WO2019153115A1 - 一种垂直腔面发射激光器 - Google Patents

一种垂直腔面发射激光器 Download PDF

Info

Publication number
WO2019153115A1
WO2019153115A1 PCT/CN2018/075388 CN2018075388W WO2019153115A1 WO 2019153115 A1 WO2019153115 A1 WO 2019153115A1 CN 2018075388 W CN2018075388 W CN 2018075388W WO 2019153115 A1 WO2019153115 A1 WO 2019153115A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
vcsel
oxide layer
oxide
layers
Prior art date
Application number
PCT/CN2018/075388
Other languages
English (en)
French (fr)
Inventor
吴波
邱少锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880024724.6A priority Critical patent/CN110495061B/zh
Priority to PCT/CN2018/075388 priority patent/WO2019153115A1/zh
Publication of WO2019153115A1 publication Critical patent/WO2019153115A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • a cavity structure of a small oxide aperture VCSEL is currently designed, and an oxide aperture ( The OA) VCSEL has a pore size ranging from 1.5 micrometers ( ⁇ m) to 3 ⁇ m.
  • the current and light fields are confined to the central region of the aperture to achieve single-mode lasing, which greatly improves the inter-mode dispersion performance.
  • the VCSEL design of the small OA can achieve single transverse mode lasing, because the aperture area is small, the series resistivity will increase.
  • the driving current is the same, a considerable part of the energy is used as the resistance heat, so that the VCSEL is Working in a higher self-heating state results in lower reliability of the device; at the same time, the luminescent energy used for the VCSEL laser is reduced, and the optical power of the VCSEL is reduced.
  • the present application provides a vertical cavity surface emitting laser VCSEL, which can utilize multiple oxide layers of different OA sizes to realize lasing in different modes, thereby relaxing the limitation on the size of the OA, thereby reducing the series resistivity and improving the device. Reliability, while increasing the output power of the VCSEL.
  • a first aspect of the present application provides a vertical cavity surface emitting laser VCSEL comprising a plurality of pairs of P-doped distributed Bragg mirror DBR layers, the DBR layer being composed of two materials of different refractive indices "ABAB"
  • the alternating pattern consists of a periodic structure in which the optical thickness of each layer of material is one quarter of the central reflection wavelength. It is therefore a quarter-wave multilayer system that is equivalent to a simple set of photonic crystals. Since the electromagnetic wave whose frequency falls within the energy gap cannot penetrate, the reflectivity of the Bragg mirror can reach more than 99%.
  • the VCSEL includes a first oxide layer, a second oxide layer and a third oxide layer from bottom to top, and the first oxide layer, the second oxide layer and the third oxide layer are both P-doped DBR layers oxidized Obtained after processing.
  • the second oxide layer and the third oxide layer are used to form a resonant leakage cavity, and the resonant leakage cavity is mainly used to concentrate light in the high-order mode when the VCSEL is lasing, and the resonant leakage cavity is a light wave in and around A cavity that reflects to provide light energy feedback.
  • An essential component of a laser usually consisting of two planar or concave spherical mirrors perpendicular to the axis of the activation medium.
  • a resonant leakage cavity typically has two functions, one to provide positive feedback and one to control the characteristics of the oscillating beam within the cavity.
  • the oxidized pore size OA formed by the first oxide layer is smaller than the OA formed by the resonant leak chamber.
  • the present application provides a vertical cavity surface emitting laser VCSEL comprising a plurality of pairs of P-doped distributed Bragg mirror DBR layers, wherein a plurality of pairs of P-doped DBR layers include the bottom from top to bottom An oxide layer, a second oxide layer and a third oxide layer, wherein the oxide layer is obtained by oxidizing the P-type doped DBR layer, and the second oxide layer and the third oxide layer are used to form a resonant leakage cavity, and the resonance
  • the leakage cavity is used to concentrate the light when the VCSEL is lasing in the high-order mode, and the oxidation oxide aperture OA formed by the first oxide layer is smaller than the OA formed by the resonance leakage cavity.
  • a plurality of oxide layers having different OA sizes can be used to realize lasing in different modes. Therefore, the limitation on the size of the OA is relaxed, and a larger OA can be used, thereby reducing the series resistivity and improving the device. Reliability, while increasing the output power of the VCSEL.
  • the size relationship between the three OAs is compared by comparing the diameters of the first OA, the second OA, and the third OA.
  • the VCSEL can implement transmission in the base mode, thereby improving the practicability and feasibility of the solution.
  • the first preset condition specifically satisfies the following formula:
  • the specific content of the first preset condition is introduced, thereby effectively improving the operability and practicability of the application, and the vertical length of the second OA can be determined by using the first preset condition.
  • the VCSEL can implement transmission in a high-order mode, thereby improving the practicability and feasibility of the solution.
  • the second preset condition specifically satisfies the following formula:
  • L surounding represents the vertical length of the peripheral region of the second OA
  • M represents the number of layers of the resonant leak cavity
  • i represents a positive integer from 1 to M
  • n oxide represents the refractive index of a single oxide layer
  • d oxide represents a single oxide layer
  • K 2 is a non-negative integer
  • ⁇ 11 represents the wavelength in the high-order mode.
  • the VCSEL further includes a first semiconductor buffer layer, an active layer, and a second semiconductor buffer layer from bottom to top.
  • the first semiconductor buffer layer can mainly absorb the stress generated between the n-type doped DBR layer and the active layer
  • the second semiconductor buffer layer can mainly absorb the stress generated between the active layer and the P-type doped DBR layer.
  • the active layer is used to convert electrons into photons.
  • the wear of the DBR layer and the active layer can be effectively reduced by the buffer layer, and the loss caused by scattering, microbending, absorption, bending, and the like can be alleviated.
  • the active layer is capable of converting electrons into photons, thereby realizing the light-emitting function of the VCSEL.
  • the active layer may be a multiple quantum well MQW active layer, or the active layer is a strained multiple quantum well SMQW. Source layer.
  • the type of the active layer is not unique and can be selected according to the actual situation, thereby improving the flexibility and practicability of the design.
  • the active layer is made of indium gallium arsenide and aluminum gallium arsenide, and the active layer is used to pass the center wavelength. Light at 850 nm and 880 nm.
  • the VCSEL can realize the modeless VCSEL design in the 850 nm and 880 nm bands, and the two low-mode VCSELs in the SWDM wavelength range can be used to transmit 400 Gbps in a common optical fiber under the condition of the low cost advantage of the VCSEL. Data capacity.
  • the present application is a full epitaxial growth VCSEL technology. Compared with the external cavity microelectromechanical system mirror technology, the VCSEL preparation technology is relatively simple, the process is mature, and the cost is low.
  • the active layer is made of indium gallium arsenide and gallium arsenide, and the active layer is used to pass the center wavelength. It is light of 910 nm and 940 nm.
  • the VCSEL can realize the modeless VCSEL design in the 910 nm and 940 nm bands, and the two low-mode VCSELs in the SWDM wavelength range can be used to transmit 400 Gbps in a common optical fiber under the condition of the low cost advantage of the VCSEL. Data capacity.
  • the present application is a full epitaxial growth VCSEL technology. Compared with the external cavity microelectromechanical system mirror technology, the VCSEL preparation technology is relatively simple, the process is mature, and the cost is low.
  • a pair of P-type doped DBR layers are spaced between the first oxide layer and the second semiconductor buffer layer. It can be understood that if the first oxide layer is too close to the active layer, lattice defects are liable to occur. If the first oxide layer is too far from the active layer, the transfer rate is lowered.
  • the diameter of the first OA is defined to be 2 um ⁇ 1 um, and the diameter of the second OA is 6 um ⁇ 1 um.
  • the diameter of the first OA is smaller than the diameter of the second OA.
  • the VCSEL may further include at least one absorbing layer, wherein at least one absorbing layer is located above the third oxide layer.
  • At least one absorption layer may be disposed between the p-type contact point and the third oxide layer, thereby reducing wear on the third oxide layer and improving reliability of the device.
  • a p-type contact point is also needed to connect the positive pole of the power supply, and form a complete loop with the n-type contact point, thereby improving the practicability of the scheme.
  • a vertical cavity surface emitting laser VCSEL comprising a plurality of pairs of P-doped distributed Bragg mirror DBR layers, wherein a plurality of pairs of P-doped DBR layers are from below And comprising a first oxide layer, a second oxide layer and a third oxide layer, wherein the oxide layer is obtained by oxidizing the P-type doped DBR layer, and the second oxide layer and the third oxide layer are used for forming resonance
  • the leakage cavity, the resonance leakage cavity is used to concentrate the light when the VCSEL is lasing in the high-order mode, and the oxidation aperture OA formed by the first oxide layer is smaller than the OA formed by the resonance leakage cavity.
  • a plurality of oxide layers having different OA sizes can be used to realize lasing in different modes. Therefore, the limitation on the size of the OA is relaxed, and a larger OA can be used, thereby reducing the series resistivity and improving the device. Reliability, while increasing the output power of the VCSEL.
  • FIG. 2 is a schematic diagram of the vertical length of the second OA and the vertical length of the peripheral region of the second OA in the present application.
  • the vertical cavity surface emitting lasers provided by the present application can be applied to a local area network (LAN), and the multimode fiber is the main medium of the LAN trunk and the data center. It provides a low-cost way to transfer high data traffic between required distances.
  • Multimode fiber is evolving from a few megabits per second with an LED source to a specialization of megapixel (nm) VCSEL sources to support gigabytes per second (G) transmission. The channel capacity is doubled by using parallel transmission over multiple multimode fibers.
  • SWDM Short wavelength division multiplexing
  • SWDM wide-band multimode fiber
  • VCSEL is abbreviated as surface-emitting laser. Compared with edge-emitting laser, VCSEL has the following main advantages:
  • VCSELs have the above advantages, in short-range optical interconnect technology, VCSELs are commonly used as light sources to achieve inter-frame/in-frame optical interconnections.
  • the VCSEL provided by the present application is a small mode VCSEL between a multimode VCSEL and a single mode VCSEL, since the multimode VCSEL is usually a multi-transverse mode emission spectrum, and the root mean square width of the VCSEL (root-mean) -square spectrum, RMSS) reaches 0.65nm.
  • MMF multi-mode fiber
  • bit error rate, BER bit error rate
  • the single transverse mode technology has very good anti-mode dispersion performance, it may limit the emission power in order to strictly maintain the performance characteristics of the single mode. Therefore, the mode-less VCSEL technology is compatible with the single-mode advantage of single-mode VCSELs and the high optical power advantages of multi-mode VCSELs.
  • a VCSEL provided by the present application will be described below with reference to FIGS. 1 to 2.
  • FIG. 1 is a schematic structural diagram of a vertical cavity surface emitting laser according to the present application.
  • a VCSEL embodiment may include multiple pairs of P-type doped distributed Bragg reflectors (DBRs). a layer, wherein the plurality of pairs of P-doped DBR layers comprise a first oxide layer 101, a second oxide layer 102, and a third oxide layer 103 from bottom to top, wherein the oxide layer is oxidized by a P-doped DBR layer Obtained after processing;
  • DBRs distributed Bragg reflectors
  • the second oxide layer 102 and the third oxide layer 103 are used to form a resonant leakage cavity 10 for concentrating light when the VCSEL is lasing in a high-order mode;
  • the oxidized pore diameter OA formed by the first oxide layer 101 is smaller than the OA formed by the resonance leak chamber 10.
  • the VCSEL includes an n-type doped electrode contact layer, an n-type doped substrate, an n-type doped DBR layer, a first semiconductor buffer layer 104, and an active layer from bottom to top.
  • AL 105
  • second semiconductor buffer layer 106 a p-type doped DBR layer (including a high resistance low refractive index oxide layer), an absorber layer 107, and a P-type contact.
  • AlGaAs aluminium gallium arsenic, AlGaAs
  • AlGaAs consisting of alternating growth of Al x Ga 1-x As and Al y Ga 1-y As with different aluminum (Al) components
  • x and y respectively represent the composition of Al (0 ⁇ x, y ⁇ 1)
  • AlGaAs with high Al composition has a low refractive index
  • the effective thickness of each layer of AlGaAs is one quarter of the lasing wavelength of the VCSEL design, which ensures that each layer of AlGaAs does not form an independent resonance. Cavity.
  • the composition of Al of the high refractive index n-DBR layer is 0.28
  • the composition of gallium (Ga) is 0.72
  • the composition of Al of the low refractive index n-DBR layer is 0.96
  • the composition of Ga is 0.04.
  • n-DBR layer is a semiconductor buffer layer, that is, a first semiconductor buffer layer 104, wherein the material of the first semiconductor buffer layer 104 is Al z Ga 1-z As, and the composition z of Al is up and down. The average value of AlGaAs on both sides. The composition of Al is gradually transitioned between the upper and lower materials.
  • the function of the semiconductor buffer layer is to achieve a gradual transition between metal compounds of different compositions to achieve a continuous lattice structure.
  • the first semiconductor buffer layer 104 is a semiconductor active layer (AL) 105 for absorbing the stress generated between the n-doped DBR layer and the active layer 105, active Layer 105 is the site of energy conversion, and the top-down current effects conversion between electrons and photons in active layer 105.
  • A semiconductor active layer
  • the active layer 105 can be made of indium gallium arsenide (indium). Gallium arsenic, InGaAs) and AlGaAs are fabricated, and the active layer 105 is used to pass light having a center wavelength of 850 nm and 880 nm.
  • MQW refers to a system in which a plurality of quantum wells are combined.
  • MQW refers to a system in which a plurality of quantum wells are combined.
  • the superlattice barrier layer is relatively thin, the coupling between potential wells is strong, and the microstrip is formed, and the barrier layer between MQWs Thick, basically no tunneling coupling, and no microstrip.
  • SMQW is grown by monoatomic layer epitaxy using two materials that are lattice mismatched. Due to the optimization of the physical properties of materials, the performance of semiconductor light-emitting devices has been revolutionized.
  • the active layer 105 is a second semiconductor buffer layer 106, the second semiconductor buffer layer 106 is similar to the first semiconductor buffer layer 104, and the second semiconductor buffer layer 106 is mainly used for absorbing the active layer 104 and P-type doping. The stress generated between the DBR layers.
  • the so-called P-doped DBR layer is a phosphorus doped-distributed bragg reflector (p-DBR).
  • the p-DBR layer also appears in pairs, and the material of the p-DBR layer is AlGaAs. .
  • Each pair of p-DBR layers also includes a high refractive index p-DBR layer and a low refractive index p-DBR layer, which are alternately grown by Al x Ga 1-x As and Al y Ga 1-y As of different Al compositions.
  • x and y represent the composition of Al (0 ⁇ x, y ⁇ 1), respectively, and the AlGaAs has a low refractive index, and the effective thickness of each layer of AlGaAs is one quarter of the lasing wavelength of the VCSEL design. It will ensure that each layer of AlGaAs does not form a separate resonant cavity.
  • the composition of Al of the high refractive index p-DBR layer is 0.28
  • the composition of Ga is 0.72
  • the composition of Al of the low refractive index p-DBR layer is 0.96
  • the composition of Ga is 0.04.
  • the plurality of pairs of P-doped DBR layers include at least three oxide layers, which are sequentially named as the first oxide layer 101, the second oxide layer 102, and the third oxide layer 103 from the phase, and the Al groups of the three oxide layers.
  • the fraction is higher, generally greater than 0.96, such as Al 0.98 Ga 0.02 As.
  • the three-layer structure forms a high resistivity-low refractive index (HR-LI) structure, and an ordinary single Like the oxide layer, the HR-LI acts to limit the current and limit the light field.
  • the current flows only through the aperture formed by the HR-LI (called the oxide aperture (OA)).
  • the lasing light field is confined within the high refractive index OA.
  • the first oxide layer 101 is located above the active layer 105.
  • the oxide layer is used to limit the lasing mode of the laser microcavity.
  • the lasing mode of the laser microcavity includes 5 to 6 transverse modes, such as linear polarization (LP) 01, LP11, LP21, and LP02. If only the mode is limited, it is usually only necessary to set the OA of the first oxide layer 101 to 2 um, and almost all high-order modes can be isolated.
  • the optical power of the VCSEL will become very low.
  • two oxide layers that is, the second oxide layer 102 and the third oxide layer 103 may be added over the first oxide layer 101.
  • the second oxide layer 102 and the third oxide layer 103 form a resonant leakage cavity 10, which can further filter the high-order mode of the first oxide layer 101 without limitation, while the second oxide layer 102 and the third oxide
  • the depth of the layer 103 is low, and the OA reaches 5 um to 7 um, which can increase the optical power.
  • the diameter of the first OA is 2 um ⁇ 1 um
  • the diameter of the second OA is 6 um ⁇ 1 um. In practical applications, there may be a certain degree of error due to different manufacturing processes, which is not limited herein.
  • a vertical cavity surface emitting laser VCSEL comprising a plurality of pairs of P-doped distributed Bragg mirror DBR layers, wherein a plurality of pairs of P-doped DBR layers are from below And comprising a first oxide layer, a second oxide layer and a third oxide layer, wherein the oxide layer is obtained by oxidizing the P-type doped DBR layer, and the second oxide layer and the third oxide layer are used for forming resonance
  • the leakage cavity, the resonance leakage cavity is used to concentrate the light when the VCSEL is lasing in the high-order mode, and the oxidation aperture OA formed by the first oxide layer is smaller than the OA formed by the resonance leakage cavity.
  • a plurality of oxide layers having different OA sizes can be used to realize lasing in different modes. Therefore, the limitation on the size of the OA is relaxed, and a larger OA can be used, thereby reducing the series resistivity and improving the device. Reliability, while increasing the output power of the VCSEL.
  • the first optional embodiment of the VCSEL provided by the embodiment of the present application may further include conditions that need to be met in two modes:
  • the second OA when in the base mode (such as LP01), the second OA is used to generate light when the lasing is performed by the VCSEL in the base mode, and the vertical length of the second OA satisfies the first preset condition, the first preset The condition is related to the wavelength in the base mode.
  • FIG. 2 is a schematic diagram of the vertical length of the second OA and the vertical length of the second OA peripheral region in the present application.
  • the vertical length 301 of the second OA refers to three.
  • the total length of the p-type DBR layer, the vertical length 301 of the second OA needs to meet the first preset condition, that is, satisfy:
  • L aperture represents the vertical length of the second OA
  • M represents the number of layers of the resonant leakage cavity
  • i represents a positive integer from 1 to M
  • n AlGaAs represents the refractive index of a single P-doped DBR layer
  • d AlGaAs represents a single
  • K 1 is a non-negative integer number
  • ⁇ 01 represents the wavelength in the base mode.
  • FIG. 2 is a schematic diagram of the vertical length of the second OA and the vertical length of the second OA peripheral region in the present application.
  • the vertical length of the peripheral region of the second OA is 302. It refers to the total length of a second oxide layer, a p-type DBR layer and a third oxide layer, and the vertical length 302 of the peripheral region of the second OA satisfies a second preset condition, a second preset condition and a high-order mode.
  • the wavelengths below have an association, that is, satisfy:
  • L surounding represents the vertical length of the peripheral region of the second OA
  • M represents the number of layers of the resonant leak cavity
  • i represents a positive integer from 1 to M
  • n oxide represents the refractive index of a single oxide layer
  • d oxide represents a single oxide layer
  • K 2 is a non-negative integer
  • ⁇ 11 represents the wavelength in the high-order mode.
  • n oxide is 2.5
  • d oxide is 43 nm
  • n AlGaAs is 3.5
  • d AlGaAs is 18 nm
  • ⁇ 11 is 908 nm
  • M is 3 or 5
  • K 2 can be calculated as 1, of course, in practical applications
  • the values of oxide , d oxide , n AlGaAs, and d AlGaAs are adaptable, and are merely illustrative here.
  • M represents the number of layers of AlGaAs including the double oxide layer.
  • the technical idea of the design method can make the mode field limiting factor of the LP11 smaller than that of the LP01, so that the side mode suppression ratio of the LP01 and/or the LP11 can be ensured when the driving current is relatively small.
  • (side mode suppression ratio, SMSR) is large.
  • the VCSEL of the present application can realize a small-mode VCSEL design in the 850 nm to 1000 nm band, and can satisfy the low-cost advantage of the VCSEL, and can realize the optical mode (OM) 3 using four small-mode VCSELs in the SWDM wavelength range. 400 Gbps data capacity is transmitted in /OM4 fiber.
  • the present application is a full epitaxial growth VCSEL technology. Compared with the micro-electrical-mechanical system (MEMS) mirror technology, the VCSEL preparation technique is relatively simple, the process is mature, and the cost is low.
  • MEMS micro-electrical-mechanical system

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本申请公开了一种垂直腔面发射激光器VCSEL,所述VCSEL包括多对P型掺杂的分布式布拉格反射镜DBR层,其中,所述VCSEL自下而上包括第一氧化层、第二氧化层和第三氧化层,其中,氧化层为P型掺杂的DBR层经过氧化处理后得到的;所述第二氧化层与所述第三氧化层用于形成谐振泄漏腔,所述谐振泄漏腔用于集中在高阶模式下所述VCSEL发生激射时的光;所述第一氧化层所形成的氧化孔径OA小于所述谐振泄漏腔所形成的OA。本申请可利用多个OA大小不同的氧化层实现不同模式下的光激射,因此,放宽了对OA大小的限制,能够采用较大的OA,从而减小串联电阻率,提升器件的可靠性,同时提升了VCSEL的出光功率。

Description

一种垂直腔面发射激光器 技术领域
本申请涉及半导体器件领域,尤其涉及一种垂直腔面发射激光器。
背景技术
随着人们对网络带宽需求的不断增加,带宽需求呈爆炸性增长,接入网络和城域网络的带宽需求也在不断升级,在太比特路由器这些的电信设备结构中,不难发现互连是限制系统性能的重要瓶颈。其中,板间信号和框间信号的主要载体是铜互连和光互连。光互连与铜互连比较,具有带宽高、损耗小、串扰低以及电磁兼容好等的优点。我们将传输距离在300米之内的大容量光互连解决方案称为“短距离光互连”,在短距离光互连技术里面,垂直表面发射激光器(vertical cavity surface emitting lasers,VCSEL)通常被用作光源实现设备的光互连。
由于多模VCSEL会出现很强的模间色散,造成比较严重的码间干扰,增加系统的误码率,因此,目前设计出一种小氧化孔径VCSEL的腔结构,小氧化孔径(oxide aperture,OA)VCSEL的孔径范围在1.5微米(micrometer,um)至3um,电流和光场都会被限制在孔径中心区域之内,以此实现单横模的激射,极大地提升了抗模间色散性能。
然而。小OA的VCSEL设计虽然能实现单横模激射,但因为孔径面积较小,会导致串联电阻率增大,在驱动电流相同的情况下,相当一部分能量被用来作为电阻发热,使得VCSEL在较高的自热状态下工作,导致器件的可靠性降低;而同时用于VCSEL激光器的发光能量变少,同时降低了VCSEL的出光功率。
发明内容
本申请提供一种垂直腔面发射激光器VCSEL,可利用多个OA大小不同的氧化层实现不同模式下的光激射,因此,放宽了对OA大小的限制,从而减小串联电阻率,提升器件的可靠性,同时提升了VCSEL的出光功率。
本申请的第一方面提供一种垂直腔面发射激光器VCSEL,该VCSEL包括了多对P型掺杂的分布式布拉格反射镜DBR层,DBR层是由两种不同折射率的材料以“ABAB”的方式交替排列组成的周期结构,每层材料的光学厚度为中心反射波长的四分之一。因此是一种四分之一波长多层系统,相当于简单的一组光子晶体。由于频率落在能隙范围内的电磁波无法穿透,布拉格反射镜的反射率可达99%以上。
其中,所述VCSEL自下而上包括第一氧化层、第二氧化层和第三氧化层,第一氧化层、第二氧化层和第三氧化层均为P型掺杂的DBR层经过氧化处理后得到的。
所述第二氧化层与所述第三氧化层用于形成谐振泄漏腔,谐振泄漏腔主要用于集中在高阶模式下所述VCSEL发生激射时的光,谐振泄漏腔是光波在其中来回反射从而提供光能反馈的空腔。激光器的必要组成部分,通常由两块与激活介质轴线垂直的平面或凹球面反射镜构成。谐振泄漏腔通常有两个作用,一个是提供正反馈,一个是控制腔内振荡光束的 特征。第一氧化层所形成的氧化孔径OA小于谐振泄漏腔所形成的OA。
可见,本申请提供了一种垂直腔面发射激光器VCSEL,该VCSEL包括多对P型掺杂的分布式布拉格反射镜DBR层,其中,多对P型掺杂的DBR层自下而上包括第一氧化层、第二氧化层和第三氧化层,其中,氧化层为P型掺杂的DBR层经过氧化处理后得到的,第二氧化层与第三氧化层用于形成谐振泄漏腔,谐振泄漏腔用于集中在高阶模式下VCSEL发生激射时的光,第一氧化层所形成的氧化孔径OA小于谐振泄漏腔所形成的OA。采用上述结构,可利用多个OA大小不同的氧化层实现不同模式下的光激射,因此,放宽了对OA大小的限制,能够采用较大的OA,从而减小串联电阻率,提升器件的可靠性,同时提升了VCSEL的出光功率。
在一种可能的设计中,在本申请实施例的第一方面的第一种实现方式中,第一氧化层所形成的氧化孔径OA小于谐振泄漏腔所形成的OA,具体而言,第一氧化层用于形成第一OA,第一氧化层包围了第一OA,第二氧化层和第三氧化层用于形成第二OA,第二氧化层包围着第二OA。第一OA的直径小于第二OA的直径,第一OA的直径小于第三OA的直径,第二OA的直径等于第三OA的直径。
可见,本申请实施例中,通过比较第一OA、第二OA和第三OA的直径来说明三者之间的大小关系。通过上述设计,可能形成大小不同的OA,可利用多个OA大小不同的氧化层实现不同模式下的光激射,因此,放宽了对OA大小的限制,能够采用较大的OA,从而减小串联电阻率,提升器件的可靠性,同时提升了VCSEL的出光功率。
在一种可能的设计中,在本申请实施例的第一方面的第二种实现方式中,OA用于通过基模式下VCSEL发生激射时的光,第二OA的垂直长度满足第一预设条件,第一预设条件与基模式下的波长具有关联关系。
基模式又称为“基模”,通常包括LP01模或HE11模,基模式也是最低阶模,不存在模间时延差,具有比多模光纤大得多的宽带,这对于高码速传输是非常重要的。单模光纤的折射率一般呈阶跃型分布,线芯直径一般为8um至10um,包层直径为125um左右。
可见,本申请实施例中,VCSEL能够实现基模式下的传输,从而提升了方案的实用性和可行性。
在一种可能的设计中,在本申请实施例的第一方面的第三种实现方式中,第一预设条件具体满足如下公式:
Figure PCTCN2018075388-appb-000001
其中,L aperture表示第二OA的垂直长度,M表示谐振泄漏腔的层数,i表示从1至M的正整数,n AlGaAs表示单个P型掺杂的DBR层的折射率,d AlGaAs表示单个P型掺杂的DBR层的厚度,K 1为非负整数,λ 01表示基模式下的波长。
可见,本申请实施例中,介绍了第一预设条件的具体内容,从而有效地提升了应用的可操作性和实用性,能够利用第一预设条件确定第二OA的垂直长度。
在一种可能的设计中,在本申请实施例的第一方面的第四种实现方式中,第二OA的周边区域用于通过高阶模式下VCSEL发生激射时的光,第二OA的周边区域的垂直长度满足第 二预设条件,第二预设条件与高阶模式下的波长具有关联关系。高阶模式通常包括LP11模。
可见,本申请实施例中,VCSEL能够实现高阶模式下的传输,从而提升了方案的实用性和可行性。
在一种可能的设计中,在本申请实施例的第一方面的第五种实现方式中,第二预设条件具体满足如下公式:
Figure PCTCN2018075388-appb-000002
其中,L surounding表示第二OA的周边区域的垂直长度,M表示谐振泄漏腔的层数,i表示从1至M的正整数,n oxide表示单个氧化层的折射率,d oxide表示单个氧化层的厚度,K 2为非负整数,λ 11表示高阶模式下的波长。
可见,本申请实施例中,介绍了第二预设条件的具体内容,从而有效地提升了应用的可操作性和实用性,能够利用第二预设条件确定第二OA的周边区域的垂直长度。
在一种可能的设计中,在本申请实施例的第一方面的第六种实现方式中,VCSEL还自下而上包括第一半导体缓冲层、有源层以及第二半导体缓冲层。第一半导体缓冲层主要可以吸收n型掺杂DBR层与有源层之间产生的应力,而第二半导体缓冲层主要可以吸收有源层与P型掺杂的DBR层之间产生的应力。其中,有源层用于将电子转换为光子。
可见,本申请实施例中,通过缓冲层能够有效地降低对DBR层与有源层的磨损,还可以缓解由散射、微弯、吸收和弯曲等引起的损耗。有源层能够将电子转换为光子,从而实现VCSEL的出光功能。
在一种可能的设计中,在本申请实施例的第一方面的第七种实现方式中,有源层可以为多量子阱MQW有源层,或,有源层为应变多量子阱SMQW有源层。
可见,有源层的类型不唯一,可根据实际情况进行选择,从而提升了设计的灵活性和实用性。
在一种可能的设计中,在本申请实施例的第一方面的第八种实现方式中,有源层由铟镓砷和铝镓砷制作而成,该有源层用于通过中心波长为850nm和880nm的光。
可见,本申请实施例中,VCSEL可以实现850nm和880nm波段的少模VCSEL设计,满足VCSEL低成本优势的情况下,使用SWDM波长范围的2个少模VCSEL,可实现在普通光纤中传输400Gbps的数据容量。此外,本申请是全外延生长VCSEL技术,与外腔微电子机械系统反射镜技术相比,VCSEL的制备技术相对简单,工艺成熟,成本低廉。
在一种可能的设计中,在本申请实施例的第一方面的第九种实现方式中,有源层由铟镓砷和磷砷化镓制作而成,该有源层用于通过中心波长为910nm和940nm的光。
可见,本申请实施例中,VCSEL可以实现910nm和940nm波段的少模VCSEL设计,满足VCSEL低成本优势的情况下,使用SWDM波长范围的2个少模VCSEL,可实现在普通光纤中传输400Gbps的数据容量。此外,本申请是全外延生长VCSEL技术,与外腔微电子机械系统反射镜技术相比,VCSEL的制备技术相对简单,工艺成熟,成本低廉。
在一种可能的设计中,在本申请实施例的第一方面的第十种实现方式中,第一氧化层与第二半导体缓冲层之间间隔一对P型掺杂的DBR层。可以理解的是,如果第一氧化层距 离有源层太近,容易产生晶格缺陷。如果第一氧化层距离有源层太远,则会降低传输速率。
可见,本申请实施例中,第一氧化层与第二半导体缓冲层之间间隔一对P型掺杂的DBR层是较为折中的选择,一方面不容易产生晶格缺陷,另一方面能够保证光子的传输速率。
在一种可能的设计中,在本申请实施例的第一方面的第十一实现方式中,限定了第一OA的直径为2um±1um,所述第二OA的直径为6um±1um。
可见,本申请实施例中,第一OA的直径小于第二OA的直径,采用上述结构,可利用多个OA大小不同的氧化层实现不同模式下的光激射,因此,放宽了对OA大小的限制,能够采用较大的OA,从而减小串联电阻率,提升器件的可靠性,同时提升了VCSEL的出光功率。
在一种可能的设计中,在本申请实施例的第一方面的第十二实现方式中,VCSEL还可以包括至少一个吸收层,其中,至少一个吸收层位于所述第三氧化层之上。
可见,本申请实施例中,在p型接触点与第三氧化层之间还可以设置有至少一个吸收层,从而降低对第三氧化层的磨损,提升器件的可靠性。
在一种可能的设计中,在本申请实施例的第一方面的第十三实现方式中,VCSEL还可以包括P型接触层电极,该P型接触层电极位于吸收层之上,其中,P型接触层电极由金或钛制作而成。两个p型接触点用于连接供电电源的正极。此外,在衬底至少还设置有两个n型接触点用于连接供电电源的负极,
可见,本申请实施例中,还需要设置有p型接触点,用于连接供电电源的正极,与n型接触点构成一个完整回路,从而提升方案的实用性。
在一种可能的设计中,在本申请实施例的第一方面的第十四实现方式中,VCSEL还可以包括P型接触层电极,该P型接触层电极位于所述第三氧化层之上,其中,P型接触层电极由金或钛制作而成。两个p型接触点用于连接供电电源的正极。此外,在衬底至少还设置有两个n型接触点用于连接供电电源的负极,
可见,本申请实施例中,还需要设置有p型接触点,用于连接供电电源的正极,与n型接触点构成一个完整回路,从而提升方案的实用性。
本申请提供的技术方案中,提供了一种垂直腔面发射激光器VCSEL,该VCSEL包括多对P型掺杂的分布式布拉格反射镜DBR层,其中,多对P型掺杂的DBR层自下而上包括第一氧化层、第二氧化层和第三氧化层,其中,氧化层为P型掺杂的DBR层经过氧化处理后得到的,第二氧化层与第三氧化层用于形成谐振泄漏腔,谐振泄漏腔用于集中在高阶模式下VCSEL发生激射时的光,第一氧化层所形成的氧化孔径OA小于谐振泄漏腔所形成的OA。采用上述结构,可利用多个OA大小不同的氧化层实现不同模式下的光激射,因此,放宽了对OA大小的限制,能够采用较大的OA,从而减小串联电阻率,提升器件的可靠性,同时提升了VCSEL的出光功率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例, 对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请中垂直腔面发射激光器一个结构示意图;
图2为本申请中第二OA垂直长度和第二OA周边区域垂直长度的一个示意图。
具体实施方式
下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本申请所提供的垂直表面发射激光器(vertical cavity surface emitting lasers,VCSEL)可应用于多模光纤是局域网(local area network,LAN),多模光纤是LAN干线和数据中心的主力媒介,它提供了在所需距离之间传输高数据流量的低成本方法。多模光纤不断演变,从以发光二极管光源为每秒几兆的传输进行优化,到用850纳米(nanometer,nm)VCSEL源来支持每秒几吉字节(gigabyte,G)传输的专业化。通过在多根多模光纤上使用并行传输,使得信道容量翻倍。
尽管并行传输简单高效,光纤通道使用数量增加会造成综合布线系统的成本提高。短波分复用(short wavelength division multiplexing,SWDM)利用了另一种通过多种波长让数据率翻倍的方式,将每条光纤的容量增加至少四倍。这使得某一固定数量的光纤的数据速率至少增加四倍,或者在实现某一固定数据速率时至少减少四倍的光纤数量。
随着SWDM技术的发展,使用更多波长可以改善多模光纤的使用,扩大其信息运送的能力。但是,在现有光纤上使用SWDM将会受到比特率或者距离的限制,因为那些光纤的主要运作波长原设计为850nm。通过优化宽带多模光纤(wide-band multimode fiber,WBMMF)支持850nm到950nm范围内波长,以便利用SWDM确保未来有用距离内的应用可以获得更有效的支持,而且保证与上一代应用的完全兼容性,使其成为一种理想的通用型媒介,既支持现在,也支持将来的应用。然而,目前WBMMF光纤的成本非常高,于是人们需要追求一种技术,在现有的多模光纤种类中使用SWDM技术,于是,VCSEL的使用应运而生。
VCSEL简称面发射型激光器,VCSEL与边发射激光器相比,主要优势有:
1、VCSEL谐振腔单片生长的特点,决定了它在制作过程中不会出现如制作边发射器件中存在的机械损伤、氧化和沾污等能引起器性能退化的现象;
2、由于谐振腔体积小,可形成低阈值电流激射;
3、极短的谐振腔易实现动态单模工作;
4、有源区内置从而增加器件寿命;
5、高光束质量,较小的光束发散角,易与光纤耦合;
6、高能量转换效率;
7、可进行非解理的片上测试,易模块化和封装。
由于VCSEL有以上优点,所以在短距离光互连技术里面,VCSEL通常被用作光源实现设备框间/框内光互连。
应理解,本申请所提供的VCSEL是间于多模VCSEL和单模VCSEL的少模VCSEL,这是由于多模VCSEL通常是多横模的发射光谱,VCSEL的均方根谱宽(root-mean-square spectrum,RMSS)达到0.65nm,在多模光纤(multi-mode fiber,MMF)进行传输的时候,会出现很强的模间色散,造成比较严重的码间干扰,增加系统的误码率(bit error rate,BER),恶化传输性能。而单横模技术虽然抗模间色散性能非常之好,但是由于为了严格保持单模的性能特点,可能出光功率会收到限制限制。因此,少模VCSEL技术兼容了单模VCSEL的单横模优势和多模VCSEL的高出光功率优势。
下面将结合图1至图2对本申请所提供的一种VCSEL进行介绍。
请参阅图1,图1为本申请中垂直腔面发射激光器一个结构示意图,本申请实施例中VCSEL一个实施例可以包括多对P型掺杂的分布式布拉格反射镜(distributed bragg reflector,DBR)层,其中,多对P型掺杂的DBR层自下而上包括第一氧化层101、第二氧化层102和第三氧化层103,其中,氧化层为P型掺杂的DBR层经过氧化处理后得到的;
第二氧化层102与第三氧化层103用于形成谐振泄漏腔10,谐振泄漏腔10用于集中在高阶模式下VCSEL发生激射时的光;
第一氧化层101所形成的氧化孔径OA小于谐振泄漏腔10所形成的OA。
本实施例中,VCSEL自下而上包含n型掺杂的电极接触层、n型掺杂的衬底、n型掺杂的DBR层、第一半导体缓冲层104、有源层(active layer,AL)105、第二半导体缓冲层106、p型掺杂的DBR层(包含高阻低折射率氧化层)、吸收层107和P型接触点。
具体地,n型掺杂的电极层,两侧预留欧姆接触点,n型掺杂的电极层的材料为锗化金(aurum germanium,AuGe)、镍(nickel,Ni)或者金(aurum,Au)。n型掺杂的电极层之上是一层n型掺杂的砷化镓(gallium arsenic,GaAs)衬底,n型掺杂的GaAs衬底之上是若干对的n型掺杂的DBR层,所谓n型掺杂的DBR层即为掺磷分布式布拉格反射镜(nitrogen doped-distributed bragg reflector,n-DBR),该n-DBR层为成对出现的,n-DBR材料是铝镓砷(aluminium gallium arsenic,AlGaAs),由不同铝(aluminium,Al)组分的Al xGa 1-xAs和Al yGa 1-yAs交替生长构成,x和y分别表示Al的组分(0≦x,y≦1),Al组分高的AlGaAs的折射率低,每层AlGaAs的有效厚度为VCSEL设计激射波长值的四分之一,这样会保证每层AlGaAs不会形成一个独立的谐振腔。例如,高折射率n-DBR层的Al的组分为0.28,镓(gallium,Ga)的组分为0.72,低折射率n-DBR层的Al的组分为0.96,Ga的组分为0.04。
n-DBR层之上是一层半导体缓冲层,即第一半导体缓冲层(buffer)104,其中,第一半导体缓冲层104的材料为Al zGa 1-zAs,Al的组分z是上下两侧AlGaAs的平均取值。Al的组分是在上下两种材料之间逐渐过渡的,半导体缓冲层的作用就是实现不同组分的金属化 合物之间的逐渐过渡,实现连续性的晶格结构。第一半导体缓冲层104之上是半导体有源层(active layer,AL)105,第一半导体缓冲层104用于吸收n型掺杂的DBR层与有源层105之间产生的应力,有源层105是能量转换的场所,自上而下的电流在有源层105实现电子和光子之间的转换。
由于VCSEL波长是850nm至1000nm之间,可以理解的是,SWDM的四个标准中心波长为850nm、880nm、910nm和940nm,为了满足不同中心波长的需求,有源层105可以由铟镓砷(indium gallium arsenic,InGaAs)和AlGaAs制作而成,有源层105用于通过中心波长为850纳米nm和880nm的光。可选地,有源层105也可以由InGaAs和磷砷化镓(gallium arsenic phosphorus,GaAsP)制作而成,有源层105用于通过中心波长为910nm和940nm的光。有源层105为多量子阱(multi quantum well,MQW),更具体地,有源层105为MQW中的应变多量子阱(strained multiple quantum well,SMQW)。
其中,MQW是指多个量子阱组合在一起的系统。就材料结构和生长过程而言,MQW和超晶格没有实质差别,仅在于超晶格势垒层比较薄,势阱之间的耦合较强,形成微带,而MQW之间的势垒层厚,基本无隧穿耦合,也不形成微带。SMQW是利用晶格不匹配的两种材料,用单原子层外延技术生长在一起。由于材料物理特性的优化,使得半导体发光器件的性能得到革命性的巨大改善。
有源层105之上是第二半导体缓冲层106,第二半导体缓冲层106与第一半导体缓冲层104的成为类似,第二半导体缓冲层106主要用于吸收有源层104与P型掺杂的DBR层之间产生的应力。
第二半导体缓冲层106之上则有多对P型掺杂的DBR层,可选地,第一氧化层101与第二半导体缓冲层106之间间隔一对P型掺杂的DBR层。可以理解的是,如果第一氧化层101距离有源层105太近,容易产生晶格缺陷。如果第一氧化层101距离有源层105太远,则会降低传输速率。
所谓P型掺杂的DBR层即为掺磷分布式布拉格反射镜(phosphor doped-distributed bragg reflector,p-DBR),该p-DBR层也是成对出现的,且p-DBR层的材料为AlGaAs。每一对p-DBR层也包括高折射率p-DBR层和低折射率p-DBR层,由不同Al组分的Al xGa 1-xAs和Al yGa 1-yAs交替生长构成,x和y分别表示Al的组分(0≦x,y≦1),Al组分高的AlGaAs的折射率低,每层AlGaAs的有效厚度为VCSEL设计激射波长值的四分之一,这样会保证每层AlGaAs不会形成一个独立的谐振腔。类似地,例如,高折射率p-DBR层的Al的组分为0.28,Ga的组分为0.72,低折射率p-DBR层的Al的组分为0.96,Ga的组分为0.04。
多对P型掺杂的DBR层中至少包括三层氧化层,自相而上依次命名为第一氧化层101、第二氧化层102和第三氧化层103,这三层氧化层的Al组分较高,一般大于0.96,例如Al 0.98Ga 0.02As,经过氧化工艺后,这三层结构形成高电阻率-低折射率(high resistivity-low refractive index,HR-LI)结构,和普通的单氧化层一样,HR-LI的作用是限制电流和限制光场,电流只流经HR-LI围成的孔径(叫做氧化孔径氧化孔径(oxide aperture,OA))。激射光场被限制在高折射率的OA内。第一氧化层101位于有源层105的上方,可以理解的是,这个位置必须满足条件是在此位置上激光器腔内的光场强度分布 为呈现极小值,这样会极大减小因折射率的非连续特性而导致的光场强度的损耗,从而避免导致腔内损耗的增加,以及避免阈值电流的升高。氧化层用来限制激光器微腔的激射模式,通常激光器微腔的激射模式包括5至6个横模,例如线性偏振(linear polarization,LP)01、LP11、LP21以及LP02等。如果只限制模式,通常只需要将第一氧化层101的OA设置到2um,几乎可以隔绝到所有的高阶模式。但是这样VCSEL的光功率就会变得很低。基于以上述情况,可以在第一氧化层101的之上增加2个氧化层,即第二氧化层102和第三氧化层103。第二氧化层102和第三氧化层103形成谐振泄漏腔10,谐振泄漏腔10可以将第一氧化层101没有限制的高阶模式进行进一步的滤波,同时,第二氧化层102和第三氧化层103的深度较低,OA达到5um至7um,可以增大出光功率。
第一氧化层101对应于第一垂直位置201,第二氧化层102和第三氧化层103均对应与第二垂直位置202,第一垂直位置201与P型掺杂的DBR层中心位置的距离小于第二垂直位置202与P型掺杂的DBR层中心位置的距离。第一垂直位置201用于确定第一OA,第一OA是由第一氧化层101形成的。第二垂直位置202用于确定第二OA,第二OA是由第二氧化层102和第三氧化层103形成的,且第一OA小于第二OA。
可以理解的是,第一OA的直径为2um±1um,第二OA的直径为6um±1um,在实际应用中,由于制作工艺的不同,可能存在一定程度的误差,此处不做限定。
可选地,谐振泄漏腔10之上还可以设置至少一个吸收层107,即第三氧化层103之上可以有若干层P-DBR层,若干层P-DBR层即为吸收层107,在吸收层107之上存在P型的接触层电极,P型的接触层电极的材料可以为钛(titanium,Ti)或者Au。
可以理解的是,在实际应用中,谐振泄漏腔10之上还可以直接设置P型的接触层电极,此处不做限定。
本申请提供的技术方案中,提供了一种垂直腔面发射激光器VCSEL,该VCSEL包括多对P型掺杂的分布式布拉格反射镜DBR层,其中,多对P型掺杂的DBR层自下而上包括第一氧化层、第二氧化层和第三氧化层,其中,氧化层为P型掺杂的DBR层经过氧化处理后得到的,第二氧化层与第三氧化层用于形成谐振泄漏腔,谐振泄漏腔用于集中在高阶模式下VCSEL发生激射时的光,第一氧化层所形成的氧化孔径OA小于谐振泄漏腔所形成的OA。采用上述结构,可利用多个OA大小不同的氧化层实现不同模式下的光激射,因此,放宽了对OA大小的限制,能够采用较大的OA,从而减小串联电阻率,提升器件的可靠性,同时提升了VCSEL的出光功率。
可选地,在上述图1对应的实施例的基础上,本申请实施例提供的VCSEL第一个可选实施例中,还可以包括两种模式下需要满足的条件:
一、基模式;
本实施例中,当处于基模式(如LP01)时,第二OA用于通过基模式下VCSEL发生激射时的光,且第二OA的垂直长度满足第一预设条件,第一预设条件与基模式下的波长具有关联关系。
具体地,为了便于理解,请参阅图2,图2为本申请中第二OA垂直长度和第二OA周边区域垂直长度的一个示意图,如图所示,第二OA的垂直长度301是指三个p型的DBR层 总长度,第二OA的垂直长度301需要满足第一预设条件,即满足:
Figure PCTCN2018075388-appb-000003
其中,L aperture表示第二OA的垂直长度,M表示谐振泄漏腔的层数,i表示从1至M的正整数,n AlGaAs表示单个P型掺杂的DBR层的折射率,d AlGaAs表示单个P型掺杂的DBR层的厚度,K 1为非负整数数,λ 01表示基模式下的波长。
例如,假设n AlGaAs为3.5,d AlGaAs为18nm,λ 01为910nm,M可以为3或5,计算得到K 1可以为1,当然,在实际应用中n AlGaAs和d AlGaAs的值可适应性调整,此处仅为一个示意。
可以理解的是,M表示包括双氧化层在内的AlGaAs的层数。
二、高阶模式;
本实施例中,当处于高阶模式(如LP11)时,第二OA用于通过高阶模式下VCSEL发生激射时的光,且第二OA的周边区域的垂直长度满足第二预设条件,第二预设条件与高阶模式下的波长具有关联关系。
具体地,为了便于理解,请参阅图2,图2为本申请中第二OA垂直长度和第二OA周边区域垂直长度的一个示意图,如图所示,第二OA的周边区域的垂直长度302是指一个第二氧化层、一个p型的DBR层与一个第三氧化层的总长度,第二OA的周边区域的垂直长度302满足第二预设条件,第二预设条件与高阶模式下的波长具有关联关系,即满足:
Figure PCTCN2018075388-appb-000004
其中,L surounding表示第二OA的周边区域的垂直长度,M表示谐振泄漏腔的层数,i表示从1至M的正整数,n oxide表示单个氧化层的折射率,d oxide表示单个氧化层的厚度,K 2为非负整数,λ 11表示高阶模式下的波长。
例如,假设n oxide为2.5,d oxide为43nm,n AlGaAs为3.5,d AlGaAs为18nm,λ 11为908nm,M为可以3或5,计算得到K 2可以为1,当然,在实际应用中n oxide、d oxide、n AlGaAs和d AlGaAs的值可适应性调整,此处仅为一个示意。
可以理解的是,M表示包括双氧化层在内的AlGaAs的层数。
根据模场泄漏的充要条件可知,λ 01=λ 11(设计成850nm)时才能使得泄漏发生,因此,通过设计合适的M以及K使得公式(1)以及公式(2)成立,如此一来,VCSEL在发生激射时,LP11激射模式下的光能便集中到了双氧化层谐振泄漏腔10内,LP11激射模式与有源层105的空间重合度降低,这使得LP11激射模式获得的增益大大降低,以保证LP01激射模式为VCSEL的主激射模式。
其次,本申请实施例中,利用这种设计方式的技术思想,可以使得LP11的模场限制因子比LP01要小,所以在驱动电流比较小的时候可以保证LP01和/或LP11的边模抑制比(side mode suppression ratio,SMSR)较大。本申请的VCSEL可以实现850nm至1000nm波段的少模VCSEL设计,满足VCSEL低成本优势的情况下,使用SWDM波长范围的4个少模VCSEL,可实现在普通的光模式(optical mode,OM)3/OM4光纤中传输400Gbps的数据容 量。此外,本申请是全外延生长VCSEL技术,与外腔微电子机械系统(micro electrical-mechanical system,MEMS)反射镜技术相比,VCSEL的制备技术相对简单,工艺成熟,成本低廉。
以上对本申请实施例公开的一种VCSEL进行了详细实施例的说明只是用于帮助理解本申请及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (15)

  1. 一种垂直腔面发射激光器VCSEL,其特征在于,所述VCSEL包括多对P型掺杂的分布式布拉格反射镜DBR层,其中,所述VCSEL自下而上包括第一氧化层、第二氧化层和第三氧化层,其中,氧化层为P型掺杂的DBR层经过氧化处理后得到的;
    所述第二氧化层与所述第三氧化层用于形成谐振泄漏腔,所述谐振泄漏腔用于集中在高阶模式下所述VCSEL发生激射时的光;
    所述第一氧化层所形成的氧化孔径OA小于所述谐振泄漏腔所形成的OA。
  2. 根据权利要求1所述的VCSEL,其特征在于,所述第一氧化层用于形成第一OA,所述第二氧化层和所述第三氧化层用于形成第二OA;
    所述第一OA的直径小于所述第二OA的直径,所述第一OA的直径小于所述第三OA的直径,所述第二OA的直径等于所述第三OA的直径。
  3. 根据权利要求2所述的VCSEL,其特征在于,所述第二OA用于通过基模式下所述VCSEL发生激射时的光;
    所述第二OA的垂直长度满足第一预设条件,所述第一预设条件与所述基模式下的波长具有关联关系。
  4. 根据权利要求3所述的VCSEL,其特征在于,所述第一预设条件为:
    Figure PCTCN2018075388-appb-100001
    其中,所述L aperture表示所述第二OA的垂直长度,所述M表示所述谐振泄漏腔的层数,所述i表示从1至所述M的正整数,所述n AlGaAs表示单个P型掺杂的DBR层的折射率,所述d AlGaAs表示所述单个P型掺杂的DBR层的厚度,所述K 1为非负整数,所述λ 01表示所述基模式下的波长。
  5. 根据权利要求2所述的VCSEL,其特征在于,所述第二OA的周边区域用于通过高阶模式下所述VCSEL发生激射时的光;
    所述第二OA的周边区域的垂直长度满足第二预设条件,所述第二预设条件与所述高阶模式下的波长具有关联关系。
  6. 根据权利要求5所述的VCSEL,其特征在于,所述第二预设条件为:
    Figure PCTCN2018075388-appb-100002
    其中,所述L surounding表示所述第二OA的周边区域的垂直长度,所述M表示所述谐振泄漏腔的层数,所述i表示从1至所述M的正整数,所述n oxide表示单个氧化层的折射率,所述d oxide表示所述单个氧化层的厚度,所述K 2为非负整数,所述λ 11表示所述高阶模式下的波长。
  7. 根据权利要求1至6中任一项所述的VCSEL,其特征在于,所述VCSEL还自下而上包括第一半导体缓冲层、有源层以及第二半导体缓冲层;
    所述第一半导体缓冲层用于吸收n型掺杂DBR层与所述有源层之间产生的应力,所述 第二半导体缓冲层用于吸收所述有源层与P型掺杂的DBR层之间产生的应力;
    所述有源层用于将电子转换为光子。
  8. 根据权利要求7所述的VCSEL,其特征在于,所述有源层为多量子阱MQW有源层,或,所述有源层为应变多量子阱SMQW有源层。
  9. 根据权利要求7或8所述的VCSEL,其特征在于,所述有源层由铟镓砷和铝镓砷制作而成,所述有源层用于通过中心波长为850纳米nm和880nm的光。
  10. 根据权利要求7或8所述的VCSEL,其特征在于,所述有源层由铟镓砷和磷砷化镓制作而成,所述有源层用于通过中心波长为910nm和940nm的光。
  11. 根据权利要求7至10中任一项所述的VCSEL,其特征在于,所述第一氧化层与所述第二半导体缓冲层之间间隔一对P型掺杂的DBR层。
  12. 根据权利要求2所述的VCSEL,其特征在于,所述第一OA的直径为2微米um±1um,所述第二OA的直径为6um±1um。
  13. 根据权利要求1至12中任一项所述的VCSEL,其特征在于,所述VCSEL还包括至少一个吸收层,其中,所述至少一个吸收层位于所述第三氧化层之上。
  14. 根据权利要求13所述的VCSEL,其特征在于,所述VCSEL还包括P型接触层电极,所述P型接触层电极位于所述吸收层之上,其中,所述P型接触层电极由金或钛制作而成。
  15. 根据权利要求1至12中任一项所述的VCSEL,其特征在于,所述VCSEL还包括P型接触层电极,所述P型接触层电极位于所述第三氧化层之上,其中,所述P型接触层电极由金或钛制作而成。
PCT/CN2018/075388 2018-02-06 2018-02-06 一种垂直腔面发射激光器 WO2019153115A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880024724.6A CN110495061B (zh) 2018-02-06 2018-02-06 一种垂直腔面发射激光器
PCT/CN2018/075388 WO2019153115A1 (zh) 2018-02-06 2018-02-06 一种垂直腔面发射激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075388 WO2019153115A1 (zh) 2018-02-06 2018-02-06 一种垂直腔面发射激光器

Publications (1)

Publication Number Publication Date
WO2019153115A1 true WO2019153115A1 (zh) 2019-08-15

Family

ID=67548667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075388 WO2019153115A1 (zh) 2018-02-06 2018-02-06 一种垂直腔面发射激光器

Country Status (2)

Country Link
CN (1) CN110495061B (zh)
WO (1) WO2019153115A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690730B (zh) * 2021-07-12 2022-08-02 华芯半导体研究院(北京)有限公司 垂直腔面发射激光器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547297A (zh) * 2003-12-18 2004-11-17 北京工业大学 内腔接触式垂直腔面发射激光器的结构及其制备方法
US20050265415A1 (en) * 2004-05-28 2005-12-01 Lambkin John D Laser diode and method of manufacture
CN102204039A (zh) * 2008-11-05 2011-09-28 奥斯兰姆奥普托半导体有限责任公司 具有垂直发射方向的表面发射半导体激光器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054345B2 (en) * 2003-06-27 2006-05-30 Finisar Corporation Enhanced lateral oxidation
WO2016008083A1 (zh) * 2014-07-15 2016-01-21 华为技术有限公司 一种垂直腔面发射激光器vcsel
CN107240857B (zh) * 2017-06-28 2019-09-24 聊城大学 一种垂直腔面发射激光器及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547297A (zh) * 2003-12-18 2004-11-17 北京工业大学 内腔接触式垂直腔面发射激光器的结构及其制备方法
US20050265415A1 (en) * 2004-05-28 2005-12-01 Lambkin John D Laser diode and method of manufacture
CN102204039A (zh) * 2008-11-05 2011-09-28 奥斯兰姆奥普托半导体有限责任公司 具有垂直发射方向的表面发射半导体激光器件

Also Published As

Publication number Publication date
CN110495061A (zh) 2019-11-22
CN110495061B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
KR100229051B1 (ko) 수직적으로 통합된 광학펌프를 갖는 장파장수직 공동표면 방출레이저
US10396527B2 (en) Vertical-cavity surface-emitting laser with high modulation speed
WO2002084829A1 (en) Long wavelength vertical cavity surface emitting laser
KR101902928B1 (ko) 3중 연결 양자우물 구조를 포함하는 광학 소자
US20020163688A1 (en) Optical communications system and vertical cavity surface emitting laser therefor
TWI403053B (zh) Optoelectronic components
CN106575855B (zh) 一种垂直腔面发射激光器vcsel
JP2004063657A (ja) 面発光レーザおよび面発光レーザアレイおよび光送信モジュールおよび光送受信モジュールおよび光通信システム
EP2729997A1 (en) Laser device
US11721952B2 (en) Vertical-cavity surface-emitting laser (VCSEL) device and method of making the same
Ibrahim et al. Single-mode and high-speed intracavity metal aperture VCSEL with transverse coupled cavity effect
Ledentsov et al. Ultrafast nanophotonic devices for optical interconnects
JP2004327862A (ja) 面発光型半導体レーザおよびその製造方法
WO2019153115A1 (zh) 一种垂直腔面发射激光器
CN112382927A (zh) 辐射发射器及其制备方法
WO2013014457A1 (en) High speed vertical-cavity suface-emitting laser
JP4820556B2 (ja) 垂直共振器型面発光半導体レーザ装置および光送信モジュールおよび光伝送装置および光スイッチング方法
Schnitzer et al. GaAs VCSEL's at/spl lambda/= 780 and 835 nm for short-distance 2.5-Gb/s plastic optical fiber data links
Schnitzer et al. Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber
Ibrahim et al. High speed modulation single mode 850 nm DTCC-VCSEL
Dong et al. Densely Integrated 1060nm 2D VCSEL Array for Space-division Multiplexing Toward Co-packaging Optics Transceivers
CN220914744U (zh) 腔内接触的高速光子-光子共振面发射激光器
CN115395367B (zh) 一种椭圆形多台面激光器结构
CN115528543B (zh) 一种顶发射有源oam激光器阵列结构
Ibrahim et al. Enhanced high-frequency modulation of single-mode 850nm VCSELs via dual transverse-cavity integration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905165

Country of ref document: EP

Kind code of ref document: A1