WO2019153985A1 - 一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法 - Google Patents

一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法 Download PDF

Info

Publication number
WO2019153985A1
WO2019153985A1 PCT/CN2019/070113 CN2019070113W WO2019153985A1 WO 2019153985 A1 WO2019153985 A1 WO 2019153985A1 CN 2019070113 W CN2019070113 W CN 2019070113W WO 2019153985 A1 WO2019153985 A1 WO 2019153985A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
robot arm
heat source
arm
arm end
Prior art date
Application number
PCT/CN2019/070113
Other languages
English (en)
French (fr)
Inventor
熊力
唐四元
焦晶晶
张江杰
Original Assignee
中南大学
中南大学湘雅二医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学, 中南大学湘雅二医院 filed Critical 中南大学
Priority to US16/624,487 priority Critical patent/US10991113B2/en
Publication of WO2019153985A1 publication Critical patent/WO2019153985A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/579Depth or shape recovery from multiple images from motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1635Programme controls characterised by the control loop flexible-arm control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/4202Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model
    • G05B19/4207Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model in which a model is traced or scanned and corresponding data recorded
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image

Definitions

  • the present invention relates to the technical field, and in particular, to a gyroscope-based robot arm heat source tracking assisting system and a method thereof.
  • the robotic arm is the most widely used automated mechanical device in the field of robotics. It can be seen in industrial manufacturing, medical treatment, entertainment services, military, semiconductor manufacturing and space exploration. Although their shapes are different, they all have one thing in common: they can accept instructions and accurately position them at a certain point in the three-dimensional (or two-dimensional) space.
  • the technical problem to be solved by the present invention is to provide a gyroscope-based robot arm heat source tracking assisting system and a method thereof to solve the deficiencies of the prior art.
  • the present invention provides a gyroscope-based robot arm heat source tracking assisting system, including
  • 3D modeling part collecting and analyzing the scanned image of the controlled object, and performing image enhancement on the collected controlled object image, then compressing and encoding the image, transmitting it to the PC end, and decoding the image to construct a 3D simulated image of the controlled object.
  • (x, y, z) three-dimensional data storage define the horizontal axis as x, the vertical axis as y, the vertical axis is z, if the (x, y, z) coordinate point data is not zero, it is the controlled object Source data of a part;
  • the arm end capture part of the robot arm the two robot arm arm end capture device captures the fixed heat source of the arm end of the robot arm, one of the heat source capture devices acquires (x2, y2), and the other heat source capture device acquires (y2, z2) , wherein the two sets of vertical axis Y coordinates can be used to calibrate each other, and then the heat source tracking system calculates the relative position data (x2, y2, z2) of the arm end of the robot arm, and transmits the data to the digital image processing system portion;
  • Image processing system part After determining the position of the arm end of the robot arm according to the coordinates provided by the capturing part of the arm end of the robot arm, the real-time gyroscope data is acquired at the same time, and the working angle direction of the robot arm is calculated according to the three-dimensional angle information acquired by the gyroscope. Combined with the relative position of the arm end of the robot arm (x2, y2, z2) and the three-dimensional angle information of the robot arm, the relative position (x1, y1, z1) of the end of the robot arm can be calculated, and a large amount of image data is collected for integration. The integrated image is image grayscale processed and deepened in the horizontal axis position, vertical axis position and vertical axis position.
  • the 3D modeling section collects and analyzes a scanned image of the controlled object by using a technique not limited to CT, magnetic resonance, 3D scanning, or X-ray.
  • the arm end capturing portion of the mechanical arm is installed at a position of 200 cm on the right side of the table and a position of 200 cm on the top.
  • the display image in the image system can be enlarged and reduced.
  • the two robot arm end capturing devices capture the heat source fixed at the arm end of the robot arm at a frequency of 50 Hz.
  • a gyroscope-based robot arm heat source tracking assisting method includes the following steps:
  • Step 1 Collecting and analyzing the scanned image of the controlled object, and performing image enhancement on the collected controlled object image, then compressing and encoding the image, and transmitting the image to the PC end, and decoding the image to construct a 3D simulated image of the controlled object;
  • Step 2 Both mechanical arm end-capture devices can capture the heat source fixed at the arm end of the robot arm at a frequency of 50 Hz, wherein one heat source capture device acquires (x2, y2) and another heat source capture device acquires (y2, z2). ), the heat source tracking system calculates the relative position data (x2, y2, z2) of the arm end of the robot arm, and transmits the data to the digital image processing portion;
  • Step 3 After determining the position of the mechanical arm end according to the coordinates provided by the capturing portion of the mechanical arm end, the real-time gyroscope data is acquired at the same time, and the relative position of the end of the mechanical arm is calculated according to the three-dimensional angle information acquired by the gyroscope, and then a large number of pictures are collected.
  • the data is integrated, and the integrated image is subjected to image gray processing, and the annotation is specifically deepened at the horizontal axis position, the vertical axis position, and the vertical axis position.
  • the invention utilizes CT, magnetic resonance, 3D scanning, X-ray and other technologies to collect a large amount of image information data, model the working environment image of the robot arm, and add a heat source supply device and a gyroscope to the arm end of the robot arm, and accurately track the arm end of the robot arm.
  • the heat source accurately measures the position of the arm end of the robot arm, and uses the high-precision gyro to measure the high-precision angle information, and combines the number theory formula to accurately calculate the relative position of the end of the robot arm to separately position the end position of the robot arm, or It assists other algorithms or devices that track the position of the end of the robot arm, and corrects and calibrates the position of the end of the arm to ensure the accuracy of the position of the end of the arm displayed in the image processing system.
  • the position of the end position of the robot arm can be continuously and dynamically tracked in real time, and it can be virtualized in the corresponding image system to reach the position of the end of the positioning robot arm, and assist and guide the operator or intelligent algorithm to perform various fine mechanical operations.
  • Figure 1 is a block diagram of the system of the present invention.
  • a gyroscope-based robot arm heat source tracking assisting system includes:
  • A. Integrating digital image information for 3D modeling collecting and analyzing the scanned image of the controlled object by using CT, magnetic resonance, 3D scanning, X-ray, etc., and enhancing the image of the collected controlled object, and then The image is compression encoded and transmitted to the PC.
  • the decoded image constructs a 3D simulated image of the controlled object, stored in (x, y, z) three-dimensional data, defining the horizontal axis as x, the vertical axis as y, and the vertical axis as z, if (x, y, z) coordinate point data When it is not zero, it is the source data of a part of the controlled object;
  • A. Arm arm end capture part Install a heat source capture device at 200cm on the right side of the table and 200cm on the top. Both devices can capture the heat source fixed at the arm end of the robot arm at a frequency of 50Hz, one of which is a heat source. Capture device acquisition (x2, y2), another heat source capture device acquisition (y2, z2), where two sets of vertical axis Y coordinates can be used to calibrate each other, and then the heat source tracking system calculates the relative position data of the arm end of the robot arm (x2 , y2, z2), transfer the data to the digital image processing system.
  • C. Image processing system part After determining the position of the arm end of the mechanical arm according to the coordinates provided by the capturing part of the arm end of the robot arm, the real-time gyroscope data is acquired at the same time, and the working angle direction of the mechanical arm is obtained according to the three-dimensional angle information acquired by the gyroscope For more accurate calculations, the relative position (x1, y1, z1) of the end of the robot arm can be calculated by using the number theory formula, combined with the relative position of the arm end of the robot arm (x2, y2, z2) and the three-dimensional angle information of the robot arm.
  • CT magnetic resonance
  • 3D scanning 3D scanning
  • X-ray and other technologies will be used to collect a large amount of image data for integration, and the integrated image will be subjected to image gray processing, and the annotation will be specifically deepened in the horizontal axis position, the vertical axis position and the vertical axis position. Convenient for mechanical engineers to quickly and accurately identify the location.
  • the specific implementation steps are as follows:
  • the two heat source capture devices scan the signal heat source at a refresh rate of 50 Hz, and then determine the position of the arm end of the robot arm according to the predetermined threshold value, and obtain (x2, y2) and (y2, z2) according to the ratio in the image processing. For the calculation formula, determine its coordinates (x2, y2, z2).
  • the known mechanical arm end position (x2, y2, z2) is calculated by the number theory formula to calculate the relative position of the mechanical arm end (x1, y1). , z1), the data is transmitted to the display processing system of the PC side, and the image data of the PC side is enhanced.
  • the relative position (x1, y1, z1) of the end of the robot arm is transmitted in the image of the corresponding display system.
  • the display image in the image system can be enlarged and reduced.
  • the mechanical control operation can be performed according to the established operation route.
  • the relative position (x, y, z) transmitted by other tracking devices or systems can be obtained first, and the data transmitted directly through the signal source is directly aligned ( x, y, z) and (x1, y1, z1), perform error analysis, select optimization data and punctuate in the image display system.
  • the data transmitted directly through the signal source is directly aligned ( x, y, z) and (x1, y1, z1), perform error analysis, select optimization data and punctuate in the image display system.
  • the B and C parts complete the subsequent implementation steps, re-plan a new operation route, continue the mechanical operation from the end point, match the three-dimensional position information of the operator and the end of the robot arm according to the reality, combined with the experience of the mechanical engineer. Make minor corrections and proceed to the next part.
  • the fixed object needs to be fixed before the system is used.
  • the simplest and most practical is to fix the object to be fixed on the workbench before using the robot arm, and fix it with a device such as a rubber strip.
  • the system will perform relative position calibration on each part of the object to be operated, and can adjust and correct the data source during operation to ensure that the system coordinates will not be deviated.
  • the mechanical engineer can self-use during use. Fine-tune some parameters, etc., to facilitate comparison operations.
  • the parameters include image size, positioning calibration, and so on.
  • the present invention utilizes CT, magnetic resonance, 3D scanning, X-ray and other technologies to collect a large amount of image information data, model the working environment image of the robot arm, and add a heat source supply device and a gyroscope to the arm end of the robot arm to accurately track the machine.
  • the arm arm end heat source accurately measures the arm end position of the robot arm, and uses the high-precision gyroscope to measure the high-precision angle information.
  • the relative position of the end of the robot arm is accurately calculated to separately position the end of the robot arm.
  • the position of the end position of the robot arm can be continuously and dynamically tracked in real time, and it can be virtualized in the corresponding image system to reach the position of the end of the positioning robot arm, and assist and guide the operator or intelligent algorithm to perform various fine mechanical operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automation & Control Theory (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Endoscopes (AREA)

Abstract

本发明公开了一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法,收集大量图片信息数据,建模机械手臂工作环境图像,在机械手臂臂端加入热源供应装置和陀螺仪,通过精确追踪机械手臂臂端热源,准确的测量出机械手臂臂端位置,并利用高精度陀螺仪测量出的高精度角度信息,结合数论公式,精确计算出机械手臂末端的相对位置,用以单独定位机械手臂末端位置,或辅助其他追踪机械手臂末端位置的算法或装置,对机械手臂末端位置进行误差修正和校准,以保障图像处理系统中显示出来的手臂末端位置的精度。可实时持续动态追踪机械手臂末端位置位置,将其虚拟在对应的图像系统中,定位机械手臂末端位置,辅助和引导操作者或智能算法进行各类精细机械操作。

Description

一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法 技术领域
本发明涉及技术领域,尤其涉及一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法。
背景技术
机械手臂是机械人技术领域中得到最广泛实际应用的自动化机械装置,在工业制造、医学治疗、娱乐服务、军事、半导体制造以及太空探索等领域都能见到它的身影。尽管它们的形态各有不同,但它们都有一个共同的特点,就是能够接受指令,精确地定位到三维(或二维)空间上的某一点进行作业。
传统的机械手臂大都在机械手臂末端加入信号源标志物或传感器,然而存在的最大的问题是在不少可操控的智能机械手臂上,其末端的信号源标志物或传感器为较精细或固定材质,无法对机械手臂末端进行改造或替换。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法,以解决现有技术的不足。
为实现上述目的,本发明提供了一种基于陀螺仪的机械手臂热源追踪辅助系统,包括
3D建模部分:收集和分析被控物体的扫描图,对收集的被控物体图进行图像增强后,再将图像进行压缩编码,传输到PC端后,解码图像构造被控物体的3D模拟图像,以(x,y,z)三维数据存储,定义横轴为x,纵轴为y,竖轴为z,若(x,y,z)坐标点数据不为零时,即为被控物体某部分的图源数据;
机械手臂臂端捕捉部分:两机械手臂臂端捕捉设备对机械手臂臂端固定 的热源进行捕捉,其中一台热源捕捉设备获取(x2,y2),另一台热源捕捉设备获取(y2,z2),其中两组纵轴Y坐标可用来互相校准,再由热源追踪系统计算出机械手臂臂端相对位置数据(x2,y2,z2),将数据传输至数字图像处理系统部分中;
图像处理系统部分:根据机械手臂臂端捕捉部分提供的坐标确定了机械手臂臂端位置后,同时获取实时的陀螺仪数据,依据陀螺仪获取的三维角度信息,对机械手臂的工作角度方向进行计算,结合机械手臂臂端相对位置(x2,y2,z2)和机械手臂的三维角度信息,即可计算出机械手臂末端的相对位置(x1,y1,z1),再收集大量图片数据进行整合,将整合后的图片进行图像灰度处理,并在横轴位置、纵轴位置和竖轴位置具体加深标注。
进一步地,所述3D建模部分通过利用不限于CT、磁共振、3D扫描、X射线的技术收集和分析被控物体的扫描图。
进一步地,所述机械手臂臂端捕捉部分安装在工作台右侧200cm和顶部200cm位置。
进一步地,所述机械手臂末端相对位置(x1,y1,z1)在显示系统的图像中标注出来后,图像系统中的显示图片可进行放大缩小。
进一步地,所述两机械手臂臂端捕捉设备均以频率为50Hz对机械手臂臂端固定的热源进行捕捉。
一种基于陀螺仪的机械手臂热源追踪辅助方法,包括以下步骤:
步骤1、收集和分析被控物体的扫描图,对收集的被控物体图进行图像增强后,再将图像进行压缩编码,传输到PC端后,解码图像构造被控物体的3D模拟图像;
步骤2、两机械手臂端捕设备均能以频率为50Hz对机械手臂臂端固定的热源进行捕捉,其中一台热源捕捉设备获取(x2,y2),另一台热源捕捉设备获取(y2,z2),再由热源追踪系统计算出机械手臂臂端相对位置数据 (x2,y2,z2),将数据传输至数字图像处理部分中;
步骤3、根据机械手臂端捕捉部分提供的坐标确定了机械手臂端位置后,同时获取实时的陀螺仪数据,依据陀螺仪获取的三维角度信息,计算出机械手臂末端的相对位置,然后收集大量图片数据进行整合,将整合后的图片进行图像灰度处理,并在横轴位置、纵轴位置和竖轴位置具体加深标注。
本发明的有益效果是:
本发明利用CT、磁共振、3D扫描、X射线等技术,收集大量图片信息数据,建模机械手臂工作环境图像,在机械手臂臂端加入热源供应装置和陀螺仪,通过精确追踪机械手臂臂端热源,准确的测量出机械手臂臂端位置,并利用高精度陀螺仪测量出的高精度角度信息,结合数论公式,精确计算出机械手臂末端的相对位置,用以单独定位机械手臂末端位置,或辅助其他追踪机械手臂末端位置的算法或装置,对机械手臂末端位置进行误差修正和校准,以保障图像处理系统中显示出来的手臂末端位置的精度。可实时持续动态追踪机械手臂末端位置位置,将其虚拟在对应的图像系统中,来达到定位机械手臂末端位置,辅助和引导操作者或智能算法进行各类精细机械操作。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的系统框图。
图2是本发明的系统流程图。
具体实施方式
实施例一
如图1所示,一种基于陀螺仪的机械手臂热源追踪辅助系统,该系统包括:
A.整合数字图像信息进行3D建模部分:通过利用CT、磁共振、3D扫描、X射线等技术收集和分析被控物体的扫描图,对收集的被控物体图进行图像增强后,再将图像进行压缩编码,传输到PC端后。解码图像构造被控物体的3D模拟图像,以(x,y,z)三维数据存储,定义横轴为x,纵轴为y,竖轴为z,若(x,y,z)坐标点数据不为零时,即为被控物体某部分的图源数据;
B.机械手臂臂端捕捉部分:在工作台右侧200cm和顶部200cm位置分别安装一台热源捕捉设备,两设备均能以频率为50Hz对机械手臂臂端固定的热源进行捕捉,其中一台热源捕捉设备获取(x2,y2),另一台热源捕捉设备获取(y2,z2),其中两组纵轴Y坐标可用来互相校准,再由热源追踪系统计算出机械手臂臂端相对位置数据(x2,y2,z2),将数据传输至数字图像处理系统中。
C.图像处理系统部分:根据机械手臂臂端捕捉部分提供的坐标确定了机械手臂臂端位置后,同时获取实时的陀螺仪数据,依据陀螺仪获取的三维角度信息,对机械手臂的工作角度方向进行较精确的计算,利用数论公式,结合机械手臂臂端相对位置(x2,y2,z2)和机械手臂的三维角度信息,即可计算出机械手臂末端的相对位置(x1,y1,z1)。将利用CT、磁共振、3D扫描、X射线等技术,收集大量图片数据进行整合,将整合后的图片进行图像灰度处理,并在横轴位置、纵轴位置和竖轴位置具体加深标注,方便机械工程师快速准确识别位置。具体实施步骤如下:
第一步将两台热源捕捉设备以50HZ的刷新频率扫描信号热源,再根据已定阈值,判断机械手臂臂端位置,获取(x2,y2)和(y2,z2),依照图像处理中的比对计算公式,确定其坐标(x2,y2,z2)。
第二步在已知坐标情况下,据其陀螺仪获取的三维角度坐标,将已知的 机械手臂臂端位置(x2,y2,z2)通过数论公式推算出机械手臂末端相对位置(x1,y1,z1),将数据传输到PC端的显示处理系统中,并对PC端的图像数据进行增强。
第三步将传输过来机械手臂末端相对位置(x1,y1,z1)在对应显示系统的图像中标示出来,为方便观察,图像系统中的显示图片可进行放大缩小。
确定好机械手臂末端位置后即可按照既定的操作路线进行机械控制操作。
实施例二
与实施例一不同的地方是,本系统作为辅助系统使用,则可先获取其他追踪装置或系统传输过来的相对位置(x,y,z),比对直接经信号源定位传输过来的数据(x,y,z)和(x1,y1,z1),进行误差分析,选择优化数据再在图像显示系统中标点。完成既定基本路线操作后,若还要在终点处进行下一个操作。同理,继续B、C部分,完成后续实施步骤,重新规划一条新的操作路线,从终点处继续机械操作,根据现实被操作物与机械手臂末端的三维位置信息匹配,结合机械工程师自身经验,进行细微修正,再进行下一部分操作。
值得注意的是使用该系统前需要对被操作物进行固定操作,最简单实用的是,使用机械手臂操作前将被操作物固定于工作台,并用胶条等装置固定,在进行图源数据信息获取时,系统将对被操作物的各个部位进行相对位置标定,并可在操作途中对数据源进行调整和修正,用以保证系统坐标不会出现偏差,同时,机械工程师在使用过程中可以自行微调一些参数等,用以方便对照操作。其中参数包含图片大小、定位校准等。
综上,本发明利用CT、磁共振、3D扫描、X射线等技术,收集大量图片信息数据,建模机械手臂工作环境图像,在机械手臂臂端加入热源供应装置和陀螺仪,通过精确追踪机械手臂臂端热源,准确的测量出机械手臂臂端 位置,并利用高精度陀螺仪测量出的高精度角度信息,结合数论公式,精确计算出机械手臂末端的相对位置,用以单独定位机械手臂末端位置,或辅助其他追踪机械手臂末端位置的算法或装置,对机械手臂末端位置进行误差修正和校准,以保障图像处理系统中显示出来的手臂末端位置的精度。可实时持续动态追踪机械手臂末端位置位置,将其虚拟在对应的图像系统中,来达到定位机械手臂末端位置,辅助和引导操作者或智能算法进行各类精细机械操作。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (6)

  1. 一种基于陀螺仪的机械手臂热源追踪辅助系统,其特征在于,包括
    3D建模部分:收集和分析被控物体的扫描图,对收集的被控物体图进行图像增强后,再将图像进行压缩编码,传输到PC端后,解码图像构造被控物体的3D模拟图像,以(x,y,z)三维数据存储,定义横轴为x,纵轴为y,竖轴为z,若(x,y,z)坐标点数据不为零时,即为被控物体某部分的图源数据;
    机械手臂臂端捕捉部分:两机械手臂臂端捕捉设备对机械手臂臂端固定的热源进行捕捉,其中一台热源捕捉设备获取(x2,y2),另一台热源捕捉设备获取(y2,z2),其中两组纵轴Y坐标可用来互相校准,再由热源追踪系统计算出机械手臂臂端相对位置数据(x2,y2,z2),将数据传输至数字图像处理系统部分中;
    图像处理系统部分:根据机械手臂臂端捕捉部分提供的坐标确定了机械手臂臂端位置后,同时获取实时的陀螺仪数据,依据陀螺仪获取的三维角度信息,对机械手臂的工作角度方向进行计算,结合机械手臂臂端相对位置(x2,y2,z2)和机械手臂的三维角度信息,即可计算出机械手臂末端的相对位置(x1,y1,z1),再收集大量图片数据进行整合,将整合后的图片进行图像灰度处理,并在横轴位置、纵轴位置和竖轴位置具体加深标注。
  2. 如权利要求1所述的一种基于陀螺仪的机械手臂热源追踪辅助系统,其特征在于:所述3D建模部分通过利用不限于CT、磁共振、3D扫描、X射线的技术收集和分析被控物体的扫描图。
  3. 如权利要求1所述的一种基于陀螺仪的机械手臂热源追踪辅助系统,其特征在于:所述机械手臂臂端捕捉部分安装在工作台右侧200cm和顶部200cm位置。
  4. 如权利要求1所述的一种基于陀螺仪的机械手臂热源追踪辅助系统,其特征在于:所述机械手臂末端相对位置(x1,y1,z1)在显示系统的图像中标注出来后,图像系统中的显示图片可进行放大缩小。
  5. 如权利要求1所述的一种基于陀螺仪的机械手臂热源追踪辅助系统,其特征在于:所述两机械手臂臂端捕捉设备均以频率为50Hz对机械手臂臂端固定的热源进行捕捉。
  6. 一种基于陀螺仪的机械手臂热源追踪辅助方法,其特征在于,包括以下步骤:
    步骤1、收集和分析被控物体的扫描图,对收集的被控物体图进行图像增强后,再将图像进行压缩编码,传输到PC端后,解码图像构造被控物体的3D模拟图像;
    步骤2、两机械手臂端捕设备均能以频率为50Hz对机械手臂臂端固定的热源进行捕捉,其中一台热源捕捉设备获取(x2,y2),另一台热源捕捉设备获取(y2,z2),再由热源追踪系统计算出机械手臂臂端相对位置数据(x2,y2,z2),将数据传输至数字图像处理部分中;
    步骤3、根据机械手臂端捕捉部分提供的坐标确定了机械手臂端位置后,同时获取实时的陀螺仪数据,依据陀螺仪获取的三维角度信息,计算出机械手臂末端的相对位置,然后收集大量图片数据进行整合,将整合后的图片进行图像灰度处理,并在横轴位置、纵轴位置和竖轴位置具体加深标注。
PCT/CN2019/070113 2018-02-12 2019-01-02 一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法 WO2019153985A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,487 US10991113B2 (en) 2018-02-12 2019-01-02 Gyroscope-based system and method for assisting in tracking heat source on mechanical arm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810147131.0A CN108171749A (zh) 2018-02-12 2018-02-12 一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法
CN201810147131.0 2018-02-12

Publications (1)

Publication Number Publication Date
WO2019153985A1 true WO2019153985A1 (zh) 2019-08-15

Family

ID=62513874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070113 WO2019153985A1 (zh) 2018-02-12 2019-01-02 一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法

Country Status (3)

Country Link
US (1) US10991113B2 (zh)
CN (1) CN108171749A (zh)
WO (1) WO2019153985A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108171749A (zh) * 2018-02-12 2018-06-15 中南大学湘雅二医院 一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法
US11586844B2 (en) * 2020-03-30 2023-02-21 Wipro Limited Method and system for detecting and tracking objects in a rotational environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201217123A (en) * 2010-10-21 2012-05-01 Ind Tech Res Inst Parameters adjustment method of robotic arm system and adjustment apparatus
CN102601800A (zh) * 2011-01-19 2012-07-25 鸿富锦精密工业(深圳)有限公司 机械臂定位装置以及具有该机械臂定位装置的机械臂
CN106092053A (zh) * 2015-12-25 2016-11-09 宁夏巨能机器人系统有限公司 一种机器人重复定位系统及其定位方法
CN106840205A (zh) * 2017-01-19 2017-06-13 北京小鸟看看科技有限公司 陀螺仪校准补偿方法及装置、虚拟现实头戴设备
WO2017098707A1 (ja) * 2015-12-11 2017-06-15 川崎重工業株式会社 外科手術システム、マニピュレータアーム、及びマニピュレータアーム支持体
CN108171749A (zh) * 2018-02-12 2018-06-15 中南大学湘雅二医院 一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893330B2 (ja) * 2011-10-18 2016-03-23 オリンパス株式会社 操作入力装置および操作入力装置の初期化方法
FR3007175B1 (fr) * 2013-06-13 2016-12-09 Solidanim Systemes de reperage de la position de la camera de tournage pour le tournage de films video
CN105222772B (zh) * 2015-09-17 2018-03-16 泉州装备制造研究所 一种基于多源信息融合的高精度运动轨迹检测系统
US10043076B1 (en) * 2016-08-29 2018-08-07 PerceptIn, Inc. Visual-inertial positional awareness for autonomous and non-autonomous tracking
US10395117B1 (en) * 2016-08-29 2019-08-27 Trifo, Inc. Visual-inertial positional awareness for autonomous and non-autonomous tracking
US10390003B1 (en) * 2016-08-29 2019-08-20 Perceptln Shenzhen Limited Visual-inertial positional awareness for autonomous and non-autonomous device
US10032276B1 (en) * 2016-08-29 2018-07-24 PerceptIn, Inc. Visual-inertial positional awareness for autonomous and non-autonomous device
US10402663B1 (en) * 2016-08-29 2019-09-03 Trifo, Inc. Visual-inertial positional awareness for autonomous and non-autonomous mapping
US10410328B1 (en) * 2016-08-29 2019-09-10 Perceptin Shenzhen Limited Visual-inertial positional awareness for autonomous and non-autonomous device
US10453213B2 (en) * 2016-08-29 2019-10-22 Trifo, Inc. Mapping optimization in autonomous and non-autonomous platforms
US10366508B1 (en) * 2016-08-29 2019-07-30 Perceptin Shenzhen Limited Visual-inertial positional awareness for autonomous and non-autonomous device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201217123A (en) * 2010-10-21 2012-05-01 Ind Tech Res Inst Parameters adjustment method of robotic arm system and adjustment apparatus
CN102601800A (zh) * 2011-01-19 2012-07-25 鸿富锦精密工业(深圳)有限公司 机械臂定位装置以及具有该机械臂定位装置的机械臂
WO2017098707A1 (ja) * 2015-12-11 2017-06-15 川崎重工業株式会社 外科手術システム、マニピュレータアーム、及びマニピュレータアーム支持体
CN106092053A (zh) * 2015-12-25 2016-11-09 宁夏巨能机器人系统有限公司 一种机器人重复定位系统及其定位方法
CN106840205A (zh) * 2017-01-19 2017-06-13 北京小鸟看看科技有限公司 陀螺仪校准补偿方法及装置、虚拟现实头戴设备
CN108171749A (zh) * 2018-02-12 2018-06-15 中南大学湘雅二医院 一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法

Also Published As

Publication number Publication date
US10991113B2 (en) 2021-04-27
CN108171749A (zh) 2018-06-15
US20200111224A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
CN104856720B (zh) 一种基于rgb‑d传感器的机器人辅助超声扫描系统
KR102062423B1 (ko) 작업재의 가상조립을 통해 어셈블리 시스템을 트레이닝 하기 위한 비전시스템
CN107253192A (zh) 一种基于Kinect的无标定人机交互控制系统及方法
JP2016103230A (ja) 画像処理装置、画像処理方法、及びプログラム
RU2010123952A (ru) Система и способ автоматической калибровки отслеживаемого ультразвука
CN103895042A (zh) 一种基于视觉引导的工业机器人工件定位抓取方法及系统
CN105082161A (zh) 双目立体摄像机机器人视觉伺服控制装置及其使用方法
CN101574586B (zh) 毽球机器人及控制方法
CN108245788B (zh) 一种双目测距装置及方法、包括该装置的加速器放疗系统
CN111627521A (zh) 增强现实在放疗中的应用
CN103817699A (zh) 一种快速的工业机器人手眼协调方法
ITTV20100133A1 (it) Apparato e metodo per effettuare la mappatura di uno spazio tridimensionale in applicazioni medicali a scopo interventistico o diagnostico
WO2019153985A1 (zh) 一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法
CN104207801A (zh) 一种超声检测图像三维标定方法
US10078906B2 (en) Device and method for image registration, and non-transitory recording medium
KR101021470B1 (ko) 영상 데이터를 이용한 로봇 움직임 데이터 생성 방법 및 생성 장치
CN115179294A (zh) 机器人控制方法、系统、计算机设备、存储介质
Xin et al. 3D augmented reality teleoperated robot system based on dual vision
TWI591514B (zh) 手勢創建系統及方法
Palani et al. Real-time joint angle estimation using mediapipe framework and inertial sensors
KR20190063967A (ko) 스테레오 카메라와 3d 바코드를 이용한 위치 측정 방법 및 장치
CN113487726B (zh) 动作捕捉系统和方法
Zhou et al. Visual positioning of distant wall-climbing robots using convolutional neural networks
US8717579B2 (en) Distance measuring device using a method of spanning separately targeted endpoints
Bonnet et al. Toward an affordable and user-friendly visual motion capture system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750907

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19750907

Country of ref document: EP

Kind code of ref document: A1