WO2019152615A1 - Multi-length, multi-denier, multi-cross section fiber blend yarn - Google Patents

Multi-length, multi-denier, multi-cross section fiber blend yarn Download PDF

Info

Publication number
WO2019152615A1
WO2019152615A1 PCT/US2019/015996 US2019015996W WO2019152615A1 WO 2019152615 A1 WO2019152615 A1 WO 2019152615A1 US 2019015996 W US2019015996 W US 2019015996W WO 2019152615 A1 WO2019152615 A1 WO 2019152615A1
Authority
WO
WIPO (PCT)
Prior art keywords
staple
fibers
weight
inches
inch
Prior art date
Application number
PCT/US2019/015996
Other languages
French (fr)
Inventor
Robert A. USHER JR
Original Assignee
Parkdale Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parkdale Incorporated filed Critical Parkdale Incorporated
Priority to CN201980019410.1A priority Critical patent/CN111868317A/en
Priority to EP19748287.0A priority patent/EP3746588A4/en
Priority to JP2020541962A priority patent/JP7354118B2/en
Publication of WO2019152615A1 publication Critical patent/WO2019152615A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G1/00Severing continuous filaments or long fibres, e.g. stapling
    • D01G1/02Severing continuous filaments or long fibres, e.g. stapling to form staple fibres not delivered in strand form
    • D01G1/04Severing continuous filaments or long fibres, e.g. stapling to form staple fibres not delivered in strand form by cutting
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/24Bulked yarns or threads, e.g. formed from staple fibre components with different relaxation characteristics
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/045Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J3/00Modifying the surface
    • D02J3/02Modifying the surface by abrading, scraping, scuffing, cutting, or nicking
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics

Definitions

  • the present invention relates to fibers, yarns and fabrics in the arena of technical wear, athletic wear or“athleisure” wear.
  • Cotton is an extremely comfortable fiber in many circumstances and cotton garments remain ubiquitous based on their light weight, versatility, and favorable hand.
  • the term“hand” is used throughout this application in the sense that is well understood to the skilled person. It can be defined as,“a characteristic of fabrics that is perceived by touching, squeezing, or rubbing them” (Tortora at page 262), or as,“the “term used to describe the feel of a substrate (i.e., soft, raspy, stiff, etc.)” (Textile Glossary; Cotton Incorporated; www.cottoninc.com; accessed March 15, 2018.
  • cotton has certain disadvantages.
  • Cotton is highly absorbent, taking up to 27 times its weight in water, which adds undesired weight in the athletic wear context.
  • Cotton also loses its insulating properties and can be abrasive when wet.
  • active exercise or work, etc.
  • Cotton layers next to the skin quickly become wet, heavy, and cold.
  • Cotton undergarments become abrasive when wet in both hot and cold weather.
  • Wool has excellent insulating properties, can stretch as much as 30% beyond its relaxed length, and can absorb moisture in up to 50% of its dry weight without becoming saturated, Tortora, FAIRCHILD’S DICTIONARY OF TEXTILES, 7th Ed. (2009), page
  • Some types of wool are, however, uncomfortable next to the skin, and the more comfortable fibers (e.g., merino) tend to be more expensive.
  • Silk is, of course, extremely comfortable, but in general too expensive for widespread use in mass-marketed athletic garments.
  • moisture management is used to describe the capacity or ability of a fabric to pull or wick moisture (perspiration, humidity, rain) to an outer layer of a fabric from which it can evaporate.
  • body temperature 98.6°F, 37°
  • Moisture management is thus typically measured using water vapor transmission rate.
  • Synthetics are not an automatic cure-all, however, because overcooling can give a clammy feel to the wearer. Accordingly, modern“technical” wear often consists of two types of yarn formed into several layers that are arranged so that thermodynamics drives perspiration from the skin to the first layer and then from the first layer to the outer layer. Modern technical fabrics may have as many as four or five layers for this purpose.
  • the starting fibers help establish the properties of the resulting fabric
  • the skilled person recognizes that with respect to (for example) cotton, shorter fibers produce yarns that in turn give fabrics with a better hand, while longer fibers give smoother more finished yarns, such as those that give a cotton business shirt (again, as just one example) a more finished look, but a rougher hand.
  • the invention is a yarn consisting essentially of a blend of polyester fibers customized by three parameters: (1) a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch; (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.
  • the invention is an intimately blended bale of polyester staple fibers in which the blend includes (1) a combination of staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and0.75 inch; (2) a combination of staple fibers with staple deniers (tex, fineness) of 1 .0 dpf, 1 .2 dpf, and 1 .5 dpf; and (3) a combination of staple fibers with at least two different staple cross sections.
  • the invention is a fabric that includes at least some yarns that consist essentially of (1) a combination of polyester staple fibers with staple lengths of 1 .5 inches, 1 .25 inches, 1 .0 inch and 0.75 inch, (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1 .0 dpf, 1 .2 dpf, and 1 .5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.
  • the invention is a resulting fabric according to selected from the group consisting of woven fabrics, nonwoven fabrics, and knitted fabrics.
  • the invention is a method of making a yarn precursor blend with selected properties of moisture management and hand that includes the steps of spinning continuous synthetic filament in each of at least three different deniers and at least two different cross sections, gathering the different continuous filaments into a single tow, using a common cutter to cut the tow into it at least four different staple lengths, and blending the different length, different denier and different cross-sectional staple fibers into an intimately blended bale.
  • the invention is a method of making a yarn precursor blend that includes the steps of spinning the continuous synthetic filament into staple deniers (tex, fineness) of 1 .0 dpf, 1 .2 dpf, and 1 .5 dpf, and using the common cutter to cut the tow into staple lengths of 1 .5 inches, 1 .25 inches, 1 .0 inch and 0.75 inch.
  • the invention is a method of making a yarn with selected properties of moisture management and hand, that includes the steps of opening an intimately blended bale of staple fibers in at least three different deniers, at least four different lengths, and at least two different cross sections, and forming the opened staple fibers into tow, forming the toe into a roving; and spinning the roving into yarn.
  • the invention is a method of making a yarn that includes comprising opening an intimately blended bale that consists essentially of (1) a combination of polyester staple fibers with staple lengths of 1 .5 inches, 1 .25 inches, 1 .0 inch and 0.75 inch; (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1 .0 dpf, 1.2 dpf, and 1 .5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.
  • the invention is a reel assembly for use with a staple cutting apparatus that includes a cutter reel having a pair of annular reel members spaced axially one from the other with each reel member defining an outwardly facing axial surface having a predetermined diameter and a circumferential mating engagement portion; a plurality of cutter blades mounted in said reel members for engaging and cutting fiber; and a cover member encircling and affixed about one of the reel members; in which the improvement comprising cutter blades spaced to cut synthetic filament into discrete staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch.
  • Figure 1 is a micrograph of fibers with elliptical (oval) cross-sections according to the present invention.
  • Figure 2 is a fiber length histogram based on one sample of a yarn according to the present invention.
  • Figure 3 is a second fiber length histogram based on the same sample as Figure 2.
  • Figure 4 is a fineness (denier, tex) histogram based on the same sample as Figures 2 and 3.
  • Figure 5 is a fiber length histogram based on a second sample of a yarn according to the present invention.
  • Figure 6 is a second fiber length histogram based on the same second sample as Figure 5.
  • Figure 7 s a fineness (denier, ex) histogram based on the same sample as Figures 5 and 6.
  • Figure 8 is a combination view of an assembled cutter reel and an exploded cutter reel that can be used to practice aspects of the present invention.
  • polyester refers to any polymer formed by joining hydrocarbon chains with ester groups (Tortora, page 437).
  • the US Federal Trade Commission defines polyester as,“[A] manufactured fiber in which the fiber-forming substance is any long chain synthetic polymer composed of at least 85% by weight of an ester of a substituted aromatic carboxylic acid, including but not restricted to substituted terephthalate units.” 16 C.F.R. ⁇ 303.7(c)(2018).
  • Bale Density A unit of measurement of weight per unit volume normally expressed as pounds per cubic foot. Density is calculated by dividing the net bale weight by the bale volume in cubic feet. Volume is determined by multiplying bale length, width and thickness dimensions expressed in feet. Thickness is determined by measuring from tie to tie across the crown of the bale.
  • U Universal Density
  • SD Standard Density
  • Gin UD Bale compressed at the gin to a density of at least 28 pounds per cubic foot.
  • Gin SD Bale compressed at the gin to a density of at least 23 pounds per cubic foot but less than 28 pounds per cubic foot.
  • “spinning” has two distinct meanings. In a classical meaning dating almost to antiquity,“spinning” refers to the step of twisting fibers together to make yarns. In modern technology this is (typically) carried out using“ring” spinning or“open end” spinning, each of which are Familiar to the person of ordinary skill in the art; e.g. Tortora, Fairchilds Dictionary Of Textiles, 7th Ed. (2009) at pages 473 and 395.
  • the word“spinning” is used to refer to the step of extruding a polymer melt into individual filaments which are then processed further, typically including texturing, cutting into“staple” lengths, and spinning the polymer staple fibers into yarns in the open end or ring spinning sense. Tortora at page 536.
  • polyester refers to any polymer formed by joining hydrocarbon chains with ester groups (Tortora at page 437).
  • the invention is a yarn consisting essentially of a blend of polyester fibers customized by three parameters: (1) a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch; (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.
  • the yarn consist essentially of a blend of polyester fibers in the amounts of 20% by weight staple length of 1.5 inches or greater; 54% by weight staple lengths of 1.25 inches or greater; 77% by weight staple lengths of 1 inch or greater; and 96% by weight staple lengths of 0.75 inch or greater; with all lengths and percentages expressed to 2 significant figures.
  • the yarn includes 94% by weight of fibers at least 100 mtex; 87% by weight of fibers of at least 125 mtex; 76% by weight of fibers having at least 150 mtex: and 63% of fibers having at least 175 mtex; with all percentages expressed to 2 significant figures.
  • Table 1 sets forth exemplary length and dpf blends according to the invention.
  • the CP descriptor means combed cotton, so this sample represents 60% combed cotton blended with 40% polyester according to the invention.
  • the RS designation means that this yarn was spun on a standard ring spinning frame, where 1 roving bobbin feeds 1 spinning position.
  • the nomenclature would use the acronym OE, which stands for open end spinning, also called rotor spinning.
  • Neps (a nep is defined as small knot of entangled fibers commonly regarded as a fault but sometimes introduced as an effect.
  • Total nep cnt Count of all neps in a sample (fiber and seed coat neps).
  • Total nep mean size Average size of all neps (fiber and seed coat neps) counted in microns.
  • Fiber nep cnt Count of all fiber neps.
  • Fib nep mean size Average size of all fiber neps in microns.
  • SC nep count Count of all seed coat neps.
  • SC nep mean size Average size of all seed coat neps in microns.
  • L (w) CV % Variation of the fiber length around the average is expressed as length variation by weight or CV %.
  • CV is used in its well-understood statistical sense to express the ratio of the standard deviation to the mean.
  • Variation of the fiber length around the average is expressed as length variation by number or CV %.
  • Total trash count Count of all particles (dust and trash particles).
  • Total trash size Average size of all particles counted (dust and trash particles).
  • Dust count Count of all particles less than 500 microns in size.
  • Dust mean size Average size of all dust particles counted.
  • Trash count Count of all particles greater than 500 microns in size.
  • Trash mean size Average size of all trash particles counted VFM %: Calculation taking both dust and trash content as well as size into account; relates to gravimetric trash measurement methods such as Shirley Analyzer.
  • Figure 2 is a histogram of fiber lengths by percent combined with a plot of fiber length versus cumulative percent, both factors being expressed by weight. As the tally columns further indicate, less than 13% (expressed as two significant figures) of the blend have lengths greater than 1.5 inches and only about 2.5% have lengths less than 0.75 inch.
  • Figure 3 is a second histogram and plot based on the same sample with almost identical results: less than 14% are more than 1.5 inches in length and only about 5.6% are less than 0.75 inch in length.
  • Figure 4 is a fineness histogram based on the same sample as Figures 2 and 3 and the selected blend of deniers (1 , 1.2, 1.5), expressed as mtex (i.e., 111 , 133, and 167; all expressed to three significant figures).
  • Figure 4 illustrates that 80% of the fibers (expressed to two significant figures) are between 250 and 100 mtex inclusive, and that 67% (2/3) are between 225 and 125 mtex inclusive.
  • Figure 5 is a histogram of fiber lengths by percent combined with a plot of fiber length versus cumulative percent for a second sample according to the invention, both factors being expressed by weight. As the Figure 5 tally columns further indicate, 8.0% (expressed as two significant figures) of the blend have lengths greater than 1.5 inches and only about 4.8% have lengths less than 0.75 inch.
  • Figure 6 is a second histogram and plot based on the same sample with almost identical results: less than 12% are more than 1.5 inches in length and only about 4.0% are less than 0.75 inch in length.
  • Figure 7 is a fineness histogram based on the same second sample as Figures 5 and 6 and the selected blend of deniers (1 , 1.2, 1.5), expressed as mtex (i.e., 111 , 133, and 167; all expressed to three significant figures).
  • Figure 7 illustrates that 81% of the fibers
  • the invention is a method of forming a yarn precursor blend with selected properties of moisture management and hand.
  • the invention includes the steps of spinning continuous synthetic filament in each of at least three different deniers and at least two different cross sections, gathering the different continuous filaments into a single tow, using a common cutter to cut the tow into it at least four different staple lengths, and blending the different length, different denier and different cross-sectional staple fibers into an intimately blended bale.
  • the method includes spinning the continuous synthetic filament into staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and using the common cutter to cut the tow into staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch.
  • the filament (and then the fiber) cross sections are circular and oval.
  • the oval (or elliptical) cross section offers increased surface area relative to an otherwise similarly sized round filament or fiber, and thus provides an additional design factor for moisture management.
  • the common cutter allows feeding and opening from one bale as opposed to drawing from multiple bales, each of which would have one of the separate characteristics. As known to those of skill in the art, the sooner different fibers are blended (i.e., earlier in the spinning process; baling, opening, drafting, etc.), the more consistent will be the characteristics for which the yarn was blended.
  • the invention is an intimately blended bale of polyester staple fibers that includes the combination of staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and0.75 inch; the combination of staple fibers with staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and the combination of staple fibers with at least two different staple cross sections. It follows that an opened bale of this type, and a yarn spun from this bale share the length, denier and cross-sectional characteristics of the intimately blended bale.
  • the intimately blended bale allows adjustment within a single bale and avoids the necessity to carefully meter fibers from multiple bales of different characteristics.
  • the result is a yarn, and thus resulting fabrics, that are more consistent and precise on a weight for weight basis, and likewise avoid some of the more cumbersome aspects of other blending methods.
  • the invention is a fabric that includes at least some yarns that consist essentially of: (1) a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch; (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.
  • Such a fabric cab be selected from the group consisting of woven fabrics, nonwoven fabrics, and knitted fabrics.
  • Exemplary fabric embodiments include a blend of polyester fibers in the amounts of 20% by weight staple length of 1.5 inches or greater; 54% by weight staple lengths of 1.25 inches or greater; 77% by weight staple lengths of 1 inch or greater; and 96% by weight staple lengths of 0.75 inch or greater; with all lengths and percentages expressed to 2 significant figures.
  • Such exemplary fabrics can also be described as including 94% by weight of fibers at least 100 mtex; 87% by weight of fibers of at least 125 mtex; 76% by weight of fibers having at least 150 mtex: and 63% of fibers having at least 175 mtex; with all percentages expressed to 2 significant figures.
  • the invention is a method of making a yarn with selected properties of moisture management and hand.
  • the method includes the steps of opening an intimately blended bale of staple fibers in at least three different deniers, at least four different lengths, and at least two different cross sections, and forming the opened staple fibers into tow; forming the toe into a roving; and spinning the roving into yarn.
  • the intimately blended bale includes a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch; a combination of polyester staple fibers with staple deniers of 1.0 dpf, 1.2 dpf, and 1.5 dpf; a combination of polyester staple fibers with at least two different staple cross sections; 20% by weight staple length of 1.5 inches or greater; 54% by weight staple lengths of 1.25 inches or greater; 77% by weight staple lengths of 1 inch or greater; and 96% by weight staple lengths of 0.75 inch or greater; with all deniers, lengths and percentages expressed to 2 significant figures.
  • the method can include opening a bale that includes 94% by weight of fibers at least 100 mtex; 87% by weight of fibers of at least 125 mtex; 76% by weight of fibers having at least 150 mtex: and 63% of fibers having at least 175 mtex; with all percentages expressed to 2 significant figures.
  • a combination wire is typically used for carding a mixture of synthetic and natural fibers. Because the fiber blends according to the invention have a variable cut length that replicates the cumulative fiber length distribution curve of the pima cotton fibers as tested on the Lister AFIS (Advance Fiber Information System), a card with a combination wire was used to produce a 75 grain/yard sliver.
  • Lister AFIS Advanced Fiber Information System
  • the invention is an improvement in a cutter reel in which the improvement comprises spacing the blades in positions that cut the fibers to the desired combination of lengths on a single reel.
  • FIG. 8 illustrates a cutter reel assembled 10, and exploded 11.
  • the cutter reel includes a top split cover 12, a bottom split cover 13, and a blade retainer 14.
  • a top pin holder 15 and a bottom pin holder 16 together support a plurality of blade support pins 17.
  • Slots 20 on the blade support pins 17 support the blades 21 for cutting the tow as the cutter reel rotates. The rotation is driven using the drive hub 22 in a manner well understood by those of ordinary skill in this art.
  • the cutter reel is based on US Patent No. 4497231 , the contents of which are incorporated entirely herein by reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

A yarn is disclosed that is formed of a blend of polyester fibers customized by three parameters: (1) a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch; (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.

Description

MULTI-LENGTH, MULTI-DENIER, MULTI-CROSS SECTION FIBER BLEND YARN
Background
[001] The present invention relates to fibers, yarns and fabrics in the arena of technical wear, athletic wear or“athleisure” wear.
[002] The market for specialized garments for athletic and leisurewear has grown remarkably in recent years. This in turn has led to the development of, and the further desire to develop, specialized fabrics for such end uses. As is well understood by the skilled person in textiles, the performance of a garment is based upon the fabric from which it is cut and sewn, with the fabric in turn reflecting the properties of the yarn from which it is woven or knitted, and the properties of the yarn reflecting the staple fibers from which the yarn is formed.
[003] Accordingly, since the development and understanding of polymers beginning in the early 20th century, textile chemists have sought to mimic the best properties of natural fibers (cotton, wool, linen) as well as to tailor fiber properties to specific end uses.
[004] Cotton is an extremely comfortable fiber in many circumstances and cotton garments remain ubiquitous based on their light weight, versatility, and favorable hand. The term“hand” is used throughout this application in the sense that is well understood to the skilled person. It can be defined as,“a characteristic of fabrics that is perceived by touching, squeezing, or rubbing them” (Tortora at page 262), or as,“the “term used to describe the feel of a substrate (i.e., soft, raspy, stiff, etc.)” (Textile Glossary; Cotton Incorporated; www.cottoninc.com; accessed March 15, 2018.
[005] Nevertheless, and with particular respect to athletic or active wear, cotton has certain disadvantages. Cotton is highly absorbent, taking up to 27 times its weight in water, which adds undesired weight in the athletic wear context. Cotton also loses its insulating properties and can be abrasive when wet. Thus, in cold weather, active exercise (or work, etc.) cotton layers next to the skin quickly become wet, heavy, and cold. Cotton undergarments become abrasive when wet in both hot and cold weather.
[006] Wool has excellent insulating properties, can stretch as much as 30% beyond its relaxed length, and can absorb moisture in up to 50% of its dry weight without becoming saturated, Tortora, FAIRCHILD’S DICTIONARY OF TEXTILES, 7th Ed. (2009), page
634. Some types of wool are, however, uncomfortable next to the skin, and the more comfortable fibers (e.g., merino) tend to be more expensive. Silk is, of course, extremely comfortable, but in general too expensive for widespread use in mass-marketed athletic garments.
[007] Accordingly, much effort (and with some success), has been placed into developing synthetic-based fabrics from synthetic fibers, or blends of synthetic fibers with natural fibers; e.g., Dacron and wool, cotton and polyester, etc. Additionally, further effort has been applied to developing fully synthetic garments that mimic the comfortable hand of cotton, while providing better moisture management then standard cotton or common cotton-synthetic blends.
[008] The term moisture management is used to describe the capacity or ability of a fabric to pull or wick moisture (perspiration, humidity, rain) to an outer layer of a fabric from which it can evaporate. In many circumstances body temperature (98.6°F, 37°) can help drive wicking in fabric garments, particularly given that entropy will generally favor the vapor (i.e., more random) state. Moisture management is thus typically measured using water vapor transmission rate.
[009] Synthetics are not an automatic cure-all, however, because overcooling can give a clammy feel to the wearer. Accordingly, modern“technical" wear often consists of two types of yarn formed into several layers that are arranged so that thermodynamics drives perspiration from the skin to the first layer and then from the first layer to the outer layer. Modern technical fabrics may have as many as four or five layers for this purpose.
[010] Furthermore, because the starting fibers help establish the properties of the resulting fabric, the skilled person recognizes that with respect to (for example) cotton, shorter fibers produce yarns that in turn give fabrics with a better hand, while longer fibers give smoother more finished yarns, such as those that give a cotton business shirt (again, as just one example) a more finished look, but a rougher hand.
[011] The spinning technique (ring versus open end) likewise makes a difference in the appearance and hand of a finished garment.
[012] Accordingly the goal remains of designing specialized yarns that produce desired combinations of hand and moisture management.
Summary
[013] In one embodiment, the invention is a yarn consisting essentially of a blend of polyester fibers customized by three parameters: (1) a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch; (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.
[014] In another embodiment the invention is an intimately blended bale of polyester staple fibers in which the blend includes (1) a combination of staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and0.75 inch; (2) a combination of staple fibers with staple deniers (tex, fineness) of 1 .0 dpf, 1 .2 dpf, and 1 .5 dpf; and (3) a combination of staple fibers with at least two different staple cross sections.
[015] In another embodiment the invention is a fabric that includes at least some yarns that consist essentially of (1) a combination of polyester staple fibers with staple lengths of 1 .5 inches, 1 .25 inches, 1 .0 inch and 0.75 inch, (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1 .0 dpf, 1 .2 dpf, and 1 .5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.
[016] In another embodiment the invention is a resulting fabric according to selected from the group consisting of woven fabrics, nonwoven fabrics, and knitted fabrics.
[017] In another embodiment the invention is a method of making a yarn precursor blend with selected properties of moisture management and hand that includes the steps of spinning continuous synthetic filament in each of at least three different deniers and at least two different cross sections, gathering the different continuous filaments into a single tow, using a common cutter to cut the tow into it at least four different staple lengths, and blending the different length, different denier and different cross-sectional staple fibers into an intimately blended bale.
[018] In another embodiment the invention is a method of making a yarn precursor blend that includes the steps of spinning the continuous synthetic filament into staple deniers (tex, fineness) of 1 .0 dpf, 1 .2 dpf, and 1 .5 dpf, and using the common cutter to cut the tow into staple lengths of 1 .5 inches, 1 .25 inches, 1 .0 inch and 0.75 inch.
[019] In another embodiment the invention is a method of making a yarn with selected properties of moisture management and hand, that includes the steps of opening an intimately blended bale of staple fibers in at least three different deniers, at least four different lengths, and at least two different cross sections, and forming the opened staple fibers into tow, forming the toe into a roving; and spinning the roving into yarn.
[020] In another embodiment the invention is a method of making a yarn that includes comprising opening an intimately blended bale that consists essentially of (1) a combination of polyester staple fibers with staple lengths of 1 .5 inches, 1 .25 inches, 1 .0 inch and 0.75 inch; (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1 .0 dpf, 1.2 dpf, and 1 .5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.
[021] In another embodiment the invention is a reel assembly for use with a staple cutting apparatus that includes a cutter reel having a pair of annular reel members spaced axially one from the other with each reel member defining an outwardly facing axial surface having a predetermined diameter and a circumferential mating engagement portion; a plurality of cutter blades mounted in said reel members for engaging and cutting fiber; and a cover member encircling and affixed about one of the reel members; in which the improvement comprising cutter blades spaced to cut synthetic filament into discrete staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch.
[022] The foregoing and other objects and advantages of the invention and the manner in which the same are accomplished will become clearer based on the followed detailed description taken in conjunction with the accompanying drawings.
Brief Description of the Drawings
[023] Figure 1 is a micrograph of fibers with elliptical (oval) cross-sections according to the present invention.
[024] Figure 2 is a fiber length histogram based on one sample of a yarn according to the present invention.
[025] Figure 3 is a second fiber length histogram based on the same sample as Figure 2.
[026] Figure 4 is a fineness (denier, tex) histogram based on the same sample as Figures 2 and 3.
[027] Figure 5 is a fiber length histogram based on a second sample of a yarn according to the present invention.
[028] Figure 6 is a second fiber length histogram based on the same second sample as Figure 5.
[029] Figure 7 s a fineness (denier, ex) histogram based on the same sample as Figures 5 and 6.
[030] Figure 8 is a combination view of an assembled cutter reel and an exploded cutter reel that can be used to practice aspects of the present invention.
Detailed Description
[031] As used herein, the term polyester refers to any polymer formed by joining hydrocarbon chains with ester groups (Tortora, page 437). The US Federal Trade Commission defines polyester as,“[A] manufactured fiber in which the fiber-forming substance is any long chain synthetic polymer composed of at least 85% by weight of an ester of a substituted aromatic carboxylic acid, including but not restricted to substituted terephthalate units.” 16 C.F.R. § 303.7(c)(2018).
[032] Bale Density: A unit of measurement of weight per unit volume normally expressed as pounds per cubic foot. Density is calculated by dividing the net bale weight by the bale volume in cubic feet. Volume is determined by multiplying bale length, width and thickness dimensions expressed in feet. Thickness is determined by measuring from tie to tie across the crown of the bale.
[033] Universal Density (UD): Cotton bale density of at least 28 pounds per cubic foot.
[034] Standard Density (SD): Cotton bale density of at least 23 pounds per cubic foot but less than 28 pounds per cubic foot.
[035] Gin UD: Bale compressed at the gin to a density of at least 28 pounds per cubic foot.
[036] (Bale must be tied with strapping or wire as defined under Section 1.1 and 1.2).
[037] (Bales must be tied with strapping or wire as defined under Section 1.1 and 1.2).
[038] Gin SD: Bale compressed at the gin to a density of at least 23 pounds per cubic foot but less than 28 pounds per cubic foot.
[039] http://www.cotton.org/tech/bale/specs/definitions.cfm; accessed February 17,
2018
[040] Glossary from National Cotton Council of America7193 Goodlett Farms Parkway Cordova, TN 38016
[041] Spinning:
[042] As used in the textile industry, the term“spinning” has two distinct meanings. In a classical meaning dating almost to antiquity,“spinning” refers to the step of twisting fibers together to make yarns. In modern technology this is (typically) carried out using“ring” spinning or“open end” spinning, each of which are Familiar to the person of ordinary skill in the art; e.g. Tortora, Fairchilds Dictionary Of Textiles, 7th Ed. (2009) at pages 473 and 395.
[043] In another sense, the word“spinning” is used to refer to the step of extruding a polymer melt into individual filaments which are then processed further, typically including texturing, cutting into“staple” lengths, and spinning the polymer staple fibers into yarns in the open end or ring spinning sense. Tortora at page 536.
[044] The term“opening” is likewise well understood by the skilled person and generally represents a preliminary step in separating staple fibers taken from a compressed bale into looser tufts and removing (where necessary) heavier impurities. Tortora page 395.
[045] As used herein, the term polyester refers to any polymer formed by joining hydrocarbon chains with ester groups (Tortora at page 437).
[046] In a first aspect, the invention is a yarn consisting essentially of a blend of polyester fibers customized by three parameters: (1) a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch; (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.
[047] In exemplary embodiments, the yarn consist essentially of a blend of polyester fibers in the amounts of 20% by weight staple length of 1.5 inches or greater; 54% by weight staple lengths of 1.25 inches or greater; 77% by weight staple lengths of 1 inch or greater; and 96% by weight staple lengths of 0.75 inch or greater; with all lengths and percentages expressed to 2 significant figures.
[048] In such exemplary embodiments the yarn includes 94% by weight of fibers at least 100 mtex; 87% by weight of fibers of at least 125 mtex; 76% by weight of fibers having at least 150 mtex: and 63% of fibers having at least 175 mtex; with all percentages expressed to 2 significant figures.
[049] Table 1 sets forth exemplary length and dpf blends according to the invention.
Figure imgf000008_0001
[050] As used in Table 1 , 30's SIRO 100% means a 30 Ne yarn. (English yarn count;
30 x 840 yds = 25,200 yards of this yarn weighs 1 pound). It was spun on a SIRO ring spinning machine, in which 2 roving bobbins draft into 1 spinning bobbin, and this yarn was made of 100% polyester fiber in the indicated proportions.
[051] 40's CPRS 60/40 means a 40 Ne yarn (English yarn count; 40 x 840 yds = 33,600 yards of this yarn weighs 1 pound). The CP descriptor means combed cotton, so this sample represents 60% combed cotton blended with 40% polyester according to the invention. The RS designation means that this yarn was spun on a standard ring spinning frame, where 1 roving bobbin feeds 1 spinning position. To set forth an alternative, the nomenclature would use the acronym OE, which stands for open end spinning, also called rotor spinning.
[052] The yarn count numbers above are based on length/weight with the standard of yards/pound of yarn. This is the inverse of the denier system, which is based on weight/length.
[053] The data in Tables 2 and 3 were collected on samples of yarn made according to the invention and tested on an USTER® AFIS PRO 2 fiber process control system (Lister Technologies AG, Sonnenbergstrasse 10, 8610 Lister, Switzerland; www.uster.com; https://www.textilemates.com/siro-spinning-application; accessed February 24, 2018). The listed values are defined as follows:
[054] Tables 2 and 3: Numerical output of results
[055] Neps (a nep is defined as small knot of entangled fibers commonly regarded as a fault but sometimes introduced as an effect.
http://www.textileglossary.com/terms/nep.html; accessed February 25, 2018).
[056] Total nep cnt: Count of all neps in a sample (fiber and seed coat neps).
[057] Total nep mean size: Average size of all neps (fiber and seed coat neps) counted in microns.
[058] Fiber nep cnt: Count of all fiber neps.
[059] Fib nep mean size: Average size of all fiber neps in microns.
[060] SC nep count: Count of all seed coat neps.
[061] SC nep mean size: Average size of all seed coat neps in microns.
[062] Length
[063] L (w) Average fiber length by weight of all the cotton fibers in the sample.
[064] L (w) CV % Variation of the fiber length around the average is expressed as length variation by weight or CV %. CV is used in its well-understood statistical sense to express the ratio of the standard deviation to the mean.
[065] SFC (w) % Percent of all fibers in a cotton sample that are shorter than
12.7 mm (0.5 in.) by weight.
[066] UQL (w) % Length by which 25 % of all fibers by weight exceed in a cotton sample.
[067] L (n) Average fiber length by number of all cotton fibers in the sample.
[068] Variation of the fiber length around the average is expressed as length variation by number or CV %.
[069] SFC (n) % Percent of all fibers in a cotton sample that are shorter than 12.7 mm (0.5 in.) by number.
[070] 5 %L (n) Length of the longer 5 % of all fibers in a cotton sample. [071] Trash
[072] Total trash count: Count of all particles (dust and trash particles).
[073] Total trash size: Average size of all particles counted (dust and trash particles).
[074] Dust count: Count of all particles less than 500 microns in size.
[075] Dust mean size: Average size of all dust particles counted.
[076] Trash count: Count of all particles greater than 500 microns in size.
[077] Trash mean size: Average size of all trash particles counted VFM %: Calculation taking both dust and trash content as well as size into account; relates to gravimetric trash measurement methods such as Shirley Analyzer.
[078] Statistics Statistical values: Overall measurement protocol with statistical data in the result.
[079] Columns: Mean (Average), Standard deviation, Coefficient of variation CV %, 99 % confidence range, Min. value, Max. value.
3
O
O
o\
n H in o o
Figure imgf000011_0001
3 o
O
Os
o
Figure imgf000012_0002
n
H
in o o
Figure imgf000012_0001
[080] Some of the data in Tables 2 and 3 is illustrated as the histograms in Figures 2- 7. Figures 2-4 correspond to Table 2 and Figures 5-7 correspond to Table 3.
[081] Figure 2 is a histogram of fiber lengths by percent combined with a plot of fiber length versus cumulative percent, both factors being expressed by weight. As the tally columns further indicate, less than 13% (expressed as two significant figures) of the blend have lengths greater than 1.5 inches and only about 2.5% have lengths less than 0.75 inch.
[082] Figure 3 is a second histogram and plot based on the same sample with almost identical results: less than 14% are more than 1.5 inches in length and only about 5.6% are less than 0.75 inch in length.
[083] Figure 4 is a fineness histogram based on the same sample as Figures 2 and 3 and the selected blend of deniers (1 , 1.2, 1.5), expressed as mtex (i.e., 111 , 133, and 167; all expressed to three significant figures). Figure 4 illustrates that 80% of the fibers (expressed to two significant figures) are between 250 and 100 mtex inclusive, and that 67% (2/3) are between 225 and 125 mtex inclusive.
[084] Figure 5 is a histogram of fiber lengths by percent combined with a plot of fiber length versus cumulative percent for a second sample according to the invention, both factors being expressed by weight. As the Figure 5 tally columns further indicate, 8.0% (expressed as two significant figures) of the blend have lengths greater than 1.5 inches and only about 4.8% have lengths less than 0.75 inch.
[085] Figure 6 is a second histogram and plot based on the same sample with almost identical results: less than 12% are more than 1.5 inches in length and only about 4.0% are less than 0.75 inch in length.
[086] Figure 7 is a fineness histogram based on the same second sample as Figures 5 and 6 and the selected blend of deniers (1 , 1.2, 1.5), expressed as mtex (i.e., 111 , 133, and 167; all expressed to three significant figures). Figure 7 illustrates that 81% of the fibers
(expressed to two significant figures) are between 250 and 100 mtex inclusive, and that 68% (slightly more than 2/3) are between 225 and 125 mtex inclusive.
[087] Method
[088] In another aspect the invention is a method of forming a yarn precursor blend with selected properties of moisture management and hand. In this aspect, the invention includes the steps of spinning continuous synthetic filament in each of at least three different deniers and at least two different cross sections, gathering the different continuous filaments into a single tow, using a common cutter to cut the tow into it at least four different staple lengths, and blending the different length, different denier and different cross-sectional staple fibers into an intimately blended bale. In particular, the method includes spinning the continuous synthetic filament into staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and using the common cutter to cut the tow into staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch.
[089] In exemplary embodiments, the filament (and then the fiber) cross sections are circular and oval. The oval (or elliptical) cross section offers increased surface area relative to an otherwise similarly sized round filament or fiber, and thus provides an additional design factor for moisture management.
[090] The common cutter allows feeding and opening from one bale as opposed to drawing from multiple bales, each of which would have one of the separate characteristics. As known to those of skill in the art, the sooner different fibers are blended (i.e., earlier in the spinning process; baling, opening, drafting, etc.), the more consistent will be the characteristics for which the yarn was blended.
[091] Thus, in another aspect, the invention is an intimately blended bale of polyester staple fibers that includes the combination of staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and0.75 inch; the combination of staple fibers with staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and the combination of staple fibers with at least two different staple cross sections. It follows that an opened bale of this type, and a yarn spun from this bale share the length, denier and cross-sectional characteristics of the intimately blended bale.
[092] The intimately blended bale allows adjustment within a single bale and avoids the necessity to carefully meter fibers from multiple bales of different characteristics. The result is a yarn, and thus resulting fabrics, that are more consistent and precise on a weight for weight basis, and likewise avoid some of the more cumbersome aspects of other blending methods.
[093] Therefore, in another aspect, the invention is a fabric that includes at least some yarns that consist essentially of: (1) a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch; (2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and (3) a combination of polyester staple fibers with at least two different staple cross sections.
[094] Such a fabric cab be selected from the group consisting of woven fabrics, nonwoven fabrics, and knitted fabrics. [095] Exemplary fabric embodiments include a blend of polyester fibers in the amounts of 20% by weight staple length of 1.5 inches or greater; 54% by weight staple lengths of 1.25 inches or greater; 77% by weight staple lengths of 1 inch or greater; and 96% by weight staple lengths of 0.75 inch or greater; with all lengths and percentages expressed to 2 significant figures.
[096] Such exemplary fabrics can also be described as including 94% by weight of fibers at least 100 mtex; 87% by weight of fibers of at least 125 mtex; 76% by weight of fibers having at least 150 mtex: and 63% of fibers having at least 175 mtex; with all percentages expressed to 2 significant figures.
[097] In yet another aspect, the invention is a method of making a yarn with selected properties of moisture management and hand. In this aspect, the method includes the steps of opening an intimately blended bale of staple fibers in at least three different deniers, at least four different lengths, and at least two different cross sections, and forming the opened staple fibers into tow; forming the toe into a roving; and spinning the roving into yarn.
[098] The intimately blended bale includes a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch; a combination of polyester staple fibers with staple deniers of 1.0 dpf, 1.2 dpf, and 1.5 dpf; a combination of polyester staple fibers with at least two different staple cross sections; 20% by weight staple length of 1.5 inches or greater; 54% by weight staple lengths of 1.25 inches or greater; 77% by weight staple lengths of 1 inch or greater; and 96% by weight staple lengths of 0.75 inch or greater; with all deniers, lengths and percentages expressed to 2 significant figures.
[099] In this aspect, the method can include opening a bale that includes 94% by weight of fibers at least 100 mtex; 87% by weight of fibers of at least 125 mtex; 76% by weight of fibers having at least 150 mtex: and 63% of fibers having at least 175 mtex; with all percentages expressed to 2 significant figures.
[100] A combination wire is typically used for carding a mixture of synthetic and natural fibers. Because the fiber blends according to the invention have a variable cut length that replicates the cumulative fiber length distribution curve of the pima cotton fibers as tested on the Lister AFIS (Advance Fiber Information System), a card with a combination wire was used to produce a 75 grain/yard sliver.
[101] When fibers are only extended slightly in drafting there is a tendency for the high fiber-to-fiber cohesiveness to cause the fibers to snap back. To produce a yarn with better evenness values and fewer objectionable thin and thick places, the synthetic fibers should be extended far enough past each other to reduce fiber to fiber cohesion to a level that eliminates the snap back tendency.
[102] When processing 100% cotton fibers the drawing creel weights are typically higher (500 grains or higher) and the drawing drafts are usually low (5.0 to 5.5) based upon the low fiber to fiber cohesion of cotton. Nevertheless, a high creel grain weight using synthetic fibers may create too much bulk between the steel roll and the top cot, limiting the amount of fiber control and degrade quality.
[103] To manage the fiber to fiber cohesion, a two-step drawing process was utilized to combine different slivers creating a more homogeneous blending of the fibers. At the same time, a medium high draft (6.3 to 6.9) was utilized to extend the individual fibers further past each other which reduced the cohesiveness between the fibers.
[104] By selecting a finer 1.3 HR (hank roving), the draft in roving was moved upward toward the mid-to-high range (9.67), which further extended the fibers past each other and further controlled the fiber to fiber cohesion.
[105] The finer 1.3 HR reduced the ring spinning draft, which in turn allowed the ring frame drafting rolls to gain better control of the fibers. When spinning synthetic fibers it is important to manage roll chatter that is created by high fiber to fiber cohesion and an improper total draft and draft distribution. A high break draft (1.4 to 1.53) caused a slip-stick drafting of the fibers. The lower break draft (1.20) eliminated the chatter effect and produced better yarn evenness with fewer imperfections.
[106] In all drafting processes, breaker drawing, finisher drawing, roving and, spinning, the roll space settings were adjusted based on the longest 5% length as measured on the Uster AFIS (Advance Fiber Information System) to prevent unwanted fiber damage and at the same time to further extend the longest fibers by removing hooks that were formed in carding. Each process was also evaluated on the Uster Evennes’ tester (i.e. , CV). The roll space and break drafts were adjusted to achieve a mass diagram without thick or thin places and a spectrogram without build ups (indicating fiber floating) or mechanical faults. Table 4 lists the settings in each process.
Figure imgf000017_0001
[108] Other descriptions of the overall process in bringing staple to finished yarn can be found in Tortora, supra ; or from Reiter Corporation (www.reiter.com/en/rikipedia) or from Cotton Incorporated (www.cottoninc.com).
[109] In another aspect, the invention is an improvement in a cutter reel in which the improvement comprises spacing the blades in positions that cut the fibers to the desired combination of lengths on a single reel.
[110] Figure 8 illustrates a cutter reel assembled 10, and exploded 11. The cutter reel includes a top split cover 12, a bottom split cover 13, and a blade retainer 14. A top pin holder 15 and a bottom pin holder 16 together support a plurality of blade support pins 17. Slots 20 on the blade support pins 17 support the blades 21 for cutting the tow as the cutter reel rotates. The rotation is driven using the drive hub 22 in a manner well understood by those of ordinary skill in this art.
[111] As illustrated, the cutter reel is based on US Patent No. 4497231 , the contents of which are incorporated entirely herein by reference.
[112] In the drawings and specification there has been set forth a preferred embodiment of the invention, and although specific terms have been employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being defined in the claims.

Claims

Claims
1. A yarn consisting essentially of a blend of polyester fibers customized by three parameters:
(1) a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch;
(2) a combination of polyester staple fibers with staple deniers ( tex , fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and
(3) a combination of polyester staple fibers with at least two different staple cross sections.
2. A yarn according to Claim 1 that includes some staple fibers with circular cross sections and some with oval cross sections.
3. A yarn consisting essentially of a blend of polyester fibers in the amounts of
20% by weight staple length of 1.5 inches or greater;
54% by weight staple lengths of 1.25 inches or greater;
77% by weight staple lengths of 1 inch or greater; and
96% by weight staple lengths of 0.75 inch or greater;
with all lengths and percentages expressed to 2 significant figures.
4. A yarn consisting essentially of a blend of polyester fibers that includes:
94% by weight of fibers at least 100 mtex;
87% by weight of fibers of at least 125 mtex;
76% by weight of fibers having at least 150 mtex: and
63% of fibers having at least 175 mtex;
with all percentages expressed to 2 significant figures.
5. An intimately blended bale of polyester staple fibers comprising:
(1) a combination of staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and0.75 inch;
(2) a combination of staple fibers with staple deniers ( tex , fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and
(3) a combination of staple fibers with at least two different staple cross sections.
6. An opened bale according to Claim 5.
7. A yarn spun from the opened bale of Claim 6.
8. A fabric that includes at least some yarns that consist essentially of:
(1) a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch;
(2) a combination of polyester staple fibers with staple deniers (tex, fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and
(3) a combination of polyester staple fibers with at least two different staple cross sections.
9. A fabric according to Claim 8 selected from the group consisting of woven fabrics, nonwoven fabrics, and knitted fabrics.
10. A fabric according to Claim 8 consisting essentially of a blend of polyester fibers in the amounts of
20% by weight staple length of 1.5 inches or greater;
54% by weight staple lengths of 1.25 inches or greater;
77% by weight staple lengths of 1 inch or greater; and
96% by weight staple lengths of 0.75 inch or greater;
with all lengths and percentages expressed to 2 significant figures.
11. A fabric according to Claim 8 consisting essentially of a blend of polyester fibers that includes:
94% by weight of fibers at least 100 mtex;
87% by weight of fibers of at least 125 mtex;
76% by weight of fibers having at least 150 mtex: and
63% of fibers having at least 175 mtex;
with all percentages expressed to 2 significant figures.
12. A method of making a yarn precursor blend with selected properties of moisture management and hand, the method comprising:
spinning continuous synthetic filament in each of at least three different deniers and at least two different cross sections;
gathering the different continuous filaments into a single tow;
using a common cutter to cut the tow into it at least four different staple lengths; and blending the different length, different denier and different cross-sectional staple fibers into an intimately blended bale.
13. A method of making a yarn precursor blend according to Claim 12 comprising spinning the continuous synthetic filament into staple deniers ( tex , fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and
using the common cutter to cut the tow into staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch.
14. A method according to claim 13 where in the spinning step is preceded by at least one drafting step that extends the fibers far enough past each other to reduce fiber-to- fiber cohesion to a level that minimizes snap back among the fibers.
15. A method according to Claim 12 wherein the opening step produces some continuous filament with a circular cross section and some continuous filament with an oval cross section.
16. A method of making a yarn with selected properties of moisture management and hand, the method comprising:
opening an intimately blended bale of staple fibers in at least three different deniers, at least four different lengths, and at least two different cross sections, and forming the opened staple fibers into tow;
forming the toe into a roving; and
spinning the roving into yarn.
17. A method of making a yarn according to Claim 16 comprising opening an intimately blended bale that consists essentially of
(1) a combination of polyester staple fibers with staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch;
(2) a combination of polyester staple fibers with staple deniers ( tex , fineness) of 1.0 dpf, 1.2 dpf, and 1.5 dpf; and
(3) a combination of polyester staple fibers with at least two different staple cross sections.
18. A method according to Claim 16 comprising opening a bale that consists essentially of a blend of polyester fibers in the amounts of
20% by weight staple length of 1.5 inches or greater;
54% by weight staple lengths of 1.25 inches or greater;
77% by weight staple lengths of 1 inch or greater; and
96% by weight staple lengths of 0.75 inch or greater;
with all lengths and percentages expressed to 2 significant figures.
19. A method according to Claim 16 comprising opening a bale that consists essentially of a blend of polyester fibers that includes:
94% by weight of fibers at least 100 mtex;
87% by weight of fibers of at least 125 mtex;
76% by weight of fibers having at least 150 mtex: and
63% of fibers having at least 175 mtex;
with all percentages expressed to 2 significant figures.
20. In a reel assembly for use with a staple cutting apparatus that includes:
a cutter reel having a pair of annular reel members spaced axially one from the other with each reel member defining an outwardly facing axial surface having a predetermined diameter and a circumferential mating engagement portion;
a plurality of cutter blades mounted in said reel members for engaging and cutting fiber; and
a cover member encircling and affixed about one of the reel members;
the improvement comprising cutter blades spaced to cut synthetic filament into discrete staple lengths of 1.5 inches, 1.25 inches, 1.0 inch and 0.75 inch.
PCT/US2019/015996 2018-01-31 2019-01-31 Multi-length, multi-denier, multi-cross section fiber blend yarn WO2019152615A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980019410.1A CN111868317A (en) 2018-01-31 2019-01-31 Multi-length, multi-denier and multi-section fiber blended yarn
EP19748287.0A EP3746588A4 (en) 2018-01-31 2019-01-31 Multi-length, multi-denier, multi-cross section fiber blend yarn
JP2020541962A JP7354118B2 (en) 2018-01-31 2019-01-31 Blended yarn of fibers with multiple lengths, multiple deniers, and multiple cross sections

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862624422P 2018-01-31 2018-01-31
US62/624,422 2018-01-31
US201862746619P 2018-10-17 2018-10-17
US62/746,619 2018-10-17
US16/262,234 US20190233982A1 (en) 2018-01-31 2019-01-30 Multi-length, multi-denier, multi-cross section fiber blend yarn
US16/262,234 2019-01-30

Publications (1)

Publication Number Publication Date
WO2019152615A1 true WO2019152615A1 (en) 2019-08-08

Family

ID=67393199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/015996 WO2019152615A1 (en) 2018-01-31 2019-01-31 Multi-length, multi-denier, multi-cross section fiber blend yarn

Country Status (5)

Country Link
US (1) US20190233982A1 (en)
EP (1) EP3746588A4 (en)
JP (1) JP7354118B2 (en)
CN (1) CN111868317A (en)
WO (1) WO2019152615A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788210B1 (en) 2018-09-10 2023-10-17 Under Armour, Inc. Athletic apparel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497231A (en) 1983-02-09 1985-02-05 D. M. & E. Corporation Fiber cutter component
US4569264A (en) * 1984-11-29 1986-02-11 Lummus Industries, Inc. Apparatus for cutting elongated material into shorter lengths
US4991387A (en) * 1988-03-30 1991-02-12 Teijin Limited Polyester and cotton blended yarn and polyester staple fiber stock used therein
WO2007040848A1 (en) * 2005-09-29 2007-04-12 Invista Technologies S.A R.L. Scalloped oval bicomponent fibers with good wicking, and high uniformity spun yarns comprising such fibers
JP2007247127A (en) * 2006-02-20 2007-09-27 Toray Ind Inc Textured composite yarn
JP2012219396A (en) * 2011-04-07 2012-11-12 Kuraray Co Ltd Cation-dyeable polyester fiber excellent in dyeability, and fiber assembly
US9663876B2 (en) * 2012-02-27 2017-05-30 Toray Industries, Inc. Sea-island composite fiber, mixed yarn and fiber product

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371475A (en) * 1965-09-20 1968-03-05 Du Pont Bulky, high-strength polyethylene terephthalate yarns
US3831481A (en) * 1971-06-14 1974-08-27 Lummus Industries Cutter reels for fiber cutting apparatus
US3965664A (en) * 1971-11-01 1976-06-29 Kammgarnspinnerei Buerglen Method of making spun yarn
US4384450A (en) * 1979-08-13 1983-05-24 Celanese Corporation Mixed fiber length yarn
US4538490A (en) * 1983-05-02 1985-09-03 Celanese Corporation Staple fiber cutter
US5188892A (en) * 1986-10-31 1993-02-23 E. I. Du Pont De Nemours And Company Spun textile yarns
JP2633317B2 (en) * 1988-07-25 1997-07-23 帝人株式会社 Polyester staple fiber for spinning
JP2801264B2 (en) * 1989-05-24 1998-09-21 帝人株式会社 Synthetic fiber yarn having high-quality cotton-like feeling and method for producing the same
US5837370A (en) * 1995-06-30 1998-11-17 E.I. Du Pont De Nemours And Company Fabrics of wool and/or polyester fibers
US5591523A (en) * 1995-06-30 1997-01-07 E. I. Du Pont De Nemours And Company Polyester tow
WO2014156451A1 (en) * 2013-03-27 2014-10-02 東レ株式会社 Spun yarn and woven or knitted fabric

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497231A (en) 1983-02-09 1985-02-05 D. M. & E. Corporation Fiber cutter component
US4569264A (en) * 1984-11-29 1986-02-11 Lummus Industries, Inc. Apparatus for cutting elongated material into shorter lengths
US4991387A (en) * 1988-03-30 1991-02-12 Teijin Limited Polyester and cotton blended yarn and polyester staple fiber stock used therein
WO2007040848A1 (en) * 2005-09-29 2007-04-12 Invista Technologies S.A R.L. Scalloped oval bicomponent fibers with good wicking, and high uniformity spun yarns comprising such fibers
JP2007247127A (en) * 2006-02-20 2007-09-27 Toray Ind Inc Textured composite yarn
JP2012219396A (en) * 2011-04-07 2012-11-12 Kuraray Co Ltd Cation-dyeable polyester fiber excellent in dyeability, and fiber assembly
US9663876B2 (en) * 2012-02-27 2017-05-30 Toray Industries, Inc. Sea-island composite fiber, mixed yarn and fiber product

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COTTON INCORPORATED, TEXTILE GLOSSARY, 15 March 2018 (2018-03-15), Retrieved from the Internet <URL:www.cottoninc.com>
See also references of EP3746588A4
TORTORA: "FAIRCHILD'S DICTIONARY OF TEXTILES", 2009, pages: 473,395

Also Published As

Publication number Publication date
EP3746588A1 (en) 2020-12-09
EP3746588A4 (en) 2022-03-16
CN111868317A (en) 2020-10-30
US20190233982A1 (en) 2019-08-01
JP7354118B2 (en) 2023-10-02
JP2021512236A (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP4125065B2 (en) Banana fiber and its production method, blended yarn using the same, and fiber structure
Lord Handbook of yarn production: Technology, science and economics
KR102034218B1 (en) A method for preparing leather fiber spun yarn using leather fiber and a leather fiber spun yarn prepared using the thereof
CN104499135B (en) Method for producing high-count yarns from vinylon and polyester fibers, and cotton by blending
CN104005133B (en) A kind of terylene, regeneration cotton, color hemp blended knitted yarn and processing method
CN109295576A (en) Flame-retardant yarn, protection fabric and its production technology
CN101967710A (en) Bamboo fiber yarns and production method thereof
KR101825928B1 (en) manufacturing method of hemp blended single spun yarn
CN105755624A (en) Production technology of air spinning cotton core filament covering yarn
CN110699809A (en) Production method of differential twist composite yarn
CN102517735A (en) Blended yarn with natural bamboo fiber and anti-pilling polyester fiber and production process thereof
CN101736467B (en) Protein air-conditioning fiber and tencel fiber blended knitting yarn and production process thereof
CN106835415A (en) A kind of linnet yarn and preparation method thereof
CN110699806A (en) Soft and warm skin-friendly functional blended yarn
US20190233982A1 (en) Multi-length, multi-denier, multi-cross section fiber blend yarn
JP2020530884A (en) Yarn incorporating fluoropolymer staple fibers
CN206529559U (en) A kind of linnet yarn
CN205529243U (en) For military use dress special type yarn
EP1591571A1 (en) Down branch fiber fabric and the fabricating method thereof
CN101353838A (en) High content mink velvet yarn, manufacturing method thereof and mink velvet acquiring method
CN109667009A (en) A kind of preparation method of the scribbled of cashmere and mulberry silk
CN108866709A (en) A kind of Clima fiber and cotton blend compact spinning and manufacturing process
CN102953182A (en) Production process of blended yarn
JP2005213684A (en) Composite yarn and cloth having high water-absorbing and quick-drying property
WO2013005808A1 (en) Drawing frame device, core-sheath compound spun yarn manufacturing method, core-sheath compound spun yarn, and woven object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019748287

Country of ref document: EP

Effective date: 20200831