WO2019153570A1 - 一种电子血压计血压计算方法、装置和电子血压计 - Google Patents

一种电子血压计血压计算方法、装置和电子血压计 Download PDF

Info

Publication number
WO2019153570A1
WO2019153570A1 PCT/CN2018/087620 CN2018087620W WO2019153570A1 WO 2019153570 A1 WO2019153570 A1 WO 2019153570A1 CN 2018087620 W CN2018087620 W CN 2018087620W WO 2019153570 A1 WO2019153570 A1 WO 2019153570A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
pressure
coefficient
air bag
volume
Prior art date
Application number
PCT/CN2018/087620
Other languages
English (en)
French (fr)
Inventor
余文翰
Original Assignee
广东乐心医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东乐心医疗电子股份有限公司 filed Critical 广东乐心医疗电子股份有限公司
Publication of WO2019153570A1 publication Critical patent/WO2019153570A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds

Definitions

  • the present invention relates to the field of medical device technology, and in particular, to an electronic blood pressure meter blood pressure calculation method, device and electronic blood pressure meter for improving blood pressure measurement accuracy.
  • the sphygmomanometer is one of the most commonly used medical device tests, and the electronic sphygmomanometer using the oscillometric principle has been on the market for many years.
  • This type of sphygmomanometer collects the data of the internal pressure change by winding the air bag around a certain part of the human body and adjusting the air pressure in the air bag, and calculates the systolic/diastolic pressure of the subject accordingly.
  • the air bag By controlling the components such as the air pump and the air valve, the air bag can be charged/deflated, so that the air volume in the air bag changes, further causing the air pressure in the air bag to change, and the change in the air pressure caused by the charge and discharge gas is called the base air pressure change;
  • the pulsation of the blood vessel also causes the air pressure in the air bag to change.
  • the change of the air pressure caused by the pulsation of the blood vessel is called pneumatic pulsation, and when the basic air pressure changes, the blood vessel is pressed by the air bag.
  • the degree of change also changes, and the amplitude of the barometric pressure also changes.
  • the blood pressure of the subject is calculated according to the envelope characteristics.
  • the air bag There are two options for charging/deflation of the air bag. One is to quickly deflate after rapid inflation, and the pneumatic pulsation information is collected during the gentle deflation; the other is gentle inflation and rapid deflation. And the pneumatic pulsation information is collected during the gentle inflation process. Regardless of whether it is inflated or deflated, the abscissa (base air pressure) of the envelope is in descending order from left to right, and the envelopes generated by the two measurement methods are consistent.
  • the first step is to continuously collect the air pressure value in the air bag during the inflation process.
  • the measurement process is shown in Figure 1.
  • the abscissa is the sampling point, 64 points corresponds to 1 second, and the ordinate is barometric pressure, the unit is mmHg;
  • the second step all the pneumatic pulsations included in the air pressure value collected in the first step are extracted (for example, by high-pass filtering), and the extracted pneumatic pulsation is as shown in FIG. 2, and in FIG. 2, the abscissa is the sampling point, and 64 points correspond to 1 second, the ordinate is barometric pressure, the unit is mmHg;
  • the amplitudes of all the pneumatic pulsations extracted in the second step are plotted on the ordinate, and the corresponding base air pressure is plotted on the abscissa to generate an envelope, and the envelope is smoothed (optional) to generate
  • the envelope is shown in Figure 3.
  • the abscissa is the base pressure corresponding to the pneumatic pulsation
  • the unit is mmHg
  • the ordinate is the pneumatic pulsation amplitude
  • the unit is mmHg
  • the solid line is the original envelope
  • the dotted line is smooth. Over the envelope.
  • the maximum peak of the envelope is identified, which is regarded as the maximum amplitude of the pneumatic pulsation
  • the air pressure pulsation amplitude corresponding to the diastolic pressure is obtained; and a point equal to the value is found on the left side of the envelope, and the corresponding base air pressure is the diastolic pressure;
  • the air pressure pulsation amplitude corresponding to the systolic pressure is obtained; a point equal to the value is found on the right side of the envelope, and the corresponding base air pressure is the systolic pressure.
  • the aforementioned body-wound portion may be an upper arm or a wrist; correspondingly, the air bag may also be a cuff or a wristband.
  • the change of the pressure pulsation caused by the compression of the blood vessel is not only affected by the change of the base air pressure, but also by the tightness of the air bag at the wounded part of the human body: when the air bag is wound When it is tight, the pressure pulsation amplitude is too large under the same base air pressure; when the air bag is loosely wound, the air pressure pulsation amplitude is small under the same base air pressure.
  • the air bag winding tightness may affect the air pressure pulsation amplitude, further affecting the air pressure pulsation envelope characteristics, resulting in errors in blood pressure calculation results.
  • the embodiments of the present invention provide a blood pressure calculation method and device for an electronic blood pressure monitor and an electronic blood pressure monitor to improve the calculation accuracy of the electronic blood pressure monitor.
  • the embodiment of the present invention provides the following technical solutions:
  • An electronic blood pressure meter blood pressure calculation method includes:
  • the pressure value in the air bag is detected, and the sequence of air pressure values in the air bag is collected in real time;
  • Systolic and diastolic blood pressures were calculated based on the envelope characteristics and the corrected systolic pressure coefficient and diastolic pressure coefficient.
  • calculating the tightness coefficient of the air bag includes:
  • the tightness coefficient of the air bag is calculated according to the air pump outlet amount corresponding to the maximum peak value in the envelope, the air pump outlet amount at the end of the measurement, the air bag volume corresponding to the maximum peak value, and the air bag volume at the end of the measurement.
  • the air pump outlet amount corresponding to the maximum peak value in the envelope, the air pump outlet amount at the end of the measurement, the air pocket volume corresponding to the maximum peak value, and the air pocket at the end of the measurement calculates the tightness coefficient of the air bag, including:
  • Ts is the sampling period
  • Ogmean is the air pump output corresponding to the maximum peak in the envelope
  • Ogend is the air pump output at the end of the measurement
  • Vmean is the air bag volume corresponding to the maximum peak in the envelope
  • Vend is the air bag volume at the end of the measurement.
  • the air pump outlet amount corresponding to the maximum peak value in the envelope, the air pump outlet amount at the end of the measurement, the air pocket volume corresponding to the maximum peak value, and the air pocket at the end of the measurement calculates the tightness factor of the air bag, it also includes:
  • the maximum peak value and the air bag volume at the end of the measurement are calculated from the maximum peak value and the air volume in the air bag at the end of the measurement, respectively.
  • the method further includes:
  • Real-time calculation of the air volume of the electronic blood pressure monitor air pump per unit time specifically: real-time calculation of the air volume of the electronic blood pressure monitor air pump per unit time according to the PWM command sequence of the driving air pump;
  • the air volume in the air bag is calculated in real time, specifically: the air volume in the air bag is calculated in real time according to the PWM command sequence of the driving air pump.
  • the systolic pressure coefficient and the diastolic pressure coefficient are corrected according to the air bag tightness coefficient, and specifically includes:
  • Kdia is the diastolic pressure correction coefficient
  • Ksys is the systolic pressure correction coefficient
  • Kdia0 is the preset initial diastolic pressure coefficient
  • Ksys0 is the preset initial systolic pressure coefficient
  • e is the preset reference correction coefficient.
  • An electronic blood pressure monitor blood pressure calculation device comprising:
  • a pressure detecting unit for detecting a pressure value in the air bag, and collecting a sequence of air pressure values in the air bag in real time
  • a pneumatic pulsation calculation unit configured to extract a pneumatic pulsation sequence according to the collected sequence of air pressure values
  • a base air pressure calculation unit configured to extract a base air pressure sequence according to the collected air pressure value sequence
  • An envelope generating unit configured to generate an envelope matching the pneumatic pulsation sequence
  • a tightness calculating unit configured to calculate a tightness coefficient of the air bag
  • a blood pressure coefficient calculation unit configured to correct a systolic pressure coefficient and a diastolic pressure coefficient according to the elasticity coefficient
  • the blood pressure calculation unit is configured to calculate the systolic pressure and the diastolic pressure according to the envelope characteristic and the corrected systolic pressure coefficient and the diastolic pressure coefficient.
  • the elasticity calculation unit is specifically configured to:
  • the tightness coefficient of the air bag is calculated based on the air pump outlet amount corresponding to the maximum peak value in the envelope, the air pump outlet amount at the end of the measurement, the air bag volume corresponding to the maximum peak value, and the air bag volume at the end of the measurement.
  • the elasticity calculation unit is specifically configured to:
  • Ts is the sampling period
  • Ogmean is the air pump output corresponding to the maximum peak in the envelope
  • Ogend is the air pump output at the end of the measurement
  • Vmean is the air bag volume corresponding to the maximum peak in the envelope
  • Vend is the air bag volume at the end of the measurement.
  • the electronic blood pressure monitor blood pressure calculation device further includes:
  • the air outlet amount calculation unit is configured to calculate the air outlet amount of the electronic blood pressure monitor air pump per unit time in real time; respectively obtain the maximum peak value and the air outlet amount of the air pump unit time corresponding to the time at the end of the measurement;
  • An air bag volume calculation unit for calculating a volume of air in the air bag in real time, the volume of the air being a volume of air at the same atmospheric pressure; respectively calculating the maximum according to the maximum peak value and the volume of air in the air bag at the end of the measurement Peak value and air bag volume at the end of the measurement.
  • the electronic blood pressure monitor blood pressure calculation device further includes:
  • the air pump PWM command acquisition unit is configured to collect a PWM command for driving the air pump
  • the air outlet amount calculation unit is specifically configured to calculate the air outlet amount of the electronic blood pressure monitor air pump in a unit time according to the PWM command sequence of the driving air pump; and respectively obtain the maximum peak value and the air outlet amount of the air pump unit time corresponding to the end of the measurement ;
  • the air bag volume calculation unit is specifically configured to: calculate a volume of air in the air bag in real time according to a PWM command sequence of the driving air pump, where the air volume is a volume of the air at the same atmospheric pressure; respectively, according to the maximum peak value and the end of the measurement.
  • the air volume in the air bag is calculated to obtain the maximum peak value and the air bag volume at the end of the measurement.
  • the correction coefficient calculation unit is specifically configured to:
  • Kdia is the diastolic pressure correction coefficient
  • Ksys is the systolic pressure correction coefficient
  • Kdia0 is the preset initial diastolic pressure coefficient
  • Ksys0 is the preset initial systolic pressure coefficient
  • e is the preset reference correction coefficient.
  • the pressure value in the air bag is first detected, and the air pressure value sequence in the air bag is obtained, and the air pressure pulse sequence is obtained based on the air pressure value sequence, and then generated.
  • the envelope of the air pressure pulsation sequence is matched, and the tightness coefficient of the air bag is calculated, and the systolic pressure coefficient and the diastolic pressure coefficient are corrected according to the air bag tightness coefficient, and finally based on the envelope characteristic and the corrected systolic pressure.
  • the coefficient and diastolic pressure coefficient are calculated to obtain the systolic and diastolic pressures of the user to be tested, thereby solving the problem of low measurement accuracy due to the difference in the tightness of the air bag.
  • Figure 1 is a schematic diagram showing changes in barometric pressure during measurement
  • Figure 2 is a schematic view of the extracted pneumatic pulsation
  • Figure 3 is a schematic diagram of the original envelope and the smoothed envelope
  • Figure 4 shows the results of the calculation of systolic and diastolic pressure
  • Figure 5 is a schematic view of the envelope under different degrees of tightness
  • FIG. 6 is a schematic flow chart of a blood pressure calculation method of an electronic blood pressure monitor according to an embodiment of the present application
  • Figure 7 is a schematic diagram showing the relationship between the air volume of the air pump and the voltage/pressure
  • Figure 8 is a schematic diagram showing the process of changing the Vatm and the air bag volume V during the test
  • FIG. 9 is a schematic structural diagram of an electronic blood pressure monitor blood pressure calculation device according to an embodiment of the present application.
  • the aforementioned diastolic pressure coefficient and the systolic pressure coefficient are constant.
  • these two coefficients are affected by the tightness of the air bag winding, which may be caused if the factor is not considered.
  • the accuracy of blood pressure calculation results decreases.
  • the air pressure pulsation amplitude is too large, the diastolic pressure coefficient and the systolic pressure coefficient are too large under the same base air pressure; and when the air bag is loosely loose, Under the same base air pressure, the pressure pulsation amplitude is small, and the diastolic pressure coefficient and the systolic pressure coefficient are both small.
  • Fig. 5 The envelope under different tightness (before smoothing) is shown in Fig. 5.
  • the abscissa is the base air pressure corresponding to the pneumatic pulsation
  • the unit is mmHg
  • the ordinate is the pneumatic pulsation amplitude
  • the unit is mmHg
  • the dashed lines are the envelopes (before smoothing) when the same pair of subjects are looser/tighter in the same state.
  • the air bag winding elastic coefficient is calculated according to the air pump air volume, the air bag pressure change and the air bag volume change rule; then the diastolic pressure coefficient and the systolic pressure coefficient are adjusted according to the elastic coefficient, so that when calculating the blood pressure, Get more accurate results.
  • the electronic blood pressure meter has a measurement error caused by the difference in the tightness of the air bag when measuring the blood pressure of the user, and the present application discloses an electronic blood pressure meter blood pressure calculation method, a device, and an electronic blood pressure monitor.
  • a blood pressure calculation method for an electronic blood pressure monitor disclosed in the present application may include:
  • Step S101 detecting a pressure value in the air bag, and collecting a sequence of air pressure values in the air bag in real time;
  • the pressure detection method is used to collect the sequence of the air pressure value in the air bag during the inflation process, and the pressure value sequence is used to record the corresponding relationship between the pressure value and the time, and the collected air pressure value sequence is above the base air pressure which is constantly changing smoothly. , there will be a pressure fluctuation superposition of the oscillation amplitude constantly changing;
  • Step S102 extracting a pneumatic pulsation sequence and a base air pressure sequence according to the collected sequence of air pressure values
  • the pneumatic pressure sequence and the basic air pressure sequence included in the air pressure value sequence may be extracted by filtering the air pressure value sequence, such as high-pass filtering, band-pass filtering, and moving average filtering;
  • Step S103 generating an envelope matching the pneumatic pulsation sequence
  • the amplitude of each pneumatic pulsation is known from the pneumatic pulsation sequence identified in step S102, and the amplitude of all the pneumatic pulsations is plotted on the ordinate, and the respective corresponding base air pressures are plotted on the abscissa to generate an envelope.
  • the generated envelope may be smoothed, and the method has multiple points weighted average, Fourier transform and inverse transform, etc.; after the envelope is extracted, the envelope may be identified. Obtaining the maximum peak in the envelope, ie the pulse amplitude maximum, which is used in calculating the systolic and diastolic pressures;
  • Step S104 Calculating the tightness coefficient of the air bag, wherein the order of execution between step S104 and the pre-sequence steps S101-103 is not limited;
  • the tightness coefficient of the air bag can be collected by means of tension collection or other methods.
  • the air pump corresponding to the maximum peak can be adopted.
  • the air volume, the air pump output at the end of the measurement, the air bag volume corresponding to the maximum peak value, and the air bag volume at the end of the measurement are calculated to obtain the tightness coefficient of the air bag.
  • the calculation is performed according to the formula 1.
  • the a, b, c, and d are preset constants, wherein the range of a ranges from [-8, 12]; the range of b ranges from [-15, 5] Between; the value of c ranges between [-0.1, 0.1]; the value of d ranges between [-0.1, 0.1];
  • Ts is the sampling period, and its unit can be s
  • Ogmean is the air pump output corresponding to the maximum peak value in the envelope, and the unit thereof may be ml/s;
  • Ogend is the air pump output at the end of the measurement, and its unit can be ml/s;
  • Vmean is the volume of the air bag corresponding to the maximum peak in the envelope, and the unit thereof may be ml;
  • Vend is the volume of the air bag at the end of the measurement, and its unit can be ml.
  • Step S105 correcting the systolic pressure coefficient and the diastolic pressure coefficient according to the air bag tightness coefficient
  • the correction coefficient matched with the tightness coefficient can be obtained by looking up the table or calculating according to a preset formula.
  • Step S106 calculating systolic blood pressure and diastolic blood pressure according to the envelope characteristic and the corrected systolic pressure coefficient and the diastolic blood pressure coefficient;
  • the air pressure fluctuation amplitude corresponding to the corrected diastolic pressure is obtained; and the contour corresponding to the corrected air pressure fluctuation amplitude is found on the envelope line.
  • the point obtained at this time may be two, select the corresponding point with a smaller air pressure value, the corresponding base air pressure is the diastolic pressure; after multiplying the maximum peak value of the envelope by the corrected systolic pressure coefficient, Obtaining the pulsation amplitude corresponding to the corrected systolic pressure; finding a point corresponding to the corrected pulsation amplitude on the envelope line, and the number of points obtained at this time may be two, and the corresponding point with a larger air pressure value is selected.
  • the base air pressure corresponding to the point is the systolic pressure.
  • the pressure value in the air bag is first detected, and the air pressure value sequence in the air bag is obtained, and the air pressure pulse sequence is obtained based on the air pressure value sequence, and then generated.
  • the envelope of the air pressure pulsation sequence is matched, and the tightness coefficient of the air bag is calculated, and the systolic pressure coefficient and the diastolic pressure coefficient are corrected according to the air bag tightness coefficient, and finally based on the envelope characteristic and the corrected systolic pressure.
  • the coefficient and diastolic pressure coefficient are calculated to obtain the systolic and diastolic pressures of the user to be tested, thereby solving the problem of low measurement accuracy due to the difference in the tightness of the air bag.
  • It can be calculated by real-time calculation of the air outlet amount of the electronic sphygmomanometer air pump per unit time; respectively obtaining the maximum peak value and the air outlet amount per unit time of the air pump at the time corresponding to the end of the measurement.
  • calculating the air outlet amount of the air sphygmomanometer air pump per unit time can be calculated by designing the design parameter of the air pump and the voltage applied by the electronic sphygmomanometer to the air pump, and the voltage applied by the electronic sphygmomanometer to the air pump can be driven by the electronic sphygmomanometer
  • the PWM command sequence is calculated. Therefore, before calculating the air pump output, it is necessary to collect the PWM command sequence of the electronic sphygmomanometer to drive the air pump. According to the PWM command sequence of the driving air pump, the air volume of the electronic sphygmomanometer air pump can be calculated in real time.
  • the implementation process can be:
  • the air pump has a positive correlation between the air output per unit time and the driving voltage of the air pump, and is negatively correlated with the pressure in the air bag.
  • the corresponding relationship and calculation method can be one of the following two types, one of which is:
  • Og is the gas output per unit time of the air pump, which is a column of N rows of column vectors, the unit is ml/s, where N is the number of sampling points at which the electronic sphygmomanometer starts measuring to the end of the measurement;
  • U is the effective voltage obtained by the air pump, which is a column of N rows of column vectors, the unit is V;
  • Pr is the air pressure of the air bag at the output end of the air pump, which is a column vector of N rows, the unit is mmHg;
  • A1, b1, and c1 are preset coefficients, where a1 is ml/(s*V), the range is between [-1.4, 1.0], and b1 is (ml*mmHg)/(s*V) , the value range is between [-1000, 1800]; c1 unit is mmHg, the value range is between [-200, 300];
  • the U in Equation 2 is calculated according to the PWM command applied to the air pump by the electronic sphygmomanometer during measurement and the power supply voltage.
  • the formula is:
  • U is the effective voltage obtained by the air pump, is a column of N rows of column vectors, the unit is V;
  • Us is the power supply voltage, the unit is V;
  • PWM is the PWM applied by the firmware, which is a column of N rows of column vectors, dimensionless;
  • PWMmax is the maximum value of the PWM applied by the firmware, dimensionless.
  • the maximum peak value and the values of U and Pr at the measurement end time are extracted, and the values of the U and Pr are substituted into the formula 2 to obtain the maximum peak value and the air outlet amount per unit time of the air pump at the corresponding time at the end of the measurement.
  • Equations 2 and 3 need to be calibrated by the air pump performance test as follows:
  • the air pump supply voltage (U) can be 4.2V, 4.8V, 5.4 Choose between V and 6.0V.
  • the air pressure sampling data sequence is subjected to noise reduction processing, and the method may be low-pass filtering, weighted average of adjacent points, sliding window average, etc.; then subtracting two to two to obtain a pressure increment sequence ( ⁇ V);
  • Equation 2 can be calibrated according to the following method: using the cftool fitting toolbox of the software matlab, the air pump output sequence Og is set to y, the air pressure data sequence Pr is set to x, the fitting model is selected to the Rational model, and the Numerator degree parameter in the model is used. If the parameter is selected as 1 with the Denominator degree parameter, the parameters in Equation 2 can be obtained; preferably, the average value of the parameters fitted under each gas pump supply voltage can be obtained to obtain more accurate results.
  • the PWM command applied to the air pump by the electronic sphygmomanometer in Equation 3 the value range is [0, 255], different PWM is applied, and the effective driving voltage is different.
  • the power supply voltage is 6V. If the applied PWM is 255, the air pump is valid. The driving voltage is 255/255*6V. If the applied PWM is 100, the effective driving voltage of the air pump is 100/255*6V. The higher the effective driving voltage obtained by the air pump, the higher the rotational speed and the larger the air output.
  • Og is the amount of gas per unit time, which is a column of N rows of columns, the unit is ml/s;
  • U is the effective voltage obtained by the air pump, which is a column of N rows of column vectors, the unit is V;
  • Pr is the air pressure of the air bag at the output end of the air pump, which is a column vector of N rows, the unit is mmHg;
  • A2 and b2 are coefficients, a2 is ml/(s*V), the range is between [-4, 12], b2 is ml/(s*mmHg), and the range is [-0.1, 0.3 ]between;
  • U is calculated according to the PWM command applied to the air pump by the electronic sphygmomanometer during measurement and the power supply voltage.
  • the formula is:
  • U is the effective voltage obtained by the air pump, which is a column of N rows of column vectors, the unit is V;
  • Us is the power supply voltage, the unit is V;
  • PWM is the PWM applied by the firmware, which is a column of N rows of column vectors, dimensionless;
  • PWMmax is the maximum value of the PWM applied by the firmware, dimensionless
  • parameter size in the formula may vary when calculating the polarity of the outflow amount per unit time of different types of air pump, but it should fall within the protection scope of the present invention.
  • Fig. 7 The relationship between the air pump output and the voltage/air bag pressure is shown in Fig. 7.
  • the abscissa is the air pressure in the air bag, the unit is mmHg, and the ordinate is the air pump air volume, the unit is ml/s.
  • the maximum peak value and the values of U and Pr at the end of the measurement are extracted, and the values of the U and Pr are substituted into the formula 4 to obtain the maximum peak value and the air outlet amount per unit time of the air pump at the corresponding time at the end of the measurement.
  • Equation 4 The coefficients in Equation 4 can be calibrated as follows:
  • the above-mentioned fitting method is only one of them, and other methods such as a use of a ployfit function in a software matlab, a cftool toolbox, and the like, and other software such as EXCEL's trend prediction/regression analysis function may be used.
  • the general idea may be: calculating the volume of air in the air bag in real time, the volume of the air being the volume of the air at the same atmospheric pressure; respectively calculating the maximum peak value according to the maximum peak value and the volume of air in the air bag at the end of the measurement; The air bag volume at the end of the measurement.
  • the volume of the air bag when calculating the volume of the air bag, it may be based on the volume of the gas in the air bag, and the volume of the gas in the air bag as shown in Formula 5 may be calculated based on the amount of gas discharged per unit time of the air pump, and the unit time of the air pump as shown in Formula 2
  • the amount of outgas can be obtained based on the effective voltage obtained by the air pump, and the pump voltage can be obtained based on PWM as shown in Equation 3. Therefore, the present application can calculate the maximum peak value based on the PWM command sequence and the air bag volume at the end of the measurement.
  • the volume of the gas in the air bag is changed at any time. Before calculating it, the gas in the air bag can be first converted into a volume Vatm at atmospheric pressure by the following formula:
  • Vatm Mtril(N)*Og*ts Formula (5)
  • Vatm is a column of N rows of column vectors, each row of Vatm is used to characterize the volume of gas in the air bag at the time corresponding to the row, in units of ml;
  • N is the number of sampling points
  • Mtril(N) is the lower triangular matrix.
  • the specific formula is:
  • Og is the air pump output amount, which is a column of N rows of column vectors, and Og of each row is used to indicate the air pump outlet amount at the time corresponding to the row;
  • Ts is the sampling period and the unit is s.
  • V Vatm*Patm/Pr formula (7)
  • V is the air bag volume, which is a column of N rows of column vectors, and V of each row is used to indicate the volume of the air bag at the time corresponding to the row, in units of ml;
  • Patm is a standard atmospheric pressure value of 760mmHg
  • Pr is the air pressure value in the air bag, which is a column of N rows of column vectors, and Pr of each row is used to indicate the air pressure value in the air bag at the time corresponding to the row, and the unit is mmHg.
  • the maximum peak value and the values of Mtril(N), Og, and Pr at the end of measurement are extracted, and the values of the Mtril(N), Og, and Pr are substituted into the formulas 5 and 7 to obtain the maximum peak value and the end of the measurement.
  • the volume of the air bag at the corresponding time is extracted, and the values of the Mtril(N), Og, and Pr are substituted into the formulas 5 and 7 to obtain the maximum peak value and the end of the measurement.
  • a specific calculation method of the correction coefficient is also disclosed in an embodiment of the present application. Specifically, the systolic pressure coefficient and the diastolic pressure coefficient are modified according to the air bag tightness coefficient, and the method may include:
  • Kdia is the diastolic pressure correction coefficient
  • Ksys is the systolic pressure correction coefficient
  • Kdia0 is the preset initial diastolic pressure coefficient
  • Ksys0 is the preset initial systolic pressure coefficient
  • e is the preset reference correction coefficient.
  • the coefficients in Equations 1, 8, and 9 are derived from the analysis and statistics of valid clinical test data.
  • the effective clinical data requires that the larger the clinical data, the better.
  • the distribution of the test population is required, and the wider the subject type/blood pressure level distribution, the better.
  • the number of clinical data, the distribution range, and the test method refer to the requirements of ISO81060:2013, and the arm sphygmomanometer is taken as an example.
  • the number and distribution of the clinical data used in the calibration coefficient in the method are as shown in Table 1:
  • the calibration data source is 85 subjects in Table 1, a total of 255 clinical data;
  • the aforementioned column vectors x1 to x6 are arranged from left to right and form a matrix of 255 rows and 6 columns, that is, [x1, x2, x3, x4, x5, x6] is recorded as X.
  • P is a
  • a column vector of length 6 has elements corresponding to coefficients a, b, c, d, a, Kdia0 in the first formula, respectively.
  • the above-mentioned fitting method is only one of them, and other methods such as a use of a ployfit function in a software matlab, a cftool toolbox, and the like, and other software such as EXCEL's trend prediction/regression analysis function may be used.
  • the present application also discloses an electronic blood pressure monitor blood pressure calculation device.
  • the device may include:
  • the pressure detecting unit 100 is configured to detect a pressure value in the air bag, and collect a sequence of air pressure values in the air bag in real time;
  • the air pressure pulsation calculation unit 200 is configured to extract a pneumatic pulsation sequence according to the collected sequence of air pressure values
  • the base air pressure calculation unit 300 is configured to extract a base air pressure sequence according to the collected air pressure value sequence
  • An envelope generation unit 400 is configured to generate an envelope that matches the pneumatic pulsation sequence. After extracting the envelope, the envelope generation unit 400 can identify the envelope to obtain a maximum peak in the envelope, that is, a pulse amplitude maximum, which is when calculating the systolic and diastolic pressures.
  • a tightness calculation unit 500 configured to calculate a tightness coefficient of the air bag
  • a blood pressure coefficient calculation unit 600 configured to correct a systolic pressure coefficient and a diastolic pressure coefficient according to the elasticity coefficient
  • the blood pressure calculation unit 700 is configured to calculate the systolic pressure and the diastolic pressure according to the envelope characteristic and the corrected systolic pressure coefficient and the diastolic pressure coefficient.
  • the envelope feature may refer to the largest peak in the envelope.
  • the blood pressure calculation unit 700 may first calculate the diastolic blood pressure and the systolic blood pressure of the measured user by using a conventional calculation method, and then correct the systolic blood pressure and the diastolic blood pressure according to the correction coefficient, and use the corrected systolic blood pressure and diastolic blood pressure as Test result output.
  • the maximum peak value in the envelope can be corrected first, and then the systolic pressure and the diastolic pressure of the measured user can be obtained according to the calculated maximum peak value.
  • the specific execution process of this step may include: After the maximum peak value of the envelope is multiplied by the corrected diastolic pressure coefficient, the air pressure fluctuation amplitude corresponding to the corrected diastolic pressure is obtained; and a point corresponding to the corrected air pressure fluctuation amplitude is found on the envelope line, and the point obtained at this time is obtained.
  • the corresponding base pressure value is selected, and the corresponding base air pressure is the diastolic pressure; after the maximum peak value of the envelope is multiplied by the corrected systolic pressure coefficient, the corrected systolic pressure is obtained.
  • Corresponding air pressure pulsation amplitude; find the point corresponding to the corrected air pressure pulsation amplitude on the envelope line, and the number of points obtained at this time may be two, and the corresponding base air pressure value is selected, and the corresponding base air pressure at this point It is the systolic pressure.
  • the tightness calculation unit 500 is specifically configured to:
  • the tightness coefficient of the air bag can be collected by means of tension collection or other methods, or the air bag corresponding to the maximum peak value, the air pump output amount at the end of the measurement, and the air bag corresponding to the maximum peak value as described in the above method.
  • the volume and the air bag volume at the end of the measurement are calculated to obtain the tightness factor of the air bag.
  • the tightness calculation unit 500 is specifically configured to:
  • Ts is the sampling period
  • Ogmean is the maximum peak output of the air pump
  • Ogend is the air pump output at the end of the measurement
  • Vmean is the air bag volume corresponding to the maximum peak value
  • Vend is the air bag volume at the end of the measurement.
  • the foregoing apparatus may further include:
  • the air pump PWM command acquisition unit is configured to collect a PWM command for driving the air pump
  • the gas output amount calculation unit is configured to calculate the gas output amount of the electronic blood pressure meter air pump per unit time in real time; respectively obtain the maximum peak value and the air outlet amount of the air pump unit time corresponding to the time at the end of the measurement;
  • the air outlet amount of the electronic blood pressure monitor air pump is calculated in real time according to the PWM command sequence of the driving air pump; the maximum peak value and the air outlet amount per unit time of the air pump at the time corresponding to the end of the measurement are respectively obtained.
  • An air bag volume calculation unit for calculating a volume of air in the air bag in real time, the volume of the air being a volume of air at the same atmospheric pressure; respectively calculating the maximum according to the maximum peak value and the volume of air in the air bag at the end of the measurement Peak value and air bag volume at the end of the measurement.
  • the method corresponding to the formulas 5, 6, and 7 introduced in the above method may be used to calculate the volume of air in the air bag in real time according to the PWM command sequence of the driving air pump, where the volume of the air is the volume of the air at the same atmospheric pressure;
  • the maximum peak value and the air bag volume at the end of the measurement are calculated based on the maximum peak value and the volume of air in the air bag at the end of the measurement.
  • correction coefficient calculation unit 600 is specifically configured to:
  • Kdia is the diastolic pressure correction coefficient
  • Ksys is the systolic pressure correction coefficient
  • Kdia0 is the preset initial diastolic pressure coefficient
  • Ksys0 is the preset initial systolic pressure coefficient
  • e is the preset reference correction coefficient.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented directly in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dentistry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种电子血压计血压计算方法、装置和电子血压计,方法通过首先对空气袋内的压力值进行检测,得到空气袋内的气压值序列(S101),同时采集得到驱动气泵的PWM指令序列,基于气压值序列得到气压脉动序列和基础气压序列(S102),然后生成与气压脉动序列相匹配的包络线(S103),再计算得到空气袋的松紧度系数(S104),根据松紧度系数修正收缩压系数和舒张压系数(S105),最终基于包络线的特征和调整后的收缩压系数和舒张压系数计算得到被测用户的收缩压和舒张压(S106),从而解决了由于空气袋的松紧度不同而导致的测量精确度低的问题。

Description

一种电子血压计血压计算方法、装置和电子血压计
本申请要求于2018年02月12日提交中国专利局、申请号为201810145058.3、发明名称为“一种电子血压计血压计算方法、装置和电子血压计”的国内申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗设备技术领域,具体涉及一种用于提高血压测量精度的电子血压计血压计算方法、装置和电子血压计。
背景技术
血压计是最常用的医疗设备检测之一,使用示波法原理的电子血压计,已在市场上出现多年。该类型血压计通过将空气袋卷绕在人体某一部分并调整空气袋内的气压,采集内压变化的数据并据此计算受测者的收缩压/舒张压。
通过控制气泵与气阀等元件,可以对空气袋进行充/放气,使得空气袋内空气量发生变化,进一步导致空气袋内气压变化,由充放气导致的气压变化称为基础气压变化;人体被卷绕部分的血管受到空气袋的压迫时,血管的搏动也会导致空气袋内气压变化,由血管搏动导致的气压变化称为气压脉动,并且,基础气压变化时,血管受空气袋压迫的程度也发生变化,气压脉动幅度也会发生变化。在采集到气压脉动序列后,根据其包络线特征计算受测者的血压。
对空气袋的充/放气,有两种方案,一种是快速充气后,平缓放气,并且气压脉动信息是在平缓放气的过程中采集的;另一种是平缓充气,快速放气,并且气压脉动信息是在平缓充气的过程中采集的。无论是采用充气式还是放气式测量,其包络线的横坐标(基础气压)按从左至右为由大到小顺序,两种测量方式生成的包络线是一致的。
以充气式测量为例,详述公知技术的血压计算方法:
第一步,不断采集充气过程中空气袋内的气压值,其测量过程如图1所示,图1中,横坐标为采样点,64点对应1秒,纵坐标为气压,单位为mmHg;
第二步,提取第一步采集到的气压值内包含的所有气压脉动(例如通过高通滤波),提取到的气压脉动如图2所示,图2中,横坐标为采样点,64点对应1秒,纵坐标为气压,单位为mmHg;
第三步,以第二步提取到的所有的气压脉动的振幅为纵坐标,以它们对应的基础气压为横坐标,生成包络线,并对包络线进行平滑处理(可选),生成的包络线如图3所示;图3中,横坐标为气压脉动对应的基础气压,单位为mmHg,纵坐标为气压脉动振幅,单位为mmHg,实线为原始包络线,虚线为平滑过的包络线。
第四步,识别出包络线最大峰值,视为气压脉动的最大振幅;
第五步,将前述包络线最大峰值乘以舒张压系数后,得到舒张压对应的气压脉动振幅;在包络线左侧寻找等于其值的点,其对应的基础气压即为舒张压;
第六步,将前述包络线最大峰值乘以收缩压系数后,得到收缩压对应的气压脉动振幅;在包络线右侧寻找等于其值的点,其对应的基础气压即为收缩压。
第四至六步过程如图4所示:图4中,横坐标为气压脉动对应的基础气压,单位为mmHg,纵坐标为气压脉动振幅,单位为mmHg,黑色曲线为平滑处理过的包络线。
对空气袋的充/放气,有两种方案,一种是快速充气后,平缓放气,并且气压脉动信息是在平缓放气的过程中采集的;另一种是平缓充气,快速放气,并且气压脉动信息是在平缓充气的过程中采集的。在采集到气压脉动序列后,根据其包络线特征计算血压。
前述的人体被卷绕部分,可以是上臂或者是手腕;相对应的,空气袋也可以是袖带或者腕带。
申请人根据临床研究发现,血管受压迫所导致的气压脉动幅度变化,不仅仅受基础气压改变的影响,而且还受到空气袋在人体被卷绕部位的松紧度的影响:当空气袋卷绕偏紧时,在相同的基础气压下,气压脉动幅度偏大;而当空气袋卷绕偏松时,在相同的基础气压下,气压脉动幅度偏小。
若不对空气袋卷绕松紧度进行处理,则其可能影响气压脉动幅度,进一步影响气压脉动包络线特征,从而导致血压计算结果出现误差。
发明内容
有鉴于此,本发明实施例提供一种电子血压计血压计算方法、装置和电子血压计,以提高电子血压计的计算精度。
为实现上述目的,本发明实施例提供如下技术方案:
一种电子血压计血压计算方法,包括:
对空气袋内的压力值进行检测,实时采集空气袋内的气压值序列;
依据采集到的气压值序列提取气压脉动序列与基础气压序列;
生成与所述气压脉动序列相匹配的包络线;
计算所述空气袋的松紧度系数;
根据空气袋松紧度系数修正收缩压系数和舒张压系数;
依据包络线特征和修正后的收缩压系数和舒张压系数计算得到收缩压和舒张压。
优选的,上述电子血压计血压计算方法中,计算所述空气袋的松紧度系数包括:
依据包络线中的最大峰值对应的气泵出气量、测量结束时的气泵出气量、所述最大峰值对应的空气袋容积以及测量结束时的空气袋容积计算得到空气袋的松紧度系数。
优选的,上述电子血压计血压计算方法中,依据包络线中的最大峰值对应的气泵出气量、测量结束时的气泵出气量、所述最大峰值对应的空气袋容积以及测量结束时的空气袋容积计算得到空气袋的松紧度系数,具体包括:
依据公式Kti=a*Ogmean*ts+b*Ogend*ts+c*Vmean+d*Vend计算得到空气袋的松紧度系数;
其中,所述a、b、c和d为预设常数;
ts为采样周期;
Ogmean为包络线中的最大峰值对应的气泵出气量;
Ogend为测量结束时的气泵出气量;
Vmean为包络线中的最大峰值对应的空气袋容积;
Vend为测量结束时的空气袋容积。
优选的,上述电子血压计血压计算方法中,依据包络线中的最大峰值对应的气泵出气量、测量结束时的气泵出气量、所述最大峰值对应的空气袋容积以及测量结束时的空气袋容积计算得到空气袋的松紧度系数之前,还包括:
实时计算电子血压计气泵单位时间内的出气量;
分别获取所述最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量;
实时计算空气袋内的空气体积,所述空气体积为空气在同一个大气压下的 体积;
分别依据所述最大峰值以及测量结束时空气袋内的空气体积计算得到最大峰值以及测量结束时的空气袋容积。
优选的,上述电子血压计血压计算方法中,实时计算电子血压计气泵单位时间内的出气量之前,还包括:
采集电子血压计驱动气泵的PWM指令序列;
实时计算电子血压计气泵单位时间内的出气量,具体为:根据驱动气泵的PWM指令序列实时计算电子血压计气泵单位时间内的出气量;
实时计算空气袋内的空气体积,具体为:根据驱动气泵的PWM指令序列实时计算空气袋内的空气体积。
优选的,上述电子血压计血压计算方法中,根据空气袋松紧度系数修正收缩压系数和舒张压系数,具体包括:
依据公式Kdia=Kdia0*(1+e*Kti)和Ksys=Ksys0*(1+Kti)计算得到与所述松紧度系数相匹配的修正系数;
其中,Kdia为舒张压修正系数,Ksys为收缩压修正系数,Kdia0为预设的初始舒张压系数,Ksys0为预设的初始收缩压系数,e为预设参考修正系数。
一种电子血压计血压计算装置,包括:
压力检测单元,用于对空气袋内的压力值进行检测,实时采集空气袋内的气压值序列;
气压脉动计算单元,用于依据采集到的气压值序列提取气压脉动序列;
基础气压计算单元,用于依据采集到的气压值序列提取基础气压序列;
包络线生成单元,用于生成与所述气压脉动序列相匹配的包络线;
松紧度计算单元,用于计算所述空气袋的松紧度系数;
血压系数计算单元,用于根据所述松紧度系数修正收缩压系数和舒张压系数;
血压计算单元,用于依据所述包络线特征和修正后的收缩压系数和舒张压系数计算得到收缩压和舒张压。
优选的,上述电子血压计血压计算装置中,所述松紧度计算单元具体用于:
依据包络线中的最大峰值对应的气泵出气量、测量结束时的气泵出气量、所述最大峰值对应的空气袋容积以及测量结束时的空气袋容积计算得到空气 袋的松紧度系数。
优选的,上述电子血压计血压计算装置中,所述松紧度计算单元具体用于:
依据公式Kti=a*Ogmean*ts+b*Ogend*ts+c*Vmean+d*Vend计算得到空气袋的松紧度系数;
其中,所述a、b、c和d为预设常数;
ts为采样周期;
Ogmean为包络线中的最大峰值对应的气泵出气量;
Ogend为测量结束时的气泵出气量;
Vmean为包络线中的最大峰值对应的空气袋容积;
Vend为测量结束时的空气袋容积。
优选的,上述电子血压计血压计算装置中,还包括:
出气量计算单元,用于实时计算电子血压计气泵单位时间内的出气量;分别获取所述最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量;
空气袋容积计算单元,用于实时计算空气袋内的空气体积,所述空气体积为空气在同一个大气压下的体积;分别依据所述最大峰值以及测量结束时空气袋内的空气体积计算得到最大峰值以及测量结束时的空气袋容积。
优选的,上述电子血压计血压计算装置中,还包括:
气泵PWM指令采集单元,用于采集驱动气泵的PWM指令;
所述出气量计算单元具体用于,根据驱动气泵的PWM指令序列实时计算电子血压计气泵单位时间内的出气量;分别获取所述最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量;
所述空气袋容积计算单元具体用于:根据驱动气泵的PWM指令序列实时计算空气袋内的空气体积,所述空气体积为空气在同一个大气压下的体积;分别依据所述最大峰值以及测量结束时空气袋内的空气体积计算得到最大峰值以及测量结束时的空气袋容积。
优选的,上述电子血压计血压计算装置中,修正系数计算单元具体用于:
依据公式Kdia=Kdia0*(1+e*Kti)和Ksys=Ksys0*(1+Kti)计算得到与所述松紧度系数相匹配的修正系数;
其中,Kdia为舒张压修正系数,Ksys为收缩压修正系数,Kdia0为预设的初始舒张压系数,Ksys0为预设的初始收缩压系数,e为预设参考修正系数。
一种电子血压计,应用有上述任意一项所述的电子血压计血压计算装置。
通过本申请上述实施例公开的技术方案可见,在上述计算过程中,首先对空气袋内的压力值进行检测,得到空气袋内的气压值序列,基于该气压值序列得到气压脉动序列,然后生成与所述气压脉动序列相匹配的包络线,再计算得到空气袋的松紧度系数,根据空气袋松紧度系数修正收缩压系数和舒张压系数,最终基于包络线特征和修正后的收缩压系数和舒张压系数计算得到被测用户的收缩压和舒张压,从而解决了由于空气袋的松紧度不同而导致的测量精确度低的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为测量过程中气压值变化示意图;
图2为提取出的气压脉动的示意图;
图3为原始包络线及平滑过的包络线的示意图;
图4为收缩压与舒张压计算结果意图;
图5为不同松紧度下的包络线示意图;
图6为本申请实施例公开的电子血压计血压计算方法的流程示意图;
图7为气泵出气量与电压/气压关系示意图;
图8为测试过程中Vatm与空气袋容积V的变化过程示意图;
图9为本申请实施例公开的一种电子血压计血压计算装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在现有技术中,通常认为前述舒张压系数与收缩压系数是恒定的,然而,根据临床研究发现,这两个系数会受到空气袋卷绕松紧度的影响,若不考虑该因素则可能造成血压计算结果精度下降;当空气袋卷绕偏紧时,在相同的基础气压下,气压脉动幅度偏大,舒张压系数与收缩压系数都偏大;而当空气袋卷绕偏松时,在相同的基础气压下,气压脉动幅度偏小,舒张压系数与收缩压系数都偏小。
不同松紧度下的包络线(平滑前)如图5所示,图5中,横坐标为气压脉动对应的基础气压,单位为mmHg,纵坐标为气压脉动振幅,单位为mmHg,实线/虚线分别为同一名受试者在相同状态下袖带捆绑较松/较紧时的包络线(平滑前)。
本方法中,根据气泵出气量、空气袋压力变化与空气袋容积变化的规律,计算出空气袋卷绕松紧系数;然后根据松紧系数调整舒张压系数与收缩压系数,这样在计算血压时,能够得到更精确的结果。
因此,针对于现有技术中,电子血压计在测量用户血压时因空气袋松紧度不同而产生的测量误差的问题,本申请公开了一种电子血压计血压计算方法、装置和电子血压计。
参见图6,本申请公开的一种电子血压计血压计算方法,可以包括:
步骤S101:对空气袋内的压力值进行检测,实时采集空气袋内的气压值序列;
通过压力检测的方式实时采集充气过程中空气袋内的气压值序列,通过所述气压值序列记录压力值与时间的对应关系,采集到的气压值序列中,在不断平稳变化的基础气压之上,会有振荡幅度不断变化的气压脉动叠加;
步骤S102:依据采集到的气压值序列提取气压脉动序列与基础气压序列;
本步骤中,具体可以通过对气压值序列进行滤波,如高通滤波、带通滤波,滑动平均滤波等方式,提取到气压值序列中所包含的气压脉动序列和基础气压序列;
步骤S103:生成与所述气压脉动序列相匹配的包络线;
具体的,由步骤S102识别出的气压脉动序列中可知每一个气压脉动的振幅,并以所有气压脉动的振幅为纵坐标,以它们各自对应的基础气压为横坐标, 可生成包络线。当然,为了方便识别还可以对生成的包络线进行平滑处理,方法有多点加权平均,傅里叶变换与反变换等;提取到所述包络线后,可以对包络线进行识别,得到包络线中的最大峰值,即脉搏振幅最大值,所述最大峰值在计算收缩压和舒张压时用到;
步骤S104:计算所述空气袋的松紧度系数,其中,步骤S104与前序步骤S101-103之间的执行顺序并不进行限定;
在本申请实施例公开的技术方案中,可通过张力采集的方式或者其他方式采集空气袋的松紧度系数,例如,在本申请实施例公开的技术方案中,可通过所述最大峰值对应的气泵出气量、测量结束时的气泵出气量、最大峰值对应的空气袋容积以及测量结束时的空气袋容积计算得到空气袋的松紧度系数。在具体计算松紧度系数时,依据公式1进行计算。
Kti=a*Ogmean*ts+b*Ogend*ts+c*Vmean+d*Vend    (公式1)
在公式1中,所述a、b、c和d为预设常数,其中,所述a的取值范围在[-8,12]之间;b的取值范围在[-15,5]之间;c的取值范围在[-0.1,0.1]之间;d的取值范围在[-0.1,0.1]之间;
ts为采样周期,其单位可以为s;
Ogmean为所述包络线中最大峰值对应的气泵出气量,其单位可以为ml/s;
Ogend为测量结束时的气泵出气量,其单位可以为ml/s;
Vmean为所述包络线中最大峰值对应的空气袋容积,其单位可以为ml;
Vend为测量结束时的空气袋容积,其单位可以为ml。
步骤S105:根据空气袋松紧度系数修正收缩压系数和舒张压系数;
在本申请实施例公开的技术方案中可以通过查表或依据预设的公式进行计算的方式得到与所述松紧度系数相匹配的修正系数。
步骤S106:依据包络线特征和修正后的收缩压系数和舒张压系数计算得到收缩压和舒张压;
在本步骤中,将前述包络线的最大峰值乘以修正后的舒张压系数后,得到修正后的舒张压对应的气压脉动振幅;在包络线上寻找等于修正后的气压脉动振幅对应的点,此时得到的点可能为两个,选择对应的气压值较小的点,此点对应的基础气压即为舒张压;将前述包络线最大峰值乘以修正后的收缩压系数 后,得到修正后的收缩压对应的气压脉动振幅;在包络线上找等于修正后的气压脉动振幅对应的点,此时得到的点可能为两个,选择对应的气压值较大的点,此点对应的基础气压即为收缩压。
通过本申请上述实施例公开的技术方案可见,在上述计算过程中,首先对空气袋内的压力值进行检测,得到空气袋内的气压值序列,基于该气压值序列得到气压脉动序列,然后生成与所述气压脉动序列相匹配的包络线,再计算得到空气袋的松紧度系数,根据空气袋松紧度系数修正收缩压系数和舒张压系数,最终基于包络线特征和修正后的收缩压系数和舒张压系数计算得到被测用户的收缩压和舒张压,从而解决了由于空气袋的松紧度不同而导致的测量精确度低的问题。
在本申请上述实施例公开的公式1的技术方案中,计算空气袋的松紧度系数时,需要用到所述最大峰值对应的气泵出气量、测量结束时的气泵出气量、最大峰值对应的空气袋容积以及测量结束时的空气袋内容积,这些参数可以采用下述方法计算得到:
①、最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量:
其可以通过如下方式进行计算:实时计算电子血压计气泵单位时间内的出气量;分别获取所述最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量。
其中,计算电子血压计气泵单位时间内的出气量的出气量可以给予气泵的设计参数以及电子血压计向气泵施加的电压计算得到,电子血压计向气泵施加的电压又可以采用电子血压计驱动气泵的PWM指令序列计算得到,因此,在计算气泵出气量之前还需要采集电子血压计驱动气泵的PWM指令序列,根据驱动气泵的PWM指令序列即可实时计算电子血压计气泵单位时间内的出气量。
具体的,其实现过程可以为:
气泵在单位时间内的出气量与气泵的驱动电压之间为正相关,与空气袋内压力为负相关,对应关系、计算方法可以为以下两种之一,其中一种为:
Og=U*(a1*Pr+b1)/(Pr+c1)    公式(2)
式中:
Og为气泵单位时间内的出气量,其为一列N行的列向量,单位为ml/s, N为电子血压计开始测量到测量结束的采样点个数;
U为气泵得到的有效电压,为一列N行的列向量,单位为V;
Pr为气泵输出端空气袋的气压,为一列N行的列向量,单位为mmHg;
a1、b1、c1为预设系数,其中,a1单位为ml/(s*V),取值范围在[-1.4,1.0]之间;b1单位为(ml*mmHg)/(s*V),取值范围在[-1000,1800]之间;c1单位为mmHg,取值范围在[-200,300]之间;
公式2中的U根据测量过程中电子血压计施加给气泵的PWM指令以及电源电压计算,公式为:
U=Us*PWM/PWMmax         公式(3)
式中:U为气泵得到的有效电压,为一列N行的列向量,单位为V;
Us为电源电压,单位为V;
PWM为固件施加的PWM,为一列N行的列向量,无量纲;
PWMmax为固件施加的PWM的最大值,无量纲。
在本方法中提取最大峰值以及测量结束时刻的U和Pr的值,将所述U、Pr的值代入公式2即可得到最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量。
公式2、3中的各项系数,需要通过气泵性能测试来标定,方法如下:
给气泵施加固定供电电压(U),气泵出气口连接固定100ml气缸,采集气缸内气压0-300mmHg过程中的气压数据序列(Pr);气泵供电电压(U)可在4.2V、4.8V、5.4V、6.0V中选择。
对前述气压采样数据序列均进行降噪处理,方法可以是低通滤波,相邻点加权平均、滑动窗平均等;然后两两相减,得到气压增量序列(△V);再按照下述算式,得到气泵出气量序列:Og=△V*100*64*6/760/U。
公式2中可按以下方法标定:使用软件matlab的cftool拟合工具箱,将气泵出气量序列Og设置为y,气压数据序列Pr设置为x,拟合模型选择Rational模型,模型中的Numerator degree参数与Denominator degree参数均选择为1,即可得到公式2中的各项参数;优选的,将每一种气泵供电电压下拟合出的参数求均值,可得到更精确的结果。
公式3中电子血压计施加给气泵的PWM指令,数值范围在[0,255],施加不同的PWM,达到的有效驱动电压不同,例如,电源电压为6V,如果施加 PWM是255,那么气泵得到的有效驱动电压就是255/255*6V,如果施加PWM是100,那么气泵得到的有效驱动电压就是100/255*6V。气泵得到的有效驱动电压越高,转速就越高,出气量越大。
另一种计算气泵出气量的公式为:
Og=U*(a2-b2*Pr)            公式(4)
式中:
Og为单位时间内的出气量,为一列N行的列向量,单位为ml/s;
U为气泵得到的有效电压,为一列N行的列向量,单位为V;
Pr为气泵输出端空气袋的气压,为一列N行的列向量,单位为mmHg;
a2、b2为系数,a2单位为ml/(s*V),取值范围在[-4,12]之间,b2单位为ml/(s*mmHg),取值范围在[-0.1,0.3]之间;
公式(4)中,U根据测量过程中电子血压计施加给气泵的PWM指令以及电源电压计算,公式为:
U=Us*PWM/PWMmax              公式(3)
式中:
U为气泵得到的有效电压,为一列N行的列向量,单位为V;
Us为电源电压,单位为V;
PWM为固件施加的PWM,为一列N行的列向量,无量纲;
PWMmax为固件施加的PWM的最大值,无量纲;
需要说明的是,在对不同类型的充气泵单位时间内的出气量极性计算时,公式中的参数大小可能有变化,但均应落入本发明的保护范围内。
气泵出气量与电压/空气袋内气压的关系如图7所示意,图中,横坐标为空气袋内气压,单位为mmHg,纵坐标为气泵出气量,单位为ml/s。
在本方法中提取最大峰值以及测量结束时刻的U和Pr的值,将所述U、Pr的值代入公式4即可得到最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量。
公式4中的各项系数可按以下方法标定得到:
a)、创建一个与气压序列等长的列向量,元素全为1,记为x1;
b)、将前述列向量x1与气压数据序列Pr,由左至右排列并构成一个矩阵,即[x1,Pr],记为X;
c)、令Y=Og/U,对Y=X*Para等式中的P进行拟合,使用软件matlab中的regress函数;Para是一个长度为2的列向量,其元素依次分别对应公式4中的系数a2、b2。
上述的拟合方式只是其中一种,还可以使用其他方式,例如使用软件matlab中的ployfit函数、cftool工具箱等,以及其他软件如EXCEL的趋势预测/回归分析功能等。
②、最大峰值以及测量结束时的空气袋容积:
其大致思路可以为:实时计算空气袋内的空气体积,所述空气体积为空气在同一个大气压下的体积;分别依据所述最大峰值以及测量结束时空气袋内的空气体积计算得到最大峰值以及测量结束时的空气袋容积。
其中,计算空气袋容积时,可以基于空气袋内的气体体积,而如公式5所示空气袋内的气体体积可以基于气泵单位时间内的出气量计算得到,而如公式2所示气泵单位时间内的出气量可以基于气泵得到的有效电压得到,而如公式3所示气泵电压可以基于PWM得到,因此,本申请可基于PWM指令序列计算得到最大峰值以及测量结束时的空气袋容积。
具体的,其过程如下:
在进行血压测试时,空气袋内的气体容积是随时在变化的,在计算它之前,首先可通过如下公式将空气袋内的气体折算为一个大气压下的体积Vatm:
Vatm=Mtril(N)*Og*ts           公式(5)
式中:
Vatm为一列N行的列向量,每一行的Vatm用于表征该行对应的时刻下的空气袋内的气体体积,单位为ml;
N为采样点个数;
Mtril(N)为下三角矩阵,具体公式为:
Figure PCTCN2018087620-appb-000001
其中,Og为气泵出气量,为一列N行的列向量,每一行的Og用于表示该行对应的时刻的气泵出气量;
ts为采样周期,单位为s。
然后根据下述公式计算空气袋内气体容积:
V=Vatm*Patm/Pr              公式(7)
式中,
V为空气袋容积,为一列N行的列向量,每一行的V用于表示该行对应的时刻的空气袋容积,单位为ml;
Patm为一个标准大气压力值,为760mmHg;
Pr为空气袋内气压值,为一列N行的列向量,每一行的Pr用于表示该行对应的时刻的空气袋内气压值,单位为mmHg。
其中,Vatm与V的关系可以参见图8所示:
在本方法中提取最大峰值以及测量结束时刻的Mtril(N)、Og和Pr的值,将所述Mtril(N)、Og和Pr的值代入公式5和7即可得到最大峰值以及测量结束时对应的时刻空气袋的容积。
本申请一实施例中还公开了一种修正系数的具体计算方法,具体的,上述方法中根据空气袋松紧度系数修正收缩压系数和舒张压系数,具体可以包括:
依据公式8和9计算得到与所述松紧度系数相匹配的收缩压的修正系数和舒张压的修正系数;
Kdia=Kdia0*(1+e*Kti)            公式(8)
Ksys=Ksys0*(1+Kti)               公式(9)
其中,Kdia为舒张压修正系数,Ksys为收缩压修正系数,Kdia0为预设的初始舒张压系数,Ksys0为预设的初始收缩压系数,e为预设参考修正系数。
上述实施例中,公式1、8和9中的系数,均来自与对有效临床测试数据的分析统计,在分析统计过程中,为了保证系数的精准性,有效临床数据要求临床数据量越大越好,且对受试人群的分布有要求,受试者类型/血压等级分布越广越好。
优选的,临床数据的例数、分布范围、测试方法参考ISO81060:2013的要求,以臂式血压计为例,本方法中标定系数时所使用的临床数据数量与分布如表1所示:
Figure PCTCN2018087620-appb-000002
表1 公式系数标定所用临床数据数量与分布
标定方法说明:
a)、标定数据来源为表1内85位受试者,共255条临床数据;
b)、根据255条数据的收缩压参比值与包络线,计算各条数据的收缩压系数,并将它们依顺序排列为一个列向量,记为Y;
c)、创建一个长度为255的列向量,元素全为Ksys0,记为X;
d)、计算(Y-X)/X,结果即为Kti序列。记为Z;
e)、根据255条数据的舒张压参比值与包络线,计算各条数据的舒张压系数,并将它们依顺序排列为一个列向量,记为Y;
f)、创建一个长度为255的列向量,元素全为Kdia0,记为X;
g)、计算(Y-X)/X/Z,其中Z为步骤d的Kti序列,然后求平均值,结果即公式二中的系数a;
h)、处理255条临床数据的以下信息:
计算空气袋容积最大时的气泵出气量Ogvmax,将所有临床数据的 Ogvmax*ts排列为一个列向量,记录为x1;
计算测量结束时的气泵出气量Ogvend,将所有临床数据的Ogvend*ts排列为一个列向量,记录为x2;
计算脉搏振幅最大时的气泵出气量Ogmean,将所有临床数据的Ogmean*ts排列为一个列向量,记录为x3;
计算空气袋最大容积Vmax,将所有临床数据的Vmax排列为一个列向量,记录为x4;
计算测量结束时的空气袋容积Vend,将所有临床数据的Vend排列为一个列向量,记录为x5;
计算脉搏振幅最大时的空气袋容积Vmean,将所有临床数据的Vmean排列为一个列向量,记录为x6。
将前述列向量x1至x6,由左至右排列并构成一个255行6列的矩阵,即[x1,x2,x3,x4,x5,x6]记为X
i)、结合步骤d中得到的Kti序列Z,对Z=X*Para等式中的Para进行拟合,优选的,在拟合时可使用软件matlab中的regress函数进行拟合;P是一个长度为6的列向量,其元素依次分别对应前述公式一中的系数a、b、c、d、a、Kdia0。
上述的拟合方式只是其中一种,还可以使用其他方式,例如使用软件matlab中的ployfit函数、cftool工具箱等,以及其他软件如EXCEL的趋势预测/回归分析功能等。
对应上述方法,本申请还公开了一种电子血压计血压计算装置,参见图9,该装置可以包括:
压力检测单元100,用于对空气袋内的压力值进行检测,实时采集空气袋内的气压值序列;
气压脉动计算单元200,用于依据采集到的气压值序列提取气压脉动序列;
基础气压计算单元300,用于依据采集到的气压值序列提取基础气压序列;
包络线生成单元400,用于生成与所述气压脉动序列相匹配的包络线。提取到所述包络线后,包络线生成单元400可以对包络线进行识别,得到包络线 中的最大峰值,即脉搏振幅最大值,所述最大峰值在计算收缩压和舒张压时用到;
松紧度计算单元500,用于计算所述空气袋的松紧度系数;
血压系数计算单元600,用于根据所述松紧度系数修正收缩压系数和舒张压系数;
血压计算单元700,用于依据所述包络线特征和修正后的收缩压系数和舒张压系数计算得到收缩压和舒张压。所述包络线特征可以指的是包络线中的最大峰值。所述血压计算单元700可以先采用常规的计算方式计算得到被测用户的舒张压和收缩压,然后再依据所述修正系数修正收缩压和舒张压,将修正后得到的收缩压和舒张压作为测试结果输出。当然,也可以先对包络线中的最大峰值进行校正,然后在依据校正后的最大峰值的计算得到被测用户的收缩压和舒张压,此时,本步骤的具体执行过程可以包括:将前述包络线最大峰值乘以修正后的舒张压系数后,得到修正后的舒张压对应的气压脉动振幅;在包络线上寻找等于修正后的气压脉动振幅对应的点,此时得到的点可能为两个,选择对应的基础气压值较小的点,此点对应的基础气压即为舒张压;将前述包络线最大峰值乘以修正后的收缩压系数后,得到修正后的收缩压对应的气压脉动振幅;在包络线上找等于修正后的气压脉动振幅对应的点,此时得到的点可能为两个,选择对应的基础气压值较大的点,此点对应的基础气压即为收缩压。
与上述方法相对应,所述松紧度计算单元500具体用于:
可通过张力采集的方式或者其他方式采集空气袋的松紧度系数,也可以如上述方法中介绍的依据所述最大峰值对应的气泵出气量、测量结束时的气泵出气量、最大峰值对应的空气袋容积以及测量结束时的空气袋容积计算得到空气袋的松紧度系数。
与上述方法相对应,所述松紧度计算单元500具体用于:
依据公式Kti=a*Ogmean*ts+b*Ogend*ts+c*Vmean+d*Vend计算得到空气袋的松紧度系数;
其中,所述a、b、c和d为预设常数;
ts为采样周期;
Ogmean为最大峰值对应的气泵出气量;
Ogend为测量结束时的气泵出气量;
Vmean为最大峰值对应的空气袋容积;
Vend为测量结束时的空气袋容积。
与上述方法相对应,上述装置还可以包括:
气泵PWM指令采集单元,用于采集驱动气泵的PWM指令;
出气量计算单元,用于实时计算电子血压计气泵单位时间内的出气量;分别获取所述最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量;其可以具体可以采用本申请上述方法中公式2-4对应的方法,根据驱动气泵的PWM指令序列实时计算电子血压计气泵单位时间内的出气量;分别获取所述最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量。
空气袋容积计算单元,用于实时计算空气袋内的空气体积,所述空气体积为空气在同一个大气压下的体积;分别依据所述最大峰值以及测量结束时空气袋内的空气体积计算得到最大峰值以及测量结束时的空气袋容积。其具体可以采用上述方法中介绍的公式5、6、7对应的方法,根据驱动气泵的PWM指令序列实时计算空气袋内的空气体积,所述空气体积为空气在同一个大气压下的体积;分别依据所述最大峰值以及测量结束时空气袋内的空气体积计算得到最大峰值以及测量结束时的空气袋容积。
与上述方法相对应,所述修正系数计算单元600具体用于:
依据公式Kdia=Kdia0*(1+e*Kti)和Ksys=Ksys0*(1+Kti)计算得到与所述松紧度系数相匹配的修正系数;
其中,Kdia为舒张压修正系数,Ksys为收缩压修正系数,Kdia0为预设的初始舒张压系数,Ksys0为预设的初始收缩压系数,e为预设参考修正系数。
一种电子血压计,应用有本申请上述任意一项所述的电子血压计血压计算装置。
为了描述的方便,描述以上系统时以功能分为各种模块分别描述。当然,在实施本申请时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或 者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种电子血压计血压计算方法,其特征在于,包括:
    对空气袋内的压力值进行检测,实时采集空气袋内的气压值序列;
    依据采集到的气压值序列提取气压脉动序列与基础气压序列;
    生成与所述气压脉动序列相匹配的包络线;
    计算所述空气袋的松紧度系数;
    根据空气袋松紧度系数修正收缩压系数和舒张压系数;
    依据包络线特征和修正后的收缩压系数和舒张压系数计算得到收缩压和舒张压。
  2. 根据权利要求1所述的电子血压计血压计算方法,其特征在于,计算所述空气袋的松紧度系数包括:
    依据包络线中的最大峰值对应的气泵出气量、测量结束时的气泵出气量、所述最大峰值对应的空气袋容积以及测量结束时的空气袋容积计算得到空气袋的松紧度系数。
  3. 根据权利要求2所述的电子血压计血压计算方法,其特征在于,依据包络线中的最大峰值对应的气泵出气量、测量结束时的气泵出气量、所述最大峰值对应的空气袋容积以及测量结束时的空气袋容积计算得到空气袋的松紧度系数,具体包括:
    依据公式Kti=a*Ogmean*ts+b*Ogend*ts+c*Vmean+d*Vend计算得到空气袋的松紧度系数;
    其中,所述a、b、c和d为预设常数;
    ts为采样周期;
    Ogmean为包络线中的最大峰值对应的气泵出气量;
    Ogend为测量结束时的气泵出气量;
    Vmean为包络线中的最大峰值对应的空气袋容积;
    Vend为测量结束时的空气袋容积。
  4. 根据权利要求2所述的电子血压计血压计算方法,其特征在于,依据包络线中的最大峰值对应的气泵出气量、测量结束时的气泵出气量、所述最大峰值对应的空气袋容积以及测量结束时的空气袋容积计算得到空气袋的松紧度系数之前,还包括:
    实时计算电子血压计气泵单位时间内的出气量;
    分别获取所述最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量;
    实时计算空气袋内的空气体积,所述空气体积为空气在同一个大气压下的体积;
    分别依据所述最大峰值以及测量结束时空气袋内的空气体积计算得到最大峰值以及测量结束时的空气袋容积。
  5. 根据权利要求4所述的电子血压计血压计算方法,其特征在于,实时计算电子血压计气泵单位时间内的出气量之前,还包括:
    采集电子血压计驱动气泵的PWM指令序列;
    实时计算电子血压计气泵单位时间内的出气量,具体为:根据驱动气泵的PWM指令序列实时计算电子血压计气泵单位时间内的出气量;
    实时计算空气袋内的空气体积,具体为:根据驱动气泵的PWM指令序列实时计算空气袋内的空气体积。
  6. 根据权利要求2所述的电子血压计血压计算方法,其特征在于,根据空气袋松紧度系数修正收缩压系数和舒张压系数,具体包括:
    依据公式Kdia=Kdia0*(1+e*Kti)和Ksys=Ksys0*(1+Kti)计算得到与所述松紧度系数相匹配的修正系数;
    其中,Kdia为舒张压修正系数,Ksys为收缩压修正系数,Kdia0为预设的初始舒张压系数,Ksys0为预设的初始收缩压系数,e为预设参考修正系数。
  7. 一种电子血压计血压计算装置,其特征在于,包括:
    压力检测单元,用于对空气袋内的压力值进行检测,实时采集空气袋内的气压值序列;
    气压脉动计算单元,用于依据采集到的气压值序列提取气压脉动序列;
    基础气压计算单元,用于依据采集到的气压值序列提取基础气压序列;
    包络线生成单元,用于生成与所述气压脉动序列相匹配的包络线;
    松紧度计算单元,用于计算所述空气袋的松紧度系数;
    血压系数计算单元,用于根据所述松紧度系数修正收缩压系数和舒张压系数;
    血压计算单元,用于依据所述包络线特征和修正后的收缩压系数和舒张压 系数计算得到收缩压和舒张压。
  8. 根据权利要求7所述的电子血压计血压计算装置,其特征在于,所述松紧度计算单元具体用于:
    依据包络线中的最大峰值对应的气泵出气量、测量结束时的气泵出气量、所述最大峰值对应的空气袋容积以及测量结束时的空气袋容积计算得到空气袋的松紧度系数。
  9. 根据权利要求8所述的电子血压计血压计算装置,其特征在于,所述松紧度计算单元具体用于:
    依据公式Kti=a*Ogmean*ts+b*Ogend*ts+c*Vmean+d*Vend计算得到空气袋的松紧度系数;
    其中,所述a、b、c和d为预设常数;
    ts为采样周期;
    Ogmean为包络线中的最大峰值对应的气泵出气量;
    Ogend为测量结束时的气泵出气量;
    Vmean为包络线中的最大峰值对应的空气袋容积;
    Vend为测量结束时的空气袋容积。
  10. 根据权利要求8所述的电子血压计血压计算装置,其特征在于,还包括:
    出气量计算单元,用于实时计算电子血压计气泵单位时间内的出气量;分别获取所述最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量;
    空气袋容积计算单元,用于实时计算空气袋内的空气体积,所述空气体积为空气在同一个大气压下的体积;分别依据所述最大峰值以及测量结束时空气袋内的空气体积计算得到最大峰值以及测量结束时的空气袋容积。
  11. 根据权利要求10所述的电子血压计血压计算装置,其特征在于,还包括:
    气泵PWM指令采集单元,用于采集驱动气泵的PWM指令;
    所述出气量计算单元具体用于,根据驱动气泵的PWM指令序列实时计算电子血压计气泵单位时间内的出气量;分别获取所述最大峰值以及测量结束时对应的时刻气泵单位时间内的出气量;
    所述空气袋容积计算单元具体用于:根据驱动气泵的PWM指令序列实时 计算空气袋内的空气体积,所述空气体积为空气在同一个大气压下的体积;分别依据所述最大峰值以及测量结束时空气袋内的空气体积计算得到最大峰值以及测量结束时的空气袋容积。
  12. 根据权利要求8所述的电子血压计血压计算装置,其特征在于,修正系数计算单元具体用于:
    依据公式Kdia=Kdia0*(1+e*Kti)和Ksys=Ksys0*(1+Kti)计算得到与所述松紧度系数相匹配的修正系数;
    其中,Kdia为舒张压修正系数,Ksys为收缩压修正系数,Kdia0为预设的初始舒张压系数,Ksys0为预设的初始收缩压系数,e为预设参考修正系数。
  13. 一种电子血压计,其特征在于,应用有权利要求7-12任意一项所述的电子血压计血压计算装置。
PCT/CN2018/087620 2018-02-12 2018-05-21 一种电子血压计血压计算方法、装置和电子血压计 WO2019153570A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810145058.3 2018-02-12
CN201810145058.3A CN110151155B (zh) 2018-02-12 2018-02-12 一种电子血压计血压计算方法、装置和电子血压计

Publications (1)

Publication Number Publication Date
WO2019153570A1 true WO2019153570A1 (zh) 2019-08-15

Family

ID=67549134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087620 WO2019153570A1 (zh) 2018-02-12 2018-05-21 一种电子血压计血压计算方法、装置和电子血压计

Country Status (2)

Country Link
CN (1) CN110151155B (zh)
WO (1) WO2019153570A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112426141A (zh) * 2020-12-09 2021-03-02 深圳市汇顶科技股份有限公司 血压检测方法、装置以及电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110522435A (zh) * 2019-09-25 2019-12-03 宁波智能装备研究院有限公司 一种检测电子血压计袖带捆绑松紧度的方法
CN112568884B (zh) * 2019-09-30 2022-04-05 华为终端有限公司 一种血压测量方法及电子设备
CN112971747B (zh) * 2019-12-13 2022-12-13 华为技术有限公司 腕戴式电子设备、测量腕部尺寸的方法以及测量血压的方法
CN113520307B (zh) * 2020-04-20 2023-04-18 华为技术有限公司 一种可穿戴设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102018507A (zh) * 2010-11-25 2011-04-20 北京悦琦创通科技有限公司 一种基于示波法测量血压的数据分析处理方法
CN102469946A (zh) * 2009-10-30 2012-05-23 欧姆龙健康医疗事业株式会社 电子血压计
CN105534509A (zh) * 2016-02-18 2016-05-04 深圳杉源医疗科技有限公司 血压计组件及电子血压计的测量准确性验证方法
CN106793963A (zh) * 2014-08-28 2017-05-31 皇家飞利浦有限公司 用于振荡法无创血压(nibp)测量的方法和用于nibp装置的控制单元
JP2017127494A (ja) * 2016-01-20 2017-07-27 セイコーエプソン株式会社 血管弾性指標値測定装置、血圧測定装置及び血管弾性指標値測定方法
CN107320089A (zh) * 2017-06-27 2017-11-07 西南大学 自校准的人体血压测量方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59501895A (ja) * 1982-10-19 1984-11-15 アイバツク コ−ポレイシヨン 電子式血圧計
JP4470876B2 (ja) * 2005-12-20 2010-06-02 オムロンヘルスケア株式会社 電子血圧計
CH699319A2 (de) * 2008-08-15 2010-02-15 Stbl Medical Res Gmbh Verfahren und Gerät zum kontinuierlichen Messen des Blutdruckes zu Überwachungszwecken.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469946A (zh) * 2009-10-30 2012-05-23 欧姆龙健康医疗事业株式会社 电子血压计
CN102018507A (zh) * 2010-11-25 2011-04-20 北京悦琦创通科技有限公司 一种基于示波法测量血压的数据分析处理方法
CN106793963A (zh) * 2014-08-28 2017-05-31 皇家飞利浦有限公司 用于振荡法无创血压(nibp)测量的方法和用于nibp装置的控制单元
JP2017127494A (ja) * 2016-01-20 2017-07-27 セイコーエプソン株式会社 血管弾性指標値測定装置、血圧測定装置及び血管弾性指標値測定方法
CN105534509A (zh) * 2016-02-18 2016-05-04 深圳杉源医疗科技有限公司 血压计组件及电子血压计的测量准确性验证方法
CN107320089A (zh) * 2017-06-27 2017-11-07 西南大学 自校准的人体血压测量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112426141A (zh) * 2020-12-09 2021-03-02 深圳市汇顶科技股份有限公司 血压检测方法、装置以及电子设备
CN112426141B (zh) * 2020-12-09 2024-03-22 深圳市汇顶科技股份有限公司 血压检测装置以及电子设备

Also Published As

Publication number Publication date
CN110151155B (zh) 2020-08-25
CN110151155A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2019153570A1 (zh) 一种电子血压计血压计算方法、装置和电子血压计
CN106974631B (zh) 一种基于脉搏波波形和心电信号的血压测量方法及装置
US20190069784A1 (en) Methods And Apparatus For Determining Cuff Blood Pressure
US6719703B2 (en) Method and apparatus for measuring blood pressure by the oscillometric technique
Celler et al. Novel methods of testing and calibration of oscillometric blood pressure monitors
JP2008528124A (ja) 音声認識を使用した聴診音の分析
WO2012163738A1 (en) Monitoring stenosis formation in an arteriovenous access
CN105105734A (zh) 一种基于心音信号的无创连续血压测量方法、装置及系统
US11179050B2 (en) Method for determining cuff blood pressure
CN106923807A (zh) 基于温度对血压测量值进行校正的方法及系统
Juteau et al. Wearable wireless-enabled oscillometric sphygmomanometer: A flexible ambulatory tool for blood pressure estimation
WO2019153579A1 (zh) 一种基于心电信号的无气囊血压检测方法及系统
CN102579023A (zh) 脉搏波信号处理方法和装置及电子血压测量装置
US9375150B2 (en) Identification of pressure cuff conditions using frequency content of an oscillometric pressure signal
CN112914531B (zh) 确定血压包络波的方法、电子设备及存储介质
US20210251517A1 (en) Unobstrusive estimation of cardiovascular parameters with limb ballistocardiography
JP6494669B2 (ja) 分節プレスチモグラフィを用いて反応性充血を検出および評価する方法および装置
Xu et al. A calibration method for cuffless continue blood pressure measurement using gaussian normalized pulse transit time
Choudhury et al. A novel modular tonometry-based device to measure pulse pressure waveforms in radial artery
CN105716911A (zh) 一种便携式集尿杯
CN111904403A (zh) 血压测量系统、血压测量方法、计算机装置及储存介质
CN107260148A (zh) 一种血压测量方法、存储设备及装置
Chen et al. A developed algorithm for oscillometric blood pressure measurement
CN116746896B (zh) 一种连续血压估计方法、装置、电子设备及存储介质
CN116012890A (zh) 用户识别方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905708

Country of ref document: EP

Kind code of ref document: A1