WO2019154011A1 - 寻呼策略确定方法、装置、ran网元及核心网网元 - Google Patents

寻呼策略确定方法、装置、ran网元及核心网网元 Download PDF

Info

Publication number
WO2019154011A1
WO2019154011A1 PCT/CN2019/071314 CN2019071314W WO2019154011A1 WO 2019154011 A1 WO2019154011 A1 WO 2019154011A1 CN 2019071314 W CN2019071314 W CN 2019071314W WO 2019154011 A1 WO2019154011 A1 WO 2019154011A1
Authority
WO
WIPO (PCT)
Prior art keywords
entity
value
network element
downlink packet
sent
Prior art date
Application number
PCT/CN2019/071314
Other languages
English (en)
French (fr)
Inventor
邓强
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to JP2020542764A priority Critical patent/JP7039717B2/ja
Priority to US16/968,131 priority patent/US11147039B2/en
Priority to EP19751001.9A priority patent/EP3751934B1/en
Priority to KR1020207024363A priority patent/KR102367258B1/ko
Publication of WO2019154011A1 publication Critical patent/WO2019154011A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a paging policy determining method and apparatus, a RAN network element, and a core network element.
  • the AMF (Access and Mobility Management Function) entity and the SMF (Session Management Function) entity are control plane network elements, the AMF entity is responsible for mobility management, and the SMF entity is responsible for session management.
  • the User Plane Function (UPF) entity is a user plane network element.
  • the paging policy distinguishing feature is defined in the 5GS, which determines a paging policy based on the DSCP value in the IP packet header, such as a paging retransmission mechanism.
  • the paging policy distinguishing mechanism when the UE (User Equipment) is in the idle state is: when the UPF entity receives the downlink packet, the UPF entity sends a notification message to the SMF entity, where the notification message includes the DSCP of the downlink packet (Differentiated Services) The value of the Code Point (differential service code point) and the corresponding QoS (Quality of Service) flow identification QFI; after receiving the notification message, the SMF entity determines the PPI (Paging Policy Indication) according to the DSCP value of the downlink packet.
  • the DSCP Differential service code point
  • QoS Quality of Service
  • the policy indicator) value, and the PPI value, ARP (Allocation and Retention Priority) and 5QI (associated with QFI) are sent to the AMF entity through the N11 message, and determined by the AMF entity based on the received information. Paging strategy.
  • the RRC (Radio Resource Control) deactivation state of the UE is defined in the 5GS.
  • the UE may release the RRC connection and the air interface DRB (Data Radio Bearer), but the network side maintains the N2 and N3 connections.
  • the UPF entity may directly send the downlink data to the RAN (Radio Access Network), and the RAN pages the UE in the RAN area; the UE establishes an RRC connection after responding to the paging.
  • the air interface DRB the downlink data is sent by the RAN to the UE.
  • the protocol defines a paging policy differentiation mechanism based on the QoS flow granularity for the UE in the RRC deactivated state, specifically: the SMF entity configures the UPF entity to have the same QoS but different paging.
  • the required traffic is transmitted in different QoS flows, and the SMF entity indicates the PPI value corresponding to the QoS flow to the RAN through the N2 interface, so when the UE is in the RRC deactivated state, the RAN can determine the paging according to the PPI value, the ARP, and the 5QI. Strategy.
  • the PPI value may be determined according to the QoS flow characteristics to determine the corresponding paging policy when the UE is in the RRC deactivation state, different paging policies cannot be implemented according to the DSCP value of the downlink packet.
  • the embodiments of the present disclosure provide a paging policy determining method, apparatus, RAN network element, and core network element, so that when the UE is in the RRC deactivated state, different paging policies can be implemented according to the DSCP value of the downlink packet.
  • an embodiment of the present disclosure provides a method for determining a paging policy, which is applied to a RAN network element, and includes:
  • the paging policy is determined according to the PPI value.
  • the embodiment of the present disclosure further provides a method for determining a paging policy, which is applied to a core network element, including:
  • the PPI value is determined according to the DSCP value of the downlink packet, and is used by the RAN network element to determine a paging policy according to the PPI value when the UE in the RRC deactivated state receives the downlink packet.
  • an embodiment of the present disclosure further provides a RAN network element, including a transceiver interface, a memory, a processor, and a program stored on the memory and executable on the processor;
  • the transceiver interface is configured to: receive a PPI value sent by a core network element, where the PPI value is determined according to a DSCP value of the downlink packet;
  • the processor is configured to: when a UE in an RRC deactivated state receives a downlink packet, determine a paging policy according to the PPI value.
  • an embodiment of the present disclosure further provides a core network element, including a transceiver interface, a memory, a processor, and a program stored on the memory and executable on the processor;
  • the transceiver interface is configured to: send a PPI value to the RAN network element;
  • the PPI value is determined according to the DSCP value of the downlink packet, and is used by the RAN network element to determine a paging policy according to the PPI value when the UE in the RRC deactivated state receives the downlink packet.
  • the embodiment of the present disclosure further provides a paging policy determining apparatus, which is applied to a RAN network element, and includes:
  • a first receiving module configured to receive a PPI value sent by a core network element, where the PPI value is determined according to a DSCP value of the downlink packet;
  • the first determining module is configured to determine, according to the PPI value, a paging policy when the UE in the RRC deactivated state receives the downlink packet.
  • the embodiment of the present disclosure further provides a paging policy determining apparatus, which is applied to a core network element, and includes:
  • a first sending module configured to send a PPI value to the RAN network element
  • the PPI value is determined according to the DSCP value of the downlink packet, and is used by the RAN network element to determine a paging policy according to the PPI value when the UE in the RRC deactivated state receives the downlink packet.
  • an embodiment of the present disclosure further provides a RAN network element, including a memory, a processor, and a program stored on the memory and executable on the processor, where the program is processed by the processing
  • the step of implementing the above paging policy determining method applied to the RAN network element is implemented when the device is executed.
  • an embodiment of the present disclosure further provides a core network element, including a memory, a processor, and a program stored on the memory and executable on the processor, where the program is The step of implementing the foregoing paging policy determining method applied to the core network element when the processor executes.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a program, wherein the step of implementing the paging policy determining method applied to the RAN network element when the program is executed by the processor .
  • an embodiment of the present disclosure further provides a computer readable storage medium, where a program is stored, where the program is implemented by a processor to implement the foregoing paging policy determining method applied to a core network element. step.
  • the paging policy determining method of the embodiment of the present disclosure is configured to receive a PPI value sent by a network element of the core network, where the PPI value is determined according to a DSCP value of the downlink packet, and when the UE in the RRC deactivated state receives the downlink packet, according to The PPI value determines the paging policy, and can determine the PPI value based on the DSCP value of the downlink packet, so that when the UE is in the RRC deactivated state, different paging policies are implemented according to the DSCP value of the downlink packet.
  • FIG. 1 is a flowchart of a paging policy determining method according to an embodiment of the present disclosure
  • Example 2 is a flowchart of a paging policy determining process of Example 1 of the present disclosure
  • Example 3 is a flowchart of a paging policy determining process of Example 2 of the present disclosure
  • FIG. 4 is a flowchart of another paging policy determining method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a RAN network element according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a core network element according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a paging policy determining apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a second schematic structural diagram of a paging policy determining apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a second schematic structural diagram of a RAN network element according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic structural diagram of a core network element according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a paging policy determining method, which is applied to a RAN network element, and includes steps 101 to 102.
  • Step 101 Receive a PPI value sent by a core network element.
  • the PPI value is determined according to the DSCP value of the downlink packet.
  • the core network element may be an SMF entity or a UPF entity, that is, the RAN network element may receive the PPI value sent by the SMF entity, and may also receive the PPI value sent by the UPF entity.
  • Step 102 When the UE in the RRC deactivated state receives the downlink packet, determine the paging policy according to the PPI value.
  • the RAN network element may determine the paging policy according to the PPI value and the ARP and 5QI associated with the QFI.
  • the paging policy determining method of the embodiment of the present disclosure is configured to receive a PPI value sent by a network element of the core network, where the PPI value is determined according to a DSCP value of the downlink packet, and when the UE in the RRC deactivated state receives the downlink packet, according to The PPI value determines the paging policy, and can determine the PPI value based on the DSCP value of the downlink packet, so that when the UE is in the RRC deactivated state, different paging policies are implemented according to the DSCP value of the downlink packet.
  • the PPI value when the RAN network element receives the PPI value sent by the SMF entity, the PPI value may be determined by the SMF entity according to the DSCP value of the downlink packet received from the UPF entity, or may be determined by the UPF entity according to the downlink packet.
  • the DSCP value is determined and sent to the SMF entity.
  • the DSCP value may be sent by the UPF entity to the SMF entity after receiving the request message sent by the SMF entity.
  • the request message is used to request the UPF entity to determine the DSCP value of the downlink packet when detecting the downlink packet after the PDU (Packet Data Unit) session establishment is completed, and send the DSCP value of the downlink packet to the SMF entity.
  • the request message may be an event report request message, where the downlink packet may be that the UPF entity detects the first downlink packet.
  • the RAN network element may receive the PPI value sent by the SMF entity through the AMF entity. Specifically, when receiving the PPI value, the RAN network element may receive the N2SM information sent by the AMF entity, where the N2SM information includes a PPI value, which is sent by the SMF entity to the AMF entity, and the AMF entity does not parse the N2SM information. Alternatively, the RAN network element may receive the N2 message sent by the AMF entity when receiving the PPI value, where the N2 message includes a PPI value, and the PPI value is sent by the SMF entity to the AMF entity by using the N11 message.
  • the PPI value when the RAN network element receives the PPI value sent by the UPF entity, the PPI value may be determined by the UPF entity according to the DSCP value of the downlink packet, or may be the downlink packet received by the SMF entity according to the UPF entity.
  • the DSCP value is determined and sent to the UPF entity.
  • the RAN network element may receive an N3 tunnel header sent by the UPF entity, where the N3 tunnel header includes a PPI value.
  • the method may further include:
  • the RAN network element receives the request message sent by the AMF entity, where the request message is used to request the RAN network element to report the UE to the RRC deactivation state to the AMF entity when the UE enters the RRC deactivation state; the request message may be a status notification request message. ;
  • the RAN network element When the UE enters the RRC deactivation state, the RAN network element reports to the AMF entity that the UE enters the RRC deactivated state, so that the AMF entity reports to the SMF entity that the UE enters the RRC deactivated state.
  • the PMF value is sent by the SMF entity to the RAN network element.
  • the corresponding paging policy determining process may include the following steps:
  • Step 201 After receiving the PDU session establishment request message or reselecting the request message of the UPF entity, the SMF entity sends an N4 session establishment request message to the UPF entity.
  • the event report request message may be used to request the UPF entity to report the DSCP value of the downlink packet. Specifically, the event report request message is used to request the UPF entity to detect the PDU. After the session is established, the downlink packet is determined, and the DSCP value of the downlink packet is determined, and the DSCP value of the downlink packet is sent to the SMF entity.
  • Step 202 The UPF entity returns an N4 session establishment response message to the SMF entity.
  • Step 203 The SMF entity interacts with other network elements that trigger the process, such as interacting with the AMF entity to complete the PDU session establishment process.
  • Step 204 When detecting the downlink packet received after the PDU session establishment is completed, the UPF entity determines the DSCP value of the downlink packet; for example, the UPF entity may pass the TOS (IPv4) and/or TC (IPv6) in the IP packet header.
  • the field determines a DSCP value; the downlink packet is a first downlink packet detected by the UPF entity;
  • Step 205 The UPF entity sends an N4 report message to the SMF entity.
  • the N4 report message includes a DSCP value of the downlink packet and a corresponding QFI (QoS flow identifier).
  • Step 206 The SMF entity determines a PPI value according to the DSCP value of the downlink packet, and saves the PPI value in the UE context, and returns an N4 report response message to the UPF entity.
  • Step 207 When the UE is in the connected state, the AMF entity sends a status notification request message to the RAN network element, requesting the RAN network element to report to the AMF entity when the UE enters the RRC inactive state;
  • Step 208 When the UE enters the RRC inactive state, the RAN network element reports to the AMF entity that the UE enters the RRC inactive state.
  • Step 209 The AMF entity reports to the SMF entity that the UE enters the RRC inactive state.
  • Step 210 The SMF entity sends the PPI value and the corresponding QFI to the RAN network element by using the AMF entity.
  • the SMF entity may send the PPI value and the QFI in the N2SM information to the RAN network element through the AMF entity (the AMF does not parse the N2SM information).
  • the SMF entity sends the PPI value and the QFI to the AMF entity through the N11 message, and the AMF entity forwards the PN network element through the N2 message;
  • Step 211 When the UE in the RRC active state receives the downlink packet, the RAN network element determines the paging policy based on the PPI value and the 5QI and ARP associated with the QFI.
  • the PPI value is sent by the UPF entity to the RAN network element.
  • the corresponding paging policy determining process may include the following steps:
  • Step 301 After receiving the PDU session establishment request message or reselecting the request message of the UPF entity, the SMF entity sends an N4 session establishment request message to the UPF entity.
  • the event report request message may be used to request the UPF entity to report the DSCP value of the downlink packet. Specifically, the event report request message may be used to request the UPF entity to detect the PDU. After the session is established, the downlink packet is determined, and the DSCP value of the downlink packet is determined, and the DSCP value of the downlink packet is sent to the SMF entity.
  • Step 302 The UPF entity returns an N4 session establishment response message to the SMF entity.
  • Step 303 The SMF entity interacts with other network elements that trigger the process, such as interacting with the AMF entity to complete the PDU session establishment process.
  • Step 304 When detecting the downlink packet received after the PDU session establishment is completed, the UPF entity determines the DSCP value of the downlink packet; for example, the UPF entity may pass the TOS (IPv4) and/or TC (IPv6) in the IP packet header.
  • the field determines a DSCP value; the downlink packet is a first downlink packet detected by the UPF entity;
  • Step 305 The UPF entity sends an N4 report message to the SMF entity.
  • the N4 report message includes the DSCP value of the downlink packet and the corresponding QFI.
  • Step 306 The SMF entity determines a PPI value according to the DSCP value of the downlink packet, and saves the PPI value in the UE context, and returns an N4 report response message to the UPF entity.
  • Step 307 When the UE is in the connected state, the AMF entity sends a status notification request message to the RAN network element, requesting the RAN network element to report to the AMF entity when the UE enters the RRC inactive state;
  • Step 308 When the UE enters the RRC inactive state, the RAN network element reports to the AMF entity that the UE enters the RRC inactive state.
  • Step 309 The AMF entity reports to the SMF entity that the UE enters the RRC inactive state.
  • Step 310 The SMF entity sends an N4 message to the UPF entity.
  • the N4 message includes a PPI value and a corresponding QFI.
  • Step 311 The UPF entity returns an N4 response message to the SMF entity.
  • Step 312 The UPF entity adds the PPI value to the N3 tunnel header, and sends the N3 tunnel header to the RAN network element.
  • Step 313 When the UE in the RRC active state receives the downlink packet, the RAN network element determines the paging policy based on the PPI value in the N3 tunnel header and the 5QI and ARP associated with the QFI.
  • the PNP value for determining the paging policy can be provided to the RAN by means of both the control plane scheme and the user plane scheme.
  • an embodiment of the present disclosure further provides a paging policy determining method, which is applied to a core network element, and includes the following steps:
  • Step 401 Send a PPI value to the RAN network element.
  • the PPI value is determined according to the DSCP value of the downlink packet, and is used by the RAN network element to determine a paging policy according to the PPI value when the UE in the RRC deactivated state receives the downlink packet.
  • the paging policy determining method of the embodiment of the present disclosure is configured to send a PPI value to the RAN network element, where the PPI value is determined according to the DSCP value of the downlink packet, and the RAN network element receives the downlink packet when the UE in the RRC deactivated state
  • the paging policy is determined according to the PPI value, and the PPI value can be determined based on the DSCP value of the downlink packet, so that when the UE is in the RRC deactivated state, different paging policies are implemented according to the DSCP value of the downlink packet.
  • the core network element may be an SMF entity.
  • the method further includes:
  • the method before the receiving the DSCP value of the downlink packet sent by the UPF entity, the method further includes:
  • the request message is used to request the UPF entity to send a DSCP value of a downlink packet to the SMF entity.
  • the request message is used to request the UPF entity to determine a DSCP value of the downlink packet when detecting a downlink packet after the PDU session is established, and send a DSCP of the downlink packet to the SMF entity. value.
  • the core network element may be an SMF entity.
  • the method further includes:
  • the PPI value is determined by the UPF entity according to a DSCP value of a downlink packet.
  • the sending the PPI value to the RAN network element includes:
  • the PPI value is sent to the RAN network element by an AMF entity.
  • the sending, by the AMF entity, the PPI value to the RAN network element including:
  • the P2 value is included in the N2SM information.
  • the sending, by the AMF entity, the PPI value to the RAN network element including:
  • the N11 message includes the PPI value, and is used by the AMF entity to send the PPI value to the RAN network element by using an N2 message.
  • the core network element may be a UPF entity.
  • the method further includes:
  • the PPI value is determined by the SMF entity according to a DSCP value of a downlink packet received from the UPF entity.
  • the sending the PPI value to the RAN network element includes:
  • an embodiment of the present disclosure further provides a RAN network element, including a transceiver interface 51, a memory 52, a processor 53, and a computer stored on the memory 52 and operable on the processor 53. Program; among them,
  • the transceiver interface 51 is configured to: receive a PPI value sent by a core network element, where the PPI value is determined according to a DSCP value of the downlink packet;
  • the processor 53 is configured to: when the UE in the RRC deactivated state receives the downlink packet, determine the paging policy according to the PPI value.
  • the RAN network element of the embodiment of the present disclosure receives the PPI value sent by the core network element, and the PPI value is determined according to the DSCP value of the downlink packet, and when the UE in the RRC deactivated state receives the downlink packet, according to the PPI
  • the value determines the paging policy, and when the UE is in the RRC deactivated state, different paging policies are implemented according to the DSCP value of the downlink packet.
  • the transceiver interface 51 is further configured to: receive the PPI value sent by the SMF entity;
  • the PPI value is determined by the SMF entity according to a DSCP value of a downlink packet received from a UPF entity.
  • the DSCP value is sent by the UPF entity to the SMF entity after receiving the request message sent by the SMF entity.
  • the request message is used to request the UPF entity to determine a DSCP value of the downlink packet when detecting a downlink packet after the PDU session is established, and send a DSCP of the downlink packet to the SMF entity. value.
  • the transceiver interface 51 is further configured to: receive the PPI value sent by the SMF entity;
  • the PPI value is determined by the UPF entity according to the DSCP value of the downlink packet, and then sent to the SMF entity.
  • the transceiver interface 51 is further configured to: receive the PPI value sent by the SMF entity by using an AMF entity.
  • the transceiver interface 51 is further configured to: receive the N2SM information sent by the AMF entity, where the N2SM information includes the PPI value, where the N2SM information is sent by the SMF entity to the AMF. Entity.
  • the transceiver interface 51 is further configured to: receive an N2 message sent by the AMF entity;
  • the N2 message includes the PPI value, where the PPI value is sent by the SMF entity to the AMF entity by using an N11 message.
  • the transceiver interface 51 is further configured to: receive the PPI value sent by the UPF entity;
  • the PPI value is determined by the UPF entity according to the DSCP value of the downlink packet, or the PPI value is determined by the SMF entity according to the DSCP value of the downlink packet received from the UPF entity, and then sent to the UPF entity.
  • the transceiver interface 51 is further configured to: receive an N3 tunnel header sent by the UPF entity, where the N3 tunnel header includes the PPI value.
  • the transceiver interface 51 is further configured to: receive a request message sent by an AMF entity, where the request message is used to request the RAN network element to report to the AMF entity when the UE enters an RRC deactivated state. Said UE enters RRC deactivated state;
  • the processor 53 is configured to: report, when the UE enters an RRC deactivation state, the UE to enter an RRC deactivation state, to report, by the AMF entity, to the SMF entity that the UE enters an RRC Active state.
  • the bus architecture (represented by bus 50) may include any number of interconnected buses and bridges, which will include various ones of memory represented by processor 53 and memory represented by memory 52.
  • the circuits are connected together.
  • the transceiver interface 51 can be divided into two interfaces, a sending interface and a receiving interface, or an interface.
  • the transceiver interface 51 can be coupled to the processor 53 and the memory 52 via a bus 50.
  • the processor 53 is responsible for managing the bus 50 and the usual processing, and the memory 52 can be used to store data used by the processor 53 when performing operations.
  • an embodiment of the present disclosure further provides a core network element, including a transceiver interface 61, a memory 62, a processor 63, and a storage on the memory 62 and operable on the processor 63.
  • a core network element including a transceiver interface 61, a memory 62, a processor 63, and a storage on the memory 62 and operable on the processor 63.
  • the transceiver interface 61 is configured to: send a PPI value to the RAN network element;
  • the PPI value is determined according to the DSCP value of the downlink packet, and is used by the RAN network element to determine a paging policy according to the PPI value when the UE in the RRC deactivated state receives the downlink packet.
  • the core network element of the embodiment of the present disclosure sends a PPI value to the RAN network element, where the PPI value is determined according to the DSCP value of the downlink packet, and is used by the RAN network element when the UE in the RRC deactivated state receives the downlink packet.
  • the paging policy is determined, so that the RAN network element can implement different paging policies according to the DSCP value of the downlink packet when the UE is in the RRC deactivated state.
  • the core network element is an SMF entity
  • the transceiver interface 61 is further configured to: receive a DSCP value of a downlink packet sent by the UPF entity;
  • the processor 63 is further configured to: determine the PPI value according to a DSCP value of the downlink packet.
  • the transceiver interface 61 is further configured to: send a request message to the UPF entity;
  • the request message is used to request the UPF entity to send a DSCP value of a downlink packet to the SMF entity.
  • the request message is used to request the UPF entity to determine a DSCP value of the downlink packet when detecting a downlink packet after the PDU session is established, and send a DSCP of the downlink packet to the SMF entity. value.
  • the core network element is an SMF entity
  • the transceiver interface 61 is further configured to: receive the PPI value sent by the UPF entity
  • the PPI value is determined by the UPF entity according to a DSCP value of a downlink packet.
  • the transceiver interface 61 is further configured to: send the PPI value to the RAN network element by using an AMF entity.
  • the transceiver interface 61 is further configured to: send N2SM information to the AMF entity, to forward the N2SM information by the AMF entity to the RAN network element;
  • the P2 value is included in the N2SM information.
  • the transceiver interface 61 is further configured to: send an N11 message to the AMF entity;
  • the N11 message includes the PPI value, and is used by the AMF entity to send the PPI value to the RAN network element by using an N2 message.
  • the core network element is a UPF entity
  • the transceiver interface 61 is further configured to: receive the PPI value sent by the SMF entity;
  • the PPI value is determined by the SMF entity according to a DSCP value of a downlink packet received from the UPF entity.
  • the processor 63 is further configured to: add the PPI value to the N3 tunnel header;
  • the transceiver interface 61 is further configured to: send the N3 tunnel header to the RAN network element.
  • the bus architecture (represented by bus 60) may include any number of interconnected buses and bridges, and bus 60 will include various ones of memory represented by processor 63 and memory represented by memory 62.
  • the circuits are connected together.
  • the transceiver interface 61 can be divided into two interfaces, a sending interface and a receiving interface, or an interface.
  • Transceiver interface 61 can be coupled to processor 63 and memory 62 via bus 60.
  • the processor 63 is responsible for managing the bus 60 and the usual processing, while the memory 62 can be used to store data used by the processor 63 when performing operations.
  • an embodiment of the present disclosure further provides a paging policy determining apparatus, which is applied to a RAN network element, and includes:
  • the first receiving module 71 is configured to receive a PPI value sent by the core network element, where the PPI value is determined according to a DSCP value of the downlink packet;
  • the first determining module 72 is configured to determine, according to the PPI value, a paging policy when the UE in the RRC deactivated state receives the downlink packet.
  • the paging policy determining apparatus of the embodiment of the present disclosure receives the PPI value sent by the network element of the core network, where the PPI value is determined according to the DSCP value of the downlink packet, and when the UE in the RRC deactivated state receives the downlink packet, according to The PPI value determines a paging policy, and when the UE is in the RRC deactivated state, different paging policies are implemented according to the DSCP value of the downlink packet.
  • the first receiving module 71 is specifically configured to: receive the PPI value sent by the SMF entity, where the PPI value is a DSCP of the downlink packet received by the SMF entity according to the user plane function UPF entity. The value is determined, or the PPI value is determined by the UPF entity to be sent to the SMF entity according to the DSCP value of the downlink packet.
  • the DSCP value is sent by the UPF entity to the SMF entity after receiving the request message sent by the SMF entity.
  • the request message is used to request the UPF entity to determine a DSCP value of the downlink packet when detecting a downlink packet after the packet data unit PDU session is established, and send the downlink to the SMF entity.
  • the DSCP value of the packet is used to request the UPF entity to determine a DSCP value of the downlink packet when detecting a downlink packet after the packet data unit PDU session is established, and send the downlink to the SMF entity.
  • the DSCP value of the packet is used to request the UPF entity to determine a DSCP value of the downlink packet when detecting a downlink packet after the packet data unit PDU session is established.
  • the first receiving module 71 is specifically configured to: receive the PPI value sent by the SMF entity by using an AMF entity.
  • the first receiving module 71 is specifically configured to: receive the N2SM information sent by the AMF entity, where the N2SM information includes the PPI value, where the N2SM information is sent by the SMF entity Said AMF entity.
  • the first receiving module 71 is specifically configured to: receive an N2 message sent by the AMF entity, where the N2 message includes the PPI value, where the PPI value is that the SMF entity passes the N11 message. Sent to the AMF entity.
  • the first receiving module 71 is specifically configured to: receive the PPI value sent by the UPF entity, where the PPI value is determined by the UPF entity according to a DSCP value of the downlink packet, or the PPI The value is determined by the SMF entity to be sent to the UPF entity based on the DSCP value of the downlink packet received from the UPF entity.
  • the first receiving module 71 is specifically configured to: receive an N3 tunnel header sent by the UPF entity, where the N3 tunnel header includes the PPI value.
  • the device further includes:
  • a second receiving module configured to receive a request message sent by an AMF entity, where the request message is used to request the RAN network element to report to the AMF entity that the UE enters RRC deactivation when the UE enters an RRC deactivated state state;
  • a reporting module configured to report, when the UE enters an RRC deactivation state, the UE to enter an RRC deactivation state, to report, by the AMF entity, to the SMF entity that the UE enters an RRC deactivated state.
  • an embodiment of the present disclosure further provides a paging policy determining apparatus, which is applied to a core network element, and includes:
  • the first sending module 81 is configured to send a PPI value to the RAN network element.
  • the PPI value is determined according to the DSCP value of the downlink packet, and is used by the RAN network element to determine a paging policy according to the PPI value when the UE in the RRC deactivated state receives the downlink packet.
  • the paging policy determining apparatus of the embodiment of the present disclosure by transmitting a PPI value to the RAN network element, the PPI value is determined according to the DSCP value of the downlink packet, and the RAN network element receives the downlink packet when the UE in the RRC deactivated state
  • the RAN network element can implement different paging policies according to the DSCP value of the downlink packet when the UE is in the RRC deactivated state.
  • the core network element is an SMF entity
  • the device further includes:
  • a third receiving module configured to receive a DSCP value of a downlink packet sent by the UPF entity
  • the second determining module is configured to determine the PPI value according to the DSCP value of the downlink packet.
  • the device further includes:
  • a second sending module configured to send a request message to the UPF entity
  • the request message is used to request the UPF entity to send a DSCP value of a downlink packet to the SMF entity.
  • the request message is used to request the UPF entity to determine a DSCP value of the downlink packet when detecting a downlink packet after the PDU session is established, and send a DSCP of the downlink packet to the SMF entity. value.
  • the core network element is an SMF entity
  • the device further includes:
  • a fourth receiving module configured to receive the PPI value sent by the UPF entity
  • the PPI value is determined by the UPF entity according to a DSCP value of a downlink packet.
  • the first sending module 81 is specifically configured to:
  • the PPI value is sent to the RAN network element by an AMF entity.
  • the first sending module 81 is specifically configured to:
  • the first sending module 81 is specifically configured to:
  • the N11 message includes the PPI value, and is used by the AMF entity to send the PPI value to the RAN network element by using an N2 message.
  • the core network element is a UPF entity
  • the device further includes:
  • a fifth receiving module configured to receive the PPI value sent by the SMF entity
  • the PPI value is determined by the SMF entity according to a DSCP value of a downlink packet received from the UPF entity.
  • the first sending module 81 is specifically configured to:
  • the PPI value is added to the N3 tunnel header, and the N3 tunnel header is sent to the RAN network element.
  • an embodiment of the present disclosure further provides a RAN network element, including a processor, a memory, and a computer program stored on the memory and executable on the processor, wherein the computer program is used by the processor.
  • an embodiment of the present disclosure further provides a RAN network element, including a bus 91, a transceiver interface 92, an antenna 93, a bus interface 94, a processor 95, and a memory 96.
  • a RAN network element including a bus 91, a transceiver interface 92, an antenna 93, a bus interface 94, a processor 95, and a memory 96.
  • the RAN network element further includes a computer program stored on the memory 96 and operable on the processor 95.
  • the computer program is executed by the processor 95, the following steps are implemented:
  • the control transceiver interface 92 receives the PPI value sent by the core network element, and the PPI value is determined according to the DSCP value of the downlink packet.
  • the paging is determined according to the PPI value. Strategy.
  • the transceiver interface 92 is configured to receive and transmit data under the control of the processor 95.
  • bus architecture may include any number of interconnected buses and bridges, and bus 91 will include various ones of memory represented by processor 95 and memory represented by memory 96.
  • the circuits are linked together.
  • the bus 91 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art and, therefore, will not be further described herein.
  • Bus interface 94 provides an interface between bus 91 and transceiver interface 92.
  • Transceiver interface 92 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • Data processed by processor 95 is transmitted over wireless medium via antenna 93. Further, antenna 93 also receives the data and transmits the data to processor 95.
  • the processor 95 is responsible for managing the bus 91 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 96 can be used to store data used by the processor 95 when performing operations.
  • the processor 95 may be a CPU, an ASIC, an FPGA, or a CPLD.
  • Embodiments of the present disclosure also provide a core network element including a processor, a memory, a computer program stored on the memory and executable on the processor, wherein the computer program is executed by the processor.
  • an embodiment of the present disclosure further provides a RAN network element, including a bus 111, a transceiver interface 112, an antenna 113, a bus interface 114, a processor 115, and a memory 116.
  • a RAN network element including a bus 111, a transceiver interface 112, an antenna 113, a bus interface 114, a processor 115, and a memory 116.
  • the RAN network element further includes: a computer program stored on the memory 116 and operable on the processor 115, the computer program being executed by the processor 115 to implement the following steps:
  • the control transceiver interface 112 sends a PPI value to the RAN network element.
  • the PPI value is determined according to the DSCP value of the downlink packet, and is used by the RAN network element when the UE in the RRC deactivated state receives the downlink packet, according to the PPI. Value, determine the paging policy.
  • the transceiver interface 112 is configured to receive and transmit data under the control of the processor 115.
  • bus architecture may include any number of interconnected buses and bridges, which will include various ones of the memory represented by processor 115 and memory represented by memory 116.
  • the circuits are linked together.
  • the bus 111 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 114 provides an interface between bus 111 and transceiver interface 112.
  • Transceiver interface 112 may be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • Data processed by the processor 115 is transmitted over the wireless medium via the antenna 113. Further, the antenna 113 also receives the data and transmits the data to the processor 115.
  • the processor 115 is responsible for managing the bus 111 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 116 can be used to store data used by the processor 115 when performing operations.
  • the processor 115 can be a CPU, an ASIC, an FPGA, or a CPLD.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program, wherein the computer program is executed by a processor to implement the foregoing paging policy determining method embodiment applied to a RAN network element.
  • a computer program is executed by a processor to implement the foregoing paging policy determining method embodiment applied to a RAN network element.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program, wherein the computer program is executed by a processor to implement the foregoing embodiment of a paging policy determining method applied to a core network element
  • a processor to implement the foregoing embodiment of a paging policy determining method applied to a core network element
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media, and information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种寻呼策略确定方法、装置、RAN网元及核心网网元,其中,寻呼策略确定方法包括:接收核心网网元发送的寻呼策略指示符值,该寻呼策略指示符值是根据下行分组的差分服务码点值确定的,当处于无线资源控制去激活态的终端接收到下行分组时,根据寻呼策略指示符值,确定寻呼策略。

Description

寻呼策略确定方法、装置、RAN网元及核心网网元
相关申请的交叉引用
本申请主张在2018年2月8日在中国提交的中国专利申请号No.201810128517.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是涉及一种寻呼策略确定方法、装置、RAN网元及核心网网元。
背景技术
当前,在5GS(5th-Generation System,第五代移动通信技术系统)架构中,采用控制面和用户面分离的架构,以及移动性管理和会话管理分离的架构。具体的,AMF(Access and Mobility Management Function,接入和移动性管理功能)实体和SMF(Session Management Function,会话管理功能)实体为控制面网元,AMF实体负责移动性管理,SMF实体负责会话管理,UPF(User Plane Function,用户面功能)实体为用户面网元。
为了针对不同的业务或流量类型应用不同的寻呼策略,5GS中定义了寻呼策略区分特性,该特性基于IP分组头中的DSCP值确定寻呼策略,如寻呼重传机制。
UE(User Equipment,用户设备)处于空闲态时的寻呼策略区分机制为:当UPF实体接收到下行分组时,UPF实体向SMF实体发送通知消息,该通知消息中包含下行分组的DSCP(Differentiated Services Code Point,差分服务码点)值和对应的QoS(Quality of Service,服务质量)流标识QFI;SMF实体在接收到通知消息后,根据该下行分组的DSCP值,确定PPI(Paging Policy Indication,寻呼策略指示符)值,并将该PPI值、ARP(Allocation and Retention Priority,分配和保持优先级)和5QI(与QFI关联)通过N11消息发送给AMF实体,由AMF实体基于接收到的信息确定寻呼策略。
5GS中定义了UE的RRC(Radio Resource Control,无线资源控制)去 激活态。当UE处于RRC去激活态时,UE可释放RRC连接和空口DRB(Data Radio Bearer,数据无线承载),但是网络侧保持N2和N3连接。当有下行数据到达UPF实体时,UPF实体可直接将该下行数据发送到RAN(Radio Access Network,无线接入网),由RAN在RAN区域内寻呼UE;UE在响应寻呼后建立RRC连接和空口DRB,该下行数据由RAN发送给UE。
由于RAN不解析IP分组,因此针对处于RRC去激活态的UE,协议定义了一种基于QoS流粒度的寻呼策略区分机制,具体为:SMF实体通过配置UPF实体使得具有相同QoS但是不同寻呼需求的流量在不同的QoS流中传输,且SMF实体通过N2接口向RAN指示QoS流对应的PPI值,由此当UE处于RRC去激活态时,RAN可根据PPI值、ARP和5QI确定寻呼策略。
虽然当UE处于RRC去激活态时,可根据QoS流特性确定PPI值以确定相应的寻呼策略,但是无法根据下行分组的DSCP值实现不同的寻呼策略。
发明内容
本公开实施例提供一种寻呼策略确定方法、装置、RAN网元及核心网网元,以使得当UE处于RRC去激活态时,能够根据下行分组的DSCP值实现不同的寻呼策略。
第一方面,本公开实施例提供了一种寻呼策略确定方法,应用于RAN网元,包括:
接收核心网网元发送的PPI值,其中,所述PPI值是根据下行分组的DSCP值确定的;
当处于RRC去激活态的终端UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
第二方面,本公开实施例还提供了一种寻呼策略确定方法,应用于核心网网元,包括:
向RAN网元发送PPI值;
其中,所述PPI值是根据下行分组的DSCP值确定的,用于所述RAN网元当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
第三方面,本公开实施例还提供了一种RAN网元,包括收发接口、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;
所述收发接口用于:接收核心网网元发送的PPI值,其中,所述PPI值是根据下行分组的DSCP值确定的;
所述处理器用于:当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
第四方面,本公开实施例还提供了一种核心网网元,包括收发接口、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;
所述收发接口用于:向RAN网元发送PPI值;
其中,所述PPI值是根据下行分组的DSCP值确定的,用于所述RAN网元当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
第五方面,本公开实施例还提供了一种寻呼策略确定装置,应用于RAN网元,包括:
第一接收模块,用于接收核心网网元发送的PPI值,其中,所述PPI值是根据下行分组的DSCP值确定的;
第一确定模块,用于当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
第六方面,本公开实施例还提供了一种寻呼策略确定装置,应用于核心网网元,包括:
第一发送模块,用于向RAN网元发送PPI值;
其中,所述PPI值是根据下行分组的DSCP值确定的,用于所述RAN网元当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
第七方面,本公开实施例还提供了一种RAN网元,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现上述应用于RAN网元的寻呼策略确定方法的步骤。
第八方面,本公开实施例还提供了一种核心网网元,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序 被所述处理器执行时实现上述应用于核心网网元的寻呼策略确定方法的步骤。
第九方面,本公开实施例还提供了一种计算机可读存储介质,其上存储有程序,其中,所述程序被处理器执行时实现上述应用于RAN网元的寻呼策略确定方法的步骤。
第十方面,本公开实施例还提供了一种计算机可读存储介质,其上存储有程序,其中,所述程序被处理器执行时实现上述应用于核心网网元的寻呼策略确定方法的步骤。
本公开实施例的寻呼策略确定方法,通过接收核心网网元发送的PPI值,该PPI值是根据下行分组的DSCP值确定的,当处于RRC去激活态的UE接收到下行分组时,根据该PPI值,确定寻呼策略,能够基于下行分组的DSCP值确定PPI值,从而当UE处于RRC去激活态时,根据下行分组的DSCP值实现不同的寻呼策略。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的一寻呼策略确定方法的流程图;
图2为本公开实例一的寻呼策略确定过程的流程图;
图3为本公开实例二的寻呼策略确定过程的流程图;
图4为本公开实施例的另一寻呼策略确定方法的流程图;
图5为本公开实施例的RAN网元的结构示意图之一;
图6为本公开实施例的核心网网元的结构示意图之一;
图7为本公开实施例的寻呼策略确定装置的结构示意图之一;
图8为本公开实施例的寻呼策略确定装置的结构示意图之二;
图9为本公开实施例的RAN网元的结构示意图之二;
图10为本公开实施例的核心网网元的结构示意图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1所示,本公开实施例提供了一种寻呼策略确定方法,应用于RAN网元,包括步骤101至102。
步骤101:接收核心网网元发送的PPI值。
其中,该PPI值是根据下行分组的DSCP值确定的。该核心网网元可为SMF实体或者UPF实体,即RAN网元可接收SMF实体发送的PPI值,也可接收UPF实体发送的PPI值。
步骤102:当处于RRC去激活态的UE接收到下行分组时,根据PPI值,确定寻呼策略。
应说明的是,RAN网元在确定寻呼策略时,可根据PPI值以及与QFI关联的ARP和5QI等确定寻呼策略。
本公开实施例的寻呼策略确定方法,通过接收核心网网元发送的PPI值,该PPI值是根据下行分组的DSCP值确定的,当处于RRC去激活态的UE接收到下行分组时,根据该PPI值,确定寻呼策略,能够基于下行分组的DSCP值确定PPI值,从而当UE处于RRC去激活态时,根据下行分组的DSCP值实现不同的寻呼策略。
本公开实施例中,当RAN网元接收SMF实体发送的PPI值时,该PPI值可以是SMF实体根据从UPF实体接收到的下行分组的DSCP值确定的,也可以是由UPF实体根据下行分组的DSCP值确定后发送给SMF实体的。
进一步的,当PPI值是SMF实体根据从UPF实体接收到的下行分组的DSCP值确定时,该DSCP值可以是UPF实体在接收到SMF实体发送的请求消息后发送给SMF实体的。该请求消息用于请求UPF实体当检测到PDU(Packet Data Unit,分组数据单元)会话建立完成后的下行分组时,确定下行分组的DSCP值,并向SMF实体发送下行分组的DSCP值。例如,该请求消息可为事件报告请求消息,此处的下行分组可以是UPF实体检测到第一个 下行分组。
进一步的,在接收PPI值时,RAN网元可接收SMF实体通过AMF实体发送的PPI值。具体的,RAN网元在接收PPI值时,可接收AMF实体发送的N2SM信息,该N2SM信息中包括PPI值,是SMF实体发送给AMF实体的,AMF实体不解析该N2SM信息。或者,RAN网元在接收PPI值时,可接收AMF实体发送的N2消息,该N2消息中包括PPI值,该PPI值是SMF实体通过N11消息发送给AMF实体的。
本公开实施例中,当RAN网元接收UPF实体发送的PPI值时,该PPI值可以是UPF实体根据下行分组的DSCP值确定的,也可以是由SMF实体根据从UPF实体接收到的下行分组的DSCP值确定后发送给UPF实体的。
进一步,RAN网元在接收UPF实体发送的PPI值时,可接收UPF实体发送的N3隧道报头,该N3隧道报头中包括PPI值。
由于核心网网元并不知道UE是否会进入RRC去激活态,若在所有场景中都向RAN网元发送PPI值,则会造成信令和资源浪费,因此为了避免信令和资源浪费,可在RAN网元向核心网网元报告UE进入RRC去激活态的前提下,向RAN网元发送PPI值。具体的,步骤101之前,该方法还可包括:
RAN网元接收AMF实体发送的请求消息;其中,该请求消息用于请求RAN网元在UE进入RRC去激活态时向AMF实体报告UE进入RRC去激活态;该请求消息可为状态通知请求消息;
当UE进入RRC去激活态时,RAN网元向AMF实体报告UE进入RRC去激活态,以由AMF实体向SMF实体报告UE进入RRC去激活态。
下面,结合图2和图3分别从SMF实体发送PPI值的角度和UPF实体发送PPI值的角度,对本公开实例一和实例二的寻呼策略确定过程进行说明。
实例一
实例一中,由SMF实体向RAN网元发送PPI值。参见图2所示,对应的寻呼策略确定过程可包括如下步骤:
步骤201:SMF实体在接收到PDU会话建立请求消息,或者重选UPF实体的请求消息后,向UPF实体发送N4会话建立请求消息;
其中,该N4会话建立请求消息中可包括事件报告请求消息,该事件报 告请求消息用于请求UPF实体报告下行分组的DSCP值,具体的,该事件报告请求消息用于请求UPF实体当检测到PDU会话建立完成后的下行分组时,确定该下行分组的DSCP值,并向SMF实体发送该下行分组的DSCP值;
步骤202:UPF实体向SMF实体返回N4会话建立响应消息;
步骤203:SMF实体与触发此过程的其它网元进行交互,比如与AMF实体交互以完成PDU会话建立过程;
步骤204:当检测到PDU会话建立完成后接收到的下行分组时,UPF实体确定该下行分组的DSCP值;比如,UPF实体可通过IP分组头中的TOS(IPv4)和/或TC(IPv6)字段确定DSCP值;该下行分组为UPF实体检测到的第一个下行分组;
步骤205:UPF实体向SMF实体发送N4报告消息;该N4报告消息中包括下行分组的DSCP值以及对应的QFI(QoS流标识);
步骤206:SMF实体根据该下行分组的DSCP值确定PPI值,并在UE上下文中保存PPI值,向UPF实体返回N4报告响应消息;
步骤207:当UE处于连接态时,AMF实体向RAN网元发送状态通知请求消息,请求RAN网元在UE进入RRC非激活态时向AMF实体报告;
步骤208:当UE进入RRC非激活态时,RAN网元向AMF实体报告UE进入RRC inactive态;
步骤209:AMF实体向SMF实体报告UE进入RRC非激活态;
步骤210:SMF实体通过AMF实体向RAN网元发送PPI值和对应的QFI;其中,SMF实体可将PPI值和QFI包含在N2SM信息中通过AMF实体发送给RAN网元(AMF不解析N2SM信息);或者,SMF实体通过N11消息将PPI值和QFI发送给AMF实体,AMF实体再通过N2消息转发给RAN网元;
步骤211:当处于RRC激活态的UE接收到下行分组时,RAN网元基于PPI值以及与QFI关联的5QI和ARP,确定寻呼策略。
实例二
实例二中,由UPF实体向RAN网元发送PPI值。参见图3所示,对应的寻呼策略确定过程可包括如下步骤:
步骤301:SMF实体在接收到PDU会话建立请求消息,或者重选UPF 实体的请求消息后,向UPF实体发送N4会话建立请求消息;
其中,该N4会话建立请求消息中可包括事件报告请求消息,该事件报告请求消息用于请求UPF实体报告下行分组的DSCP值,具体的,该事件报告请求消息可用于请求UPF实体当检测到PDU会话建立完成后的下行分组时,确定该下行分组的DSCP值,并向SMF实体发送该下行分组的DSCP值;
步骤302:UPF实体向SMF实体返回N4会话建立响应消息;
步骤303:SMF实体与触发此过程的其它网元进行交互,比如与AMF实体交互以完成PDU会话建立过程;
步骤304:当检测到PDU会话建立完成后接收到的下行分组时,UPF实体确定该下行分组的DSCP值;比如,UPF实体可通过IP分组头中的TOS(IPv4)和/或TC(IPv6)字段确定DSCP值;该下行分组为UPF实体检测到的第一个下行分组;
步骤305:UPF实体向SMF实体发送N4报告消息;该N4报告消息中包括下行分组的DSCP值以及对应的QFI;
步骤306:SMF实体根据该下行分组的DSCP值确定PPI值,并在UE上下文中保存PPI值,向UPF实体返回N4报告响应消息;
步骤307:当UE处于连接态时,AMF实体向RAN网元发送状态通知请求消息,请求RAN网元在UE进入RRC非激活态时向AMF实体报告;
步骤308:当UE进入RRC非激活态时,RAN网元向AMF实体报告UE进入RRC inactive态;
步骤309:AMF实体向SMF实体报告UE进入RRC非激活态;
步骤310:SMF实体向UPF实体发送N4消息;该N4消息中包括PPI值和对应的QFI;
步骤311:UPF实体向SMF实体返回N4响应消息;
步骤312:UPF实体将PPI值增加到N3隧道报头中,并向RAN网元发送该N3隧道报头;
步骤313:当处于RRC激活态的UE接收到下行分组时,RAN网元基于N3隧道报头中的PPI值以及与QFI关联的5QI和ARP,确定寻呼策略。
这样,可借助控制面方案和用户面方案两种方案,来向RAN提供用于确 定寻呼策略的PPI值。
参见图4所示,本公开实施例还提供了一种寻呼策略确定方法,应用于核心网网元,包括如下步骤:
步骤401:向RAN网元发送PPI值;
其中,所述PPI值是根据下行分组的DSCP值确定的,用于所述RAN网元当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
本公开实施例的寻呼策略确定方法,通过向RAN网元发送PPI值,该PPI值是根据下行分组的DSCP值确定的,用于RAN网元当处于RRC去激活态的UE接收到下行分组时,根据该PPI值,确定寻呼策略,能够基于下行分组的DSCP值确定PPI值,从而当UE处于RRC去激活态时,根据下行分组的DSCP值实现不同的寻呼策略。
本公开实施例中,所述核心网网元可为SMF实体,步骤401之前,所述方法还包括:
接收UPF实体发送的下行分组的DSCP值;
根据所述下行分组的DSCP值,确定所述PPI值。
可选的,所述接收UPF实体发送的下行分组的DSCP值之前,所述方法还包括:
向所述UPF实体发送请求消息;
其中,所述请求消息用于请求所述UPF实体向所述SMF实体发送下行分组的DSCP值。
可选的,所述请求消息用于请求所述UPF实体当检测到PDU会话建立完成后的下行分组时,确定所述下行分组的DSCP值,并向所述SMF实体发送所述下行分组的DSCP值。
本公开实施例中,所述核心网网元可为SMF实体,步骤401之前,所述方法还包括:
接收UPF实体发送的所述PPI值;
其中,所述PPI值是所述UPF实体根据下行分组的DSCP值确定的。
可选的,所述向RAN网元发送PPI值,包括:
通过AMF实体向所述RAN网元发送所述PPI值。
可选的,所述通过AMF实体向所述RAN网元发送所述PPI值,包括:
向所述AMF实体发送N2SM信息,以由所述AMF实体向所述RAN网元转发所述N2SM信息;
其中,所述N2SM信息中包括所述PPI值。
可选的,所述通过AMF实体向所述RAN网元发送所述PPI值,包括:
向所述AMF实体发送N11消息;
其中,所述N11消息中包括所述PPI值,用于所述AMF实体通过N2消息向所述RAN网元发送所述PPI值。
本公开实施例中,所述核心网网元可为UPF实体,步骤401之前,所述方法还包括:
接收SMF实体发送的所述PPI值;
其中,所述PPI值是所述SMF实体根据从所述UPF实体接收到的下行分组的DSCP值确定的。
可选的,所述向RAN网元发送PPI值,包括:
将所述PPI值增加到N3隧道报头中;
向所述RAN网元发送所述N3隧道报头。
上述实施例对本公开的寻呼策略确定方法进行了说明,下面将结合实施例和附图对本公开的RAN网元和核心网网元进行说明。
参见图5所示,本公开实施例还提供了一种RAN网元,包括收发接口51、存储器52、处理器53及存储在所述存储器52上并可在所述处理器53上运行的计算机程序;其中,
所述收发接口51用于:接收核心网网元发送的PPI值,所述PPI值是根据下行分组的DSCP值确定的;
所述处理器53用于:当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
本公开实施例的RAN网元,通过接收核心网网元发送的PPI值,该PPI值是根据下行分组的DSCP值确定的,当处于RRC去激活态的UE接收到下行分组时,根据该PPI值,确定寻呼策略,能够当UE处于RRC去激活态时, 根据下行分组的DSCP值实现不同的寻呼策略。
可选的,所述收发接口51还用于:接收SMF实体发送的所述PPI值;
其中,所述PPI值是所述SMF实体根据从UPF实体接收到的下行分组的DSCP值确定的。
可选的,所述DSCP值是所述UPF实体在接收到所述SMF实体发送的请求消息后发送给所述SMF实体的。
可选的,所述请求消息用于请求所述UPF实体当检测到PDU会话建立完成后的下行分组时,确定所述下行分组的DSCP值,并向所述SMF实体发送所述下行分组的DSCP值。
可选的,所述收发接口51还用于:接收SMF实体发送的所述PPI值;
其中,所述PPI值是由UPF实体根据下行分组的DSCP值确定后发送给所述SMF实体的。
可选的,所述收发接口51还用于:接收所述SMF实体通过AMF实体发送的所述PPI值。
可选的,所述收发接口51还用于:接收所述AMF实体发送的N2SM信息;其中,所述N2SM信息中包括所述PPI值,所述N2SM信息是所述SMF实体发送给所述AMF实体的。
可选的,所述收发接口51还用于:接收所述AMF实体发送的N2消息;
其中,所述N2消息中包括所述PPI值,所述PPI值是所述SMF实体通过N11消息发送给所述AMF实体的。
可选的,所述收发接口51还用于:接收UPF实体发送的所述PPI值;
其中,所述PPI值是所述UPF实体根据下行分组的DSCP值确定的,或者,所述PPI值是由SMF实体根据从所述UPF实体接收到的下行分组的DSCP值确定后发送给所述UPF实体的。
可选的,所述收发接口51还用于:接收所述UPF实体发送的N3隧道报头;其中,所述N3隧道报头中包括所述PPI值。
可选的,所述收发接口51还用于:接收AMF实体发送的请求消息,其中,所述请求消息用于请求RAN网元在所述UE进入RRC去激活态时向所述AMF实体报告所述UE进入RRC去激活态;
所述处理器53用于:当所述UE进入RRC去激活态时,向所述AMF实体报告所述UE进入RRC去激活态,以由所述AMF实体向SMF实体报告所述UE进入RRC去激活态。
在图5中,总线架构(用总线50来代表)可以包括任意数量的互联的总线和桥,总线50将包括由处理器53代表的一个或多个处理器和存储器52代表的存储器的各种电路连接在一起。收发接口51可以分为发送接口和接收接口两个接口,也可以为一个接口。收发接口51可通过总线50与处理器53和存储器52连接。
处理器53负责管理总线50和通常的处理,而存储器52可以被用于存储处理器53在执行操作时所使用的数据。
参见图6所示,本公开实施例还提供了一种核心网网元,包括收发接口61、存储器62、处理器63及存储在所述存储器62上并可在所述处理器63上运行的计算机程序;其中,
所述收发接口61用于:向RAN网元发送PPI值;
其中,所述PPI值是根据下行分组的DSCP值确定的,用于所述RAN网元当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
本公开实施例的核心网网元,通过向RAN网元发送PPI值,该PPI值是根据下行分组的DSCP值确定的,用于RAN网元当处于RRC去激活态的UE接收到下行分组时,根据该PPI值,确定寻呼策略,能够使得RAN网元当UE处于RRC去激活态时,根据下行分组的DSCP值实现不同的寻呼策略。
可选的,所述核心网网元为SMF实体;所述收发接口61还用于:接收UPF实体发送的下行分组的DSCP值;
所述处理器63还用于:根据所述下行分组的DSCP值,确定所述PPI值。
可选的,所述收发接口61还用于:向所述UPF实体发送请求消息;
其中,所述请求消息用于请求所述UPF实体向所述SMF实体发送下行分组的DSCP值。
可选的,所述请求消息用于请求所述UPF实体当检测到PDU会话建立完成后的下行分组时,确定所述下行分组的DSCP值,并向所述SMF实体发 送所述下行分组的DSCP值。
可选的,所述核心网网元为SMF实体;所述收发接口61还用于:接收UPF实体发送的所述PPI值;
其中,所述PPI值是所述UPF实体根据下行分组的DSCP值确定的。
可选的,所述收发接口61还用于:通过AMF实体向所述RAN网元发送所述PPI值。
可选的,所述收发接口61还用于:向所述AMF实体发送N2SM信息,以由所述AMF实体向所述RAN网元转发所述N2SM信息;
其中,所述N2SM信息中包括所述PPI值。
可选的,所述收发接口61还用于:向所述AMF实体发送N11消息;
其中,所述N11消息中包括所述PPI值,用于所述AMF实体通过N2消息向所述RAN网元发送所述PPI值。
可选的,所述核心网网元为UPF实体;所述收发接口61还用于:接收SMF实体发送的所述PPI值;
其中,所述PPI值是所述SMF实体根据从所述UPF实体接收到的下行分组的DSCP值确定的。
可选的,所述处理器63还用于:将所述PPI值增加到N3隧道报头中;
所述收发接口61还用于:向所述RAN网元发送所述N3隧道报头。
在图6中,总线架构(用总线60来代表)可以包括任意数量的互联的总线和桥,总线60将包括由处理器63代表的一个或多个处理器和存储器62代表的存储器的各种电路连接在一起。收发接口61可以分为发送接口和接收接口两个接口,也可以为一个接口。收发接口61可通过总线60与处理器63和存储器62连接。
处理器63负责管理总线60和通常的处理,而存储器62可以被用于存储处理器63在执行操作时所使用的数据。
参见图7所示,本公开实施例还提供了一种寻呼策略确定装置,应用于RAN网元,包括:
第一接收模块71,用于接收核心网网元发送的PPI值,其中,所述PPI值是根据下行分组的DSCP值确定的;
第一确定模块72,用于当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
本公开实施例的寻呼策略确定装置,通过接收核心网网元发送的PPI值,该PPI值是根据下行分组的DSCP值确定的,当处于RRC去激活态的UE接收到下行分组时,根据该PPI值,确定寻呼策略,能够当UE处于RRC去激活态时,根据下行分组的DSCP值实现不同的寻呼策略。
可选的,所述第一接收模块71具体用于:接收SMF实体发送的所述PPI值;其中,所述PPI值是所述SMF实体根据从用户面功能UPF实体接收到的下行分组的DSCP值确定的,或者,所述PPI值是由UPF实体根据下行分组的DSCP值确定后发送给所述SMF实体的。
可选的,所述DSCP值是所述UPF实体在接收到所述SMF实体发送的请求消息后发送给所述SMF实体的。
可选的,所述请求消息用于请求所述UPF实体当检测到分组数据单元PDU会话建立完成后的下行分组时,确定所述下行分组的DSCP值,并向所述SMF实体发送所述下行分组的DSCP值。
可选的,所述第一接收模块71具体用于:接收所述SMF实体通过AMF实体发送的所述PPI值。
可选的,所述第一接收模块71具体用于:接收所述AMF实体发送的N2SM信息;其中,所述N2SM信息中包括所述PPI值,所述N2SM信息是所述SMF实体发送给所述AMF实体的。
可选的,所述第一接收模块71具体用于:接收所述AMF实体发送的N2消息;其中,所述N2消息中包括所述PPI值,所述PPI值是所述SMF实体通过N11消息发送给所述AMF实体的。
可选的,所述第一接收模块71具体用于:接收UPF实体发送的所述PPI值;其中,所述PPI值是所述UPF实体根据下行分组的DSCP值确定的,或者,所述PPI值是由SMF实体根据从所述UPF实体接收到的下行分组的DSCP值确定后发送给所述UPF实体的。
可选的,所述第一接收模块71具体用于:接收所述UPF实体发送的N3隧道报头;其中,所述N3隧道报头中包括所述PPI值。
可选的,所述装置还包括:
第二接收模块,用于接收AMF实体发送的请求消息,其中,所述请求消息用于请求RAN网元在所述UE进入RRC去激活态时向所述AMF实体报告所述UE进入RRC去激活态;
报告模块,用于当所述UE进入RRC去激活态时,向所述AMF实体报告所述UE进入RRC去激活态,以由所述AMF实体向SMF实体报告所述UE进入RRC去激活态。
参见图8所示,本公开实施例还提供了一种寻呼策略确定装置,应用于核心网网元,包括:
第一发送模块81,用于向RAN网元发送PPI值;
其中,所述PPI值是根据下行分组的DSCP值确定的,用于所述RAN网元当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
本公开实施例的寻呼策略确定装置,通过向RAN网元发送PPI值,该PPI值是根据下行分组的DSCP值确定的,用于RAN网元当处于RRC去激活态的UE接收到下行分组时,根据PPI值,确定寻呼策略,能够使得RAN网元当UE处于RRC去激活态时,根据下行分组的DSCP值实现不同的寻呼策略。
本公开实施例中,所述核心网网元为SMF实体,所述装置还包括:
第三接收模块,用于接收UPF实体发送的下行分组的DSCP值;
第二确定模块,用于根据所述下行分组的DSCP值,确定所述PPI值。
可选的,所述装置还包括:
第二发送模块,用于向所述UPF实体发送请求消息;
其中,所述请求消息用于请求所述UPF实体向所述SMF实体发送下行分组的DSCP值。
可选的,所述请求消息用于请求所述UPF实体当检测到PDU会话建立完成后的下行分组时,确定所述下行分组的DSCP值,并向所述SMF实体发送所述下行分组的DSCP值。
本公开实施例中,所述核心网网元为SMF实体,所述装置还包括:
第四接收模块,用于接收UPF实体发送的所述PPI值;
其中,所述PPI值是所述UPF实体根据下行分组的DSCP值确定的。
可选的,所述第一发送模块81具体用于:
通过AMF实体向所述RAN网元发送所述PPI值。
可选的,所述第一发送模块81具体用于:
向所述AMF实体发送N2SM信息,以由所述AMF实体向所述RAN网元转发所述N2SM信息;其中,所述N2SM信息中包括所述PPI值。
可选的,所述第一发送模块81具体用于:
向所述AMF实体发送N11消息;
其中,所述N11消息中包括所述PPI值,用于所述AMF实体通过N2消息向所述RAN网元发送所述PPI值。
本公开实施例中,所述核心网网元为UPF实体,所述装置还包括:
第五接收模块,用于接收SMF实体发送的所述PPI值;
其中,所述PPI值是所述SMF实体根据从所述UPF实体接收到的下行分组的DSCP值确定的。
可选的,所述第一发送模块81具体用于:
将所述PPI值增加到N3隧道报头中,并向所述RAN网元发送所述N3隧道报头。
此外,本公开实施例还提供一种RAN网元,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现上述应用于RAN网元的寻呼策略确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体的,参见图9所示,本公开实施例还提供了一种RAN网元,包括总线91、收发接口92、天线93、总线接口94、处理器95和存储器96。
在本公开实施例中,所述RAN网元还包括:存储在存储器96上并可在处理器95上运行的计算机程序,计算机程序被处理器95执行时实现以下步骤:
控制收发接口92接收核心网网元发送的PPI值,该PPI值是根据下行分组的DSCP值确定的,当处于RRC去激活态的UE接收到下行分组时,根据 所述PPI值,确定寻呼策略。
收发接口92,用于在处理器95的控制下接收和发送数据。
在图9中,总线架构(用总线91来代表)可以包括任意数量的互联的总线和桥,总线91将包括由处理器95代表的一个或多个处理器和存储器96代表的存储器的各种电路链接在一起。总线91还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口94在总线91和收发接口92之间提供接口。收发接口92可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器95处理的数据通过天线93在无线介质上进行传输,进一步,天线93还接收数据并将数据传送给处理器95。
处理器95负责管理总线91和通常的处理,还可以提供各种功能,包括定时、外围接口、电压调节、电源管理以及其他控制功能。而存储器96可以被用于存储处理器95在执行操作时所使用的数据。
可选的,处理器95可以是CPU、ASIC、FPGA或CPLD。
本公开实施例还提供一种核心网网元,包括处理器、存储器、存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现上述应用于核心网网元的寻呼策略确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体的,参见图10所示,本公开实施例还提供了一种RAN网元,包括总线111、收发接口112、天线113、总线接口114、处理器115和存储器116。
在本公开实施例中,所述RAN网元还包括:存储在存储器116上并可在处理器115上运行的计算机程序,计算机程序被处理器115执行时实现以下步骤:
控制收发接口112向RAN网元发送PPI值;该PPI值是根据下行分组的DSCP值确定的,用于所述RAN网元当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
收发接口112,用于在处理器115的控制下接收和发送数据。
在图10中,总线架构(用总线111来代表)可以包括任意数量的互联的 总线和桥,总线111将包括由处理器115代表的一个或多个处理器和存储器116代表的存储器的各种电路链接在一起。总线111还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口114在总线111和收发接口112之间提供接口。收发接口112可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器115处理的数据通过天线113在无线介质上进行传输,进一步,天线113还接收数据并将数据传送给处理器115。
处理器115负责管理总线111和通常的处理,还可以提供各种功能,包括定时、外围接口、电压调节、电源管理以及其他控制功能。而存储器116可以被用于存储处理器115在执行操作时所使用的数据。
可选的,处理器115可以是CPU、ASIC、FPGA或CPLD。
此外,本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现上述应用于RAN网元的寻呼策略确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时可实现上述应用于核心网网元的寻呼策略确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可 读媒体(transitory media),如调制的数据信号和载波。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机、计算机、服务器、空调器,或者网络设备等)执行本公开各个实施例所述的方法。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (50)

  1. 一种寻呼策略确定方法,应用于无线接入网RAN网元,包括:
    接收核心网网元发送的寻呼策略指示符PPI值,其中,所述PPI值是根据下行分组的差分服务码点DSCP值确定的;
    当处于无线资源控制RRC去激活态的终端UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
  2. 根据权利要求1所述的方法,其中,所述接收核心网网元发送的寻呼策略指示符PPI值,包括:
    接收会话管理功能SMF实体发送的所述PPI值;
    其中,所述PPI值是所述SMF实体根据从用户面功能UPF实体接收到的下行分组的DSCP值确定的。
  3. 根据权利要求2所述的方法,其中,所述DSCP值是所述UPF实体在接收到所述SMF实体发送的请求消息后发送给所述SMF实体的。
  4. 根据权利要求3所述的方法,其中,所述请求消息用于请求所述UPF实体当检测到分组数据单元PDU会话建立完成后的下行分组时,确定所述下行分组的DSCP值,并向所述SMF实体发送所述下行分组的DSCP值。
  5. 根据权利要求1所述的方法,其中,所述接收核心网网元发送的寻呼策略指示符PPI值,包括:
    接收SMF实体发送的所述PPI值;
    其中,所述PPI值是由UPF实体根据下行分组的DSCP值确定后发送给所述SMF实体的。
  6. 根据权利要求2或5所述的方法,所述接收SMF实体发送的所述PPI值,包括:
    接收所述SMF实体通过接入和移动性管理功能AMF实体发送的所述PPI值。
  7. 根据权利要求6所述的方法,其中,所述接收所述SMF实体通过接入和移动性管理功能AMF实体发送的所述PPI值,包括:
    接收所述AMF实体发送的N2 SM信息;
    其中,所述N2 SM信息中包括所述PPI值,所述N2 SM信息是所述SMF实体发送给所述AMF实体的。
  8. 根据权利要求6所述的方法,其中,所述接收所述SMF实体通过接入和移动性管理功能AMF实体发送的所述PPI值,包括:
    接收所述AMF实体发送的N2消息;
    其中,所述N2消息中包括所述PPI值,所述PPI值是所述SMF实体通过N11消息发送给所述AMF实体的。
  9. 根据权利要求1所述的方法,其中,所述接收核心网网元发送的寻呼策略指示符PPI值,包括:
    接收UPF实体发送的所述PPI值;
    其中,所述PPI值是所述UPF实体根据下行分组的DSCP值确定的,或者,所述PPI值是由SMF实体根据从所述UPF实体接收到的下行分组的DSCP值确定后发送给所述UPF实体的。
  10. 根据权利要求9所述的方法,其中,所述接收UPF实体发送的所述PPI值,包括:
    接收所述UPF实体发送的N3隧道报头;
    其中,所述N3隧道报头中包括所述PPI值。
  11. 根据权利要求1所述的方法,其中,所述接收核心网网元发送的寻呼策略指示符PPI值之前,所述方法还包括:
    接收AMF实体发送的请求消息,其中,所述请求消息用于请求RAN网元在所述UE进入RRC去激活态时向所述AMF实体报告所述UE进入RRC去激活态;
    当所述UE进入RRC去激活态时,向所述AMF实体报告所述UE进入RRC去激活态,以由所述AMF实体向SMF实体报告所述UE进入RRC去激活态。
  12. 一种寻呼策略确定方法,应用于核心网网元,包括:
    向RAN网元发送PPI值;
    其中,所述PPI值是根据下行分组的DSCP值确定的,用于所述RAN网元当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻 呼策略。
  13. 根据权利要求12所述的方法,其中,所述核心网网元为SMF实体;所述向RAN网元发送PPI值之前,所述方法还包括:
    接收UPF实体发送的下行分组的DSCP值;
    根据所述下行分组的DSCP值,确定所述PPI值。
  14. 根据权利要求13所述的方法,其中,所述接收UPF实体发送的下行分组的DSCP值之前,所述方法还包括:
    向所述UPF实体发送请求消息;
    其中,所述请求消息用于请求所述UPF实体向所述SMF实体发送下行分组的DSCP值。
  15. 根据权利要求14所述的方法,其中,所述请求消息用于请求所述UPF实体当检测到PDU会话建立完成后的下行分组时,确定所述下行分组的DSCP值,并向所述SMF实体发送所述下行分组的DSCP值。
  16. 根据权利要求12所述的方法,其中,所述核心网网元为SMF实体;所述向RAN网元发送PPI值之前,所述方法还包括:
    接收UPF实体发送的所述PPI值;
    其中,所述PPI值是所述UPF实体根据下行分组的DSCP值确定的。
  17. 根据权利要求13或16所述的方法,其中,所述向RAN网元发送PPI值,包括:
    通过AMF实体向所述RAN网元发送所述PPI值。
  18. 根据权利要求17所述的方法,其中,所述通过AMF实体向所述RAN网元发送所述PPI值,包括:
    向所述AMF实体发送N2 SM信息,以由所述AMF实体向所述RAN网元转发所述N2 SM信息;
    其中,所述N2 SM信息中包括所述PPI值。
  19. 根据权利要求17所述的方法,其中,所述通过AMF实体向所述RAN网元发送所述PPI值,包括:
    向所述AMF实体发送N11消息;
    其中,所述N11消息中包括所述PPI值,用于所述AMF实体通过N2消 息向所述RAN网元发送所述PPI值。
  20. 根据权利要求12所述的方法,其中,所述核心网网元为UPF实体;所述向RAN网元发送PPI值之前,所述方法还包括:
    接收SMF实体发送的所述PPI值;
    其中,所述PPI值是所述SMF实体根据从所述UPF实体接收到的下行分组的DSCP值确定的。
  21. 根据权利要求20所述的方法,其中,所述向RAN网元发送PPI值,包括:
    将所述PPI值增加到N3隧道报头中;
    向所述RAN网元发送所述N3隧道报头。
  22. 一种RAN网元,包括收发接口、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
    所述收发接口用于:接收核心网网元发送的PPI值,其中,所述PPI值是根据下行分组的DSCP值确定的;
    所述处理器用于:当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
  23. 根据权利要求22所述的RAN网元,其中,
    所述收发接口还用于:接收SMF实体发送的所述PPI值;
    其中,所述PPI值是所述SMF实体根据从UPF实体接收到的下行分组的DSCP值确定的。
  24. 根据权利要求23所述的RAN网元,其中,所述DSCP值是所述UPF实体在接收到所述SMF实体发送的请求消息后发送给所述SMF实体的。
  25. 根据权利要求24所述的RAN网元,其中,所述请求消息用于请求所述UPF实体当检测到PDU会话建立完成后的下行分组时,确定所述下行分组的DSCP值,并向所述SMF实体发送所述下行分组的DSCP值。
  26. 根据权利要求22所述的RAN网元,其中,
    所述收发接口还用于:接收SMF实体发送的所述PPI值;
    其中,所述PPI值是由UPF实体根据下行分组的DSCP值确定后发送给所述SMF实体的。
  27. 根据权利要求23或26所述的RAN网元,所述收发接口还用于:
    接收所述SMF实体通过AMF实体发送的所述PPI值。
  28. 根据权利要求27所述的RAN网元,其中,
    所述收发接口还用于:接收所述AMF实体发送的N2 SM信息;
    其中,所述N2 SM信息中包括所述PPI值,所述N2 SM信息是所述SMF实体发送给所述AMF实体的。
  29. 根据权利要求27所述的RAN网元,其中,
    所述收发接口还用于:接收所述AMF实体发送的N2消息;
    其中,所述N2消息中包括所述PPI值,所述PPI值是所述SMF实体通过N11消息发送给所述AMF实体的。
  30. 根据权利要求22所述的RAN网元,其中,
    所述收发接口还用于:接收UPF实体发送的所述PPI值;
    其中,所述PPI值是所述UPF实体根据下行分组的DSCP值确定的,或者,所述PPI值是由SMF实体根据从所述UPF实体接收到的下行分组的DSCP值确定后发送给所述UPF实体的。
  31. 根据权利要求30所述的RAN网元,其中,
    所述收发接口还用于:接收所述UPF实体发送的N3隧道报头;
    其中,所述N3隧道报头中包括所述PPI值。
  32. 根据权利要求22所述的RAN网元,其中,
    所述收发接口还用于:接收AMF实体发送的请求消息,其中,所述请求消息用于请求RAN网元在所述UE进入RRC去激活态时向所述AMF实体报告所述UE进入RRC去激活态;
    所述处理器用于:当所述UE进入RRC去激活态时,向所述AMF实体报告所述UE进入RRC去激活态,以由所述AMF实体向SMF实体报告所述UE进入RRC去激活态。
  33. 一种核心网网元,包括收发接口、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
    所述收发接口用于:向RAN网元发送PPI值;
    其中,所述PPI值是根据下行分组的DSCP值确定的,用于所述RAN网 元当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
  34. 根据权利要求33所述的核心网网元,其中,所述核心网网元为SMF实体;
    所述收发接口还用于:接收UPF实体发送的下行分组的DSCP值;
    所述处理器还用于:根据所述下行分组的DSCP值,确定所述PPI值。
  35. 根据权利要求34所述的核心网网元,其中,
    所述收发接口还用于:向所述UPF实体发送请求消息;
    其中,所述请求消息用于请求所述UPF实体向所述SMF实体发送下行分组的DSCP值。
  36. 根据权利要求35所述的核心网网元,其中,所述请求消息用于请求所述UPF实体当检测到PDU会话建立完成后的下行分组时,确定所述下行分组的DSCP值,并向所述SMF实体发送所述下行分组的DSCP值。
  37. 根据权利要求33所述的核心网网元,其中,所述核心网网元为SMF实体;
    所述收发接口还用于:接收UPF实体发送的所述PPI值;
    其中,所述PPI值是所述UPF实体根据下行分组的DSCP值确定的。
  38. 根据权利要求34或37所述的核心网网元,其中,
    所述收发接口还用于:通过AMF实体向所述RAN网元发送所述PPI值。
  39. 根据权利要求38所述的核心网网元,其中,
    所述收发接口还用于:向所述AMF实体发送N2 SM信息,以由所述AMF实体向所述RAN网元转发所述N2 SM信息;
    其中,所述N2 SM信息中包括所述PPI值。
  40. 根据权利要求38所述的核心网网元,其中,
    所述收发接口还用于:向所述AMF实体发送N11消息;
    其中,所述N11消息中包括所述PPI值,用于所述AMF实体通过N2消息向所述RAN网元发送所述PPI值。
  41. 根据权利要求33所述的核心网网元,其中,所述核心网网元为UPF实体;
    所述收发接口还用于:接收SMF实体发送的所述PPI值;
    其中,所述PPI值是所述SMF实体根据从所述UPF实体接收到的下行分组的DSCP值确定的。
  42. 根据权利要求41所述的核心网网元,其中,
    所述处理器还用于:将所述PPI值增加到N3隧道报头中;
    所述收发接口还用于:向所述RAN网元发送所述N3隧道报头。
  43. 一种寻呼策略确定装置,应用于RAN网元,包括:
    第一接收模块,用于接收核心网网元发送的PPI值,其中,所述PPI值是根据下行分组的DSCP值确定的;
    第一确定模块,用于当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
  44. 根据权利要求43所述的装置,其中,
    所述第一接收模块具体用于:接收SMF实体发送的所述PPI值;
    其中,所述PPI值是所述SMF实体根据从用户面功能UPF实体接收到的下行分组的DSCP值确定的,或者,所述PPI值是由UPF实体根据下行分组的DSCP值确定后发送给所述SMF实体的。
  45. 根据权利要求43所述的装置,其中,
    所述第一接收模块具体用于:接收UPF实体发送的所述PPI值;
    其中,所述PPI值是所述UPF实体根据下行分组的DSCP值确定的,或者,所述PPI值是由SMF实体根据从所述UPF实体接收到的下行分组的DSCP值确定后发送给所述UPF实体的。
  46. 一种寻呼策略确定装置,应用于核心网网元,包括:
    第一发送模块,用于向RAN网元发送PPI值;
    其中,所述PPI值是根据下行分组的DSCP值确定的,用于所述RAN网元当处于RRC去激活态的UE接收到下行分组时,根据所述PPI值,确定寻呼策略。
  47. 一种RAN网元,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至11中任一项所述的寻呼策略确定方法的步骤。
  48. 一种核心网网元,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求12至21中任一项所述的寻呼策略确定方法的步骤。
  49. 一种计算机可读存储介质,其上存储有程序,其中,所述程序被处理器执行时实现如权利要求1至11中任一项所述的寻呼策略确定方法的步骤。
  50. 一种计算机可读存储介质,其上存储有程序,其中,所述程序被处理器执行时实现如权利要求12至21中任一项所述的寻呼策略确定方法的步骤。
PCT/CN2019/071314 2018-02-08 2019-01-11 寻呼策略确定方法、装置、ran网元及核心网网元 WO2019154011A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020542764A JP7039717B2 (ja) 2018-02-08 2019-01-11 ページングポリシー決定方法、装置、ranエレメント及びコアネットワークエレメント
US16/968,131 US11147039B2 (en) 2018-02-08 2019-01-11 Paging strategy determination method, device, RAN network element and core network element
EP19751001.9A EP3751934B1 (en) 2018-02-08 2019-01-11 Paging policy determination methods and corresponding apparatus
KR1020207024363A KR102367258B1 (ko) 2018-02-08 2019-01-11 페이징 정책 확정 방법, 장치, ran 네트워크 요소 및 코어망 네트워크 요소

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810128517.7 2018-02-08
CN201810128517.7A CN110139360B (zh) 2018-02-08 2018-02-08 一种寻呼策略确定方法、装置、ran网元及核心网网元

Publications (1)

Publication Number Publication Date
WO2019154011A1 true WO2019154011A1 (zh) 2019-08-15

Family

ID=67549268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071314 WO2019154011A1 (zh) 2018-02-08 2019-01-11 寻呼策略确定方法、装置、ran网元及核心网网元

Country Status (6)

Country Link
US (1) US11147039B2 (zh)
EP (1) EP3751934B1 (zh)
JP (1) JP7039717B2 (zh)
KR (1) KR102367258B1 (zh)
CN (2) CN110139360B (zh)
WO (1) WO2019154011A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11399358B2 (en) 2018-06-25 2022-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, user plane function (UPF) and methods performed therein for paging policy differentiation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800857B (zh) * 2019-08-27 2023-01-03 维沃移动通信有限公司 一种寻呼方法和设备
CN115943692A (zh) * 2021-08-04 2023-04-07 北京小米移动软件有限公司 寻呼方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360283A (zh) * 2008-09-18 2009-02-04 深圳华为通信技术有限公司 一种设置集群组状态的方法和终端
US8180388B1 (en) * 2008-12-10 2012-05-15 Sprint Spectrum L.P. Methods and systems for improving session establishment with wireless communication devices
US20130235855A1 (en) * 2011-09-16 2013-09-12 Telefonaktiebolaget L M Ericsson (Publ) Optimized system access procedures
CN107210966A (zh) * 2014-08-18 2017-09-26 瑞典爱立信有限公司 在软件定义组网(sdn)系统中使用l4‑l7报头转发没有重组的分组片段

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000267872A (ja) * 1999-03-17 2000-09-29 Fujitsu Ltd 2重化システムにおける再開処理方式
CN100480711C (zh) * 2003-08-14 2009-04-22 特尔科迪亚技术股份有限公司 在移动电信系统中的自动ip话务优化
CN101932040B (zh) * 2009-06-26 2014-01-01 华为技术有限公司 寻呼处理方法、通信装置及通信系统
US20130217422A1 (en) * 2012-02-16 2013-08-22 Gaguk Zakaria System and method for enhanced paging and quality of service establishment in mobile satellite systems
CN103796176A (zh) * 2012-10-31 2014-05-14 中兴通讯股份有限公司 集群业务实现方法、系统及网元
CN103067953A (zh) * 2012-12-17 2013-04-24 大唐移动通信设备有限公司 一种小区状态上报、获取、监测、控制方法及设备
US9578647B2 (en) 2013-08-29 2017-02-21 Telefonaktiebolaget Lm Ericsson (Publ) 3GPP bearer-based QoS model support on WiFi
WO2018005419A1 (en) * 2016-06-30 2018-01-04 Intel IP Corporation Optimized paging mechanism for ip multimedia subsystem (ims)
WO2018202351A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Paging policy differentiation in 5g system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360283A (zh) * 2008-09-18 2009-02-04 深圳华为通信技术有限公司 一种设置集群组状态的方法和终端
US8180388B1 (en) * 2008-12-10 2012-05-15 Sprint Spectrum L.P. Methods and systems for improving session establishment with wireless communication devices
US20130235855A1 (en) * 2011-09-16 2013-09-12 Telefonaktiebolaget L M Ericsson (Publ) Optimized system access procedures
CN107210966A (zh) * 2014-08-18 2017-09-26 瑞典爱立信有限公司 在软件定义组网(sdn)系统中使用l4‑l7报头转发没有重组的分组片段

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11399358B2 (en) 2018-06-25 2022-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, user plane function (UPF) and methods performed therein for paging policy differentiation
US11743861B2 (en) 2018-06-25 2023-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, user plane function (UPF) and methods performed therein for paging policy differentiation

Also Published As

Publication number Publication date
CN114650597B (zh) 2023-08-04
EP3751934A4 (en) 2021-03-24
EP3751934B1 (en) 2023-10-04
CN114650597A (zh) 2022-06-21
US20210022112A1 (en) 2021-01-21
JP7039717B2 (ja) 2022-03-22
EP3751934A1 (en) 2020-12-16
KR20200110789A (ko) 2020-09-25
JP2021513785A (ja) 2021-05-27
US11147039B2 (en) 2021-10-12
KR102367258B1 (ko) 2022-02-23
CN110139360A (zh) 2019-08-16
CN110139360B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
US11375521B2 (en) Communication resource scheduling method, apparatus, and system
US10616120B2 (en) Service layer southbound interface and quality of service
WO2021088660A1 (zh) 通信方法、装置及设备
US20230070712A1 (en) Communication method, apparatus, and system
WO2019154011A1 (zh) 寻呼策略确定方法、装置、ran网元及核心网网元
US11968694B2 (en) Communication method and apparatus, and device
WO2021139696A1 (zh) 一种报告信息的发送方法、装置及系统
US20210075723A1 (en) Wireless Communication Method and Device
US20220116818A1 (en) Handling of 5GSM Congestion Timers
CN110876283A (zh) 增强型5G QoS操作处理
WO2021134701A1 (zh) D2d通信方法、装置及系统
WO2021109134A1 (zh) Mbms信息的获取、发送方法、终端设备及网元设备
WO2019024615A1 (zh) 下行信息的发送方法、接入及移动性管理功能实体及网络功能实体
WO2017091936A1 (zh) 一种上行数据传输的控制方法、用户终端及网络服务器
US20220116798A1 (en) Data transmission method, apparatus, and device
WO2022155853A1 (zh) 无线通信方法、通信装置及通信系统
CN115244991A (zh) 通信方法、装置及系统
US20230422293A1 (en) Network Slice Based Priority Access
WO2021138784A1 (zh) 一种接入网络的方法、装置及系统
JP7493622B2 (ja) データ転送のサポート
WO2023185496A1 (zh) 冗余传输请求方法及装置
WO2022032536A1 (zh) 通信方法和通信装置
WO2024015462A1 (en) Multicast broadcast service control with respect to inactive state
JP2024506567A (ja) パケット損失率検出方法、通信装置、および通信システム
CN117545042A (zh) 一种通信方法、通信装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542764

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207024363

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019751001

Country of ref document: EP

Effective date: 20200908