown in FIG.
  • the motor 51 reverses the phase of the A-phase pulse signal is delayed by 90 degrees from the phase of the B-phase pulse signal, as shown in FIG.
  • one of the A-phase pulse signal and the B-phase pulse signal is delayed by 90 degrees from the other phase.
  • the rotation direction of the electric motor 51 can be detected from the B-phase pulse signal.
  • the rotation direction detection unit 12 detects the rise of the B-phase pulse signal, and the A-phase pulse signal is in either the H (High) level or the L (Low) level at the rise of the B-phase pulse signal.
  • the rotation direction of the electric motor 51 is detected based on whether the
  • the rotation direction detection unit 12 detects the rise of the B phase pulse signal at time T2. Since the A-phase pulse signal is at the H level at time T2, the rotation direction detection unit 12 detects that the electric motor 51 is rotating forward. Similarly at time T4, the rotation direction detector 12 detects that the electric motor 51 is rotating forward. In the example of FIG. 3, the rotation direction detection unit 12 detects the rise of the B-phase pulse signal at time T1. Since the A-phase pulse signal is at the L level at time T1, the rotation direction detection unit 12 detects that the electric motor 51 is reversely rotated. Similarly, at time T3, the rotation direction detection unit 12 detects that the electric motor 51 is reversely rotated. Each time the rotation direction detection unit 12 detects the rotation direction, the rotation direction detection unit 12 outputs a value indicating the rotation direction to the abnormality detection unit 13.
  • the abnormality detection unit 13 detects a change in the rotation direction based on the rotation direction detected by the rotation direction detection unit 12.
  • the abnormality detection unit 13 calculates the frequency of change in the rotational direction, and detects an abnormality in at least one of the electric motor 51 and the speed sensor 52 based on the frequency of change in the rotational direction. Specifically, the abnormality detection unit 13 calculates the frequency of change in the value indicating the rotation direction, and detects an abnormality based on the frequency of change in the value indicating the rotation direction.
  • the abnormality detection unit 13 includes an XOR (exclusive OR) gate 21, a holding unit 22 that holds a value indicating the rotation direction input from the rotation direction detection unit 12, and an output of the XOR gate 21. Is provided with a determination unit 23 that determines whether or not there is an abnormality.
  • a B-phase pulse signal is supplied from the rotation direction detection unit 12 to the holding unit 22 and the determination unit 23, and the rotation direction detection unit 12, the holding unit 22, and the determination unit 23 are synchronized with the rising edge of the B-phase pulse signal.
  • the holding unit 22 outputs a value indicating the previous rotation direction to the XOR gate 21. That is, the input of the XOR gate 21 is a value indicating the rotation direction output by the rotation direction detection unit 12 and a value indicating the immediately preceding rotation direction. Therefore, when the rotation direction is changed, the output of the XOR gate 21 is 1, and when the rotation direction is not changed, the output of the XOR gate 21 is 0.
  • the determination unit 23 includes an accumulator, and integrates the outputs of the XOR gate 21 during a period in which the accumulator is determined. If the integrated value is equal to or greater than the threshold value, the determination unit 23 determines that at least one abnormality of the electric motor 51 and the speed sensor 52 has occurred, and outputs a value indicating that the abnormality has been detected.
  • the period and threshold value used for determination of abnormality can be defined according to the characteristic of the apparatus in which the power converter device 1 is mounted. In the power conversion device 1 mounted on the electric railway vehicle, for example, when the value indicating the rotation direction changes 5 times or more in 1 minute, or when the value indicating the rotation direction changes 30 times or more in 30 seconds, etc. The unit 23 can determine that an abnormality has occurred.
  • the circuit of the abnormality detection unit 13 shown in FIG. 4 does not sequentially perform processing, but in order to facilitate understanding, the operation of abnormality detection processing performed by the power conversion device 1 will be described with reference to FIG.
  • the rotation direction detector 12 detects the rotation direction of the electric motor 51 from the sensor signal output by the speed sensor 52 (step S11).
  • the abnormality detection unit 13 detects a change in the rotation direction (step S12), and calculates the frequency of the change in the rotation direction (step S13).
  • the frequency of change in the rotation direction is the number of changes in the rotation direction in a predetermined period.
  • the abnormality detection unit 13 detects an abnormality in at least one of the electric motor 51 and the speed sensor 52 based on the frequency of change in the rotation direction.
  • the determination unit 23 included in the abnormality detection unit 13 determines the presence / absence of an abnormality based on whether or not the number of changes in the rotation direction in a predetermined period is greater than or equal to a threshold value (step S14).
  • a threshold value that is, when there is no abnormality (step S14; N)
  • the process returns to step S11, and the power converter 1 repeats the above-described process.
  • the abnormality detection unit 13 outputs a value indicating that the abnormality has been detected (step S14).
  • the speed sensor 52 outputs an A phase pulse signal and a B phase pulse signal.
  • a delay occurs in the sensor signal.
  • Speed sensor 52 outputs an A-phase pulse signal and a B-phase pulse signal corresponding to the rotation of electric motor 51.
  • the case where the electric motor 51 is rotating forward will be described as an example. Since the electric motor 51 is rotating forward, the A-phase pulse signal rises at time T1, and the B-phase pulse signal rises at time T2.
  • the rotation direction detector 12 detects the rise of the B-phase pulse signal at time T2. At time T2, since the A-phase pulse signal is at the H level, the rotation direction detection unit 12 detects that the rotation direction of the electric motor 51 is normal rotation. Then, the rotation direction detection unit 12 outputs a value “0” indicating the rotation direction to the abnormality detection unit 13.
  • the holding unit 22 outputs the value “0” indicating the rotation direction input from the rotation direction detecting unit 12 to the XOR gate 21 because there is no stored value indicating the immediately preceding rotation direction.
  • the holding unit 22 stores a value “0” indicating the rotation direction input from the rotation direction detection unit 12. Since both inputs of the XOR gate 21 are “0”, the output of the XOR gate 21 is 0. Therefore, the integrated value of the determination unit 23 corresponding to the number of changes in the rotation direction remains the initial value 0.
  • the rotation direction detector 12 detects the rising edge of the B-phase pulse signal. For example, the phase A pulse signal does not rise at time T4 due to an abnormality in the speed sensor 52.
  • the rotation direction detection unit 12 detects that the rotation direction of the electric motor 51 is reverse. Then, the rotation direction detection unit 12 outputs a value “1” indicating the rotation direction to the abnormality detection unit 13.
  • the holding unit 22 outputs the stored value “0” indicating the rotation direction to the XOR gate 21. Thereafter, the holding unit 22 updates the stored value “0” indicating the rotation direction with the value “1” indicating the rotation direction input from the rotation direction detection unit 12. Since the input of the XOR gate 21 is a value “1” indicating the rotation direction input from the rotation direction detection unit 12 and a value “0” indicating the rotation direction input from the holding unit 22, the output of the XOR gate 21 is “1”. Therefore, the integrated value of the determination unit 23 is 1.
  • the A-phase pulse signal rises at times T5 and T6.
  • the rotation direction detector 12 detects the rise of the B-phase pulse signal.
  • the rotation direction detection unit 12 detects that the rotation direction of the electric motor 51 is normal rotation. Then, the rotation direction detection unit 12 outputs a value “0” indicating the rotation direction to the abnormality detection unit 13.
  • the holding unit 22 outputs the stored value “1” indicating the rotation direction to the XOR gate 21.
  • the holding unit 22 stores a value “0” indicating the rotation direction input from the rotation direction detection unit 12.
  • the integrated value of the determination unit 23 is 2.
  • the determination unit 23 determines that at least one abnormality of the electric motor 51 and the speed sensor 52 has occurred and sets a value indicating that the abnormality has been detected. Output.
  • the determination unit 23 includes a timer and resets the integrated value every time a predetermined period elapses. Thereby, abnormality can be detected based on the frequency
  • the electric motor 51 and the speed sensor in a state where the sensor signal is output from the speed sensor 52 based on the frequency of change in the rotation direction of the electric motor 51. It is possible to detect at least any abnormality of 52.
  • the inductive PG does not have an independent power supply and can be miniaturized. However, when the rotational speed of the electric motor is reduced, the amplitude of the sensor signal output from the inductive PG decreases. Therefore, the conventional power converter that determines the abnormality of the sensor signal based on the presence or absence of the sensor signal erroneously determines that the speed sensor is abnormal when the sensor signal cannot be detected because the rotation speed of the motor is slow. End up.
  • an inductive PG is provided as the speed sensor 52. Therefore, as shown in FIG. 7, the power conversion device 2 according to the second embodiment of the present invention further includes a speed acquisition unit 14 that acquires the rotation speed of the electric motor 51.
  • the abnormality detection unit 13 detects an abnormality in at least one of the electric motor 51 and the speed sensor 52 based on the frequency of change in the rotation direction.
  • the speed acquisition unit 14 acquires the speed of the electric motor 51 from the sensor signal output from the speed sensor 53 attached to the electric motor 51.
  • the speed sensor 53 has an independent power source, and the amplitude of the sensor signal output from the speed sensor 53 is constant regardless of the rotational speed of the electric motor 51.
  • the threshold speed is determined according to the characteristics of the speed sensor 52, and the rotation direction detection unit 12 can detect the sensor signal when the rotation speed is equal to or higher than the threshold speed.
  • the threshold speed is, for example, 1 rpm (round per minute). That the sensor signal can be detected means that the rising edge of the sensor signal shown in FIGS. 2 and 3 can be accurately detected. When the rising edge of the sensor signal can be detected accurately, the abnormality detection process can be performed to improve the accuracy of the abnormality detection process.
  • the configuration of the abnormality detection unit 13 according to the second embodiment is the same as the configuration of the abnormality detection unit 13 according to the first embodiment.
  • the rotation speed of the electric motor 51 acquired by the speed acquisition unit 14 is input to the holding unit 22.
  • the holding unit 22 performs the same operation as in the first embodiment when the rotation speed is equal to or higher than the threshold speed.
  • the holding unit 22 outputs a value indicating the rotation direction input from the rotation direction detection unit 12 to the XOR gate 21 unlike the first embodiment, and the rotation direction detection unit.
  • the stored value indicating the rotation direction is updated with the value indicating the rotation direction input from 12.
  • the abnormality detection process performed by the power conversion apparatus 2 according to the second embodiment is performed only when the abnormality detection is performed when the rotation speed is equal to or higher than the threshold speed.
  • the abnormality detection performed by the power conversion apparatus 1 according to the first embodiment is performed. It is different from processing.
  • the circuit of the abnormality detection unit 13 shown in FIG. 8 does not perform the sequential processing, the operation of the abnormality detection processing performed by the power conversion device 2 will be described with reference to FIG. 9 for easy understanding.
  • the processes in steps S11 to S15 are the same as those in the first embodiment.
  • the rotation speed is less than the threshold speed (step S16; N)
  • the process returns to step S11, and the power conversion device 2 repeats the process of step S11.
  • the rotation speed is equal to or higher than the threshold speed (step S16; Y)
  • the process proceeds to step S12. Subsequent processing is the same as in the first embodiment.
  • the motor 51 and the speed sensor are based on the frequency of change in the rotation direction of the motor 51.
  • the motor 51 and the speed sensor are based on the frequency of change in the rotation direction of the motor 51.
  • the present invention is also applicable to a power converter that supplies power to a plurality of electric motors that drive a vehicle.
  • power conversion device 3 according to Embodiment 3 of the present invention supplies power to a plurality of electric motors 51 and 54.
  • the structure of the electric motor 54 is the same as that of the electric motor 51.
  • the electric motors 51 and 54 drive the electric railway vehicle. That is, the electric motors 51 and 54 rotate at the same speed in the same direction.
  • the power conversion device 3 converts the input power, supplies the converted power to the electric motors 51 and 54, and the sensor signals output from the speed sensors 52 and 55, and the electric motors 51 and 54.
  • a rotation direction detection unit 12 that detects the rotation direction is provided.
  • the structure of the speed sensor 55 is the same as that of the speed sensor 52.
  • the power conversion device 3 further includes an abnormality detection unit 15 that detects an abnormality of at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 based on the rotation directions of the electric motors 51 and 54. With the above configuration, the power conversion device 3 can detect an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 in a state where the sensor signal is output.
  • the rotation direction detection unit 12 detects the rotation direction of each of the electric motors 51 and 54 as in the first embodiment. Specifically, the rotation direction detection unit 12 detects the rotation direction of the electric motor 51 from the A-phase pulse signal and the B-phase pulse signal output from the speed sensor 52. Further, the rotation direction detection unit 12 detects the rotation direction of the electric motor 54 from the A phase pulse signal and the B phase pulse signal output from the speed sensor 55. As described above, since the motors 51 and 54 rotate in the same direction, if no abnormality has occurred in any of the motors 51 and 54 and the speed sensors 52 and 55, the detected rotation direction of the motor 51 and the detected direction are detected. The rotation directions of the motors 54 thus matched are the same. In other words, when the rotation directions of the electric motors 51 and 54 do not coincide with each other, it can be determined that an abnormality has occurred in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55.
  • the abnormality detection unit 15 includes a determination unit 23.
  • a signal obtained by delaying the B-phase pulse signal of the speed sensor 52 is supplied to the determination unit 23, and the determination unit 23 operates in synchronization with the rise of the delayed B-phase pulse signal.
  • the delay time is determined according to a time difference that may occur at the rising edge of the B phase pulse signal of the speed sensors 52 and 55.
  • the determination unit 23 includes a comparator, and the comparator compares the rotation directions of the plurality of electric motors 51 and 54.
  • the determination unit 23 detects an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 based on the comparison result of the comparator.
  • the determination unit 23 determines that an abnormality has occurred in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 when the rotation directions of the electric motors 51 and 54 do not match, and has detected that the abnormality has been detected. Outputs the indicated value.
  • the rotation direction detection part 12 detects the rotation direction of the electric motors 51 and 54 (step S21).
  • step S22; Y the rotation directions of the electric motors 51 and 54 detected in step S21 match
  • step S22; N the determination unit 23 determines that at least one of the abnormality of the electric motors 51 and 54 and the speed sensors 52 and 55 has occurred. Then, a value indicating that an abnormality has been detected is output (step S23).
  • the electric motors 51 and 54 in a state where sensor signals are output from the speed sensors 52 and 55 based on the rotation direction of the electric motors 51 and 54, and It is possible to detect an abnormality in at least one of the speed sensors 52 and 55.
  • the power conversion device 4 according to Embodiment 4 of the present invention differs from the power conversion device 3 in that at least one of the motors 51 and 54 and the speed sensors 52 and 55 based on the change in the rotation direction of the plurality of motors 51 and 54.
  • An abnormality is detected.
  • the power conversion device 4 includes an abnormality detection unit 16 instead of the abnormality detection unit 15 included in the power conversion device 3 according to the third embodiment.
  • the abnormality detection unit 16 detects an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 based on a change in the rotation direction of the plurality of electric motors 51 and 54.
  • the abnormality detection unit 16 detects at least one abnormality of the electric motors 51 and 54 and the speed sensors 52 and 55 based on whether or not the change timings of the rotation directions of the electric motors 51 and 54 match. To do.
  • the power conversion device 4 can detect an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 in a state where the sensor signal is output.
  • the rotation direction detector 12 detects the rotation direction of the electric motors 51 and 54 as in the third embodiment. When there is no abnormality in the electric motors 51 and 54, the rotation directions of the electric motors 51 and 54 change at the same timing. In other words, when the rotation directions of the electric motors 51 and 54 do not change at the same timing, it can be determined that at least one abnormality of the electric motors 51 and 54 and the speed sensors 52 and 55 has occurred.
  • the abnormality detection unit 16 further includes an XOR gate 24 and a holding unit 25 in addition to the configuration of the abnormality detection unit 13 according to the first embodiment.
  • the structure and operation of the XOR gate 24 are the same as those of the XOR gate 21.
  • the structure and operation of the holding unit 25 are the same as those of the holding unit 22.
  • the rotation direction detection unit 12 supplies the B phase pulse signal of the speed sensor 55 to the holding unit 25, and the holding unit 25 operates in synchronization with the rising of the B phase pulse signal of the speed sensor 55. Details of the components of the abnormality detection unit 16 will be described.
  • the holding unit 22 When the value indicating the rotation direction of the electric motor 51 is input from the rotation direction detection unit 12, the holding unit 22 outputs a value indicating the rotation direction immediately before the electric motor 51 to the XOR gate 21. That is, the input of the XOR gate 21 is a value indicating the rotation direction of the electric motor 51 output by the rotation direction detection unit 12 and a value indicating the rotation direction immediately before the electric motor 51. Therefore, when the rotation direction of the electric motor 51 is changed, the output of the XOR gate 21 is 1, and when the rotation direction of the electric motor 51 is not changed, the output of the XOR gate 21 is 0.
  • the holding unit 25 When a value indicating the rotation direction of the electric motor 54 is input from the rotation direction detection unit 12, the holding unit 25 outputs a value indicating the rotation direction immediately before the electric motor 54 to the XOR gate 24. That is, the input of the XOR gate 24 is a value indicating the rotation direction of the electric motor 54 output by the rotation direction detection unit 12 and a value indicating the rotation direction immediately before the electric motor 54. Therefore, the output of the XOR gate 24 is 1 when the rotation direction of the electric motor 54 is changed, and the output of the XOR gate 24 is 0 when the rotation direction of the electric motor 54 is not changed.
  • the determination unit 23 includes a comparator, and the comparator compares the presence / absence of a change in the rotation direction of the plurality of electric motors 51 and 54.
  • the determination unit 23 detects an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 based on the comparison result of the comparator. Specifically, the determination unit 23 determines that an abnormality has occurred in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 when the rotation direction of the electric motors 51 and 54 does not change at the same timing, and detects the abnormality.
  • the abnormality detection process performed by the power conversion device 4 according to the fourth embodiment is the power according to the third embodiment in that it is determined that an abnormality has occurred when the rotation directions of the plurality of electric motors 51 and 54 do not change at the same timing. This is different from the abnormality detection process performed by the conversion device 3.
  • the circuit of the abnormality detection unit 16 illustrated in FIG. 14 does not sequentially perform processing. However, for easy understanding, the operation of abnormality detection processing performed by the power conversion device 4 will be described with reference to FIG. In the flowchart shown in FIG. 15, the processing in steps S21 and S23 is the same as that in the third embodiment. When the process of step S21 ends, the abnormality detection unit 16 detects a change in the rotation direction (step S24).
  • step S25; Y When the rotation directions of the motors 51 and 54 change at the same timing (step S25; Y), the process returns to step S21, and the power conversion device 4 repeats the processes of steps S21, S24, and S25.
  • step S25; N When the rotation direction of the motors 51 and 54 does not change at the same timing (step S25; N), the process proceeds to step S23. Processing described later is the same as that in the third embodiment.
  • the electric motor 51 in a state where the sensor signals are output from the speed sensors 52 and 55 based on the change in the rotation direction of the electric motors 51 and 54. , 54 and at least one of the speed sensors 52, 55 can be detected.
  • the configuration of power conversion device 4 according to Embodiment 5 of the present invention is the same as the configuration of power conversion device 4 according to Embodiment 4.
  • the power conversion device 4 according to the fifth embodiment detects an abnormality in at least one of the motors 51 and 54 and the speed sensors 52 and 55 based on the frequency of change in the rotation direction of the plurality of motors 51 and 54.
  • the determination unit 23 includes two accumulators, and one accumulator integrates the output of the XOR gate 21 and the other accumulator integrates the output of the XOR gate 24.
  • the determination unit 23 determines whether the electric motors 51 and 54 and the speed sensor 52 are. , 55, it is determined that an abnormality has occurred, and a value indicating that the abnormality has been detected is output.
  • the period and threshold value used for determination of abnormality can be determined according to the characteristics of the device on which the power conversion device 4 is mounted, as in the first embodiment.
  • the abnormality detection process performed by the power conversion device 4 according to the fifth embodiment is that the abnormality is detected based on the frequency of change in the rotation direction of the plurality of electric motors 51 and 54, and thus the power conversion device according to the fourth embodiment. This is different from the abnormality detection process performed by 4.
  • the processes in steps S21, S23, and S24 are the same as those in the fourth embodiment.
  • the abnormality detection unit 16 calculates the frequency of rotation direction conversion (step S26).
  • the abnormality detection unit 16 detects an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 based on the frequency of change in the rotation direction of each of the electric motors 51 and 54.
  • the determination unit 23 included in the abnormality detection unit 16 determines whether at least one of the number of changes in the rotation direction of the electric motor 51 and the number of changes in the rotation direction of the electric motor 54 in a predetermined period is greater than or equal to a threshold value. Based on this, it is determined whether there is an abnormality (step S27). When the number of changes in the rotation direction of each of the electric motors 51 and 54 in the predetermined period is less than the threshold value, that is, when there is no abnormality (step S27; N), the process returns to step S21, and the power conversion device 4 The above process is repeated.
  • step S27 If the number of changes in the rotational direction of at least one of the electric motors 51 and 54 in the determined period is equal to or greater than the threshold value, that is, if there is an abnormality (step S27; Y), the process proceeds to step S23.
  • the processing described later is the same as in the third and fourth embodiments.
  • the electric motor in a state where sensor signals are output from the speed sensors 52 and 55 based on the frequency of change in the rotation direction of the electric motors 51 and 54. It is possible to detect an abnormality in at least one of 51 and 54 and speed sensors 52 and 55.
  • the power conversion device 5 is a speed for acquiring the rotation speeds of the electric motors 51 and 54 in addition to the configuration of the power conversion device 3 according to the third embodiment.
  • the acquisition unit 14 is further provided.
  • the abnormality detection unit 15 determines the motors 51 and 54 and the speed sensor 52 based on the rotation directions of the plurality of motors 51 and 54. , 55 is detected.
  • the speed acquisition unit 14 acquires the speeds of the electric motors 51 and 54 from the sensor signal output from the speed sensor 53 attached to the electric motor 51. As described above, since the motors 51 and 54 rotate at the same speed in the same direction, the speed acquisition unit 14 can acquire the speeds of the motors 51 and 54 from the sensor signal output from the speed sensor 53.
  • the threshold speed is determined according to the characteristics of the speed sensors 52 and 55, and the rotation direction detector 12 can detect the sensor signal when the rotation speed is equal to or higher than the threshold speed.
  • the threshold speed is 1 rpm, for example.
  • the abnormality detection process can be performed to improve the accuracy of the abnormality detection process.
  • the configuration of the abnormality detection unit 15 according to the sixth embodiment is the same as the configuration of the abnormality detection unit 15 according to the third embodiment.
  • the rotation speed of the electric motors 51 and 54 acquired by the speed acquisition unit 14 is input to the determination unit 23.
  • Determination unit 23 performs the same operation as in the third embodiment when the rotation speeds of electric motors 51 and 54 are equal to or higher than the threshold speed.
  • the determination unit 23 does not perform abnormality detection processing based on the rotation direction of the motors 51 and 54 when the rotation speeds of the motors 51 and 54 are less than the threshold speed.
  • the abnormality detection process performed by the power conversion device 5 according to the sixth embodiment is performed by the power conversion device 3 according to the third embodiment in that abnormality detection is performed when the rotation speeds of the motors 51 and 54 are equal to or higher than the threshold speed. Different from the abnormality detection process to be performed.
  • the circuit of the abnormality detection unit 15 illustrated in FIG. 18 does not sequentially perform processing. However, for easy understanding, an operation of abnormality detection processing performed by the power conversion device 5 will be described with reference to FIG. In the flowchart shown in FIG. 19, the processes in steps S21 to S23 are the same as those in the third embodiment.
  • the rotation speed is less than the threshold speed (step S28; N)
  • the power conversion device 5 repeatedly performs the process of step S21.
  • the rotation speed is equal to or higher than the threshold speed (step S28; Y)
  • the process proceeds to step S23. Processing described later is the same as that in the third embodiment.
  • the electric motors 51 and 54 when the rotation speeds of the electric motors 51 and 54 are equal to or higher than the threshold speed, the electric motors 51 and 54 and the electric motors 51 and 54 and By detecting an abnormality in at least one of the speed sensors 52 and 55, it is possible to improve the accuracy of abnormality detection.
  • the power conversion device 6 according to Embodiment 7 of the present invention has a speed acquisition unit that acquires the rotation speeds of the electric motors 51 and 54 in addition to the configuration of the power conversion device 4 according to Embodiment 4. 14 is further provided.
  • the structure and operation of the speed acquisition unit 14 are the same as those of the speed acquisition unit 14 included in the power conversion device 5 according to the sixth embodiment.
  • the abnormality detection unit 16 determines whether the motors 51 and 54 and the speeds are based on the change in the rotation direction of the plurality of motors 51 and 54. An abnormality in at least one of the sensors 52 and 55 is detected.
  • the abnormality detection process can be performed to improve the accuracy of the abnormality detection process.
  • the configuration of the abnormality detection unit 16 according to the seventh embodiment is the same as the configuration of the abnormality detection unit 16 according to the fourth embodiment.
  • the rotation speed of the electric motor 51 acquired by the speed acquisition unit 14 is input to the holding unit 22, and the rotation speed of the electric motor 54 acquired by the speed acquisition unit 14 is input to the holding unit 25.
  • the holding unit 22 performs the same operation as in the fourth embodiment when the rotation speed of the electric motor 51 is equal to or higher than the threshold speed.
  • the holding unit 22 outputs a value indicating the rotation direction input from the rotation direction detection unit 12 to the XOR gate 21 and inputs from the rotation direction detection unit 12.
  • the stored value indicating the rotation direction is updated with the value indicating the rotation direction.
  • Holding unit 25 performs the same operation as in the fourth embodiment when the rotation speed of electric motor 54 is equal to or higher than the threshold speed. On the other hand, when the rotation speed of the electric motor 54 is less than the threshold speed, the holding unit 25 outputs a value indicating the rotation direction input from the rotation direction detection unit 12 to the XOR gate 24 and inputs from the rotation direction detection unit 12. The stored value indicating the rotation direction is updated with the value indicating the rotation direction.
  • the abnormality detection process performed by the power conversion device 6 according to the seventh embodiment is performed by the power conversion device 4 according to the fourth embodiment in that abnormality detection is performed when the rotation speeds of the electric motors 51 and 54 are equal to or higher than the threshold speed. Different from the abnormality detection process to be performed.
  • the circuit of the abnormality detection unit 16 illustrated in FIG. 21 does not sequentially perform processing. However, for easy understanding, the operation of abnormality detection processing performed by the power conversion device 6 will be described with reference to FIG. In the flowchart shown in FIG. 22, the processes in steps S21, S23, S24, and S25 are the same as those in the fourth embodiment.
  • step S29; N When the rotation speed is less than the threshold speed (step S29; N), the process returns to step S21, and the power conversion device 6 repeats the process of step S21. On the other hand, when the rotational speed is equal to or higher than the threshold speed (step S29; Y), the process proceeds to step S24. Subsequent processing is the same as in the fourth embodiment.
  • the electric motors 51 and 54 are based on the change in the rotational direction of the electric motors 51 and 54.
  • By detecting an abnormality in at least one of 54 and speed sensors 52 and 55 it is possible to improve the accuracy of abnormality detection.
  • the configuration of power conversion device 6 according to Embodiment 8 of the present invention is the same as the configuration of power conversion device 6 according to Embodiment 7.
  • the power conversion device 6 according to the eighth embodiment is configured such that when the rotational speeds of the plurality of electric motors 51 and 54 are equal to or higher than the threshold speed, the electric motors 51 and 54 are 54 and at least one of the speed sensors 52 and 55 is detected.
  • the abnormality detection process can be performed to improve the accuracy of the abnormality detection process.
  • the operation of the determination unit 23 is the same as that of the fifth embodiment. Specifically, the determination unit 23 integrates the outputs of the XOR gate 21 during a predetermined period. Further, the determination unit 23 integrates the outputs of the XOR gate 24 during a predetermined period. If at least one of the integrated value of the output of the XOR gate 21 and the integrated value of the output of the XOR gate 24 is equal to or greater than the threshold value, the determination unit 23 causes an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55. A value indicating that an abnormality has been detected is output.
  • the abnormality detection process performed by the power conversion device 6 according to the eighth embodiment is that the power conversion device 4 according to the fifth embodiment performs abnormality detection when the rotation speeds of the electric motors 51 and 54 are equal to or higher than the threshold speed. Different from the abnormality detection process to be performed.
  • the processes in steps S21, S23, S24, S26, and S27 are the same as those in the fifth embodiment.
  • the rotation speed is less than the threshold speed (step S29; N)
  • the power conversion device 6 repeats the process of step S21.
  • the rotational speed is equal to or higher than the threshold speed (step S29; Y)
  • the process proceeds to step S24. Subsequent processing is the same as in the fifth embodiment.
  • the electric motor is based on the frequency of change in the rotation direction of the motors 51 and 54.
  • the power conversion device 1-6 described above may stop the operation of the power conversion unit 11 when an abnormality is detected.
  • a description will be given of a configuration in which the power conversion device 1 has a function of stopping the operation of the power conversion unit 11 when an abnormality is detected.
  • the power conversion device 7 according to the ninth embodiment of the present invention is configured so that, in addition to the configuration of the power conversion device 1 according to the first embodiment, the abnormality detection unit 13 detects an abnormality.
  • a stop control unit 17 that stops the conversion unit 11 is further provided.
  • the abnormality detection unit 15 When detecting an abnormality in at least one of the electric motor 51 and the speed sensor 52, the abnormality detection unit 15 outputs a value indicating that the abnormality has been detected to the stop control unit 17. When a value indicating that an abnormality has been detected is input, the stop control unit 17 outputs a control signal for opening the switching element to the switching element included in the power conversion unit 11. The operation of the power converter 11 is stopped by opening the switching element.
  • the abnormality detection process performed by the power conversion device 7 according to the ninth embodiment is the abnormality detection performed by the power conversion device 1 according to the first embodiment in that the power conversion unit 11 is stopped when an abnormality is detected. Different from processing. In the flowchart shown in FIG. 25, the processing in steps S11 to S15 is the same as that in the first embodiment.
  • the stop control unit 17 stops the operation of the power conversion unit 11 (step S17). When the process of step S17 ends, the power conversion device 7 ends the abnormality detection process.
  • the safety of the power conversion device 7 can be improved by stopping the operation of the power conversion unit 11 when an abnormality is detected. Is possible.
  • the embodiment of the present invention is not limited to the above-described embodiment.
  • the speed sensors 52 and 55 may output three or more sensor signals.
  • the way in which the waveform of the sensor signal collapses is not limited to the example in FIG.
  • the waveforms of the A-phase pulse signal and the B-phase pulse signal may both collapse, and the rotation direction detected by the rotation direction detection unit 12 may change frequently.
  • the abnormality detection unit 13 can detect an abnormality in at least one of the electric motor 51 and the speed sensor 52 based on the frequency of change in the rotation direction.
  • the speed acquisition unit 14 may acquire the rotational speeds of the electric motors 51 and 54 from, for example, ATC (Automatic Train Control).
  • the speed sensor 53 may be attached to the electric motor 54, and the speed acquisition unit 14 may acquire the rotation speed of the electric motors 51 and 54 from the sensor signal output from the speed sensor 53.
  • the power conversion device 3-6 may supply power to three or more electric motors.
  • the abnormality detection units 13, 15, and 16 output a value indicating that the abnormality has been detected to, for example, TIMS (Train Information Management System).
  • the determination unit 23 may shorten the above-defined period each time an abnormality is detected. For example, the determination unit 23 sets the determined period to 1 minute and sets the threshold value to 5. When the determination unit 23 detects that the rotation direction of the electric motor 51 has changed five times or more in one minute, the determination unit 23 outputs a value indicating that an abnormality has been detected. Thereafter, the determination unit 23 sets the predetermined period to 30 seconds and sets the threshold value to 3. When the determination unit 23 detects that the rotation direction of the electric motor 51 has changed three or more times in 30 seconds, the determination unit 23 outputs a value indicating that an abnormality has been detected.
  • the power conversion unit 11 may be stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A power conversion device (1) is provided with a power conversion unit (11), a rotating direction detection unit (12), and an abnormality detection unit (13). The power conversion unit (11) converts inputted power and supplies the converted power to an electric motor (51). The rotating direction detection unit (12) detects the rotating direction of the electric motor (51) on the basis of a sensor signal outputted by a speed sensor (52). The abnormality detection unit (13) detects a change of the rotating direction, and calculates the frequency of change of the rotating direction. The abnormality detection unit (13) further detects an abnormality in the electric motor (51) and/or the speed sensor (52) on the basis of the frequency of change of the rotating direction.

Description

電力変換装置および異常検出方法Power converter and abnormality detection method
 この発明は、電動機および速度センサの少なくともいずれかの異常を検出する電力変換装置および異常検出方法に関する。 The present invention relates to a power conversion device and an abnormality detection method for detecting an abnormality in at least one of an electric motor and a speed sensor.
 電気鉄道車両には、架線から入力された電力を変換し、変換した電力を電動機に供給する電力変換装置が搭載される。電力変換装置の制御部は、速度センサから取得した電動機の回転速度、および電動機に流れる電流に基づき、電動機のトルクを所望の範囲に維持するための制御を行う。 An electric railway vehicle is equipped with a power conversion device that converts electric power input from an overhead line and supplies the converted electric power to an electric motor. The control unit of the power conversion device performs control for maintaining the torque of the motor in a desired range based on the rotation speed of the motor acquired from the speed sensor and the current flowing through the motor.
 特許文献1に開示されるパルスジェネレーター断線検出付速度制御装置は、入力されたモータの速度基準および速度フィードバックから演算を行い、電流基準またはトルク基準を出力する速度制御演算増幅器を備える。速度制御演算増幅器を備えることで、電動機のトルクを所望の範囲に維持する。速度センサに異常が生じると、モータのトルクを所望の範囲に維持することができない。そこで、特許文献1に開示されるパルスジェネレーター断線検出付速度制御装置は、モータの速度基準が有る時に速度フィードバックが0とみなすことができ、電流基準またはトルク基準が制限値であるとみなすことができる状態が一定時間継続したことを検出することにより、パルスジェネレーターの断線を検出する。 The speed control device with pulse generator disconnection detection disclosed in Patent Document 1 includes a speed control operational amplifier that performs an operation from an input motor speed reference and speed feedback and outputs a current reference or a torque reference. By providing the speed control operational amplifier, the torque of the electric motor is maintained in a desired range. If an abnormality occurs in the speed sensor, the torque of the motor cannot be maintained in a desired range. Therefore, the speed control device with pulse generator disconnection detection disclosed in Patent Document 1 can regard speed feedback as 0 when there is a speed reference of the motor, and can regard current reference or torque reference as a limit value. The disconnection of the pulse generator is detected by detecting that the ready state has continued for a certain period of time.
特開2000-354388号公報JP 2000-354388 A
 上記速度センサの一種であるパルスジェネレーターの電源ケーブル、信号線等が完全に断線すると、パルスジェネレーターからセンサ信号が出力されなくなり、速度フィードバックは0となる。そのため、特許文献1に開示されるパルスジェネレーター断線検出付速度制御装置は、速度フィードバックに基づいて、パルスジェネレーターの断線を検出することができる。一方、電源ケーブル、信号線等が断線しかけている場合、電動機の軸が損傷している場合等に、パルスジェネレーターからセンサ信号は出力されているが、センサ信号の遅れ、センサ信号の瞬断等が生じることがある。上述のようにセンサ信号は出力されているが、電動機またはパルスジェネレーターにおいて異常が生じている場合、特許文献1に開示されるパルスジェネレーター断線検出付速度制御装置は、異常を検出することができない。また電動機の回転速度が遅くなると、誘導型のパルスジェネレーターが出力するセンサ信号の振幅は小さくなる。そのため、特許文献1に開示されるパルスジェネレーター断線検出付速度制御装置は、電動機の回転速度が遅いために、センサ信号を検出できない場合、誤って速度センサが異常であると判定してしまう。 When the power cable and signal line of the pulse generator, which is a kind of the speed sensor, are completely disconnected, the sensor signal is not output from the pulse generator, and the speed feedback becomes zero. Therefore, the speed control device with pulse generator disconnection detection disclosed in Patent Document 1 can detect the disconnection of the pulse generator based on the speed feedback. On the other hand, the sensor signal is output from the pulse generator when the power cable, signal line, etc. are about to break, or the motor shaft is damaged, but the sensor signal is delayed, the sensor signal is momentarily interrupted, etc. May occur. Although the sensor signal is output as described above, when an abnormality occurs in the electric motor or the pulse generator, the speed generator with pulse generator disconnection detection disclosed in Patent Document 1 cannot detect the abnormality. Further, when the rotation speed of the electric motor becomes slow, the amplitude of the sensor signal output from the induction type pulse generator becomes small. Therefore, the speed control device with pulse generator disconnection detection disclosed in Patent Document 1 erroneously determines that the speed sensor is abnormal when the sensor signal cannot be detected because the rotational speed of the electric motor is slow.
 本発明は上述の事情に鑑みてなされたものであり、センサ信号が出力されている状態での電動機および速度センサの少なくともいずれかの異常を検出することが目的である。 The present invention has been made in view of the above circumstances, and an object thereof is to detect an abnormality in at least one of an electric motor and a speed sensor in a state where a sensor signal is being output.
 上記目的を達成するために、本発明の電力変換装置は、電動機に電力を供給する電力変換装置であって、回転方向検出部、および、異常検出部を備える。回転方向検出部は、電動機に取り付けられた速度センサが出力するセンサ信号に基づき、電動機の回転方向を検出する。異常検出部は、回転方向の変化を検出し、回転方向の変化の頻度を算出し、回転方向の変化の頻度に基づいて、電動機および速度センサの少なくともいずれかの異常を検出する。 In order to achieve the above object, a power conversion device according to the present invention is a power conversion device that supplies electric power to an electric motor, and includes a rotation direction detection unit and an abnormality detection unit. A rotation direction detection part detects the rotation direction of an electric motor based on the sensor signal which the speed sensor attached to the electric motor outputs. The abnormality detection unit detects a change in the rotation direction, calculates a frequency of the change in the rotation direction, and detects an abnormality in at least one of the electric motor and the speed sensor based on the frequency of the change in the rotation direction.
 本発明によれば、電動機の回転方向の変化の頻度に基づいて、センサ信号が出力されている状態での電動機および速度センサの少なくともいずれかの異常を検出することが可能である。 According to the present invention, it is possible to detect an abnormality in at least one of the motor and the speed sensor in a state where the sensor signal is output based on the frequency of change in the rotation direction of the motor.
本発明の実施の形態1に係る電力変換装置の構成を示すブロック図The block diagram which shows the structure of the power converter device which concerns on Embodiment 1 of this invention. 実施の形態1におけるセンサ信号の例を示す図FIG. 5 is a diagram illustrating an example of a sensor signal in the first embodiment 実施の形態1におけるセンサ信号の例を示す図FIG. 5 is a diagram illustrating an example of a sensor signal in the first embodiment 実施の形態1に係る異常検出部の構成を示すブロック図The block diagram which shows the structure of the abnormality detection part which concerns on Embodiment 1. FIG. 実施の形態1に係る電力変換装置が行う異常検出処理の動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of the abnormality detection process which the power converter device which concerns on Embodiment 1 performs. 実施の形態1におけるセンサ信号の例を示す図FIG. 5 is a diagram illustrating an example of a sensor signal in the first embodiment 本発明の実施の形態2に係る電力変換装置の構成を示すブロック図The block diagram which shows the structure of the power converter device which concerns on Embodiment 2 of this invention. 実施の形態2に係る異常検出部の構成を示すブロック図The block diagram which shows the structure of the abnormality detection part which concerns on Embodiment 2. FIG. 実施の形態2に係る電力変換装置が行う異常検出処理の動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of the abnormality detection process which the power converter device which concerns on Embodiment 2 performs. 本発明の実施の形態3に係る電力変換装置の構成を示すブロック図The block diagram which shows the structure of the power converter device which concerns on Embodiment 3 of this invention. 実施の形態3に係る異常検出部の構成を示すブロック図The block diagram which shows the structure of the abnormality detection part which concerns on Embodiment 3. FIG. 実施の形態3に係る電力変換装置が行う異常検出処理の動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of the abnormality detection process which the power converter device which concerns on Embodiment 3 performs. 本発明の実施の形態4に係る電力変換装置の構成を示すブロック図The block diagram which shows the structure of the power converter device which concerns on Embodiment 4 of this invention. 実施の形態4に係る異常検出部の構成を示すブロック図FIG. 6 is a block diagram showing a configuration of an abnormality detection unit according to the fourth embodiment. 実施の形態4に係る電力変換装置が行う異常検出処理の動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of the abnormality detection process which the power converter device which concerns on Embodiment 4 performs. 本発明の実施の形態5に係る電力変換装置が行う異常検出処理の動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of the abnormality detection process which the power converter device which concerns on Embodiment 5 of this invention performs. 本発明の実施の形態6に係る電力変換装置の構成を示すブロック図The block diagram which shows the structure of the power converter device which concerns on Embodiment 6 of this invention. 実施の形態6に係る異常検出部の構成を示すブロック図Block diagram showing a configuration of an abnormality detection unit according to the sixth embodiment 実施の形態6に係る電力変換装置が行う異常検出処理の動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of the abnormality detection process which the power converter device which concerns on Embodiment 6 performs. 本発明の実施の形態7に係る電力変換装置の構成を示すブロック図The block diagram which shows the structure of the power converter device which concerns on Embodiment 7 of this invention. 実施の形態7に係る異常検出部の構成を示すブロック図FIG. 7 is a block diagram showing a configuration of an abnormality detection unit according to the seventh embodiment. 実施の形態7に係る電力変換装置が行う異常検出処理の動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of the abnormality detection process which the power converter device which concerns on Embodiment 7 performs. 本発明の実施の形態8に係る電力変換装置が行う異常検出処理の動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of the abnormality detection process which the power converter device which concerns on Embodiment 8 of this invention performs. 本発明の実施の形態9に係る電力変換装置の構成を示すブロック図The block diagram which shows the structure of the power converter device which concerns on Embodiment 9 of this invention. 実施の形態9に係る電力変換装置が行う異常検出処理の動作の一例を示すフローチャートThe flowchart which shows an example of the operation | movement of the abnormality detection process which the power converter device which concerns on Embodiment 9 performs.
 以下、本発明の実施の形態に係る電力変換装置について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。 Hereinafter, a power converter according to an embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent parts are denoted by the same reference numerals.
 (実施の形態1)
 図1に示すように、本発明の実施の形態1に係る電力変換装置1は、入力された電力を変換し、変換した電力を電動機51に供給する電力変換部11、および、速度センサ52が出力するセンサ信号に基づき、電動機51の回転方向を検出する回転方向検出部12を備える。電力変換部11は、入力された交流電力を所望の交流電力に変換し、所望の交流電力を電動機51に供給する。電力変換装置1はさらに、回転方向の変化を検出し、回転方向の変化の頻度を算出し、回転方向の変化の頻度に基づいて、電動機51および速度センサ52の少なくともいずれかの異常を検出する異常検出部13を備える。上記構成により、電力変換装置1は、センサ信号が出力されている状態での電動機51および速度センサ52の少なくともいずれかの異常を検出することが可能である。
(Embodiment 1)
As shown in FIG. 1, the power conversion device 1 according to Embodiment 1 of the present invention includes a power conversion unit 11 that converts input power and supplies the converted power to an electric motor 51, and a speed sensor 52. A rotation direction detection unit 12 that detects the rotation direction of the electric motor 51 based on the sensor signal to be output is provided. The power conversion unit 11 converts the input AC power into desired AC power and supplies the desired AC power to the electric motor 51. The power converter 1 further detects a change in the rotation direction, calculates the frequency of the change in the rotation direction, and detects an abnormality in at least one of the electric motor 51 and the speed sensor 52 based on the frequency of the change in the rotation direction. An abnormality detection unit 13 is provided. With the above configuration, the power conversion device 1 can detect an abnormality in at least one of the electric motor 51 and the speed sensor 52 in a state where the sensor signal is output.
 電力変換装置1は、電気鉄道車両に搭載される。その場合、電力変換部11は、架線から入力される電力を変換して電動機51に供給し、電動機51は、電気鉄道車両の車輪を駆動する。速度センサ52として、電動機51の軸に取り付けられる二相出力のPG(Pulse Generator:パルスジェネレーター)が設けられる。詳細には、速度センサ52は、電動機51の回転方向および回転速度に応じて、複数のセンサ信号を出力する。複数のセンサ信号はそれぞれ、パルス信号であり、複数のセンサ信号の位相は互いに異なる。 The power conversion device 1 is mounted on an electric railway vehicle. In that case, the power conversion unit 11 converts the electric power input from the overhead line and supplies it to the electric motor 51, and the electric motor 51 drives the wheels of the electric railway vehicle. As the speed sensor 52, a two-phase output PG (Pulse Generator: pulse generator) attached to the shaft of the electric motor 51 is provided. Specifically, the speed sensor 52 outputs a plurality of sensor signals according to the rotation direction and rotation speed of the electric motor 51. Each of the plurality of sensor signals is a pulse signal, and the phases of the plurality of sensor signals are different from each other.
 速度センサ52は、2つのセンサ信号、すなわち、A相パルス信号とB相パルス信号を出力する。電動機51および速度センサ52のいずれにも異常が生じていない場合、A相パルス信号とB相パルス信号のデューティー比および周期τは同じである。A相パルス信号とB相パルス信号は、位相が90度ずれている。図2および図3に示すように、速度センサ52は、電動機51の回転方向に応じて、A相パルス信号およびB相パルス信号のいずれか一方の位相を他方の位相から90度遅れさせる。実施の形態1の例では、電動機51が正転する場合、図2に示すように、B相パルス信号の位相は、A相パルス信号の位相より90度遅れる。一方、電動機51が逆転する場合、図3に示すように、A相パルス信号の位相は、B相パルス信号の位相より90度遅れる。 The speed sensor 52 outputs two sensor signals, that is, an A-phase pulse signal and a B-phase pulse signal. When no abnormality has occurred in either the electric motor 51 or the speed sensor 52, the duty ratio and the period τ of the A-phase pulse signal and the B-phase pulse signal are the same. The phase of the A-phase pulse signal and the B-phase pulse signal are shifted by 90 degrees. As shown in FIGS. 2 and 3, the speed sensor 52 delays one phase of the A-phase pulse signal and the B-phase pulse signal by 90 degrees from the other phase according to the rotation direction of the electric motor 51. In the example of the first embodiment, when the electric motor 51 rotates forward, the phase of the B-phase pulse signal is delayed by 90 degrees from the phase of the A-phase pulse signal as shown in FIG. On the other hand, when the motor 51 reverses, the phase of the A-phase pulse signal is delayed by 90 degrees from the phase of the B-phase pulse signal, as shown in FIG.
 上述のように、電動機51の回転方向に応じて、A相パルス信号およびB相パルス信号のいずれか一方の位相が他方の位相から90度遅れるため、回転方向検出部12は、A相パルス信号およびB相パルス信号から、電動機51の回転方向を検出することができる。詳細には、回転方向検出部12は、B相パルス信号の立ち上がりを検出し、B相パルス信号の立ち上がり時点において、A相パルス信号がH(High)レベルおよびL(Low)レベルのいずれの状態であるかに基づいて、電動機51の回転方向を検出する。 As described above, according to the rotation direction of the electric motor 51, one of the A-phase pulse signal and the B-phase pulse signal is delayed by 90 degrees from the other phase. The rotation direction of the electric motor 51 can be detected from the B-phase pulse signal. Specifically, the rotation direction detection unit 12 detects the rise of the B-phase pulse signal, and the A-phase pulse signal is in either the H (High) level or the L (Low) level at the rise of the B-phase pulse signal. The rotation direction of the electric motor 51 is detected based on whether the
 図2の例では、回転方向検出部12は、時刻T2において、B相パルス信号の立ち上がりを検出する。時刻T2においてA相パルス信号はHレベルであるから、回転方向検出部12は、電動機51が正転していることを検出する。時刻T4においても同様に、回転方向検出部12は、電動機51が正転していることを検出する。図3の例では、回転方向検出部12は、時刻T1において、B相パルス信号の立ち上がりを検出する。時刻T1においてA相パルス信号はLレベルであるから、回転方向検出部12は、電動機51が逆転していることを検出する。時刻T3においても同様に、回転方向検出部12は、電動機51が逆転していることを検出する。回転方向検出部12は、回転方向を検出するたびに、異常検出部13に回転方向を示す値を出力する。 In the example of FIG. 2, the rotation direction detection unit 12 detects the rise of the B phase pulse signal at time T2. Since the A-phase pulse signal is at the H level at time T2, the rotation direction detection unit 12 detects that the electric motor 51 is rotating forward. Similarly at time T4, the rotation direction detector 12 detects that the electric motor 51 is rotating forward. In the example of FIG. 3, the rotation direction detection unit 12 detects the rise of the B-phase pulse signal at time T1. Since the A-phase pulse signal is at the L level at time T1, the rotation direction detection unit 12 detects that the electric motor 51 is reversely rotated. Similarly, at time T3, the rotation direction detection unit 12 detects that the electric motor 51 is reversely rotated. Each time the rotation direction detection unit 12 detects the rotation direction, the rotation direction detection unit 12 outputs a value indicating the rotation direction to the abnormality detection unit 13.
 上述のように、電力変換装置1が電気鉄道車両に搭載される場合であって、電動機51および速度センサ52のいずれにも異常が生じていない場合、電動機51の回転方向が頻繁に変わることはない。すなわち、回転方向検出部12で検出した電動機51の回転方向が短時間に複数回変化した場合は、電動機51の軸の破損、速度センサ52の故障等の異常が生じていると考えられる。そこで、異常検出部13は、回転方向検出部12が検出した回転方向に基づき、回転方向の変化を検出する。さらに異常検出部13は、回転方向の変化の頻度を算出し、回転方向の変化の頻度に基づいて、電動機51および速度センサ52の少なくともいずれかの異常を検出する。詳細には、異常検出部13は、回転方向を示す値の変化の頻度を算出し、回転方向を示す値の変化の頻度に基づいて、異常を検出する。 As described above, when the power conversion device 1 is mounted on an electric railway vehicle and there is no abnormality in either the electric motor 51 or the speed sensor 52, the rotation direction of the electric motor 51 frequently changes. Absent. That is, when the rotation direction of the electric motor 51 detected by the rotation direction detection unit 12 changes a plurality of times in a short time, it is considered that an abnormality such as breakage of the shaft of the electric motor 51 or failure of the speed sensor 52 has occurred. Therefore, the abnormality detection unit 13 detects a change in the rotation direction based on the rotation direction detected by the rotation direction detection unit 12. Furthermore, the abnormality detection unit 13 calculates the frequency of change in the rotational direction, and detects an abnormality in at least one of the electric motor 51 and the speed sensor 52 based on the frequency of change in the rotational direction. Specifically, the abnormality detection unit 13 calculates the frequency of change in the value indicating the rotation direction, and detects an abnormality based on the frequency of change in the value indicating the rotation direction.
 電動機51が正転している場合に、回転方向検出部12が出力する回転方向を示す値が”0”、電動機51が逆転している場合に、回転方向検出部12が出力する回転方向を示す値が”1”である場合を例にして、異常検出の処理について説明する。後続の実施の形態においても同様である。図4に示すように、異常検出部13は、XOR(排他的論理和)ゲート21、回転方向検出部12から入力される回転方向を示す値を保持する保持部22、およびXORゲート21の出力に基づいて、異常の有無を判定する判定部23を備える。図示しないが、回転方向検出部12からB相パルス信号が保持部22および判定部23に供給され、回転方向検出部12、保持部22、および判定部23は、B相パルス信号の立ち上がりに同期して動作する。保持部22は、回転方向検出部12から回転方向を示す値が入力されると、直前の回転方向を示す値をXORゲート21に出力する。すなわち、XORゲート21の入力は、回転方向検出部12が出力する回転方向を示す値、および、直前の回転方向を示す値である。したがって、回転方向が変化した場合は、XORゲート21の出力は1であり、回転方向が変化しない場合は、XORゲート21の出力は0である。 When the motor 51 is rotating forward, the value indicating the rotation direction output by the rotation direction detection unit 12 is “0”, and when the motor 51 is rotating in reverse, the rotation direction output by the rotation direction detection unit 12 is The abnormality detection process will be described by taking an example in which the indicated value is “1”. The same applies to the subsequent embodiments. As shown in FIG. 4, the abnormality detection unit 13 includes an XOR (exclusive OR) gate 21, a holding unit 22 that holds a value indicating the rotation direction input from the rotation direction detection unit 12, and an output of the XOR gate 21. Is provided with a determination unit 23 that determines whether or not there is an abnormality. Although not shown, a B-phase pulse signal is supplied from the rotation direction detection unit 12 to the holding unit 22 and the determination unit 23, and the rotation direction detection unit 12, the holding unit 22, and the determination unit 23 are synchronized with the rising edge of the B-phase pulse signal. Works. When a value indicating the rotation direction is input from the rotation direction detection unit 12, the holding unit 22 outputs a value indicating the previous rotation direction to the XOR gate 21. That is, the input of the XOR gate 21 is a value indicating the rotation direction output by the rotation direction detection unit 12 and a value indicating the immediately preceding rotation direction. Therefore, when the rotation direction is changed, the output of the XOR gate 21 is 1, and when the rotation direction is not changed, the output of the XOR gate 21 is 0.
 判定部23は、アキュムレータを備え、アキュムレータが定められた期間においてXORゲート21の出力を積算する。判定部23は、積算値が閾値以上となれば、電動機51および速度センサ52の少なくともいずれかの異常が生じたと判定し、異常を検出したことを示す値を出力する。判定部23において、異常の判定に用いる期間および閾値は、電力変換装置1が搭載される機器の特性に応じて定めることができる。電気鉄道車両に搭載される電力変換装置1において、例えば、1分間に回転方向を示す値が5回以上変化した場合、30秒間に回転方向を示す値が3回以上変化した場合等に、判定部23は、異常が生じたと判定することができる。 The determination unit 23 includes an accumulator, and integrates the outputs of the XOR gate 21 during a period in which the accumulator is determined. If the integrated value is equal to or greater than the threshold value, the determination unit 23 determines that at least one abnormality of the electric motor 51 and the speed sensor 52 has occurred, and outputs a value indicating that the abnormality has been detected. In the determination part 23, the period and threshold value used for determination of abnormality can be defined according to the characteristic of the apparatus in which the power converter device 1 is mounted. In the power conversion device 1 mounted on the electric railway vehicle, for example, when the value indicating the rotation direction changes 5 times or more in 1 minute, or when the value indicating the rotation direction changes 30 times or more in 30 seconds, etc. The unit 23 can determine that an abnormality has occurred.
 図4に示す異常検出部13の回路は順次処理を行う訳ではないが、理解を容易にするため、図5を用いて、電力変換装置1が行う異常検出処理の動作について説明する。回転方向検出部12は、速度センサ52が出力するセンサ信号から、電動機51の回転方向を検出する(ステップS11)。異常検出部13は、回転方向の変化を検出し(ステップS12)、回転方向の変化の頻度を算出する(ステップS13)。回転方向の変化の頻度は、定められた期間における回転方向の変化回数である。そして、異常検出部13は、回転方向の変化の頻度に基づいて、電動機51および速度センサ52の少なくともいずれかの異常を検出する。詳細には、異常検出部13が有する判定部23は、定められた期間における回転方向の変化回数が閾値以上であるか否かに基づいて、異常の有無を判定する(ステップS14)。定められた期間における回転方向の変化回数が閾値未満である、すなわち、異常が無い場合には(ステップS14;N)、ステップS11の処理に戻って、電力変換装置1は上述の処理を繰り返す。定められた期間における回転方向の変化回数が閾値以上である、すなわち、異常が有る場合には(ステップS14;Y)、異常検出部13は、異常を検出したことを示す値を出力する(ステップS15)。 The circuit of the abnormality detection unit 13 shown in FIG. 4 does not sequentially perform processing, but in order to facilitate understanding, the operation of abnormality detection processing performed by the power conversion device 1 will be described with reference to FIG. The rotation direction detector 12 detects the rotation direction of the electric motor 51 from the sensor signal output by the speed sensor 52 (step S11). The abnormality detection unit 13 detects a change in the rotation direction (step S12), and calculates the frequency of the change in the rotation direction (step S13). The frequency of change in the rotation direction is the number of changes in the rotation direction in a predetermined period. Then, the abnormality detection unit 13 detects an abnormality in at least one of the electric motor 51 and the speed sensor 52 based on the frequency of change in the rotation direction. Specifically, the determination unit 23 included in the abnormality detection unit 13 determines the presence / absence of an abnormality based on whether or not the number of changes in the rotation direction in a predetermined period is greater than or equal to a threshold value (step S14). When the number of changes in the rotation direction in the determined period is less than the threshold value, that is, when there is no abnormality (step S14; N), the process returns to step S11, and the power converter 1 repeats the above-described process. When the number of changes in the rotational direction in the determined period is equal to or greater than the threshold value, that is, when there is an abnormality (step S14; Y), the abnormality detection unit 13 outputs a value indicating that the abnormality has been detected (step S14). S15).
 電力変換装置1が行う異常検出処理の動作の詳細について、図6を用いて説明する。速度センサ52は、A相パルス信号およびB相パルス信号を出力する。速度センサ52の電源ケーブル、信号線等が断線しかけている場合に、センサ信号に遅れが生じる。 Details of the operation of the abnormality detection process performed by the power conversion device 1 will be described with reference to FIG. The speed sensor 52 outputs an A phase pulse signal and a B phase pulse signal. When the power cable or signal line of the speed sensor 52 is almost disconnected, a delay occurs in the sensor signal.
 速度センサ52は、電動機51の回転に応じたA相パルス信号およびB相パルス信号を出力する。電動機51が正転している場合を例にして説明する。電動機51が正転しているため、時刻T1において、A相パルス信号が立ち上がり、時刻T2において、B相パルス信号が立ち上がる。回転方向検出部12は、時刻T2において、B相パルス信号の立ち上がりを検出する。時刻T2において、A相パルス信号がHレベルであるため、回転方向検出部12は、電動機51の回転方向が正転であることを検出する。そして、回転方向検出部12は、回転方向を示す値”0”を異常検出部13に出力する。 Speed sensor 52 outputs an A-phase pulse signal and a B-phase pulse signal corresponding to the rotation of electric motor 51. The case where the electric motor 51 is rotating forward will be described as an example. Since the electric motor 51 is rotating forward, the A-phase pulse signal rises at time T1, and the B-phase pulse signal rises at time T2. The rotation direction detector 12 detects the rise of the B-phase pulse signal at time T2. At time T2, since the A-phase pulse signal is at the H level, the rotation direction detection unit 12 detects that the rotation direction of the electric motor 51 is normal rotation. Then, the rotation direction detection unit 12 outputs a value “0” indicating the rotation direction to the abnormality detection unit 13.
 保持部22は、記憶している直前の回転方向を示す値がないため、回転方向検出部12から入力された回転方向を示す値”0”をXORゲート21に出力する。また保持部22は、回転方向検出部12から入力された回転方向を示す値”0”を記憶する。XORゲート21の入力が共に”0”であるため、XORゲート21の出力は0である。したがって、回転方向の変化回数に相当する判定部23の積算値は初期値0のままである。 The holding unit 22 outputs the value “0” indicating the rotation direction input from the rotation direction detecting unit 12 to the XOR gate 21 because there is no stored value indicating the immediately preceding rotation direction. The holding unit 22 stores a value “0” indicating the rotation direction input from the rotation direction detection unit 12. Since both inputs of the XOR gate 21 are “0”, the output of the XOR gate 21 is 0. Therefore, the integrated value of the determination unit 23 corresponding to the number of changes in the rotation direction remains the initial value 0.
 その後、時刻T4において、回転方向検出部12は、B相パルス信号の立ち上がりを検出する。例えば、速度センサ52の異常のため、時刻T4において、A相パルス信号は立ち上がっていない。時刻T4において、A相パルス信号がLレベルであるため、回転方向検出部12は、電動機51の回転方向が逆転であることを検出する。そして、回転方向検出部12は、回転方向を示す値”1”を異常検出部13に出力する。 Thereafter, at time T4, the rotation direction detector 12 detects the rising edge of the B-phase pulse signal. For example, the phase A pulse signal does not rise at time T4 due to an abnormality in the speed sensor 52. At time T4, since the A-phase pulse signal is at the L level, the rotation direction detection unit 12 detects that the rotation direction of the electric motor 51 is reverse. Then, the rotation direction detection unit 12 outputs a value “1” indicating the rotation direction to the abnormality detection unit 13.
 保持部22は、記憶している回転方向を示す値”0”をXORゲート21に出力する。その後、保持部22は、回転方向検出部12から入力された回転方向を示す値”1”で、記憶している回転方向を示す値”0”を更新する。XORゲート21の入力は、回転方向検出部12から入力された回転方向を示す値”1”と保持部22から入力された回転方向を示す値”0”であるから、XORゲート21の出力は”1”である。したがって、判定部23の積算値は1となる。 The holding unit 22 outputs the stored value “0” indicating the rotation direction to the XOR gate 21. Thereafter, the holding unit 22 updates the stored value “0” indicating the rotation direction with the value “1” indicating the rotation direction input from the rotation direction detection unit 12. Since the input of the XOR gate 21 is a value “1” indicating the rotation direction input from the rotation direction detection unit 12 and a value “0” indicating the rotation direction input from the holding unit 22, the output of the XOR gate 21 is “1”. Therefore, the integrated value of the determination unit 23 is 1.
 その後、時刻T5,T6においてA相パルス信号は立ち上がる。時刻T7において、回転方向検出部12は、B相パルス信号の立ち上がりを検出する。時刻T7において、A相パルス信号がHレベルであるため、回転方向検出部12は、電動機51の回転方向が正転であることを検出する。そして、回転方向検出部12は、回転方向を示す値”0”を異常検出部13に出力する。保持部22は、記憶している回転方向を示す値”1”をXORゲート21に出力する。また保持部22は、回転方向検出部12から入力された回転方向を示す値”0”を記憶する。XORゲート21の入力は回転方向検出部12から入力された回転方向を示す値”0”と保持部22から入力された回転方向を示す値”1”であるから、XORゲート21の出力は”0”である。したがって、判定部23の積算値は2となる。 Thereafter, the A-phase pulse signal rises at times T5 and T6. At time T7, the rotation direction detector 12 detects the rise of the B-phase pulse signal. At time T7, since the A-phase pulse signal is at the H level, the rotation direction detection unit 12 detects that the rotation direction of the electric motor 51 is normal rotation. Then, the rotation direction detection unit 12 outputs a value “0” indicating the rotation direction to the abnormality detection unit 13. The holding unit 22 outputs the stored value “1” indicating the rotation direction to the XOR gate 21. The holding unit 22 stores a value “0” indicating the rotation direction input from the rotation direction detection unit 12. Since the input of the XOR gate 21 is the value “0” indicating the rotation direction input from the rotation direction detection unit 12 and the value “1” indicating the rotation direction input from the holding unit 22, the output of the XOR gate 21 is “ 0 ". Therefore, the integrated value of the determination unit 23 is 2.
 上述の処理の結果、判定部23の積算値が閾値以上になると、判定部23は、電動機51および速度センサ52の少なくともいずれかの異常が生じたと判定し、異常を検出したことを示す値を出力する。なお判定部23は、タイマを有し、定められた期間が経過するたびに、積算値をリセットする。これにより、異常検出部13が定められた期間での変化回数、すなわち、回転方向の変化の頻度に基づいて、異常を検出することができる。 As a result of the above-described processing, when the integrated value of the determination unit 23 is equal to or greater than the threshold value, the determination unit 23 determines that at least one abnormality of the electric motor 51 and the speed sensor 52 has occurred and sets a value indicating that the abnormality has been detected. Output. Note that the determination unit 23 includes a timer and resets the integrated value every time a predetermined period elapses. Thereby, abnormality can be detected based on the frequency | count of change in the period for which the abnormality detection part 13 was defined, ie, the frequency of the change of a rotation direction.
 以上説明したとおり、実施の形態1に係る電力変換装置1によれば、電動機51の回転方向の変化の頻度に基づき、速度センサ52からセンサ信号が出力されている状態での電動機51および速度センサ52の少なくともいずれかの異常を検出することが可能である。 As described above, according to the power conversion device 1 according to the first embodiment, the electric motor 51 and the speed sensor in a state where the sensor signal is output from the speed sensor 52 based on the frequency of change in the rotation direction of the electric motor 51. It is possible to detect at least any abnormality of 52.
 (実施の形態2)
 誘導型のPGは、独立した電源を有さないため小型化が可能であるが、電動機の回転速度が遅くなると、誘導型のPGが出力するセンサ信号の振幅は小さくなる。そのため、センサ信号の有無に基づいてセンサ信号の異常を判定する従来の電力変換装置は、電動機の回転速度が遅いために、センサ信号を検出できない場合、誤って速度センサが異常であると判定してしまう。実施の形態2において、速度センサ52として、誘導型のPGが設けられる。そこで、図7に示すように、本発明の実施の形態2に係る電力変換装置2は、電動機51の回転速度を取得する速度取得部14をさらに備える。速度取得部14で取得した回転速度が閾値速度以上である場合に、異常検出部13は、回転方向の変化の頻度に基づいて、電動機51および速度センサ52の少なくともいずれかの異常を検出する。速度取得部14は、電動機51に取り付けられた速度センサ53が出力するセンサ信号から、電動機51の速度を取得する。速度センサ53は独立した電源を有し、速度センサ53が出力するセンサ信号の振幅は、電動機51の回転速度によらず、一定である。閾値速度は、速度センサ52の特性に応じて定められ、回転速度が閾値速度以上である場合に、回転方向検出部12がセンサ信号を検出可能である。閾値速度は、例えば1rpm(round per minute)である。センサ信号が検出可能であるということは、図2および図3に示すセンサ信号の立ち上がりを正確に検出できることを意味する。センサ信号の立ち上がりを正確に検出可能な場合に、異常検出の処理を行うことで、異常検出の処理の精度を向上させることができる。
(Embodiment 2)
The inductive PG does not have an independent power supply and can be miniaturized. However, when the rotational speed of the electric motor is reduced, the amplitude of the sensor signal output from the inductive PG decreases. Therefore, the conventional power converter that determines the abnormality of the sensor signal based on the presence or absence of the sensor signal erroneously determines that the speed sensor is abnormal when the sensor signal cannot be detected because the rotation speed of the motor is slow. End up. In the second embodiment, an inductive PG is provided as the speed sensor 52. Therefore, as shown in FIG. 7, the power conversion device 2 according to the second embodiment of the present invention further includes a speed acquisition unit 14 that acquires the rotation speed of the electric motor 51. When the rotation speed acquired by the speed acquisition unit 14 is equal to or higher than the threshold speed, the abnormality detection unit 13 detects an abnormality in at least one of the electric motor 51 and the speed sensor 52 based on the frequency of change in the rotation direction. The speed acquisition unit 14 acquires the speed of the electric motor 51 from the sensor signal output from the speed sensor 53 attached to the electric motor 51. The speed sensor 53 has an independent power source, and the amplitude of the sensor signal output from the speed sensor 53 is constant regardless of the rotational speed of the electric motor 51. The threshold speed is determined according to the characteristics of the speed sensor 52, and the rotation direction detection unit 12 can detect the sensor signal when the rotation speed is equal to or higher than the threshold speed. The threshold speed is, for example, 1 rpm (round per minute). That the sensor signal can be detected means that the rising edge of the sensor signal shown in FIGS. 2 and 3 can be accurately detected. When the rising edge of the sensor signal can be detected accurately, the abnormality detection process can be performed to improve the accuracy of the abnormality detection process.
 図8に示すように、実施の形態2に係る異常検出部13の構成は、実施の形態1に係る異常検出部13の構成と同様である。ただし、保持部22には、速度取得部14が取得した電動機51の回転速度が入力される。保持部22は、回転速度が閾値速度以上である場合は、実施の形態1と同様の動作を行う。保持部22は、回転速度が閾値速度未満である場合は、実施の形態1とは異なり、回転方向検出部12から入力された回転方向を示す値をXORゲート21に出力し、回転方向検出部12から入力された回転方向を示す値で、記憶されている回転方向を示す値を更新する。 As shown in FIG. 8, the configuration of the abnormality detection unit 13 according to the second embodiment is the same as the configuration of the abnormality detection unit 13 according to the first embodiment. However, the rotation speed of the electric motor 51 acquired by the speed acquisition unit 14 is input to the holding unit 22. The holding unit 22 performs the same operation as in the first embodiment when the rotation speed is equal to or higher than the threshold speed. When the rotation speed is less than the threshold speed, the holding unit 22 outputs a value indicating the rotation direction input from the rotation direction detection unit 12 to the XOR gate 21 unlike the first embodiment, and the rotation direction detection unit. The stored value indicating the rotation direction is updated with the value indicating the rotation direction input from 12.
 実施の形態2に係る電力変換装置2が行う異常検出の処理は、回転速度が閾値速度以上である場合に異常検出を行う点においてのみ、実施の形態1に係る電力変換装置1が行う異常検出の処理と異なる。図8に示す異常検出部13の回路は順次処理を行う訳ではないが、理解を容易にするため、図9を用いて、電力変換装置2が行う異常検出処理の動作について説明する。図9に示すフローチャートにおいて、ステップS11~S15の処理は、実施の形態1と同様である。回転速度が閾値速度未満である場合(ステップS16;N)、ステップS11に戻って、電力変換装置2は、ステップS11の処理を繰り返す。一方、回転速度が閾値速度以上である場合(ステップS16;Y)、ステップS12の処理に進む。後続の処理は、実施の形態1と同様である。 The abnormality detection process performed by the power conversion apparatus 2 according to the second embodiment is performed only when the abnormality detection is performed when the rotation speed is equal to or higher than the threshold speed. The abnormality detection performed by the power conversion apparatus 1 according to the first embodiment is performed. It is different from processing. Although the circuit of the abnormality detection unit 13 shown in FIG. 8 does not perform the sequential processing, the operation of the abnormality detection processing performed by the power conversion device 2 will be described with reference to FIG. 9 for easy understanding. In the flowchart shown in FIG. 9, the processes in steps S11 to S15 are the same as those in the first embodiment. When the rotation speed is less than the threshold speed (step S16; N), the process returns to step S11, and the power conversion device 2 repeats the process of step S11. On the other hand, when the rotation speed is equal to or higher than the threshold speed (step S16; Y), the process proceeds to step S12. Subsequent processing is the same as in the first embodiment.
 以上説明したとおり、実施の形態2に係る電力変換装置2によれば、電動機51の回転速度が閾値速度以上である場合に、電動機51の回転方向の変化の頻度に基づき、電動機51および速度センサ52の少なくともいずれかの異常を検出することで、異常検出の精度を向上させることが可能である。 As described above, according to the power conversion device 2 according to the second embodiment, when the rotation speed of the motor 51 is equal to or higher than the threshold speed, the motor 51 and the speed sensor are based on the frequency of change in the rotation direction of the motor 51. By detecting at least one of the abnormality 52, it is possible to improve the accuracy of abnormality detection.
 (実施の形態3)
 車両を駆動する複数の電動機に電力を供給する電力変換装置にも、本発明は適用可能である。図10に示すように、本発明の実施の形態3に係る電力変換装置3は、複数の電動機51,54に電力を供給する。電動機54の構造は、電動機51と同様である。電動機51,54は電気鉄道車両を駆動する。すなわち、電動機51,54は同方向に同速度で回転する。電力変換装置3は、入力された電力を変換し、変換した電力を電動機51,54に供給する電力変換部11、および、速度センサ52,55が出力するセンサ信号に基づき、電動機51,54の回転方向を検出する回転方向検出部12を備える。速度センサ55の構造は、速度センサ52と同様である。電力変換装置3はさらに、複数の電動機51,54の回転方向に基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する異常検出部15を備える。上記構成により、電力変換装置3は、センサ信号が出力されている状態での電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出することが可能である。
(Embodiment 3)
The present invention is also applicable to a power converter that supplies power to a plurality of electric motors that drive a vehicle. As shown in FIG. 10, power conversion device 3 according to Embodiment 3 of the present invention supplies power to a plurality of electric motors 51 and 54. The structure of the electric motor 54 is the same as that of the electric motor 51. The electric motors 51 and 54 drive the electric railway vehicle. That is, the electric motors 51 and 54 rotate at the same speed in the same direction. The power conversion device 3 converts the input power, supplies the converted power to the electric motors 51 and 54, and the sensor signals output from the speed sensors 52 and 55, and the electric motors 51 and 54. A rotation direction detection unit 12 that detects the rotation direction is provided. The structure of the speed sensor 55 is the same as that of the speed sensor 52. The power conversion device 3 further includes an abnormality detection unit 15 that detects an abnormality of at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 based on the rotation directions of the electric motors 51 and 54. With the above configuration, the power conversion device 3 can detect an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 in a state where the sensor signal is output.
 回転方向検出部12は、電動機51,54のそれぞれに対し、実施の形態1と同様に回転方向の検出を行う。詳細には、回転方向検出部12は、速度センサ52が出力するA相パルス信号およびB相パルス信号から、電動機51の回転方向を検出する。さらに、回転方向検出部12は、速度センサ55が出力するA相パルス信号およびB相パルス信号から、電動機54の回転方向を検出する。上述のように、電動機51,54は同方向に回転するため、電動機51,54および速度センサ52,55のいずれにも異常が生じていない場合は、検出された電動機51の回転方向と、検出された電動機54の回転方向は一致する。換言すれば、電動機51,54の回転方向が一致しない場合は、電動機51,54および速度センサ52,55の少なくともいずれかの異常が生じていると判定することができる。 The rotation direction detection unit 12 detects the rotation direction of each of the electric motors 51 and 54 as in the first embodiment. Specifically, the rotation direction detection unit 12 detects the rotation direction of the electric motor 51 from the A-phase pulse signal and the B-phase pulse signal output from the speed sensor 52. Further, the rotation direction detection unit 12 detects the rotation direction of the electric motor 54 from the A phase pulse signal and the B phase pulse signal output from the speed sensor 55. As described above, since the motors 51 and 54 rotate in the same direction, if no abnormality has occurred in any of the motors 51 and 54 and the speed sensors 52 and 55, the detected rotation direction of the motor 51 and the detected direction are detected. The rotation directions of the motors 54 thus matched are the same. In other words, when the rotation directions of the electric motors 51 and 54 do not coincide with each other, it can be determined that an abnormality has occurred in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55.
 図11に示すように、異常検出部15は、判定部23を備える。図示しないが、速度センサ52のB相パルス信号を遅延させた信号が、判定部23に供給され、判定部23は、遅延されたB相パルス信号の立ち上がりに同期して動作する。遅延時間は、速度センサ52,55のB相パルス信号の立ち上がりに生じ得る時間差に応じて定められる。判定部23は、コンパレータを備え、コンパレータが複数の電動機51,54の回転方向を比較する。判定部23は、コンパレータの比較結果に基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する。詳細には、判定部23は、電動機51,54の回転方向が一致しない場合に、電動機51,54および速度センサ52,55の少なくともいずれかの異常が生じたと判定し、異常を検出したことを示す値を出力する。 As shown in FIG. 11, the abnormality detection unit 15 includes a determination unit 23. Although not shown, a signal obtained by delaying the B-phase pulse signal of the speed sensor 52 is supplied to the determination unit 23, and the determination unit 23 operates in synchronization with the rise of the delayed B-phase pulse signal. The delay time is determined according to a time difference that may occur at the rising edge of the B phase pulse signal of the speed sensors 52 and 55. The determination unit 23 includes a comparator, and the comparator compares the rotation directions of the plurality of electric motors 51 and 54. The determination unit 23 detects an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 based on the comparison result of the comparator. Specifically, the determination unit 23 determines that an abnormality has occurred in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 when the rotation directions of the electric motors 51 and 54 do not match, and has detected that the abnormality has been detected. Outputs the indicated value.
 図11に示す異常検出部15の回路は順次処理を行う訳ではないが、理解を容易にするため、図12を用いて、電力変換装置3が行う異常検出処理の動作について説明する。回転方向検出部12は、電動機51,54の回転方向を検出する(ステップS21)。ステップS21で検出した電動機51,54の回転方向が一致する場合(ステップS22;Y)、電力変換装置3は、ステップS21の処理を繰り返す。一方、ステップS21で検出した電動機51,54の回転方向が一致しない場合(ステップS22;N)、判定部23は、電動機51,54および速度センサ52,55の少なくともいずれかの異常が生じたと判定し、異常を検出したことを示す値を出力する(ステップS23)。ステップS23の処理が終了すると、ステップS21の処理に戻り、電力変換装置3は、上述の処理を繰り返し行う。 Although the circuit of the abnormality detection unit 15 shown in FIG. 11 does not sequentially perform processing, the operation of the abnormality detection processing performed by the power conversion device 3 will be described with reference to FIG. 12 for easy understanding. The rotation direction detection part 12 detects the rotation direction of the electric motors 51 and 54 (step S21). When the rotation directions of the electric motors 51 and 54 detected in step S21 match (step S22; Y), the power conversion device 3 repeats the process of step S21. On the other hand, when the rotation directions of the electric motors 51 and 54 detected in step S21 do not match (step S22; N), the determination unit 23 determines that at least one of the abnormality of the electric motors 51 and 54 and the speed sensors 52 and 55 has occurred. Then, a value indicating that an abnormality has been detected is output (step S23). When the process of step S23 ends, the process returns to step S21, and the power conversion device 3 repeatedly performs the above-described process.
 以上説明したとおり、実施の形態3に係る電力変換装置3によれば、電動機51,54の回転方向に基づき、速度センサ52,55からセンサ信号が出力されている状態での電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出することが可能である。 As described above, according to the power conversion device 3 according to the third embodiment, the electric motors 51 and 54 in a state where sensor signals are output from the speed sensors 52 and 55 based on the rotation direction of the electric motors 51 and 54, and It is possible to detect an abnormality in at least one of the speed sensors 52 and 55.
 (実施の形態4)
 本発明の実施の形態4に係る電力変換装置4は、電力変換装置3と異なり、複数の電動機51,54の回転方向の変化に基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する。図13に示すように、電力変換装置4は、実施の形態3に係る電力変換装置3が有する異常検出部15に代えて、異常検出部16を備える。異常検出部16は、複数の電動機51,54の回転方向の変化に基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する。詳細には、異常検出部16は、複数の電動機51,54の回転方向の変化タイミングが一致するか否かに基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する。上記構成により、電力変換装置4は、センサ信号が出力されている状態での電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出することが可能である。
(Embodiment 4)
The power conversion device 4 according to Embodiment 4 of the present invention differs from the power conversion device 3 in that at least one of the motors 51 and 54 and the speed sensors 52 and 55 based on the change in the rotation direction of the plurality of motors 51 and 54. An abnormality is detected. As illustrated in FIG. 13, the power conversion device 4 includes an abnormality detection unit 16 instead of the abnormality detection unit 15 included in the power conversion device 3 according to the third embodiment. The abnormality detection unit 16 detects an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 based on a change in the rotation direction of the plurality of electric motors 51 and 54. Specifically, the abnormality detection unit 16 detects at least one abnormality of the electric motors 51 and 54 and the speed sensors 52 and 55 based on whether or not the change timings of the rotation directions of the electric motors 51 and 54 match. To do. With the above configuration, the power conversion device 4 can detect an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 in a state where the sensor signal is output.
 回転方向検出部12は、実施の形態3と同様に、電動機51,54の回転方向を検出する。電動機51,54に異常が生じていない場合は、電動機51,54の回転方向は、同じタイミングで変化する。換言すれば、同じタイミングで電動機51,54の回転方向が変化しない場合は、電動機51,54および速度センサ52,55の少なくともいずれかの異常が生じていると判定することができる。 The rotation direction detector 12 detects the rotation direction of the electric motors 51 and 54 as in the third embodiment. When there is no abnormality in the electric motors 51 and 54, the rotation directions of the electric motors 51 and 54 change at the same timing. In other words, when the rotation directions of the electric motors 51 and 54 do not change at the same timing, it can be determined that at least one abnormality of the electric motors 51 and 54 and the speed sensors 52 and 55 has occurred.
 図14に示すように、実施の形態4に係る異常検出部16は、実施の形態1に係る異常検出部13の構成に加え、XORゲート24および保持部25をさらに備える。XORゲート24の構造および動作は、XORゲート21と同様である。保持部25の構造および動作は、保持部22と同様である。図示しないが、回転方向検出部12から、速度センサ55のB相パルス信号が保持部25に供給され、保持部25は、速度センサ55のB相パルス信号の立ち上がりに同期して動作する。異常検出部16の構成要素の詳細について説明する。保持部22は、回転方向検出部12から電動機51の回転方向を示す値が入力されると、電動機51の直前の回転方向を示す値をXORゲート21に出力する。すなわち、XORゲート21の入力は、回転方向検出部12が出力する電動機51の回転方向を示す値、および、電動機51の直前の回転方向を示す値である。したがって、電動機51の回転方向が変化した場合は、XORゲート21の出力は1であり、電動機51の回転方向が変化しない場合は、XORゲート21の出力は0である。保持部25は、回転方向検出部12から電動機54の回転方向を示す値が入力されると、電動機54の直前の回転方向を示す値をXORゲート24に出力する。すなわち、XORゲート24の入力は、回転方向検出部12が出力する電動機54の回転方向を示す値、および、電動機54の直前の回転方向を示す値である。したがって、電動機54の回転方向が変化した場合は、XORゲート24の出力は1であり、電動機54の回転方向が変化しない場合は、XORゲート24の出力は0である。 As shown in FIG. 14, the abnormality detection unit 16 according to the fourth embodiment further includes an XOR gate 24 and a holding unit 25 in addition to the configuration of the abnormality detection unit 13 according to the first embodiment. The structure and operation of the XOR gate 24 are the same as those of the XOR gate 21. The structure and operation of the holding unit 25 are the same as those of the holding unit 22. Although not shown, the rotation direction detection unit 12 supplies the B phase pulse signal of the speed sensor 55 to the holding unit 25, and the holding unit 25 operates in synchronization with the rising of the B phase pulse signal of the speed sensor 55. Details of the components of the abnormality detection unit 16 will be described. When the value indicating the rotation direction of the electric motor 51 is input from the rotation direction detection unit 12, the holding unit 22 outputs a value indicating the rotation direction immediately before the electric motor 51 to the XOR gate 21. That is, the input of the XOR gate 21 is a value indicating the rotation direction of the electric motor 51 output by the rotation direction detection unit 12 and a value indicating the rotation direction immediately before the electric motor 51. Therefore, when the rotation direction of the electric motor 51 is changed, the output of the XOR gate 21 is 1, and when the rotation direction of the electric motor 51 is not changed, the output of the XOR gate 21 is 0. When a value indicating the rotation direction of the electric motor 54 is input from the rotation direction detection unit 12, the holding unit 25 outputs a value indicating the rotation direction immediately before the electric motor 54 to the XOR gate 24. That is, the input of the XOR gate 24 is a value indicating the rotation direction of the electric motor 54 output by the rotation direction detection unit 12 and a value indicating the rotation direction immediately before the electric motor 54. Therefore, the output of the XOR gate 24 is 1 when the rotation direction of the electric motor 54 is changed, and the output of the XOR gate 24 is 0 when the rotation direction of the electric motor 54 is not changed.
 判定部23は、コンパレータを備え、コンパレータが複数の電動機51,54の回転方向の変化の有無を比較する。判定部23は、コンパレータの比較結果に基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する。詳細には、判定部23は、同じタイミングで電動機51,54の回転方向が変化しない場合に、電動機51,54および速度センサ52,55の少なくともいずれかの異常が生じたと判定し、異常を検出したことを示す値を出力する。図14の例では、判定部23は、XORゲート21,24の出力を比較し、XORゲート21,24の出力が異なる場合に、異常が生じたと判定し、異常を検出したことを示す値を出力する。 The determination unit 23 includes a comparator, and the comparator compares the presence / absence of a change in the rotation direction of the plurality of electric motors 51 and 54. The determination unit 23 detects an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 based on the comparison result of the comparator. Specifically, the determination unit 23 determines that an abnormality has occurred in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 when the rotation direction of the electric motors 51 and 54 does not change at the same timing, and detects the abnormality. Outputs a value indicating that In the example of FIG. 14, the determination unit 23 compares the outputs of the XOR gates 21 and 24, determines that an abnormality has occurred when the outputs of the XOR gates 21 and 24 are different, and indicates a value indicating that the abnormality has been detected. Output.
 実施の形態4に係る電力変換装置4が行う異常検出処理は、同じタイミングで複数の電動機51,54の回転方向が変化しない場合に異常が生じたと判定する点において、実施の形態3に係る電力変換装置3が行う異常検出処理と異なる。図14に示す異常検出部16の回路は順次処理を行う訳ではないが、理解を容易にするため、図15を用いて、電力変換装置4が行う異常検出処理の動作について説明する。図15に示すフローチャートにおいて、ステップS21,S23の処理は、実施の形態3と同様である。ステップS21の処理が終了すると、異常検出部16は、回転方向の変化を検出する(ステップS24)。同じタイミングで電動機51,54の回転方向が変化する場合(ステップS25;Y)、ステップS21に戻り、電力変換装置4は、ステップS21,S24,S25の処理を繰り返す。同じタイミングで電動機51,54の回転方向が変化しない場合は(ステップS25;N)、ステップS23の処理に進む。後述の処理は、実施の形態3と同様である。 The abnormality detection process performed by the power conversion device 4 according to the fourth embodiment is the power according to the third embodiment in that it is determined that an abnormality has occurred when the rotation directions of the plurality of electric motors 51 and 54 do not change at the same timing. This is different from the abnormality detection process performed by the conversion device 3. The circuit of the abnormality detection unit 16 illustrated in FIG. 14 does not sequentially perform processing. However, for easy understanding, the operation of abnormality detection processing performed by the power conversion device 4 will be described with reference to FIG. In the flowchart shown in FIG. 15, the processing in steps S21 and S23 is the same as that in the third embodiment. When the process of step S21 ends, the abnormality detection unit 16 detects a change in the rotation direction (step S24). When the rotation directions of the motors 51 and 54 change at the same timing (step S25; Y), the process returns to step S21, and the power conversion device 4 repeats the processes of steps S21, S24, and S25. When the rotation direction of the motors 51 and 54 does not change at the same timing (step S25; N), the process proceeds to step S23. Processing described later is the same as that in the third embodiment.
 以上説明したとおり、実施の形態4に係る電力変換装置4によれば、電動機51,54の回転方向の変化に基づいて、速度センサ52,55からセンサ信号が出力されている状態での電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出することが可能である。 As described above, according to the power conversion device 4 according to the fourth embodiment, the electric motor 51 in a state where the sensor signals are output from the speed sensors 52 and 55 based on the change in the rotation direction of the electric motors 51 and 54. , 54 and at least one of the speed sensors 52, 55 can be detected.
 (実施の形態5)
 本発明の実施の形態5に係る電力変換装置4の構成は、実施の形態4に係る電力変換装置4の構成と同じである。実施の形態5に係る電力変換装置4は、複数の電動機51,54の回転方向の変化の頻度に基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する。
(Embodiment 5)
The configuration of power conversion device 4 according to Embodiment 5 of the present invention is the same as the configuration of power conversion device 4 according to Embodiment 4. The power conversion device 4 according to the fifth embodiment detects an abnormality in at least one of the motors 51 and 54 and the speed sensors 52 and 55 based on the frequency of change in the rotation direction of the plurality of motors 51 and 54.
 判定部23は、2つのアキュムレータを備え、一方のアキュムレータがXORゲート21の出力を積算し、他方のアキュムレータがXORゲート24の出力を積算する。判定部23は、定められた期間におけるXORゲート21の出力の積算値および定められた期間におけるXORゲート24の出力の積算値の少なくとも一方が閾値以上となれば、電動機51,54および速度センサ52,55の少なくともいずれかの異常が生じたと判定し、異常を検出したことを示す値を出力する。判定部23において、異常の判定に用いる期間および閾値は、実施の形態1と同様に、電力変換装置4が搭載される機器の特性に応じて定めることができる。 The determination unit 23 includes two accumulators, and one accumulator integrates the output of the XOR gate 21 and the other accumulator integrates the output of the XOR gate 24. When at least one of the integrated value of the output of the XOR gate 21 in the predetermined period and the integrated value of the output of the XOR gate 24 in the predetermined period is equal to or greater than the threshold value, the determination unit 23 determines whether the electric motors 51 and 54 and the speed sensor 52 are. , 55, it is determined that an abnormality has occurred, and a value indicating that the abnormality has been detected is output. In the determination unit 23, the period and threshold value used for determination of abnormality can be determined according to the characteristics of the device on which the power conversion device 4 is mounted, as in the first embodiment.
 実施の形態5に係る電力変換装置4が行う異常検出処理は、複数の電動機51,54の回転方向の変化の頻度に基づいて、異常を検出する点において、実施の形態4に係る電力変換装置4が行う異常検出処理と異なる。図16に示すフローチャートにおいて、ステップS21,S23,S24の処理は、実施の形態4と同様である。ステップS24の処理が終了すると、異常検出部16は、回転方向の変換の頻度を算出する(ステップS26)。異常検出部16は、電動機51,54のそれぞれの回転方向の変化の頻度に基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する。詳細には、異常検出部16が有する判定部23は、定められた期間における電動機51の回転方向の変化回数および電動機54の回転方向の変化回数の少なくともいずれかが閾値以上であるか否かに基づいて、異常の有無を判定する(ステップS27)。定められた期間における電動機51,54のそれぞれの回転方向の変化回数が閾値未満である、すなわち、異常が無い場合には(ステップS27;N)、ステップS21の処理に戻り、電力変換装置4は上述の処理を繰り返す。定められた期間における電動機51,54の少なくともいずれかの回転方向の変化回数が閾値以上である、すなわち、異常が有る場合には(ステップS27;Y)、ステップS23の処理に進む。後述の処理は、実施の形態3,4と同様である。 The abnormality detection process performed by the power conversion device 4 according to the fifth embodiment is that the abnormality is detected based on the frequency of change in the rotation direction of the plurality of electric motors 51 and 54, and thus the power conversion device according to the fourth embodiment. This is different from the abnormality detection process performed by 4. In the flowchart shown in FIG. 16, the processes in steps S21, S23, and S24 are the same as those in the fourth embodiment. When the process of step S24 ends, the abnormality detection unit 16 calculates the frequency of rotation direction conversion (step S26). The abnormality detection unit 16 detects an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55 based on the frequency of change in the rotation direction of each of the electric motors 51 and 54. Specifically, the determination unit 23 included in the abnormality detection unit 16 determines whether at least one of the number of changes in the rotation direction of the electric motor 51 and the number of changes in the rotation direction of the electric motor 54 in a predetermined period is greater than or equal to a threshold value. Based on this, it is determined whether there is an abnormality (step S27). When the number of changes in the rotation direction of each of the electric motors 51 and 54 in the predetermined period is less than the threshold value, that is, when there is no abnormality (step S27; N), the process returns to step S21, and the power conversion device 4 The above process is repeated. If the number of changes in the rotational direction of at least one of the electric motors 51 and 54 in the determined period is equal to or greater than the threshold value, that is, if there is an abnormality (step S27; Y), the process proceeds to step S23. The processing described later is the same as in the third and fourth embodiments.
 以上説明したとおり、実施の形態5に係る電力変換装置4によれば、電動機51,54の回転方向の変化の頻度に基づき、速度センサ52,55からセンサ信号が出力されている状態での電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出することが可能である。 As described above, according to the power conversion device 4 according to the fifth embodiment, the electric motor in a state where sensor signals are output from the speed sensors 52 and 55 based on the frequency of change in the rotation direction of the electric motors 51 and 54. It is possible to detect an abnormality in at least one of 51 and 54 and speed sensors 52 and 55.
 (実施の形態6)
 実施の形態6において、速度センサ52,55として、誘導型のPGが設けられる。そこで、図17に示すように、本発明の実施の形態6に係る電力変換装置5は、実施の形態3に係る電力変換装置3の構成に加え、電動機51,54の回転速度を取得する速度取得部14をさらに備える。速度取得部14で取得した電動機51,54の回転速度が閾値速度以上である場合に、異常検出部15は、複数の電動機51,54の回転方向に基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する。速度取得部14は、電動機51に取り付けられた速度センサ53が出力するセンサ信号から、電動機51,54の速度を取得する。上述のように、電動機51,54は、同方向に同速度で回転するため、速度取得部14は、速度センサ53が出力するセンサ信号から、電動機51,54の速度を取得することができる。閾値速度は、速度センサ52,55の特性に応じて定められ、回転速度が閾値速度以上である場合に、回転方向検出部12がセンサ信号を検出可能である。閾値速度は、例えば1rpmである。実施の形態2と同様に、センサ信号の立ち上がりを正確に検出可能な場合に、異常検出の処理を行うことで、異常検出の処理の精度を向上させることができる。
(Embodiment 6)
In the sixth embodiment, an inductive PG is provided as the speed sensors 52 and 55. Therefore, as shown in FIG. 17, the power conversion device 5 according to the sixth embodiment of the present invention is a speed for acquiring the rotation speeds of the electric motors 51 and 54 in addition to the configuration of the power conversion device 3 according to the third embodiment. The acquisition unit 14 is further provided. When the rotation speeds of the motors 51 and 54 acquired by the speed acquisition unit 14 are equal to or higher than the threshold speed, the abnormality detection unit 15 determines the motors 51 and 54 and the speed sensor 52 based on the rotation directions of the plurality of motors 51 and 54. , 55 is detected. The speed acquisition unit 14 acquires the speeds of the electric motors 51 and 54 from the sensor signal output from the speed sensor 53 attached to the electric motor 51. As described above, since the motors 51 and 54 rotate at the same speed in the same direction, the speed acquisition unit 14 can acquire the speeds of the motors 51 and 54 from the sensor signal output from the speed sensor 53. The threshold speed is determined according to the characteristics of the speed sensors 52 and 55, and the rotation direction detector 12 can detect the sensor signal when the rotation speed is equal to or higher than the threshold speed. The threshold speed is 1 rpm, for example. As in the second embodiment, when the rising edge of the sensor signal can be detected accurately, the abnormality detection process can be performed to improve the accuracy of the abnormality detection process.
 図18に示すように、実施の形態6に係る異常検出部15の構成は、実施の形態3に係る異常検出部15の構成と同様である。ただし、判定部23には、速度取得部14が取得した電動機51,54の回転速度が入力される。判定部23は、電動機51,54の回転速度が閾値速度以上である場合は、実施の形態3と同様の動作を行う。判定部23は、電動機51,54の回転速度が閾値速度未満である場合は、実施の形態3とは異なり、電動機51,54の回転方向に基づく異常検出の処理を行わない。 As shown in FIG. 18, the configuration of the abnormality detection unit 15 according to the sixth embodiment is the same as the configuration of the abnormality detection unit 15 according to the third embodiment. However, the rotation speed of the electric motors 51 and 54 acquired by the speed acquisition unit 14 is input to the determination unit 23. Determination unit 23 performs the same operation as in the third embodiment when the rotation speeds of electric motors 51 and 54 are equal to or higher than the threshold speed. Unlike the third embodiment, the determination unit 23 does not perform abnormality detection processing based on the rotation direction of the motors 51 and 54 when the rotation speeds of the motors 51 and 54 are less than the threshold speed.
 実施の形態6に係る電力変換装置5が行う異常検出処理は、電動機51,54の回転速度が閾値速度以上である場合に異常検出を行う点において、実施の形態3に係る電力変換装置3が行う異常検出処理と異なる。図18に示す異常検出部15の回路は順次処理を行う訳ではないが、理解を容易にするため、図19を用いて、電力変換装置5が行う異常検出処理の動作について説明する。図19に示すフローチャートにおいて、ステップS21-S23の処理は、実施の形態3と同様である。回転速度が閾値速度未満である場合(ステップS28;N)、電力変換装置5は、ステップS21の処理を繰り返し行う。一方、回転速度が閾値速度以上である場合(ステップS28;Y)、ステップS23の処理に進む。後述の処理は、実施の形態3と同様である。 The abnormality detection process performed by the power conversion device 5 according to the sixth embodiment is performed by the power conversion device 3 according to the third embodiment in that abnormality detection is performed when the rotation speeds of the motors 51 and 54 are equal to or higher than the threshold speed. Different from the abnormality detection process to be performed. The circuit of the abnormality detection unit 15 illustrated in FIG. 18 does not sequentially perform processing. However, for easy understanding, an operation of abnormality detection processing performed by the power conversion device 5 will be described with reference to FIG. In the flowchart shown in FIG. 19, the processes in steps S21 to S23 are the same as those in the third embodiment. When the rotation speed is less than the threshold speed (step S28; N), the power conversion device 5 repeatedly performs the process of step S21. On the other hand, when the rotation speed is equal to or higher than the threshold speed (step S28; Y), the process proceeds to step S23. Processing described later is the same as that in the third embodiment.
 以上説明したとおり、実施の形態6に係る電力変換装置5によれば、電動機51,54の回転速度が閾値速度以上である場合に、電動機51,54の回転方向に基づき、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出することで、異常検出の精度を向上させることが可能である。 As described above, according to the power conversion device 5 according to the sixth embodiment, when the rotation speeds of the electric motors 51 and 54 are equal to or higher than the threshold speed, the electric motors 51 and 54 and the electric motors 51 and 54 and By detecting an abnormality in at least one of the speed sensors 52 and 55, it is possible to improve the accuracy of abnormality detection.
 (実施の形態7)
 本発明の実施の形態7に係る電力変換装置6は、図20に示すように、実施の形態4に係る電力変換装置4の構成に加え、電動機51,54の回転速度を取得する速度取得部14をさらに備える。速度取得部14の構造および動作は、実施の形態6に係る電力変換装置5が有する速度取得部14と同様である。速度取得部14で取得した電動機51,54の回転速度が閾値速度以上である場合に、異常検出部16は、複数の電動機51,54の回転方向の変化に基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する。実施の形態2,6と同様に、センサ信号の立ち上がりを正確に検出可能な場合に、異常検出の処理を行うことで、異常検出の処理の精度を向上させることができる。
(Embodiment 7)
As shown in FIG. 20, the power conversion device 6 according to Embodiment 7 of the present invention has a speed acquisition unit that acquires the rotation speeds of the electric motors 51 and 54 in addition to the configuration of the power conversion device 4 according to Embodiment 4. 14 is further provided. The structure and operation of the speed acquisition unit 14 are the same as those of the speed acquisition unit 14 included in the power conversion device 5 according to the sixth embodiment. When the rotation speeds of the motors 51 and 54 acquired by the speed acquisition unit 14 are equal to or higher than the threshold speed, the abnormality detection unit 16 determines whether the motors 51 and 54 and the speeds are based on the change in the rotation direction of the plurality of motors 51 and 54. An abnormality in at least one of the sensors 52 and 55 is detected. As in the second and sixth embodiments, when the rising edge of the sensor signal can be detected accurately, the abnormality detection process can be performed to improve the accuracy of the abnormality detection process.
 図21に示すように、実施の形態7に係る異常検出部16の構成は、実施の形態4に係る異常検出部16の構成と同様である。ただし、保持部22には、速度取得部14が取得した電動機51の回転速度が入力され、保持部25には、速度取得部14が取得した電動機54の回転速度が入力される。保持部22は、電動機51の回転速度が閾値速度以上である場合は、実施の形態4と同様の動作を行う。一方、電動機51の回転速度が閾値速度未満である場合は、保持部22は、回転方向検出部12から入力された回転方向を示す値をXORゲート21に出力し、回転方向検出部12から入力された回転方向を示す値で、記憶されている回転方向を示す値を更新する。保持部25は、電動機54の回転速度が閾値速度以上である場合は、実施の形態4と同様の動作を行う。一方、電動機54の回転速度が閾値速度未満である場合は、保持部25は、回転方向検出部12から入力された回転方向を示す値をXORゲート24に出力し、回転方向検出部12から入力された回転方向を示す値で、記憶されている回転方向を示す値を更新する。 21, the configuration of the abnormality detection unit 16 according to the seventh embodiment is the same as the configuration of the abnormality detection unit 16 according to the fourth embodiment. However, the rotation speed of the electric motor 51 acquired by the speed acquisition unit 14 is input to the holding unit 22, and the rotation speed of the electric motor 54 acquired by the speed acquisition unit 14 is input to the holding unit 25. The holding unit 22 performs the same operation as in the fourth embodiment when the rotation speed of the electric motor 51 is equal to or higher than the threshold speed. On the other hand, when the rotation speed of the electric motor 51 is less than the threshold speed, the holding unit 22 outputs a value indicating the rotation direction input from the rotation direction detection unit 12 to the XOR gate 21 and inputs from the rotation direction detection unit 12. The stored value indicating the rotation direction is updated with the value indicating the rotation direction. Holding unit 25 performs the same operation as in the fourth embodiment when the rotation speed of electric motor 54 is equal to or higher than the threshold speed. On the other hand, when the rotation speed of the electric motor 54 is less than the threshold speed, the holding unit 25 outputs a value indicating the rotation direction input from the rotation direction detection unit 12 to the XOR gate 24 and inputs from the rotation direction detection unit 12. The stored value indicating the rotation direction is updated with the value indicating the rotation direction.
 実施の形態7に係る電力変換装置6が行う異常検出処理は、電動機51,54の回転速度が閾値速度以上である場合に異常検出を行う点において、実施の形態4に係る電力変換装置4が行う異常検出処理と異なる。図21に示す異常検出部16の回路は順次処理を行う訳ではないが、理解を容易にするため、図22を用いて、電力変換装置6が行う異常検出処理の動作について説明する。図22に示すフローチャートにおいて、ステップS21,S23,S24,S25の処理は、実施の形態4と同様である。回転速度が閾値速度未満である場合(ステップS29;N)、ステップS21に戻り、電力変換装置6は、ステップS21の処理を繰り返す。一方、回転速度が閾値速度以上である場合(ステップS29;Y)、ステップS24の処理に進む。後続の処理は、実施の形態4と同様である。 The abnormality detection process performed by the power conversion device 6 according to the seventh embodiment is performed by the power conversion device 4 according to the fourth embodiment in that abnormality detection is performed when the rotation speeds of the electric motors 51 and 54 are equal to or higher than the threshold speed. Different from the abnormality detection process to be performed. The circuit of the abnormality detection unit 16 illustrated in FIG. 21 does not sequentially perform processing. However, for easy understanding, the operation of abnormality detection processing performed by the power conversion device 6 will be described with reference to FIG. In the flowchart shown in FIG. 22, the processes in steps S21, S23, S24, and S25 are the same as those in the fourth embodiment. When the rotation speed is less than the threshold speed (step S29; N), the process returns to step S21, and the power conversion device 6 repeats the process of step S21. On the other hand, when the rotational speed is equal to or higher than the threshold speed (step S29; Y), the process proceeds to step S24. Subsequent processing is the same as in the fourth embodiment.
 以上説明したとおり、実施の形態7に係る電力変換装置6によれば、電動機51,54の回転速度が閾値速度以上である場合に、電動機51,54の回転方向の変化に基づき、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出することで、異常検出の精度を向上させることが可能である。 As described above, according to the power conversion device 6 according to the seventh embodiment, when the rotational speeds of the electric motors 51 and 54 are equal to or higher than the threshold speed, the electric motors 51 and 54 are based on the change in the rotational direction of the electric motors 51 and 54. By detecting an abnormality in at least one of 54 and speed sensors 52 and 55, it is possible to improve the accuracy of abnormality detection.
 (実施の形態8)
 本発明の実施の形態8に係る電力変換装置6の構成は、実施の形態7に係る電力変換装置6の構成と同じである。実施の形態8に係る電力変換装置6は、複数の電動機51,54の回転速度が閾値速度以上である場合に、複数の電動機51,54の回転方向の変化の頻度に基づいて、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出する。実施の形態2,6,7と同様に、センサ信号の立ち上がりを正確に検出可能な場合に、異常検出の処理を行うことで、異常検出の処理の精度を向上させることができる。
(Embodiment 8)
The configuration of power conversion device 6 according to Embodiment 8 of the present invention is the same as the configuration of power conversion device 6 according to Embodiment 7. The power conversion device 6 according to the eighth embodiment is configured such that when the rotational speeds of the plurality of electric motors 51 and 54 are equal to or higher than the threshold speed, the electric motors 51 and 54 are 54 and at least one of the speed sensors 52 and 55 is detected. As in the second, sixth, and seventh embodiments, when the rising edge of the sensor signal can be accurately detected, the abnormality detection process can be performed to improve the accuracy of the abnormality detection process.
 判定部23の動作は、実施の形態5と同様である。詳細には、判定部23は、定められた期間においてXORゲート21の出力を積算する。また判定部23は、定められた期間においてXORゲート24の出力を積算する。判定部23は、XORゲート21の出力の積算値およびXORゲート24の出力の積算値の少なくとも一方が閾値以上となれば、電動機51,54および速度センサ52,55の少なくともいずれかの異常が生じたと判定し、異常を検出したことを示す値を出力する。 The operation of the determination unit 23 is the same as that of the fifth embodiment. Specifically, the determination unit 23 integrates the outputs of the XOR gate 21 during a predetermined period. Further, the determination unit 23 integrates the outputs of the XOR gate 24 during a predetermined period. If at least one of the integrated value of the output of the XOR gate 21 and the integrated value of the output of the XOR gate 24 is equal to or greater than the threshold value, the determination unit 23 causes an abnormality in at least one of the electric motors 51 and 54 and the speed sensors 52 and 55. A value indicating that an abnormality has been detected is output.
 実施の形態8に係る電力変換装置6が行う異常検出処理は、電動機51,54の回転速度が閾値速度以上である場合に異常検出を行う点において、実施の形態5に係る電力変換装置4が行う異常検出処理と異なる。図23に示すフローチャートにおいて、ステップS21,S23,S24,S26,S27の処理は、実施の形態5と同様である。回転速度が閾値速度未満である場合(ステップS29;N)、電力変換装置6は、ステップS21の処理を繰り返す。一方、回転速度が閾値速度以上である場合(ステップS29;Y)、ステップS24の処理に進む。後続の処理は、実施の形態5と同様である。 The abnormality detection process performed by the power conversion device 6 according to the eighth embodiment is that the power conversion device 4 according to the fifth embodiment performs abnormality detection when the rotation speeds of the electric motors 51 and 54 are equal to or higher than the threshold speed. Different from the abnormality detection process to be performed. In the flowchart shown in FIG. 23, the processes in steps S21, S23, S24, S26, and S27 are the same as those in the fifth embodiment. When the rotation speed is less than the threshold speed (step S29; N), the power conversion device 6 repeats the process of step S21. On the other hand, when the rotational speed is equal to or higher than the threshold speed (step S29; Y), the process proceeds to step S24. Subsequent processing is the same as in the fifth embodiment.
 以上説明したとおり、実施の形態8に係る電力変換装置6によれば、電動機51,54の回転速度が閾値速度以上である場合に、電動機51,54の回転方向の変化の頻度に基づき、電動機51,54および速度センサ52,55の少なくともいずれかの異常を検出することで、異常検出の精度を向上させることが可能である。 As described above, according to the power conversion device 6 according to the eighth embodiment, when the rotation speed of the motors 51 and 54 is equal to or higher than the threshold speed, the electric motor is based on the frequency of change in the rotation direction of the motors 51 and 54. By detecting an abnormality in at least one of 51 and 54 and speed sensors 52 and 55, it is possible to improve the accuracy of abnormality detection.
 (実施の形態9)
 上述した電力変換装置1-6は、異常を検出した場合に電力変換部11の動作を停止してもよい。電力変換装置1に、異常を検出した場合に電力変換部11の動作を停止する機能をもたせた構成を例にして説明する。図24に示すように、本発明の実施の形態9に係る電力変換装置7は、実施の形態1に係る電力変換装置1の構成に加え、異常検出部13で異常を検出した場合に、電力変換部11を停止する停止制御部17をさらに備える。
(Embodiment 9)
The power conversion device 1-6 described above may stop the operation of the power conversion unit 11 when an abnormality is detected. A description will be given of a configuration in which the power conversion device 1 has a function of stopping the operation of the power conversion unit 11 when an abnormality is detected. As shown in FIG. 24, the power conversion device 7 according to the ninth embodiment of the present invention is configured so that, in addition to the configuration of the power conversion device 1 according to the first embodiment, the abnormality detection unit 13 detects an abnormality. A stop control unit 17 that stops the conversion unit 11 is further provided.
 異常検出部15は、電動機51および速度センサ52の少なくともいずれかの異常を検出すると、異常を検出したことを示す値を停止制御部17に出力する。停止制御部17は、異常を検出したことを示す値が入力されると、電力変換部11が有するスイッチング素子に対し、スイッチング素子を開放する制御信号を出力する。スイッチング素子が開放されることで、電力変換部11の動作が停止する。 When detecting an abnormality in at least one of the electric motor 51 and the speed sensor 52, the abnormality detection unit 15 outputs a value indicating that the abnormality has been detected to the stop control unit 17. When a value indicating that an abnormality has been detected is input, the stop control unit 17 outputs a control signal for opening the switching element to the switching element included in the power conversion unit 11. The operation of the power converter 11 is stopped by opening the switching element.
 実施の形態9に係る電力変換装置7が行う異常検出の処理は、異常を検出した場合に、電力変換部11を停止する点で、実施の形態1に係る電力変換装置1が行う異常検出の処理と異なる。図25に示すフローチャートにおいて、ステップS11-S15の処理は、実施の形態1と同様である。ステップS15において、異常検出部13が異常を検出したことを示す値を出力すると、停止制御部17は、電力変換部11の動作を停止させる(ステップS17)。ステップS17の処理が終了すると、電力変換装置7は、異常検出の処理を終了する。 The abnormality detection process performed by the power conversion device 7 according to the ninth embodiment is the abnormality detection performed by the power conversion device 1 according to the first embodiment in that the power conversion unit 11 is stopped when an abnormality is detected. Different from processing. In the flowchart shown in FIG. 25, the processing in steps S11 to S15 is the same as that in the first embodiment. In step S15, when the abnormality detection unit 13 outputs a value indicating that an abnormality has been detected, the stop control unit 17 stops the operation of the power conversion unit 11 (step S17). When the process of step S17 ends, the power conversion device 7 ends the abnormality detection process.
 以上説明したとおり、実施の形態9に係る電力変換装置7によれば、異常を検出した場合に、電力変換部11の動作を停止することで、電力変換装置7の安全性を向上させることが可能である。 As described above, according to the power conversion device 7 according to the ninth embodiment, the safety of the power conversion device 7 can be improved by stopping the operation of the power conversion unit 11 when an abnormality is detected. Is possible.
 本発明の実施の形態は上述の実施の形態に限られない。速度センサ52,55は、3つ以上のセンサ信号を出力してもよい。センサ信号の波形の崩れ方は、図6の例に限られない。例えば、電動機51の回転軸が破損することで、A相パルス信号およびB相パルス信号の波形がともに崩れ、回転方向検出部12が検出する回転方向が頻繁に変化することがある。この場合でも、異常検出部13は、回転方向の変化の頻度に基づいて、電動機51および速度センサ52の少なくともいずれかの異常を検出することができる。速度取得部14は、例えば、ATC(Automatic Train Control:自動列車制御装置)から電動機51,54の回転速度を取得してもよい。また速度センサ53は電動機54に取り付けられ、速度取得部14は、速度センサ53が出力するセンサ信号から、電動機51,54の回転速度を取得してもよい。電力変換装置3-6は、3つ以上の電動機に電力を供給してもよい。異常検出部13,15,16は、異常を検出した場合、異常を検出したことを示す値を、例えばTIMS(Train Information Management System:列車情報管理システム)に出力する。 The embodiment of the present invention is not limited to the above-described embodiment. The speed sensors 52 and 55 may output three or more sensor signals. The way in which the waveform of the sensor signal collapses is not limited to the example in FIG. For example, when the rotating shaft of the electric motor 51 is damaged, the waveforms of the A-phase pulse signal and the B-phase pulse signal may both collapse, and the rotation direction detected by the rotation direction detection unit 12 may change frequently. Even in this case, the abnormality detection unit 13 can detect an abnormality in at least one of the electric motor 51 and the speed sensor 52 based on the frequency of change in the rotation direction. The speed acquisition unit 14 may acquire the rotational speeds of the electric motors 51 and 54 from, for example, ATC (Automatic Train Control). The speed sensor 53 may be attached to the electric motor 54, and the speed acquisition unit 14 may acquire the rotation speed of the electric motors 51 and 54 from the sensor signal output from the speed sensor 53. The power conversion device 3-6 may supply power to three or more electric motors. When detecting an abnormality, the abnormality detection units 13, 15, and 16 output a value indicating that the abnormality has been detected to, for example, TIMS (Train Information Management System).
 判定部23は、異常を検出するたびに、上述の定められた期間を短くしてもよい。例えば、判定部23は、定められた期間を1分とし、閾値を5とする。判定部23は、1分間で、電動機51の回転方向が5回以上変化したことを検出すると、異常を検出したことを示す値を出力する。その後、判定部23は、定められた期間を30秒にし、閾値を3とする。判定部23は、30秒で、電動機51の回転方向が3回以上変化したことを検出すると、異常を検出したことを示す値を出力する。例えば、異常を検出したことを示す値を取得したTIMSが、1回目の異常を検出したことを示す値を取得した場合は、警告を運転台に表示し、2回目の異常を検出したことを示す値を取得した場合は、電力変換部11を停止させてもよい。 The determination unit 23 may shorten the above-defined period each time an abnormality is detected. For example, the determination unit 23 sets the determined period to 1 minute and sets the threshold value to 5. When the determination unit 23 detects that the rotation direction of the electric motor 51 has changed five times or more in one minute, the determination unit 23 outputs a value indicating that an abnormality has been detected. Thereafter, the determination unit 23 sets the predetermined period to 30 seconds and sets the threshold value to 3. When the determination unit 23 detects that the rotation direction of the electric motor 51 has changed three or more times in 30 seconds, the determination unit 23 outputs a value indicating that an abnormality has been detected. For example, if the TIMS that has acquired a value indicating that an abnormality has been detected acquires a value that indicates that the first abnormality has been detected, a warning is displayed on the cab and a second abnormality has been detected. When the value shown is acquired, the power conversion unit 11 may be stopped.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 1,2,3,4,5,6,7 電力変換装置、11 電力変換部、12 回転方向検出部、13,15,16 異常検出部、14 速度取得部、17 停止制御部、21,24 XORゲート、22,25 保持部、23 判定部、51,54 電動機、52,53,55 速度センサ。 1, 2, 3, 4, 5, 6, 7 Power conversion device, 11 Power conversion unit, 12 Rotation direction detection unit, 13, 15, 16 Abnormality detection unit, 14 Speed acquisition unit, 17 Stop control unit, 21, 24 XOR gate, 22, 25 holding unit, 23 determination unit, 51, 54 motor, 52, 53, 55 speed sensor.

Claims (11)

  1.  電動機に電力を供給する電力変換装置であって、
     前記電動機に取り付けられた速度センサが出力するセンサ信号に基づき、前記電動機の回転方向を検出する回転方向検出部と、
     前記回転方向の変化を検出し、前記回転方向の変化の頻度を算出し、前記回転方向の変化の頻度に基づいて、前記電動機および前記速度センサの少なくともいずれかの異常を検出する異常検出部と、
     を備える電力変換装置。
    A power converter for supplying electric power to an electric motor,
    Based on a sensor signal output from a speed sensor attached to the motor, a rotation direction detection unit that detects a rotation direction of the motor;
    An abnormality detection unit that detects a change in the rotation direction, calculates a frequency of the rotation direction change, and detects an abnormality in at least one of the electric motor and the speed sensor based on the frequency of the rotation direction change; ,
    A power conversion device comprising:
  2.  前記センサ信号の大きさは、前記電動機の回転速度に応じて変化し、
     前記回転速度が閾値速度以上である場合に、前記センサ信号が検出可能であり、
     前記回転速度を取得する速度取得部をさらに備え、
     前記速度取得部が取得した前記回転速度が前記閾値速度以上である場合に、前記異常検出部は、前記回転方向の変化の頻度に基づいて、前記異常を検出する、
     請求項1に記載の電力変換装置。
    The magnitude of the sensor signal changes according to the rotational speed of the electric motor,
    The sensor signal is detectable when the rotational speed is greater than or equal to a threshold speed;
    A speed acquisition unit for acquiring the rotation speed;
    When the rotation speed acquired by the speed acquisition unit is equal to or higher than the threshold speed, the abnormality detection unit detects the abnormality based on the frequency of change in the rotation direction.
    The power conversion device according to claim 1.
  3.  入力された電力を変換し、変換した電力を前記電動機に供給する電力変換部と、
     前記異常検出部が前記異常を検出した場合、前記電力変換部を停止させる停止制御部と、をさらに備える、
     請求項1または2に記載の電力変換装置。
    A power converter that converts input power and supplies the converted power to the motor;
    A stop control unit that stops the power conversion unit when the abnormality detection unit detects the abnormality;
    The power converter according to claim 1 or 2.
  4.  複数の電動機に電力を供給する電力変換装置であって、
     前記複数の電動機に取り付けられた複数の速度センサのそれぞれが出力するセンサ信号に基づき、前記複数の電動機の回転方向を検出する回転方向検出部と、
     前記複数の電動機の回転方向に基づいて、前記複数の電動機および前記複数の速度センサの少なくともいずれかの異常を検出する異常検出部と、
     を備える電力変換装置。
    A power converter that supplies power to a plurality of electric motors,
    Based on sensor signals output from each of a plurality of speed sensors attached to the plurality of motors, a rotation direction detection unit that detects a rotation direction of the plurality of motors;
    An abnormality detection unit that detects an abnormality of at least one of the plurality of electric motors and the plurality of speed sensors based on a rotation direction of the plurality of electric motors;
    A power conversion device comprising:
  5.  前記センサ信号の大きさは、前記電動機の回転速度に応じて変化し、
     前記回転速度が閾値速度以上である場合に、前記センサ信号が検出可能であり、
     前記複数の電動機のそれぞれの前記回転速度を取得する速度取得部をさらに備え、
     前記速度取得部が取得した前記複数の電動機のそれぞれの前記回転速度が前記閾値速度以上である場合に、前記異常検出部は、前記複数の電動機の回転方向に基づいて、前記異常を検出する、
     請求項4に記載の電力変換装置。
    The magnitude of the sensor signal changes according to the rotational speed of the electric motor,
    The sensor signal is detectable when the rotational speed is greater than or equal to a threshold speed;
    A speed acquisition unit that acquires the rotation speed of each of the plurality of electric motors;
    When the rotation speed of each of the plurality of electric motors acquired by the speed acquisition unit is equal to or higher than the threshold speed, the abnormality detection unit detects the abnormality based on a rotation direction of the plurality of electric motors;
    The power conversion device according to claim 4.
  6.  前記異常検出部は、前記複数の電動機の回転方向が一致するか否かに基づき、前記異常を検出する、
     請求項4または5に記載の電力変換装置。
    The abnormality detection unit detects the abnormality based on whether or not the rotation directions of the plurality of electric motors match.
    The power conversion device according to claim 4 or 5.
  7.  前記異常検出部は、同じタイミングで前記複数の電動機の回転方向が変化するか否かに基づき、前記異常を検出する、
     請求項4から6のいずれか1項に記載の電力変換装置。
    The abnormality detection unit detects the abnormality based on whether or not the rotation direction of the plurality of electric motors changes at the same timing.
    The power converter according to any one of claims 4 to 6.
  8.  前記異常検出部は、前記複数の電動機の回転方向の変化の頻度に基づいて、前記異常を検出する、
     請求項4から7のいずれか1項に記載の電力変換装置。
    The abnormality detection unit detects the abnormality based on the frequency of change in the rotation direction of the plurality of electric motors.
    The power converter according to any one of claims 4 to 7.
  9.  入力された電力を変換し、変換した電力を前記複数の電動機に供給する電力変換部と、
     前記異常検出部が前記異常を検出した場合、前記電力変換部を停止させる停止制御部と、をさらに備える、
     請求項4から8のいずれか1項に記載の電力変換装置。
    A power converter that converts input power and supplies the converted power to the plurality of electric motors;
    A stop control unit that stops the power conversion unit when the abnormality detection unit detects the abnormality;
    The power converter according to any one of claims 4 to 8.
  10.  電動機の回転方向の変化の頻度に基づいて、前記電動機および前記電動機に取り付けられた速度センサの少なくともいずれかの異常を検出する、
     異常検出方法。
    Detecting an abnormality of at least one of the electric motor and a speed sensor attached to the electric motor based on the frequency of change in the rotation direction of the electric motor;
    Anomaly detection method.
  11.  複数の電動機の回転方向に基づいて、前記複数の電動機および前記複数の電動機に取り付けられた複数の速度センサの少なくともいずれかの異常を検出する、
     異常検出方法。
    Detecting an abnormality of at least one of the plurality of electric motors and a plurality of speed sensors attached to the plurality of electric motors based on a rotation direction of the plurality of electric motors;
    Anomaly detection method.
PCT/JP2018/004027 2018-02-06 2018-02-06 Power conversion device and abnormality detection method WO2019155524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004027 WO2019155524A1 (en) 2018-02-06 2018-02-06 Power conversion device and abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004027 WO2019155524A1 (en) 2018-02-06 2018-02-06 Power conversion device and abnormality detection method

Publications (1)

Publication Number Publication Date
WO2019155524A1 true WO2019155524A1 (en) 2019-08-15

Family

ID=67548898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004027 WO2019155524A1 (en) 2018-02-06 2018-02-06 Power conversion device and abnormality detection method

Country Status (1)

Country Link
WO (1) WO2019155524A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271601A (en) * 1997-03-27 1998-10-09 Toshiba Corp Device for controlling electric car
JP2002089133A (en) * 2000-09-18 2002-03-27 Aisin Seiki Co Ltd Opening and closing controller for lining member for opening
JP2009024548A (en) * 2007-07-18 2009-02-05 Mitsubishi Electric Corp Internal combustion engine control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271601A (en) * 1997-03-27 1998-10-09 Toshiba Corp Device for controlling electric car
JP2002089133A (en) * 2000-09-18 2002-03-27 Aisin Seiki Co Ltd Opening and closing controller for lining member for opening
JP2009024548A (en) * 2007-07-18 2009-02-05 Mitsubishi Electric Corp Internal combustion engine control device

Similar Documents

Publication Publication Date Title
US6191550B1 (en) Method and apparatus for detecting abnormality in rotation sensor
EP1793486B1 (en) Method for controlling ac motors
US20160233804A1 (en) Motor control device
JPWO2006112033A1 (en) AC motor controller
US20080052562A1 (en) Fault detection unit for rotation angle detecting device
WO2005043089A1 (en) Controller for electric power-steering apparatus
JP2006081327A (en) Failure detector for inverter
JP6518793B2 (en) POWER LINE COMMUNICATION DEVICE, AND ELECTRONIC CONTROL DEVICE PROVIDED WITH POWER LINE COMMUNICATION DEVICE
US20150171780A1 (en) Apparatus for driving motor and controlling method thereof
KR102004080B1 (en) Control device of electric power steering device and electric power steering device
JP5052854B2 (en) Motor control system, phase loss detection device, and phase loss detection method
JP4297051B2 (en) Electric motor control device
JP2017017910A (en) Driver of three-phase synchronous motor
US20170110998A1 (en) Motor driving control apparatus
CN114450885A (en) AC rotating electric machine device
JPH08336299A (en) Controller and control method for electric vehicle
WO2019155524A1 (en) Power conversion device and abnormality detection method
JP5141404B2 (en) PM motor magnetic pole position estimation method
US10527676B2 (en) Abnormality diagnosing device and abnormality diagnosing method
US9413275B2 (en) Motor control device
JP4270151B2 (en) Motor control device and vehicle control device equipped with this device
JP2008220094A (en) Motor driving system
US10014814B2 (en) Motor control device and method
JP2005102349A (en) Current detector
JP2021106456A (en) Motor control device, and control method of motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP