WO2019153636A1 - 投影设备 - Google Patents
投影设备 Download PDFInfo
- Publication number
- WO2019153636A1 WO2019153636A1 PCT/CN2018/094727 CN2018094727W WO2019153636A1 WO 2019153636 A1 WO2019153636 A1 WO 2019153636A1 CN 2018094727 W CN2018094727 W CN 2018094727W WO 2019153636 A1 WO2019153636 A1 WO 2019153636A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- color wheel
- projection apparatus
- light source
- shielding material
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/007—Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
- G02B26/008—Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/005—Projectors using an electronic spatial light modulator but not peculiar thereto
- G03B21/008—Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
- G03B21/204—LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
Definitions
- the present invention relates to the field of projection display technologies, and in particular, to a projection device.
- DMD digital micro-mirror device
- the projection apparatus provided by the present invention is capable of avoiding the above-mentioned polarization phenomenon caused by the micromirror array of the digital micromirror device being not reversed during image signal control.
- a projection device comprising:
- a light source for emitting light from the source
- the first color wheel includes:
- the body is provided with a light shielding material in a preset area, and the light shielding material is a light absorbing or reflecting material;
- a driving unit disposed on the body and configured to drive the body to perform periodic motion such that the light shielding material is periodically located on the optical path of the light source light;
- a digital micromirror device comprising a micromirror array for modulating the emitted light of the body
- control device electrically coupled to the digital micromirror device and the driving unit to control the driving unit to drive the body movement such that when the micro mirror array is flipped during control without image data, the light shielding material is located The light path of the light source.
- the projection apparatus includes a digital micromirror device, wherein a micromirror array in the digital micromirror device is located at a position where the light shielding material on the first color wheel is located when the micromirror array is flipped during the control of the image data.
- the light path causes the first color wheel to not emit light during the period, or the light power of the outgoing light is low, so that substantially no light is incident on the digital micromirror device, thereby avoiding the above-mentioned digital micro
- the micromirror array of the mirror device is not generated by the polarization phenomenon caused by the image signal control flipping, which is advantageous for improving the quality of the exiting picture of the projection device.
- FIG. 1 is a schematic structural diagram of a projection apparatus according to a first aspect of the present invention.
- FIG. 2 is a schematic perspective view of the first color wheel shown in FIG. 1.
- Figure 3 is a cross-sectional view taken along line III-III of the first color wheel shown in Figure 2;
- FIG. 4 is a cross-sectional view showing another embodiment of the first color wheel shown in FIG. 3.
- FIG. 5 is a schematic structural diagram of a projection apparatus according to a second embodiment of the present invention.
- FIG. 6 is a schematic perspective view of the first color wheel shown in FIG. 5.
- FIG. 6 is a schematic perspective view of the first color wheel shown in FIG. 5.
- Fig. 7 is a cross-sectional view taken along line VI-VI of the first color wheel shown in Fig. 6.
- FIG. 8 is a schematic structural diagram of a projection apparatus according to a third embodiment of the present invention.
- FIG. 9 is a schematic structural view of the color wheel assembly shown in FIG. 8.
- Projection equipment 100 200 light source 110, 210, 310 Guiding device 120, 220 First color wheel 130, 230, 330
- FIG. 1 is a schematic structural diagram of a projection apparatus 100 according to a first embodiment of the present invention.
- the projection apparatus 100 includes a light source 110, a guiding device 120, a first color wheel 130, a digital micromirror device (hereinafter referred to as DMD) 140, a lens device 150, and a control device 160.
- the light source 110 is used to emit light of the light source
- the guiding device 120 guides the light of the light source to be incident on the first color wheel 130.
- the first color wheel 130 is a reflective color wheel, and a part of the light source light is subjected to wavelength conversion on the first color wheel 130 to generate a laser beam, and the received laser light and the unconverted light source light are sequentially passed through the first The reflection of the color wheel 130, the guidance of the guiding device 120, and the modulation of the DMD 140 are finally emitted through the lens device 150.
- Control device 160 is electrically coupled to DMD 140 and drive unit 139 in first color wheel 130 to control first color wheel 130 to synchronize with DMD 140.
- the light source 110 includes an illuminant for generating source light, and in one embodiment, the light source 110 further includes a shimming device that homogenizes the source light.
- the light source 110 may be a blue light source that emits blue excitation light. It can be understood that the light source 110 is not limited to the blue light source, and the light source 110 may also be a purple light source, an ultraviolet light source, a red light source or a green light source.
- the illuminant is a blue laser for emitting blue laser light as excitation light. It can be understood that the illuminant can include one, two blue lasers or a laser array composed of a plurality of blue lasers, and the number of lasers can be selected according to actual needs. In one embodiment, the illuminant is an LED, and the color and quantity of the LED may be selected according to actual needs.
- the light homogenizing device is configured to dim the light of the light source and then exit to the subsequent guiding device 120.
- the light homogenizing device is a homogenizing rod. It is understood that in other embodiments, the light homogenizing device may include a light concentrating device such as a fly-eye lens, and is not limited thereto.
- the guiding device 120 is for guiding the light source light emitted from the light source 110 to be incident on the first color wheel 130, and directing the light emitted from the first color wheel 130 to be incident on the DMD 140.
- the guiding device 120 includes optical devices known to those skilled in the art, such as a light combining light element, a collecting lens, and the like.
- the guiding device 120 includes at least one spectroscopic filter for transmitting/reflecting light in a first predetermined wavelength range to perform color correction on the incident light. .
- the guiding device 120 includes at least one spectroscopic filter, the at least one spectroscopic filter includes a coating region and a surrounding region, and the at least one spectroscopic filter is configured to transmit the first predetermined wavelength. Light within the range, and/or used to reflect light in a second predetermined wavelength range.
- the spectroscopic filter guides the light to the DMD 140, and the first color wheel 130 can omit the filter structure accordingly.
- the guiding device 120 further includes a polarization beam splitting element such as a polarization beam splitter or a polarizing prism or the like.
- the optical device in the guiding device 120 is disposed in the light source 110, thereby omitting the guiding device 120, and the light source light emitted by the light source 110 is incident on the first color wheel 130 in a straight line, first Light emitted by the color wheel 130 is directed to the DMD 140 via the light source 110.
- the light source light emitted from the light source 110 is irradiated to the first color wheel 130 in a straight line, and the light emitted from the first color wheel 130 is directly incident on the DMD 140, thereby omitting the guiding device 120.
- the DMD 140 includes a micromirror array for modulating the light emitted by the first color wheel 130.
- the DMD 140 controls the flip angle/time of the micromirror array based on the image data to control the intensity of the outgoing beam of each pixel in the micromirror array.
- some DMDs currently on the market in order to overcome some of their own characteristics, need to be periodically controlled by image data to be flipped for a short time, such as the 1/99 problem of the popular name, that is, the required light in one frame. In time, there is 1% of the time to refresh the jitter flip, to avoid certain pixels, and the problem that the subsequent flip cannot be reversed without flipping for a long time.
- the above uncontrolled flipping causes the projected image to randomly generate a large amount of light beams in a black field or low brightness, resulting in severe polarization, which seriously affects the picture quality of the projection apparatus 100.
- the lens device 150 is disposed at one end of the projection apparatus 100, and the projection light emitted from the DMD 140 is irradiated to the projection surface through the lens device 150 to form a projection image.
- the lens device 150 includes a housing, a lens sleeve coupled to the housing, and a lens module disposed within the lens sleeve.
- a dustproof structure is disposed between the lens sleeve and the lens module.
- FIG. 2 is a schematic perspective view of the first color wheel 130 illustrated in FIG. 1 .
- 3 is a cross-sectional view taken along line III-III of the first color wheel 130 shown in FIG. 2.
- the first color wheel 130 includes a body 131 and a driving unit 139.
- a light shielding material is disposed in the predetermined area a of the body 131, and the light shielding material is a light absorbing material.
- the driving unit 139 is disposed on the body 131 and configured to drive the body 131 to perform periodic motion such that the light shielding material is periodically located on the optical path of the light source light.
- the body 131 is circular
- the driving unit 139 is disposed at a geometric center position of the body 131
- the driving unit 139 drives the body 131 to perform periodic rotation.
- the refresh frequency of the incident light of the DMD 140 is 60 Hz
- the image frame rate is 60 Hz
- each color image is displayed once in each frame image.
- the control device 160 is electrically connected to the DMD 140 and the driving unit 139, respectively, to control the driving unit 139 to drive the body 131 to move, so that when the micro mirror array in the DMD 140 is flipped during the control of the image data, the light shielding material is located on the optical path of the light source light. .
- the preset area a is fan-shaped on the surface of the body 131. In the present embodiment, the preset area a occupies the body 131.
- the angle of the surface of the body 131 occupied by the preset area a may be greater than 3.6 degrees, or the sum of the surface angles of the plurality of preset areas a disposed at intervals may be not less than 3.6 degrees.
- the preset area a is located in the light path of the light source, the micro mirror array in the DMD 140 can be flipped without being controlled by the image data, and the light modulation cannot be performed.
- the driving unit 139 is disposed at one end of the first color wheel 130 and drives the first color wheel 130 to perform periodic reciprocating motion.
- the preset area a is disposed on the body 131, and the DMD 140 is required for each frame. During the light-out time, 1% of the time preset area a is located on the optical path where the light source is located.
- the light absorbing material is a colored silicone rubber or a carbon doped transparent material.
- the light absorbing material or black material coating, or the gray material coating or may be a coating of other color light absorbing materials. It can be understood that the light absorbing material can also be other light absorbing materials not mentioned above.
- the body 131 includes a substrate 134 and a wavelength conversion layer 133 disposed on the substrate 134.
- the substrate 134 has a high reflectance to light, and the first color wheel 130 is a reflective color wheel.
- the wavelength conversion layer 133 is provided with a predetermined area a and a wavelength conversion area c.
- the predetermined area a is provided with a light shielding material
- the wavelength conversion area c is provided with a wavelength conversion material
- the wavelength conversion material and the light shielding material are disposed on the body 131.
- the light side is disposed on a side of the substrate 134 adjacent to the light source 110.
- the wavelength converting material is used for wavelength conversion of incident light source light to obtain a received laser light.
- the wavelength conversion region c includes a plurality of segments including a red segment R, a yellow segment Y, a green segment G, and a blue segment B.
- the preset area a is disposed inside a section, for example, the preset area a is disposed inside the red section R. In the present embodiment, the preset area a is disposed between different sections.
- the red color segment R, the yellow segment Y, and the green segment G region are provided with corresponding color phosphors, and the light source light excites the corresponding color phosphor to generate a laser of a corresponding color.
- the source light comprises a laser and the blue segment B is provided with a scattering material.
- a blue phosphor is disposed in the blue segment B, and the source light excites the blue phosphor to produce a blue laser.
- a section for emitting other color light can be set in the wavelength conversion area c, such as setting a red segment R+a yellow segment Y+blue segment B, a yellow segment Y+blue segment B, a red segment R+a green segment G+blue
- the combination of color segment B, yellow segment Y+green segment G+blue segment B or other color segments is not limited thereto.
- the driving unit 139 drives the body 131 to rotate periodically, so that each of the preset area a and the wavelength conversion area c on the first color wheel 130 is periodically located on the optical path where the light source is located.
- the preset area a is located on the optical path where the light source is located
- the light absorbing material in the preset area a absorbs the light of the light source, and the light power of the first color wheel 130 that does not emit light or the emitted light is small.
- the wavelength conversion region c is located on the optical path where the light source is located, the first color wheel 130 sequentially emits red light-yellow light-blue light-green light.
- the wavelength conversion region c includes a plurality of spaced apart sections for emitting light of the same color to achieve an image display frequency of double speed or higher, thereby reducing the probability of occurrence of the rainbow effect.
- the wavelength conversion region c is spaced apart from two red segments, two green segments, two blue segments, and two yellow segments, and the DMD 140 is refreshed by incident light.
- the frequency of the image is 120 Hz
- the image frame rate is 60 Hz.
- the driving unit 139 rotates one turn, the first color wheel 130 emits the same color light twice, and the DMD 140 emits each color light image twice.
- FIG. 4 is a cross-sectional view of another embodiment of the first color wheel 130 shown in FIG.
- the body 131 further includes a color filter layer 135 for the laser light, the filter layer 135 is away from the substrate 134 and disposed on the surface of the body 131, and different color segments in the filter layer 135. Segments of corresponding colors on the wavelength conversion region c are respectively covered.
- the filter layer 135, the wavelength conversion layer 133, and the substrate 134 are sequentially stacked.
- the filter layer 135 includes a corresponding area b, and the corresponding area b covers the preset area a on the wavelength conversion layer 133. Since the preset area a does not emit light or the light power of the emitted light is small, the corresponding area b can selectively provide a light shielding material. In this embodiment, the corresponding area b is provided with a light shielding material.
- the body of the first color wheel 130 includes a wavelength conversion layer and a filter layer disposed on the layer, and the wavelength conversion layer is provided with a wavelength conversion material, and the wavelength conversion material converts part of the light source into a laser beam. And the laser is emitted after passing through the filter layer.
- the filter layer is provided with a preset area for setting a light shielding material.
- control device 160 is electrically connected to the DMD 140 and the driving unit 139, respectively, to control the first color wheel 130 to synchronize with the DMD 140.
- the control device 160 may be a central processing unit (CPU), or may be other general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and an off-the-shelf device.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA Field-Programmable Gate Array
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like, and the control device 160 electrically connects the DMD 140 and the drive unit 139 using a variety of interfaces or lines.
- control device 160 controls the driving unit 139 to drive the body 131 to move so that the light shielding material in the predetermined area a is located on the optical path of the light source light when the micro mirror array in the DMD 140 is flipped during the control of the image data. That is, when the micromirror array in the DMD 140 is flipped during the control of the image data, the light shielding material is located on the optical path where the light source is located, and the first color wheel 130 does not emit light, or the optical power of the emitted light is low.
- FIG. 5 is a schematic structural diagram of a projection apparatus 200 according to a second embodiment of the present invention.
- FIG. 6 is a schematic perspective view of the first color wheel 230 shown in FIG. 5.
- Fig. 7 is a cross-sectional view taken along line VI-VI of the first color wheel 230 shown in Fig. 6.
- the main difference between the projection apparatus 200 provided by the present embodiment and the projection apparatus 100 is that the first color wheel 230 applied in the projection apparatus 200 is a transmissive color wheel, and the position between the first color wheel 230 and other devices is adjusted accordingly. relationship.
- the projection apparatus 200 includes a light source 210, a guiding device 220, a first color wheel 230, a digital micromirror device (hereinafter referred to as DMD) 240, a lens device 250, and a control device 260.
- the light source 210 is used to emit light of the light source
- the guiding device 220 guides the light of the light source to be incident on the first color wheel 230.
- the first color wheel 230 is a transmissive color wheel, and a part of the light source light is subjected to wavelength conversion on the first color wheel 230 to generate a laser beam, and the laser light and the unconverted light source light are sequentially passed through the first The transmission of the color wheel 230, the modulation of the DMD 240, is finally emitted through the lens unit 250.
- Control device 260 is electrically coupled to DMD 240 and drive unit 239 in first color wheel 230 to control first color wheel 230 to synchronize with DMD 240.
- the first color wheel 230 includes a body 231 and a driving unit 239.
- a light shielding material is disposed in the predetermined region a of the body 231.
- the light shielding material is a light absorbing or reflecting material.
- the driving unit 239 is disposed on the body 231 and is configured to drive the body 231 to perform periodic motion such that the light shielding material is periodically located on the optical path of the light source light emitted by the light source 210.
- the reflective material has high reflectivity in the ultraviolet/visible region, and may be a specular reflective material such as high-reflective metal such as high anti-aluminum or silver, or a diffuse reflective material such as silica gel containing reflective particles or reflective ceramic.
- the reflective ceramic is a composite ceramic of alumina ceramic, zirconia ceramic, boron oxide ceramic or zirconia doped alumina.
- the body 231 includes a wavelength conversion layer 233, a substrate 234, and a filter layer 235.
- the substrate 234 has a high transmittance, and the wavelength conversion layer 233 is provided with a predetermined area a and a wavelength conversion area c.
- the predetermined area a is provided with a light shielding material, and the wavelength conversion area c is provided with excitation for the light of the light source.
- At least one wavelength-converting material that is subjected to laser light is emitted.
- the wavelength conversion layer 233 is disposed on the light incident layer of the body 231
- the filter layer 235 is disposed on the light exit side of the body 231 .
- the wavelength conversion layer 233, the substrate 234, and the filter layer 235 are laminated in this order. It is to be understood that in other embodiments, a specific structure may be added or omitted between the wavelength conversion layer 233 and the filter layer 235.
- the wavelength conversion layer 233 and the filter layer 235 may be disposed on the surface of the body 231, or may be disposed. The inside of the body 231 is not limited thereto.
- the filter layer 235 includes a corresponding area b, and the corresponding area b covers the preset area a on the wavelength conversion layer 233. Since the preset area a does not emit light or the light power of the emitted light is small, the corresponding area b can selectively provide a light shielding material. In the present embodiment, the corresponding area b is provided with a light shielding material.
- the first color wheel 230 is a transmissive color wheel.
- the control device 260 is electrically connected to the DMD 240 and the driving unit 239, respectively, to control the first color wheel 230 to be synchronized with the DMD 240.
- the control device 260 controls the driving unit 239 to drive the body 231 to move such that when the micromirror array in the DMD 240 is flipped during the control of the image data, the light shielding material in the preset region a is located on the optical path of the light source light.
- the light shielding material is located on the optical path where the light source is located, so that the first color wheel 230 does not emit light, or the optical power of the emitted light is low, and further Basically, no light is incident on the DMD 240, which avoids the above-mentioned polarization phenomenon caused by the micromirror array of the DMD 240 being uncontrolled by the image signal control, which is advantageous for improving the quality of the projected image of the projection device 200.
- FIG. 8 is a schematic structural diagram of a projection apparatus 300 according to a third embodiment of the present invention.
- FIG. 9 is a schematic structural view of the color wheel assembly 330A illustrated in FIG. 8.
- the main difference between the projection apparatus 300 provided by the present embodiment and the projection apparatus 200 is that the color wheel assembly 330A is disposed in the projection apparatus 300 to replace the first color wheel 230 in the projection apparatus 200.
- the specific solutions applicable to the second embodiment may also be correspondingly applied to the third embodiment, in order to save space and avoid repetition, here I won't go into details.
- the color wheel assembly 330A includes a first color wheel 330 and a second color wheel 370.
- the first color wheel 330 is a transmissive color wheel disposed adjacent to the light source 310
- the second color wheel 370 is disposed adjacent to the DMD 340.
- the first color wheel 330 and the second color wheel 370 perform synchronous periodic motions under the driving of the driving unit.
- the first color wheel 330 is laminated with a wavelength conversion material layer and a substrate.
- the substrate has a high transmittance, and the first color wheel 330 is a transmissive color wheel.
- a predetermined area is disposed on the wavelength conversion layer, and a light shielding material is disposed in the predetermined area.
- the light shielding material is a light absorbing or reflective material.
- a wavelength conversion material is disposed outside the preset region on the wavelength conversion layer.
- a filter corresponding to the color of the wavelength converting material is disposed on the second color wheel 370.
- the second color wheel 370 includes a corresponding area, and the corresponding area corresponds to a preset area setting on the first color wheel 330.
- the light-receiving material may be selectively disposed in the corresponding region because the predetermined region does not emit light or the light power of the emitted light is small.
- the corresponding region is provided with a light-shielding material.
- the color wheel assembly 330A includes a first color wheel 330 and a second color wheel 370.
- the present embodiment differs from the third embodiment in that the second color wheel 370 is a transmissive color wheel disposed adjacent to the light source 310, and the first color wheel 330 is disposed adjacent to the DMD 340.
- the second color wheel 370 is provided with a wavelength conversion material for wavelength-converting the light source light emitted from the light source 310 to generate a corresponding laser light.
- the first color wheel 330 includes a body and a driving unit, and the body is provided with a preset area, and a filter area for correcting light is disposed outside the preset area on the body.
- the first color wheel 330 is a filter wheel, and a plurality of segments for emitting different color lights are disposed outside the preset area on the body of the first color wheel 330, and each segment is set. Corresponding color filter.
- the preset area is disposed between different sections.
- control device 360 is electrically connected to the DMD 340 and the drive unit, respectively, to control the first color wheel 330 and the second color wheel 370 to be synchronized with the DMD 340.
- control device 360 controls the driving unit to drive the body motion such that when the micro mirror array in the DMD 340 is flipped during the control of the image data, the light shielding material in the preset region is located in the light source.
- the first color wheel 330 does not emit light, or the light power of the emitted light is low, so that substantially no light is incident on the DMD 340, thereby avoiding the above-mentioned micromirror array of the DMD 340 from being inverted by the image signal control.
- the phenomenon of polarization is generated, which is advantageous for improving the quality of the projected picture of the projection device 300.
- the color wheel assembly 330A includes a first color wheel, and the first color wheel is provided with a preset area on the body, and the preset area is provided with The light shielding material is provided with a light transmissive material outside the preset area on the first color wheel.
- the driving device controls the driving unit to drive the first color wheel motion such that the micro mirror array in the DMD is placed on the optical path of the light source light when it is flipped during the control of the image data.
- the color wheel assembly 330A further includes a second color wheel disposed on the light path of the light source. Wherein, the second color wheel is used to convert the light of the light source into a laser light, it being understood that the second color wheel may be provided with a filter area, or the color wheel assembly 330A is further provided for filtering The third color wheel.
- the projection device includes a light source, a first color wheel, a DMD, and a control device.
- the first color wheel includes a body and a driving unit, and a light shielding material is disposed in a predetermined area of the body, and the light shielding material is a light absorbing or reflecting material.
- the driving unit is disposed on the body and is configured to drive the body to perform periodic motion such that the light shielding material is periodically located on the optical path of the light source light.
- the DMD includes a micromirror array for modulating the exiting light of the body.
- the control device is electrically connected to the DMD and the driving unit, respectively, to control the driving unit to drive the body movement, so that when the micro mirror array is flipped during the control of the image data, the light shielding material is located at the The light path of the light source.
- the micromirror array in the DMD When the micromirror array in the DMD is flipped during the control of the image data, the first color wheel does not emit light, or the optical power of the emitted light is low, so that substantially no light is incident on the DMD, thereby avoiding In the above, the polarization phenomenon caused by the inversion of the micromirror array of the DMD is not controlled by the image signal, which is advantageous for improving the quality of the outgoing picture of the projection device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Astronomy & Astrophysics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Projection Apparatus (AREA)
Abstract
一种投影设备(100、200),包括光源(110、210、310)、第一色轮(130、230、330)、数字微镜装置(140、240、340)及控制装置(160、260、360)。其中,所述光源(110、210、310)用于发出光源光;所述第一色轮(130、230、330),包括本体(131、231)及驱动单元(139、239)。其中,所述本体(131、231)的预设区域内设置有遮光材料,遮光材料为吸光或反射材料;所述驱动单元(139、239)设置于所述本体(131、231)上且用于驱动所述本体(131、231)做周期性运动,使得遮光材料周期性的位于所述光源光的光路上。所述数字微镜装置包括用于调制所述本体出射光线的微镜阵列。所述控制装置与所述数字微镜装置(140、240、340)及所述驱动单元(139、239)分别电连接以控制所述驱动单元(139、239)驱动所述本体(131、231)运动,使得当所述微镜阵列在不受图像数据控制期间翻转时,遮光材料位于所述光源光的光路上。
Description
本发明涉及投影显示技术领域,尤其涉及一种投影设备。
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
市场上的部分数字微镜装置(Digital Micro-mirror Device,DMD),因克服自身某种特性问题,需要周期性的不受图像信号控制的情况下,去短时间将数字微镜装置上的微镜阵列翻转一下。通俗叫法为1/99问题,即在每一帧所需的出光时间内,有1%的时间用来刷新抖动翻转一下,以避免某些像素点,长时间没有翻转导致再也翻转不了的问题,进而产生麻点现象。
然而,微镜阵列不受图像信号控制的翻转会导致在黑场时或低亮度时偏光严重,出射画面品质有待于提升。
发明内容
本发明提供的投影设备能够避免上述提到的由于数字微镜装置的微镜阵列不受图像信号控制期间翻转导致的偏光现象产生。
一种投影设备,包括:
光源,用于发出光源光;
第一色轮,包括:
本体,在预设区域内设置有遮光材料,遮光材料为吸光或反射材料;
驱动单元,设置于所述本体上且用于驱动所述本体做周期性运动,使得遮光材料周期性的位于所述光源光的光路上;
数字微镜装置,包括用于调制所述本体出射光线的微镜阵列;及
控制装置,与所述数字微镜装置及所述驱动单元分别电连接以控制所述驱动单元驱动所述本体运动,使得当所述微镜阵列在不受图像数据控制期间翻转时,遮光材料位于所述光源光的光路上。
本发明提供的投影设备包括数字微镜装置,所述数字微镜装置中的微镜阵列在不受图像数据控制期间翻转时,对应所述第一色轮上的遮光材料位于所述光源光所在的光路上,导致所述第一色轮在所述期间不出射光线,或出射光线的光功率较低,从而基本没有光线入射至所述数字微镜装置,从而避免了上述由于所述数字微镜装置的微镜阵列不受图像信号控制翻转期间导致的偏光现象产生,有利于提高所述投影设备的出射画面品质。
图1为本发明第一方式提供的投影设备的结构示意图。
图2为图1所示的第一色轮的立体结构示意图。
图3为图2所示的第一色轮的沿III-III线剖视图。
图4为图3所示的第一色轮另一实施方式中的剖视图。
图5为本发明第二实施方式提供的投影设备的结构示意图。
图6为图5所示的第一色轮的立体结构示意图。
图7为图6所示的第一色轮的沿VI-VI线的剖视图。
图8为本发明第三实施方式提供的投影设备的结构示意图。
图9为图8所示的色轮组件的结构示意图。
主要元件符号说明
投影设备 | 100、200 |
光源 | 110、210、310 |
引导装置 | 120、220 |
第一色轮 | 130、230、330 |
第二色轮 | 370 |
色轮组件 | 330A |
本体 | 131、231 |
预设区域 | a |
波长转换区 | c |
红色段 | R |
黄色段 | Y |
绿色段 | G |
蓝色段 | B |
波长转换层 | 133、233 |
基板 | 134、234 |
滤光层 | 135、235 |
对应区域 | b |
驱动单元 | 139、239 |
数字微镜装置(DMD) | 140、240、340 |
镜头装置 | 150、250 |
控制装置 | 160、260、360 |
如下具体实施方式将结合上述附图进一步说明本发明。
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例/方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例/方式及实施例/方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例/方式仅是本发明一部分实施例,而不是全部的实施例/方式。基于本发明中的实施例/方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例/方式,都属于本发明保护 的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例/方式的目的,不是旨在于限制本发明。
请参阅图1,为本发明第一实施方式提供的投影设备100的结构示意图。投影设备100包括光源110、引导装置120、第一色轮130、数字微镜装置(下称DMD)140、镜头装置150及控制装置160。其中,光源110用于发出光源光,引导装置120引导所述光源光入射至第一色轮130。在本实施方式中,第一色轮130为反射式色轮,部分光源光在第一色轮130上进行波长转换后产生受激光,所述受激光及未被转换的光源光依次经第一色轮130的反射、引导装置120的引导、DMD140的调制,最终经镜头装置150出射。控制装置160分别与DMD140及第一色轮130中的驱动单元139电连接,以控制第一色轮130与DMD140同步。
具体地,光源110包括用于产生光源光的发光体,在一种实施方式中,光源110还包括对所述光源光进行匀光的匀光器件。
进一步地,光源110可以为蓝色光源,发出蓝色激发光。可以理解的是,光源110不限于蓝色光源,光源110也可以是紫色光源、紫外光源、红色光源或绿色光源等。本实施方式中,所述发光体为蓝色激光器,用于发出蓝色激光作为激发光。可以理解,所述发光体可以包括一个、两个蓝色激光器或由多个蓝色激光器组成的激光器阵列,具体其激光器的数量可以依据实际需要选择。在一种实施方式中,发光体为LED,具体其LED的颜色及数量可以依据实际需要选择。
所述匀光器件用于将所述光源光进行匀光后出射至后续的引导装置120。在一种实施方式中,匀光器件为匀光棒,可以理解的是,在其他实施方式中,匀光器件可以包括复眼透镜等匀光器件,并不以此为限。
引导装置120用于引导光源110出射的光源光入射至第一色轮 130,以及引导第一色轮130出射的光线入射至DMD140。引导装置120包括本领域技术人员所公知的光学器件,比如分光合光元件、聚光透镜等等。在一种实施方式中,引导装置120中包括至少一个分光滤光片,所述至少一个分光滤光片用于透射/反射第一预设波长范围内的光,以对入射的光线进行修色。在一种实施方式中,引导装置120中包括至少一个分光滤光片,所述至少一个分光滤光片包括镀膜区域及周围区域,所述至少一个分光滤光片用于透射第一预设波长范围内的光,及/或用于反射第二预设波长范围内的光。在上述实施方式中,所述分光滤光片将光线进行修色后引导至DMD140,第一色轮130可以相应的省略滤光结构。在一种实施方式中,引导装置120中还包括偏振分光元件,比如偏振分光片或偏振棱镜等等。
可以理解的是,在一种实施方式中,引导装置120中的光学器件设置于光源110中,从而省略引导装置120,光源110出射的光源光沿直线传播入射至第一色轮130,第一色轮130出射的光线经光源110引导至DMD140。在一种可能的实施方式中,光源110出射的光源光沿直线传播照射至第一色轮130,第一色轮130出射的光线直接入射至DMD140,从而省略引导装置120。
DMD140包括用于调制第一色轮130出射光线的微镜阵列。DMD140根据图像数据控制所述微镜阵列的翻转角度/时长,以控制所述微镜阵列中每个像素出射光束的强度。然而,目前市场上的部分DMD,为克服自身某种特性问题,需要周期性的不受图像数据控制去短时间翻转一下,如通俗叫法的1/99问题,即在一帧所需的出光时间内,有1%的时间用来刷新抖动翻转一下,避免某些像素点,长时间没有翻转导致后续翻转不了的问题。然而,上述不受控翻转会导致投影图像在黑场时或低亮度时随机产生大量光束,导致偏光严重,严重影响了投影设备100的画面品质。
镜头装置150设置于投影设备100的一端,DMD140出射的投影光穿过镜头装置150照射至投影面从而形成投影图像。镜头装置150包括壳体、与所述壳体连接的镜头套筒及设置于所述镜头套筒内的镜 头模组。在一种实施方式中,镜头套筒与镜头模组之间设置有防尘结构。
请结合图1进一步参阅图2-图3,图2为图1所示的第一色轮130的立体结构示意图。图3为图2所示的第一色轮130的沿III-III线剖视图。
第一色轮130包括本体131与驱动单元139。本体131的预设区域a内设置有遮光材料,遮光材料为吸光材料。驱动单元139,设置于本体131上且用于驱动本体131做周期性运动,使得遮光材料周期性的位于所述光源光的光路上。本实施方式中,本体131为圆环形,驱动单元139设置于本体131的几何中心位置,驱动单元139带动本体131做周期性旋转。在本实施方式中,DMD140入射光的刷新的频率为60Hz,图像帧频为60Hz,则每一帧图像中,各颜色光图像显示一次。
控制装置160与DMD140及驱动单元139分别电连接以控制驱动单元139驱动本体131运动,使得当DMD140中的微镜阵列在不受图像数据控制期间翻转时,遮光材料位于所述光源光的光路上。由于DMD140每一帧所需的出光时间内,有1%的时间用来刷新抖动翻转一下,预设区域a呈扇形设置于本体131表面,在本实施方式中,预设区域a所占本体131表面的角度为1%×360度=3.6度。可以理解的是,预设区域a所占本体131表面的角度还可以大于3.6度,或者,间隔设置的多个预设区域a所占本体131表面角度的总和不小于3.6度。预设区域a位于所述光源光光路期间,DMD140中的微镜阵列可以不受图像数据控制而翻转,不能进行光线调制。
在一种实施方式中,驱动单元139设置于第一色轮130的一端,并驱动第一色轮130做周期性的往复运动,预设区域a设置于本体131上,DMD140每一帧所需的出光时间内,其中有1%的时间预设区域a位于所述光源光所在的光路上。
在一种实施方式中,吸光材料为色硅橡胶或掺杂碳粉的透明材料。在又一实施方式中,吸光材料或黑色材料涂层,或者灰色材料涂层, 或者也可以是其它颜色的吸光材料涂层。可以理解的是,吸光材料还可以为上述未提到的其他吸光材料。
如图3所示,本体131包括基板134及设置于基板134上的波长转换层133。基板134对光线具有高反射率,第一色轮130为反射式色轮。波长转换层133设置有预设区域a及波长转换区c,预设区域a中设置有遮光材料,波长转换区c设置有波长转换材料,所述波长转换材料及遮光材料设置于本体131的入光侧,即设置于基板134上邻近光源110的一侧。所述波长转换材料用于对入射的光源光进行波长转换从而得到受激光。
具体地,如图2所示,本实施方式中,波长转换区c包括多个区段,所述多个区段包括红色段R、黄色段Y、绿色段G及蓝色段B。在一种实施方式中,预设区域a设置于一区段内部,比如,预设区域a设置于红色段R内部。在本实施方式中,预设区域a设置于不同区段之间。其中,红色段R、黄色段Y及绿色段G区域中设置有对应颜色荧光粉,所述光源光激发对应颜色荧光粉以产生相应颜色的受激光。在一种实施方式中,所述光源光包括激光,蓝色段B中设置有散射材料。在一种实施方式中,蓝色段B中设置有蓝色荧光粉,所述光源光激发所述蓝色荧光粉以产生蓝色受激光。可以理解的是,波长转换区c中可以设置用于出射其他颜色光的区段,比如设置红色段R+黄色段Y+蓝色段B、黄色段Y+蓝色段B、红色段R+绿色段G+蓝色段B、黄色段Y+绿色段G+蓝色段B或其他颜色区段组合,并不以此为限。
驱动单元139带动本体131做周期性旋转,使得第一色轮130上的预设区域a及波长转换区c中的各个区段周期性位于所述光源光所在的光路上。当预设区域a位于所述光源光所在的光路上时,预设区域a中的吸光材料将所述光源光吸收,第一色轮130不出射光线或出射光线的光功率较小。当波长转换区c位于所述光源光所在的光路上时,第一色轮130时序出射红色光-黄色光-蓝色光-绿色光。
在一种实施方式中,波长转换区c包括多个间隔设置的用于出射相同颜色光的区段,以实现二倍速或更高倍速的图像显示频率,从而 降低彩虹效应出现的几率。具体地,在一个可能的二倍速显示频率的实施方式中,波长转换区c上间隔设置有两个红色段、两个绿色段、两个蓝色段及两个黄色段,DMD140入射光的刷新的频率为120Hz,图像帧频为60Hz,每一帧图像中,驱动单元139转动一圈,第一色轮130出射两次相同颜色光,DMD140出射各颜色光图像刷新两次。
请一并参阅图1与图4,图4为图3所示的第一色轮130另一实施方式中的剖视图。在本实施方式中,本体131还包括用于对所述受激光进行修色滤光层135,滤光层135远离基板134并设置于本体131的表面,滤光层135中的不同颜色区段分别覆盖波长转换区c上的对应颜色的区段。在一种实施方式中,滤光层135、波长转换层133及基板134依次层叠设置。
可以理解的是,滤光层135包括对应区域b,对应区域b覆盖波长转换层133上的预设区域a。由于预设区域a不出射光线或者出射光线的光功率较小,对应区域b可以选择性设置遮光材料,在本种实施方式中,对应区域b中设置有遮光材料。
在一种实施方式中,第一色轮130的本体上包括层叠设置的波长转换层及滤光层,波长转换层上设置有波长转换材料,所述波长转换材料将部分光源光转换为受激光,所述受激光穿过所述滤光层后出射。所述滤光层设置有预设区域,所述预设区域中用于设置遮光材料。
请进一步参阅图1,控制装置160与DMD140及驱动单元139分别电连接,以控制第一色轮130与DMD140同步。
控制装置160可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,控制装置160利用多种接口或线路电连接DMD140及驱动单元139。
具体地,控制装置160控制驱动单元139驱动本体131运动,使 得当DMD140中的微镜阵列在不受图像数据控制期间翻转时,预设区域a中的遮光材料位于所述光源光的光路上。即当DMD140中的微镜阵列在不受图像数据控制期间翻转时,遮光材料位于所述光源光所在的光路上,此时第一色轮130不出射光线,或出射光线的光功率较低,从而基本没有光线入射至DMD140,避免了上述由于DMD140的微镜阵列不受图像信号控制翻转导致的偏光现象产生,有利于提高投影设备100的出射画面品质。
请参阅图5-图7,图5为本发明第二实施方式提供的投影设备200的结构示意图。图6为图5所示的第一色轮230的立体结构示意图。图7为图6所示的第一色轮230的沿VI-VI线的剖视图。本实施方式提供的投影设备200与投影设备100的主要区别在于:投影设备200中应用的第一色轮230为透射式色轮,并且相应调整了第一色轮230与其他装置之间的位置关系。
投影设备200包括光源210、引导装置220、第一色轮230、数字微镜装置(下称DMD)240、镜头装置250及控制装置260。其中,光源210用于发出光源光,引导装置220引导所述光源光入射至第一色轮230。在本实施方式中,第一色轮230为透射式色轮,部分光源光在第一色轮230上进行波长转换后产生受激光,所述受激光及未被转换的光源光依次经第一色轮230的透射、DMD240的调制,最终经镜头装置250出射。控制装置260分别与DMD240及第一色轮230中的驱动单元239电连接,以控制第一色轮230与DMD240同步。
需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于第二实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
第一色轮230包括本体231与驱动单元239。本体231的预设区域a内设置有遮光材料,本实施方式中,遮光材料为吸光或反射材料。驱动单元239,设置于本体231上且用于驱动本体231做周期性运动,使得遮光材料周期性的位于光源210发出的光源光的光路上。
反射材料在紫外/可见光区域具有高反射率,可以为镜面反射材料 如高反铝、银等高反射率金属,也可以为漫反射材料如含有散射粒子的硅胶、反射陶瓷等。所述反射陶瓷为氧化铝陶瓷、氧化锆陶瓷、氧化硼陶瓷或氧化锆掺杂氧化铝的复合陶瓷。
如图7所示,本体231包括波长转换层233、基板234及滤光层235。其中,基板234具有高透射率,波长转换层233设置有预设区域a及波长转换区c,预设区域a中设置有遮光材料,波长转换区c中设置有用于在所述光源光的激发下出射至少一种受激光的波长转换材料。具体地,波长转换层233设置于本体231的入光层,滤光层235设置于本体231的出光侧。在本实施方式中,波长转换层233、基板234及滤光层235依次层叠设置。可以理解的是,在其他实施方式中,波长转换层233与滤光层235之间可以增加或省略特定的结构,波长转换层233与滤光层235可以设置于本体231的表面,也可以设置于本体231内部,并不以此为限。
进一步地,滤光层235包括对应区域b,对应区域b覆盖波长转换层233上的预设区域a。由于预设区域a不出射光线或者出射光线的光功率较小,对应区域b可以选择性设置遮光材料,在本实施方式中,对应区域b中设置有遮光材料。
本实施方式中,第一色轮230为透射式色轮,与第一实施方式相同的是,控制装置260与DMD240及驱动单元239分别电连接,以控制第一色轮230与DMD240同步。具体地,控制装置260控制驱动单元239驱动本体231运动,使得当DMD240中的微镜阵列在不受图像数据控制期间翻转时,预设区域a中的遮光材料位于所述光源光的光路上。即当DMD240中的微镜阵列在不受图像数据控制期间翻转时,遮光材料位于所述光源光所在的光路上,从而第一色轮230不出射光线,或出射光线的光功率较低,进而基本没有光线入射至DMD240,避免了上述由于DMD240的微镜阵列不受图像信号控制翻转导致的偏光现象产生,有利于提高投影设备200的出射画面品质。
请参阅图8-图9,图8为本发明第三实施方式提供的投影设备300的结构示意图。图9为图8所示的色轮组件330A的结构示意图。本 实施方式提供的投影设备300与投影设备200相比,主要区别在于:投影设备300中设置色轮组件330A来替换投影设备200中的第一色轮230。需要说明的是,在本发明的精神或基本特征的范围内,适用于第二实施方式中的各具体方案也可以相应的适用于第三实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
色轮组件330A包括第一色轮330与第二色轮370。其中,第一色轮330为邻近光源310设置的透射式色轮,第二色轮370邻近DMD340设置。第一色轮330与第二色轮370在驱动单元的带动下进行同步的周期性运动。
进一步地,第一色轮330层叠设置有波长转换材层及基板。所述基板具有高透射率,第一色轮330为透射式色轮。所述波长转换层上设置有预设区域,所述预设区域内设置有遮光材料,本实施方式中,遮光材料为吸光或反射材料。所述波长转换层上预设区域之外设置有波长转换材料。第二色轮370上设置有与所述波长转换材料的颜色对应的滤光片。
可以理解的是,第二色轮370包括对应区域,所述对应区域对应第一色轮330上的预设区域设置。由于所述预设区域不出射光线或者出射光线的光功率较小,所述对应区域可以选择性设置遮光材料,即在一种实施方式中,所述对应区域中设置有遮光材料。
在一种实施方式中,色轮组件330A包括第一色轮330与第二色轮370。本实施方式与第三实施方式不同的是,第二色轮370为邻近光源310设置的透射式色轮,第一色轮330邻近DMD340设置。
具体的,第二色轮370上设置有波长转换材料,用于对光源310出射的光源光进行波长转换后产生相应的受激光。第一色轮330包括本体与驱动单元,所述本体设置有预设区域,所述本体上所述预设区域之外设置有用于对光线进行修色的滤光区。在一种实施方式中,第一色轮330为滤光轮,第一色轮330的本体上所述预设区域之外设置有用于出射不同颜色光的多个区段,每个区段设置对应颜色的滤光片。所述预设区域设置于不同区段之间。
与第三实施方式相同的是,控制装置360与DMD340及所述驱动单元分别电连接,以控制第一色轮330、第二色轮370与DMD340同步。具体地,控制装置360控制所述驱动单元驱动所述本体运动,使得当DMD340中的微镜阵列在不受图像数据控制期间翻转时,所述预设区域中的遮光材料位于所述光源光的光路上,此时,第一色轮330不出射光线,或出射光线的光功率较低,从而基本没有光线入射至DMD340,从而避免了上述由于DMD340的微镜阵列不受图像信号控制翻转导致的偏光现象产生,有利于提高投影设备300的出射画面品质。
在一种实施方式中,与第三实施方式不同的是,色轮组件330A中包括第一色轮,所述第一色轮的本体上设置有预设区域,所述预设区域内设置有遮光材料,所述第一色轮上预设区域外设置有透光材料。驱动装置控制驱动单元驱动所述第一色轮运动,使得所述DMD中的微镜阵列在不受图像数据控制期间翻转时,遮光材料位于所述光源光的光路上。可以理解的是,在一种实施方式中,色轮组件330A还包括设置于所述光源光光路上的与第二色轮。其中,所述第二色轮用于将所述光源光转换为受激光,可以理解的是,所述第二色轮上可以设置有滤光区,或者色轮组件330A还设置有用于滤光的第三色轮。
在一种实施方式中,投影设备包括光源、第一色轮、DMD及控制装置。其中,所述第一色轮包括本体及驱动单元,所述本体的预设区域内设置有遮光材料,遮光材料为吸光或反射材料。所述驱动单元设置于所述本体上且用于驱动所述本体做周期性运动,使得遮光材料周期性的位于所述光源光的光路上。所述DMD包括用于调制所述本体出射光线的微镜阵列。所述控制装置与所述DMD及所述驱动单元分别电连接以控制所述驱动单元驱动所述本体运动,使得当所述微镜阵列在不受图像数据控制期间翻转时,遮光材料位于所述光源光的光路上。
当所述DMD中的微镜阵列在不受图像数据控制期间翻转时,所述第一色轮不出射光线,或出射光线的光功率较低,从而基本没有光 线入射至所述DMD,从而避免了上述由于所述DMD的微镜阵列不受图像信号控制翻转导致的偏光现象产生,有利于提高所述投影设备的出射画面品质。
在本发明所提供的几个实施例/方式中,应当理解的是,所述的方法和装置,也可以通过其他的方式来实现,以上所描述的装置实施例仅是示意性的,所述模块的划分,是一种逻辑功能划分,实现时可以有另外的划分方式。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例/方式的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例/方式看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例/方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。
Claims (16)
- 一种投影设备,其特征在于,包括:光源,用于发出光源光;第一色轮,包括:本体,在预设区域内设置有遮光材料,遮光材料为吸光或反射材料;驱动单元,设置于所述本体上且用于驱动所述本体做周期性运动,使得遮光材料周期性的位于所述光源光的光路上;数字微镜装置,包括用于调制所述本体出射光线的微镜阵列;及控制装置,与所述数字微镜装置及所述驱动单元分别电连接以控制所述驱动单元驱动所述本体运动,使得当所述微镜阵列在不受图像数据控制期间翻转时,遮光材料位于所述光源光的光路上。
- 如权利要求1所述的投影设备,其特征在于,所述本体在所述预设区域之外还设置有波长转换材料,所述波长转换材料与遮光材料间隔位于所述光源光的光路上,用于将部分光源光转换为受激光后出射。
- 如权利要求2所述的投影设备,其特征在于,所述本体包括多个区段,所述多个区段中的至少两个区段中分别设置有用于出射不同颜色光的波长转换材料。
- 如权利要求3所述的投影设备,其特征在于,所述多个区段中的一个区段中还设置有散射材料。
- 如权利要求2所述的投影设备,其特征在于,所述本体包括基板,所述波长转换材料及遮光材料设置于所述基板的入光侧。
- 如权利要求5所述的投影设备,其特征在于,所述基板具有高反射率,遮光材料为吸光材料。
- 如权利要求5所述的投影设备,其特征在于,所述基板具有高透射率。
- 如权利要求7所述的投影设备,其特征在于,所述本体的出光 侧设置有滤光层。
- 如权利要求8所述的投影设备,其特征在于,所述滤光层上包括用于覆盖所述预设区域的对应区域,所述对应区域中设置有遮光材料。
- 如权利要求7所述的投影设备,其特征在于,所述投影设备还包括与所述驱动单元连接的第二色轮,所述第二色轮在所述驱动单元的带动下与所述第一色轮进行同步的周期性运动,所述第二色轮上设置有与所述波长转换材料的颜色对应的滤光片。
- 如权利要求10所述的投影设备,其特征在于,所述第二色轮上设置有对应所述预设区域设置的对应区域,所述对应区域中设置有遮光材料。
- 如权利要求1所述的投影设备,其特征在于,所述本体上预设区域以外的区域设置有用于对光线进行修色的滤光区。
- 如权利要求12所述的投影设备,其特征在于,所述本体上还设置有与所述滤光区颜色对应的波长转换材料,所述波长转换材料将部分光源光转换为受激光,所述受激光穿过所述滤光区后出射。
- 如权利要求12所述的投影设备,其特征在于,所述投影设备还包括第二色轮,所述第二色轮在所述驱动单元的带动下与所述第一色轮进行同步的周期性运动,所述第二色轮上设置有与所述滤光区颜色对应的波长转换材料,所述波长转换材料将部分光源光转换为受激光后入射至所述第一色轮。
- 如权利要求12所述的投影设备,其特征在于,所述滤光区包括用于出射不同颜色光的多个区段,每个区段设置对应颜色的滤光片。
- 如权利要求3、4或15所述的投影设备,其特征在于,所述预设区域设置于不同区段之间。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810124770.5 | 2018-02-07 | ||
CN201810124770.5A CN110119057B (zh) | 2018-02-07 | 2018-02-07 | 投影设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019153636A1 true WO2019153636A1 (zh) | 2019-08-15 |
Family
ID=67520117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/094727 WO2019153636A1 (zh) | 2018-02-07 | 2018-07-06 | 投影设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110119057B (zh) |
WO (1) | WO2019153636A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006106547A (ja) * | 2004-10-08 | 2006-04-20 | Matsushita Electric Ind Co Ltd | カラーホイールとそれを用いた投写型表示装置 |
JP2006113302A (ja) * | 2004-10-14 | 2006-04-27 | Funai Electric Co Ltd | プロジェクタ |
CN101271261A (zh) * | 2008-04-25 | 2008-09-24 | 清华大学深圳研究生院 | 单镜头立体投影装置及滤光色轮 |
CN102520569A (zh) * | 2011-12-02 | 2012-06-27 | 深圳市光峰光电技术有限公司 | 光源装置及使用该光源装置的投影装置 |
CN105654875A (zh) * | 2016-03-29 | 2016-06-08 | 海信集团有限公司 | 一种激光投影显示方法及装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5282121A (en) * | 1991-04-30 | 1994-01-25 | Vari-Lite, Inc. | High intensity lighting projectors |
JP2001183603A (ja) * | 1999-12-22 | 2001-07-06 | Nec Corp | 投写型表示装置 |
US6813087B2 (en) * | 2001-12-31 | 2004-11-02 | Texas Instruments Incorporated | Multi-mode color filter |
JP3515972B2 (ja) * | 2002-01-31 | 2004-04-05 | 株式会社タムロン | 投影装置 |
JP2008122538A (ja) * | 2006-11-09 | 2008-05-29 | Sharp Corp | 光源冷却装置及び投射型映像表示装置 |
KR20090016368A (ko) * | 2007-08-10 | 2009-02-13 | 성균관대학교산학협력단 | 색 분리 장치 및 이를 이용한 컬러 표시 장치 |
JP5152008B2 (ja) * | 2009-01-26 | 2013-02-27 | ウシオ電機株式会社 | プロジェクター装置 |
JP4697559B2 (ja) * | 2009-03-27 | 2011-06-08 | カシオ計算機株式会社 | 光源装置及びプロジェクタ |
CN105467579B (zh) * | 2016-02-03 | 2017-03-22 | 京东方科技集团股份有限公司 | 一种mems光阀、显示装置 |
CN107608016B (zh) * | 2017-09-21 | 2019-12-10 | 四川长虹电器股份有限公司 | 滤光色轮、滤光色轮控制系统及滤光色轮的同步控制方法 |
-
2018
- 2018-02-07 CN CN201810124770.5A patent/CN110119057B/zh active Active
- 2018-07-06 WO PCT/CN2018/094727 patent/WO2019153636A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006106547A (ja) * | 2004-10-08 | 2006-04-20 | Matsushita Electric Ind Co Ltd | カラーホイールとそれを用いた投写型表示装置 |
JP2006113302A (ja) * | 2004-10-14 | 2006-04-27 | Funai Electric Co Ltd | プロジェクタ |
CN101271261A (zh) * | 2008-04-25 | 2008-09-24 | 清华大学深圳研究生院 | 单镜头立体投影装置及滤光色轮 |
CN102520569A (zh) * | 2011-12-02 | 2012-06-27 | 深圳市光峰光电技术有限公司 | 光源装置及使用该光源装置的投影装置 |
CN105654875A (zh) * | 2016-03-29 | 2016-06-08 | 海信集团有限公司 | 一种激光投影显示方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110119057A (zh) | 2019-08-13 |
CN110119057B (zh) | 2021-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5987368B2 (ja) | 照明装置および投射装置 | |
US9039187B2 (en) | Illumination optical system and a projector using the same | |
US9325955B2 (en) | Light source apparatus and projector apparatus with optical system having reduced color irregularity | |
US11249379B2 (en) | Illumination system and projection apparatus | |
US20230007218A1 (en) | Laser projection apparatus | |
JP2015022249A (ja) | 光路分岐光学系及びこの光路分岐光学系を用いた照明光源装置及びこの照明光源装置を用いた画像表示装置及びこの画像表示装置を用いた投射装置 | |
JP4790228B2 (ja) | 照明方法および表示装置 | |
CN114200761B (zh) | 光源装置和投影装置 | |
US20240264515A1 (en) | Laser projection apparatus | |
TWI731105B (zh) | 光源結構及投影系統 | |
CN111983878B (zh) | 光学旋转装置、照明系统以及投影装置 | |
US20200396425A1 (en) | Projection system and image modulation method | |
WO2019153636A1 (zh) | 投影设备 | |
JP2018146691A (ja) | 投写型映像表示装置 | |
US11768428B2 (en) | Laser source and laser projection apparatus | |
KR101167747B1 (ko) | 마이크로 프로젝터를 위한 광학 엔진 | |
TWI628504B (zh) | 發光系統 | |
CN111856862B (zh) | 光源系统及显示设备 | |
US20230359113A1 (en) | Laser source and laser projection apparatus | |
JP2006163281A (ja) | プロジェクタ装置 | |
US20230350281A1 (en) | Laser source and projection apparatus | |
WO2022141846A1 (zh) | 一种分光装置及投影光学系统 | |
CN220137537U (zh) | 光源组件、发光装置以及投影装置 | |
WO2020209065A1 (ja) | 画像表示装置、及び、電子機器 | |
WO2023274130A1 (zh) | 投影设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18904835 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18904835 Country of ref document: EP Kind code of ref document: A1 |