WO2019151614A1 - Fuel atomization module depending on real-time vehicle state and fuel atomization method using same - Google Patents

Fuel atomization module depending on real-time vehicle state and fuel atomization method using same Download PDF

Info

Publication number
WO2019151614A1
WO2019151614A1 PCT/KR2018/012819 KR2018012819W WO2019151614A1 WO 2019151614 A1 WO2019151614 A1 WO 2019151614A1 KR 2018012819 W KR2018012819 W KR 2018012819W WO 2019151614 A1 WO2019151614 A1 WO 2019151614A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
value
sensor
rapid
real
Prior art date
Application number
PCT/KR2018/012819
Other languages
French (fr)
Korean (ko)
Inventor
최고운
강선희
최고동
Original Assignee
최고운
강선희
최고동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최고운, 강선희, 최고동 filed Critical 최고운
Publication of WO2019151614A1 publication Critical patent/WO2019151614A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/08Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by sonic or ultrasonic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a high frequency application type fuel atomization apparatus of an internal combustion engine that obtains an output by burning fuel such as gasoline or diesel.
  • Another object of the present invention is to provide a fuel atomization module and a fuel atomization method using the same according to a real-time vehicle state, by determining whether braking and rapid acceleration of a vehicle can be controlled.
  • the fuel atomization module includes a rapid acceleration sensor, a rapid braking sensor, a piezo sensor, a control unit, and a fuel atomization device.
  • the rapid acceleration sensor measures the rapid acceleration degree of the fuel vehicle in real time.
  • the sudden braking sensor measures the degree of sudden braking of the vehicle in real time.
  • Piezo sensors measure the flow of fuel lines in real time.
  • the controller determines the atomization degree of the fuel based on the real-time measurement values received from the rapid acceleration sensor, the rapid braking sensor, and the piezo sensor, and generates an output signal accordingly.
  • the fuel atomization device applies a sine wave to the fuel in accordance with the output signal of the controller.
  • the rapid acceleration sensor may measure the rotational acceleration of the accelerator of the vehicle, and the rapid braking sensor may measure the rotational acceleration of the brake of the vehicle.
  • the controller divides the real-time measurement value received from the piezo sensor into sampling interval units, compares the measured value in the current sampling interval with the measured value in the past sampling interval before the current sampling interval, and immediately after the current sampling interval. It is possible to predict the measured value in the future sampling interval of and to determine the required degree of atomization of the fuel based on the predicted measured value.
  • the controller may include: a difference between the measured value in the first past sampling section immediately before the current sampling section and the measured value in the second past sampling section immediately before the first past sampling section, and the first past sampling. By comparing the difference between the measured value in the interval and the measured value in the current sampling interval, an output signal can be generated by predicting the measured value in the future sampling interval.
  • the fuel atomization device includes: a sinusoidal amplifier for amplifying and outputting a sine wave corresponding to the output signal of the control unit; And a sine wave applicator configured to transfer the sine wave output from the sine wave amplifier to the fuel to atomize the fuel.
  • the fuel atomization method of the fuel atomization module includes a step of receiving, by the controller, signals about the degree of rapid start and the degree of sudden braking from the rapid acceleration sensor and the rapid braking sensor.
  • the control unit receives a signal for the state of the flow rate from the piezo sensor. And determining the output signal according to the received braking degree, sudden oscillation degree, and flow rate. Outputting and amplifying a sine wave according to the output signal. Delivering the amplified sine wave to a flow rate supplied to an engine to atomize fuel.
  • the signal for the flow state is between the flow state measurement value in the first past sampling section immediately before the current sampling section and the flow state measurement value in the second past sampling section immediately before the first past sampling section.
  • the difference between the flow state measurement value in the first past sampling section and the flow state measurement value in the current sampling section may be generated by predicting the measurement value of the future sampling section.
  • the rapid acceleration degree signal may correspond to a value of measuring rotational acceleration of the accelerator of the vehicle, and the rapid braking degree signal may correspond to a value of measuring the rotational acceleration of the brake of the vehicle.
  • the optimum fuel atomization is achieved by determining the atomization degree of the fuel by combining the current rapid acceleration and rapid braking sensing value with the future piezo sensing value, thereby improving fuel efficiency.
  • FIG. 1 is a conceptual diagram of a fuel atomization module according to a real-time vehicle state according to an embodiment of the present invention.
  • Figure 2 is a graph showing a method for obtaining a piezo sensing value in the present invention.
  • FIG. 3 is a flow chart of a fuel atomization method according to another embodiment of the present invention.
  • FIG. 1 is a conceptual diagram of a fuel atomization module 100 according to a real-time vehicle state according to an embodiment of the present invention.
  • the fuel atomization module 100 includes a rapid acceleration sensor 10, a rapid braking sensor 20, a piezo sensor 30, And a control unit 40 and a fuel atomization device 50.
  • the rapid acceleration sensor 10 measures the degree of rapid acceleration of the vehicle.
  • the rapid braking sensor 20 measures the degree of rapid braking.
  • the piezo sensor 30 measures the flow state of the fuel line 5 in real time.
  • the controller 40 drives the fuel atomization device 50 based on the measurement values measured from the piezo sensor 30, the rapid braking sensor 20, and the rapid acceleration sensor 10.
  • the fuel atomization device 50 applies a sine wave to the fuel line 5 so as to atomize the fuel in accordance with the output signal of the controller 40.
  • the required amount of fuel is further increased, and thus the air-fuel ratio is rapidly lowered.
  • the rapid acceleration sensor 10 may measure the rotational acceleration of the accelerator 1 of the vehicle, and the rapid braking sensor 20 may measure the rotational acceleration of the brake 2 of the vehicle. Accordingly, when the accelerator 1 and the brake 2 are urgently pressed, the acceleration of rotation of the accelerator 1 and the brake 2 is accelerated. According to the present invention, the atomization degree of the fuel can be adjusted according to the rapid acceleration and the braking degree regardless of the speed of the vehicle.
  • the present invention further includes a piezo sensor 30.
  • the piezo sensor 30 is attached to the fuel line 5 to determine the flow rate of the fuel passing through the fuel line 5.
  • the flow rate state of the fuel includes vibration degree and fuel amount in the fuel flow.
  • the value transmitted to the piezo sensor 30 is changed according to the flow rate state, and the piezo sensor 30 sends an output signal in response to the value.
  • control unit 40 divides the real-time measurement value received from the piezo sensor 30 in units of sampling intervals, the measured value in the current sampling interval, and the measured value in the past sampling interval before the current sampling interval. By comparing this, it is possible to predict the atomization degree of the fuel required in the future sampling section immediately after the current sampling section, and transmit it to the fuel atomization device 50 as part of the output signal.
  • control unit generates an output signal by combining the measured value of the real-time sudden braking sensor, the measured value of the real-time rapid acceleration sensor, and the measured value predicted in the future sampling interval from the piezo sensor.
  • the piezo sensor 30 continuously measures the fuel flow state measurement value reaching the piezo sensor 30 per unit time (for convenience, referred to as a "sampling section").
  • the measured value obtained in the current sampling period DELTA t is called the current measured value c.
  • the measured value obtained in the sampling section ⁇ (t-1) immediately before the current sampling section is called the first past measured value b.
  • the measured value obtained in the sampling section ( ⁇ (t-2)) immediately before the first past measured value is referred to as the second past measured value a.
  • the value predicted in the future sampling interval ⁇ (t + 1) immediately after the current sampling interval is called a future prediction value d.
  • the measured value in each sampling section can be calculated
  • the control unit 40 determines the difference cb between the current measured value c in the current sampling interval and the first past measured value b in the first past sampling interval (this is referred to as a "current difference value").
  • control part 40 calls the difference ba (the past difference value) between the 1st past measured value b per 1st sampling interval, and the 2nd past measured value a per 2nd sampling interval. )
  • the future prediction value is predicted according to the ratio of the present difference value c-b and the past difference value b-a, and the degree of atomization of the fuel is determined according to the future prediction value.
  • the fuel atomization device 50 is used for fuel atomization. Try to slow down the signal strength.
  • the time of the first past sampling section, the time of the second past sampling section, and the time of the current sampling section are all the same.
  • the values of the rapid braking sensor 20 and the rapid acceleration sensor 10 are to grasp the current state and to control the fuel atomization degree. In the case of the piezo sensor 30, the degree of fuel atomization is controlled by predicting a future state.
  • the controller 40 combines the measured value of the sudden braking sensor 20, the measured value of the rapid acceleration sensor 10, and the future predicted value calculated from the measured value of the piezo sensor 30, and transmits the signal to the fuel. You can adjust the size.
  • the weight of the signal value corresponding to the measured value of the sudden braking sensor 20 may be set to 40%, and the weight of the sudden braking sensor 20 and the signal value corresponding to the future prediction value may be set to 30%, respectively. .
  • the weight of the signal value is adjustable according to the state of the vehicle, the type of engine, and the type of fuel.
  • the fuel atomization device 50 applies a sine wave to the fuel in accordance with a signal from the controller 40.
  • the degree of fuel atomization varies according to the magnitude of the sine wave signal.
  • the fuel atomization device 50 may include a sine wave amplifier 52 and a sine wave applicator 54.
  • the sine wave amplifier 52 amplifies and outputs a sine wave corresponding to the output signal of the controller 40.
  • the sine wave applicator 54 delivers a sine wave output from the sine wave amplifier 52 to the fuel to atomize the fuel.
  • the fuel atomization device 50 will be described in more detail.
  • the values transmitted from the control unit 40 generate triangular waves.
  • each measured value may be a pulse signal, and the control unit 40 may receive the pulse signal and generate a triangular wave. It is a technique that can be easily implemented by those skilled in the art to generate a triangular wave by a program by inputting a square wave pulse.
  • the sine wave amplifier 52 functions to shape a triangular wave generated by the control unit 40 and convert it into a high frequency sine wave of about 200 Hz to 8 kHz. As the period of the pulse signal output from the control unit 40 decreases (the frequency increases), the frequency of the sine wave output from the sine wave amplifier 52 increases.
  • the triangular wave is output from the controller 40, since the triangular wave is a small power signal having a small current, power amplification must be performed in order to apply sufficient energy to the fuel. In this case, the sinusoidal amplifier 52 takes charge.
  • the sine wave applicator 54 applies the + sine wave and the ⁇ sine wave output from the sine wave amplifier 52 to the fuel line 5 through which the fuel flows. In this case, it can be applied by the coil 56 wound on the fuel line.
  • FIG. 3 is a flow chart illustrating a fuel atomization method in another aspect of the present invention.
  • the fuel atomization method of the present invention step (S100) to measure the rapid acceleration value / the rapid braking value from the rapid acceleration sensor / sudden braking sensor.
  • a piezo value is measured from the piezo sensor (S200).
  • the controller generates a rapid acceleration signal, a signal for rapid braking information, rapid braking information, and a rapid braking signal, from the rapid acceleration sensor 10 and the rapid braking sensor 20 (S300).
  • the control unit receives a piezo value from the piezo sensor 30 (S400) and calculates a future piezo signal through the piezo value (S500).
  • the controller 40 may adjust the magnitude of the signal transmitted to the fuel by combining the values of the rapid braking sensor 20, the rapid acceleration sensor 10, and the piezo sensor 30.
  • the weight of the signal value received from the sudden braking sensor 20 may be set to 40%, and the weight of the signal value received from the sudden braking sensor 20 and the piezo sensor 30 may be set to 30%.
  • the weight of the signal value is adjustable according to the state of the vehicle, the type of engine, and the type of fuel.
  • the step of calculating the future piezo signal (S500), the flow rate measurement value in the first past sampling interval immediately before the current sampling interval and the flow rate in the second past sampling interval immediately before the first past sampling interval The difference between the state measurement values and the difference between the flow state measurement value in the first past sampling interval and the flow state measurement value in the current sampling interval may be compared to predict the predicted value of the future sampling interval.
  • the piezo signal may be generated based on the predicted value of the future sampling interval.
  • the present invention is applicable to the automotive industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The present invention relates to a fuel atomization module depending on a real-time vehicle state and a fuel atomization method using same, which predict the present and the future to optimize fuel atomization. Therefore, the fuel atomization module depending on a real-time vehicle state of the present invention comprises: a rapid acceleration sensor for measuring the degree of rapid acceleration of a vehicle in real time; a rapid braking sensor for measuring the degree of rapid braking of the vehicle in real time; a piezo sensor for measuring a flow state of a fuel line in real time; a control unit for deciding the degree of fuel atomization on the basis of a real-time measured value received from the rapid acceleration sensor, the rapid braking sensor, and the piezo sensor, and generating an output signal according to the decided degree; and a fuel atomization device for applying a sine wave to a fuel in response to the output signal of the control unit.

Description

실시간 차량상태에 따른 연료 미립화 모듈 및 이를 이용한 연료 미립화 방법Fuel atomization module according to real time vehicle status and fuel atomization method using same
본 발명은 휘발유, 경유 등의 연료를 연소시켜 출력을 얻는 내연기관의 고주파 인가식 연료 미립화 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency application type fuel atomization apparatus of an internal combustion engine that obtains an output by burning fuel such as gasoline or diesel.
자동차, 원동기형 내연기관 또는 보일러 등의 유류 연소 장치에 사용되는 연료를 저감하기 위한 노력이 끊임없이 진행되고 있다. Efforts are constantly being made to reduce the fuel used in oil combustion devices such as automobiles, prime movers or boilers.
특히 차량의 경우, 연료를 미립화 하여서 공연비를 향상시켜서, 연료를 저감하는 방법이 있다. 상기 연료를 미립화 시킨다면, 연료입자의 사이즈가 작아짐과 동시에 연료 분자가 산소분자가 결합하는 양이 많아지게 된다. 이에 따라서 완전 연소가 가능하게 되어서, 연비 향상이 이루어진다. 그러나 연료 미립화의 경우 에너지가 많이 소비된다는 부작용이 발생하기도 한다.In particular, in the case of a vehicle, there is a method of reducing fuel by atomizing fuel to improve air-fuel ratio. When the fuel is atomized, the size of the fuel particles is reduced and the amount of oxygen molecules bonded to the fuel molecules is increased. Accordingly, complete combustion is possible, thereby improving fuel economy. However, fuel atomization also has the side effect of high energy consumption.
최근에는, 연료의 유량에 따라서 연료의 미립화 정도를 조절하거나, 차량 속도에 따라서 연료의 미립화 정도를 조절하는 기술이 개재되고 있다.In recent years, the technology which adjusts the atomization degree of fuel according to the flow volume of fuel, or the atomization degree of fuel according to a vehicle speed is interposed.
그러나, 이러한 경우에는, 유량 센서 또는 속도 센서로부터 컨트롤러가 그 센싱값을 전달 받는 순간은 이미 과거의 유량 및 속도가 된다. 따라서 단순히 과거에 발생한 속도나 유량에 맞추어서 연료의 미립화를 조절하는 것으로서, 정확한 컨트롤이 될 수가 없어서, 엔진 효율을 최적화하기 어렵다. In this case, however, the moment the controller receives its sensing value from the flow sensor or speed sensor is already the flow rate and speed of the past. Therefore, simply adjusting the atomization of the fuel according to the speed or flow rate generated in the past, it cannot be precise control, it is difficult to optimize the engine efficiency.
또한, 급가속이나 급제동시에 연료가 많이 필요한데, 이 경우 단순히 속도 또는 유량을 가지고 연료 미립화 정도를 컨트롤 하게 되면, 엔진의 효율이 최적화될 수 없다.In addition, a lot of fuel is required during rapid acceleration or sudden braking, in which case simply controlling the degree of fuel atomization with speed or flow rate, the efficiency of the engine cannot be optimized.
본 발명은, 실시간으로 차량 상태를 파악하고, 이를 미리 예측하여 연료를 미립화하도록 하는 실시간 차량상태에 따른 연료 미립화 모듈 및 이를 이용한 연료 미립화 방법을 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a fuel atomization module and a fuel atomization method using the same according to a real-time vehicle state to grasp a vehicle state in real time and predict the fuel in advance.
본 발명의 다른 목적은, 차량의 급제동과 급가속 여부를 판단하여서, 연료의 미립화 정도를 조절할 수 있는, 실시간 차량상태에 따른 연료 미립화 모듈 및 이를 이용한 연료 미립화 방법을 제공하는 것이다. Another object of the present invention is to provide a fuel atomization module and a fuel atomization method using the same according to a real-time vehicle state, by determining whether braking and rapid acceleration of a vehicle can be controlled.
따라서, 본 발명의실시간 차량상태에 따른 연료 미립화 모듈은, 급가속 센서와, 급제동 센서와, 피에조 센서와, 제어부와, 연료 미립화 장치를 포함한다. Accordingly, the fuel atomization module according to the real-time vehicle state of the present invention includes a rapid acceleration sensor, a rapid braking sensor, a piezo sensor, a control unit, and a fuel atomization device.
급가속센서는 연료차량의 급가속 정도를 실시간으로 측정한다. 급제동 센서는 차량의 급제동 정도를 실시간으로 측정한다. 피에조 센서는 연료라인의 유동 상태를 실시간으로 측정한다. 제어부는 상기 급가속 센서, 급제동 센서 및 피에조 센서로부터 받은 실시간 측정값을 토대로 연료의 미립화 정도를 정하고, 이에 맞추어 출력신호를 발생시킨다. 연료 미립화 장치는 상기 제어부의 출력신호에 맞추어 연료에 사인파를 인가한다. The rapid acceleration sensor measures the rapid acceleration degree of the fuel vehicle in real time. The sudden braking sensor measures the degree of sudden braking of the vehicle in real time. Piezo sensors measure the flow of fuel lines in real time. The controller determines the atomization degree of the fuel based on the real-time measurement values received from the rapid acceleration sensor, the rapid braking sensor, and the piezo sensor, and generates an output signal accordingly. The fuel atomization device applies a sine wave to the fuel in accordance with the output signal of the controller.
상기 급가속센서는 차량의 엑셀레이터의 회전 가속도를 측정하고, 상기 급제동센서는 차량의 브레이크의 회전 가속도를 측정할 수 있다.The rapid acceleration sensor may measure the rotational acceleration of the accelerator of the vehicle, and the rapid braking sensor may measure the rotational acceleration of the brake of the vehicle.
상기 제어부는, 상기 피에조 센서로부터 받는 실시간 측정값을 샘플링 구간 단위로 구분하여, 현재 샘플링 구간에서의 측정값과, 상기 현재 샘플링 구간 전의 과거 샘플링 구간에서의 측정값을 비교하여서, 상기 현재 샘플링 구간 직후의 미래 샘플링 구간에서 측정값을 예측하고, 상기 예측한 측정값을 토대로 필요한 연료의 미립화 정도를 정할 수 있다. The controller divides the real-time measurement value received from the piezo sensor into sampling interval units, compares the measured value in the current sampling interval with the measured value in the past sampling interval before the current sampling interval, and immediately after the current sampling interval. It is possible to predict the measured value in the future sampling interval of and to determine the required degree of atomization of the fuel based on the predicted measured value.
이 경우, 상기 제어부는: 상기 현재 샘플링 구간 직전의 제1 과거 샘플링 구간에서의 측정값과 상기 제1 과거 샘플링 구간 직전의 제2 과거 샘플링 구간에서의 측정값 사이의 차와, 상기 제1 과거 샘플링 구간에서의 측정값과 현재 샘플링 구간에서의 측정값 사이의 차이를 비교하여서, 미래 샘플링 구간의 측정값을 예측하여 출력신호를 생성할 수 있다. In this case, the controller may include: a difference between the measured value in the first past sampling section immediately before the current sampling section and the measured value in the second past sampling section immediately before the first past sampling section, and the first past sampling. By comparing the difference between the measured value in the interval and the measured value in the current sampling interval, an output signal can be generated by predicting the measured value in the future sampling interval.
또한, 상기 연료 미립화 장치는: 상기 제어부의 출력신호에 대응되는 사인파를 증폭하여 출력하는 사인파 증폭기; 및 상기 사인파 증폭기로부터 출력되는 사인파를 연료에 전달하여 상기 연료를 미립화하는 사인파 인가기;를 구비할 수 있다. In addition, the fuel atomization device includes: a sinusoidal amplifier for amplifying and outputting a sine wave corresponding to the output signal of the control unit; And a sine wave applicator configured to transfer the sine wave output from the sine wave amplifier to the fuel to atomize the fuel.
본 발명의 다른 측면에서의 연료 미립화 모듈의 연료 미립화 방법은, 상기 급가속센서 및 급제동센서로부터 급발진 정도 및 급제동 정도에 대한 신호를 제어부가 전달받는 단계를 포함한다. 상기 피에조 센서로부터 유량의 상태에 대한 신호를 제어부가 전달받는 단계를 포함한다. 상기 전달받은 급제동 정도, 급발진 정도, 및 유량의 상태에 따라 출력신호를 결정하는 단계를 포함한다. 상기 출력신호에 따른 사인파를 출력 및 증폭하는 단계를 포함한다. 상기 증폭된 사인파를 엔진으로 공급되는 유량에 전달하여 연료를 미립화하는 단계를 포함한다. The fuel atomization method of the fuel atomization module according to another aspect of the present invention includes a step of receiving, by the controller, signals about the degree of rapid start and the degree of sudden braking from the rapid acceleration sensor and the rapid braking sensor. The control unit receives a signal for the state of the flow rate from the piezo sensor. And determining the output signal according to the received braking degree, sudden oscillation degree, and flow rate. Outputting and amplifying a sine wave according to the output signal. Delivering the amplified sine wave to a flow rate supplied to an engine to atomize fuel.
이 경우, 상기 유량 상태에 대한 신호는, 상기 현재 샘플링 구간 직전의 제1 과거 샘플링 구간에서의 유량 상태 측정값 및 상기 제1 과거 샘플링 구간 직전의 제2 과거 샘플링 구간에서의 유량 상태 측정값 사이의 차와, 상기 제1 과거 샘플링 구간에서의 유량 상태 측정값 및 현재 샘플링 구간에서의 유량 상태 측정값 사이의 차이를 비교하여서, 미래 샘플링 구간의 측정값을 예측하여 생성될 수 있다. In this case, the signal for the flow state is between the flow state measurement value in the first past sampling section immediately before the current sampling section and the flow state measurement value in the second past sampling section immediately before the first past sampling section. The difference between the flow state measurement value in the first past sampling section and the flow state measurement value in the current sampling section may be generated by predicting the measurement value of the future sampling section.
상기 급가속 정도 신호는 차량의 엑셀레이터의 회전 가속도를 측정한 값에 대응되고, 상기 급제동 정도 신호는 차량의 브레이크의 회전 가속도를 측정한 값에 대응될 수 있다.The rapid acceleration degree signal may correspond to a value of measuring rotational acceleration of the accelerator of the vehicle, and the rapid braking degree signal may correspond to a value of measuring the rotational acceleration of the brake of the vehicle.
본 발명에 따르면, 현재의 급가속 및 급제동 센싱값과, 미래의 피에조 센싱값을 조합하여서 연료의 미립화 정도를 결정함으로써, 최적의 연료 미립화가 달성되며, 이에 따라서 연료 효율이 향상된다. According to the present invention, the optimum fuel atomization is achieved by determining the atomization degree of the fuel by combining the current rapid acceleration and rapid braking sensing value with the future piezo sensing value, thereby improving fuel efficiency.
도 1은 본 발명의 일실시예에 따른 실시간 차량상태에 따른 연료 미립화 모듈의 개념도이다.1 is a conceptual diagram of a fuel atomization module according to a real-time vehicle state according to an embodiment of the present invention.
도 2는 본 발명에서 피에조 센싱값을 구하는 방법을 나타낸 그래프이다.Figure 2 is a graph showing a method for obtaining a piezo sensing value in the present invention.
도 3은 본 발명의 다른 일실시예에 따른 연료 미립화 방법의 흐름도이다. 3 is a flow chart of a fuel atomization method according to another embodiment of the present invention.
이하 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 실시간 차량상태에 따른 연료 미립화 모듈(100)의 개념도이다. 1 is a conceptual diagram of a fuel atomization module 100 according to a real-time vehicle state according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 실시간 차량상태에 따른 연료 미립화 모듈(100)은, 급가속 센서(10)와, 급제동 센서(20)와, 피에조 센서(30)와, 제어부(40)와, 연료 미립화 장치(50)를 포함한다. As shown in FIG. 1, the fuel atomization module 100 according to a real-time vehicle state according to a preferred embodiment of the present invention includes a rapid acceleration sensor 10, a rapid braking sensor 20, a piezo sensor 30, And a control unit 40 and a fuel atomization device 50.
급가속 센서(10)는 차량의 급가속 정도를 측정한다. 급제동 센서(20)는 급제동 정도를 측정한다. 피에조 센서(30)는 연료라인(5)의 유동 상태를 실시간으로 측정한다. 제어부(40)는 피에조 센서(30)와, 급제동 센서(20)와, 급가속 센서(10)로부로부터 측정된 측정값을 토대로 연료 미립화 장치(50)를 구동시킨다. 연료 미립화 장치(50)는, 상기 제어부(40)의 출력신호에 맞추어 연료를 미립화하도록, 연료라인(5)에 사인파를 인가한다.The rapid acceleration sensor 10 measures the degree of rapid acceleration of the vehicle. The rapid braking sensor 20 measures the degree of rapid braking. The piezo sensor 30 measures the flow state of the fuel line 5 in real time. The controller 40 drives the fuel atomization device 50 based on the measurement values measured from the piezo sensor 30, the rapid braking sensor 20, and the rapid acceleration sensor 10. The fuel atomization device 50 applies a sine wave to the fuel line 5 so as to atomize the fuel in accordance with the output signal of the controller 40.
본 발명에 따르면, 급가속 및 급제동의 경우, 필요한 연료량이 더욱 많아지게 되고, 이에 따라서 공연비가 급속히 낮아지게 된다. 이때 발생되는 연료의 소모를 최대한으로 줄이기 위해서는, 연료의 미립화를 위한 에너지를 더 많이 공급하여야 한다. According to the present invention, in the case of rapid acceleration and rapid braking, the required amount of fuel is further increased, and thus the air-fuel ratio is rapidly lowered. In order to reduce the consumption of fuel generated at this time, it is necessary to supply more energy for atomization of the fuel.
상기 급가속 센서(10)는 차량의 엑셀레이터(1)의 회전 가속도를 측정하고, 상기 급제동 센서(20)는 차량의 브레이크(2)의 회전 가속도를 측정할 수 있다. 이에 따라서 엑셀레이터(1) 및 브레이크(2)를 급하게 누르게 되면, 상기 엑셀레이터(1) 및 브레이크(2)의 회전 가속도가 빨라지게 된다. 본 발명에 따르면, 차량의 속도에 관계없이 급가속 및 급제동 정도에 따라서, 연료의 미립화 정도를 조절할 수 있다. The rapid acceleration sensor 10 may measure the rotational acceleration of the accelerator 1 of the vehicle, and the rapid braking sensor 20 may measure the rotational acceleration of the brake 2 of the vehicle. Accordingly, when the accelerator 1 and the brake 2 are urgently pressed, the acceleration of rotation of the accelerator 1 and the brake 2 is accelerated. According to the present invention, the atomization degree of the fuel can be adjusted according to the rapid acceleration and the braking degree regardless of the speed of the vehicle.
종래에는, 단순히 회전속도의 변화량에 따라서 고주파의 주파수를 변화시켜 속도에 상응하는 연료를 주입하도록 하나, 본 발명의 경우 급가속, 급제동의 경우 필요한 에너지 대비 연료 미립화가 더욱더 되도록 하는 것이다. Conventionally, by simply changing the frequency of the high frequency in accordance with the change in the rotational speed to inject the fuel corresponding to the speed, in the case of the present invention is to accelerate the fuel atomization compared to the energy required in the case of rapid acceleration, rapid braking.
한편, 본 발명은 피에조 센서(30)를 더 포함한다. 상기 피에조 센서(30)는 연료라인(5)에 부착되어서, 상기 연료라인(5)을 통과하는 연료의 유량 상태를 파악한다. 이 경우, 연료의 유량 상태란 연료 흐름에서의 진동 정도 및 연료량 등을 들 수 있다. 상기 유량 상태에 따라서 피에조 센서(30)에 전달되는 값이 달라지게 되고, 상기 값에 대응되어서 피에조 센서(30)가 출력 신호를 보내게 된다.Meanwhile, the present invention further includes a piezo sensor 30. The piezo sensor 30 is attached to the fuel line 5 to determine the flow rate of the fuel passing through the fuel line 5. In this case, the flow rate state of the fuel includes vibration degree and fuel amount in the fuel flow. The value transmitted to the piezo sensor 30 is changed according to the flow rate state, and the piezo sensor 30 sends an output signal in response to the value.
연료 흐름 상태가 진동이 크고, 유속이 빨라지거나, 난류가 형성되거나, 유량이 커지게 되면 피에조 센서(30)의 측정값이 커지게 되고, 이에 따라서 연료의 미립화가 더 필요하게 된다. 반대로 연료 흐름 상태가 진동이 작고, 유속이 정상(static) 상태이거나, 유속이 느리거나, 유량이 작아지게 되면, 피에조 센서(30)의 측정값이 낮아지게 되고, 이에 따라서 연료의 미립화가 덜 필요하게 된다.When the fuel flow state is large, vibration, flow velocity, turbulence, or flow rate increase, the measurement value of the piezo sensor 30 increases, and thus, atomization of the fuel is further required. On the contrary, when the fuel flow state is low in vibration, the flow rate is in a static state, the flow rate is low, or the flow rate is low, the measurement value of the piezo sensor 30 is lowered, thus requiring less atomization of fuel. Done.
이 경우, 상기 제어부(40)는, 상기 피에조 센서(30)로부터 받는 실시간 측정값을 샘플링 구간 단위로 구분하여, 현재 샘플링 구간에서의 측정값과, 상기 현재 샘플링 구간 전의 과거 샘플링 구간에서의 측정값을 비교하여서, 상기 현재 샘플링 구간 직후의 미래 샘플링 구간에서 필요한 연료의 미립화 정도를 예측하여, 이를 출력신호의 일부로서 연료 미립화 장치(50)에 전달할 수 있다. In this case, the control unit 40 divides the real-time measurement value received from the piezo sensor 30 in units of sampling intervals, the measured value in the current sampling interval, and the measured value in the past sampling interval before the current sampling interval. By comparing this, it is possible to predict the atomization degree of the fuel required in the future sampling section immediately after the current sampling section, and transmit it to the fuel atomization device 50 as part of the output signal.
이에 따라서, 현재 및 과거의 연료 흐름 상태의 추세에 따라서 미래의 연료 상태를 미리 예측할 수 있고, 이에 맞추어서 실시간으로 연료를 적절히 미립화 시킬 수 있다. Accordingly, it is possible to predict the future fuel condition in advance according to the current and past fuel flow conditions, and to appropriately atomize the fuel in real time accordingly.
따라서, 제어부는, 실시간 급제동 센서의 측정값, 실시간 급가속 센서의 측정값 및 피에조 센서로부터 미래의 샘플링 구간에 예측된 측정값을 조합하여서 출력신호를 발생시키게 된다.Therefore, the control unit generates an output signal by combining the measured value of the real-time sudden braking sensor, the measured value of the real-time rapid acceleration sensor, and the measured value predicted in the future sampling interval from the piezo sensor.
제어부에서 피에조 센서 값을 이용하여 미래의 연료 상태를 예측하는 과정을, 도 1과 함께 도 2를 참조하여 보다 상세히 설명한다.A process of predicting a future fuel state by using the piezo sensor value in the controller will be described in more detail with reference to FIG. 2 along with FIG. 1.
피에조 센서(30)는, 단위시간 당(편의상 "샘플링 구간"이라 한다.)의 피에조 센서(30)에 도달하는 연료 유량 상태 측정값을 연속적으로 측정한다. 현재 샘플링 구간(△t)에서 얻어진 측정값을 현재 측정값(c)이라고 한다. 현재 샘플링 구간 바로 직전의 샘플링 구간(△(t-1))에서 얻어진 측정값을 제1 과거 측정값(b)이라고 한다. 제1 과거 측정값의 바로 직전의 샘플링 구간(△(t-2))에서 얻어진 측정값을 제2 과거 측정값(a)이라고 한다. 현재 샘플링 구간 바로 이후인 미래 샘플링 구간(△(t+1))에서 예측되는 값을 미래 예측값(d)이라고 한다. 이경우, 각각의 샘플링 구간에서의 측정값은, 샘플링 구간에서의 평균값으로 구할 수 있다. The piezo sensor 30 continuously measures the fuel flow state measurement value reaching the piezo sensor 30 per unit time (for convenience, referred to as a "sampling section"). The measured value obtained in the current sampling period DELTA t is called the current measured value c. The measured value obtained in the sampling section Δ (t-1) immediately before the current sampling section is called the first past measured value b. The measured value obtained in the sampling section (Δ (t-2)) immediately before the first past measured value is referred to as the second past measured value a. The value predicted in the future sampling interval Δ (t + 1) immediately after the current sampling interval is called a future prediction value d. In this case, the measured value in each sampling section can be calculated | required as the average value in a sampling section.
제어부(40)는, 현재 샘플링구간에서의 현재 측정값(c)과, 제1 과거 샘플링 구간에서의 제1 과거 측정값(b)의 차이(c-b)(이를, "현재 차이값"이라 칭한다)를 구한다. The control unit 40 determines the difference cb between the current measured value c in the current sampling interval and the first past measured value b in the first past sampling interval (this is referred to as a "current difference value"). Obtain
또한, 제어부(40)는, 제1 샘플링 구간당 제1 과거 측정값(b)과, 제2 샘플링 구간당 제2 과거 측정값(a)의 차이(b-a)(이를, "과거 차이값"이라 칭한다.)를 구한다. In addition, the control part 40 calls the difference ba (the past difference value) between the 1st past measured value b per 1st sampling interval, and the 2nd past measured value a per 2nd sampling interval. )
그 후에, 현재 차이값(c-b)과 과거 차이값(b-a)의 비에 따라서, 미래 예측값이 예측되며, 상기 미래 예측값에 따라서 연료의 미립화 정도를 결정한다.Thereafter, the future prediction value is predicted according to the ratio of the present difference value c-b and the past difference value b-a, and the degree of atomization of the fuel is determined according to the future prediction value.
만약 현재 차이값/과거 차이값((c-b)/(b-a))이 1보다 큰 경우에는, 미래 예측값이 더욱더 커지게 될 가능성이 크며, 이 경우 연료 미립화 장치(50)로 하여금 연료 미립화를 위하여 신호의 세기를 증가시키도록 한다. If the present difference value / historical difference value (cb) / (ba) is greater than 1, it is likely that the future prediction value will become even larger, in which case the fuel atomization device 50 signals for fuel atomization. Increase the strength of the.
반대로 만약 현재 차이값/과거 차이값((c-b)/(b-a))이 1보다 작은 경우에는, 미래 예측값이 더욱더 작아질 가능성이 크며, 이 경우, 연료 미립화 장치(50)로 하여금 연료 미립화를 위하여 신호의 세기를 감속시키도록 한다. On the contrary, if the present difference value / historical difference value ((cb) / (ba)) is smaller than 1, the future prediction value is more likely to be smaller, in which case, the fuel atomization device 50 is used for fuel atomization. Try to slow down the signal strength.
이 경우, 상기 제1 과거 샘플링 구간의 시간와, 제2 과거 샘플링 구간의 시간과, 현재 샘플링 구간의 시간은 모두 동일한 것이 바람직하다. In this case, it is preferable that the time of the first past sampling section, the time of the second past sampling section, and the time of the current sampling section are all the same.
급제동 센서(20)와 급가속 센서(10)의 값은 현재의 상태를 파악하여 연료 미립화 정도를 제어하는 것이다. 피에조 센서(30)의 경우, 미래의 상태를 예측하여 연료 미립화 정도를 제어하는 것이다. The values of the rapid braking sensor 20 and the rapid acceleration sensor 10 are to grasp the current state and to control the fuel atomization degree. In the case of the piezo sensor 30, the degree of fuel atomization is controlled by predicting a future state.
따라서, 제어부(40)는 급제동 센서(20)의 측정값과, 급가속 센서(10)의 측정값과, 피에조 센서(30)의 측정값으로부터 계산된 미래 예측값을 조합하여서, 연료에 전달하는 신호의 크기를 조절할 수 있다. Therefore, the controller 40 combines the measured value of the sudden braking sensor 20, the measured value of the rapid acceleration sensor 10, and the future predicted value calculated from the measured value of the piezo sensor 30, and transmits the signal to the fuel. You can adjust the size.
예를 들어, 급제동 센서(20)의 측정값에 대응되는 신호값의 가중치를 40%로 정하고, 급제동 센서(20)와, 미래 예측값에에 대응되는 신호값의 가중치를 각각 30%로 정할 수 있다. For example, the weight of the signal value corresponding to the measured value of the sudden braking sensor 20 may be set to 40%, and the weight of the sudden braking sensor 20 and the signal value corresponding to the future prediction value may be set to 30%, respectively. .
상기 신호값의 가중치는 차량의 상태, 엔진의 종류, 연료의 종류에 따라서 조절가능하다. The weight of the signal value is adjustable according to the state of the vehicle, the type of engine, and the type of fuel.
연료 미립화 장치(50)는 제어부(40)의 신호에 따라서 연료에게 사인파를 인가한다. 상기 사인파 신호 크기에 따라서 연료 미립화정도가 달라지게 된다. The fuel atomization device 50 applies a sine wave to the fuel in accordance with a signal from the controller 40. The degree of fuel atomization varies according to the magnitude of the sine wave signal.
상기 연료 미립화 장치(50)는 사인파 증폭기(52)와, 사인파 인가기(54)를 구비할 수 있다. The fuel atomization device 50 may include a sine wave amplifier 52 and a sine wave applicator 54.
사인파 증폭기(52)는, 상기 제어부(40)의 출력신호에 대응되는 사인파를 증폭하여 출력한다. 사인파 인가기(54)는 상기 사인파 증폭기(52)로부터 출력되는 사인파를 연료에 전달하여 상기 연료를 미립화한다. 상기 연료 미립화 장치(50)에 대하여 보다 자세히 설명하면, 먼저 제어부(40)에서 전달받은 값들을 삼각파를 발생하도록 한다. 이 경우, 상기 각각의 측정값은 펄스신호일 수 있고, 제어부(40)는 상기 펄스신호를 입력받아 삼각파를 발생할 수 있다. 구형파 펄스를 입력해서 프로그램에 의해 삼각파를 만드는 것은 당업자가 용이하게 실시가능한 기술이다.The sine wave amplifier 52 amplifies and outputs a sine wave corresponding to the output signal of the controller 40. The sine wave applicator 54 delivers a sine wave output from the sine wave amplifier 52 to the fuel to atomize the fuel. The fuel atomization device 50 will be described in more detail. First, the values transmitted from the control unit 40 generate triangular waves. In this case, each measured value may be a pulse signal, and the control unit 40 may receive the pulse signal and generate a triangular wave. It is a technique that can be easily implemented by those skilled in the art to generate a triangular wave by a program by inputting a square wave pulse.
사인파 증폭기(52)는 제어부(40)에서 발생된 삼각파를 정형하여 약 200Hz~8kHz의 고주파 사인파로 변환하는 작용을 한다. 제어부(40)에서 출력되는 펄스신호의 주기가 작을수록(주파수가 클수록) 사인파 증폭기(52)에서 출력되는 사인파의 주파수가 커지게 된다. The sine wave amplifier 52 functions to shape a triangular wave generated by the control unit 40 and convert it into a high frequency sine wave of about 200 Hz to 8 kHz. As the period of the pulse signal output from the control unit 40 decreases (the frequency increases), the frequency of the sine wave output from the sine wave amplifier 52 increases.
제어부(40)에서 삼각파가 출력된다면, 상기 삼각파가 적은 전류의 소전력 신호이므로 연료에 충분한 에너지를 인가하기 위하여서는 전력증폭을 필히 수행하여야 하며, 이 경우, 사인파 증폭기(52)가 담당한다.If the triangular wave is output from the controller 40, since the triangular wave is a small power signal having a small current, power amplification must be performed in order to apply sufficient energy to the fuel. In this case, the sinusoidal amplifier 52 takes charge.
사인파 인가기(54)는 사인파 증폭기(52)에서 출력된 +사인파 및 -사인파를 연료가 흐르고 있는 연료라인(5)에 인가한다. 이 경우, 연료 라인에 권취된 코일(56)에 의하여 인가될 수 있다. The sine wave applicator 54 applies the + sine wave and the − sine wave output from the sine wave amplifier 52 to the fuel line 5 through which the fuel flows. In this case, it can be applied by the coil 56 wound on the fuel line.
도 3은 본 발명의 다른 측면에서, 연료 미립화 방법을 도시한 흐름도이다. 도 1 및 도 3에 도시된 바와 같이, 본 발명의 연료 미립화 방법은, 급가속 센서/급제동 센서로부터 급가속값/급제동값을 측정하는 단계(S100)를 거친다. 또한, 피에조 센서로부터 피에조값을 측정하는 단계(S200)를 거친다. 3 is a flow chart illustrating a fuel atomization method in another aspect of the present invention. As shown in Figure 1 and 3, the fuel atomization method of the present invention, step (S100) to measure the rapid acceleration value / the rapid braking value from the rapid acceleration sensor / sudden braking sensor. In addition, a piezo value is measured from the piezo sensor (S200).
그 후에, 제어부가 상기 급가속 센서(10) 및 급제동 센서(20)로부터 급발진 정보, 급제동 정보에 대한 신호인 급가속 신호, 및 급제동 신호를 생성하는 단계(S300)를 거친다. 이와 더불어, 제어부는, 상기 피에조 센서(30)로부터의 피에조값을 전달받는 단계(S400)와, 상기 피에조 값을 통하여 미래의 피에조 신호를 계산하는 단계(S500)를 거친다.Subsequently, the controller generates a rapid acceleration signal, a signal for rapid braking information, rapid braking information, and a rapid braking signal, from the rapid acceleration sensor 10 and the rapid braking sensor 20 (S300). In addition, the control unit receives a piezo value from the piezo sensor 30 (S400) and calculates a future piezo signal through the piezo value (S500).
그 후에, 상기 전달받은 급가속신호, 급제동신호, 피에조신호를 조합하여서 출력신호를 결정하는 단계(S700)와, 상기 출력신호에 따른 사인파를 출력 및 증폭하는 단계(S700)와, 상기 증폭된 사인파를 엔진으로 공급되는 유량에 전달하여 연료를 미립화하는 단계(S800)를 포함한다. Thereafter, determining the output signal by combining the received rapid acceleration signal, the rapid braking signal, and the piezo signal (S700), outputting and amplifying a sine wave according to the output signal (S700), and the amplified sine wave. It is delivered to the flow rate supplied to the engine to atomize the fuel (S800).
이 경우, 제어부(40)는 급제동 센서(20)와, 급가속 센서(10)와, 피에조 센서(30)의 값을 조합하여서, 연료에 전달하는 신호의 크기를 조절할 수 있다. In this case, the controller 40 may adjust the magnitude of the signal transmitted to the fuel by combining the values of the rapid braking sensor 20, the rapid acceleration sensor 10, and the piezo sensor 30.
예를 들어, 급제동 센서(20)에서 받는 신호값의 가중치를 40%로 정하고, 급제동 센서(20)와, 피에조 센서(30)에서 받는 신호값의 가중치를 각각 30%로 정할 수 있다. For example, the weight of the signal value received from the sudden braking sensor 20 may be set to 40%, and the weight of the signal value received from the sudden braking sensor 20 and the piezo sensor 30 may be set to 30%.
상기 신호값의 가중치는 차량의 상태, 엔진의 종류, 연료의 종류에 따라서 조절가능하다. The weight of the signal value is adjustable according to the state of the vehicle, the type of engine, and the type of fuel.
한편, 상기 미래의 피에조신호를 계산하는 단계(S500)는, 상기 현재 샘플링 구간 직전의 제1 과거 샘플링 구간에서의 유량 상태 측정값과 상기 제1 과거 샘플링 구간 직전의 제2 과거 샘플링 구간에서의 유량 상태 측정값 사이의 차와, 상기 제1 과거 샘플링 구간에서의 유량 상태 측정값과 현재 샘플링 구간에서의 유량 상태 측정값 사이의 차이를 비교하여서, 미래 샘플링 구간의 예측값을 예측함으로써 이루어질 수 있다. 상기 미래 샘플링 구간의 예측값을 토대로 피에조신호를 생성할 수 있다. On the other hand, the step of calculating the future piezo signal (S500), the flow rate measurement value in the first past sampling interval immediately before the current sampling interval and the flow rate in the second past sampling interval immediately before the first past sampling interval The difference between the state measurement values and the difference between the flow state measurement value in the first past sampling interval and the flow state measurement value in the current sampling interval may be compared to predict the predicted value of the future sampling interval. The piezo signal may be generated based on the predicted value of the future sampling interval.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술분야의 숙련된 당업자라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. As described above, although described with reference to the preferred embodiment of the present invention, those skilled in the art various modifications and variations of the present invention without departing from the spirit and scope of the invention described in the claims below I can understand that you can.
본 발명은 자동차 산업에 이용 가능하다.The present invention is applicable to the automotive industry.

Claims (8)

  1. 차량의 급가속 정도를 실시간으로 측정하는 급가속 센서;A rapid acceleration sensor for measuring a rapid acceleration degree of the vehicle in real time;
    차량의 급제동 정도를 실시간으로 측정하는 급제동 센서;A rapid braking sensor for measuring the braking degree of the vehicle in real time;
    연료라인의 유동 상태를 실시간으로 측정하는 피에조 센서;Piezo sensor for measuring the flow state of the fuel line in real time;
    상기 급가속 센서, 급제동 센서 및 피에조 센서로부터 받은 실시간 측정값을 토대로 연료의 미립화 정도를 정하고, 이에 맞추어 출력신호를 발생시키는 제어부; 및A controller configured to determine the atomization degree of the fuel based on real-time measurement values received from the rapid acceleration sensor, the rapid braking sensor, and the piezo sensor, and generate an output signal accordingly; And
    상기 제어부의 출력신호에 맞추어 연료에 사인파를 인가하는 연료 미립화 장치;A fuel atomization device for applying a sine wave to fuel in accordance with an output signal of the controller;
    를 구비하는 실시간 차량상태에 따른 연료 미립화 모듈.Fuel atomization module according to the real-time vehicle state having a.
  2. 제1항에 있어서, The method of claim 1,
    상기 급가속센서는 차량의 엑셀레이터의 회전 가속도를 측정하고,The rapid acceleration sensor measures the rotational acceleration of the accelerator of the vehicle,
    상기 급제동센서는 차량의 브레이크의 회전 가속도를 측정하는 것을 특징으로 하는 실시간 차량상태에 따른 연료 미립화 모듈.The rapid brake sensor is a fuel atomization module according to the real-time vehicle status, characterized in that for measuring the acceleration of rotation of the brake of the vehicle.
  3. 제1항에 있어서,The method of claim 1,
    상기 제어부는, 상기 피에조 센서로부터 받는 실시간 측정값을 샘플링 구간 단위로 구분하여, 현재 샘플링 구간에서의 측정값과, 상기 현재 샘플링 구간 전의 과거 샘플링 구간에서의 측정값을 비교하여서, 상기 현재 샘플링 구간 직후의 미래 샘플링 구간에서 측정값을 예측하고, 상기 예측한 측정값을 토대로 필요한 연료의 미립화 정도를 정하는 것을 특징으로 하는 실시간 차량상태에 따른 연료 미립화 모듈.The controller divides the real-time measurement value received from the piezo sensor into sampling interval units, compares the measured value in the current sampling interval with the measured value in the past sampling interval before the current sampling interval, and immediately after the current sampling interval. Predicting the measured value in the future sampling interval of the fuel atomization module according to the real-time vehicle status, characterized in that to determine the required atomization degree of fuel based on the predicted measured value.
  4. 제3항에 있어서, The method of claim 3,
    상기 제어부는:The control unit:
    상기 현재 샘플링 구간 직전의 제1 과거 샘플링 구간에서의 측정값과 상기 제1 과거 샘플링 구간 직전의 제2 과거 샘플링 구간에서의 측정값 사이의 차와,A difference between the measured value in the first past sampling section immediately before the current sampling section and the measured value in the second past sampling section immediately before the first past sampling section,
    상기 제1 과거 샘플링 구간에서의 측정값과 현재 샘플링 구간에서의 측정값 사이의 차이를 비교하여서, Comparing the difference between the measured value in the first past sampling interval and the measured value in the current sampling interval,
    미래 샘플링 구간의 측정값을 예측하여 출력신호를 생성하는 것을 특징으로 하는 실시간 차량상태에 따른 연료 미립화 모듈.The fuel atomization module according to the real-time vehicle status, characterized in that for generating an output signal by predicting the measured value of the future sampling interval.
  5. 제1항에 있어서,The method of claim 1,
    상기 연료 미립화 장치는:The fuel atomization device is:
    상기 제어부의 출력신호에 대응되는 사인파를 증폭하여 출력하는 사인파 증폭기; 및A sine wave amplifier for amplifying and outputting a sine wave corresponding to the output signal of the controller; And
    상기 사인파 증폭기로부터 출력되는 사인파를 연료에 전달하여 상기 연료를 미립화하는 사인파 인가기;를 구비하는 것을 특징으로 하는 실시간 차량상태에 따른 실시간 차량상태에 따른 연료 미립화 모듈.And a sine wave applicator for atomizing the fuel by transmitting a sine wave output from the sine wave amplifier to the fuel.
  6. 제1항 내지 제5항의 구조를 가진 연료 미립화 모듈의 연료 미립화 방법으로서,A fuel atomization method of a fuel atomization module having the structure of claims 1 to 5,
    상기 급가속 센서 및 급제동 센서가 급가속값 및 급제동값을 측정하는 단계; Measuring the rapid acceleration value and the rapid braking value by the rapid acceleration sensor and the rapid braking sensor;
    피에조 센서로부터 피에조값을 측정하는 단계;Measuring a piezo value from the piezo sensor;
    상기 급가속값 및 급제동값을 제어부가 전달받아서 급가속신호 및 급제동신호를 생성하는 단계;A control unit receiving the rapid acceleration value and the rapid braking value to generate a rapid acceleration signal and a rapid braking signal;
    상기 피에조값을 제어부가 전달받아서 미래의 피에조 신호를 계산하는 단계;Calculating a future piezo signal by receiving the piezo value from a controller;
    상기 전달받은 급가속신호, 급제동신호, 피에조신호를 조합하여서 출력신호를 결정하는 단계;Determining an output signal by combining the received rapid acceleration signal, rapid braking signal, and piezo signal;
    상기 출력신호에 따른 사인파를 출력 및 증폭하는 단계; 및 Outputting and amplifying a sine wave according to the output signal; And
    상기 증폭된 사인파를 엔진으로 공급되는 유량에 전달하여 연료를 미립화하는 단계;를 포함하는 연료 미립화 방법.Atomizing fuel by transferring the amplified sine wave to a flow rate supplied to an engine.
  7. 제6항에 있어서,The method of claim 6,
    상기 피에조 센서를 이용한 유량 상태에 대한 신호는,The signal for the flow rate state using the piezo sensor,
    상기 현재 샘플링 구간 직전의 제1 과거 샘플링 구간에서의 유량 상태 측정값과 상기 제1 과거 샘플링 구간 직전의 제2 과거 샘플링 구간에서의 유량 상태 측정값 사이의 차와,A difference between the flow rate state measurement value in the first past sampling section immediately before the current sampling section and the flow rate state measurement value in the second past sampling section immediately before the first past sampling section,
    상기 제1 과거 샘플링 구간에서의 유량 상태 측정값과 현재 샘플링 구간에서의 유량 상태 측정값 사이의 차이를 비교하여서, Comparing the difference between the flow state measurement value in the first past sampling interval and the flow state measurement value in the current sampling interval,
    미래 샘플링 구간의 측정값을 예측하여 생성되는 것을 특징으로 하는 연료 미립화 방법.Fuel atomization method characterized in that it is generated by predicting the measured value of the future sampling interval.
  8. 제6항에 있어서, The method of claim 6,
    상기 급가속 정도 신호는 차량의 엑셀레이터의 회전 가속도를 측정한 값에 대응되고, The rapid acceleration degree signal corresponds to a value measured by the rotational acceleration of the accelerator of the vehicle,
    상기 급제동 정도 신호는 차량의 브레이크의 회전 가속도를 측정한 값에 대응되는 것을 특징으로 하는 연료 미립화 방법.The rapid braking degree signal is a fuel atomization method, characterized in that corresponding to the value measured by the rotational acceleration of the brake of the vehicle.
PCT/KR2018/012819 2018-02-05 2018-10-26 Fuel atomization module depending on real-time vehicle state and fuel atomization method using same WO2019151614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0014233 2018-02-05
KR1020180014233A KR102030166B1 (en) 2018-02-05 2018-02-05 A fuel atomization module and method for atomizationing of the fuel

Publications (1)

Publication Number Publication Date
WO2019151614A1 true WO2019151614A1 (en) 2019-08-08

Family

ID=67478793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012819 WO2019151614A1 (en) 2018-02-05 2018-10-26 Fuel atomization module depending on real-time vehicle state and fuel atomization method using same

Country Status (2)

Country Link
KR (1) KR102030166B1 (en)
WO (1) WO2019151614A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201802A (en) * 1987-02-18 1988-08-19 Hitachi Ltd State discrimination type adaptive control system for engine
KR20000010183U (en) * 1998-11-17 2000-06-15 김종수 Automobile fuel economy measurement device
KR101269512B1 (en) * 2012-01-17 2013-05-30 서울기연(주) Control apparatus of engine rpm and control method thereof
KR20130104801A (en) * 2012-03-15 2013-09-25 에스엘 주식회사 Apparutus and method for controlling vehicle headlamp
KR101512281B1 (en) * 2015-01-15 2015-04-14 이경우 Reduction fuel and emissions reduction apparatus having atomize and ionization means of fuel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030034843A (en) 2001-10-29 2003-05-09 주식회사 하퍼 Speed sensitive fuel reduction apparatus and method
KR20110100744A (en) * 2010-03-05 2011-09-15 강중희 Fuel combustion apparatus of an internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201802A (en) * 1987-02-18 1988-08-19 Hitachi Ltd State discrimination type adaptive control system for engine
KR20000010183U (en) * 1998-11-17 2000-06-15 김종수 Automobile fuel economy measurement device
KR101269512B1 (en) * 2012-01-17 2013-05-30 서울기연(주) Control apparatus of engine rpm and control method thereof
KR20130104801A (en) * 2012-03-15 2013-09-25 에스엘 주식회사 Apparutus and method for controlling vehicle headlamp
KR101512281B1 (en) * 2015-01-15 2015-04-14 이경우 Reduction fuel and emissions reduction apparatus having atomize and ionization means of fuel

Also Published As

Publication number Publication date
KR102030166B1 (en) 2019-10-10
KR20190095634A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
TW372930B (en) Cable tension testing device for elevator
CN101228406B (en) Method for determining at lest one state parameter in electric arc furnace and electric arc furnace
WO2013054954A1 (en) Actuator displacement measurement system in electronic hydraulic system of construction equipment
EP1422407A1 (en) ENGINE, ENGINE EXHAUST TEMPERATURE CONTROLLING DEVICE AND CONTROLLING METHOD
US20020129790A1 (en) Method and apparatus for controlling intake air flow rate of an engine and method for controlling output
US5465612A (en) Method and apparatus for testing motor vehicles under simulated road conditions
CN107323454A (en) A kind of unmanned speed-regulating device and method of adjustment based on surface evenness
JP2002182707A (en) Method and apparatus for controlling driving sequence of vehicle
WO2019151614A1 (en) Fuel atomization module depending on real-time vehicle state and fuel atomization method using same
CN103197550B (en) A kind of vehicle electric brake system dynamic load simulation method
CN101334674A (en) Shock absorption positioning control method and device
CN110702303B (en) Calibration method of small force value sensor
CN101499755A (en) PID control system for DC motor speed and control method thereof
CN117391262B (en) Intelligent prediction method for dynamic TQI of ballasted railway in accurate measurement and accurate tamping operation process
WO2016111581A1 (en) Apparatus and method for controlling egr valve
EP1279814A3 (en) Engine speed control device and method
CN116205084B (en) Vehicle driving simulation test system based on steering gear loading mechanism
EP1103708A3 (en) Predicting cylinder pressure for on-vehicle control
CN110005961B (en) Underwater inspection system
WO2011027933A1 (en) Pid controller for controlling the motion of a motor and a control method thereof
JP4782907B2 (en) Vehicle control method and control device
EP1118758A3 (en) Method and system for compensating for degraded pre-catalyst oxygen sensor in a two-bank exhaust system
CN110296912B (en) System and method for detecting dust cloud cluster diffusion dynamic turbulent flow energy based on ultrasound
US6263748B1 (en) Mechanical method for changing oxygen sensor characteristics
JPH10119780A (en) Remote controllable and remote monitorial train instrumentation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903898

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18903898

Country of ref document: EP

Kind code of ref document: A1