WO2019153162A1 - Mems传感器线阵、触诊探头及其制造方法 - Google Patents

Mems传感器线阵、触诊探头及其制造方法 Download PDF

Info

Publication number
WO2019153162A1
WO2019153162A1 PCT/CN2018/075706 CN2018075706W WO2019153162A1 WO 2019153162 A1 WO2019153162 A1 WO 2019153162A1 CN 2018075706 W CN2018075706 W CN 2018075706W WO 2019153162 A1 WO2019153162 A1 WO 2019153162A1
Authority
WO
WIPO (PCT)
Prior art keywords
mems sensor
electrode pad
upper electrode
lower electrode
hole
Prior art date
Application number
PCT/CN2018/075706
Other languages
English (en)
French (fr)
Inventor
宋军华
王洪超
Original Assignee
北京先通康桥医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京先通康桥医药科技有限公司 filed Critical 北京先通康桥医药科技有限公司
Publication of WO2019153162A1 publication Critical patent/WO2019153162A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0053Detecting, measuring or recording by applying mechanical forces or stimuli by applying pressure, e.g. compression, indentation, palpation, grasping, gauging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0027Structures for transforming mechanical energy, e.g. potential energy of a spring into translation, sound into translation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00166Electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors

Definitions

  • the present invention relates to the field of medical device technology, and in particular to a MEMS sensor line array, a palpation probe and a method of manufacturing the same.
  • breast cancer in China has a high incidence of morbidity, high mortality, high treatment difficulty, and early onset of disease, but compared with other tumors, early diagnosis and treatment of breast cancer is better, such as nearly 100% in situ cancer. cure.
  • the main methods of breast cancer examination include clinical palpation, mammography, ultrasound, nuclear magnetic, and milk ductoscopy. They all have certain limitations.
  • Breast palpation imaging technology was proposed in the 1990s, and its corresponding medical device products were launched in 2003. This product has the advantages of complete non-invasiveness, high sensitivity, convenient operation, easy interpretation, and has a high market prospect. Social value.
  • the performance of the palpation probe is the key to palpation imaging of the breast.
  • the palpation probe consists of a number of pressure sensors arranged in the longitudinal and lateral directions. After the probe is pressed against the surface of the breast, the pressure sensors in the array will output different pressure signals due to the different elastic modulus of the corresponding tissue. After the signal is calculated, the hardness, size, shape and other information of the mass can be obtained to assist in clinical diagnosis.
  • the conventional pressure sensor linear array structure is mainly composed of upper and lower plates and an elastic silica gel therein.
  • the silica gel is an insulating dielectric of a capacitor, and the elastic property of the silica gel causes the sensor to make a change in the polarity of the external force, resulting in a change in capacitance. Due to the manufacturing process, the consistency of different sensors in the line array is poor, the measurement result is greatly affected by temperature, and the silica gel cannot rebound or rebound after long time use.
  • MEMS Micro-Electro-Mechanical System
  • the object of the present invention is to provide a MEMS sensor line array, a palpation probe and a manufacturing method thereof, so that the palpation probe has the advantages of compact structure, simple process and high reliability.
  • a MEMS sensor line array comprising a connection portion and a plurality of MEMS sensor units, the connection portion and each of the MEMS sensor units being sequentially arranged; the plurality of MEMS sensor units sharing an upper electrode; the connection The upper surface of the portion is provided with a conductive material electrically connected to the upper electrode, the lower surface of the connecting portion is provided with an upper electrode pad, and the connecting portion has a portion penetrating the upper surface and the lower surface of the connecting portion A through hole, the conductive material and the upper electrode pad are electrically connected by a first communication layer disposed on a hole wall of the first through hole.
  • the MEMS sensor unit includes an upper electrode, an insulating layer, an elastic film layer, a lower electrode and a base layer which are sequentially stacked, wherein: the lower electrode is located on an upper surface of the base layer, and the base layer a lower electrode pad is disposed on the lower surface, the base layer is provided with a second through hole penetrating the base layer, and the lower electrode and the lower electrode pad pass through a hole disposed in the second through hole
  • the second communication layer on the wall is electrically connected.
  • a cavity is disposed between the elastic film layer and the base layer, and the cavity includes a plurality of circular cavities communicating with each other;
  • the lower electrode includes a plurality of circular lower electrode pads electrically connected to each other, each of the circular cavities corresponding to a lower electrode pad, and the circular cavity and the corresponding lower electrode pad are in the The center of the projection on the substrate layer coincides;
  • the upper electrode includes a plurality of circular upper electrode pads electrically connected to each other, each of the circular cavities corresponding to one upper electrode pad, the circular cavity and the corresponding upper electrode pad The centers of the projections on the substrate layer coincide.
  • the height of the cavity is 1 ⁇ m; and/or the diameter of the circular cavity is 50 ⁇ m-100 ⁇ m; and/or the lower electrode pad is circular, the circular cavity
  • the ratio of the diameter to the diameter of the lower electrode pad is greater than 110%; and/or the height of the lower electrode is 0.5 ⁇ m; and/or the height of the upper electrode is 0.5 ⁇ m.
  • the second through hole is a truncated-type through hole
  • the through hole port on the upper surface of the base layer has a diameter of 150 ⁇ m
  • the through hole port on the lower surface of the base layer has a diameter of 400 ⁇ m.
  • the material of the base layer is glass; and/or the material of the elastic film layer is silicon.
  • a palpation probe comprising a probe base, a circuit board, a cable electrically connected to the circuit board, and a plurality of MEMS sensor line arrays in the above technical solutions, wherein: the circuit board is disposed in the a probe base; the circuit board is provided with a first solder joint group corresponding to a lower electrode pad of the MEMS sensor linear array, and a second corresponding to an upper electrode pad of the MEMS sensor linear array a solder joint group; the upper electrode pad and the lower electrode pad are correspondingly connected to the first solder joint group and the second solder joint group.
  • the upper electrode pad and the lower electrode pad are connected to the circuit board through the pad ball or conductive paste.
  • a method of fabricating a MEMS sensor line array comprising a connection portion and a MEMS sensor line array of a plurality of MEMS sensor units, the plurality of MEMS sensor units sharing an upper electrode; the method comprising: at the connection a first through hole is formed between the upper surface of the portion and the lower surface of the upper electrode pad; an insulating material and a conductive material are sequentially deposited on the upper surface of the connecting portion and the first through hole, the conductive material And the upper electrode pad is electrically connected through a first communication layer formed on a hole wall of the first through hole.
  • the method further includes: forming a through substrate on the base layer a second via hole of the bottom layer; a lower electrode of the MEMS sensor is formed on an upper surface of the base layer, the lower electrode includes a plurality of lower electrode electrode sheets electrically connected to each other; and a lower surface of the base layer is formed
  • the upper electrode pad and the lower electrode pad of the MEMS sensor are electrically connected by a second communication layer disposed on a hole wall of the second through hole.
  • the method further includes: forming an elasticity having a cavity inside the base layer a film layer, the cavity comprising a plurality of circular cavities communicating with each other, each of the circular cavities corresponding to a lower electrode pad, the circular cavity and the corresponding lower electrode pad being at the base a center of the projection on the bottom layer coincides; a first through hole penetrating the elastic film layer and the base layer is formed on the elastic film layer and the base layer; on an upper surface of the elastic film layer and the An insulating material is sequentially deposited on the wall of the first through hole; a conductive material is deposited over the insulating material to form an upper electrode, and the conductive material and the upper electrode pad pass through a hole wall formed in the first through hole
  • the first connected layer is electrically connected.
  • the forming an elastic film layer having a cavity inside the base layer comprises: forming a cavity on a top silicon of a silicon wafer SOI silicon wafer on an insulating substrate; and the SOI silicon wafer Bonding to the substrate layer; removing the bottom silicon layer and the buried oxide layer of the silicon wafer on the insulating substrate after bonding with the substrate layer.
  • a manufacturing method of a palpation probe comprising a probe base, a circuit board, a cable electrically connected to the circuit board, and a MEMS sensor manufactured by the manufacturing method of the MEMS sensor line array in the above technical solutions a line array
  • the manufacturing method of the palpation probe comprising: fabricating a circuit board, the circuit board being provided with a first solder joint group corresponding to a lower electrode pad of the MEMS sensor line array, and the MEMS sensor a second solder joint group corresponding to the upper electrode pad of the line array; the upper electrode pad and the lower electrode pad are correspondingly bonded to the first solder joint group and the second solder joint by a conductive paste Or on the first pad group and the second pad group corresponding to the lower electrode pad by reflow soldering.
  • the MEMS sensor line array, the palpation probe and the manufacturing method thereof provided by the invention comprise a MEMS sensor line array comprising a connecting portion and a plurality of MEMS sensor units, the upper electrode pad of the lower surface of the connecting portion and the upper electrode of the MEMS sensor unit
  • the connection is such that when the upper electrode pad on the lower surface of the connecting portion is connected to the circuit board, the connecting line is not needed, the reliability of the probe caused by the breakage of the connecting line can be avoided, and the surface of the sensor line array caused by the connecting line is uneven.
  • the palpation probe has a compact package structure and a simple process, which improves the reliability of the palpation probe.
  • FIG. 1 is a schematic view of a MEMS sensor line array in Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a MEMS sensor line array in the first embodiment of the present invention
  • Figure 3 is a cross-sectional view showing a MEMS sensor unit in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a MEMS sensor unit according to Embodiment 1 of the present invention.
  • Figure 5 is an exploded view of the palpation probe in the second embodiment of the present invention.
  • FIG. 6 is a flow chart of a method for fabricating a MEMS sensor line array in Embodiment 3 of the present invention.
  • Fig. 7 is a flow chart showing the method of manufacturing the palpation probe in the fourth embodiment of the present invention.
  • the MEMS sensor line array provided by the embodiment of the present invention includes a connecting portion 110 and five MEMS sensor units 200, and the connecting portion 110 and the respective MEMS sensor units 200 are sequentially arranged; the five MEMS sensor units 200
  • One upper electrode 130 is shared; the upper surface of the connecting portion 110 is provided with a conductive material electrically connected to the upper electrode 130, and the lower surface of the connecting portion is provided with an upper electrode pad 111 having a top surface and a lower portion penetrating the connecting portion 110
  • the first through hole 112 of the surface, the conductive material and the upper electrode pad 111 are electrically connected through a first communication layer provided on the wall of the hole of the first through hole 112.
  • one MEMS sensor line array includes five MEMS sensor units, but in practical applications, it is not limited thereto.
  • the MEMS sensor is a pressure sensor.
  • the lower surface of the connection portion 200 is coplanar with the lower surface of the MEMS sensor array, at which time the upper electrode 130 of the MEMS sensor array is directed to the MEMS sensor array through the upper electrode pad 111.
  • the lower surface can be soldered to the same planar circuit board as the lower electrode of the MEMS sensor line array, eliminating the need for a connecting line, which can avoid the degradation of the probe reliability caused by the breakage of the connecting line, and the unevenness of the surface of the sensor line array caused by the connecting line. Appearing, the palpation probe has a compact package structure and simple process, which improves the reliability of the palpation probe.
  • the MEMS sensor unit includes an upper electrode 210, an insulating layer 220, an elastic film layer 230, a lower electrode 240, and a base layer 250 which are sequentially stacked, wherein the lower electrode 240 is located on the upper surface of the base layer 250.
  • the lower surface of the base layer 250 is provided with a lower electrode pad 260.
  • the base layer 250 is provided with a second through hole 270 penetrating the base layer 250.
  • the lower electrode 240 and the lower electrode pad 260 are disposed through the second through hole 270.
  • the second communication layer on the wall of the hole is electrically connected.
  • the material of the base layer 250 is glass, and the material of the elastic film layer 230 is silicon.
  • the height of the lower electrode 240 is 0.5 ⁇ m, and the height of the upper electrode 210 is 0.5 ⁇ m.
  • the second through hole 270 is a truncated hole type through hole, the through hole port on the upper surface of the base layer 250 has a diameter of 150 ⁇ m, and the through hole port on the lower surface of the base layer 250 has a diameter of 400 ⁇ m.
  • a cavity 280 is disposed between the elastic film layer 230 and the base layer 250; the lower electrode 240 includes a plurality of circular lower electrode pads electrically connected to each other, and the cavity includes a plurality of circular cavities communicating with each other.
  • the body 281 has a circular cavity 281 corresponding to a lower electrode pad, and the circular cavity 281 coincides with the center of the projection of the corresponding lower electrode pad on the substrate layer. As shown in FIG. 4, the number of the circular cavities 281 is nine, and at this time, the number of the lower electrode tabs included in each MEMS sensor unit is also nine.
  • the upper electrode 130 includes a plurality of circular upper electrode electrode pieces electrically connected to each other, each of the circular cavity bodies 281 corresponding to one upper electrode electrode piece, and the circular cavity body 281 and the corresponding upper electrode electrode piece are on the base layer The center of the projection on the top coincides.
  • the cavity 280 has a height of 1 ⁇ m, and the circular cavity 281 has a diameter of 50 ⁇ m to 100 ⁇ m.
  • the ratio of the diameter of the circular cavity 281 to the diameter of the lower electrode pad is greater than 110%, and the ratio of the diameter of the circular cavity 281 to the diameter of the upper electrode pad is greater than 110%.
  • the MEMS sensor line array provided by the invention comprises a connecting portion and a plurality of MEMS sensor units, wherein the upper electrode pad of the lower surface of the connecting portion is electrically connected with the upper electrode of the MEMS sensor unit, such that the upper electrode pad and the circuit located on the lower surface of the connecting portion
  • the palpation probe has a compact package structure, simple process, and improved touch. The reliability of the diagnostic probe.
  • the palpation probe provided by the embodiment of the present invention includes a probe base (not shown, the circuit board 500, the cable electrically connected to the circuit board 500, and the MEMS sensor line array in the first embodiment).
  • the circuit board 500 is disposed on the probe base; the circuit board 500 is provided with a first pad set 510 corresponding to the lower electrode pad of the MEMS sensor line array, and corresponding to the upper electrode pad of the MEMS sensor line array
  • the second pad group 520; the upper electrode pad 111 and the lower electrode pad 260 are correspondingly connected to the first pad group 510 and the second pad group 520.
  • the MEMS sensor line array in the first embodiment is formed by integrally forming a wafer on a wafer, and a plurality of MEMS sensor lines are arranged in parallel on the circuit board 500, and the circuit board 500 is a flexible circuit board.
  • the first pad set 510 of the circuit board 500 is connected to the upper electrode lead line 512, and the second pad set 520 is connected to the lower electrode lead line 522.
  • the upper electrode pad 111 and the lower electrode pad 260 and the circuit board may be connected by a pad ball or a conductive adhesive.
  • the MEMS sensor line array adopted by the palpation probe of the present invention comprises a connecting portion and a plurality of MEMS sensor units, and the upper electrode pad of the lower surface of the connecting portion is electrically connected to the upper electrode 130 of the MEMS sensor unit, so that the lower surface of the connecting portion is located
  • the connection line is not needed, the reliability of the probe caused by the breakage of the connection line is avoided, and the surface of the sensor line array caused by the connection line is uneven, and the palpation probe has a compact package structure. The process is simple and improves the reliability of the palpation probe.
  • the MEMS sensor line array includes a connection portion and a MEMS sensor line array of MEMS sensor units, and a plurality of MEMS sensor units share one upper electrode.
  • the manufacturing method of the MEMS sensor line array provided by the embodiment of the present invention includes:
  • Step 610 a first through hole is formed between the upper surface of the connecting portion and the lower surface on which the upper electrode pad is disposed.
  • Step 620 sequentially depositing an insulating material and a conductive material on the upper surface of the connecting portion and the first via hole, and the conductive material and the upper electrode pad are electrically connected through the first communication layer formed on the hole wall of the first through hole.
  • Step 701 forming a second through hole provided through the base layer on the glass base layer.
  • the second through hole is a top-bottomed round-plate type via hole, the through-hole port on the upper surface of the base layer has a diameter of 150 ⁇ m, and the through-hole port on the lower surface of the base layer has a diameter of 400 ⁇ m.
  • the via hole can be fabricated by laser drilling or sandblasting micromachining.
  • Step 702 forming a lower electrode of the MEMS sensor on the upper surface of the base layer, the lower electrode includes a plurality of lower electrode electrode sheets electrically connected to each other; forming an upper electrode pad and a lower electrode pad of the MEMS sensor on a lower surface of the base layer, The lower electrode and the lower electrode pad are electrically connected by a second communication layer provided on the wall of the hole of the second through hole.
  • an elastic film layer having a cavity inside is formed above the base layer, specifically:
  • Step 703 forming a cavity on the top silicon of a silicon wafer (Silicon-On-Insulator, SOI) silicon wafer on an insulating substrate.
  • a thickness of 300 ⁇ m is selected, and a 6-inch double-sided polished silicon wafer is used to form an elastic film layer, wherein the top layer silicon has a thickness of 10 ⁇ m, and a patterned cavity structure is formed on the top silicon layer, which is subjected to a glue coating, photolithography, development, and silicon etching process.
  • the cavity includes a plurality of circular cavities that are in communication with one another, the circular cavities having a diameter of 50-100 [mu]m.
  • Step 704 bonding the above SOI silicon wafer to the substrate layer.
  • the silicon wafer has a cavity inside, and each circular cavity of the cavity corresponds to a lower electrode pad, and the circular cavity coincides with the center of the projection of the corresponding lower electrode pad on the substrate layer.
  • Step 705 removing the bottom silicon layer and the buried oxide layer of the SOI silicon wafer bonded to the base layer.
  • the bottom silicon layer of the bonded SOI silicon wafer can be removed by using a tetramethylammonium hydroxide solution
  • the buried oxide layer of the SOI silicon wafer can be removed by using a buffer oxide etching solution.
  • Step 706 using a laser drilling process to form a first through hole penetrating the elastic film layer and the base layer on the elastic film layer and the base layer.
  • Step 707 sequentially depositing an insulating material on the upper surface of the elastic film layer and the hole wall of the first through hole, in order to avoid possible electrical contact between the upper electrode and the lower electrode. This step forms an insulating layer.
  • Step 708 depositing a conductive material over the insulating layer to form an upper electrode, and the conductive material and the upper electrode pad are electrically connected through a first communication layer formed on a hole wall of the first through hole.
  • Step 709 the upper electrode is patterned, and a metal aluminum is deposited on the upper surface of the insulating layer to a thickness of 0.5 ⁇ m, and then a patterned upper electrode is formed by a glue coating, a photolithography, a development, and an etching process, and a sidewall of the upper electrode via hole is formed.
  • An upper electrode communication layer is formed. The upper electrode is electrically connected to the upper electrode pad through the upper electrode conductive layer.
  • step 710 low temperature chemical vapor deposition is used to deposit silicon dioxide as an insulating layer with a thickness of 1 ⁇ m. This step can avoid direct contact of the upper electrode with the outside world.
  • step 711 the wafer is cut into a line array, such as a 5*1 sensor line array, that is, five sensor units and one connection portion constitute a line array.
  • the palpation probe in the embodiment of the present invention includes a probe base, a circuit board, a cable electrically connected to the circuit board, and a plurality of MEMS sensor line arrays manufactured according to the manufacturing method in the technical solution of the third embodiment, as shown in FIG.
  • the method for manufacturing the palpation probe provided by the embodiment of the present invention includes:
  • Step 810 manufacturing a circuit board, the circuit board is provided with a first solder joint group corresponding to the lower electrode pad of the MEMS sensor line array, and a second solder joint group corresponding to the upper electrode pad of the MEMS sensor line array.
  • Step 820 bonding the upper electrode pad and the lower electrode pad to the first pad group and the second pad group correspondingly by the conductive adhesive.
  • Step 820 may also be replaced by the following steps: soldering the upper electrode pad and the lower electrode pad after the ball is soldered to the first pad group and the second pad group by reflow soldering.
  • the flexible circuit board to which the MEMS sensor line array is soldered is bonded to the curved backing while the upper and lower electrodes are electrically connected to the cable.
  • the palpation probe is connected to the acquisition card system and the host to form a palpation imaging system.
  • the MEMS sensor line array used in the manufacturing method of the MEMS sensor line array and the palpation probe provided by the embodiment of the present invention includes a connecting portion and a plurality of MEMS sensor units, and the upper electrode pad of the lower surface of the connecting portion and the upper electrode of the MEMS sensor unit are electrically
  • the connection is such that when the upper electrode pad on the lower surface of the connecting portion is connected to the circuit board, the connecting line is not needed, the reliability of the probe caused by the breakage of the connecting line can be avoided, and the surface of the sensor line array caused by the connecting line is uneven.
  • the palpation probe has a compact package structure and a simple process, which improves the reliability of the palpation probe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Micromachines (AREA)

Abstract

一种MEMS传感器线阵、触诊探头及其制造方法。所述MEMS传感器线阵包括连接部(110)和若干MEMS传感器单元(200),连接部(110)和各个MEMS传感器单元(200)依次排列;若干MEMS传感器单元(200)共用一个上电极(130);连接部(110)的上表面设置有与上电极(130)电连接的导电材料,连接部(110)的下表面上设置有上电极焊盘(111),连接部(110)具有贯穿连接部(110)的上表面和下表面的第一通孔(112),导电材料和上电极焊盘(111)通过设置于第一通孔(112)的孔壁上的第一连通层电连接。采用所述MEMS传感器线阵、触诊探头及其制造方法,触诊探头封装过程无连接线,可避免连接线断裂引起的探头可靠性下降,以及连接线带来的传感器线阵表面凹凸不平的现象出现,该触诊探头封装结构紧凑,工艺简单,且提高了触诊探头的可靠性。

Description

MEMS传感器线阵、触诊探头及其制造方法 技术领域
本发明涉及医疗器械技术领域,具体地涉及一种MEMS传感器线阵、触诊探头及其制造方法。
背景技术
近年来,中国乳癌具有发病率增速高、死亡率高、治疗难度高、发病年龄早的趋势,但相比其它肿瘤,乳癌的早诊早治效果较好,如原位癌近100%可治愈。乳癌的主要检查方法有临床触诊、钼靶X线、超声、核磁、乳管镜等,他们均存在一定的局限性。乳腺触诊成像技术于上世纪90年代被提出,其相应的医疗器械产品于2003年面世,这种产品具有完全无创、灵敏度高、操作方便、结果判读容易等优点,具有很高的市场前景和社会价值。
触诊探头的性能优劣是乳腺触诊成像的关键。触诊探头由纵向和横向排列的若干压力传感器组成线阵,探头试压于乳房表面后,线阵中的压力传感器会因其对应组织的弹性模量不同而输出不同的压力信号,对这些压力信号进行计算后,便可以得出肿块的硬度、大小、形状等信息,以辅助临床诊断。
传统的压力传感器线阵结构主要由上下极板以及其中的弹性硅胶组成,所述硅胶为电容的绝缘电介质,利用硅胶的弹性性质使得传感器对外力做出极距变化的相应,导致电容发生变化。采用该方案时由于制作工艺的原因,线阵中不同传感器的一致性差、测量结果受温度影响较大、长时间使用后硅胶不能回弹或回弹不足。
目前,基于微机电系统(Micro-Electro-Mechanical System,简称MEMS)工艺的硅基电容式传感器开始应用在触诊探头中,将该传感器封装到曲面的触诊探头时的封装效果会影响到触诊探头的信号采集效果,因而,如何优化MEMS传感器线阵制作曲面探头时的封 装是目前亟需解决的技术问题。
发明内容
本发明的目的在于提出一种MEMS传感器线阵、触诊探头及其制造方法,以使触诊探头具有结构紧凑,工艺简单,可靠性高等优点。
为达此目的,本发明采用以下技术方案:
一种MEMS传感器线阵,所述MEMS传感器线阵包括连接部和若干MEMS传感器单元,所述连接部和各个所述MEMS传感器单元依次排列;所述若干MEMS传感器单元共用一个上电极;所述连接部的上表面设置有与所述上电极电连接的导电材料,所述连接部的下表面上设置有上电极焊盘,所述连接部具有贯穿所述连接部的上表面和下表面的第一通孔,所述导电材料和所述上电极焊盘通过设置于所述第一通孔的孔壁上的第一连通层电连接。
上述方案中,所述MEMS传感器单元包括依次堆叠设置的上电极、绝缘层、弹性膜层、下电极及基底层,其中:所述下电极位于所述基底层的上表面,所述基底层的下表面上设置有下电极焊盘,所述基底层上设置有贯穿所述基底层的第二通孔,所述下电极和所述下电极焊盘通过设置于所述第二通孔的孔壁上的第二连通层电连接。
上述方案中,所述弹性膜层和所述基底层之间设置有空腔,所述空腔包括互相连通的多个圆形腔体;
所述下电极包括多个相互电连接的圆形下电极电极片,每个所述圆形腔体与一个下电极电极片相对应,所述圆形腔体与对应的下电极电极片在所述基底层上的投影的圆心重合;
或者,所述上电极包括多个相互电连接的圆形上电极电极片,每个所述圆形腔体与一个上电极电极片相对应,所述圆形腔体与对应的上电极电极片在所述基底层上的投影的圆心重合。
上述方案中,所述空腔的高度为1μm;和/或,所述圆形腔体的 直径为50μm-100μm;和/或,所述下电极电极片为圆形,所述圆形腔体的直径与所述下电极电极片的直径之比大于110%;和/或,所述下电极的高度为0.5μm;和/或,所述上电极的高度为0.5μm。
上述方案中,所述第二通孔为圆台型通孔,位于所述基底层的上表面的通孔端口的直径为150μm,位于所述基底层的下表面的通孔端口的直径为400μm。
上述方案中,所述基底层的材质为玻璃;和/或,所述弹性膜层的材质为硅。
一种触诊探头,所述触诊探头包括探头基座,电路板、与所述电路板电连接的线缆以及若干上述技术方案中的MEMS传感器线阵,其中:所述电路板设置在所述探头基座上;所述电路板上设置有与所述MEMS传感器线阵的下电极焊盘对应的第一焊点组,以及与所述MEMS传感器线阵的上电极焊盘对应的第二焊点组;所述上电极焊盘与所述下电极焊盘对应连接在所述第一焊点组和所述第二焊点组上。
上述方案中,所述上电极焊盘与所述下电极焊盘与所述电路板通过所述焊盘植球或导电胶连接。
一种MEMS传感器线阵的制造方法,所述MEMS传感器线阵包括连接部和若干MEMS传感器单元的MEMS传感器线阵,所述若干MEMS传感器单元共用一个上电极;所述方法包括:在所述连接部的上表面和设置有上电极焊盘的下表面之间制作第一通孔;在所述连接部的上表面和所述第一通孔上依次沉积绝缘材料和导电材料,所述导电材料和所述上电极焊盘通过形成于所述第一通孔的孔壁上的第一连通层电连接。
上述方案中,所述在所述连接部的上表面和设置有上电极焊盘的下表面之间制作第一通孔之前,所述方法还包括:在基底层上形成设置有贯穿所述基底层的第二通孔;在所述基底层的上表面形成所述 MEMS传感器的下电极,所述下电极包括多个相互电连接的下电极电极片;在所述基底层的下表面形成所述MEMS传感器的上电极焊盘和下电极焊盘,所述下电极和所述下电极焊盘通过设置于所述第二通孔的孔壁上的第二连通层电连接。
上述方案中,所述在所述基底层的下表面形成所述MEMS传感器的上电极焊盘和下电极焊盘后,所述方法还包括:在所述基底层上方形成内部具有空腔的弹性膜层,所述空腔包括互相连通的多个圆形腔体,每个圆形腔体与一个下电极电极片相对应,所述圆形腔体与对应的下电极电极片在所述基底层上的投影的圆心重合;在所述弹性膜层和所述基底层上制作贯穿所述弹性膜层与所述基底层的第一通孔;在所述弹性膜层的上表面和所述第一通孔的孔壁上依次沉积绝缘材料;在所述绝缘材料上方沉积导电材料,形成上电极,所述导电材料和所述上电极焊盘通过形成于所述第一通孔的孔壁上的第一连通层电连接。
上述方案中,所述在所述基底层上方形成内部具有空腔的弹性膜层,包括:在在绝缘衬底上的硅片SOI硅片的顶层硅上形成空腔;将所述SOI硅片与基底层键合;去除与基底层键合后的所述在绝缘衬底上的硅片的底硅层和埋氧层。
一种触诊探头的制造方法,所述触诊探头包括探头基座,电路板、与所述电路板电连接的线缆以及若干上述技术方案中的MEMS传感器线阵的制造方法制造的MEMS传感器线阵,所述触诊探头的制造方法包括:制作电路板,所述电路板上设置有与所述MEMS传感器线阵的下电极焊盘对应的第一焊点组,以及与所述MEMS传感器线阵的上电极焊盘对应的第二焊点组;通过导电胶将所述上电极焊盘与所述下电极焊盘对应粘接在所述第一焊点组和所述第二焊点组上;或者,通过回流焊将植球后的所述上电极焊盘与所述下电极焊盘对应焊接在所 述第一焊点组和所述第二焊点组上。
本发明提供的MEMS传感器线阵、触诊探头及其制造方法,采用的MEMS传感器线阵包括连接部和若干MEMS传感器单元,连接部的下表面的上电极焊盘与MEMS传感器单元的上电极电连接,这样,位于连接部下表面的上电极焊盘与电路板连接时,无需连接线,可避免连接线断裂引起的探头可靠性下降,以及连接线带来的传感器线阵表面凹凸不平的现象出现,该触诊探头封装结构紧凑,工艺简单,提高了触诊探头的可靠性。
附图说明
图1是本发明实施例一中MEMS传感器线阵的示意图;
图2是本发明实施例一中MEMS传感器线阵的截面图;
图3是本发明实施例一中MEMS传感器单元的截面图;
图4是本发明实施例一的MEMS传感器单元的示意图;
图5是本发明实施例二中的触诊探头的分解图;
图6是本发明实施例三中的MEMS传感器线阵的制造方法的方法流程图;
图7是本发明实施例四中的触诊探头的制造方法的方法流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例一
如图1和图2所示,本发明实施例提供的MEMS传感器线阵包括连接部110和五个MEMS传感器单元200,连接部110和各个MEMS传感器单元200依次排列;这五个MEMS传感器单元200共用一个上电 极130;连接部110的上表面设置有与上电极130电连接的导电材料,连接部的下表面上设置有上电极焊盘111,连接部具有贯穿连接部110的上表面和下表面的第一通孔112,导电材料和上电极焊盘111通过设置于第一通孔112的孔壁上的第一连通层电连接。
在本发明实施例中,一个MEMS传感器线阵包括五个MEMS传感器单元,但是在实际应用中,并不局限于此。这里,MEMS传感器为压力传感器。
如图1和图2所示,连接部200的下表面与MEMS传感器线阵的下表面共面,此时,MEMS传感器线阵的上电极130通过上电极焊盘111引向MEMS传感器线阵的下表面,可以与MEMS传感器线阵的下电极焊接在同一平面电路板上,无需连接线,可避免连接线断裂引起的探头可靠性下降,以及连接线带来的传感器线阵表面凹凸不平的现象出现,该触诊探头封装结构紧凑,工艺简单,提高了触诊探头的可靠性。
如图3和图4所示,MEMS传感器单元包括依次堆叠设置的上电极210、绝缘层220、弹性膜层230、下电极240及基底层250,其中:下电极240位于基底层250的上表面,基底层250的下表面上设置有下电极焊盘260,基底层250上设置有贯穿基底层250的第二通孔270,下电极240和下电极焊盘260通过设置于第二通孔270的孔壁上的第二连通层电连接。
在本发明实施例中,基底层250的材质为玻璃,弹性膜层230的材质为硅。其中,下电极240的高度为0.5μm,上电极210的高度为0.5μm。此外,第二通孔270为圆台型通孔,位于基底层250的上表面的通孔端口的直径为150μm,位于基底层250的下表面的通孔端口的直径为400μm。
如图4所示,弹性膜层230和基底层250之间设置有空腔280; 下电极240包括多个相互电连接的圆形下电极电极片,空腔包括互相连通的多个圆形腔体281,每个圆形腔体281与一个下电极电极片相对应,圆形腔体281与对应的下电极电极片在基底层上的投影的圆心重合。如图4所示,圆形腔体281的数量为九个,此时,每个MEMS传感器单元包含的下电极电极片的数量也为九个。
此外,上电极130包括多个相互电连接的圆形上电极电极片,每个圆形腔体281与一个上电极电极片相对应,圆形腔体281与对应的上电极电极片在基底层上的投影的圆心重合。
其中,空腔280的高度为1μm,圆形腔体281的直径为50μm-100μm。圆形腔体281的直径与下电极电极片的直径之比大于110%,圆形腔体281的直径与上电极电极片的直径之比大于110%。
本发明提供的MEMS传感器线阵包括连接部和若干MEMS传感器单元,连接部的下表面的上电极焊盘与MEMS传感器单元的上电极电连接,这样,位于连接部下表面的上电极焊盘与电路板连接时,无需连接线,可避免连接线断裂引起的探头可靠性下降,以及连接线带来的传感器线阵表面凹凸不平的现象出现,该触诊探头封装结构紧凑,工艺简单,提高了触诊探头的可靠性。
实施例二
如图5所示,本发明实施例提供的触诊探头包括探头基座(图中未示出,电路板500、与电路板500电连接的线缆以及若干实施例一中的MEMS传感器线阵,其中:电路板500设置在探头基座上;电路板500上设置有与MEMS传感器线阵的下电极焊盘对应的第一焊点组510,以及与MEMS传感器线阵的上电极焊盘对应的第二焊点组520;上电极焊盘111与下电极焊盘260对应连接在第一焊点组510和第二焊点组520上。
实施例一中的MEMS传感器线阵是在晶圆上一体式制作后划片后 形成,多个MEMS传感器线阵平行设置在电路板500上,电路板500为柔性电路板。电路板500的第一焊点组510与上电极引出线512连接,第二焊点组520与下电极引出线522连接。
具体的,上电极焊盘111与下电极焊盘260与电路板可以通过焊盘植球或导电胶连接。
本发明提供的触诊探头采用的MEMS传感器线阵包括连接部和若干MEMS传感器单元,连接部的下表面的上电极焊盘与MEMS传感器单元的上电极130电连接,这样,位于连接部下表面的上电极焊盘与电路板连接时,无需连接线,可避免连接线断裂引起的探头可靠性下降,以及连接线带来的传感器线阵表面凹凸不平的现象出现,该触诊探头封装结构紧凑,工艺简单,提高了触诊探头的可靠性。
实施例三
在本发明实施例中,MEMS传感器线阵包括连接部和若干MEMS传感器单元的MEMS传感器线阵,若干MEMS传感器单元共用一个上电极。如图6所示,本发明实施例提供的MEMS传感器线阵的制造方法包括:
步骤610,在连接部的上表面和设置有上电极焊盘的下表面之间制作第一通孔。
步骤620,在连接部的上表面和第一通孔上依次沉积绝缘材料和导电材料,导电材料和上电极焊盘通过形成于第一通孔的孔壁上的第一连通层电连接。
具体地,在制造MEMS传感器线阵时,执行以下步骤701-711:
步骤701,在玻璃基底层上形成设置有贯穿基底层的第二通孔。第二通孔为上细下粗的圆台型导通孔,位于基底层的上表面的通孔端口的直径为150μm,位于基底层的下表面的通孔端口的直径为400μm。可采用激光打孔技术或喷砂微加工技术制作该导通孔。
步骤702,在基底层的上表面形成MEMS传感器的下电极,下电 极包括多个相互电连接的下电极电极片;在基底层的下表面形成MEMS传感器的上电极焊盘和下电极焊盘,下电极和下电极焊盘通过设置于第二通孔的孔壁上的第二连通层电连接。
在以下步骤703至步骤705中,在基底层上方形成内部具有空腔的弹性膜层,具体地:
步骤703,在绝缘衬底上的硅片(Silicon-On-Insulator,简称SOI)硅片的顶层硅上形成空腔。例如,选择厚度为300μm,6寸双面抛光硅片制作弹性膜层,其中顶层硅厚度为10μm,在顶层硅上面制备图形化空腔结构,经过涂胶、光刻、显影和硅刻蚀工艺,形成空腔,腐蚀深度1.5μm。该空腔包括互相连通的多个圆形腔体,圆形腔体的直径为50-100μm。
步骤704,将以上SOI硅片与基底层键合将。该硅片内部具有空腔,空腔的每个圆形腔体与一个下电极电极片相对应,圆形腔体与对应的下电极电极片在基底层上的投影的圆心重合。
步骤705,去除与基底层键合后的所述SOI硅片的底硅层和埋氧层。具体地,可以利用四甲基氢氧化铵溶液去除键合后的SOI硅片的底硅层,利用缓冲氧化物刻蚀液去除SOI硅片的埋氧层。
步骤706,采用激光打孔工艺,在弹性膜层和基底层上制作贯穿弹性膜层与基底层的第一通孔。
步骤707,在弹性膜层的上表面和第一通孔的孔壁上依次沉积绝缘材料,目的是避免上电极与下电极可能的电气接触。该步骤形成了绝缘层。
步骤708,在绝缘层上方沉积导电材料,形成上电极,导电材料和上电极焊盘通过形成于第一通孔的孔壁上的第一连通层电连接。
步骤709,上电极图形化,在绝缘层的上表面沉积金属铝,厚度0.5μm,再通过涂胶、光刻、显影和刻蚀工艺,形成图形化上电极, 同时上电极导通孔侧壁形成上电极连通层。上电极通过上电极导通层与上电极焊盘形成电气连接。
步骤710,采用低压力化学气相沉积法低温沉积二氧化硅作为绝缘层,厚度为1μm。该步骤可以避免上电极与外界直接接触。
步骤711,将晶圆切割成线阵,比如5*1的传感器线阵,即五个传感器单元和一个连接部构成一条线阵。
实施例四
本发明实施例中的触诊探头包括探头基座,电路板、与电路板电连接的线缆以及若干按照实施例三中的技术方案中的制造方法制造的MEMS传感器线阵,如图7所示,本发明实施例提供的触诊探头的制造方法包括:
步骤810,制作电路板,电路板上设置有与MEMS传感器线阵的下电极焊盘对应的第一焊点组,以及与MEMS传感器线阵的上电极焊盘对应的第二焊点组.
步骤820,通过导电胶将上电极焊盘与下电极焊盘对应粘接在第一焊点组和第二焊点组上。
其中,步骤820也可以用以下步骤代替:通过回流焊将植球后的上电极焊盘与下电极焊盘对应焊接在第一焊点组和第二焊点组上。
之后,将焊接有MEMS传感器线阵的柔性电路板与曲面背衬粘接,同时将上电极和下电极与线缆建立电气连接。
最后,将触诊探头与采集卡系统、主机连接,组成触诊成像系统。
本发明实施例提供的MEMS传感器线阵、触诊探头的制造方法采用的MEMS传感器线阵包括连接部和若干MEMS传感器单元,连接部的下表面的上电极焊盘与MEMS传感器单元的上电极电连接,这样,位于连接部下表面的上电极焊盘与电路板连接时,无需连接线,可避免连接线断裂引起的探头可靠性下降,以及连接线带来的传感器线阵表 面凹凸不平的现象出现,该触诊探头封装结构紧凑,工艺简单,提高了触诊探头的可靠性。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (13)

  1. 一种MEMS传感器线阵,其特征在于,所述MEMS传感器线阵包括连接部和若干MEMS传感器单元,所述连接部和各个所述MEMS传感器单元依次排列;
    所述若干MEMS传感器单元共用一个上电极;
    所述连接部的上表面设置有与所述上电极电连接的导电材料,所述连接部的下表面上设置有上电极焊盘,所述连接部具有贯穿所述连接部的上表面和下表面的第一通孔,所述导电材料和所述上电极焊盘通过设置于所述第一通孔的孔壁上的第一连通层电连接。
  2. 根据权利要求1所述的MEMS传感器线阵,其特征在于,所述MEMS传感器单元包括依次堆叠设置的上电极、绝缘层、弹性膜层、下电极及基底层,其中:
    所述下电极位于所述基底层的上表面,所述基底层的下表面上设置有下电极焊盘,所述基底层上设置有贯穿所述基底层的第二通孔,所述下电极和所述下电极焊盘通过设置于所述第二通孔的孔壁上的第二连通层电连接。
  3. 根据权利要求2所述的MEMS传感器线阵,其特征在于,所述弹性膜层和所述基底层之间设置有空腔,所述空腔包括互相连通的多个圆形腔体;
    所述下电极包括多个相互电连接的圆形下电极电极片,每个所述圆形腔体与一个下电极电极片相对应,所述圆形腔体与对应的下电极电极片在所述基底层上的投影的圆心重合;
    或者,所述上电极包括多个相互电连接的圆形上电极电极片,每个所述圆形腔体与一个上电极电极片相对应,所述圆形腔体与对应的上电极电极片在所述基底层上的投影的圆心重合。
  4. 根据权利要求3所述的MEMS传感器线阵,其特征在于,所述空腔的高度为1μm;和/或,所述圆形腔体的直径为50μm-100μm; 和/或,述圆形腔体的直径与所述下电极电极片的直径之比大于110%;和/或,所述下电极的高度为0.5μm;和/或,所述上电极的高度为0.5μm。
  5. 根据权利要求2至4任一项所述的MEMS传感器线阵,其特征在于,所述第二通孔为圆台型通孔,位于所述基底层的上表面的通孔端口的直径为150μm,位于所述基底层的下表面的通孔端口的直径为400μm。
  6. 根据权利要求2至4任一项所述的MEMS传感器线阵,其特征在于,所述基底层的材质为玻璃;和/或,所述弹性膜层的材质为硅。
  7. 一种触诊探头,其特征在于,所述触诊探头包括探头基座,电路板、与所述电路板电连接的线缆以及若干如权利要求1至6任一项所述的MEMS传感器线阵,其中:
    所述电路板设置在所述探头基座上;
    所述电路板上设置有与所述MEMS传感器线阵的下电极焊盘对应的第一焊点组,以及与所述MEMS传感器线阵的上电极焊盘对应的第二焊点组;
    所述上电极焊盘与所述下电极焊盘对应连接在所述第一焊点组和所述第二焊点组上。
  8. 根据权利要求7所述的触诊探头,其特征在于,所述上电极焊盘与所述下电极焊盘与所述电路板通过所述焊盘植球或导电胶连接。
  9. 一种MEMS传感器线阵的制造方法,其特征在于,所述MEMS传感器线阵包括连接部和若干MEMS传感器单元的MEMS传感器线阵,所述若干MEMS传感器单元共用一个上电极;所述方法包括:
    在所述连接部的上表面和设置有上电极焊盘的下表面之间制作第一通孔;
    在所述连接部的上表面和所述第一通孔上依次沉积绝缘材料和导电材料,所述导电材料和所述上电极焊盘通过形成于所述第一通孔的孔壁上的第一连通层电连接。
  10. 根据权利要求9所述的制造方法,其特征在于,所述在所述连接部的上表面和设置有上电极焊盘的下表面之间制作第一通孔之前,所述方法还包括:
    在基底层上形成设置有贯穿所述基底层的第二通孔;
    在所述基底层的上表面形成所述MEMS传感器的下电极,所述下电极包括多个相互电连接的下电极电极片;
    在所述基底层的下表面形成所述MEMS传感器的上电极焊盘和下电极焊盘,所述下电极和所述下电极焊盘通过设置于所述第二通孔的孔壁上的第二连通层电连接。
  11. 根据权利要求10所述的制造方法,其特征在于,所述在所述基底层的下表面形成所述MEMS传感器的上电极焊盘和下电极焊盘后,所述方法还包括:
    在所述基底层上方形成内部具有空腔的弹性膜层,所述空腔包括互相连通的多个圆形腔体,每个圆形腔体与一个下电极电极片相对应,所述圆形腔体与对应的下电极电极片在所述基底层上的投影的圆心重合;
    在所述弹性膜层和所述基底层上制作贯穿所述弹性膜层与所述基底层的第一通孔;
    在所述弹性膜层的上表面和所述第一通孔的孔壁上依次沉积绝缘材料;
    在所述绝缘材料上方沉积导电材料,形成上电极,所述导电材料和所述上电极焊盘通过形成于所述第一通孔的孔壁上的第一连通层电连接。
  12. 根据权利要求11所述的制造方法,其特征在于,所述在所述基底层上方形成内部具有空腔的弹性膜层,包括:
    在绝缘衬底上的硅片SOI硅片的顶层硅上形成空腔;
    将所述SOI硅片与基底层键合;
    去除与基底层键合后的所述SOI硅片的底硅层和埋氧层。
  13. 一种触诊探头的制造方法,其特征在于,所述触诊探头包括探头基座,电路板、与所述电路板电连接的线缆以及若干按照权利要求9至12任一项所述的MEMS传感器线阵的制造方法制造的MEMS传感器线阵,所述触诊探头的制造方法包括:
    制作电路板,所述电路板上设置有与所述MEMS传感器线阵的下电极焊盘对应的第一焊点组,以及与所述MEMS传感器线阵的上电极焊盘对应的第二焊点组;
    通过导电胶将所述上电极焊盘与所述下电极焊盘对应粘接在所述第一焊点组和所述第二焊点组上;
    或者,通过回流焊将植球后的所述上电极焊盘与所述下电极焊盘对应焊接在所述第一焊点组和所述第二焊点组上。
PCT/CN2018/075706 2018-02-07 2018-02-08 Mems传感器线阵、触诊探头及其制造方法 WO2019153162A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810121611.XA CN108190828A (zh) 2018-02-07 2018-02-07 Mems传感器线阵、触诊探头及其制造方法
CN201810121611.X 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019153162A1 true WO2019153162A1 (zh) 2019-08-15

Family

ID=62593171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075706 WO2019153162A1 (zh) 2018-02-07 2018-02-08 Mems传感器线阵、触诊探头及其制造方法

Country Status (2)

Country Link
CN (1) CN108190828A (zh)
WO (1) WO2019153162A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730991A (zh) * 2020-12-14 2021-04-30 北京无线电计量测试研究所 一种用于微波场强探测的微型探头,制作方法及应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111377388B (zh) * 2018-12-28 2023-05-30 财团法人工业技术研究院 具有可移动平台的微机电装置
CN109721023B (zh) * 2019-01-03 2020-08-28 北京先通康桥医药科技有限公司 一种柔性传感器阵列、触诊探头及其制备方法
CN113120849B (zh) * 2020-01-16 2024-02-23 京东方科技集团股份有限公司 换能器元件及其制备方法、换能器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102853A (zh) * 2005-01-11 2008-01-09 皇家飞利浦电子股份有限公司 用于(多个)微束形成器的重分布互连和医学超声系统
US20100168583A1 (en) * 2006-11-03 2010-07-01 Research Triangle Institute Enhanced ultrasound imaging probes using flexure mode piezoelectric transducers
CN104334492A (zh) * 2012-06-15 2015-02-04 波音公司 微传感器封装件及其装配的相关方法
CN107334461A (zh) * 2016-08-31 2017-11-10 北京先通康桥医药科技有限公司 一种电容式mems传感器阵列
CN207957756U (zh) * 2018-02-07 2018-10-12 北京先通康桥医药科技有限公司 Mems传感器线阵、触诊探头

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003267998A1 (en) * 2002-07-20 2004-02-09 Acea Biosciences, Inc. Impedance based devices and methods for use in assays
FR2875947B1 (fr) * 2004-09-30 2007-09-07 Tracit Technologies Nouvelle structure pour microelectronique et microsysteme et procede de realisation
KR100636823B1 (ko) * 2004-12-27 2006-10-23 삼성전자주식회사 Mems 소자 패키지 및 그 제조방법
JP2009216693A (ja) * 2008-02-13 2009-09-24 Denso Corp 物理量センサ
US8696917B2 (en) * 2009-02-09 2014-04-15 Edwards Lifesciences Corporation Analyte sensor and fabrication methods
US7998777B1 (en) * 2010-12-15 2011-08-16 General Electric Company Method for fabricating a sensor
CN103234567B (zh) * 2013-03-26 2015-07-15 中北大学 基于阳极键合技术的mems电容式超声传感器
CN105789122B (zh) * 2014-12-12 2019-05-03 财团法人工业技术研究院 光电元件的转移方法
CN106264436A (zh) * 2015-05-22 2017-01-04 北京先通康桥医药科技有限公司 一种触诊探头
CN104891418B (zh) * 2015-05-29 2016-09-21 歌尔股份有限公司 Mems压力传感器、mems惯性传感器集成结构
US10427188B2 (en) * 2015-07-30 2019-10-01 North Carolina State University Anodically bonded vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT)
CN106667475B (zh) * 2016-12-20 2019-05-07 国家纳米科学中心 一种植入式柔性神经微电极梳及其制备方法和植入方法
CN106517085B (zh) * 2016-12-30 2019-01-08 苏州晶方半导体科技股份有限公司 Mems传感器封装结构及其形成方法
CN106744642A (zh) * 2017-01-06 2017-05-31 中北大学 收发平衡的宽频带混合式超声换能器面阵探头及制备方法
CN206970199U (zh) * 2017-05-02 2018-02-06 歌尔股份有限公司 一种mems芯片
CN107416760B (zh) * 2017-08-16 2019-06-04 北方电子研究院安徽有限公司 倒置装配可应力释放的mems芯片封装结构制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102853A (zh) * 2005-01-11 2008-01-09 皇家飞利浦电子股份有限公司 用于(多个)微束形成器的重分布互连和医学超声系统
US20100168583A1 (en) * 2006-11-03 2010-07-01 Research Triangle Institute Enhanced ultrasound imaging probes using flexure mode piezoelectric transducers
CN104334492A (zh) * 2012-06-15 2015-02-04 波音公司 微传感器封装件及其装配的相关方法
CN107334461A (zh) * 2016-08-31 2017-11-10 北京先通康桥医药科技有限公司 一种电容式mems传感器阵列
CN207957756U (zh) * 2018-02-07 2018-10-12 北京先通康桥医药科技有限公司 Mems传感器线阵、触诊探头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730991A (zh) * 2020-12-14 2021-04-30 北京无线电计量测试研究所 一种用于微波场强探测的微型探头,制作方法及应用

Also Published As

Publication number Publication date
CN108190828A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
WO2019153162A1 (zh) Mems传感器线阵、触诊探头及其制造方法
CN208212011U (zh) 一种电容式mems传感器阵列
US9120126B2 (en) Electro-acoustic transducer and method of manufacturing the same
JP6069798B2 (ja) 超音波トランスデューサデバイス及びこれを製造する方法
JP6235902B2 (ja) 静電容量型トランスデューサ及びその製造方法
US20180169701A1 (en) Ultrasound transducer and method for wafer level front face attachment
WO2019223071A1 (zh) 一种电容式超声换能器及其制造方法
CN105595959B (zh) 一种弹性压力传感器矩阵及用于检测组织弹性的探头
CN109092650B (zh) 一种高机电耦合系数cmut及其制备方法
JP2016122759A (ja) 貫通配線を有する電子デバイスの作製方法
TW200921109A (en) Assembly structure of 3D probe array
CN106744642A (zh) 收发平衡的宽频带混合式超声换能器面阵探头及制备方法
CN109721023B (zh) 一种柔性传感器阵列、触诊探头及其制备方法
JP6061950B2 (ja) 超音波振動子エレメント及び超音波内視鏡
CN103583055A (zh) 超声波元件以及超声波内窥镜
CN214718133U (zh) 一种微机电超声波换能器及阵列
WO2022170805A1 (zh) 一种微机电超声波换能器及阵列
CN106865483A (zh) 医用微电容超声换能器面阵探头及其制备方法
CN111039251B (zh) 一种压电微型超声换能器及其制备方法
JP4774394B2 (ja) 超音波トランスデューサ、超音波トランスデューサの製造方法、超音波診断装置及び超音波顕微鏡
KR20160024303A (ko) 초음파 변환기 모듈, 초음파 변환기 및 초음파 변환기의 제조 방법
CN207957756U (zh) Mems传感器线阵、触诊探头
CN108969013B (zh) 一种可穿戴超声探头
CN102530839A (zh) 带弯曲聚焦的电容式微机电超声传感器的制作方法
CN109427956A (zh) 用于超声探头的压电块体和超声阵列探头及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 01/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18905829

Country of ref document: EP

Kind code of ref document: A1