WO2019154006A1 - 一种远端干扰测量信号的处理方法及基站、存储介质 - Google Patents

一种远端干扰测量信号的处理方法及基站、存储介质 Download PDF

Info

Publication number
WO2019154006A1
WO2019154006A1 PCT/CN2019/071220 CN2019071220W WO2019154006A1 WO 2019154006 A1 WO2019154006 A1 WO 2019154006A1 CN 2019071220 W CN2019071220 W CN 2019071220W WO 2019154006 A1 WO2019154006 A1 WO 2019154006A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
measurement signal
interference measurement
interference
time domain
Prior art date
Application number
PCT/CN2019/071220
Other languages
English (en)
French (fr)
Inventor
夏亮
柯颋
邵华
杨光
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to US16/967,986 priority Critical patent/US11576186B2/en
Priority to EP19750434.3A priority patent/EP3742787B1/en
Publication of WO2019154006A1 publication Critical patent/WO2019154006A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to a remote base station interference technology, and in particular, to a remote interference measurement signal processing method, a base station, and a storage medium.
  • the interference phenomenon of the remote base station is particularly wide (up to several hundred kilometers (km)), and may involve base stations between multiple cities, multiple provinces, and even countries. Different cities, provinces, and even countries use base station equipment from different vendors. If there is no standardized remote interference management mechanism, cooperation between vendors will be particularly difficult.
  • China Mobile has standardized a remote base station interference management mechanism in an LTE (Long Term Evolution) network through enterprise standards.
  • the remote base station interference management mechanism standardized in the mobile enterprise mainly includes two steps: 1) locating the victim base station causing the far-end interference; 2) manually adjusting the frame structure of the victim base station.
  • the remote base station interference management method used in the LTE active network has the following problems: 1) Inflexible: Once the remote interfering base station is located, the frame structure can only be manually modulated for interference backoff; 2) the performance loss is large: Interference backoff can only choose 3:9:2 frame structure. Compared with 9:3:2, 3:9:2 loses 6 DL OS (Down Link OFDM Symbol), and the downlink transmission performance loss is large.
  • the embodiment of the present disclosure provides a method for processing a remote interference measurement signal, a base station, and a storage medium, to solve at least one problem existing in the prior art.
  • An embodiment of the present disclosure provides a method for processing a remote interference measurement signal, where the method includes:
  • the first base station determines configuration information of the interference measurement signal
  • the first base station sends an interference measurement signal according to the configuration information of the interference measurement signal.
  • An embodiment of the present disclosure provides a method for processing a remote interference measurement signal, where the method includes:
  • the second base station receives the interference measurement signal according to the configuration information of the interference measurement signal.
  • An embodiment of the present disclosure provides a base station, where the base station includes a first processor and a first transceiver, where:
  • the first processor is configured to determine configuration information of an interference measurement signal
  • the first transceiver is configured to send an interference measurement signal according to the configuration information of the interference measurement signal.
  • An embodiment of the present disclosure provides a base station, where the base station includes a second processor and a second transceiver, where:
  • the second processor is configured to determine configuration information of the at least one interference measurement signal
  • the second transceiver is configured to receive the interference measurement signal according to the configuration information of the interference measurement signal.
  • Embodiments of the present disclosure provide a base station including a memory and a processor, the memory storing a computer program executable on a processor, and a processing method for implementing the remote interference measurement signal when the processor executes the program The steps in .
  • Embodiments of the present disclosure provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps in a method of processing the remote interference measurement signal.
  • the first base station determines configuration information of the interference measurement signal; the first base station sends the interference measurement signal according to the configuration information of the interference measurement signal; thus, the interference measurement signal resource can be improved through flexible parameter configuration. Use flexibility.
  • Figure 1 is a schematic diagram of a frame structure
  • 2 is a schematic diagram of an interference fallback technique
  • FIG. 3 is a schematic flowchart of a remote base station interference management process managed by a SON according to an embodiment of the present disclosure
  • 4A is a schematic flowchart of an implementation process of a method for processing a remote interference measurement signal according to an embodiment of the present disclosure
  • 4B is a schematic flowchart of an implementation method of another method for processing a remote interference measurement signal according to an embodiment of the present disclosure
  • FIG. 5A is a schematic diagram showing relationships between parameters of a time domain resource location according to an embodiment of the present disclosure
  • 5B is a schematic diagram of detecting interference measurement signals at two different times and generating reception delays of different interference measurement signals according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a processing system of a remote interference measurement signal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a hardware entity of a computing device in an embodiment of the present disclosure.
  • China Mobile has standardized the interference management mechanism of remote base stations in an LTE network through enterprise standards.
  • the LTE network configures the special subframe (S) to a 9:3:2 structure by default.
  • the special subframe of LTE includes 14 OSs (OFDM (Orthogonal Frequency Division Multiplexing) symbols, abbreviations of OFDM symbols), where #0 to #8
  • the number OS is configured as DL (downlink, DownLink), the #9 to #11 OS is configured as a GP (Guard Time, Guard Period), and the remaining #12 to #13 OS are configured as UL (uplink, UpLink).
  • the remote base station interference management mechanism standardized in the mobile enterprise mainly includes two steps: 1) locating the victim base station causing the far-end interference; 2) manually adjusting the frame structure of the victim base station, where:
  • Step 1) Locating the victim base station causing the far-end interference
  • At least one first base station selects a specific radio frame in a first period by using 1024 radio frames as a first period (corresponding to 10.24 s (seconds)), wherein the first reference signal is used for discovery and Locate the remote base station interference source.
  • the offset of the particular radio frame during the first period is determined by the identity (ID) of the first base station. Therefore, when the second base station detects the first reference signal, combined with the offset position of the radio frame in which the first reference signal is located in the first period, a partial attribute of the ID of the first base station can be derived backward.
  • the first base station in the selected radio frame, is fixed in the last two OSs of the downlink pilot time slot (DwPTS, Downlink Pilot Time Slot) of subframe 1 (corresponding to #7-#8
  • the first reference signal is transmitted in OS
  • the first base station needs to try to detect the second reference signal sent by other base stations in all the radio frames in the first period, in order to discover and locate the far-end interference from other base stations.
  • the first base station detects 16 OSs in the UpPTS and subframe 2 in each radio frame (corresponding to the #12-#13 OS of the special subframe, plus all OSs of the subframe 2) Listen to the second reference signal.
  • Step 2) manually adjusting the frame structure of the victim base station
  • the first base station reports the second reference signal to the network management unit.
  • the network management unit inversely derives the ID of the third base station according to the offset position of the radio frame in which the second reference signal is located in the first period, where the third base station sends the second reference signal.
  • the special subframe of the third base station is manually configured into a 3:9:2 structure, that is, the #0 to #2 OS in the LTE special subframe is configured as DL, and the #3 to #11 OS is configured as a GP.
  • the remaining #12 to #13 OS is configured as UL.
  • the 3:9:2 frame structure uses fewer DL symbols, so it is reasonable to expect that the DL transmission of the base station using the 3:9:2 frame structure can be reduced. UL interference from other remote base stations.
  • this embodiment first proposes a remote base station interference management process based on SON (Self-Organized Network) management. As shown in FIG. 3, the process includes:
  • Step S301 the base station V detects the interference phenomenon of the remote base station (based on the statistical rule of the interference signal);
  • Step S302 the base station V reports potential interference to the network function entity of the SON;
  • Step S303 the network function entity of the SON notifies the base station V to send the first reference information (RS1, Reference Signal 1);
  • Step S304 the network function entity of the SON notifies the base station A to listen to RS1;
  • Step S305 the base station V repeatedly transmits RS1;
  • Step S306 the base station A repeatedly detects RS1;
  • Step S307 the base station A reports the interference detection result to the network function entity of the SON;
  • Step S308 the network function entity of the SON configures an interference backoff mechanism to the base station A.
  • step S309 the base station A performs an interference backoff operation.
  • the embodiment of the present disclosure will propose a processing method of the far-end interference measurement signal for step S304 and step S305.
  • a method for processing a remote interference measurement signal is provided.
  • the method is applied to a base station.
  • the function implemented by the method can be implemented by a processor calling a program code in a base station.
  • the program code can be saved in a computer storage medium.
  • the base station includes at least a processor and a storage medium.
  • FIG. 4A is a schematic flowchart of an implementation method of a method for processing a remote interference measurement signal according to an embodiment of the present disclosure. As shown in FIG. 4A, the method includes:
  • Step S401 the first base station determines configuration information of the interference measurement signal
  • Step S402 the first base station sends an interference measurement signal according to the configuration information of the interference measurement signal.
  • the first base station determines configuration information of the interference measurement signal, including:
  • Step S11 The first base station determines a parameter identifier according to its own base station identifier.
  • Step S12 The first base station determines a parameter set according to the parameter identifier, where the parameter set includes at least one configuration information of the interference measurement signal.
  • the interference measurement signal refers to a signal used to measure the degree of interference between base stations, wherein the degree of interference between the base stations includes at least one of the following: an uplink signal of the downlink signal of the first base station to another base station The degree of interference, the degree of interference of the downlink signal of the first base station to the downlink signal of the UE served by another base station.
  • the degree of interference between the base stations may be represented by the received power, the received quality, the received strength, and the received signal to noise ratio of the interference measurement signal measured by the terminal served by the another base station or the another base station.
  • the effect of the interference measurement signal is that another base station can identify the interference base station, determine the interference strength, determine the location of the interfered radio resource, and the like by detecting the interference measurement signal sent by the first base station.
  • the method further includes: the first base station pre-storing, pre-configuring, or randomly selecting to determine at least one set of parameters, or the first base station determining a parameter set according to a configuration of the network functional entity;
  • the parameter set includes at least one of the following configuration information of the interference measurement signal:
  • Sequence identification sequence length, time domain resource location, bandwidth, frequency domain location, subcarrier spacing, transmit power.
  • the method further includes: the first base station reporting the parameter set to the network function entity.
  • the method further includes: the first base station according to a system bandwidth of the first base station or a bandwidth portion of a bandwidth portion of a synchronization signal or a maximum number of subcarriers or a subcarrier carrying a bandwidth portion of the synchronization signal The number determines the length of the sequence.
  • determining, by the first base station, the sequence length according to the maximum number of subcarriers of the first base station includes:
  • represents a power operation.
  • the time domain resource location is represented by at least one of the following combinations:
  • Period Period, period slot offset, number of repetitions in the period
  • Period Period, period slot offset, number of repetitions within a period, time domain resource granularity, symbol position within a time slot;
  • the start time of the time domain resource of the interference measurement signal and the duration of the time domain resource of the interference measurement signal are the start time of the time domain resource of the interference measurement signal and the duration of the time domain resource of the interference measurement signal.
  • the time domain resource location is a time domain resource location number divided by a time period resource equal to a time slot resource offset within a period; or the time domain resource location is a time domain resource location
  • the number of times divided by the remainder of the period is equal to the time domain resource of the time slot offset in the period and the resource granularity of the Q consecutive or non-contiguous available time domain resources or available time domain resources thereafter, where Q is greater than 0
  • the integer, the available time domain resource or the resource granularity of the available time domain resource refers to the resource granularity of the time domain resource or time domain resource that can be used to transmit the interference measurement signal.
  • the time domain resource location further includes a location of the at least one OFDM symbol within the transmission time slot.
  • the method further includes:
  • the position of the OFDM symbol is determined by interfering with the symbol offset and/or the number of repetitions within the measurement signal slot.
  • FIG. 4B is a schematic flowchart of a method for processing a remote interference measurement signal according to an embodiment of the present disclosure. As shown in FIG. 4B, the method includes:
  • Step S501 the first base station determines configuration information of the interference measurement signal
  • Step S502 The first base station sends an interference measurement signal according to the configuration information of the interference measurement signal.
  • Step S503 the second base station determines configuration information of at least one interference measurement signal
  • Step S504 the second base station receives at least one interference measurement signal sent by the first base station according to the configuration information of the interference measurement signal.
  • the second base station determines configuration information of the interference measurement signal, including:
  • the second base station determines a parameter set according to the parameter identifier, where the parameter set includes at least one configuration information of the interference measurement signal.
  • the method further includes: the second base station pre-storing, pre-configuring, or randomly selecting to determine at least one set of parameters, or the second base station determining a parameter set according to a configuration of the network functional entity;
  • the parameter set includes at least one of the following configuration information of the interference measurement signal:
  • Sequence identification sequence length, time domain resource location, bandwidth, frequency domain location, subcarrier spacing, transmit power.
  • the measurement result includes at least one of: a parameter identifier of the interference measurement signal, a received power of the interference measurement signal, and a reception delay of the interference measurement signal.
  • the method further includes: the second base station detecting the interference measurement signal according to the parameter set to obtain a measurement result.
  • the measurement result includes at least one of the following: a parameter identifier of the interference measurement signal, a received power of the interference measurement signal, and a reception delay of the interference measurement signal.
  • the method further includes: the second base station reporting the measurement result to the network function entity; or the second base station performing interference management according to the measurement result.
  • the method further includes: the second base station reporting, to the network function entity unit, at least one set of measurement results corresponding to an interference measurement signal.
  • the method further comprises: if the received power of the interference measurement signal exceeds a first threshold, the second base station reports the measurement result to the network function entity or the second base station performs interference management.
  • the first threshold is configured or pre-configured by the network functional entity.
  • the embodiment relates to a configuration method and a measurement result report of a reference signal used for remote base station interference management.
  • a solution provided by this embodiment includes:
  • Step S11 After detecting the interference phenomenon of the remote base station, the first base station reports the remote interference phenomenon to the network function entity of the SON.
  • Step S12 The network function entity of the SON notifies the first base station to send a reference signal for the remote base station interference management, and notifies the second base station to listen to the reference signal.
  • Step S13 The second base station reports the interference detection result to the network function entity of the SON.
  • Step S14 the network function entity of the SON configures the second base station to perform an interference backoff operation
  • step S15 the second base station performs an interference backoff operation.
  • the embodiment provides the following solutions:
  • the first base station determines interference measurement signal configuration information for the remote base station interference management, and sends an interference measurement signal according to the interference measurement signal configuration information, where the configuration information includes a parameter identifier, a sequence identifier, a sequence length, and a time domain. Resource location, bandwidth, frequency domain location, subcarrier spacing, transmit power, etc.
  • the second base station determines at least one interference measurement signal configuration information, and receives the interference measurement signal according to the interference measurement signal configuration information
  • the second base station reports the measurement result of the interference measurement signal, where the measurement result includes the parameter identifier of the interference measurement signal, the received power, the reception delay, and the like.
  • the technical solution of the embodiment defines the configuration information of the interference measurement signal used for the remote interference management and the reporting method of the measurement result, and solves the configuration problem of the remote interference measurement signal and the problem of reporting the measurement result.
  • the first base station determines configuration information of the interference measurement signal, and sends the interference measurement signal according to the configuration information of the interference measurement signal, where the interference measurement signal configuration information includes at least one of the following parameters:
  • the first base station may pre-store or pre-configure at least one set of parameters, wherein each parameter set has a unique corresponding parameter identifier, and the first base station may determine the parameter set by determining the parameter identifier. For example, the first base station may determine the parameter identifier according to its own base station identifier.
  • the parameter set includes at least one of the following parameters (2) to (7):
  • Sequence length of the interference measurement signal wherein the sequence length refers to the number of symbols included in the original interference measurement signal.
  • the sequence length may be determined according to the system bandwidth of the first base station or the bandwidth of the bandwidth portion carrying the synchronization signal or the maximum number of subcarriers or the number of subcarriers carrying the bandwidth portion of the synchronization signal.
  • the value range according to the system bandwidth of the first base station or the bandwidth of the bandwidth part of the synchronization signal or the maximum number of subcarriers or the number of subcarriers carrying the bandwidth part of the synchronization signal, and the value range and the candidate sequence A mapping relationship of lengths, determining a sequence length of the interference measurement signal.
  • determining the sequence length according to the maximum number of subcarriers of the first base station may determine the sequence length according to the following mapping relationship, where N, N1, N2, N3, N4, M, M1, M2, and M3 are positive integers:
  • N and M can be as follows:
  • the sequence length can be 1023 (assuming the sequence is a Gold sequence); if the system bandwidth is 100MHz, the subcarrier spacing is 30kHz, and the number of subcarriers is 3300, then the sequence length Can be 2047 (assuming the sequence is a Gold sequence).
  • Time domain resource location of the interference measurement signal wherein the time domain resource location can be represented by one or a combination of the following parameters: period, period offset (offset), number of repetitions in the period The time domain resource granularity, the symbol position within the time slot, the start time of the time domain resource of the interference measurement signal, the duration of the time domain resource of the interference measurement signal, and the end time of the time domain resource of the interference measurement signal.
  • FIG. 5A shows the relationship between the duration 611 of the time domain resource of the interference measurement signal, the start time 612 of the time domain resource of the interference measurement signal, and the end time 613 of the time domain resource of the interference measurement signal.
  • the relationship between the start time 612 and the end time 613 is the duration length 611.
  • Figure 5A also shows the relationship between period 614 and intra-cycle offset 615 and interference measurement signal slot 616, i.e., one period 614 consists of an intra-cycle offset 615 and a time slot 616 of the interference measurement signal.
  • FIG. 5A also shows the article between the time slot 616 of the interference measurement signal and the symbol 617 (OFDM symbol) of the interference measurement signal, that is, a plurality of symbols are included in one time slot.
  • the time domain resource location can be represented by a slot number (slot_index).
  • the slot number (slot_index) that transmits the interference measurement signal satisfies the following conditions:
  • Mod(slot_index, Period) offset, where mod() represents the remainder operation, offset represents the slot offset in the period, and the time domain resource granularity of the period and period offset is slot.
  • the time domain resource granularity of the offset in the period and the period may also be multiple slots or subframes or radio frames.
  • the interference measurement signal can be transmitted on at least one OFDM symbol within a transmission slot.
  • each slot is composed of a plurality of OFDM symbols (e.g., composed of 14 OFDM symbols), and the first base station also needs to determine the location of at least one OFDM symbol within the transmission slot. The location can be determined by interfering with the symbol offset and/or the number of repetitions within the measurement signal time slot.
  • Bandwidth and frequency domain position of the interference measurement signal may be represented by a BWP (Bandwidth Part) or an RB (Resource Block) or a subcarrier.
  • BWP Bandwidth Part
  • RB Resource Block
  • the bandwidth of the interference measurement signal, the frequency domain location may be the same as the bandwidth portion of the first base station carrying the synchronization signal.
  • the subcarrier spacing of the interference measurement signal may be the same as the synchronization signal subcarrier spacing of the first base station, or a fixed value, or a value related to the carrier frequency.
  • Transmission power of the interference measurement signal wherein the transmission power of the interference measurement signal does not exceed the maximum transmission power of the first base station.
  • the method for determining the above parameters may be determined by the first base station according to the configuration of the network unit (network function entity), or pre-configured, or randomly selected, in addition to the methods already mentioned above. If the parameters are determined by the base station identifier or are pre-configured or randomly selected, the first base station further reports the parameters to the network unit.
  • the interference measurement signal refers to a signal used to measure the degree of interference between the base stations, where the degree of interference between the base stations may be the interference degree of the downlink signal of the first base station to the uplink signal of another base station, or may be the first
  • the interference degree of the downlink signal of the base station to the downlink signal of the UE served by another base station may also be the signal strength of the interference measurement signal sent by the first base station received by another base station, or may be the UE receiving by another base station.
  • the second base station determines at least one interference measurement signal configuration information, and receives the interference measurement signal according to the interference measurement signal configuration information, where the transmission configuration information of the expected received interference measurement signal includes at least one of the following parameters:
  • the second base station may pre-store or pre-configure at least one set of parameters, wherein each parameter set has a unique corresponding parameter identifier, and the second base station may determine the parameter set by determining the parameter identifier.
  • the parameter set includes at least one of the following parameters (2) to (7):
  • Interference measurement signal sequence length wherein the sequence length refers to the number of symbols included in the original interference measurement signal.
  • the bandwidth and frequency domain position of the interference measurement signal may be represented by a BWP (bandwidth part) or an RB (resource block resource block) or a subcarrier.
  • the transmission power of the interference measurement signal does not exceed the maximum transmission power of the first base station.
  • the foregoing parameter or parameter set may be determined by the second base station according to the configuration of the network unit, or pre-configured.
  • the second base station detects the interference measurement signal according to the foregoing receiving parameter (at least one parameter set), and reports the measurement result to the network unit, where the measurement result may be at least one of the following: the interference measurement The parameter identifier of the signal, the received power of the interference measurement signal, and the reception delay of the interference measurement signal.
  • the receiving delay refers to a time difference between a time when the second base station detects the interference measurement signal and a time when the interference measurement signal is sent.
  • the second base station detects the interference measurement signal according to the foregoing receiving parameter, and if the received power of the interference measurement signal exceeds the first threshold, the second base station reports the measurement result corresponding to the interference measurement signal to the network unit.
  • the second base station performs interference management; the measurement result may be at least one of the following: a parameter identifier of the interference measurement signal, a received power of the interference measurement signal, and a reception delay of the interference measurement signal.
  • the receiving delay refers to a time difference between a time when the second base station detects the interference measurement signal and a time when the interference measurement signal is sent.
  • the first threshold may be configured or pre-configured by the network element.
  • one or a group of interference measurement signals may correspond to multiple measurement results.
  • multiple interference source base stations first base stations
  • different interference signal transmission signals sent by the first base station arrive at the second base station (interfering base station) at different times, so the second base station may be
  • the interference measurement signals are detected at two different times and the reception delays of the different interference measurement signals are generated.
  • the base station gNB 1 transmits the interference measurement signal 1
  • the base station gNB2 also transmits the interference measurement signal 1; as shown in FIG. 5B, the gNB 1 and the gNB 2 simultaneously transmit the interference measurement signal 1 at the same timing.
  • the interference measurement signal 1 transmitted by the base station gNB2 is also received by the other base station gNB 3 and the interference measurement signal 1 transmitted by the base station gNB2; however, since the positions of the base stations gNB 1 and gNB2 are different, the time to reach the base station gNB 3 is different, assuming The base station gNB 1 transmits the transmission time 1 of the interference measurement signal 1 to the time length t1 between the reception time 1 of the gNB 3 receiving the interference measurement signal 1, and the base station gNB 2 transmits the transmission time 2 to the gNB 3 of the interference measurement signal 1 to receive the interference measurement signal.
  • the duration t2 between the reception times 2 of 1 is different, and then t1 and t2 are different.
  • the interference measurement signal is detected by gNB3 at both times, then gNB1 and 2 are both the base station. If the gNB3 detects the interference measurement signal at a time, the victim base station is determined based on the time delay (the time difference between t1 and t2).
  • the second base station may report, to the network unit, at least one set of measurement results corresponding to an interference measurement signal, where each set of measurement results may be at least one of the following: a parameter identifier of the interference measurement signal, The received power of the interference measurement signal and the reception delay of the interference measurement signal.
  • the network unit determines the first base station that causes interference to the second base station according to the measurement result reported by the second base station. If the network unit determines that a plurality of first base stations may cause interference to the second base station, the network unit may reconfigure the transmitting the mutually orthogonal interference measurement signals for the plurality of first base stations, and re-receive for the second base station Interference measurement signal.
  • the far-end interference phenomenon has a wide range of influence (several hundred kilometers), and may involve base stations between multiple cities, multiple provinces, and even countries. Since different cities, provinces, and even countries use base station equipment from different vendors, cooperation between vendors will be particularly difficult without a standardized remote interference management mechanism.
  • the remote interference management means may fail.
  • the technical solution provided by the embodiment of the present disclosure can improve the multiplexing flexibility of the interference measurement signal resource through flexible parameter configuration; reduce the detection complexity by the configuration of the transmission/reception start time, and configure the first base station through flexible time resources. Resource reuse between.
  • FIG. 6 is a schematic structural diagram of a processing system for a remote interference measurement signal according to an embodiment of the present disclosure.
  • the system includes a first base station and a first The second base station, wherein the first base station 600 includes a first processor 601 and a first transceiver 602, wherein the second base station 610 includes a second processor 611 and a second transceiver 612, where:
  • the first processor 601 is configured to determine configuration information of an interference measurement signal
  • the first transceiver 602 is configured to send an interference measurement signal according to the configuration information of the interference measurement signal.
  • the second processor 611 is configured to determine configuration information of the at least one interference measurement signal
  • the second transceiver 612 is configured to receive the interference measurement signal according to the configuration information of the interference measurement signal.
  • the configuration information of the determined interference measurement signal includes: determining a parameter identifier according to the base station identifier of the base; determining a parameter set according to the parameter identifier, where the parameter set includes at least one of the interference measurement signals. Configuration information.
  • the interference measurement signal refers to a signal used to measure the degree of interference between base stations, wherein the degree of interference between the base stations includes at least one of the following: an uplink signal of the downlink signal of the first base station to another base station The degree of interference, the degree of interference of the downlink signal of the first base station to the downlink signal of the UE served by another base station.
  • the degree of interference between the base stations may be represented by the received power, the received quality, the received strength, and the received signal to noise ratio of the interference measurement signal measured by the terminal served by the another base station or the another base station.
  • the first processor is further configured to pre-store, pre-configure or randomly select to determine at least one set of parameters, or determine a parameter set according to a configuration of the network functional entity; the parameter set includes at least the following One of the configuration information of the interference measurement signal: sequence identification, sequence length, time domain resource location, bandwidth, frequency domain location, subcarrier spacing, and transmission power.
  • the first transceiver is further configured to report the set of parameters to a network functional entity.
  • the first processor is further configured to: according to a system bandwidth of the first base station or a bandwidth portion of a bandwidth portion of a synchronization signal or a maximum number of subcarriers or a number of subcarriers of a bandwidth portion carrying a synchronization signal The sequence length is determined.
  • the sequence length M is calculated, where N is the number of subcarriers, floor indicates rounding down, log2 indicates a base 2 logarithm, and ⁇ indicates a power operation.
  • the time domain resource location is represented by at least one of the following combinations:
  • Period Period, period slot offset, number of repetitions in the period
  • Period Period, period slot offset, number of repetitions within a period, time domain resource granularity, symbol position within a time slot;
  • the start time of the time domain resource of the interference measurement signal and the duration of the time domain resource of the interference measurement signal are the start time of the time domain resource of the interference measurement signal and the duration of the time domain resource of the interference measurement signal.
  • the time domain resource location is a time domain resource location number divided by a time period resource equal to a time slot resource offset within a period; or the time domain resource location is a time domain resource location
  • the number of times divided by the remainder of the period is equal to the time domain resource of the time slot offset in the period and the resource granularity of the Q consecutive or non-contiguous available time domain resources or available time domain resources thereafter, where Q is greater than 0
  • the integer, the available time domain resource or the resource granularity of the available time domain resource refers to the resource granularity of the time domain resource or time domain resource that can be used to transmit the interference measurement signal.
  • the time domain resource location further includes a location of the at least one OFDM symbol within the transmission time slot.
  • the method further includes:
  • the position of the OFDM symbol is determined by interfering with the symbol offset and/or the number of repetitions within the measurement signal slot.
  • the measurement result includes at least one of: a parameter identifier of the interference measurement signal, a received power of the interference measurement signal, and a reception delay of the interference measurement signal.
  • the second processor is further configured to detect an interference measurement signal according to the parameter set to obtain a measurement result.
  • the measurement result includes at least one of the following: a parameter identifier of the interference measurement signal, a received power of the interference measurement signal, and a reception delay of the interference measurement signal.
  • the second processor is further configured to perform interference management based on the measurement result.
  • the second transceiver is configured to report measurement results to a network functional entity.
  • the second transceiver is configured to report, by the second base station, at least one set of measurement results corresponding to an interference measurement signal to the network function entity unit.
  • the second processor is configured to determine that a received power of the interference measurement signal exceeds a first threshold, and if the received power of the interference measurement signal exceeds a first threshold, triggering the second transceiver to a network functional entity Report the measurement results.
  • the second processor is configured to perform interference management.
  • the first threshold is configured or pre-configured by the network functional entity.
  • the foregoing method for processing the remote interference measurement signal is implemented in the form of a software function module, and is sold or used as an independent product, it may also be stored in a computer readable storage. In the medium. Based on such understanding, the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computing device (which may be a personal computer, server, or network device, etc.) is implemented to perform all or part of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • an embodiment of the present disclosure provides a base station, including a memory and a processor, where the memory stores a computer program executable on a processor, and when the processor executes the program, the remote interference measurement signal is implemented. The steps in the processing method.
  • the base station can be a first base station including a first memory and a first processor, the first memory storing a computer program executable on the first processor, the first processor executing The program implements the steps in the method for processing the remote interference measurement signal on the first base station side.
  • the base station can be a second base station including a second memory and a second processor, the second memory storing a computer program executable on the second processor, the second process The step in the method of processing the remote interference measurement signal on the second base station side when the program is executed.
  • Another embodiment of the present disclosure is a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement steps in a method for processing the remote interference measurement signal on a first base station side; or The steps in the method of processing the remote end interference measurement signal on the second base station side when the computer program is executed by the processor.
  • FIG. 7 is a schematic diagram of a hardware entity of a computing device (for example, a base station and a network function entity) according to an embodiment of the disclosure.
  • the hardware entity of the computing device 700 includes: a processor 701, and a communication. Interface 702 and memory 703, wherein
  • Processor 701 typically controls the overall operation of computing device 700.
  • Communication interface 702 can enable a computing device to communicate with other terminals or base stations or network affiliation entities over a network.
  • the memory 703 is configured to store instructions and applications executable by the processor 701, and may also cache data to be processed or processed by the processor 701 and various modules in the computing device 700 (eg, image data, audio data, voice communication data, and Video communication data) can be realized by flash memory (FLASH) or random access memory (RAM).
  • FLASH flash memory
  • RAM random access memory
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units; they may be located in one place or distributed on multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit; the above integration
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a removable storage device, a read only memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM read only memory
  • the above-described integrated unit of the present disclosure may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computing device (which may be a personal computer, server, or network device, etc.) is implemented to perform all or part of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a magnetic disk, or an optical disk.

Abstract

本公开实施例公开了一种远端干扰测量信号的处理方法及基站、存储介质,其中,所述方法包括:第一基站确定干扰测量信号的配置信息;所述第一基站根据所述干扰测量信号的配置信息发送干扰测量信号。

Description

一种远端干扰测量信号的处理方法及基站、存储介质
相关申请的交叉引用
本公开基于申请号为201810134886.7、申请日为2018年02月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本公开。
技术领域
本公开涉及远端基站干扰技术,尤其涉及一种远端干扰测量信号的处理方法及基站、存储介质。
背景技术
远端基站干扰现象影响范围特别广(可达几百千米(km)),可能涉及多城市、多省份、乃至多国家之间的基站。不同城市、省份、乃至国家采用不同厂商的基站设备,如果没有标准化的远端干扰管理机制,各厂商协作将特别困难。
针对上述问题,中国移动通过企标,规范了一种LTE(Long Term Evolution,长期演进)网络中远端基站干扰管理机制。移动企标中规范的远端基站干扰管理机制主要包括两个步骤:1)定位造成远端干扰的施扰基站;2)通过人工方式调整施扰基站的帧结构。
然而,LTE现网中采用的远端基站干扰管理方法存在以下问题:1)不够灵活:一旦定位出远端干扰基站,只能通过人工方式调制帧结构进行干扰回退;2)性能损失大:干扰回退只能选择3:9:2的帧结构。与9:3:2相比,3:9:2损失了6个DL OS(Down Link OFDM Symbol,下行OFDM符号),下行传输性能损失较大。
发明内容
有鉴于此,本公开实施例为解决现有技术中存在的至少一个问题而提供一种远端干扰测量信号的处理方法及基站、存储介质。
本公开实施例的技术方案是这样实现的:
本公开实施例提供一种远端干扰测量信号的处理方法,所述方法包括:
第一基站确定干扰测量信号的配置信息;
所述第一基站根据所述干扰测量信号的配置信息发送干扰测量信号。
本公开实施例提供一种远端干扰测量信号的处理方法,所述方法包括:
所述第二基站确定至少一个干扰测量信号的配置信息;
所述第二基站根据所述干扰测量信号的配置信息接收干扰测量信号。
本公开实施例提供一种基站,所述基站包括第一处理器和第一收发器,其中:
所述第一处理器,配置为确定干扰测量信号的配置信息;
所述第一收发器,配置为根据所述干扰测量信号的配置信息发送干扰测量信号。
本公开实施例提供一种基站,所述基站包括第二处理器和第二收发器,其中:
所述第二处理器,配置为确定至少一个干扰测量信号的配置信息;
所述第二收发器,配置为根据所述干扰测量信号的配置信息接收干扰测量信号。
本公开实施例提供一种基站,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述远端干扰测量信号的处理方法中的步骤。
本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现所述远端干扰测量信号的处理方法中的 步骤。
本公开实施例中,第一基站确定干扰测量信号的配置信息;所述第一基站根据所述干扰测量信号的配置信息发送干扰测量信号;如此,能够通过灵活的参数配置提高干扰测量信号资源复用灵活性。
附图说明
图1为帧结构的示意图;
图2为干扰回退技术的示意图;
图3为本公开实施例SON管理的远端基站干扰管理流程示意图;
图4A为本公开实施例远端干扰测量信号的处理方法的实现流程示意图;
图4B为本公开实施例又一远端干扰测量信号的处理方法的实现流程示意图;
图5A为本公开实施例表示时域资源位置的各参数之间的关系示意图;
图5B为本公开实施例在两个不同的时刻检测到干扰测量信号,并生成不同的干扰测量信号的接收时延的示意图;
图6为本公开实施例远端干扰测量信号的处理系统的组成结构示意图;
图7为本公开实施例中计算设备的一种硬件实体示意图。
具体实施方式
针对上述没有标准化的远端干扰管理机制的问题,中国移动通过企标,规范了一种LTE网络中远端基站干扰管理机制。
在介绍远端基站干扰管理机制之前,先介绍以下帧结构和干扰回退技术,其中如图1和图2所示,LTE网络将特殊子帧(S)默认配置成9:3:2的结构,即LTE(Long Term Evolution,长期演进)的特殊子帧包括14个OS(OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技 术)symbol,OFDM符号的缩写),其中,#0至#8号OS配置成DL(下行,DownLink),#9至#11号OS配置成GP(保护时隙,Guard Period),剩下的#12至#13号OS配置成UL(上行,UpLink)。
移动企标中规范的远端基站干扰管理机制主要包括两个步骤:1)定位造成远端干扰的施扰基站;2)通过人工方式调整施扰基站的帧结构,其中:
步骤1)定位造成远端干扰的施扰基站
至少一个第一基站以1024个无线帧为第一周期(对应于10.24s(秒)),在第一周期内选择特定无线帧,发送第一参考信号,其中,第一参考信号用于发现和定位远端基站干扰源。
特别地,所述特定无线帧在第一周期内的偏移由所述第一基站的标识(ID)确定。因此,当第二基站侦听到第一参考信号时,结合第一参考信号所在无线帧在第一周期内的偏移位置,就能反向推导出第一基站的ID的部分属性。
在一些实施例中,在选中的无线帧中,第一基站固定在子帧1的下行导频时隙(DwPTS,Downlink Pilot Time Slot)中的最后2个OS(对应于#7-#8号OS)中发送第一参考信号。
另一方面,第一基站需要在第一周期内的所有无线帧中尝试检测其他基站发送的第二参考信号,以期发现并定位来自于其他基站的远端干扰。
在一些实施例中,第一基站在每个无线帧内的UpPTS和子帧2中共16个OS(对应于特殊子帧的#12-#13号OS,加上子帧2的所有OS)上侦听第二参考信号。
步骤2)通过人工方式调整施扰基站的帧结构
第一基站一旦检测出某个第二参考信号,则将第二参考信号上报给网管单元。网管单元根据所述第二参考信号所在无线帧在第一周期内的偏移位置,反向推导出第三基站的ID,其中,第三基站发送了第二参考信号。 后续通过人工方式将第三基站的特殊子帧改配成3:9:2的结构,即将LTE特殊子帧中#0至#2号OS配置成DL,#3至#11号OS配置成GP,剩下的#12至#13号OS配置成UL。与默认的9:3:2帧结构相比,3:9:2的帧结构使用了更少的DL符号,因此有理由期待采用了3:9:2帧结构的基站的DL传输可以降低对其他远端基站的UL干扰。
针对上述不够灵活问题,本实施例先提出一种基于SON(Self-Organized Network,自组织网络)管理的远端基站干扰管理流程,如图3所示,该流程包括:
步骤S301,基站V检测到远端基站干扰现象(基于干扰信号统计规律);
步骤S302,基站V向SON的网络功能实体上报潜在干扰;
步骤S303,SON的网络功能实体通知基站V发送第一参考信息(RS1,Reference Signal 1);
步骤S304,SON的网络功能实体通知基站A侦听RS1;
步骤S305,基站V重复发送RS1;
步骤S306,基站A重复检测RS1;
步骤S307,基站A向SON的网络功能实体上报干扰检测结果;
步骤S308,SON的网络功能实体向基站A配置干扰回退机制;
步骤S309,基站A执行干扰回退操作。
本公开实施例将针对步骤S304和步骤S305,提出一种远端干扰测量信号的处理方法。
下面结合附图和实施例对本公开的技术方案进一步详细阐述。
本实施例提出一种远端干扰测量信号的处理方法,该方法应用于基站,该方法所实现的功能可以通过基站中的处理器调用程序代码来实现,当然程序代码可以保存在计算机存储介质中,可见,该基站至少包括处理器和存储介质。
图4A为本公开实施例远端干扰测量信号的处理方法的实现流程示意图,如图4A所示,该方法包括:
步骤S401,第一基站确定干扰测量信号的配置信息;
步骤S402,第一基站根据所述干扰测量信号的配置信息发送干扰测量信号。
在一些实施例中,所述第一基站确定干扰测量信号的配置信息,包括:
步骤S11,所述第一基站根据自身的基站标识确定参数标识;
步骤S12,所述第一基站根据所述参数标识确定参数集合,所述参数集合中至少包括一种所述干扰测量信号的配置信息。
在一些实施例中,所述干扰测量信号是指用于测量基站之间干扰程度的信号,其中基站之间的干扰程度至少包括以下之一:第一基站的下行信号对另一基站的上行信号的干扰程度、第一基站的下行信号对另一基站服务的UE的下行信号的干扰程度。其中,所述基站之间干扰程度可以通过所述另一基站或所述另一基站服务的终端测量的所述干扰测量信号的接收功率、接收质量、接收强度、接收信噪比表示。干扰测量信号的作用在于,另一基站通过对第一基站发送的干扰测量信号的检测,可以识别干扰基站、确定干扰强度、确定被干扰的无线资源位置等。
在一些实施例中,所述方法还包括:所述第一基站预先存储、预先配置或随机选择确定至少一组参数集合,或者,所述第一基站根据网络功能实体的配置确定参数集合;所述参数集合至少包括以下之一的所述干扰测量信号的配置信息:
序列标识、序列长度、时域资源位置、带宽、频域位置、子载波间隔、发送功率。
在一些实施例中,所述方法还包括:第一基站向网络功能实体上报所述参数集合。
在一些实施例中,所述方法还包括:所述第一基站根据所述第一基站的系统带宽或承载同步信号的带宽部分的带宽或最大子载波数或承载同步信号的带宽部分的子载波数确定所述序列长度。
在一些实施例中,所述第一基站根据所述第一基站的最大子载波数确定所述序列长度包括:
所述第一基站根据公式M=2^(floor(log2(N+1)))–1计算所述序列长度M,其中N为子载波数,floor表示向下取整,log2表示求以2为底的对数,^表示幂运算。
在一些实施例中,所述时域资源位置通过以下组合至少之一进行表示:
周期和周期内时隙偏移;
周期、周期内时隙偏移、周期内重复次数;
周期、周期内时隙偏移、周期内重复次数、时域资源粒度、时隙内的符号位置;
时域资源粒度、时隙内的符号位置;
所述干扰测量信号的时域资源的开始时间、所述干扰测量信号的时域资源的持续时间长度。
在一些实施例中,所述时域资源位置为时域资源位置的编号除以周期的余数等于周期内时隙偏移的时域资源;或者,所述时域资源位置为时域资源位置的编号除以周期的余数等于周期内时隙偏移的的时域资源以及在此之后的Q个连续的或非连续的可用时域资源或可用时域资源的资源粒度,其中,Q为大于0的整数,可用时域资源或可用时域资源的资源粒度是指可用于传输所述干扰测量信号的时域资源或时域资源的资源粒度。在一些实施例中,所述方法还包括:通过公式Mod(slot_index,Period)=offset,确定所述时域资源位置slot_index的编号,其中mod()表示求余运算,Period表示周期,offset表示周期内时隙偏移。
在一些实施例中,所述时域资源位置还包括在发送时隙内的至少一个OFDM符号的位置,对应地,所述方法还包括:
通过干扰测量信号时隙内的符号偏移和/或重复次数确定OFDM符号的位置。
图4B为本公开实施例又一远端干扰测量信号的处理方法的实现流程示意图,如图4B所示,该方法包括:
步骤S501,第一基站确定干扰测量信号的配置信息;
步骤S502,第一基站根据所述干扰测量信号的配置信息发送干扰测量信号。
步骤S503,所述第二基站确定至少一个干扰测量信号的配置信息;
步骤S504,所述第二基站根据所述干扰测量信号的配置信息接收第一基站发送的至少一个干扰测量信号。
在一些实施例中,所述第二基站确定干扰测量信号的配置信息,包括:
所述第二基站根据自身的基站标识确定参数标识;
所述第二基站根据所述参数标识确定参数集合,所述参数集合中至少包括一种所述干扰测量信号的配置信息。
在一些实施例中,所述方法还包括:所述第二基站预先存储、预先配置或随机选择确定至少一组参数集合,或者,所述第二基站根据网络功能实体的配置确定参数集合;所述参数集合至少包括以下之一的所述干扰测量信号的配置信息:
序列标识、序列长度、时域资源位置、带宽、频域位置、子载波间隔、发送功率。
在一些实施例中,所述测量结果包括以下至少一种:所述干扰测量信号的参数标识、所述干扰测量信号的接收功率和所述干扰测量信号的接收时延。
在一些实施例中,所述方法还包括:所述第二基站根据所述参数集合检测干扰测量信号,获得测量结果。所述测量结果包括以下至少一种:所述干扰测量信号的参数标识、所述干扰测量信号的接收功率和所述干扰测量信号的接收时延。
在一些实施例中,该方法还包括:所述第二基站向网络功能实体上报测量结果;或者,所述第二基站根据所述测量结果进行干扰管理。
在一些实施例中,所述方法还包括:所述第二基站向网络功能实体单元上报一个干扰测量信号对应的至少一组测量结果。
在一些实施例中,所述方法还包括:如果干扰测量信号的接收功率超过第一阈值,所述第二基站向网络功能实体上报测量结果或者所述第二基站进行干扰管理。
在一些实施例中,所述第一阈值是所述网络功能实体配置的或预先配置的。
本实施例涉及用于远端基站干扰管理的参考信号的配置方法和测量结果上报。对于远端基站干扰管理问题,本实施例提供的一种解决流程包括:
步骤S11,第一基站检测到远端基站干扰现象后,向SON的网络功能实体上报存在远端干扰现象;
步骤S12,SON的网络功能实体通知第一基站发送用于远端基站干扰管理的参考信号,并通知第二基站侦听参考信号;
步骤S13,第二基站向SON的网络功能实体上报干扰检测结果;
步骤S14,SON的网络功能实体配置第二基站执行干扰回退操作;
步骤S15,第二基站执行干扰回退操作。
其中,如何配置上述参考信号,如何上报对参考信号的测量结果都是需要解决的问题。对此,本实施例提供如下的解决方案:
(1)第一基站确定用于远端基站干扰管理的干扰测量信号配置信息, 根据所述干扰测量信号配置信息发送干扰测量信号,其中,配置信息包括参数标识、序列标识、序列长度、时域资源位置、带宽、频域位置、子载波间隔、发送功率等;
(2)第二基站确定至少一个干扰测量信号配置信息,根据所述干扰测量信号配置信息接收干扰测量信号;
(3)第二基站上报对干扰测量信号的测量结果,其中,测量结果包括干扰测量信号的参数标识、接收功率、接收时延等。
从以上可以看出,本实施例的技术方案定义了用于远端干扰管理的干扰测量信号的配置信息以及测量结果的上报方法,解决了远端干扰测量信号的配置问题以及测量结果上报问题。
实施例一
第一基站确定干扰测量信号的配置信息,根据所述干扰测量信号的配置信息发送干扰测量信号,其中所述干扰测量信号配置信息包含以下参数中至少一种:
(1)参数标识:第一基站可以预先存储或预先配置至少一组参数集合,其中每个参数集合都有一个唯一对应的参数标识,第一基站可以通过确定参数标识来确定参数集合。例如,第一基站可以根据自身的基站标识确定参数标识。其中所述参数集合包含以下参数(2)~(7)中的至少一种:
(2)干扰测量信号的序列标识:其中所述序列标识用于产生干扰测量信号序列。
(3)干扰测量信号的序列长度:其中所述序列长度是指原始干扰测量信号包含的符号数。序列长度可以根据第一基站的系统带宽或承载同步信号的带宽部分的带宽或最大子载波数或承载同步信号的带宽部分的子载波数进行确定。例如,可根据第一基站的系统带宽或承载同步信号的带宽部分的带宽或最大子载波数或承载同步信号的带宽部分的子载波数所属于的 取值范围以及所述取值范围与候选序列长度的映射关系,确定所述干扰测量信号的序列长度。以根据第一基站的最大子载波数进行确定序列长度为例,可以根据以下映射关系确定序列长度,其中N、N1、N2、N3、N4、M、M1、M2和M3为正整数:
最大子载波数N 序列长度M
[N1,N2) M1
[N2,N3) M2
[N3,N4) M3
在一些实施例中,N和M的取值可以如下:
最大子载波数N 序列长度M
[1023,2047) 1023
[2047,4095) 2047
[4095,8191) 4095
或者,表示为序列长度M=2^(floor(log2(N+1)))–1,其中N为子载波数,floor表示向下取整,log2表示求以2为底的对数,^表示幂运算。
例如如果系统带宽20MHz,子载波间隔15kHz,子载波数1200个,那么序列长度可以为1023(假设序列为Gold序列);如果系统带宽100MHz,子载波间隔30kHz,子载波数3300个,那么序列长度可以为2047(假设序列为Gold序列)。
(4)干扰测量信号的时域资源位置:其中时域资源位置可以通过如下参数中的一个或几个组合来表示:周期(Period)、周期内时隙偏移(offset)、周期内重复次数、时域资源粒度、时隙内的符号位置、所述干扰测量信号的时域资源的开始时间、干扰测量信号的时域资源的持续时间长度、干扰 测量信号的时域资源的结束时间。
其中,图5A示出了干扰测量信号的时域资源的持续时间长度611、干扰测量信号的时域资源的开始时间612、干扰测量信号的时域资源的结束时间613之间的关系这三者之间的关系,即,开始时间612与结束时间613之间的时间长度即为持续时间长度611。图5A还示出了周期614与周期内偏移615和干扰测量信号时隙616之间的关系,即一个周期614由周期内偏移615和干扰测量信号的时隙616组成。另外,图5A还示出了干扰测量信号的时隙616与干扰测量信号的符号617(OFDM符号)之间的冠词,即一个时隙中包括多个符号。需要说明的是,时域资源位置可以用时隙编号(slot_index)来表示。在一些实施例中,发送干扰测量信号的时隙编号(slot_index)满足以下条件:
Mod(slot_index,Period)=offset,其中mod()表示求余运算,offset表示周期内时隙偏移,周期、周期内偏移的时域资源粒度为slot。进一步的周期、周期内偏移的时域资源粒度也可以为多个slot或子帧或无线帧。
在一些实施例中,干扰测量信号可以在发送时隙内的至少一个OFDM符号上发送。例如每个时隙(slot)由多个OFDM符号组成(如由14个OFDM符号组成),第一基站还需要确定在发送时隙内的至少一个OFDM符号的位置。该位置可以通过干扰测量信号时隙内的符号偏移和/或重复次数确定。
(5)干扰测量信号的带宽、频域位置:其中干扰测量信号的带宽和频域位置可以用BWP(Bandwidth Part,带宽部分)或RB(Resource Block,资源块)或子载波表示。例如,干扰测量信号的带宽、频域位置可以与第一基站承载同步信号的带宽部分相同。
(6)干扰测量信号的子载波间隔。例如干扰测量信号的子载波间隔可以与第一基站的同步信号子载波间隔相同,或者为一个固定的数值,或者为一个与载频相关的数值。
(7)干扰测量信号的发送功率:其中干扰测量信号的发送功率不超过第一基站的最大发送功率。
其中上述参数的确定方法除上述已经提及的方法以外,还可以是由第一基站根据网络单元(网络功能实体)的配置确定的,或者预先配置的,或者随机选择确定的。如果上述参数是通过基站标识确定的或者是预先配置的或是随机选择确定的,进一步的,第一基站还要向网络单元上报上述参数。
其中所述干扰测量信号是指用于测量基站之间干扰程度的信号,其中基站之间的干扰程度可以是第一基站的下行信号对另一基站的上行信号的干扰程度,也可以是第一基站的下行信号对另一基站服务的UE的下行信号的干扰程度,也可以是另一基站接收的第一基站发送的所述干扰测量信号的信号强度,也可以是另一基站服务的UE接收的第一基站发送的所述干扰测量信号的信号强度。
实施例二
第二基站确定至少一个干扰测量信号配置信息,根据所述干扰测量信号配置信息接收干扰测量信号,其中所述期望接收的干扰测量信号的发送配置信息包含以下参数中至少一种:
(1)参数标识:第二基站可以预先存储或预先配置至少一组参数集合,其中每个参数集合都有一个唯一对应的参数标识,第二基站可以通过确定参数标识来确定参数集合。其中所述参数集合包含以下参数(2)~(7)中的至少一种:
(2)干扰测量信号序列标识:其中所述序列标识是用于产生干扰测量信号序列。
(3)干扰测量信号序列长度:其中所述序列长度是指原始干扰测量信号包含的符号数。
(4)干扰测量信号的时域资源位置:与实施例一中表述相同。
(5)干扰测量信号的带宽、频域位置。其中干扰测量信号的带宽和频域位置可以用BWP(bandwidth part,部分带宽)或RB(resource block资源块)或子载波表示。
(6)干扰测量信号的子载波间隔
(7)干扰测量信号的发送功率。其中干扰测量信号的发送功率不超过第一基站的最大发送功率。
其中上述参数或参数集合可以是由第二基站根据网络单元的配置确定的,或者预先配置的。
在一些实施例中,所述第二基站根据上述接收参数(至少一种参数集合)检测干扰测量信号,并向网络单元上报测量结果,所述测量结果可以是以下至少一种:所述干扰测量信号的参数标识、所述干扰测量信号的接收功率、所述干扰测量信号的接收时延。其中,所述接收时延是指第二基站检测到所述干扰测量信号的时刻到所述干扰测量信号发送时刻之间的时间差。
在一些实施例中,所述第二基站根据上述接收参数检测干扰测量信号,如果干扰测量信号的接收功率超过第一阈值,那么所述第二基站向网络单元上报该干扰测量信号对应的测量结果,或者所述第二基站进行干扰管理;所述测量结果可以是以下至少一种:所述干扰测量信号的参数标识、所述干扰测量信号的接收功率、所述干扰测量信号的接收时延。
其中,所述接收时延是指第二基站检测到所述干扰测量信号的时刻到所述干扰测量信号发送时刻之间的时间差。所述第一阈值可以是所述网络单元配置的或预先配置的。
需要说明的,一个或一组干扰测量信号可能对应多个测量结果。例如多个干扰源基站(第一基站)复用相同的干扰测量信号进行发送,不同第 一基站发送的干扰测量信号到达第二基站(受干扰基站)的时间不同,因此第二基站有可能在两个不同的时刻检测到所述干扰测量信号,并生成不同的干扰测量信号的接收时延。基站gNB 1发送干扰测量信号1,基站gNB2也发送干扰测量信号1;在时序参见图5B所示,即在同一个时序上,gNB 1和gNB2同时发送了干扰测量信号1。对于另一个基站gNB 3接收到发送的干扰测量信号1,也接收到基站gNB2发送的干扰测量信号1;但是由于基站gNB 1和gNB2的位置不同,所以到达基站gNB 3的时间上有差异,假设,基站gNB 1发送干扰测量信号1的发送时刻1到gNB 3接收干扰测量信号1的接收时刻1之间的时长t1,基站gNB 2发送干扰测量信号1的发送时刻2到gNB 3接收干扰测量信号1的接收时刻2之间的时长t2,那么t1与t2是不同的,如果gNB3在两个时刻都检测到了所述干扰测量信号,那么gNB1、2都是施扰基站。如果gNB3在一个时刻都检测到了所述干扰测量信号,根据时延(t1与t2之间的时间差)确定施扰基站。
在一些实施例中,所述第二基站可以向网络单元上报一个干扰测量信号对应的至少一组测量结果,所述每组测量结果可以是以下至少一种:所述干扰测量信号的参数标识、所述干扰测量信号的接收功率、所述干扰测量信号的接收时延。
在一些实施例中,网络单元根据第二基站上报的测量结果确定对第二基站造成干扰的第一基站。如果网络单元确定有多个第一基站可能对第二基站造成干扰,那么网络单元可以为所述多个第一基站重新配置发送互相正交的干扰测量信号,并为所述第二基站重新接收干扰测量信号。
现有技术中,远端干扰现象影响范围特别广(几百km),可能涉及多城市、多省份、乃至多国家之间的基站。由于不同城市、省份、乃至国家采用不同厂商的基站设备,如果没有标准化的远端干扰管理机制,各厂商协作将特别困难。在基于SON的远端干扰管理流程中,当不同基站采用不 同帧结构配置时,该远端干扰管理手段可能失效。
而本公开实施例提供的技术方案能够通过灵活的参数配置提高干扰测量信号资源复用灵活性;通过发送/接收起始时间的配置降低检测复杂度,以及通过灵活的时间资源配置和第一基站之间的资源复用。
本公开实施例提供一种远端干扰测量信号的处理系统,图6为本公开实施例远端干扰测量信号的处理系统的组成结构示意图,如图6所示,该系统包括第一基站和第二基站,其中第一基站600包括第一处理器601和第一收发器602,其中第二基站610包括第二处理器611和第二收发器612,其中:
所述第一处理器601,配置为确定干扰测量信号的配置信息;
所述第一收发器602,配置为根据所述干扰测量信号的配置信息发送干扰测量信号。
所述第二处理器611,配置为确定至少一个干扰测量信号的配置信息;
所述第二收发器612,配置为根据所述干扰测量信号的配置信息接收干扰测量信号。
在一些实施例中,所确定干扰测量信号的配置信息,包括:根据自身的基站标识确定参数标识;根据所述参数标识确定参数集合,所述参数集合中至少包括一种所述干扰测量信号的配置信息。
在一些实施例中,所述干扰测量信号是指用于测量基站之间干扰程度的信号,其中基站之间的干扰程度至少包括以下之一:第一基站的下行信号对另一基站的上行信号的干扰程度、第一基站的下行信号对另一基站服务的UE的下行信号的干扰程度。其中,所述基站之间干扰程度可以通过所述另一基站或所述另一基站服务的终端测量的所述干扰测量信号的接收功率、接收质量、接收强度、接收信噪比表示。
在一些实施例中,所述第一处理器,还配置为预先存储、预先配置或 随机选择确定至少一组参数集合,或者,根据网络功能实体的配置确定参数集合;所述参数集合至少包括以下之一的所述干扰测量信号的配置信息:序列标识、序列长度、时域资源位置、带宽、频域位置、子载波间隔、发送功率。
在一些实施例中,所述第一收发器,还配置为向网络功能实体上报所述参数集合。
在一些实施例中,所述第一处理器,还配置为根据所述第一基站的系统带宽或承载同步信号的带宽部分的带宽或最大子载波数或承载同步信号的带宽部分的子载波数确定所述序列长度。
在一些实施例中,所述根据所述第一基站的最大子载波数确定所述序列长度包括:所述第一基站根据公式M=2^(floor(log2(N+1)))–1计算所述序列长度M,其中N为子载波数,floor表示向下取整,log2表示求以2为底的对数,^表示幂运算。
在一些实施例中,所述时域资源位置通过以下组合至少之一进行表示:
周期和周期内时隙偏移;
周期、周期内时隙偏移、周期内重复次数;
周期、周期内时隙偏移、周期内重复次数、时域资源粒度、时隙内的符号位置;
时域资源粒度、时隙内的符号位置;
所述干扰测量信号的时域资源的开始时间、所述干扰测量信号的时域资源的持续时间长度。
在其他实施例中,所述时域资源位置为时域资源位置的编号除以周期的余数等于周期内时隙偏移的时域资源;或者,所述时域资源位置为时域资源位置的编号除以周期的余数等于周期内时隙偏移的的时域资源以及在此之后的Q个连续的或非连续的可用时域资源或可用时域资源的资源粒 度,其中,Q为大于0的整数,可用时域资源或可用时域资源的资源粒度是指可用于传输所述干扰测量信号的时域资源或时域资源的资源粒度。在一些实施例中,所述第一处理器,还配置为通过公式Mod(slot_index,Period)=offset,确定所述时域资源位置的编号slot_index,其中,mod()表示求余运算,Period表示周期,offset表示周期内时隙偏移。
在一些实施例中,所述时域资源位置还包括在发送时隙内的至少一个OFDM符号的位置,对应地,所述方法还包括:
通过干扰测量信号时隙内的符号偏移和/或重复次数确定OFDM符号的位置。
在一些实施例中,所述测量结果包括以下至少一种:所述干扰测量信号的参数标识、所述干扰测量信号的接收功率和所述干扰测量信号的接收时延。
在一些实施例中,所述第二处理器,还配置为根据所述参数集合检测干扰测量信号,获得测量结果。所述测量结果包括以下至少一种:所述干扰测量信号的参数标识、所述干扰测量信号的接收功率和所述干扰测量信号的接收时延。
在一些实施例中,所述第二处理器,还配置为根据所述测量结果进行干扰管理。
在一些实施例中,所述第二收发器,配置为向网络功能实体上报测量结果。
在一些实施例中,所述第二收发器,配置为所述第二基站向网络功能实体单元上报一个干扰测量信号对应的至少一组测量结果。
在一些实施例中,所述第二处理器,配置为确定干扰测量信号的接收功率超过第一阈值,如果干扰测量信号的接收功率超过第一阈值,触发所述第二收发器向网络功能实体上报测量结果。或者,所述第二处理器,配 置为进行干扰管理。
在一些实施例中,所述第一阈值是所述网络功能实体配置的或预先配置的。
以上系统实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本公开系统实施例中未披露的技术细节,请参照本公开方法实施例的描述而理解。
需要说明的是,本公开实施例中,如果以软件功能模块的形式实现上述的远端干扰测量信号的处理方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备(可以是个人计算机、服务器、或者网络设备等)执行本公开各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本公开实施例不限制于任何特定的硬件和软件结合。
对应地,本公开实施例提供一种基站,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述远端干扰测量信号的处理方法中的步骤。
在一些实施例中,该基站可以为第一基站,包括第一存储器和第一处理器,所述第一存储器存储有可在第一处理器上运行的计算机程序,所述第一处理器执行所述程序时实现第一基站侧的所述远端干扰测量信号的处理方法中的步骤。
在另一种实施例中,该基站可以为第二基站,包括第二存储器和第二处理器,所述第二存储器存储有可在第二处理器上运行的计算机程序,所 述第二处理器执行所述程序时实现第二基站侧的所述远端干扰测量信号的处理方法中的步骤。
本公开实施例再一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现第一基站侧的所述远端干扰测量信号的处理方法中的步骤;或者,该计算机程序被处理器执行时实现第二基站侧所述远端干扰测量信号的处理方法中的步骤。
这里需要指出的是:以上存储介质和设备实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本公开存储介质和设备实施例中未披露的技术细节,请参照本公开方法实施例的描述而理解。
需要说明的是,图7为本公开实施例中计算设备(例如基站和网络功能实体)的一种硬件实体示意图,如图7所示,该计算设备700的硬件实体包括:处理器701、通信接口702和存储器703,其中
处理器701通常控制计算设备700的总体操作。
通信接口702可以使计算设备通过网络与其他终端或基站或网络贡呢实体通信。
存储器703配置为存储由处理器701可执行的指令和应用,还可以缓存待处理器701以及计算设备700中各模块待处理或已经处理的数据(例如,图像数据、音频数据、语音通信数据和视频通信数据),可以通过闪存(FLASH)或随机访问存储器(Random Access Memory,RAM)实现。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本公开的各种实施例 中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本公开所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本公开各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本公开上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备(可以是个人计算机、服务器、或者网络设备等)执行本公开各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种远端干扰测量信号的处理方法,所述方法包括:
    第一基站确定干扰测量信号的配置信息;
    所述第一基站根据所述干扰测量信号的配置信息发送干扰测量信号。
  2. 根据权利要求1所述的方法,所述第一基站确定干扰测量信号的配置信息,包括:
    所述第一基站根据自身的基站标识确定参数标识;
    所述第一基站根据所述参数标识确定参数集合,所述参数集合中至少包括一种所述干扰测量信号的配置信息。
  3. 根据权利要求1所述的方法,所述干扰测量信号是指用于测量基站之间干扰程度的信号,其中基站之间的干扰程度至少包括以下之一:
    第一基站的下行信号对另一基站的上行信号的干扰程度、第一基站的下行信号对另一基站服务的终端的下行信号的干扰程度。
  4. 根据权利要求1至3任一项所述的方法,所述方法还包括:
    所述第一基站预先存储、预先配置或随机选择确定至少一组参数集合,或者,所述第一基站根据网络功能实体的配置确定参数集合;
    所述参数集合至少包括以下之一的所述干扰测量信号的配置信息:
    序列标识、序列长度、时域资源位置、带宽、频域位置、子载波间隔、发送功率。
  5. 根据权利要求4所述的方法,所述方法还包括:
    所述第一基站向网络功能实体上报所述参数集合。
  6. 根据权利要求4所述的方法,所述方法还包括:
    所述第一基站根据所述第一基站的系统带宽或承载同步信号的带宽部分的带宽或最大子载波数或承载同步信号的带宽部分的子载波数确定 所述序列长度。
  7. 根据权利要求6所述的方法,所述第一基站根据所述第一基站的最大子载波数确定所述序列长度包括:
    所述第一基站根据公式M=2^(floor(log2(N+1)))–1计算所述序列长度M,其中N为基站的最大子载波数或承载同步信号的带宽部分的子载波数,floor表示向下取整,log2表示求以2为底的对数,^表示幂运算。
  8. 根据权利要求4所述的方法,所述时域资源位置通过以下组合至少之一进行表示:
    周期和周期内时隙偏移;
    周期、周期内时隙偏移和周期内重复次数;
    周期、周期内时隙偏移、周期内重复次数、时域资源粒度和时隙内的符号位置;
    时域资源粒度和时隙内的符号位置;
    所述干扰测量信号的时域资源的开始时间、所述干扰测量信号的时域资源的持续时间长度。
  9. 根据权利要求8所述的方法,所述方法还包括:
    所述时域资源位置为时域资源位置的编号除以周期的余数等于周期内时隙偏移的时域资源;或者,
    所述时域资源位置为时域资源位置的编号除以周期的余数等于周期内时隙偏移的时域资源以及在此之后的Q个连续的或非连续的可用时域资源或可用时域资源的资源粒度,其中,Q为大于0的整数,可用时域资源或可用时域资源的资源粒度是指可用于传输所述干扰测量信号的时域资源或时域资源的资源粒度。
  10. 根据权利要求8所述的方法,所述时域资源位置还包括在发送时隙内的至少一个OFDM符号的位置,对应地,所述方法还包括:
    通过干扰测量信号时隙内的符号偏移和/或重复次数确定OFDM符号的位置。
  11. 一种远端干扰测量信号的处理方法,所述方法包括:
    第二基站确定至少一个干扰测量信号的配置信息;
    所述第二基站根据所述干扰测量信号的配置信息接收干扰测量信号。
  12. 根据权利要求11所述的方法,所述第二基站确定干扰测量信号的配置信息,包括:
    所述第二基站根据自身的基站标识确定参数标识;
    所述第二基站根据所述参数标识确定参数集合,所述参数集合中至少包括一种所述干扰测量信号的配置信息。
  13. 根据权利要求11所述的方法,所述方法还包括:
    所述第二基站预先存储、预先配置或随机选择确定至少一组参数集合,或者,所述第二基站根据网络功能实体的配置确定参数集合;
    其中,所述参数集合至少包括以下之一的所述干扰测量信号的配置信息:序列标识、序列长度、时域资源位置、带宽、频域位置、子载波间隔、发送功率。
  14. 根据权利要求11至13任一项所述的方法,所述方法还包括:
    所述第二基站根据所述参数集合检测干扰测量信号,并获得测量结果。所述测量结果包括以下至少一种:所述干扰测量信号的参数标识、所述干扰测量信号的接收功率和所述干扰测量信号的接收时延。
  15. 根据权利要求14所述的方法,所述方法还包括:
    所述第二基站向网络功能实体上报测量结果,或者,
    所述第二基站根据所述测量结果进行干扰管理。
  16. 根据权利要求15所述的方法,所述方法还包括:
    如果所述干扰测量信号的接收功率超过第一阈值时,所述第二基站向网络功能实体上报测量结果或者所述第二基站进行干扰管理,其中所述第一阈值是所述网络功能实体配置的或预先配置的。
  17. 一种基站,所述基站包括第一处理器和第一收发器,其中:
    所述第一处理器,配置为确定干扰测量信号的配置信息;
    所述第一收发器,配置为根据所述干扰测量信号的配置信息发送干扰测量信号。
  18. 一种基站,所述基站包括第二处理器和第二收发器,其中:
    所述第二处理器,配置为确定至少一个干扰测量信号的配置信息;
    所述第二收发器,配置为根据所述干扰测量信号的配置信息接收另一基站发送的干扰测量信号。
  19. 一种基站,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至10任一项所述远端干扰测量信号的处理方法中的步骤;或者,所述处理器执行所述程序时实现权利要求11至16任一项所述远端干扰测量信号的处理方法中的步骤。
  20. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至10任一项所述远端干扰测量信号的处理方法中的步骤;或者,该计算机程序被处理器执行时实现权利要求11至16任一项所述远端干扰测量信号的处理方法中的步骤。
PCT/CN2019/071220 2018-02-09 2019-01-10 一种远端干扰测量信号的处理方法及基站、存储介质 WO2019154006A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/967,986 US11576186B2 (en) 2018-02-09 2019-01-10 Method for processing remote interference measurement signal, base station and storage medium
EP19750434.3A EP3742787B1 (en) 2018-02-09 2019-01-10 Method for processing remote interference measurement signal, base station and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810134886.7A CN110139290B (zh) 2018-02-09 2018-02-09 一种远端干扰测量信号的处理方法及基站、存储介质
CN201810134886.7 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019154006A1 true WO2019154006A1 (zh) 2019-08-15

Family

ID=67549215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071220 WO2019154006A1 (zh) 2018-02-09 2019-01-10 一种远端干扰测量信号的处理方法及基站、存储介质

Country Status (4)

Country Link
US (1) US11576186B2 (zh)
EP (1) EP3742787B1 (zh)
CN (1) CN110139290B (zh)
WO (1) WO2019154006A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112956144B (zh) * 2018-11-02 2022-10-04 中兴通讯股份有限公司 无线系统中的干扰管理
CN112543081B (zh) * 2019-09-20 2022-04-22 上海华为技术有限公司 一种数据处理的方法及装置
CN112654054B (zh) * 2019-10-11 2023-04-18 广州海格通信集团股份有限公司 干扰测量方法、装置、计算机设备和可读存储介质
CN112787735A (zh) * 2019-11-07 2021-05-11 上海华为技术有限公司 一种信号发送、检测方法以及相关装置
CN113067686B (zh) * 2020-01-02 2023-07-21 中国移动通信有限公司研究院 Rim-rs的发送方法及装置
WO2021212335A1 (zh) * 2020-04-21 2021-10-28 华为技术有限公司 配置信息的接收方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820636A (zh) * 2009-02-28 2010-09-01 华为技术有限公司 一种无线网络中干扰测量的方法、装置与系统
CN104219724A (zh) * 2013-05-31 2014-12-17 中兴通讯股份有限公司 一种小区间协作进行干扰测量的方法和节点
CN104956716A (zh) * 2012-11-26 2015-09-30 爱立信(中国)通信有限公司 用于测量干扰的方法和无线电网络节点
US20150333893A1 (en) * 2012-12-30 2015-11-19 Lg Electronics Inc. Method for sharing radio resource information in multi-cell wireless communication system and apparatus for same
CN105337688A (zh) * 2014-08-07 2016-02-17 上海贝尔股份有限公司 用于在基站间传输信息的方法、装置和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009904B2 (en) 2012-05-31 2018-06-26 Qualcomm Incorporated Interference mitigation in asymmetric LTE deployment
US10193727B1 (en) * 2016-12-12 2019-01-29 Sprint Spectrum L.P. Selective muting of transmission of reference signals to reduce interference in a wireless network
MX2020007335A (es) * 2018-01-11 2020-10-05 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo y dispositivo de configuracion de recursos, medio de almacenamiento de computadora.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820636A (zh) * 2009-02-28 2010-09-01 华为技术有限公司 一种无线网络中干扰测量的方法、装置与系统
CN104956716A (zh) * 2012-11-26 2015-09-30 爱立信(中国)通信有限公司 用于测量干扰的方法和无线电网络节点
US20150333893A1 (en) * 2012-12-30 2015-11-19 Lg Electronics Inc. Method for sharing radio resource information in multi-cell wireless communication system and apparatus for same
CN104219724A (zh) * 2013-05-31 2014-12-17 中兴通讯股份有限公司 一种小区间协作进行干扰测量的方法和节点
CN105337688A (zh) * 2014-08-07 2016-02-17 上海贝尔股份有限公司 用于在基站间传输信息的方法、装置和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3742787A4 *
ZTE ET AL.: "Discussion on Measurements and RS Design for CLI Mitigation", 3GPP TSG RAN WG1 MEETING #88BIS R1-1704434, 7 April 2017 (2017-04-07), XP051242581 *

Also Published As

Publication number Publication date
CN110139290A (zh) 2019-08-16
EP3742787A4 (en) 2021-03-17
US11576186B2 (en) 2023-02-07
US20210368510A1 (en) 2021-11-25
EP3742787B1 (en) 2022-04-13
CN110139290B (zh) 2022-03-08
EP3742787A1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2019154006A1 (zh) 一种远端干扰测量信号的处理方法及基站、存储介质
US11539422B2 (en) Beam management method, terminal, network device, and storage medium
US20180014279A1 (en) Preamble Sequence Transmission Method, Apparatus, and System
US20170311340A1 (en) Message Transmission Method and Apparatus
CN108668374B (zh) 一种调度请求的传输方法及装置
US20210337515A1 (en) Sidelink resource configuration method and apparatus
WO2017133555A1 (zh) 一种随机接入方法、基站、终端和计算机存储介质
JP2020504484A (ja) 基準信号の伝送方法及び通信装置
CN113692000B (zh) 接收公共控制消息的方法、终端及存储介质
WO2020029983A1 (zh) 发送和接收随机接入前导的方法以及通信装置
CN110121176B (zh) 无线通信方法、终端和网络设备
JP6567690B2 (ja) 共通情報送信方法および装置
WO2018171586A1 (zh) 一种通信方法、终端及网络设备
US20190356449A1 (en) Terminal apparatus, base station apparatus, and communication method
US20190306743A1 (en) Method and device for wireless communication in ue and base station
WO2018028675A1 (zh) 随机接入信号配置方法、装置、设备、系统和存储介质
JP6350837B2 (ja) データ送信方法および端末
WO2020048379A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN106658725B (zh) 一种数据传输方法及装置
US20190182882A1 (en) Network access method, access device, and terminal device
US11716731B2 (en) Wireless resource scheduling
WO2020063950A1 (zh) 处理干扰的方法及装置、存储介质和电子装置
CN114257484B (zh) 一种符号应用方法及通信装置
US20230164762A1 (en) User equipments, base stations, and methods
WO2023010439A1 (en) Methods, systems and devices that provide fast mobility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750434

Country of ref document: EP

Effective date: 20200817