WO2019153443A1 - Procédé de correction auto-adaptative d'imagerie pondérée par diffusion par résonance magnétique - Google Patents

Procédé de correction auto-adaptative d'imagerie pondérée par diffusion par résonance magnétique Download PDF

Info

Publication number
WO2019153443A1
WO2019153443A1 PCT/CN2018/080113 CN2018080113W WO2019153443A1 WO 2019153443 A1 WO2019153443 A1 WO 2019153443A1 CN 2018080113 W CN2018080113 W CN 2018080113W WO 2019153443 A1 WO2019153443 A1 WO 2019153443A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion weighted
magnetic resonance
correction method
adaptive correction
vector
Prior art date
Application number
PCT/CN2018/080113
Other languages
English (en)
Chinese (zh)
Inventor
罗海
王世杰
朱高杰
周翔
陈梅泞
王超
刘霞
吴子岳
Original Assignee
奥泰医疗系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥泰医疗系统有限责任公司 filed Critical 奥泰医疗系统有限责任公司
Publication of WO2019153443A1 publication Critical patent/WO2019153443A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]

Definitions

  • the present invention relates to the field of magnetic resonance imaging, and more particularly to an adaptive correction method for magnetic resonance diffusion weighted imaging.
  • Diffusion Weighted Imaging is an imaging method that non-invasively reflects the irregular thermal motion of living water molecules at the molecular level. Imaging depends mainly on the motion of water molecules rather than the proton density of tissue, T1 or T2 relaxation time. Diffusion-weighted imaging is suitable for detecting the micro-dynamic and micro-structural changes of biological tissues at the level of living cells, and plays an important role in the benign and malignant identification, therapeutic evaluation and prediction of tumors.
  • the applied diffusion gradient is extremely sensitive to motion.
  • Exercise mainly includes the following four aspects: (1) diffuse movement of water molecules; (2) unconscious physiological movements of patients, such as respiratory movements, gastrointestinal motility, blood flow, etc.; (3) conscious or unconscious overall movement of patients; (4) dispersion System vibration caused by gradients.
  • the diffusion of water molecules under the influence of the diffusion gradient will cause a phase difference to reduce the tissue signal with a large diffusion coefficient, which is the principle of diffusion-weighted imaging.
  • the latter three movements will cause motion artifacts. Even sub-pixel motions will produce great phase differences, causing signal loss and serious artifacts.
  • the applied diffusion gradient is very large, which can cause the system to vibrate severely, which may cause radio frequency interference caused by loose coil interface or static electricity accumulation/release, and form strip-shaped artifacts in the image, usually called RF ignition. Artifacts.
  • the invention aims to provide an adaptive correction method for magnetic resonance diffusion weighted imaging. Based on the multiple acquisition averaging technique, the principal component analysis method is used to adaptively detect and correct motion artifacts and radio frequency ignition from redundant data. Shadows, etc., to better improve image quality without the need to add hardware devices.
  • An adaptive correction method for magnetic resonance diffusion weighted imaging comprising the following steps:
  • Step 1 repeatedly collecting the diffusion weighted image N times, N is a natural number, N ⁇ 3;
  • Step 2 construct a correlation matrix point by point based on the original image or the compressed image
  • Step 3 principal component analysis; obtaining a feature vector corresponding to a maximum eigenvalue of each correlation matrix;
  • Step 4 calculating a weight according to the feature vector
  • Step 5 Perform weighted synthesis on the original image collected in step 1 according to the weight obtained in step 4, to obtain a corrected diffusion weighted image.
  • step 2 all the collected original images are compressed by using an interpolation algorithm.
  • the benefits are that the first can reduce the amount of computation, and the second can increase the signal-to-noise ratio of the input data of the subsequent algorithm.
  • step 2 includes the following steps:
  • Step 2.1 for any pixel point (x, y) in the image acquired in the nth time, take the neighboring K points to form a neighborhood vector Xn;
  • Step 2.2 For N times of repeatedly acquired images, each pixel point corresponds to N neighborhood vectors, and the correlation between the nth vector Xn and the mth vector Xm is calculated according to formula (1);
  • x i is the i-th element in the vector Xn
  • y i is the i-th element in the vector Xm. Is the mean of the vector Xn, Is the mean of the vector Xm.
  • Step 2.3 any pixel point (x, y) corresponds to an N*N correlation matrix R(x, y);
  • r 1,1 ... r 1,N are the correlation coefficients between the two vectors calculated according to formula (1).
  • step 3 includes the following steps
  • Step 3.1 calculating the eigenvalues of the matrix R(x, y) to find the largest eigenvalue
  • step 3.2 the feature vector ⁇ corresponding to the maximum eigenvalue of the matrix R(x, y) is calculated.
  • the correlation matrix is first subjected to smoothing filtering processing.
  • the smoothing filtering process comprises the following steps;
  • Step a taking the i-th correlation coefficient from the correlation matrix R(x, y) corresponding to each pixel point (x, y), to form a matrix Ri of the same size as the image matrix;
  • Step b performing two-dimensional low-pass filtering on the matrix Ri;
  • Step c replacing the filtered result with the corresponding element in R(x, y);
  • step d repeat a-c until all elements in R(x, y) have been processed.
  • step 4 the weight is calculated by formula (2);
  • ⁇ n is the nth element of the feature vector ⁇
  • ⁇ min is the smallest element of the feature vector ⁇
  • ⁇ max is the largest element of the feature vector ⁇
  • a and p are parameter control factors.
  • a 0.2
  • step 5 the original image is weighted and synthesized by the formula (3);
  • Equation (3) M n is the n-shot acquisition diffusion weighted original image, w n is the weight.
  • step 1 the diffusion weighted image is repeatedly acquired N times with the same scanning parameter.
  • the invention adopts a principal component analysis method on the basis of multiple acquisition averaging techniques, adaptively detects and corrects data from redundant data, suppresses motion artifacts, RF ignition artifacts, etc., and improves image quality; Hardware device, and image quality is better than multiple acquisition direct averaging techniques.
  • Figure 1 is a flow chart of the present invention
  • Figure 2 is the same scan parameters, 4 abdominal diffusion weighted images obtained in 4 acquisitions;
  • FIG. 3 is a diffusion-weighted image obtained by directly averaging the data collected four times in FIG. 2;
  • Figure 4 is a diffusion weighted image of the four acquisition data of Figure 2 corrected according to the method of the present invention
  • Figure 5 is a direct average technique synthesis, a diffusion-weighted image of the abdomen containing radio frequency ignition artifacts
  • Fig. 6 is a graph showing the abdominal diffusion weighted image corrected by the method of the present invention corresponding to the data in Fig. 5.
  • Step 1 the same scanning parameters, repeated acquisition of the diffusion weighted image N times, N is a natural number, N ⁇ 3;
  • Step 2 construct a correlation matrix point by point based on the original image or the compressed image: specifically including the following steps;
  • Step 2.1 for any pixel point (x, y) in the image acquired in the nth time, take the neighboring K points to form a neighborhood vector Xn;
  • Step 2.2 For N times of repeatedly acquired images, each pixel point corresponds to N neighborhood vectors, and the correlation between the nth vector Xn and the mth vector Xm is calculated according to formula (1);
  • x i is the i-th element in the vector Xn
  • y i is the i-th element in the vector Xm. Is the mean of the vector Xn, Is the mean of the vector Xm.
  • Step 2.3 any pixel point (x, y) corresponds to an N*N correlation matrix R(x, y);
  • r 1,1 ... r 1,N are the correlation coefficients between the two vectors calculated according to formula (1).
  • Step 3 Principal component analysis: obtaining a feature vector corresponding to a maximum eigenvalue of each correlation matrix; specifically comprising the following steps;
  • Step 3.1 calculating the eigenvalues of the matrix R(x, y) to find the largest eigenvalue
  • step 3.2 the feature vector ⁇ corresponding to the maximum eigenvalue of the matrix R(x, y) is calculated.
  • Step 4 calculating a weight according to formula (2);
  • ⁇ n is the nth element of the feature vector ⁇
  • ⁇ min is the smallest element of the feature vector ⁇
  • ⁇ max is the largest element of the feature vector ⁇
  • a and p are parameter control factors.
  • Step 5 Perform weighted synthesis on the original image collected in step 1 according to the weight obtained in step 4, to obtain a corrected diffusion weighted image. Specifically, the original image is weighted and synthesized by the formula (3);
  • Equation (3) M n is the n-shot acquisition diffusion weighted original image, w n is the weight.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that all the collected original images are compressed by the interpolation algorithm before step 2.
  • the benefits are that the first can reduce the amount of computation, and the second can increase the signal-to-noise ratio of the input data of the subsequent algorithm.
  • the correlation matrix is subjected to smoothing processing before step 3.
  • the smoothing filtering process comprises the following steps;
  • Step a taking the i-th correlation coefficient from the correlation matrix R(x, y) corresponding to each pixel point (x, y), to form a matrix Ri of the same size as the image matrix;
  • Step b performing two-dimensional low-pass filtering on the matrix Ri;
  • Step c replacing the filtered result with the corresponding element in R(x, y);
  • step d repeat a-c until all elements in R(x, y) have been processed.
  • the diffusion-weighted image synthesized by direct averaging has a limited degree of artifact suppression and poor picture quality; as shown in FIG. 4, the image corrected by the method of the present invention is more accurate. As shown in Figures 5 and 6, the RF ignition artifacts in the image corrected by the method of the present invention are significantly reduced.
  • the invention adaptively calculates the weights of each scan data based on the principal component analysis method, performs weighted synthesis according to the obtained weights, suppresses motion artifacts, RF ignition artifacts, and improves image quality without requiring Add hardware devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Procédé de correction auto-adaptative d'imagerie pondérée par diffusion par résonance magnétique, comprenant les étapes suivantes : étape 1, acquérir de manière répétée des images pondérées par diffusion N fois selon les mêmes paramètres de balayage, N étant supérieur ou égal à 3 ; étape 2, construire des matrices de corrélation point par point sur la base d'images originales ou d'images compressées ; étape 3, effectuer une analyse des composants principaux après mise en œuvre d'un traitement de filtrage lisse sur les matrices de corrélation, de façon à obtenir un vecteur caractéristique correspondant à la valeur caractéristique maximale de chaque matrice de corrélation ; étape 4, calculer une pondération en fonction du vecteur caractéristique ; et étape 5, mettre en œuvre une synthèse pondérée sur les images originales en fonction de la pondération, de façon à obtenir les images pondérées par diffusion corrigées. Selon le procédé, sur la base d'une technique de moyennage de multiples acquisitions, un procédé d'analyse des composants principaux est utilisé, des données sont détectées et corrigées de manière auto-adaptative à partir de données redondantes, un artefact de mouvement, un artefact remarquable de fréquence radio, etc. sont limités, et la qualité d'image est améliorée ; aucun dispositif matériel n'a besoin d'être ajouté, et la qualité d'image est meilleure que celle obtenue sur la base d'une technique de moyennage direct de multiples acquisitions.
PCT/CN2018/080113 2018-02-09 2018-03-23 Procédé de correction auto-adaptative d'imagerie pondérée par diffusion par résonance magnétique WO2019153443A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810136588.1 2018-02-09
CN201810136588.1A CN108090937B (zh) 2018-02-09 2018-02-09 磁共振弥散加权成像自适应修正方法

Publications (1)

Publication Number Publication Date
WO2019153443A1 true WO2019153443A1 (fr) 2019-08-15

Family

ID=62194414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080113 WO2019153443A1 (fr) 2018-02-09 2018-03-23 Procédé de correction auto-adaptative d'imagerie pondérée par diffusion par résonance magnétique

Country Status (2)

Country Link
CN (1) CN108090937B (fr)
WO (1) WO2019153443A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157764A1 (en) * 2006-12-19 2008-07-03 Hiroyuki Kabasawa Magnetic resonance imaging apparatus, magnetic resonance imaging method, and diffusion tensor color map image generating apparatus
US20080205733A1 (en) * 2006-10-19 2008-08-28 Brown Universisty Quantitative tract-of-interest metrics for white matter integrity based on diffusion tensor MRI data
US20090016590A1 (en) * 2007-07-10 2009-01-15 Isaac Wen-Yih Tseng Method of Analyzing Diffusion-Weighted Magnetic Resonance Image
CN102136071A (zh) * 2011-03-09 2011-07-27 北京航空航天大学 一种基于空间相关矩阵的图像特征分析模型
CN104323775A (zh) * 2013-07-22 2015-02-04 株式会社日立制作所 磁共振成像装置、图像处理装置以及图像处理方法
CN104323777A (zh) * 2014-10-30 2015-02-04 西安交通大学医学院第一附属医院 一种扩散磁共振成像运动伪影的消除方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160398A (en) * 1999-07-02 2000-12-12 Vista Clara, Inc. Adaptive reconstruction of phased array NMR imagery
CN102217934A (zh) * 2011-04-08 2011-10-19 中国科学院深圳先进技术研究院 磁共振成像方法及系统
CN102749600B (zh) * 2012-05-30 2014-12-24 苏州朗润医疗系统有限公司 一种磁共振多通道图像的合成方法
CN104599244B (zh) * 2014-12-23 2018-06-15 中国科学院深圳先进技术研究院 磁共振弥散张量成像的去噪方法和系统
WO2017009391A1 (fr) * 2015-07-15 2017-01-19 Koninklijke Philips N.V. Imagerie par résonance magnétique avec détection de mouvement
CN107240125B (zh) * 2016-03-28 2020-02-07 上海联影医疗科技有限公司 一种扩散加权成像方法
CN106780643B (zh) * 2016-11-21 2019-07-26 清华大学 磁共振多次激发扩散成像运动矫正方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080205733A1 (en) * 2006-10-19 2008-08-28 Brown Universisty Quantitative tract-of-interest metrics for white matter integrity based on diffusion tensor MRI data
US20080157764A1 (en) * 2006-12-19 2008-07-03 Hiroyuki Kabasawa Magnetic resonance imaging apparatus, magnetic resonance imaging method, and diffusion tensor color map image generating apparatus
US20090016590A1 (en) * 2007-07-10 2009-01-15 Isaac Wen-Yih Tseng Method of Analyzing Diffusion-Weighted Magnetic Resonance Image
CN102136071A (zh) * 2011-03-09 2011-07-27 北京航空航天大学 一种基于空间相关矩阵的图像特征分析模型
CN104323775A (zh) * 2013-07-22 2015-02-04 株式会社日立制作所 磁共振成像装置、图像处理装置以及图像处理方法
CN104323777A (zh) * 2014-10-30 2015-02-04 西安交通大学医学院第一附属医院 一种扩散磁共振成像运动伪影的消除方法

Also Published As

Publication number Publication date
CN108090937A (zh) 2018-05-29
CN108090937B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
van Amerom et al. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection
US9797974B2 (en) Nonrigid motion correction in 3D using autofocusing with localized linear translations
US8649585B2 (en) Method and system for retrospective image combination under minimal total deformation constrain for free-breathing cardiac magnetic resonance imaging with motion correction
US9684979B2 (en) MRI 3D cine imaging based on intersecting source and anchor slice data
US10123720B2 (en) Retrospectively correlated turbo spin echo imaging
US20080205730A1 (en) Independent Motion Correction In Respective Signal Channels Of A Magnetic Resonance Imaging System
US20180217217A1 (en) System and method for dynamic, cardiac phase-resolved quantitative longitudinal relaxation parameter mapping
Cheng et al. Learning data consistency and its application to dynamic MR imaging
CN101915901A (zh) 磁共振成像方法及装置
WO2005106534A2 (fr) Amelioration de la coherence inter-sujets dans l'irm du tenseur de diffusion (dt-mri)
US20140232395A1 (en) Method and system for multi-shot spiral magnetic resonance elastography pulse sequence
US11835612B2 (en) System and method for motion correction of magnetic resonance image
Vuissoz et al. Free‐breathing imaging of the heart using 2D cine‐GRICS (generalized reconstruction by inversion of coupled systems) with assessment of ventricular volumes and function
Ferreira et al. Accelerating Cardiac Diffusion Tensor Imaging With a U‐Net Based Model: Toward Single Breath‐Hold
US9857446B2 (en) Robust self-navigating MRI using large coil arrays
Kafali et al. Phase‐correcting non‐local means filtering for diffusion‐weighted imaging of the spinal cord
WO2013033558A1 (fr) Système et procédé permettant d'effectuer conjointement l'estimation d'un affaiblissement et la reconstruction d'une image lors d'une imagerie par résonance magnétique
WO2019153443A1 (fr) Procédé de correction auto-adaptative d'imagerie pondérée par diffusion par résonance magnétique
WO2006109550A1 (fr) Dispositif et procédé d’imagerie par résonance magnétique
EP4028787A1 (fr) Systèmes et procédés d'apprentissage profond pour la reconstruction d'image par résonance magnétique dynamique à grande échelle
WO2020034674A1 (fr) Procédé et dispositif d'imagerie par résonance magnétique quantitative myocardique, et milieu de stockage
JP6356412B2 (ja) 磁気共鳴装置およびプログラム
Andreychenko et al. Respiratory motion model based on the noise covariance matrix of a receive array
JPH06327649A (ja) 核磁気共鳴イメージング装置における画像再構成方法
Chen et al. Automatic extraction and sign determination of respiratory signal in real-time cardiac magnetic resonance imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904578

Country of ref document: EP

Kind code of ref document: A1