WO2019153984A1 - 一种微型电控磁力清洁系统及其方法 - Google Patents

一种微型电控磁力清洁系统及其方法 Download PDF

Info

Publication number
WO2019153984A1
WO2019153984A1 PCT/CN2019/070112 CN2019070112W WO2019153984A1 WO 2019153984 A1 WO2019153984 A1 WO 2019153984A1 CN 2019070112 W CN2019070112 W CN 2019070112W WO 2019153984 A1 WO2019153984 A1 WO 2019153984A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
central
scale
micron
micro
Prior art date
Application number
PCT/CN2019/070112
Other languages
English (en)
French (fr)
Inventor
熊力
唐四元
李乐之
张江杰
Original Assignee
中南大学
中南大学湘雅二医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学, 中南大学湘雅二医院 filed Critical 中南大学
Priority to US16/607,245 priority Critical patent/US11389182B2/en
Publication of WO2019153984A1 publication Critical patent/WO2019153984A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00345Micromachines, nanomachines, microsystems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00411Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like actuated by application of energy from an energy source outside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00876Material properties magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22072Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22094Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for crossing total occlusions, i.e. piercing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • A61B2017/2215Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions having an open distal end

Definitions

  • the invention relates to the field of electronically controlled magnetic technology, and in particular to a miniature electronically controlled magnetic cleaning system and a method thereof.
  • the endoscope is a test instrument that integrates traditional optics, ergonomics, precision machinery, modern electronics, mathematics, and software.
  • One has an image sensor, an optical lens, a light source illumination, a mechanical device, etc., which can enter the stomach through the oral cavity or enter the body through other natural channels.
  • the endoscope can be used to see lesions that X-rays cannot display, so it is very useful for doctors. For example, an endoscopic doctor can observe ulcers or tumors in the stomach and develop an optimal treatment plan accordingly.
  • the use of an endoscope in combination with a micro-instrument device requires cleaning of organs in the body.
  • the present invention proposes a miniature electronically controlled magnetic cleaning system.
  • the technical problem to be solved by the present invention is to provide a miniature electronically controlled magnetic cleaning system and method thereof to solve the deficiencies of the prior art.
  • the present invention provides a miniature electronically controlled magnetic cleaning system comprising:
  • the inner end portion of the micron-sized thin wire is specifically: a plurality of micron-sized magnetic thin wires are manufactured, wherein the central magnetic thin wire should be slightly larger than the surrounding thin wire, and the inner magnetic thin wire should be spirally formed at the inner end direction;
  • the micro-scale thin wire external motor control part is specifically: adding a high-precision micro motor to the outer middle position of the central magnetic thin wire, and when the large obstacle is found in the endoscope or other optical device image system, the central magnetic fineness can be controlled.
  • the line arrives at the designated position and controls the motor speed to clear the obstacle;
  • the electronic control part of the external system of the micron-sized thin wire is specifically: the central magnetic large-micron-sized thin wire is separated from several small micro-nano-scale thin wires around, and respectively connected to the electromagnetic induction system, so that the control system can separately control the thin line of the middle line and The advance and retreat and magnetic properties of the surrounding thin wires, combined with the gyroscope heat source tracking assist system, locate the micron-level thin line position and display it in the digital image system.
  • the gyroscope is a ten-axis gyroscope.
  • the magnetic thin wire is wrapped with a magnetic shielding material in the middle.
  • a miniature electronically controlled magnetic cleaning method comprising:
  • Step 1 Start the optical device image system, find obstacles in the pipeline or contact objects, combine the gyroscope heat source tracking assistant system, locate the relative position (x, y, z) of the obstacle, and control the current direction.
  • the central micron-sized magnetic thin wires are opposite in polarity to the surrounding magnetic thin wires, attracting each other, and pushing the sucked micro-scale magnetic thin wires through the pipeline to the (x, y, z) position;
  • Step 2 In the case of known coordinates, according to the three-dimensional angular coordinates acquired by the gyroscope, the current direction is changed, and the central micro-scale magnetic thin magnetic pole is changed, so that the central micro-scale magnetic thin wire has the same polarity as the surrounding magnetic thin wires. Repelling each other, pushing the micro-scale magnetic thin wires around a few micrometers, so that the surrounding magnetic thin wires enclose the obstacles, and then reverse the magnetic direction to reverse the magnetic polarity of the central micro-scale magnetic thin wires, so that the central micro-scale magnetic thin wires and The surrounding magnetic thin wires have opposite polarities and attract obstacles;
  • Step 3 Operate an external electronic control system to control the obstacles
  • Step 4 Repeat steps 1, 2, and 3 several times to remove the relevant obstacles in the pipeline or in the contact object one by one;
  • Step 5 If the obstacle is found to be large in volume, first control the motor to rotate the central micron-sized magnetic thin wire, and use the moment force of high-speed rotation to break the obstacle.
  • the invention has the advantages of convenient operation and high efficiency, can promote the rapid progress and development of the endoscope and the optical microscopy device, and is convenient for the mechanical engineer to need real-time visualization to understand the operation of the endoscope and the optical microscopy device, the micro-instrument device and related contact.
  • Figure 1 is a block diagram showing the structure of the present invention.
  • Figure 2 is a flow chart of the present invention.
  • Figure 3 is a schematic view showing the structure of an embodiment of the present invention.
  • a miniature electronically controlled magnetic cleaning system includes:
  • the inner end of the micron-sized thin wire is specifically: a plurality of micro-scale magnetic thin wires are manufactured, wherein the central magnetic thin wire should be slightly larger than the surrounding thin wire, and the inner magnetic thin wire should be spirally formed at the inner end; all the magnetic fine
  • the magnetic shielding material is wrapped in the middle of the wire to ensure that only the end portion of the magnetic thin wire can receive electromagnetic induction.
  • the micro-scale thin wire external motor control part is specifically: adding a high-precision micro motor to the outer middle position of the central magnetic thin wire, and when the large obstacle is found in the endoscope or other optical device image system, the central magnetic fineness can be controlled.
  • the line arrives at the designated position and controls the motor speed to clear the obstacle;
  • the electronic control part of the external system of the micron-sized thin wire is specifically: the central magnetic large-micron-sized thin wire is separated from several small micro-nano-scale thin wires around, and respectively connected to the electromagnetic induction system, so that the control system can separately control the thin line of the middle line and The advance and retreat and magnetic properties of the surrounding thin wires, combined with the gyroscope heat source tracking assist system, locate the micron-level thin line position and display it in the digital image system.
  • the gyroscope is a ten-axis gyroscope.
  • a miniature electronically controlled magnetic cleaning method includes:
  • Step 1 Start the optical device image system, find obstacles in the pipeline or contact objects, combine the gyroscope heat source tracking assistant system, locate the relative position (x, y, z) of the obstacle, and control the current direction.
  • the central micron-sized magnetic thin wires are opposite in polarity to the surrounding magnetic thin wires, attracting each other, and pushing the sucked micro-scale magnetic thin wires through the pipeline to the (x, y, z) position;
  • Step 2 In the case of known coordinates, according to the three-dimensional angular coordinates acquired by the gyroscope, the current direction is changed, and the central micro-scale magnetic thin magnetic pole is changed, so that the central micro-scale magnetic thin wire has the same polarity as the surrounding magnetic thin wires. Repelling each other, pushing the micro-scale magnetic thin wires around a few micrometers, so that the surrounding magnetic thin wires enclose the obstacles, and then reverse the magnetic direction to reverse the magnetic polarity of the central micro-scale magnetic thin wires, so that the central micro-scale magnetic thin wires and The surrounding magnetic thin wires have opposite polarities and attract obstacles;
  • Step 3 Operate an external electronic control system to control the obstacles
  • Step 4 Repeat steps 1, 2, and 3 several times to remove the relevant obstacles in the pipeline or in the contact object one by one;
  • Step 5 If the obstacle is found to be large in volume, first control the motor to rotate the central micro-scale magnetic thin wire, and use the moment force of high-speed rotation to break the obstacle.
  • the system also needs to add the operation of crushing obstacles (such as the stones shown in Fig. 3). If the obstacle is found to be large in volume, the motor should be controlled first, and the central micron magnetism should be rotated. Thin lines, using high-speed rotating moments, to break down obstacles. Because the surrounding magnetic thin wire has wrapped the obstacle, it can further reduce the damage of the obstacle to the contact or pipeline caused by the crushing, and can greatly reduce the scattering of the broken obstacle.
  • mechanical engineers can not only control the direction of the current to change the polarity of the electromagnetic, but also control the magnitude of the current to change the magnitude of the magnetic force to capture obstacles of different quality.
  • the motor speed and strength can be controlled by the system. After completing the established basic route operation, if you want to find the next obstacle, proceed to the next operation. In the same way, continue the first and second steps, complete the subsequent implementation steps, re-plan a new operation route, finely correct the position of the obstacle and the electronic control current and speed of the instrument, and then perform the next part of the operation.
  • the system needs to be evaluated systematically before using the system.
  • the simplest and most practical is that the mechanical engineer must first calculate the safe voltage and safe current of the contact, preferably the composition, mass and volume of the obstacle.
  • the mechanical engineer must first calculate the safe voltage and safe current of the contact, preferably the composition, mass and volume of the obstacle.
  • the mechanical engineers should also learn to fine-tune some parameters during use to facilitate comparison operations. Among them, the parameter current, motor speed and so on.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Robotics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Endoscopes (AREA)
  • Cleaning In General (AREA)

Abstract

一种微型电控磁力清洁系统,包括微米级细线里端部分、微米级细线外部电机控制部分和微米级细线外部系统电控部分。微米级细线里端部分具体为制造出若干微米级磁性细线,其中中央磁性细线比周围细线稍大,且中央磁性细线里端方向制成螺旋状。微米级细线外部电机控制部分具体为在中央磁性细线外中部位置加入高精度微型电机,当在内窥镜或其他光学设备图像系统中发现较大障碍物时,可控制中央磁性细线抵达指定位置,控制电机转速清理障碍物。微米级细线外部系统电控部分具体为将中央磁性细线和周围细线区分开,分别连入电磁感应系统,保证控制系统可分别操控中线细线和周围细线的进退和磁性,并结合陀螺仪热源追踪辅助系统,定位细线的位置,显示在数字图像系统中。还公开了一种微型电控磁力清洁方法。

Description

一种微型电控磁力清洁系统及其方法 技术领域
本发明涉及电控磁技术领域,尤其涉及一种微型电控磁力清洁系统及其方法。
背景技术
内窥镜是集中了传统光学、人体工程学、精密机械、现代电子、数学、软件等于一体的检测仪器。一个具有图像传感器、光学镜头、光源照明、机械装置等,它可以经口腔进入胃内或经其他天然孔道进入体内。利用内窥镜可以看到X射线不能显示的病变,因此它对医生非常有用。例如,借助内窥镜医生可以观察胃内的溃疡或肿瘤,据此制定出最佳的治疗方案。在治疗时,借助内窥镜结合微型仪器设备需要对身体内的器官进行清理。
传统的微型仪器设备除障清洁大都需要多个纤维细线工具配合,多次观测多次操作;然而存在的最大的问题是在于需多次更换设备,先进行击碎障碍物操作,再进行多次清洁操作,操作及其繁琐复杂。
鉴于微型仪器设备及其相关接触物的除障清洁是一大难题这一现象,为解决这些弊端,方便进一步促进内窥镜和光学显微设备的快速进步和发展,以及方便机械工程师需要实时可视化了解内窥镜和光学显微设备工作时,微型仪器设备及其相关接触物的相对位置和管道的深部结构,本发明提出一种微型电控磁力清洁系统。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种微型电控磁力清洁系统及其方法,以解决现有技术的不足。
为实现上述目的,本发明提供了一种微型电控磁力清洁系统,包括:
微米级细线里端部分,具体为:制造出若干微米级磁性细线,其中中央磁性细线应比周围细线稍大,且中央磁性细线里端方向应制成螺旋状;
微米级细线外部电机控制部分,具体为:在中央磁性细线外中部位置加入高精度微型电机,当在内窥镜或其他光学设备图像系统中发现较大障碍物时,可控制中央磁性细线抵达指定位置,控制电机转速清理障碍物;
微米级细线外部系统电控部分,具体为:将中央磁性较大微米级细线和周围若干微小微米级细线区分开,分别连入电磁感应系统,保证控制系统可分别操控中线细线和周围细线的进退和磁性,并结合陀螺仪热源追踪辅助系统,定位微米级细线位置,并显示在数字图像系统中。
进一步地,所述陀螺仪为十轴陀螺仪。
进一步地,所述磁性细线中部裹上隔磁材料。
一种微型电控磁力清洁方法,包括:
步骤1、启动光学设备图像系统,找到管道内或接触物内存在的障碍物,结合陀螺仪热源追踪辅助系统,定位障碍物的相对位置(x,y,z),并通过控制电流方向,使得中央微米级磁性细线与周围磁性细线极性相反,互相吸引,将吸紧的微米级磁性细线经管道推进到(x,y,z)位置;
步骤2、在已知坐标情况下,据其陀螺仪获取的三维角度坐标,控制改变电流方向,改变中央微米级磁性细线磁极,使得中央微米级磁性细线与周围磁性细线极性相同,互相排斥,将微米级周围磁性细线推进若干微米后,使得周围磁性细线包裹住障碍物,再通过改变电流方向将中央微米级磁性细线磁极性取反,使得中央微米级磁性细线与周围磁性细线极性相反,吸住障碍物;
步骤3、操纵外部电控系统控制将障碍物取出;
步骤4、重复若干次第1、2、3步,即可将管道内或接触物内相关障碍物一一取出;
步骤5、若发现障碍物体积较大时,先控制电机转动中央微米级磁性细 线,利用高速转动的矩力,击碎障碍物。
本发明的有益效果是:
本发明操作方便、效率较高,可促进内窥镜和光学显微设备的快速进步和发展,方便机械工程师需要实时可视化了解内窥镜和光学显微设备工作时,微型仪器设备及其相关接触物的相对位置和管道的深部结构。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的结构框图。
图2是本发明的流程图。
图3是本发明的实施例结构示意图。
具体实施方式
实施例一
如图1所示,一种微型电控磁力清洁系统,包括:
微米级细线里端部分,具体为:制造出若干微米级磁性细线,其中中央磁性细线应比周围细线稍大,且中央磁性细线里端方向应制成螺旋状;所有磁性细线中部裹上隔磁材料,保证仅有磁性细线里端端头部分可接受电磁感应。
微米级细线外部电机控制部分,具体为:在中央磁性细线外中部位置加入高精度微型电机,当在内窥镜或其他光学设备图像系统中发现较大障碍物时,可控制中央磁性细线抵达指定位置,控制电机转速清理障碍物;
微米级细线外部系统电控部分,具体为:将中央磁性较大微米级细线和周围若干微小微米级细线区分开,分别连入电磁感应系统,保证控制系统可分别操控中线细线和周围细线的进退和磁性,并结合陀螺仪热源追踪 辅助系统,定位微米级细线位置,并显示在数字图像系统中。
另外,所述陀螺仪为十轴陀螺仪。
如图2所示,一种微型电控磁力清洁方法,包括:
步骤1、启动光学设备图像系统,找到管道内或接触物内存在的障碍物,结合陀螺仪热源追踪辅助系统,定位障碍物的相对位置(x,y,z),并通过控制电流方向,使得中央微米级磁性细线与周围磁性细线极性相反,互相吸引,将吸紧的微米级磁性细线经管道推进到(x,y,z)位置;
步骤2、在已知坐标情况下,据其陀螺仪获取的三维角度坐标,控制改变电流方向,改变中央微米级磁性细线磁极,使得中央微米级磁性细线与周围磁性细线极性相同,互相排斥,将微米级周围磁性细线推进若干微米后,使得周围磁性细线包裹住障碍物,再通过改变电流方向将中央微米级磁性细线磁极性取反,使得中央微米级磁性细线与周围磁性细线极性相反,吸住障碍物;
步骤3、操纵外部电控系统控制将障碍物取出;
步骤4、重复若干次第1、2、3步,即可将管道内或接触物内相关障碍物一一取出;
步骤5、若发现障碍物体积较大时,先控制电机转动中央微米级磁性细线,利用高速转动的矩力,击碎障碍物。
实施例二
与实施例一不同的地方是,本系统还需加入击碎障碍物(比如图3所示的结石)的操作,则若发现障碍物体积较大时,应先控制电机,转动中央微米级磁性细线,利用高速转动的矩力,击碎障碍物。因周围磁性细线已将障碍物包裹,可进一步降低障碍物因击碎对接触物或管道造成损伤,并能大程度上减少击碎障碍物的散落。另外,由于电控系统的设计,机械工程师不但可以操控电流方向改变电磁极性,也可以控制电流大小改变磁 力大小,来抓取不同质量的障碍物。同时,电机转速、力度均可由系统控制。完成既定基本路线操作后,若还要寻找下一个障碍物进行下一个操作。同理,继续第一、二步,完成后续实施步骤,重新规划一条新的操作路线,对障碍物位置和仪器电控电流、转速等进行细微修正,再进行下部分操作。
值得注意的是使用该系统前需要对被操作物进行系统评估,最简单实用的是,机械工程师需先测算出接触物的安全电压和安全电流,最好对障碍物的成分、质量和体积等也有评估,以保证障碍物在电机矩力作用下能被击碎,并且保证微米级细线系统磁力能足够取出障碍物。同时,机械工程师在使用过程中也应学会自行微调一些参数等,用以方便对照操作。其中参数电流大小、电机转速等。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (4)

  1. 一种微型电控磁力清洁系统,其特征在于,包括:
    微米级细线里端部分,具体为:制造出若干微米级磁性细线,其中中央磁性细线应比周围细线稍大,且中央磁性细线里端方向应制成螺旋状;
    微米级细线外部电机控制部分,具体为:在中央磁性细线外中部位置加入高精度微型电机,当在内窥镜或其他光学设备图像系统中发现较大障碍物时,可控制中央磁性细线抵达指定位置,控制电机转速清理障碍物;
    微米级细线外部系统电控部分,具体为:将中央磁性较大微米级细线和周围若干微小微米级细线区分开,分别连入电磁感应系统,保证控制系统可分别操控中线细线和周围细线的进退和磁性,并结合陀螺仪热源追踪辅助系统,定位微米级细线位置,并显示在数字图像系统中。
  2. 如权利要求1所述的一种微型电控磁力清洁系统,其特征在于,所述陀螺仪为十轴陀螺仪。
  3. 如权利要求1所述的一种微型电控磁力清洁系统,其特征在于,所述磁性细线中部裹上隔磁材料。
  4. 一种微型电控磁力清洁方法,其特征在于,包括:
    步骤1、启动光学设备图像系统,找到管道内或接触物内存在的障碍物,结合陀螺仪热源追踪辅助系统,定位障碍物的相对位置(x,y,z),并通过控制电流方向,使得中央微米级磁性细线与周围磁性细线极性相反,互相吸引,将吸紧的微米级磁性细线经管道推进到(x,y,z)位置;
    步骤2、在已知坐标情况下,据其陀螺仪获取的三维角度坐标,控制改变电流方向,改变中央微米级磁性细线磁极,使得中央微米级磁性细线与周 围磁性细线极性相同,互相排斥,将微米级周围磁性细线推进若干微米后,使得周围磁性细线包裹住障碍物,再通过改变电流方向将中央微米级磁性细线磁极性取反,使得中央微米级磁性细线与周围磁性细线极性相反,吸住障碍物;
    步骤3、操纵外部电控系统控制将障碍物取出;
    步骤4、重复若干次第1、2、3步,即可将管道内或接触物内相关障碍物一一取出;
    步骤5、若发现障碍物体积较大时,先控制电机转动中央微米级磁性细线,利用高速转动的矩力,击碎障碍物。
PCT/CN2019/070112 2018-02-12 2019-01-02 一种微型电控磁力清洁系统及其方法 WO2019153984A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/607,245 US11389182B2 (en) 2018-02-12 2019-01-02 Microelectronic controlled magnetic cleaning system and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810146691.4 2018-02-12
CN201810146691.4A CN108186079A (zh) 2018-02-12 2018-02-12 一种微型电控磁力清洁系统及其方法

Publications (1)

Publication Number Publication Date
WO2019153984A1 true WO2019153984A1 (zh) 2019-08-15

Family

ID=62593272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070112 WO2019153984A1 (zh) 2018-02-12 2019-01-02 一种微型电控磁力清洁系统及其方法

Country Status (3)

Country Link
US (1) US11389182B2 (zh)
CN (1) CN108186079A (zh)
WO (1) WO2019153984A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108186079A (zh) * 2018-02-12 2018-06-22 中南大学湘雅二医院 一种微型电控磁力清洁系统及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138677A1 (en) * 2003-01-15 2004-07-15 Scimed Life Systems, Inc. Medical retrieval device with frangible basket
CN101450001A (zh) * 2007-12-03 2009-06-10 冷劲松 一种新型血栓清理器
CN103932764A (zh) * 2014-05-09 2014-07-23 张凌云 一种血管内异物捕捞装置及其捕捞方法
CN108186079A (zh) * 2018-02-12 2018-06-22 中南大学湘雅二医院 一种微型电控磁力清洁系统及其方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7712470B2 (en) * 2005-03-19 2010-05-11 Michael Gertner Devices with integral magnets and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138677A1 (en) * 2003-01-15 2004-07-15 Scimed Life Systems, Inc. Medical retrieval device with frangible basket
CN101450001A (zh) * 2007-12-03 2009-06-10 冷劲松 一种新型血栓清理器
CN103932764A (zh) * 2014-05-09 2014-07-23 张凌云 一种血管内异物捕捞装置及其捕捞方法
CN108186079A (zh) * 2018-02-12 2018-06-22 中南大学湘雅二医院 一种微型电控磁力清洁系统及其方法

Also Published As

Publication number Publication date
CN108186079A (zh) 2018-06-22
US20200129191A1 (en) 2020-04-30
US11389182B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
Fichera et al. Through the eustachian tube and beyond: A new miniature robotic endoscope to see into the middle ear
US20110251456A1 (en) Method and Apparatus For Viewing A Body Cavity
TWI520708B (zh) 膠囊內視鏡磁控系統
JP2005111273A (ja) 内視鏡検査装置および内視鏡検査装置のための画像形成方法
CN102137616A (zh) 确定焦距的透明内窥镜头
JP7286948B2 (ja) 医療用観察システム、信号処理装置及び医療用観察方法
CN110169821B (zh) 一种图像处理方法、装置及系统
CN103431892A (zh) 一种碎石端可封闭的胆囊取石装置
CN104814712A (zh) 三维内窥镜及三维成像方法
JP2012165838A (ja) 内視鏡挿入支援装置
CN103932654B (zh) 基于永磁和三轴力传感器的胶囊内镜控制系统及控制方法
WO2019153984A1 (zh) 一种微型电控磁力清洁系统及其方法
JPH048341A (ja) 内視鏡用被検体内挿入装置
JP2019517846A (ja) 位置情報を提供するセンサを有する内視鏡型機器
Lehman et al. Endoluminal minirobots for transgastric peritoneoscopy
WO2009099611A1 (en) In vivo imaging system
JP2007319395A (ja) 内視鏡および内視鏡検査方法
Menciassi et al. Wireless steering mechanism with magnetic actuation for an endoscopic capsule
JP2019168579A (ja) 医療用観察装置
JP2018130433A (ja) 内視鏡システム、内視鏡及び挿入補助具
JP5932174B1 (ja) 内視鏡システム
Fang et al. A motorized hand-held flexible rhino endoscope in ENT diagnoses and its clinical experiences
Lau et al. Applications of flexible robots in endoscopic surgery
Wang et al. Laparoscopic surgical device with modular end tools for real-time endomicroscopy and therapy
JP2019154886A (ja) 医療用表示制御装置、および表示制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750653

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19750653

Country of ref document: EP

Kind code of ref document: A1