WO2019153267A1 - 一种数据传输方法及相关设备 - Google Patents

一种数据传输方法及相关设备 Download PDF

Info

Publication number
WO2019153267A1
WO2019153267A1 PCT/CN2018/076044 CN2018076044W WO2019153267A1 WO 2019153267 A1 WO2019153267 A1 WO 2019153267A1 CN 2018076044 W CN2018076044 W CN 2018076044W WO 2019153267 A1 WO2019153267 A1 WO 2019153267A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
modulation
mode
information
network device
Prior art date
Application number
PCT/CN2018/076044
Other languages
English (en)
French (fr)
Inventor
朱小松
吴毅凌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880088319.0A priority Critical patent/CN111670602B/zh
Priority to PCT/CN2018/076044 priority patent/WO2019153267A1/zh
Publication of WO2019153267A1 publication Critical patent/WO2019153267A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method and related devices.
  • NB-IoT Narrow Band Internet of Things
  • GSM global system of mobile communication
  • UMTS universal mobile telecommunication system
  • LTE long-term evolution
  • NB-IoT is an emerging technology in the IoT field that supports low-power devices in the WAN cellular data connection, also known as Low-Power Wide-Area Network (LPWAN).
  • LPWAN Low-Power Wide-Area Network
  • uplink and downlink data transmissions are all scheduled based on Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the terminal device blindly detects the DCI on the narrowband physical downlink control channel (NPDCCH), and receives the narrowband physical downlink shared channel according to the downlink grant after the DCI is successfully received (Narrowband Physical Downlink Shared Channel, PDSCH) data.
  • the terminal device performs blind detection of the narrowband physical downlink control channel (NPDCCH) on the narrowband physical downlink control channel (NPDCCH).
  • the narrowband uplink physical uplink shared channel (Narrowband Physical Uplink Shared) is prepared according to the uplink grant indication.
  • Channel, NPUSCH) data transmitting PUSCH data on the indicated time-frequency resource.
  • the uplink and downlink scheduling is performed by first transmitting DCI and then transmitting the PDSCH/PUSCH.
  • the time occupied by the DCI transmission is different according to the coverage level of the terminal device. Different services have different sensitivity to delay. For delay-sensitive services, DCI transmission takes too long, which causes the delay to fail.
  • the embodiment of the invention provides a data transmission method and related equipment, which can adopt different scheduling modes for data transmission according to the service type of the terminal device, thereby improving communication efficiency.
  • an embodiment of the present invention provides a data transmission method, which may include:
  • the terminal device sends an RRC connection request message to the network device, where the RRC connection request message includes first indication information, where the first indication information is used to indicate a service type of the terminal device, and the terminal device receives an RRC sent by the network device.
  • a connection establishment message where the RRC connection setup message includes second indication information, where the second indication information is used to indicate a scheduling mode that matches the service type; the terminal device and the network device according to the scheduling mode Data transfer.
  • the RRC connection request message on the terminal device side carries the service type of the terminal device that needs to perform data transmission, for example, the delay-sensitive service and the delay-insensitive service, and the network device side reports the data according to the terminal device.
  • the service type carries a scheduling mode that matches the service type in the RRC connection setup message, so that the terminal device performs data transmission according to the scheduling mode, that is, matches different scheduling modes according to different service types, and is more flexible and improves communication efficiency. .
  • the scheduling mode matched by the first service is a downlink control information scheduling mode; and the terminal device and the network device are according to the scheduling mode.
  • the data transmission is performed, and the terminal device performs uplink or downlink data transmission with the network device according to the downlink control information sent by the network device.
  • the network device may instruct the terminal device to perform data transmission according to the downlink control information scheduling mode, that is, the terminal device receives the network device to send. Downlink control information, and then transmitting uplink or downlink data according to relevant time-frequency resource information and modulation and coding mode in the downlink control information.
  • the scheduling mode matched by the second service is an uplink unscheduled mode
  • the second indication information includes information about the first time-frequency resource.
  • the network device may indicate that the scheduling mode of the terminal device is an uplink non-scheduling mode, and in the uplink non-scheduled mode, the terminal device
  • the first time-frequency resource information and the first modulation and coding mode information in the second indication information included in the RRC connection setup message sent by the network device may be first modulated and encoded on the first time-frequency resource.
  • the network device sends uplink data. In this way, the time that the terminal device needs to send the uplink data after receiving the downlink control information sent by the network device is saved, and the communication efficiency is improved.
  • the scheduling mode matched by the second service is a downlink unscheduled mode
  • the second indication information includes information about the second time-frequency resource.
  • the network device may indicate that the scheduling mode of the terminal device is the downlink non-scheduled mode by using the second indication information included in the RRC connection setup message.
  • the terminal device may use the second modulation on the second time-frequency resource according to the information of the second time-frequency resource and the information of the second modulation and coding mode in the system message previously sent by the network device.
  • the encoding mode receives the downlink data sent by the network device. In this way, the time for the terminal device to receive the downlink data after receiving the downlink control information sent by the network device is saved, and the communication efficiency is improved.
  • the second indication information is used to indicate that the scheduling mode matched by the second service is an uplink unscheduled mode;
  • the device includes: receiving, by the terminal device, a system message broadcast by the network device, where the system message includes information of a first time-frequency resource and information of a first modulation and coding manner; and the terminal device and the network device according to the The scheduling mode performs data transmission, including: the terminal device, according to the information of the first time-frequency resource and the information of the first modulation and coding mode, on the first time-frequency resource by using the first modulation and
  • the encoding mode sends uplink data to the network device.
  • the network device may indicate that the scheduling mode of the terminal device is an uplink unscheduled mode, and in the uplink non-scheduled mode, the terminal The device may send the uplink data to the network device in the first modulation and coding manner on the first time-frequency resource according to the information of the first time-frequency resource and the information of the first modulation and coding mode, which are indicated in the system message sent by the network device. In this way, the time that the terminal device needs to send the uplink data after receiving the downlink control information sent by the network device is saved, and the communication efficiency is improved.
  • the second indication information is used to indicate that the scheduling mode matched by the second service is a downlink unscheduled mode;
  • the terminal device receives a system message broadcast by the network device, where the system message includes information of a second time-frequency resource and information of a second modulation and coding mode; the terminal device and the network device according to the The scheduling mode performs data transmission, including: the terminal device, according to the information of the second time-frequency resource and the information of the second modulation and coding mode, using the second modulation on the second time-frequency resource
  • the encoding mode receives downlink data sent by the network device.
  • the network device may indicate that the scheduling mode of the terminal device is a downlink non-scheduling mode, and in the downlink non-scheduled mode, the terminal The device may receive the downlink data sent by the network device in the second modulation and coding manner on the second time-frequency resource according to the information of the second time-frequency resource and the information of the second modulation and coding mode indicated by the system message sent by the network device. . In this way, the time for the terminal device to receive the downlink data after receiving the downlink control information sent by the network device is saved, and the communication efficiency is improved.
  • an embodiment of the present invention provides a data transmission method, which may include:
  • the network device receives an RRC connection setup request sent by the terminal device, where the RRC connection setup request includes first indication information, where the first indication information is used to indicate a service type of the terminal device, and the network device is to the terminal device Sending an RRC connection setup message, where the RRC connection setup message includes second indication information, where the second indication information is used to indicate a scheduling mode that matches the service type; the network device and the terminal device according to the The scheduling mode performs data transmission.
  • the RRC connection request message on the terminal device side carries the service type of the terminal device that needs to perform data transmission, for example, the delay-sensitive service and the delay-insensitive service, and the network device side reports the data according to the terminal device.
  • the service type carries a scheduling mode that matches the service type in the RRC connection setup message, so that the terminal device performs data transmission according to the scheduling mode, that is, matches different scheduling modes according to different service types, and is more flexible and improves communication efficiency. .
  • the scheduling mode matched by the first service is a downlink control information scheduling mode; and the network device and the terminal device are according to the scheduling mode.
  • Performing data transmission includes: the network device performing uplink or downlink data transmission with the terminal device according to downlink control information sent to the terminal device.
  • the network device may instruct the terminal device to perform data transmission according to the downlink control information scheduling mode, that is, the terminal device receives the network device to send. Downlink control information, and then transmitting uplink or downlink data according to relevant time-frequency resource information and modulation and coding mode in the downlink control information.
  • the scheduling mode matched by the second service is an uplink unscheduled mode
  • the second indication information includes information about the first time-frequency resource.
  • the mode receives the terminal device to send uplink data.
  • the network device may indicate that the scheduling mode of the terminal device is an uplink non-scheduling mode, and in the uplink non-scheduled mode, the terminal device
  • the first time-frequency resource information and the first modulation and coding mode information in the second indication information included in the RRC connection setup message sent by the network device may be first modulated and encoded on the first time-frequency resource.
  • the network device sends uplink data. In this way, the time that the terminal device needs to send the uplink data after receiving the downlink control information sent by the network device is saved, and the communication efficiency is improved.
  • the scheduling mode matched by the second service is a downlink unscheduled mode
  • the second indication information includes information about the second time-frequency resource.
  • the method sends downlink data to the terminal device.
  • the network device may indicate that the scheduling mode of the terminal device is the downlink non-scheduled mode by using the second indication information included in the RRC connection setup message.
  • the terminal device may use the information of the second time-frequency resource and the information of the second modulation and coding mode in the second indication information previously sent by the network device, on the second time-frequency resource.
  • the second modulation and coding mode receives downlink data sent by the network device. In this way, the time for the terminal device to receive the downlink data after receiving the downlink control information sent by the network device is saved, and the communication efficiency is improved.
  • the network device may indicate that the scheduling mode of the terminal device is an uplink unscheduled mode, and in the uplink non-scheduled mode, the terminal The device may send the uplink data to the network device in the first modulation and coding manner on the first time-frequency resource according to the information of the first time-frequency resource and the information of the first modulation and coding mode, which are indicated in the system message sent by the network device. In this way, the time that the terminal device needs to send the uplink data after receiving the downlink control information sent by the network device is saved, and the communication efficiency is improved.
  • the service type is the second service
  • the second indication information is used to indicate that the scheduling mode matched by the second service is a downlink unscheduled mode
  • the network device broadcasts a system message, where the system message includes information of a second time-frequency resource and information of a second modulation and coding mode; and the network device and the terminal device perform data transmission according to the scheduling mode, including The network device sends downlink data to the terminal device in the second modulation and coding manner on the second time-frequency resource.
  • the network device may indicate that the scheduling mode of the terminal device is a downlink non-scheduling mode, and in the downlink non-scheduled mode, the terminal The device may receive the downlink data sent by the network device in the second modulation and coding manner on the second time-frequency resource according to the information of the second time-frequency resource and the information of the second modulation and coding mode indicated by the system message sent by the network device. . In this way, the time for the terminal device to receive the downlink data after receiving the downlink control information sent by the network device is saved, and the communication efficiency is improved.
  • the RRC connection setup request further includes a first modulation mode supported by the terminal device, the first modulation
  • the method comprises any one of binary phase shift keying BPSK, quadrature phase shift keying QPSK, 16 orthogonal amplitude phase modulation 16QAM, 64 orthogonal amplitude phase modulation 64QAM and 256 orthogonal amplitude phase modulation 256QAM;
  • the modulation and coding mode information includes a modulation and coding mode MCS index of the physical uplink shared channel PUSCH, where the order of the modulation mode corresponding to the MCSCH index of the PUSCH is less than or equal to the order of the first modulation mode.
  • the terminal device may indicate the modulation mode supported by the terminal device in addition to the service type of the terminal device in the RRC connection establishment request, and the network device may be in accordance with the modulation mode supported by the terminal device.
  • the MCS index of the PUSCH indicating the capability of the terminal device is matched in the RRC connection setup message, so as to configure related parameters of the uplink transmission according to the capabilities of the terminal device.
  • the RRC connection establishment request further includes a maximum number M of channel bindings supported by the terminal device;
  • the information of the first time-frequency resource includes the number N of channel bindings of the PUSCH, where M and N are both positive integers, and N is less than or equal to M.
  • the terminal device indicates the maximum number of channel bindings supported by the terminal device in addition to the service type of the terminal device, and the network device can connect in the RRC according to the capability of the terminal device.
  • the information of the first time-frequency resource in the setup message includes the number of channel bindings N of the PUSCH, so as to configure related parameters of the uplink transmission according to the capabilities of the terminal device.
  • the RRC connection setup request further includes a radio frequency bandwidth supported by the terminal device; the first time-frequency resource
  • the information includes a frequency hopping bandwidth of the PUSCH, wherein a maximum value of the hopping bandwidth is less than or equal to a value of the radio frequency bandwidth.
  • the terminal device indicates the radio frequency bandwidth supported by the terminal device in addition to the service type of the terminal device, and the network device can be in the RRC connection setup message according to the capability of the terminal device.
  • the information of the one-time frequency resource includes the frequency hopping bandwidth of the PUSCH, so as to configure related parameters of the uplink transmission according to the capabilities of the terminal device.
  • the RRC connection setup request further includes a first modulation mode supported by the terminal device, the first modulation
  • the method comprises any one of binary phase shift keying BPSK, quadrature phase shift keying QPSK, 16 orthogonal amplitude phase modulation 16QAM, 64 orthogonal amplitude phase modulation 64QAM and 256 orthogonal amplitude phase modulation 256QAM;
  • the modulation and coding mode information includes a modulation and coding policy MCS index of the physical downlink shared channel PDSCH, where the order of the modulation mode corresponding to the MCS index of the PDSCH is less than or equal to the order of the first modulation mode.
  • the terminal device may indicate the modulation mode supported by the terminal device in addition to the service type of the terminal device in the RRC connection establishment request, and the network device may be in accordance with the modulation mode supported by the terminal device.
  • the MCS index of the PDSCH indicating the capability of the terminal device is matched in the RRC connection setup message, so as to configure related parameters of the downlink transmission according to the capabilities of the terminal device.
  • the RRC connection establishment request further includes a maximum number M of channel bindings supported by the terminal device;
  • the information of the second time-frequency resource includes the number N of channel bindings of the PDSCH, where M and N are both positive integers, and N is less than or equal to M.
  • the terminal device indicates the maximum number of channel bindings supported by the terminal device in addition to the service type of the terminal device, and the network device can connect in the RRC according to the capability of the terminal device.
  • the information of the first time-frequency resource in the setup message includes the number N of channel bindings of the PDSCH, so as to configure related parameters of the downlink transmission according to the capabilities of the terminal device.
  • the RRC connection setup request further includes a radio frequency bandwidth supported by the terminal device; the second time-frequency resource
  • the information includes a frequency hopping bandwidth of the PDSCH, wherein a maximum value of the hopping bandwidth is less than or equal to a value of the radio frequency bandwidth.
  • the terminal device indicates the radio frequency bandwidth supported by the terminal device in addition to the service type of the terminal device, and the network device can be in the RRC connection setup message according to the capability of the terminal device.
  • the information of the one-time frequency resource includes the frequency hopping bandwidth of the PDSCH, so as to configure related parameters of the downlink transmission according to the capabilities of the terminal device.
  • the RRC connection setup message when the service type is a second service, includes a physical uplink shared channel PUSCH resource configuration.
  • the parameter and physical HARQ indicate the channel PHICH resource configuration parameters.
  • the RRC connection setup message when the service type is the second service, and the corresponding scheduling mode may be the uplink non-scheduling mode, includes relevant configuration parameters of the uplink transmission.
  • the RRC connection setup message when the service type is a second service, includes a physical downlink shared channel (PDSCH) resource configuration. Information and physical uplink control channel PUCCH resource configuration information.
  • PDSCH physical downlink shared channel
  • the RRC connection setup message when the service type is the second service, and the corresponding scheduling mode may be the downlink non-scheduling mode, includes relevant configuration parameters of the downlink transmission.
  • the RRC connection setup message when the service type is a first service, includes a downlink physical control channel PDCCH configuration parameter. And the uplink scheduling request SR configuration parameters.
  • the RRC connection setup message when the service type is the first service, and the corresponding scheduling mode may be the uplink scheduling mode, includes relevant configuration parameters of the uplink scheduling.
  • the RRC connection setup message packet downlink physical control channel PDCCH configuration parameter .
  • the RRC connection setup message includes relevant configuration parameters of the downlink scheduling.
  • the present application provides a terminal device, which has the function of implementing a terminal device in an embodiment of any one of the foregoing data transmission methods.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the present application provides a network device, which has the function of implementing a network device in an embodiment of any one of the foregoing data transmission methods.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the application provides a terminal device, where the terminal device includes a processor, and the processor is configured to support the terminal device to perform a corresponding function in a data transmission method provided by the first aspect.
  • the terminal device can also include a memory for coupling with the processor that holds the necessary program instructions and data for the terminal device.
  • the terminal device may also include a communication interface for the terminal device to communicate with other devices or communication networks.
  • the application provides a network device, where the network device includes a processor configured to support the network device to perform a corresponding function in a data transmission method provided by the second aspect.
  • the network device can also include a memory for coupling with the processor that retains the program instructions and data necessary for the network device.
  • the network device can also include a communication interface for the network device to communicate with other devices or communication networks.
  • the present application provides a computer storage medium for storing computer software instructions for a terminal device provided in the above fifth aspect, comprising a program designed to perform the above aspects.
  • the present application provides a computer storage medium for storing computer software instructions for use in the network device provided by the sixth aspect, comprising a program designed to perform the above aspects.
  • a ninth aspect the embodiment of the present invention provides a computer program, the computer program comprising instructions, when the computer program is executed by a computer, to enable the computer to perform the data transmission method of any one of the first aspect or the second aspect Process in.
  • the present application provides a chip system including a processor for supporting a terminal device or a network device to implement the functions involved in the above aspects.
  • the chip system further includes a memory for storing necessary program instructions and data during data transmission.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a channel structure of an NB-IoT communication system according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a random access process of a terminal device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a simplified terminal device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a simplified network device according to an embodiment of the present invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the present application.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • Logical channel The logical channel describes the type of information, that is, what information is transmitted.
  • the interface between the Media Access Control (MAC) layer and the Radio Link Control (RLC) layer is a logical channel.
  • the MAC layer provides services to the RLC layer through logical channels.
  • FIG. 1 is a schematic diagram of a channel structure of an NB-IoT communication system according to an embodiment of the present invention, where logical channels are classified into two categories: a logical control channel and a logical traffic channel.
  • the logical control channel is used for transmitting control plane information, and may include: a Broadcast Control Channel (BCCH), a PCCH (Paging Control Channel), a CCCH (Common Control Channel), and a DCCH. (Dedicated Control Channel, dedicated control channel).
  • the logical service channel is used to transmit user plane information, and may include: a DTCH (Dedicated Traffic Channel).
  • Transport channel The transport channel describes the way information is transmitted, that is, how information is transmitted.
  • the interface between the Physical Layer (PHY) and the Medium Access Control (MAC) layer is a transport channel.
  • the PHY layer provides services to the MAC layer through the transport channel.
  • the transport channel can typically be classified according to the manner in which the signal is transmitted over the radio interface, such as channel coding strategy, modulation method, and antenna mapping.
  • the transport channel may include: DL-SCH (Downlink Shared Channel), BCH (Broadcast Channel), PCH (Paging Channel), and UL-SCH (Uplink Shared Channel). ; uplink shared channel), RACH (Random Access Channel).
  • the physical channel corresponds to a set of Resource Elements (REs) that carry high-level information.
  • the basic entities that make up the physical channel are Resource Factor (RE) and Resource Block (RB).
  • the physical channel may include a Narrowband Physical Downlink Control Channel (NPDCCH), a Narrowband Physical Downlink Shared Channel (NPDSCH), and a Narrowband Physical Random Access Control Channel (NPRACH).
  • NPDCCH Narrowband Physical Downlink Control Channel
  • NPDSCH Narrowband Physical Downlink Shared Channel
  • NPRACH Narrowband Physical Random Access Control Channel
  • NPUSCH Narrowband Physical Uplink Shared Channel
  • NPBCH Narrowband Physical Broadcast Channel
  • NRS narrowband synchronization signal
  • NSS Narrowband positioning reference signal
  • NPRS Narrowband positioning reference signal
  • the physical channel may include a PDCCH (Physical Downlink Control Channel), a Physical Downlink Shared Channel (PDSCH), a Physical Broadcast Channel (PBCH), and a PMCH (Physical Broadcast Channel).
  • Physical Multicast Channel Physical Multicast Channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • PCFICH Physical Control Format Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • ALOHA protocol which is a random access or contention transmission protocol. Random access means that no station can predict the time of its transmission; contention is the right to use all the stations that are free to contend. Aloha agreement or Aloha technology, Aloha network. Segmentation (or time slot) ALOHA protocol (Slotted ALOHA) This is an improvement to the pure ALOHA protocol, the idea is to use the clock to unify the user's data transmission. The improvement is that it segments the channel in time, and each transmission point can only be transmitted at the beginning of a segment. The user must wait until the next time slice to start sending data, and each time the data must be transmitted less than or equal to one time segment of a channel. This greatly reduces the conflict of the transmission channel. Thereby, the arbitrariness of the user to send data is avoided, the possibility of data conflict is reduced, and the channel utilization rate is improved.
  • FIG. 2 is a structural diagram of a communication system according to an embodiment of the present invention.
  • the communication system architecture includes an Evolved Packet Core (EPC), a network device, and a terminal device.
  • EPC Evolved Packet Core
  • the terminal device is accessed by a network device (such as a base station) through an air interface Uu interface, and the network device connects to the core network through the S1 interface to complete data backhaul and forward transmission. among them,
  • a network device such as a base station
  • a terminal device is a device that has a wireless transceiver function. It can be deployed on land, indoors or outdoors, hand-held, worn or on-board; it can also be deployed on the water (such as ships); it can also be deployed in the air (such as airplanes, balloons, satellites, etc.).
  • the terminal device may be a mobile phone, a tablet (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control ( Wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation security Wireless terminal equipment in safety), wireless terminal equipment in smart city, wireless terminal equipment in smart home, and the like.
  • a terminal device may also be referred to as a user equipment (UE), an access terminal device, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal, a wireless communication device, UE proxy or UE device, etc.
  • UE user equipment
  • the network device may be a network element on the network side of the 5G communication system, such as a gNB, or an access point (APCESS POINT, AP) in the WLAN, or a relay station or an access point, or an in-vehicle device or a wearable device.
  • a network device (g Node B, referred to as "gNB” or "gNodeB") in a future 5G network or a network device in a PLMN network in a future evolution. It may also be an eNodeB in the NB-IoT system, and may further be an eNodeB in a 230 MHz IoT system.
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • a transmission resource for example, a frequency domain resource, or a spectrum resource
  • the cell may be a network device.
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell, where the small cell may include: a metro cell, a micro cell, and a pico cell. (Pico cell), femto cell, etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the core network mainly provides data support and related services for the communication system.
  • the embodiments of the present invention can be applied to various communication systems, such as a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, and a wideband code division multiple access (wideband code).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • UMTS universal mobile Universal mobile telecommunication system
  • next-generation communication system such as 5G wireless access (New Radio Access Technology in 3GPP, NR) system (referred to as 5GNR system), Machine to Machine (M2M) system, NB-IoT communication system or 230MHz IoT communication system.
  • 5G wireless access New Radio Access Technology in 3GPP, NR
  • M2M Machine to Machine
  • NB-IoT communication system 230MHz IoT communication system.
  • the data transmission method in the present application can be applied to the above various types of communication systems, in different communication systems, there may be differences in the division and definition of logical channels, transmission channels, and physical channels. Some embodiments in the present application are described in the manner of dividing a channel in LTE, but it does not mean that the present application can only be applied to an LTE system.
  • the PDSCH corresponds to the NPDSCH
  • the PUSCH corresponds to the NPUSCH
  • the PDCCH corresponds to the NPDCCH.
  • the present application does not specifically limit this.
  • the resource configuration parameters of the corresponding channels are adaptively adjusted according to different communication systems.
  • the communication system architecture in FIG. 2 is only an exemplary implementation manner in the embodiment of the present invention.
  • the communication system architecture in the embodiment of the present invention includes, but is not limited to, the above communication system architecture.
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present invention, which can be applied to the communication system described in FIG. 2, and will be performed from the interaction side between the terminal device and the network device in conjunction with FIG. 3. Description, the method may include the following steps S301-S303.
  • Step S301 The terminal device sends an RRC connection request message to the network device, where the RRC connection request message includes first indication information, where the first indication information is used to indicate a service type of the terminal device, and the network device receives the information sent by the terminal device.
  • RRC connection setup request The terminal device sends an RRC connection request message to the network device, where the RRC connection request message includes first indication information, where the first indication information is used to indicate a service type of the terminal device, and the network device receives the information sent by the terminal device.
  • the random access is a process for establishing a wireless connection between the terminal device and the network device, which is initiated in the idle mode or the connected mode, mainly to complete the acquisition of the terminal device (such as the UE) and the network.
  • Uplink synchronization between devices (such as base stations) and application of uplink resources that is, for realizing synchronization between the UE and the network, resolving conflicts, allocating resources (RNTI) and allocating uplink communication resources.
  • the RRC Radio Resource Control refers to radio resource control.
  • FIG. 4 is a schematic flowchart of a random access process of a terminal device according to an embodiment of the present invention, which includes the following five steps:
  • Step 1 the UE sends a random access preamble (Random Access preamble), which may be called MSG1;
  • Step 2 The base station sends a random access response message (Random Access Response), which may be called MSG2;
  • MSG2 Random Access Response
  • Step 3 The UE sends an RRC Connection Request, which may be called MSG3.
  • Step 4 The UE receives an RRC Connection Setup, which may be referred to as MSG4.
  • Step 5 The RRC Connection Complete is completed between the UE and the base station, and may be referred to as MSG5.
  • the first indication information is carried in the MSG3, which is the RRC connection request message in the foregoing step 3, and the first indication information is used to indicate the service type of the terminal device, where the service type can be based on the current needs of the terminal device.
  • the business is undergoing real-time changes. For example, it can be divided into delay sensitive industry and delay insensitive business. See Table 1.
  • Table 1 shows the related service categories involved in the 230MHz IoT system used in the power system, and the corresponding delay requirements.
  • the main solutions are power, power distribution and precision negative control services.
  • the specific service features are as follows:
  • the precise load control service can be divided into delay-sensitive services, and the power consumption information collection service can be classified into delay-insensitive services.
  • the service type of the terminal device can be further classified according to other standards, which is not specifically limited in this application.
  • Step S302 The network device sends an RRC connection setup message to the terminal device, where the RRC connection setup message includes second indication information, where the second indication information is used to indicate a scheduling mode that matches the service type.
  • the terminal device receives an RRC connection setup message sent by the network device.
  • the second indication information is carried in the RRC connection setup message, that is, the MSG3 in the step 4, and the second indication information is used to indicate the scheduling mode of the terminal device, and the scheduling mode is related to the service type reported in step S301. match.
  • the scheduling mode is based on the downlink control information scheduling and the non-scheduled mode, wherein the delay-sensitive service can correspond to the non-scheduled mode, and the delay-insensitive service can correspond to the downlink control information scheduling mode.
  • the network device can also configure related parameters of the corresponding scheduling mode according to requirements, such as time-frequency resource parameters, modulation and coding mode parameters, and the like.
  • Step S303 The terminal device and the network device perform data transmission according to the scheduling mode.
  • the network device and the terminal device perform data transmission according to the scheduling mode.
  • the terminal device and the network device perform data transmission according to a scheduling manner indicated by the network device. Specifically, the following methods may be included. The following is an exemplary description in the first mode, the second mode, and the third mode:
  • the service type is the first service (for example, the delay-insensitive service), and the uplink and downlink DCI-based scheduling mode:
  • the scheduling mode matched by the first service is a downlink control information scheduling mode
  • the terminal device and the network device perform data transmission according to the scheduling mode
  • the network device is configured according to The downlink control information sent to the terminal device and the terminal device perform uplink or downlink data transmission.
  • the terminal device performs uplink or downlink data transmission with the network device according to the downlink control information sent by the network device.
  • the following configuration parameters may be included in the MSG4:
  • SR resource configuration parameters such as carrier resource location, number of repetitions, period, start offset, duration, SR preamble start index, end index, and the like.
  • the following configuration parameters may be included in the MSG4:
  • PDCCH resource configuration parameters such as carrier resource location, number of bonded carriers, number of repetitions, and start offset.
  • the service type is a second service (for example, a delay-sensitive service), and the upper-layer behavior is a non-scheduling mode.
  • the scheduling mode matched by the second service is an uplink unscheduled mode
  • the second indication information includes the information of the first time-frequency resource and the first modulation and coding mode.
  • the terminal device and the network device perform data transmission according to the scheduling mode, specifically: the terminal device uses the first modulation and the first time-frequency resource according to the information of the first time-frequency resource and the information of the first modulation and coding mode.
  • the encoding mode sends uplink data to the network device.
  • the network device receives the uplink data by using the first modulation and coding mode on the first time-frequency resource.
  • the uplink transmission may be performed by using the slotted ALOHA to avoid slot collision. among them,
  • the following configuration parameters can be included in MSG4:
  • PUSCH resource configuration parameters such as carrier resource location, number of bonded carriers, MCS index, number of bound frames, number of repetitions, period, start offset, duration, contention window length, etc.;
  • PHICH resource configuration parameters such as carrier resource location, number of repetitions, MCS index, and the like.
  • the service type is the second service (for example, the delay-sensitive service), and the next behavior is the non-scheduling mode:
  • the scheduling mode matched by the second service is a downlink non-scheduling mode
  • the second indication information includes the information of the second time-frequency resource and the second modulation and coding mode.
  • the terminal device and the network device perform data transmission according to the scheduling mode, specifically: the terminal device uses the second modulation and the second time-frequency resource according to the information of the second time-frequency resource and the information of the second modulation and coding mode.
  • the encoding mode receives downlink data sent by the network device.
  • the network device sends downlink data to the terminal device in a second modulation and coding manner on the second time-frequency resource.
  • the following configuration parameters can be included in MSG4:
  • PDSCH resource configuration parameters such as carrier resource location, number of bonded carriers, MCS index, number of bound frames, number of repetitions, period, start offset, duration, etc.;
  • PUCCH resource configuration parameters such as carrier resource location, number of repetitions, and the like.
  • first time-frequency resource and the first modulation and coding mode, and the second time-frequency resource and the second modulation and coding mode may also be pre-agreed between the terminal device and the network device, that is, without passing through The MSG4 only re-sends, that is, the MSG4 only needs to indicate the specific scheduling mode by using the second indication, and the terminal device can perform data transmission according to the specific scheduling mode indicated in the MSG4, using the pre-agreed time-frequency resource and the modulation and coding mode.
  • the second indication information is used to indicate that the scheduling mode matched by the second service is an uplink unscheduled mode; and the terminal device receives the system message broadcast by the network device, the system message
  • the first time-frequency resource information and the first modulation and coding mode information are included; the terminal device and the network device perform data transmission according to the scheduling mode, specifically: the terminal device according to the first time-frequency resource information and the first modulation and coding manner
  • the information is sent to the network device in the first modulation and coding mode on the first time-frequency resource.
  • the network device receives the uplink data in the first modulation and coding mode on the first time-frequency resource.
  • the network device may indicate that the scheduling mode of the terminal device is an uplink unscheduled mode, and in the uplink non-scheduled mode, the terminal The device may send the uplink data to the network device in the first modulation and coding manner on the first time-frequency resource according to the information of the first time-frequency resource and the information of the first modulation and coding mode, which are indicated in the system message sent by the network device. In this way, the time that the terminal device needs to send the uplink data after receiving the downlink control information sent by the network device is saved, and the communication efficiency is improved.
  • the second indication information is used to indicate that the scheduling mode matched by the second service is a downlink unscheduled mode; and the terminal device receives the system message broadcast by the network device, the system message
  • the information includes the information of the second time-frequency resource and the information of the second modulation and coding mode; the terminal device and the network device perform data transmission according to the scheduling mode, specifically: the information of the second time-frequency resource and the second modulation and coding mode of the terminal device And receiving the downlink data sent by the network device by using the second modulation and coding mode on the second time-frequency resource; correspondingly, the network device sends the downlink data to the terminal device by using the second modulation and coding mode on the second time-frequency resource.
  • the network device may indicate that the scheduling mode of the terminal device is a downlink non-scheduling mode, and in the downlink non-scheduled mode, the terminal The device may receive the downlink data sent by the network device in the second modulation and coding manner on the second time-frequency resource according to the information of the second time-frequency resource and the information of the second modulation and coding mode indicated by the system message sent by the network device. . In this way, the time for the terminal device to receive the downlink data after receiving the downlink control information sent by the network device is saved, and the communication efficiency is improved.
  • the RRC connection setup request further includes a first modulation mode supported by the terminal device, where the first modulation mode includes binary phase shift keying BPSK, quadrature phase shift keying QPSK, and 16 orthogonal amplitude and phase modulation. 16QAM, 64 orthogonal amplitude and phase modulation 64QAM and 256 orthogonal amplitude and phase modulation 256QAM; the first modulation and coding mode information includes a modulation and coding mode MCS index of the physical uplink shared channel PUSCH, wherein the MCSCH of the PUSCH The order of the modulation mode corresponding to the index is less than or equal to the order of the first modulation mode.
  • the first modulation mode includes binary phase shift keying BPSK, quadrature phase shift keying QPSK, and 16 orthogonal amplitude and phase modulation. 16QAM, 64 orthogonal amplitude and phase modulation 64QAM and 256 orthogonal amplitude and phase modulation 256QAM
  • the first modulation and coding mode information includes
  • the order corresponding to the QPSK is 2, the order corresponding to the 16QAM is 4, the order corresponding to the 64QAM is 6, and the order corresponding to the 256QAM is 8.
  • the MSG3 report supports the modulation and demodulation mode as QPSK, it indicates that only QPSK is supported.
  • 16QAM it indicates that QPSK and 16QAM are supported.
  • 64QAM it indicates that QPSK, 16QAM and 64QAM are supported.
  • the base station configures the MCS of the PUSCH in the MSG4 according to the capability of the terminal device according to the uplink non-scheduled mode, so that the order corresponding to the MCS does not exceed the UE capability.
  • the terminal device may indicate the modulation mode supported by the terminal device in addition to the service type of the terminal device in the RRC connection establishment request, and the network device may be in accordance with the modulation mode supported by the terminal device.
  • the MCS index of the PUSCH indicating the capability of the terminal device is matched in the RRC connection setup message, so as to configure related parameters of the uplink transmission according to the capabilities of the terminal device.
  • the RRC connection setup request further includes a maximum number M of channel bindings supported by the terminal device; the first time-frequency resource
  • the information includes the number of channel bindings N of the PUSCH, where M and N are both positive integers and N is less than or equal to M.
  • the MSG3 report supports the maximum number of channel bindings, and the number of channel bindings represents the number of channels that can be simultaneously received.
  • the base station configures the number of bonded channels of the PUSCH in the MSG4 according to the capability of the terminal equipment, and does not exceed the UE capability. .
  • the terminal device In the RRC connection establishment request, the terminal device indicates the maximum number of channel bindings supported by the terminal device in addition to the service type of the terminal device, and the network device can connect in the RRC according to the capability of the terminal device.
  • the information of the first time-frequency resource in the setup message includes the number of channel bindings N of the PUSCH, so as to configure related parameters of the uplink transmission according to the capabilities of the terminal device.
  • the RRC connection setup request further includes a radio frequency bandwidth supported by the terminal device; the information of the first time-frequency resource includes a hop of the PUSCH.
  • the frequency bandwidth wherein the maximum value of the frequency hopping bandwidth is less than or equal to the value of the radio frequency bandwidth.
  • the MSG3 reports the bandwidth supported by the radio support of the terminal device, for example, supports 180KHz, 1MHz, and 12MHz.
  • the base station is based on the capability of the terminal device, and is based on the uplink unscheduled mode.
  • the MSG4 is used in the MSG4.
  • the terminal device indicates the radio frequency bandwidth supported by the terminal device in addition to the service type of the terminal device, and the network device can be in the RRC connection setup message according to the capability of the terminal device.
  • the information of the one-time frequency resource includes the frequency hopping bandwidth of the PUSCH, so as to configure related parameters of the uplink transmission according to the capabilities of the terminal device.
  • the RRC connection establishment request further includes a first modulation mode supported by the terminal device, where the first modulation mode includes a binary phase shift key Control BPSK, quadrature phase shift keying QPSK, 16 quadrature amplitude and phase modulation 16QAM, 64 quadrature amplitude and phase modulation 64QAM and 256 orthogonal amplitude and phase modulation 256QAM; second modulation and coding information including physics The modulation and coding strategy MCS index of the downlink shared channel PDSCH, wherein the order of the modulation mode corresponding to the MCS index of the PDSCH is less than or equal to the order of the first modulation mode.
  • the first modulation mode includes a binary phase shift key Control BPSK, quadrature phase shift keying QPSK, 16 quadrature amplitude and phase modulation 16QAM, 64 quadrature amplitude and phase modulation 64QAM and 256 orthogonal amplitude and phase modulation 256QAM
  • second modulation and coding information including physics The modulation and
  • the order corresponding to the QPSK is 2, the order corresponding to the 16QAM is 4, the order corresponding to the 64QAM is 6, and the order corresponding to the 256QAM is 8.
  • the MSG3 report supports the modulation and demodulation mode as QPSK, it indicates that only QPSK is supported.
  • 16QAM it indicates that QPSK and 16QAM are supported.
  • 64QAM it indicates that QPSK, 16QAM and 64QAM are supported.
  • the base station configures the MCS of the PDSCH in the MSG4 according to the capability of the terminal device according to the downlink non-scheduled mode, so that the order corresponding to the MCS does not exceed the UE capability.
  • the terminal device may indicate the modulation mode supported by the terminal device in addition to the service type of the terminal device in the RRC connection establishment request, and the network device may be in accordance with the modulation mode supported by the terminal device.
  • the MCS index of the PDSCH indicating the capability of the terminal device is matched in the RRC connection setup message, so as to configure related parameters of the downlink transmission according to the capabilities of the terminal device.
  • the RRC connection establishment request further includes a maximum number M of channel bindings supported by the terminal device, and the information of the second time-frequency resource includes the number of channel bindings of the PDSCH, where M and N are both Is a positive integer, N is less than or equal to M.
  • M and N are both Is a positive integer, N is less than or equal to M.
  • the MSG3 report supports the maximum number of channel bindings, and the number of channel bindings represents the number of channels that can be simultaneously received.
  • the base station configures the number of bonded channels of the PDSCH in the MSG4 based on the capability of the terminal equipment, and does not exceed the UE capability. .
  • the terminal device In the RRC connection establishment request, the terminal device indicates the maximum number of channel bindings supported by the terminal device in addition to the service type of the terminal device, and the network device can connect in the RRC according to the capability of the terminal device.
  • the information of the first time-frequency resource in the setup message includes the number N of channel bindings of the PDSCH, so as to configure related parameters of the downlink transmission according to the capabilities of the terminal device.
  • the terminal device indicates the radio frequency bandwidth supported by the terminal device in addition to the service type of the terminal device, and the network device can be in the RRC connection setup message according to the capability of the terminal device.
  • the information of the one-time frequency resource includes the frequency hopping bandwidth of the PDSCH, so as to configure related parameters of the downlink transmission according to the capabilities of the terminal device.
  • the service type includes a first service and a second service, and the second service has a higher latency requirement than the first service.
  • the service type of the terminal device is divided into services with high delay requirements and services with low delay requirements, and data transmission is performed by matching different scheduling modes for services with different delay requirements.
  • the first service corresponds to the uplink and downlink downlink control information-based scheduling in the foregoing mode 1
  • the second service may correspond to the second mode and/or in a possible implementation manner
  • the RRC connection setup message includes Physical uplink shared channel PUSCH resource configuration parameters and physical HARQ indicator channel PHICH resource configuration parameters.
  • the RRC connection setup message includes relevant configuration parameters of the uplink transmission.
  • the RRC connection setup message when the service type is the second service, includes physical downlink shared channel (PDSCH) resource configuration information and physical uplink control channel (PUCCH) resource configuration information.
  • PDSCH physical downlink shared channel
  • PUCCH physical uplink control channel
  • the RRC connection setup message when the service type is the second service, and the corresponding scheduling mode may be the downlink non-scheduling mode, includes relevant configuration parameters of the downlink transmission.
  • the RRC connection setup message when the service type is the first service, includes a downlink physical control channel PDCCH configuration parameter and an uplink scheduling request (SR) configuration parameter.
  • the RRC connection setup message when the service type is the first service, and the corresponding scheduling mode may be the uplink scheduling mode, the RRC connection setup message includes relevant configuration parameters of the uplink scheduling.
  • the RRC connection when the service type is the first service, the RRC connection establishes a message packet downlink physical control channel PDCCH configuration parameter.
  • the RRC connection setup message when the service type is the first service, and the corresponding scheduling mode may be the downlink scheduling mode, the RRC connection setup message includes relevant configuration parameters of the downlink scheduling.
  • the foregoing uplink and downlink scheduling modes can be combined with each other according to the actual service requirements of the terminal device, and the network device side can simultaneously indicate the uplink and downlink scheduling mode in the MSG4, or can only indicate the uplink or downlink scheduling mode.
  • the scheduling mode corresponding to the transmission mode (TM) may be separately indicated by the uplink and the downlink, or may be combined according to the service type of the terminal device, which is not limited in this application.
  • the RRC connection request message on the terminal device side carries the service type of the terminal device that needs to perform data transmission, for example, the delay-sensitive service and the delay-insensitive service, and the network device side reports the data according to the terminal device.
  • the service type carries a scheduling mode that matches the service type in the RRC connection setup message, so that the terminal device performs data transmission according to the scheduling mode, that is, matches different scheduling modes according to different service types, and is more flexible and improves communication efficiency. .
  • the service type of the terminal device is delay-sensitive, the delay can be further reduced and the data transmission efficiency can be improved.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 10 may include a sending unit 101, a receiving unit 102, and a processing unit 103.
  • the detailed description of each unit is as follows.
  • the sending unit 101 is configured to send, by the terminal device, an RRC connection request message to the network device, where the RRC connection request message includes first indication information, where the first indication information is used to indicate a service type of the terminal device;
  • the receiving unit 102 is configured to receive an RRC connection setup message that is sent by the network device, where the RRC connection setup message includes second indication information, where the second indication information is used to indicate a scheduling mode that matches the service type.
  • the scheduling mode that the first service matches is a downlink control information scheduling mode
  • the processing unit 103 is specifically configured to: send according to the network device
  • the downlink control information is used to transmit uplink or downlink data with the network device.
  • the scheduling mode matched by the second service is an uplink unscheduled mode
  • the second indication information includes information about the first time-frequency resource.
  • a first modulation and coding mode information where the processing unit 103 is configured to: according to the information of the first time-frequency resource and the information of the first modulation and coding mode, on the first time-frequency resource The first modulation and coding mode sends uplink data to the network device.
  • the scheduling mode matched by the second service is a downlink unscheduled mode
  • the second indication information includes information about the second time-frequency resource.
  • a second modulation and coding mode information where the processing unit 103 is configured to: according to the information of the second time-frequency resource and the information of the second modulation and coding mode, on the second time-frequency resource
  • the second modulation and coding mode receives downlink data sent by the network device.
  • the RRC connection setup request further includes a first modulation mode supported by the terminal device, where the first modulation mode includes a binary phase shift keying BPSK, a quadrature phase shift keying QPSK, 16 orthogonal amplitude phase modulation 16QAM, 64 orthogonal amplitude phase modulation 64QAM and 256 orthogonal amplitude phase modulation 256QAM;
  • the first modulation and coding mode information includes modulation and coding mode of physical uplink shared channel PUSCH
  • the MCS index where the order of the modulation mode corresponding to the MCS index of the PUSCH is less than or equal to the order of the first modulation mode.
  • the RRC connection establishment request further includes a maximum number M of channel bindings supported by the terminal device, where the information of the first time-frequency resource includes a number N of channel bindings of the PUSCH, Where M and N are both positive integers and N is less than or equal to M.
  • the RRC connection setup request further includes a radio frequency bandwidth supported by the terminal device, and the information of the first time-frequency resource includes a frequency hopping bandwidth of the PUSCH, where the frequency hopping bandwidth is The maximum value is less than or equal to the value of the radio frequency bandwidth.
  • the RRC connection setup request further includes a first modulation mode supported by the terminal device, where the first modulation mode includes a binary phase shift keying BPSK, a quadrature phase shift keying QPSK, 16 orthogonal amplitude and phase modulation 16QAM, 64 orthogonal amplitude and phase modulation 64QAM and 256 orthogonal amplitude and phase modulation 256QAM;
  • the second modulation and coding mode information includes modulation and coding mode of the physical downlink shared channel PDSCH
  • the MCS index where the order of the modulation mode corresponding to the MCS index of the PDSCH is less than or equal to the order of the first modulation mode.
  • the RRC connection setup request further includes a radio frequency bandwidth supported by the terminal device, and the second time-frequency resource information includes a frequency hopping bandwidth of the PDSCH, where the hopping bandwidth is The maximum value is less than or equal to the value of the radio frequency bandwidth.
  • the sending unit 202 is configured to send an RRC connection setup message to the terminal device, where the RRC connection setup message includes second indication information, where the second indication information is used to indicate a scheduling mode that matches the service type.
  • the processing unit 203 is configured to perform data transmission with the terminal device according to the scheduling mode.
  • the scheduling mode that is matched by the first service is a downlink control information scheduling mode
  • the processing unit 203 is specifically configured to:
  • the scheduling mode matched by the second service is an uplink unscheduled mode
  • the second indication information includes information about the first time-frequency resource.
  • the information of the first modulation and coding mode; the processing unit 203 is specifically configured to:
  • the scheduling mode matched by the second service is a downlink unscheduled mode
  • the second indication information includes information about the second time-frequency resource.
  • the second modulation and coding mode information; the processing unit 203 is specifically configured to:
  • the network device sends downlink data to the terminal device in the second modulation and coding manner on the second time-frequency resource.
  • the RRC connection setup request further includes a first modulation mode supported by the terminal device, where the first modulation mode includes a binary phase shift keying BPSK, a quadrature phase shift keying QPSK, 16 orthogonal amplitude and phase modulation 16QAM, 64 orthogonal amplitude and phase modulation 64QAM and 256 orthogonal amplitude and phase modulation 256QAM;
  • the first modulation mode includes a binary phase shift keying BPSK, a quadrature phase shift keying QPSK, 16 orthogonal amplitude and phase modulation 16QAM, 64 orthogonal amplitude and phase modulation 64QAM and 256 orthogonal amplitude and phase modulation 256QAM;
  • the RRC connection establishment request further includes a maximum number M of channel bindings supported by the terminal device, where the information of the first time-frequency resource includes a number N of channel bindings of the PUSCH, Where M and N are both positive integers and N is less than or equal to M.
  • the RRC connection setup request further includes a radio frequency bandwidth supported by the terminal device, and the information of the first time-frequency resource includes a frequency hopping bandwidth of the PUSCH, where the frequency hopping bandwidth is The maximum value is less than or equal to the value of the radio frequency bandwidth.
  • the RRC connection setup request further includes a first modulation mode supported by the terminal device, where the first modulation mode includes a binary phase shift keying BPSK, a quadrature phase shift keying QPSK, 16 orthogonal amplitude and phase modulation 16QAM, 64 orthogonal amplitude and phase modulation 64QAM and 256 orthogonal amplitude and phase modulation 256QAM;
  • the first modulation mode includes a binary phase shift keying BPSK, a quadrature phase shift keying QPSK, 16 orthogonal amplitude and phase modulation 16QAM, 64 orthogonal amplitude and phase modulation 64QAM and 256 orthogonal amplitude and phase modulation 256QAM;
  • the information of the second modulation and coding mode includes a modulation and coding policy MCS index of the physical downlink shared channel PDSCH, where the order of the modulation mode corresponding to the MCS index of the PDSCH is less than or equal to the order of the first modulation mode. number.
  • the RRC connection establishment request further includes a maximum number M of channel bindings supported by the terminal device, and the information of the second time-frequency resource includes a number N of channel bindings of the PDSCH.
  • M and N are both positive integers and N is less than or equal to M.
  • the RRC connection setup request further includes a radio frequency bandwidth supported by the terminal device, and the second time-frequency resource information includes a frequency hopping bandwidth of the PDSCH, where the hopping bandwidth is The maximum value is less than or equal to the value of the radio frequency bandwidth.
  • FIG. 7 is a schematic structural diagram of a simplified terminal device according to an embodiment of the present invention.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the terminal device, executing the software program, processing the data of the software program, and the like, for example, for controlling the mobile phone to perform the steps performed by the terminal device in FIG. 3 above,
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited by the embodiment of the present invention.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor having the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 301 and a processing unit 302.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip.
  • FIG. 8 is a schematic structural diagram of a simplified network device according to an embodiment of the present invention. Specifically, it is, for example, a base station.
  • the base station includes a 401 part and a 402 part.
  • the 401 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 402 part is mainly used for baseband processing and control of base stations.
  • Section 401 can be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • Section 402 is typically the control center of the base station and may generally be referred to as a processing unit for controlling the base station to perform the steps performed by the network device described above with respect to FIG. For details, please refer to the description of the relevant part above.
  • the transceiver unit of the 401 part which may also be called a transceiver, or a transceiver, includes an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in the 401 part may be regarded as a receiving unit
  • the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the 401 portion includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the embodiment of the invention further provides a chip, the chip comprising a communication interface and a processor, the processor is configured to control the communication interface to receive or send a signal, and is used for processing a signal received by the communication interface or generating a signal to be sent by the communication interface.
  • the processor is configured to perform the process or the step of the terminal device side in the data transmission method provided by the foregoing method embodiment; or the processor is configured to perform the process or the step of the network device side in the data transmission method provided by the foregoing method embodiment.
  • the chip further includes a storage module, where the storage module stores instructions.
  • the processing module performs related operations by reading instructions stored by the storage module, and controls the communication interface to perform related transceiving operations.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions may be from a website site, computer, server or data center via a wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD)). )Wait.
  • the foregoing storage medium includes: a read-only memory (ROM) or a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据传输方法及相关设备,该方法可包括:终端设备向网络设备发送RRC连接请求消息,所述RRC连接请求消息包括第一指示信息,所述第一指示信息用于指示所述终端设备的业务类型;所述终端设备接收网络设备发送的RRC连接建立消息,所述RRC连接建立消息包括第二指示信息,所述第二指示信息用于指示与所述业务类型所匹配的调度模式;所述终端设备与所述网络设备根据所述调度模式进行数据传输。采用本发明实施例,可以根据终端设备的业务类型采用不同的调度方式进行数据传输。

Description

一种数据传输方法及相关设备 技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及相关设备。
背景技术
随着移动互联网和物联网产业的发展,越来越多的移动终端相互连接并分享更加丰富的数据,基于蜂窝的窄带物联网(Narrow Band Internet of Things,NB-IoT)成为万物互联网络的一个重要分支。NB-IoT构建于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于全球移动通讯(global system of mobile communication,GSM)网络、通用移动通信系统(universal mobile telecommunication system,UMTS)网络或长期演进(long term evolution,LTE)网络,以降低部署成本、实现平滑升级。NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,也被叫作低功耗广域网(Low-Power Wide-Area Network,LPWAN)。NB-IoT支持待机时间长、对网络连接要求较高设备的高效连接。
目前,在NB-IoT系统中,上下行数据传输都是基于下行控制信(Downlink Control Information,DCI)调度的。具体地,下行数据传输过程中,终端设备在窄带物理下行链路控制信道(Narrowband Physical Downlink Control Channel,NPDCCH)盲检DCI,DCI接收成功后根据下行授权接收窄带物理下行共享信道(Narrowband Physical Downlink Shared Channel,PDSCH)数据。上行数据传输过程中,终端设备在窄带物理下行链路控制信道(Narrowband Physical Downlink Control Channel,NPDCCH)盲检DCI,DCI接收成功后根据上行授权指示,准备窄带上行物理上行共享信道(Narrowband Physical Uplink Shared Channel,NPUSCH)数据,在指示的时频资源上发送PUSCH数据。
上述基于调度的系统,上下行调度都是先发送DCI,然后再传输PDSCH/PUSCH,根据终端设备所处覆盖等级不同,DCI传输占用的时间不同。而不同的业务对时延的敏感度不一样,对于时延敏感业务,DCI传输占用时间过长,从而导致时延不能满足要求。
发明内容
本发明实施例提供一种数据传输方法及相关设备,可以根据终端设备的业务类型采用不同的调度方式进行数据传输,提升通信效率。
第一方面,本发明实施例提供了一种数据传输方法,可包括:
终端设备向网络设备发送RRC连接请求消息,所述RRC连接请求消息包括第一指示信息,所述第一指示信息用于指示所述终端设备的业务类型;所述终端设备接收网络设备发送的RRC连接建立消息,所述RRC连接建立消息包括第二指示信息,所述第二指示信息用于指示与所述业务类型所匹配的调度模式;所述终端设备与所述网络设备根据所述调度模式进行数据传输。本发明实施例,通过在终端设备侧的RRC连接请求消息中携带该终端设备的需要进行数据传输的业务类型,例如时延敏感业务和时延不敏感业务,网络设备侧再根据终端设备上报的业务类型,在RRC连接建立消息中携带与该业务类型匹配的调度模式,以用于终端设备根据该调度模式进行数据传输,即根据不同的业务类型匹配不同的调度模式,更加灵活,提升通信效率。
在一种可能的实现方式中,当所述业务类型为第一业务,所述第一业务所匹配的调度模式为下行控制信息调度模式;所述终端设备与所述网络设备根据所述调度模式进行数据传输,包括:所述终端设备根据所述网络设备发送的下行控制信息,与所述网络设备进行上行或下行数据的传输。本发明实施例,当业务类型为第一业务,例如第一业务为时延不敏感业务,那么网络设备可以指示该终端设备根据下行控制信息调度模式进行数据的传输,即终端设备接收网络设备发送的下行控制信息,然后再根据该下行控制信息中的相关时频资源信息以及调制编码方式进行上行或下行数据的传输。
在一种可能的实现方式中,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为上行无调度模式;所述第二指示信息包括第一时频资源的信息和第一调制与编码方式的信息;所述终端设备与所述网络设备根据所述调度模式进行数据传输,包括:所述终端设备根据所述第一时频资源的信息和所述第一调制与编码方式的信息,在所述第一时频资源上以所述第一调制与编码方式向所述网络设备发送上行数据。本发明实施例,当业务类型为第二业务,例如第二业务为时延敏感业务,那么网络设备可以指示该终端设备的调度模式为上行无调度模式,在该上行无调度模式下,终端设备可以根据网络设备发送的RRC连接建立消息包括的第二指示信息中的第一时频资源的信息和第一调制与编码方式的信息,在第一时频资源上以第一调制与编码方式向网络设备发送上行数据。如此一来,便节省了终端设备需要在接收到网络设备发送的下行控制信息之后才能发送上行数据的时间,提升了通信效率。
在一种可能的实现方式中,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为下行无调度模式;所述第二指示信息包括第二时频资源的信息和第二调制与编码方式的信息;所述终端设备与所述网络设备根据所述调度模式进行数据传输,包括:所述终端设备根据所述第二时频资源的信息和所述第二调制与编码方式的信息,在所述第二时频资源上以所述第二调制与编码方式接收所述网络设备发送的下行数据。本发明实施例,当业务类型为第二业务,例如第二业务为时延敏感业务,那么网络设备可以通过RRC连接建立消息包括的第二指示信息指示该终端设备的调度模式为下行无调度模式,在该下行无调度模式下,终端设备可以根据网络设备之前发送的系统消息中的第二时频资源的信息和第二调制与编码方式的信息,在第二时频资源上以第二调制与编码方式接收网络设备发送的下行数据。如此一来,便节省了终端设备需要在接收到网络设备发送的下行控制信息之后才能接收下行数据的时间,提升了通信效率。
在一种可能的实现方式中,当所述业务类型为所述第二业务,所述第二指示信息用于指示所述第二业务所匹配的调度模式为上行无调度模式;所述方法还包括:所述终端设备接收所述网络设备广播的系统消息,所述系统消息包括第一时频资源的信息和第一调制与编码方式的信息;所述终端设备与所述网络设备根据所述调度模式进行数据传输,包括:所述终端设备根据所述第一时频资源的信息和所述第一调制与编码方式的信息,在所述第一时频资源上以所述第一调制与编码方式向所述网络设备发送上行数据。本发明实施例,当业务类型为第二业务,例如第二业务为时延敏感业务,那么网络设备可以通过指示该终端设备的调度模式为上行无调度模式,在该上行无调度模式下,终端设备可以根据网络设备发送的系统消息中指示的第一时频资源的信息和第一调制与编码方式的信息,在第一时 频资源上以第一调制与编码方式向网络设备发送上行数据。如此一来,便节省了终端设备需要在接收到网络设备发送的下行控制信息之后才能发送上行数据的时间,提升了通信效率。
在一种可能的实现方式中,当所述业务类型为所述第二业务,所述第二指示信息用于指示所述第二业务所匹配的调度模式为下行无调度模式;所述方法还包括:所述终端设备接收所述网络设备广播的系统消息,所述系统消息包括第二时频资源的信息和第二调制与编码方式的信息;所述终端设备与所述网络设备根据所述调度模式进行数据传输,包括:所述终端设备根据所述第二时频资源的信息和所述第二调制与编码方式的信息,在所述第二时频资源上以所述第二调制与编码方式接收所述网络设备发送的下行数据。本发明实施例,当业务类型为第二业务,例如第二业务为时延敏感业务,那么网络设备可以通过指示该终端设备的调度模式为下行无调度模式,在该下行无调度模式下,终端设备可以根据网络设备发送的系统消息中指示的第二时频资源的信息和第二调制与编码方式的信息,在第二时频资源上以第二调制与编码方式接收网络设备发送的下行数据。如此一来,便节省了终端设备需要在接收到网络设备发送的下行控制信息之后才能接收下行数据的时间,提升了通信效率。
第二方面,本发明实施例提供了一种数据传输方法,可包括:
网络设备接收终端设备发送的RRC连接建立请求,所述RRC连接建立请求包括第一指示信息,所述第一指示信息用于指示所述终端设备的业务类型;所述网络设备向所述终端设备发送RRC连接建立消息,所述RRC连接建立消息包括第二指示信息,所述第二指示信息用于指示与所述业务类型所匹配的调度模式;所述网络设备与所述终端设备根据所述调度模式进行数据传输。本发明实施例,通过在终端设备侧的RRC连接请求消息中携带该终端设备的需要进行数据传输的业务类型,例如时延敏感业务和时延不敏感业务,网络设备侧再根据终端设备上报的业务类型,在RRC连接建立消息中携带与该业务类型匹配的调度模式,以用于终端设备根据该调度模式进行数据传输,即根据不同的业务类型匹配不同的调度模式,更加灵活,提升通信效率。
在一种可能的实现方式中,当所述业务类型为第一业务,所述第一业务所匹配的调度模式为下行控制信息调度模式;所述网络设备与所述终端设备根据所述调度模式进行数据传输,包括:所述网络设备根据向所述终端设备发送的下行控制信息,与所述终端设备进行上行或下行数据的传输。本发明实施例,当业务类型为第一业务,例如第一业务为时延不敏感业务,那么网络设备可以指示该终端设备根据下行控制信息调度模式进行数据的传输,即终端设备接收网络设备发送的下行控制信息,然后再根据该下行控制信息中的相关时频资源信息以及调制编码方式进行上行或下行数据的传输。
在一种可能的实现方式中,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为上行无调度模式;所述第二指示信息包括第一时频资源的信息和第一调制与编码方式的信息;所述网络设备与所述终端设备根据所述调度模式进行数据传输,包括:所述网络设备在所述第一时频资源上以所述第一调制与编码方式接收所述终端设备发送上行数据。本发明实施例,当业务类型为第二业务,例如第二业务为时延敏感业务,那么网络设 备可以指示该终端设备的调度模式为上行无调度模式,在该上行无调度模式下,终端设备可以根据网络设备发送的RRC连接建立消息包括的第二指示信息中的第一时频资源的信息和第一调制与编码方式的信息,在第一时频资源上以第一调制与编码方式向网络设备发送上行数据。如此一来,便节省了终端设备需要在接收到网络设备发送的下行控制信息之后才能发送上行数据的时间,提升了通信效率。
在一种可能的实现方式中,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为下行无调度模式;所述第二指示信息包括第二时频资源的信息和第二调制与编码方式的信息;所述网络设备与所述终端设备根据所述调度模式进行数据传输,包括:所述网络设备在所述第二时频资源上以所述第二调制与编码方式向所述终端设备发送下行数据。本发明实施例,当业务类型为第二业务,例如第二业务为时延敏感业务,那么网络设备可以通过RRC连接建立消息包括的第二指示信息指示该终端设备的调度模式为下行无调度模式,在该下行无调度模式下,终端设备可以根据网络设备之前发送的第二指示信息中的第二时频资源的信息和第二调制与编码方式的信息,在第二时频资源上以第二调制与编码方式接收网络设备发送的下行数据。如此一来,便节省了终端设备需要在接收到网络设备发送的下行控制信息之后才能接收下行数据的时间,提升了通信效率。
在一种可能的实现方式中,当所述业务类型为所述第二业务,所述第二指示信息用于指示所述第二业务所匹配的调度模式为上行无调度模式;所述方法还包括:所述网络设备广播系统消息,所述系统消息包括第一时频资源的信息和第一调制与编码方式的信息;所述网络设备与所述终端设备根据所述调度模式进行数据传输,包括:所述网络设备在所述第一时频资源上以所述第一调制与编码方式接收所述终端设备发送上行数据。本发明实施例,当业务类型为第二业务,例如第二业务为时延敏感业务,那么网络设备可以通过指示该终端设备的调度模式为上行无调度模式,在该上行无调度模式下,终端设备可以根据网络设备发送的系统消息中指示的第一时频资源的信息和第一调制与编码方式的信息,在第一时频资源上以第一调制与编码方式向网络设备发送上行数据。如此一来,便节省了终端设备需要在接收到网络设备发送的下行控制信息之后才能发送上行数据的时间,提升了通信效率。
在一种可能的实现方式中,所述业务类型为所述第二业务,所述第二指示信息用于指示所述第二业务所匹配的调度模式为下行无调度模式;所述方法还包括:所述网络设备广播系统消息,所述系统消息包括第二时频资源的信息和第二调制与编码方式的信息;所述网络设备与所述终端设备根据所述调度模式进行数据传输,包括:所述网络设备在所述第二时频资源上以所述第二调制与编码方式向所述终端设备发送下行数据。本发明实施例,当业务类型为第二业务,例如第二业务为时延敏感业务,那么网络设备可以通过指示该终端设备的调度模式为下行无调度模式,在该下行无调度模式下,终端设备可以根据网络设备发送的系统消息中指示的第二时频资源的信息和第二调制与编码方式的信息,在第二时频资源上以第二调制与编码方式接收网络设备发送的下行数据。如此一来,便节省了终端设备需要在接收到网络设备发送的下行控制信息之后才能接收下行数据的时间,提升了通信效率。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,所 述RRC连接建立请求还包括所述终端设备支持的第一调制方式,所述第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;所述第一调制与编码方式的信息包括物理上行共享信道PUSCH的调制与编码方式MCS索引,其中,所述PUSCH的MCS索引对应的调制方式的阶数小于或者等于所述第一调制方式的阶数。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型以外,还可以指示该终端设备所能支持的调制方式,而网络设备则可以根据终端设备所支持的调制方式,在RRC连接建立消息中指示与终端设备能力匹配的PUSCH的MCS索引,以便于根据终端设备的能力配置上行传输的相关参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的信道绑定最大个数M;所述第一时频资源的信息包括PUSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型,还指示该终端设备所支持的信道绑定最大个数M,而网络设备则可以根据终端设备的能力在RRC连接建立消息中的第一时频资源的信息中包括PUSCH的信道绑定个数N,以便于根据终端设备的能力配置上行传输的相关参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的射频带宽;所述第一时频资源的信息包括PUSCH的跳频带宽,其中,所述跳频带宽的最大值小于或者等于所述射频带宽的值。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型,还指示该终端设备所支持的射频带宽,而网络设备则可以根据终端设备的能力在RRC连接建立消息中的第一时频资源的信息中包括PUSCH的跳频带宽,以便于根据终端设备的能力配置上行传输的相关参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的第一调制方式,所述第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;所述第二调制与编码方式的信息包括物理下行共享信道PDSCH的调制与编码策略MCS索引,其中,所述PDSCH的MCS索引对应的调制方式的阶数小于或者等于所述第一调制方式的阶数。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型以外,还可以指示该终端设备所能支持的调制方式,而网络设备则可以根据终端设备所支持的调制方式,在RRC连接建立消息中指示与终端设备能力匹配的PDSCH的MCS索引,以便于根据终端设备的能力配置下行传输的相关参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的信道绑定最大个数M;所述第二时频资源的信息包括PDSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型,还指示该终端设备所支持的信道绑定最大个数M,而网络设备则可以根据终端设备的能力在RRC连 接建立消息中的第一时频资源的信息中包括PDSCH的信道绑定个数N,以便于根据终端设备的能力配置下行传输的相关参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的射频带宽;所述第二时频资源的信息包括PDSCH的跳频带宽,其中,所述跳频带宽的最大值小于或者等于所述射频带宽的值。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型,还指示该终端设备所支持的射频带宽,而网络设备则可以根据终端设备的能力在RRC连接建立消息中的第一时频资源的信息中包括PDSCH的跳频带宽,以便于根据终端设备的能力配置下行传输的相关参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,所述业务类型包括第一业务和第二业务,所述第二业务的时延要求高于所述第一业务。本发明实施例,通过将终端设备侧的业务类型划分为时延要求高的业务和时延要求不高的业务,以针对时延要求不同的业务匹配不同的调度模式进行数据传输。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,当所述业务类型为第二业务,所述RRC连接建立消息包括物理上行共享信道PUSCH资源配置参数和物理HARQ指示信道PHICH资源配置参数。本发明实施例,当业务类型为第二业务,对应的调度模式可以为上行无调度模式,则RRC连接建立消息中包含了上行传输的相关配置参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,当所述业务类型为第二业务,所述RRC连接建立消息包括物理下行共享信道PDSCH资源配置信息和物理上行控制信道PUCCH资源配置信息。本发明实施例,当业务类型为第二业务,对应的调度模式可以为下行无调度模式,则RRC连接建立消息中包含了下行传输的相关配置参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,当所述业务类型为第一业务;所述RRC连接建立消息包括下行物理控制信道PDCCH配置参数和上行调度请求SR配置参数。本发明实施例,当业务类型为第一业务,对应的调度模式可以为上行调度模式,则RRC连接建立消息中包含了上行调度的相关配置参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,当所述业务类型为第一业务;所述RRC连接建立消息包下行物理控制信道PDCCH配置参数。本发明实施例,当业务类型为第一业务,对应的调度模式可以为下行调度模式,则RRC连接建立消息中包含了下行调度的相关配置参数。
第三方面,本申请提供一种终端设备,该终端设备具有实现上述任意一种数据传输方法实施例中终端设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请提供一种网络设备,该网络设备具有实现上述任意一种数据传输方法实施例中网络设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请提供一种终端设备,该终端设备中包括处理器,处理器被配置为支持该终端设备执行第一方面提供的一种数据传输方法中相应的功能。该终端设备还可以包括存储器,存储器用于与处理器耦合,其保存该终端设备必要的程序指令和数据。该终端设备还可以包括通信接口,用于该终端设备与其他设备或通信网络通信。
第六方面,本申请提供一种网络设备,该网络设备中包括处理器,处理器被配置为支持该网络设备执行第二方面提供的一种数据传输方法中相应的功能。该网络设备还可以包括存储器,存储器用于与处理器耦合,其保存该网络设备必要的程序指令和数据。该网络设备还可以包括通信接口,用于该网络设备与其他设备或通信网络通信。
第七方面,本申请提供一种计算机存储介质,用于储存为上述第五方面提供的终端设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,本申请提供一种计算机存储介质,用于储存为上述第六方面提供的网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第九方面,本发明实施例提供了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行上述第一方面或第二方面中任意一项的数据传输方法中的流程。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备或网络设备实现上述方面中所涉及的功能。在一种可能的实现方式中,所述芯片系统还包括存储器,所述存储器,用于保存数据传输过程中的必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本发明实施例提供的NB-IoT通信系统的信道结构示意图;
图2是本发明实施例提供的一种通信系统架构图;
图3是本发明实施例提供的一种数据传输方法的流程示意图;
图4为本发明实施例提供的一种终端设备随机接入流程示意图;
图5是本发明实施例提供的一种终端设备的结构示意图;
图6是本发明实施例提供的一种网络设备的结构示意图;
图7是本发明实施例提供的一种简化的终端设备结构示意图;
图8是本发明实施例提供的一种简化的网络设备结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例进行描述。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单 元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)逻辑信道:逻辑信道描述了信息的类型,即定义了传输的是什么信息。媒体接入控制(Media Access Control,MAC)层与无线链路控制(Radio Link Control,RLC)层之间的接口为逻辑信道。MAC层通过逻辑信道为RLC层提供服务。
如图1所示,图1为本发明实施例提供的NB-IoT通信系统的信道结构示意图,其中逻辑信道分为2类:逻辑控制信道和逻辑业务信道。其中,逻辑控制信道用于传输控制面信息,可包括:广播控制信道(Broadcast Control Channel,BCCH)、PCCH(Paging Control Channel,寻呼控制信道)、CCCH(Common Control Channel,公共控制信道)、DCCH(Dedicated Control Channel,专用控制信道)。逻辑业务信道用于传输用户面信息,可包括:DTCH(Dedicated Traffic Channel,专用业务信道)。
(2)传输信道:传输信道描述的是信息的传输方式,即定义了信息是如何传输的。物理层(Physical Layer,PHY)和媒体接入控制(MAC)层之间的接口为传输信道。PHY层通过传输信道为MAC层提供服务。传输信道通常可以根据在无线接口上传输信号的方式,如信道编码策略、调制方法和天线映射方式,进行分类。
如图1所示,传输信道可包括:DL-SCH(Downlink Shared Channel,下行共享信道)、BCH(Broadcast Channel,广播信道)、PCH(Paging Channel,寻呼信道)、UL-SCH(Uplink Shared Channel;上行共享信道)、RACH(Random Access Channel,随机接入信道)。
(3)物理信道:由物理层用于具体信号的传输。物理信道和承载高层信息的资源因子(Resource Element,RE)集合相对应。组成物理信道的基本实体是资源因子(RE)和资源块(Resource Block,RB)。
如图1所示,物理信道可包括:窄带物理下行控制信道(Narrowband Physical Downlink Control Channel,NPDCCH)、窄带物理下行共享信道(Narrowband Physical Downlink Shared channel,NPDSCH)、窄带物理随机接入控制信道NPRACH(Narrowband Physical Random Access Control Channel)、窄带物理上行共享信道(Narrowband Physical Uplink Shared  channel,NPUSCH)、窄带物理广播信道(Narrowband Physical Broadcast Channel,NPBCH)窄带参考信号(Narrowband reference signal,NRS)窄带同步信号(Narrowband synchronization signal,NSS)、窄带定位参考信号(Narrowband positioning reference signal,NPRS)。
而在LTE系统中,物理信道可包括:PDCCH(Physical Downlink Control Channel,物理下行控制信道)、PDSCH(Physical Downlink Shared Channel,物理下行共享信道)、PBCH(Physical Broadcast Channel,物理广播信道)、PMCH(Physical Multicast Channel,物理多播信道)、PHICH(Physical Hybrid ARQ Indicator Channel,物理H-ARQ指示信道)、PCFICH(Physical Control Format Indicator Channel,物理控制格式指示信道)、PUCCH(Physical Uplink Control Channel,物理上行控制信道)、PUSCH(Physical Uplink Shared Channel,物理上行共享信道)、PRACH(Physical Random Access Channel,物理随机接入信道)。
(4)ALOHA协议,是随机访问或者竞争发送协议。随机访问意味着对任何站都无法预计其发送的时刻;竞争发送是指所有发送的站自由竞争信道的使用权。Aloha协议或称Aloha技术、Aloha网。分段(或时隙)ALOHA协议(Slotted ALOHA)这是对纯ALOHA协议的一个改进,思想是用时钟来统一用户的数据发送。改进之处在于,它把频道在时间上分段,每个传输点只能在一个分段的开始处进行传送。用户每次必须等到下一个时间片才能开始发送数据,每次传送的数据必须少于或者等于一个频道的一个时间分段。这样很大的减少了传输频道的冲突。从而避免了用户发送数据的随意性,减少了数据产生冲突的可能性,提高了信道的利用率。
下面结合附图对本申请的实施例进行描述。
请参见图2,图2是本发明实施例提供的一种通信系统架构图,该通信系统架构中包含了核心网(Evolved Packet Core,EPC)、网络设备和终端设备。作为示例而非限定,终端设备通过空中接口Uu接口由网络设备(如基站)接入,网络设备通过S1接口连接核心网完成数据的回传和前向传递。其中,
终端设备,是一种具有无线收发功能的设备。可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端、无线通信设备、UE代理或UE装置等。
网络设备,可以为5G通信系统中网络侧的网元,例如为gNB,还可以是WLAN中的接入点(ACCESS POINT,AP),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备(g Node B,简称“gNB”或“gNodeB”)或者未来演进的PLMN 网络中的网络设备等。还可以为NB-IoT系统中的eNodeB,进一步地可以为230MHz IoT系统中的eNodeB。
另外,在本发明实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
核心网,主要为该通信系统提供数据支持和相关服务。
本发明实施例可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、下一代通信系统如5G无线接入(New Radio Access Technology in 3GPP,NR)系统(简称5GNR系统),机器与机器通信(Machine to Machine,M2M)系统、NB-IoT通信系统或230MHz IoT通信系统等。
需要说明的是,由于本申请中的数据传输方法可以应用于上述各类通信系统,而在不同的通信系统中,对逻辑信道、传输信道和物理信道的划分以及定义可能存在差别。本申请中的部分实施例以LTE中对信道的划分方式进行阐述,但并不代表本申请只能应用于LTE系统,当本申请中的数据传输方法应用于NB-IoT通信系统时,例如,PDSCH对应的是NPDSCH,PUSCH对应的是NPUSCH,PDCCH对应的是NPDCCH等,本申请对此不作具体限定。综上,当本申请中的数据传输方法应用于不同的通信系统时,对应的信道的资源配置参数依据不同的通信系统作适应性调整。
可以理解的是,只要可以应用本申请中的任意一种数据传输方法的系统均属于本发明所保护和涵盖的范围。图2中的通信系统架构只是本发明实施例中的一种示例性的实施方式,本发明实施例中的通信系统架构包括但不仅限于以上通信系统架构。
下面结合本申请中提供的数据传输方法的实施例,对本申请中提出的技术问题进行分析和解决。
请参见图3,是本发明实施例提供的一种数据传输方法的流程示意图,可应用于上述图2中所述的通信系统,下面将结合附图3从终端设备和网络设备的交互侧进行描述,该方法可以包括以下步骤S301-步骤S303。
步骤S301:终端设备向网络设备发送RRC连接请求消息,所述RRC连接请求消息包括第一指示信息,所述第一指示信息用于指示所述终端设备的业务类型;网络设备接收终端设备发送的RRC连接建立请求。
具体地,在现有技术中,随机接入是在空闲模式或者连接模式下发起的用于建立终端设备与网络设备之间的无线连接的过程,主要是完成终端设备(如UE)取得与网络设备(如 基站)之间的上行同步和申请上行资源,即用于实现UE和网络的同步,解决冲突,分配资源(RNTI)和上行通信资源的分配。其中,RRC(Radio Resource Control)是指无线资源控制。如图4所示,图4为本发明实施例提供的一种终端设备随机接入流程示意图,包括如下5个步骤:
步骤1、UE发送随机接入前导码(Random Access preamble),可称之为MSG1;
步骤2、基站发送随机接入响应消息(Random Access Response),可称之为MSG2;
步骤3、UE发送RRC连接请求(RRC Connection Request),可称之为MSG3;
步骤4、UE接收RRC连接建立(RRC Connection Setup),可称之为MSG4;
步骤5、UE和基站之间无线资源控制连接完成(RRC Connection Complete),可称之为MSG5。
本发明实施例,通过在上述步骤3中的RRC连接请求消息即MSG3中携带第一指示信息,而该第一指示信息用于指示终端设备的业务类型,其中业务类型可以根据终端设备当前所需要进行的业务实时变化。例如,可以分为时延敏感业和时延不敏感业务。请参见表1。
表1
Figure PCTCN2018076044-appb-000001
表1中为230MHz IoT系统应用于电力系统中时的,所涉及到的相关业务类别,以及对应的时延要求。在230MHz IoT电力系统中,目前主要解决的是用电、配电和精准负控业务,对于这三类业务,具体的业务特征如下:
(1)用电,网络侧发起,上下行多次小包交互,流程繁琐,时延容忍度高。
(2)配电,(遥控、遥测、遥信、链路测试、通信对时)网络侧发起和终端设备侧发起混合,下行小包,上行数据包大小变化范围大,对时延有一定要求,容量要求较高。
(3)精准负控(遥控、遥测、遥信),遥控为下行业务,要求单向传输空口时延不超过33ms;遥测和遥信为上行业务,要求单向传输空口时延不超过50ms,。
从上表1可以看出,精准负荷控制业务可以划分为时延敏感业务,而用电信息采集业务等可以划分为时延不敏感业务。可以理解的是,也可以对终端设备的业务类型按照其它标准进行更多种类的划分,本申请对此不作具体限定。
步骤S302:所述网络设备向所述终端设备发送RRC连接建立消息,所述RRC连接建立消息包括第二指示信息,所述第二指示信息用于指示与所述业务类型所匹配的调度模式;所述终端设备接收网络设备发送的RRC连接建立消息。
具体地,通过在上述步骤4中的RRC连接建立消息即MSG3中携带第二指示信息,而该第二指示信息用于指示终端设备的调度模式,该调度模式与步骤S301中上报的业务类型 相匹配。例如调度模式为基于下行控制信息调度和无调度模式,其中时延敏感业务可以对应无调度模式,时延不敏感业务则可以对应下行控制信息调度模式。可以理解的是,网络设备还可以根据需求配置对应调度模式的相关参数,例如,时频资源参数、调制与编码方式参数等。
步骤S303:所述终端设备与所述网络设备根据所述调度模式进行数据传输。所述网络设备与所述终端设备根据所述调度模式进行数据传输。
具体地,终端设备和网络设备之间按照网络设备指示的调度方式进行数据的传输。具体地,可以包括以下几种方式。以下以方式一、方式二和方式三进行示例性说明:
方式一,业务类型为第一业务(例如时延不敏感业务),上下行基于DCI的调度模式:
在一种可能的实现方式中,当业务类型为第一业务,第一业务所匹配的调度模式为下行控制信息调度模式;终端设备与网络设备根据调度模式进行数据传输,具体为:网络设备根据向终端设备发送的下行控制信息与终端设备进行上行或下行数据的传输。终端设备根据网络设备发送的下行控制信息,与网络设备进行上行或下行数据的传输。其中
在上行传输中,若基于下行控制信息调度方式,MSG4中可以包括以下配置参数:
(1)PDCCH资源配置参数,例如载波资源位置、重复次数、开始偏置等;
(2)SR资源配置参数,例如载波资源位置、重复次数、周期、开始偏置、持续时间、SR preamble开始索引、结束索引等。
在下行传输中,若基于下行控制信息调度方式,MSG4中可以包括以下配置参数:
(1)PDCCH资源配置参数,例如载波资源位置、绑定载波数、重复次数、开始偏置。
方式二,业务类型为第二业务(例如时延敏感业务),上行为无调度模式。
在一种可能的实现方式中,当业务类型为第二业务,第二业务所匹配的调度模式为上行无调度模式;第二指示信息包括第一时频资源的信息和第一调制与编码方式的信息;终端设备与网络设备根据调度模式进行数据传输,具体为:终端设备根据第一时频资源的信息和第一调制与编码方式的信息,在第一时频资源上以第一调制与编码方式向网络设备发送上行数据。网络设备在第一时频资源上以第一调制与编码方式接收终端设备发送上行数据。其中,针对上述上行无调度模式,可以采用时隙ALOHA的方式来进行上行传输,以避免时隙冲突。其中,
在上行传输中,若基于无调度方式,MSG4中可以包括以下配置参数:
(1)PUSCH资源配置参数,例如载波资源位置、绑定载波数、MCS索引、绑定帧数、重复次数、周期、开始偏置、持续时间、竞争窗长等;
(2)PHICH资源配置参数,例如载波资源位置、重复次数、MCS索引等。
方式三,业务类型为第二业务(例如时延敏感业务),下行为无调度模式:
在一种可能的实现方式中,当业务类型为第二业务,第二业务所匹配的调度模式为下行无调度模式;第二指示信息包括第二时频资源的信息和第二调制与编码方式的信息;终端设备与网络设备根据调度模式进行数据传输,具体为:终端设备根据第二时频资源的信息和第二调制与编码方式的信息,在第二时频资源上以第二调制与编码方式接收网络设备发送的下行数据。网络设备在第二时频资源上以第二调制与编码方式向终端设备发送下行数据。
在下行传输中,若基于无调度方式,MSG4中可以包括以下配置参数:
(1)PDSCH资源配置参数,例如载波资源位置、绑定载波数、MCS索引、绑定帧数、重复次数、周期、开始偏置、持续时间等;
(2)PUCCH资源配置参数,例如载波资源位置、重复次数等。
可以理解的是,上述第一时频资源和第一调制与编码方式,以及第二时频资源和第二调制与编码方式也可以为终端设备和网络设备之间预先约定好的,即无需通过MSG4重新只是,即MSG4只通过第二指示具体的调度模式即可,而终端设备则根据MSG4中指示的具体调度模式,使用预先约定的时频资源以及调制与编码方式进行数据传输即可。
在一种可能的实现方式中,当业务类型为第二业务,第二指示信息用于指示第二业务所匹配的调度模式为上行无调度模式;终端设备接收网络设备广播的系统消息,系统消息包括第一时频资源的信息和第一调制与编码方式的信息;终端设备与网络设备根据调度模式进行数据传输,具体为:终端设备根据第一时频资源的信息和第一调制与编码方式的信息,在第一时频资源上以第一调制与编码方式向网络设备发送上行数据;对应的,网络设备在第一时频资源上以第一调制与编码方式接收终端设备发送上行数据。本发明实施例,当业务类型为第二业务,例如第二业务为时延敏感业务,那么网络设备可以通过指示该终端设备的调度模式为上行无调度模式,在该上行无调度模式下,终端设备可以根据网络设备发送的系统消息中指示的第一时频资源的信息和第一调制与编码方式的信息,在第一时频资源上以第一调制与编码方式向网络设备发送上行数据。如此一来,便节省了终端设备需要在接收到网络设备发送的下行控制信息之后才能发送上行数据的时间,提升了通信效率。
在一种可能的实现方式中,当业务类型为第二业务,第二指示信息用于指示第二业务所匹配的调度模式为下行无调度模式;终端设备接收网络设备广播的系统消息,系统消息包括第二时频资源的信息和第二调制与编码方式的信息;终端设备与网络设备根据调度模式进行数据传输,具体为:终端设备根据第二时频资源的信息和第二调制与编码方式的信息,在第二时频资源上以第二调制与编码方式接收网络设备发送的下行数据;对应的,网络设备在第二时频资源上以第二调制与编码方式向终端设备发送下行数据。本发明实施例,当业务类型为第二业务,例如第二业务为时延敏感业务,那么网络设备可以通过指示该终端设备的调度模式为下行无调度模式,在该下行无调度模式下,终端设备可以根据网络设备发送的系统消息中指示的第二时频资源的信息和第二调制与编码方式的信息,在第二时频资源上以第二调制与编码方式接收网络设备发送的下行数据。如此一来,便节省了终端设备需要在接收到网络设备发送的下行控制信息之后才能接收下行数据的时间,提升了通信效率。
在一种可能的实现方式中,RRC连接建立请求还包括终端设备支持的第一调制方式,第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;第一调制与编码方式的信息包括物理上行共享信道PUSCH的调制与编码方式MCS索引,其中,PUSCH的MCS索引对应的调制方式的阶数小于或者等于第一调制方式的阶数。其中,所述QPSK对应的阶数为2,所述16QAM对应的阶数为4,所述64QAM对应的阶数为6,所述256QAM 对应的阶数为8。例如,MSG3上报支持调制解调方式为QPSK时,表示只支持QPSK,当上报16QAM时,表示支持QPSK和16QAM,当上报64QAM时,表示支持QPSK,16QAM和64QAM。基站根据终端设备能力,基于上行无调度方式,在MSG4中配置PUSCH的MCS,以使得MCS对应的阶数不超过UE能力。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型以外,还可以指示该终端设备所能支持的调制方式,而网络设备则可以根据终端设备所支持的调制方式,在RRC连接建立消息中指示与终端设备能力匹配的PUSCH的MCS索引,以便于根据终端设备的能力配置上行传输的相关参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,RRC连接建立请求还包括终端设备支持的信道绑定最大个数M;第一时频资源的信息包括PUSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。例如,MSG3上报支持最大信道绑定数,信道绑定数代表能同时接收的信道数;基站根据终端设备能力,基于上行无调度方式,在MSG4中配置PUSCH的绑定信道数,不超过UE能力。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型,还指示该终端设备所支持的信道绑定最大个数M,而网络设备则可以根据终端设备的能力在RRC连接建立消息中的第一时频资源的信息中包括PUSCH的信道绑定个数N,以便于根据终端设备的能力配置上行传输的相关参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,RRC连接建立请求还包括终端设备支持的射频带宽;第一时频资源的信息包括PUSCH的跳频带宽,其中,跳频带宽的最大值小于或者等于射频带宽的值。例如,MSG3上报支持终端设备射频支持的带宽,例如支持180KHz,1MHz,12MHz;基站根据终端设备能力,基于上行无调度方式下,在终端设备支持信道绑定并且系统支持跳频时,在MSG4中配置PUSCH的跳频位图bitmap,确保任何时刻,信道绑定的任意两个载波位置不超过终端设备支持的带宽能力。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型,还指示该终端设备所支持的射频带宽,而网络设备则可以根据终端设备的能力在RRC连接建立消息中的第一时频资源的信息中包括PUSCH的跳频带宽,以便于根据终端设备的能力配置上行传输的相关参数。
结合上述第一方面或第二方面中的任意一种实现方式,在一种可能的实现方式中,RRC连接建立请求还包括终端设备支持的第一调制方式,第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;第二调制与编码方式的信息包括物理下行共享信道PDSCH的调制与编码策略MCS索引,其中,PDSCH的MCS索引对应的调制方式的阶数小于或者等于第一调制方式的阶数。其中,所述QPSK对应的阶数为2,所述16QAM对应的阶数为4,所述64QAM对应的阶数为6,所述256QAM对应的阶数为8。例如,MSG3上报支持调制解调方式为QPSK时,表示只支持QPSK,当上报16QAM时,表示支持QPSK和16QAM,当上报64QAM时,表示支持QPSK,16QAM和64QAM。基站根据终端设备能力,基于下行无调度方式,在MSG4中配置PDSCH的MCS,以使得MCS对应的阶数不超过UE能力。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型以外,还可以指示该终端设备所能支持的调制方式,而网络设备则可以根据终端设 备所支持的调制方式,在RRC连接建立消息中指示与终端设备能力匹配的PDSCH的MCS索引,以便于根据终端设备的能力配置下行传输的相关参数。
在一种可能的实现方式中,RRC连接建立请求还包括终端设备支持的信道绑定最大个数M;第二时频资源的信息包括PDSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。例如,MSG3上报支持最大信道绑定数,信道绑定数代表能同时接收的信道数;基站根据终端设备能力,基于下行无调度方式,在MSG4中配置PDSCH的绑定信道数,不超过UE能力。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型,还指示该终端设备所支持的信道绑定最大个数M,而网络设备则可以根据终端设备的能力在RRC连接建立消息中的第一时频资源的信息中包括PDSCH的信道绑定个数N,以便于根据终端设备的能力配置下行传输的相关参数。
在一种可能的实现方式中,RRC连接建立请求还包括终端设备支持的射频带宽;第二时频资源的信息包括PDSCH的跳频带宽,其中,跳频带宽的最大值小于或者等于射频带宽的值。例如,MSG3上报支持终端设备射频支持的带宽,例如支持180KHz,1MHz,12MHz;基站根据终端设备能力,基于下行无调度方式下,在终端设备支持信道绑定并且系统支持跳频时,在MSG4中配置PDSCH的跳频位图bitmap,确保任何时刻,信道绑定的任意两个载波位置不超过终端设备支持的带宽能力。本发明实施例,终端设备在RRC连接建立请求中除了指示终端设备的业务类型,还指示该终端设备所支持的射频带宽,而网络设备则可以根据终端设备的能力在RRC连接建立消息中的第一时频资源的信息中包括PDSCH的跳频带宽,以便于根据终端设备的能力配置下行传输的相关参数。
在一种可能的实现方式中,业务类型包括第一业务和第二业务,第二业务的时延要求高于第一业务。本发明实施例,通过将终端设备侧的业务类型划分为时延要求高的业务和时延要求不高的业务,以针对时延要求不同的业务匹配不同的调度模式进行数据传输。例如第一业务对应上述方式一中的上下行基于下行控制信息的调度,第二业务可以对应方式二和/在一种可能的实现方式中,当业务类型为第二业务,RRC连接建立消息包括物理上行共享信道PUSCH资源配置参数和物理HARQ指示信道PHICH资源配置参数。本发明实施例,当业务类型为第二业务,对应的调度模式可以为上行无调度模式,则RRC连接建立消息中包含了上行传输的相关配置参数。
在一种可能的实现方式中,当业务类型为第二业务,RRC连接建立消息包括物理下行共享信道PDSCH资源配置信息和物理上行控制信道PUCCH资源配置信息。本发明实施例,当业务类型为第二业务,对应的调度模式可以为下行无调度模式,则RRC连接建立消息中包含了下行传输的相关配置参数。
在一种可能的实现方式中,当业务类型为第一业务;RRC连接建立消息包括下行物理控制信道PDCCH配置参数和上行调度请求(Scheduling Request,SR)配置参数。本发明实施例,当业务类型为第一业务,对应的调度模式可以为上行调度模式,则RRC连接建立消息中包含了上行调度的相关配置参数。
在一种可能的实现方式中,当业务类型为第一业务;RRC连接建立消息包下行物理控制信道PDCCH配置参数。本发明实施例,当业务类型为第一业务,对应的调度模式可以为下行调度模式,则RRC连接建立消息中包含了下行调度的相关配置参数。
可以理解的是,上述上行和下行的调度模式,可以根据终端设备的实际业务需求相互组合,网络设备侧可以在MSG4中同时指示上下行的调度模式,也可以只指示上行或者下行的调度模式。如下表2所示,传输模式(Transmission Mode,TM)对应的调度模式可以分将上行和下行分开指示,也可以根据终端设备的业务类型进行组合指示,本申请对此不作具限定。
表2
传输模式 下行数据传输 上行数据传输 调度请求
TM1 基于PDCCH调度 基于PDCCH调度 基于Preamble
TM2 无调度 时隙ALOHA 时隙ALOHA
TM3 基于PDCCH调度 时隙ALOHA 时隙ALOHA
TM4 无调度 基于PDCCH调度 基于Preamble
本发明实施例,通过在终端设备侧的RRC连接请求消息中携带该终端设备的需要进行数据传输的业务类型,例如时延敏感业务和时延不敏感业务,网络设备侧再根据终端设备上报的业务类型,在RRC连接建立消息中携带与该业务类型匹配的调度模式,以用于终端设备根据该调度模式进行数据传输,即根据不同的业务类型匹配不同的调度模式,更加灵活,提升通信效率。在终端设备的业务类型为时延敏感业务时,可以进一步的减少时延,提高数据传输效率。
上述详细阐述了本发明实施例的方法,下面提供了本发明实施例的相关装置。
请参见图5,图5是本发明实施例提供的一种终端设备的结构示意图,该终端设备10可以包括发送单元101、接收单元102和处理单元103,其中,各个单元的详细描述如下。
发送单元101,用于终端设备向网络设备发送RRC连接请求消息,所述RRC连接请求消息包括第一指示信息,所述第一指示信息用于指示所述终端设备的业务类型;
接收单元102,用于接收网络设备发送的RRC连接建立消息,所述RRC连接建立消息包括第二指示信息,所述第二指示信息用于指示与所述业务类型所匹配的调度模式;
处理单元103,用于与所述网络设备根据所述调度模式进行数据传输。
在一种可能的实现方式中,当所述业务类型为第一业务,所述第一业务所匹配的调度模式为下行控制信息调度模式;处理单元103,具体用于:根据所述网络设备发送的下行控制信息,与所述网络设备进行上行或下行数据的传输。
在一种可能的实现方式中,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为上行无调度模式;所述第二指示信息包括第一时频资源的信息和第一调制与编码方式的信息;处理单元103,具体用于:根据所述第一时频资源的信息和所述第一调制与编码方式的信息,在所述第一时频资源上以所述第一调制与编码方式向所述网络设备发送上行数据。
在一种可能的实现方式中,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为下行无调度模式;所述第二指示信息包括第二时频资源的信息和第二调制与编码方式的信息;处理单元103,具体用于:根据所述第二时频资源的信息和所述第二调制与编码方式的信息,在所述第二时频资源上以所述第二调制与编码方式接收所述网络设备发送 的下行数据。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的第一调制方式,所述第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;所述第一调制与编码方式的信息包括物理上行共享信道PUSCH的调制与编码方式MCS索引,其中,所述PUSCH的MCS索引对应的调制方式的阶数小于或者等于所述第一调制方式的阶数。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的信道绑定最大个数M;所述第一时频资源的信息包括PUSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的射频带宽;所述第一时频资源的信息包括PUSCH的跳频带宽,其中,所述跳频带宽的最大值小于或者等于所述射频带宽的值。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的第一调制方式,所述第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;所述第二调制与编码方式的信息包括物理下行共享信道PDSCH的调制与编码方式MCS索引,其中,所述PDSCH的MCS索引对应的调制方式的阶数小于或者等于所述第一调制方式的阶数。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的信道绑定最大个数M;所述第二时频资源的信息包括PDSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的射频带宽;所述第二时频资源的信息包括PDSCH的跳频带宽,其中,所述跳频带宽的最大值小于或者等于所述射频带宽的值。
需要说明的是,本发明实施例中所描述的终端设备10中各功能单元的功能可参见上述图1-图4中所述的方法实施例的相关描述,此处不再赘述。
请参见图6,图6是本发明实施例提供的一种网络设备的结构示意图,该网络设备10可以包括接收单元201、发送单元202和处理单元203,其中,各个单元的详细描述如下。
接收单元201,用于接收终端设备发送的RRC连接建立请求,所述RRC连接建立请求包括第一指示信息,所述第一指示信息用于指示所述终端设备的业务类型;
发送单元202,用于向所述终端设备发送RRC连接建立消息,所述RRC连接建立消息包括第二指示信息,所述第二指示信息用于指示与所述业务类型所匹配的调度模式;
处理单元203,用于与所述终端设备根据所述调度模式进行数据传输。
在一种可能的实现方式中,当所述业务类型为第一业务,所述第一业务所匹配的调度模式为下行控制信息调度模式;处理单元203,具体用于:
根据向所述终端设备发送的下行控制信息,与所述终端设备进行上行或下行数据的传 输。
在一种可能的实现方式中,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为上行无调度模式;所述第二指示信息包括第一时频资源的信息和第一调制与编码方式的信息;处理单元203,具体用于:
在所述第一时频资源上以所述第一调制与编码方式接收所述终端设备发送上行数据。
在一种可能的实现方式中,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为下行无调度模式;所述第二指示信息包括第二时频资源的信息和第二调制与编码方式的信息;处理单元203,具体用于:
所述网络设备在所述第二时频资源上以所述第二调制与编码方式向所述终端设备发送下行数据。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的第一调制方式,所述第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;
所述第一调制与编码方式的信息包括物理上行共享信道PUSCH的调制与编码方式MCS索引,其中,所述PUSCH的MCS索引对应的调制方式的阶数小于或者等于所述第一调制方式的阶数。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的信道绑定最大个数M;所述第一时频资源的信息包括PUSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的射频带宽;所述第一时频资源的信息包括PUSCH的跳频带宽,其中,所述跳频带宽的最大值小于或者等于所述射频带宽的值。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的第一调制方式,所述第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;
所述第二调制与编码方式的信息包括物理下行共享信道PDSCH的调制与编码策略MCS索引,其中,所述PDSCH的MCS索引对应的调制方式的阶数小于或者等于所述第一调制方式的阶数。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的信道绑定最大个数M;所述第二时频资源的信息包括PDSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。
在一种可能的实现方式中,所述RRC连接建立请求还包括所述终端设备支持的射频带宽;所述第二时频资源的信息包括PDSCH的跳频带宽,其中,所述跳频带宽的最大值小于或者等于所述射频带宽的值。
需要说明的是,本发明实施例中所描述的网络设备20中各功能单元的功能可参见图1-图4中所述的方法实施例的相关描述,此处不再赘述。
图7是本发明实施例提供的一种简化的终端设备结构示意图。便于理解和图示方便, 图7中,终端设备以手机作为例子。如图7所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等,例如用于控制手机执行上述图3中关于终端设备所执行的步骤,具体可参见上述相关部分的描述。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本发明实施例对此不做限制。
在本发明实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图7所示,终端设备包括收发单元301和处理单元302。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。处理单元可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理单元还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。可选的,可以将收发单元301中用于实现接收功能的器件视为接收单元,将收发单元301中用于实现发送功能的器件视为发送单元,即收发单元301包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。当所述通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
图8是本发明实施例提供的一种简化的网络设备结构示意图。具体地,例如为基站。基站包括401部分以及402部分。401部分主要用于射频信号的收发以及射频信号与基带信号的转换;402部分主要用于基带处理,对基站进行控制等。401部分通常可以称为收发单元、收发机、收发电路、或者收发器等。402部分通常是基站的控制中心,通常可以称 为处理单元,用于控制基站执行上述图3中关于网络设备所执行的步骤。具体可参见上述相关部分的描述。
401部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将401部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即401部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
402部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
所述通信装置可以为芯片,该芯片包括收发单元和处理单元。其中,收发单元可以是芯片的输入输出电路或通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。所述芯片可以应用于上述网络设备,并支持所述网络设备执行上述方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施例所要求保护的本申请过程中,本领域技术人员可理解并实现所述公开实施例的其他变化。
本发明实施例还提供一种芯片,该芯片包括通信接口与处理器,该处理器用于控制通信接口接收或发送信号,并用于处理通信接口接收到的信号或生成通信接口待发送的信号。
具体地,该处理器用于执行上述方法实施例提供的数据传输方法中终端设备侧的流程或步骤;或该处理器用于执行上述方法实施例提供的数据传输方法中网络设备侧的流程或步骤。
可选地,该芯片还包括存储模块,该存储模块存储有指令。该处理模块通过读取该存储模块存储的指令,来执行相关操作,以及控制该通信接口进行相关的收发操作。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的 先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:只读存储器(read-only memory,ROM)或随机存储存储器(random access memory,RAM)、磁碟或者光盘等各种可存储程序代码的介质。

Claims (29)

  1. 一种数据传输方法,其特征在于,包括:
    终端设备向网络设备发送RRC连接请求消息,所述RRC连接请求消息包括第一指示信息,所述第一指示信息用于指示所述终端设备的业务类型;
    所述终端设备接收网络设备发送的RRC连接建立消息,所述RRC连接建立消息包括第二指示信息,所述第二指示信息用于指示与所述业务类型所匹配的调度模式;
    所述终端设备与所述网络设备根据所述调度模式进行数据传输。
  2. 如权利要求1所述的方法,其特征在于,当所述业务类型为第一业务,所述第一业务所匹配的调度模式为下行控制信息调度模式;所述终端设备与所述网络设备根据所述调度模式进行数据传输,包括:
    所述终端设备根据所述网络设备发送的下行控制信息,与所述网络设备进行上行或下行数据的传输。
  3. 如权利要求1或2所述的方法,其特征在于,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为上行无调度模式;所述第二指示信息包括第一时频资源的信息和第一调制与编码方式的信息;所述终端设备与所述网络设备根据所述调度模式进行数据传输,包括:
    所述终端设备根据所述第一时频资源的信息和所述第一调制与编码方式的信息,在所述第一时频资源上以所述第一调制与编码方式向所述网络设备发送上行数据。
  4. 如权利要求1-3任意一项所述的方法,其特征在于,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为下行无调度模式;所述第二指示信息包括第二时频资源的信息和第二调制与编码方式的信息;所述终端设备与所述网络设备根据所述调度模式进行数据传输,包括:
    所述终端设备根据所述第二时频资源的信息和所述第二调制与编码方式的信息,在所述第二时频资源上以所述第二调制与编码方式接收所述网络设备发送的下行数据。
  5. 一种数据传输方法,其特征在于,包括:
    网络设备接收终端设备发送的RRC连接建立请求,所述RRC连接建立请求包括第一指示信息,所述第一指示信息用于指示所述终端设备的业务类型;
    所述网络设备向所述终端设备发送RRC连接建立消息,所述RRC连接建立消息包括第二指示信息,所述第二指示信息用于指示与所述业务类型所匹配的调度模式;
    所述网络设备与所述终端设备根据所述调度模式进行数据传输。
  6. 如权利要求5所述的方法,其特征在于,当所述业务类型为第一业务,所述第一业务所匹配的调度模式为下行控制信息调度模式;所述网络设备与所述终端设备根据所述调 度模式进行数据传输,包括:
    所述网络设备根据向所述终端设备发送的下行控制信息,与所述终端设备进行上行或下行数据的传输。
  7. 如权利要求5或6所述的方法,其特征在于,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为上行无调度模式;所述第二指示信息包括第一时频资源的信息和第一调制与编码方式的信息;所述网络设备与所述终端设备根据所述调度模式进行数据传输,包括:
    所述网络设备在所述第一时频资源上以所述第一调制与编码方式接收所述终端设备发送上行数据。
  8. 如权利要求5-7任意一项所述的方法,其特征在于,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为下行无调度模式;所述第二指示信息包括第二时频资源的信息和第二调制与编码方式的信息;所述网络设备与所述终端设备根据所述调度模式进行数据传输,包括:
    所述网络设备在所述第二时频资源上以所述第二调制与编码方式向所述终端设备发送下行数据。
  9. 如权利要求3或7所述的方法,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的第一调制方式,所述第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;
    所述第一调制与编码方式的信息包括物理上行共享信道PUSCH的调制与编码方式MCS索引,其中,所述PUSCH的MCS索引对应的调制方式的阶数小于或者等于所述第一调制方式的阶数。
  10. 如权利要求3或7或9所述的方法,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的信道绑定最大个数M;所述第一时频资源的信息包括PUSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。
  11. 如权利要求3或7或9或10所述的方法,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的射频带宽;所述第一时频资源的信息包括PUSCH的跳频带宽,其中,所述跳频带宽的最大值小于或者等于所述射频带宽的值。
  12. 如权利要求4或8所述的方法,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的第一调制方式,所述第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;
    所述第二调制与编码方式的信息包括物理下行共享信道PDSCH的调制与编码策略MCS索引,其中,所述PDSCH的MCS索引对应的调制方式的阶数小于或者等于所述第一调制方式的阶数。
  13. 如权利要求4或8或12所述的方法,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的信道绑定最大个数M;所述第二时频资源的信息包括PDSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。
  14. 如权利要求4或8或12或13所述的方法,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的射频带宽;所述第二时频资源的信息包括PDSCH的跳频带宽,其中,所述跳频带宽的最大值小于或者等于所述射频带宽的值。
  15. 一种终端设备,其特征在于,包括:
    发送单元,用于终端设备向网络设备发送RRC连接请求消息,所述RRC连接请求消息包括第一指示信息,所述第一指示信息用于指示所述终端设备的业务类型;
    接收单元,用于接收网络设备发送的RRC连接建立消息,所述RRC连接建立消息包括第二指示信息,所述第二指示信息用于指示与所述业务类型所匹配的调度模式;
    处理单元,用于与所述网络设备根据所述调度模式进行数据传输。
  16. 如权利要求15所述的终端设备,其特征在于,当所述业务类型为第一业务,所述第一业务所匹配的调度模式为下行控制信息调度模式;所述处理单元,具体用于:
    根据所述网络设备发送的下行控制信息,与所述网络设备进行上行或下行数据的传输。
  17. 如权利要求15或16所述的终端设备,其特征在于,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为上行无调度模式;所述第二指示信息包括第一时频资源的信息和第一调制与编码方式的信息;所述处理单元,具体用于:
    根据所述第一时频资源的信息和所述第一调制与编码方式的信息,在所述第一时频资源上以所述第一调制与编码方式向所述网络设备发送上行数据。
  18. 如权利要求15-17任意一项所述的终端设备,其特征在于,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为下行无调度模式;所述第二指示信息包括第二时频资源的信息和第二调制与编码方式的信息;所述处理单元,具体用于:
    根据所述第二时频资源的信息和所述第二调制与编码方式的信息,在所述第二时频资源上以所述第二调制与编码方式接收所述网络设备发送的下行数据。
  19. 一种网络设备,其特征在于,包括:
    接收单元,用于接收终端设备发送的RRC连接建立请求,所述RRC连接建立请求包括第一指示信息,所述第一指示信息用于指示所述终端设备的业务类型;
    发送单元,用于向所述终端设备发送RRC连接建立消息,所述RRC连接建立消息包括第二指示信息,所述第二指示信息用于指示与所述业务类型所匹配的调度模式;
    处理单元,用于与所述终端设备根据所述调度模式进行数据传输。
  20. 如权利要求19所述的网络设备,其特征在于,当所述业务类型为第一业务,所述第一业务所匹配的调度模式为下行控制信息调度模式;所述处理单元,具体用于:
    根据向所述终端设备发送的下行控制信息,与所述终端设备进行上行或下行数据的传输。
  21. 如权利要求19或20所述的网络设备,其特征在于,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为上行无调度模式;所述第二指示信息包括第一时频资源的信息和第一调制与编码方式的信息;所述处理单元,具体用于:
    在所述第一时频资源上以所述第一调制与编码方式接收所述终端设备发送上行数据。
  22. 如权利要求19-21任意一项所述的网络设备,其特征在于,当所述业务类型为第二业务,所述第二业务所匹配的调度模式为下行无调度模式;所述第二指示信息包括第二时频资源的信息和第二调制与编码方式的信息;所述处理单元,具体用于:
    所述网络设备在所述第二时频资源上以所述第二调制与编码方式向所述终端设备发送下行数据。
  23. 如权利要求17所述的终端设备或21所述的网络设备,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的第一调制方式,所述第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;
    所述第一调制与编码方式的信息包括物理上行共享信道PUSCH的调制与编码方式MCS索引,其中,所述PUSCH的MCS索引对应的调制方式的阶数小于或者等于所述第一调制方式的阶数。
  24. 如权利要求17或23所述的终端设备,或21或23所述的网络设备,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的信道绑定最大个数M;所述第一时频资源的信息包括PUSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。
  25. 如权利要求17或23或24所述的终端设备,或21或23或24所述的网络设备,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的射频带宽;所述第一时频资源的信息包括PUSCH的跳频带宽,其中,所述跳频带宽的最大值小于或者等于所述射频带宽的值。
  26. 如权利要求18所述的终端设备,或22所述的网络设备,其特征在于,所述RRC 连接建立请求还包括所述终端设备支持的第一调制方式,所述第一调制方式包括二进制相移键控BPSK、四相相移键控QPSK、16正交幅相调制16QAM、64正交幅相调制64QAM和256正交幅相调制256QAM中的任意一种;
    所述第二调制与编码方式的信息包括物理下行共享信道PDSCH的调制与编码策略MCS索引,其中,所述PDSCH的MCS索引对应的调制方式的阶数小于或者等于所述第一调制方式的阶数。
  27. 如权利要求18或26所述的终端设备,或22或26所述的网络设备,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的信道绑定最大个数M;所述第二时频资源的信息包括PDSCH的信道绑定个数N,其中,M和N均为正整数,N小于或者等于M。
  28. 如权利要求18或26或27所述的终端设备,或22或26或27所述的网络设备,其特征在于,所述RRC连接建立请求还包括所述终端设备支持的射频带宽;所述第二时频资源的信息包括PDSCH的跳频带宽,其中,所述跳频带宽的最大值小于或者等于所述射频带宽的值。
  29. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,权利要求1-14中任一所述的方法得以实现。
PCT/CN2018/076044 2018-02-09 2018-02-09 一种数据传输方法及相关设备 WO2019153267A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880088319.0A CN111670602B (zh) 2018-02-09 2018-02-09 一种数据传输方法及相关设备
PCT/CN2018/076044 WO2019153267A1 (zh) 2018-02-09 2018-02-09 一种数据传输方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076044 WO2019153267A1 (zh) 2018-02-09 2018-02-09 一种数据传输方法及相关设备

Publications (1)

Publication Number Publication Date
WO2019153267A1 true WO2019153267A1 (zh) 2019-08-15

Family

ID=67547805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076044 WO2019153267A1 (zh) 2018-02-09 2018-02-09 一种数据传输方法及相关设备

Country Status (2)

Country Link
CN (1) CN111670602B (zh)
WO (1) WO2019153267A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051690A1 (zh) * 2021-09-30 2023-04-06 大唐移动通信设备有限公司 接入方法、装置、终端设备及网络设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978445A (zh) * 2021-02-27 2022-08-30 上海华为技术有限公司 一种数据传输方法及其设备
CN115173989B (zh) * 2021-04-02 2024-06-04 华为技术有限公司 数据传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158901A (zh) * 2011-02-16 2011-08-17 大唐移动通信设备有限公司 网络侧进行终端操作配置的方法及网络侧装置
CN102843650A (zh) * 2011-06-21 2012-12-26 普天信息技术研究院有限公司 一种实现视频调度的方法
WO2014134785A1 (zh) * 2013-03-05 2014-09-12 华为技术有限公司 状态切换的方法、装置和系统
US20150305056A1 (en) * 2014-04-18 2015-10-22 Apple Inc. Deterministic RRC Connections

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8005481B2 (en) * 2005-05-26 2011-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Uplink scheduling in a mobile telecommunication network
CN106792906B (zh) * 2016-12-09 2018-08-14 展讯通信(上海)有限公司 一种用户设备及其数据块传输的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158901A (zh) * 2011-02-16 2011-08-17 大唐移动通信设备有限公司 网络侧进行终端操作配置的方法及网络侧装置
CN102843650A (zh) * 2011-06-21 2012-12-26 普天信息技术研究院有限公司 一种实现视频调度的方法
WO2014134785A1 (zh) * 2013-03-05 2014-09-12 华为技术有限公司 状态切换的方法、装置和系统
US20150305056A1 (en) * 2014-04-18 2015-10-22 Apple Inc. Deterministic RRC Connections

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051690A1 (zh) * 2021-09-30 2023-04-06 大唐移动通信设备有限公司 接入方法、装置、终端设备及网络设备

Also Published As

Publication number Publication date
CN111670602A (zh) 2020-09-15
CN111670602B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
AU2021215138B2 (en) Method for configuring transmission direction of time-frequency resource, and apparatus
CN111345081B (zh) 通信方法和通信设备
EP3565326B1 (en) Communication method, and network device
US11665736B2 (en) Control channel position determining method, device, and processor-readable storage medium
EP3787211A1 (en) Communication method and communication apparatus
JP2023537067A (ja) 周波数領域リソース決定方法、デバイス、及び記憶媒体
JP7418447B2 (ja) ユーザ機器、基地局及び方法
CN113711681B (zh) 物理上行链路共享信道时机聚合
WO2018228537A1 (zh) 信息发送、接收方法及装置
US20230179374A1 (en) Channel transmission method, terminal device, and network device
CN112005568A (zh) 用于通信系统的动态下行链路监测技术
WO2019153267A1 (zh) 一种数据传输方法及相关设备
CN115668817A (zh) 针对杂扰回波检测的自干扰测量
JP2024511588A (ja) ページング早期指示
CN113615104B (zh) 对于非地面网络系统的闭环频率校正
JP2023500344A (ja) 情報表示方法及び装置
CN115699621A (zh) 利用功率斜升的迭代式自干扰测量
CN114071745A (zh) 一种无线接入的方法以及装置
WO2020063757A1 (en) Apparatus and method for beam failure recovery in secondary cell
US20230328707A1 (en) Resource determination method, terminal device, and network device
US20230354415A1 (en) Channel access method and device
WO2019085911A1 (en) Window-based scheduling method, device and computer readable medium
TW202021322A (zh) 無線通訊的方法、發送節點和接收節點
WO2023066028A1 (zh) 一种通信方法及装置
WO2023151258A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904606

Country of ref document: EP

Kind code of ref document: A1